
A Case Study in the Mechanical Verification of Fault Tolerance

Heiko Mantel
German Research Center for Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3
D-66123 Saarbrücken, Germany

mantel@dfki.de

Felix C. Gärtner
�

Department of Computer Science
Darmstadt University of Technology

D-64283 Darmstadt, Germany
felix@informatik.tu-darmstadt.de

Abstract

To date, there is little evidence that modular reasoning about
fault-tolerant systems can simplify the verification process in
practice. We study this question using a prominent exam-
ple from the fault tolerance literature: the problem of reliable
broadcast in point-to-point networks opposed to crash fail-
ures of processes. The experiences from this case study show
how modular specification techniques and rigorous proof re-
use can indeed help in such undertakings.

Introduction
A system is said to befault-tolerant if it exhibits a well-
defined system behavior in the presence of faults. The
importance of fault-tolerant systems stems from their om-
nipresence throughout today’s technical infrastructure. The
failure of a critical computer system can have catastrophi-
cal consequences, resulting in loss of considerable industrial
value or even loss of human life. Thus, there is an increasing
need for systems with verifiable fault-tolerance properties.

Because it is necessary to precisely describe faulty behav-
ior and its interaction with normal system operation, fault-
tolerance considerations place an additional complexity bur-
den on a formal verification process. In theory, the addi-
tional complexity can be dealt with by first reasoning about
the system in fault free environments and — after placing
it into a faulty environment — reasoning only about those
aspects of the system which have changed (Gärtner 1999).
Many case studies exist which prove certain algorithms cor-
rect in the case of faults using theorem provers like PVS
(Lincoln & Rushby 1993; Qadeer & Shankar 1998). How-
ever, these case studies do not exploit the theoretical ideas
sketched above and thus the proofs seem more complex than
they need to be. Consequently, there is little evidence to date
that such modular reasoning can indeed simplify the verifi-
cation process using theorem provers in practice.

The basic notion underlying most of the theory behind
modular reasoning about fault-tolerant systems is that of a

�
This author’s work was supported by the Deutsche

Forschungsgemeinschaft (DFG) as part of the PhD program
(Graduiertenkolleg) “Intelligente Systeme für die Informations-
und Automatisierungstechnik” at Darmstadt University of Tech-
nology.
Copyright c

�
2000, American Association for Artificial Intelli-

gence (www.aaai.org). All rights reserved.

transformation(Gärtner 1999). Today, there exists a solid
basis of elegant transformational techniques in the litera-
ture (Peled & Joseph 1994; Liu & Joseph 1992; Arora &
Kulkarni 1998). However, the examples used to show the
usefulness of these theories have been rather small and aca-
demic. To the best of our knowledge, the only real case
study which has been performed using theorem provers
is the component-based mechanical verification of a self-
stabilizing mutual exclusion protocol by Kulkarni, Rushby
and Shankar (1999). While it shows that modular reason-
ing does have advantages, it also concludes that — being
the first such case study — more experiences are obviously
needed.

Using the industrial-strength Verification Support Envi-
ronment (VSE) (Hutteret al. 1996), we study the bene-
fits of modular reasoning in fault-tolerance using another
prominent example from the fault tolerance literature: the
problem of reliable broadcast in point-to-point networks
with crash failures (Hadzilacos & Toueg 1994). Again,
the formalization and hand-written proofs of correctness
have appeared in the literature (Hadzilacos & Toueg 1994;
Gärtner 1998), but to our knowledge there has been no at-
tempt to study whether the methodologies involved really
lend themselves to rigorous mechanical verification. So nei-
ther are we presenting a new algorithm, nor are we present-
ing a new tool or proof method; we are proposing a modular
specification method and evaluate it in practice.

We begin by presenting a formal specification of broad-
cast in point-to-point networks and — by this example —
introduce the VSE system. Subsequently, we transform the
broadcast system into one which is opposed to crash faults of
processes and prove its correctness. It turns out that trans-
formational reasoning can indeed lessen the complexity of
the verification task; the benefits lie not so much in simpli-
fication of the proofs (they still remain lengthy and cumber-
some), but rather in the massive potential of rigorous re-use
of subspecifications and proofs. Finally, the results are sum-
marized and their impacts are discussed.

Formal Specification of Broadcast
Informally, broadcastinga message in a distributed system
means to send the same message to all nodes in the net-
work. Usually it is defined using two primitive operations
broadcastand deliver. As such primitives are often not



directly supported by the communication system (as is the
case, e.g., in wide area networks), it must be implemented
using low-level operations likesendandreceiveof individ-
ual messages. Broadcast is an important concept easing,
among others, the design of observation and control mecha-
nisms in distributed systems. The broadcast algorithm we
consider is the well-known algorithm by Hadzilacos and
Toueg (1994). We build upon a prior formalization of it
by Gärtner (1998) which, however, was done in the UNITY
theory (Chandy & Misra 1988). We briefly recall the main
points before we describe the formalization in VSE.

Overview of the broadcast system. The broadcast system
consists of� processes which communicate using a point-
to-point network of reliable unidirectional channels. The
processes need not be fully connected but it is required that
there is a communication path between every two processes.

The broadcast algorithm is described by six guarded com-
mands (denoted

��
–
��

and
� ��

) which are executed by each
process locally. The state of each process consists of three
buffers (

��
,
�
, and�), each of which can hold a single mes-

sage, and a multiset of messages (� ). In order to broadcast
a message	 , a process places it into its broadcast buffer��

(command
� �

). This corresponds to the invocation of
broadcast
	 �. Before delivery, the message is transfered
from

��
to the incoming buffer

�
(
� ��

). If the message has
not been delivered by that process before (	 � � ) then it is
sent on all outgoing channels, added to� , and put into the
delivery buffer� (

��
), otherwise,

�
is cleared (

��
). After a

message has been processed,� is cleared (
��

). A message
on an ingoing channel is delivered to a process by putting
it into

�
(
��

) from where the process may resume by com-
mand

��
or

��
. The respective guards ensure that none of

the buffers are accidently cleared. For details of the algo-
rithm and its formalization in UNITY the reader is referred
to Gärtner (1998).

The correctness of a broadcast system is defined by the
following properties.

S (safety) Every delivered message was previously broad-
cast and every message is delivered at most once.

L (liveness) Every message which is broadcast at some pro-
cess� will eventually be delivered locally, and delivery at
� will lead to delivery at all other processes.

Formalization in VSE. We perform our correctness
proofs using theVerification Support Environment(VSE),
a system which is described in detail by Hutteret al.(1996).
Apart from offering verification methods, VSE explicitly
contains means to specify complex systems in a structured
way which facilitates modular specification and verification,
and supports proof re-use. In this section we will introduce
the central concepts of VSE and its specification and verifi-
cation methodologies along the lines of the broadcast algo-
rithm sketched above.

In VSE, we have modeled a distributed system in a mod-
ular bottom-up fashion. The central concept of VSE to sup-
port modular specification and verification is thedevelop-

ment graphconsisting ofdevelopment objectsandlinks be-
tween them. Briefly spoken, development objects are sub-
specifications and links are special types of relations be-
tween such specifications. There are mainly two different
types of development objects:abstract data typesandstate-
based systems. For this case study we have formulated all
parts of the system using abstract data types.

Using abstract data types a system is modeled byalge-
bras, i.e., structured collections of sorts (sets of values) and
sorted collections of functions which operate on these val-
ues. Elementary algebraic specifications are calledtheories
in VSE and introduce the types (the sorts) and functions (the
operations) necessary to describe the modeled system. The
semantics of the operations are defined axiomatically (i.e.,
by a set of axioms which they are supposed to respect) or
algorithmically (i.e., by a small program from a restricted
programming language). Theories mayimport other theo-
ries, which corresponds to making types, operations and the
corresponding axioms visible in another theory. This makes
it possible to specify systems in a modular fashion.

“Importing” specifications also makes it possible to per-
form proofs in a modular way. Proofs are always considered
local to a specification, i.e., the proof of a lemma within
a specification module only depends on the proofs of “im-
ported” theories. Thus, the system can give assistance in
providing only relevant lemmas when proving a theorem.
Furthermore, in VSE the validity of proofs is managed au-
tomatically. When a theory has changed, all proofs which
rely on that specification are flagged as invalid and have to
be proved again.

We have depicted a simplified version of the final devel-
opment graph ofbroadcastin Fig. 1. On the “lowest-level”
the theoryMessages defines a datatype of messages. Uni-
directional channels are modeled as multisets of messages
in UChannel. There are two operations defined on chan-
nels,send andremove which, respectively, place a mes-
sage into the channel and remove it again. Channels can be
combined to aChannelMatrix. Overall there is an� ��
matrix of channels, whereby a channel of typenochannel
at position
� � � � of the matrix expresses that there is no con-
nection from process� to process� . This is the basis for
local connectivity.

Processes are modeled in moduleProcesses as a
datatype which has an identification and local data structures
(
��
,
�
, �, and� ). Processes can be combined to lists.

TheState of the entire system consists mainly of the
states of all processes (i.e., aProcessList) and the state
of all channels (i.e., aChannelMatrix). To specify the
assumption that every message is broadcasted only once, we
add to the global state a set

�
of messages which have been

broadcast.
The low-level specificationActions identifies the pos-

sible actions which a process can perform. Using the identi-
fiers defined inActions, traces are modeled as sequences
of states and actions. Starting with a state, actions and
states alternate within a sequence. Intuitively, a subsequence� � � � �� � � � �� � � � models that the execution of action� in
state�� resulted in state�� . Note that the set of traces con-
tainsall possible sequences, i.e., not only those allowed by



Actions

ActionList

SafetyProperties

ProcessList

MessageSets

Messages

AdmissibleTraces

Broadcast

Traces

States

ChannelMatrix

ChannelList

UChannel

Processes

Figure 1: Simplified development graph ofbroadcast.

the algorithm because the guarded commands have not yet
been specified. Nevertheless, it is now possible to specify
the SafetyProperties (S) of the broadcast specifica-
tion: A state� is safe if for every process in�
S1 the multiset of delivered messages� is a subset of the

set
�

of messages which have been broadcast, and

S2 the multiset of delivered messages� has no duplicates.

Finally, the set of possible traces is restricted to those al-
lowed by respecting the actions of the broadcast algorithm.
This is encoded in the specificationAdmissibleTraces.
Here, the action identifiers defined inActions are associ-
ated with their corresponding actions, i.e., the guarded com-
mands described informally earlier. An action consists of a
boolean expression on the current state (theguard) and a de-
scription of how the state changes if the action is executed
(the command). An action may only be executed in some
state� if its guard evaluates totrue on �. Thus, the spec-
ification of admissible traces describes all traces which the
algorithm might generate.

At the level of admissible traces it is now possible to for-
mulate the safety specification of broadcast as follows:S1
and S2 hold for every state in every admissible trace.

These two properties are formulated as axioms within the
safety specificationBroadcast. The special link between
the specificationBroadcast andAdmissibleTraces
means that all admissible traces shouldsatisfy the
Broadcast specification. (Note that the relations between
the other specifications have up to now merely signified that
one specificationimports the other in the sense described
above).

Proof obligations. The satisfies relation between
AdmissibleTraces and Broadcast leads to proof

obligations which are generated automatically by the
system. In order to guarantee correctness all these proof
obligations must be proven. Other proof obligations arise
from the necessity to prove that the specification in its
entirety is consistent (i.e., was not self-contradictory).
This proof is often not considered being at the heart of
the verification task. But proving consistency is usually
considered a mandatory part in arguing that a specification
is in fact adequate.1 As expected, the work involved in
proving consistency was considerable. The number of proof
obligations concerned with consistency exceeded the ones
concerned with correctness slightly. However, the more
difficult proofs were among the correctness proofs in which
the safety properties had to be proved by induction and case
analysis.

A Transformation from Broadcast to Reliable
Broadcast

The broadcast system presented in the previous section was
one in which all components were assumed to work cor-
rectly. As shown by Hadzilacos and Toueg (1994), their
broadcast algorithm will also work correctly in situations
where a limited number of components may fail. The de-
scription of the number and type of component failures
which the algorithm can tolerate (i.e., without failing alto-
gether) is usually called thefault assumption. The fault as-
sumption is a necessary starting point for any type of fault
tolerance considerations.

The fault assumption under consideration here is usually
termedcrash, meaning that at most� � � processes may
at some point in time simply stop executing steps. Fault
assumptions can be described formally as transformations
(Gärtner 1999). Consequently, at the level of processes, a
fault assumption can be formulated as a function� map-
ping a “fault-free” program� into a “fault-affected” version
� � � � 
� � (Gärtner 1998). For the crash fault assump-
tion,� will add an additional boolean variableup to the state
space of every process which is initialized to the valuetrue.
Additionally, an action (called thefault action) is added to
� which setsup to false if up holds. Finally,up is added as
a precondition to every remaining action of� . Overall, this
means that� �

will initially behave like� . However, if the
fault action is executed,�upholds, and so the preconditions
of all actions become invalid. Hence, the process is not able
anymore to perform steps, mimicking a crash.

Since the transformation adds behavior to� , it is obvi-
ous that in general the original correctness specification of
broadcast (i.e., S and L) must be weakened to reflect this
fact. A simple and mechanical way to do this is to restrict
the original specification to the behavior of only the cor-
rect processes. Obviously, this can also be described using
a transformation. A property� for some process� in the

1To prove consistency we had to introduce additional nodes into
the graph and had to perform some additional proofs. For sim-
plicity, these nodes are omitted from Fig. 1. The complete de-
velopment graph which can be imported into VSE is available on
the Internet atwww.informatik.tu-darmstadt.de/BS/
Gaertner/vse/Reliable.out



original specification is transformed into the weaker prop-
erty “� is up” � � . The resulting specification is called the
tolerance specification.

The transformational approach makes it possible to re-use
much of the given development graph. In our case study we
have built both fault-free and fault-affected scenarios into
one development graph. The additions made to the original
graph of Fig. 1 are shown in Fig. 2. In general, those parts
of the specification which need to be altered, are generated
from the corresponding parts of the original specification.

In the resulting specification, a crash action has been
added to the actions of the broadcast algorithm in
CrashActions. A theoryUpDownlist models a list of
booleanup flags which is used as an additional component
of states as defined inCrashStates. Using the modified
definition of states, traces are modeled exactly like in the
fault-free case. The safety properties are weakened by the
precondition “� is up” which is expressed using the list of
up flags. InCrashAdmissibleTraces, the crash ac-
tion allows for additional behaviour and “� is up” is added
to the guard of each action.

Our modular specification allows for a precise identifica-
tion of which parts are affected by the transformation and
in which way. Although this transformation has been per-
formed by hand, our case study suggests that it can be au-
tomated in the following way: (1) add theories with auxil-
iary datatypes, (2) add actions for faulty behaviour, (3) add
auxiliary datatypes to the state space, (4) weaken the prop-
erties, and (5) add conditions to the guards and add faulty
behaviour. Note that this approach is not restricted to our
case study but should cover the whole family of transforma-
tions for fault tolerance as described by Gärtner (1999). The
various fault assumptions differ in the auxiliary datatypes,
in the actions for faulty behaviour, in how the properties are
weakened, and in how the guards are affected.

After the transformation, the proof that the broadcast
system running under the crash fault assumption satis-
fies the tolerance specification, can be done using the
same methods as in the fault-free case. If the proof
succeeds, we have shown that the broadcast algorithm
is fault-tolerant regarding the crash fault assumption for
the given tolerance specification. Again, the transforma-
tional approach offers much potential for re-use. Proofs
which belong to unchanged parts of the specification re-
main valid. Fig. 2 demonstrates that at least the specifi-
cation modulesMessages, MessageSets, UChannel,
ChannelList, ChannelMatrix, Processes, and
ProcessList could be re-used. To be exact, 35 of 45
theories remained unchanged during the transformation.

In the construction of proofs which need to be re-done,
many of the old proofs or parts thereof could be re-used. Part
of this re-use was performed automatically by VSE but more
often proofs were used as guidelines such that we could con-
centrate on those aspects which involved fault actions. As
might be expected, we identified the following two questions
as important: (1) Does the occurrence of a fault directly vi-
olate the desired properties? (2) Does the occurrence of a
fault affect the system state such that later actions of the sys-
tem violate the properties? Under the crash fault assumption

these questions can be answered easily since after a crash of
an affected process this process does not execute further ac-
tions. For other fault assumptions we expect this to be more
difficult.

Actions

ActionList

SafetyProperties

ProcessList

MessageSets

Messages

AdmissibleTraces

Broadcast

Traces

States

ChannelMatrix

ChannelList

UChannel

ProcessesUpDownList

ReliableBroadcast

CrashAdmissible-
Traces

CrashSafety-
Properties

CrashTraces

CrashStates

CrashAction-
List

CrashActions

Figure 2: Changes made to the original graph for the fault-
affected case.

Overall, our case study shows that the transformational
approach in combination with our modular specification
technique is a good basis for the mechanical verification of
fault tolerance. The main argument for this is the potential
for re-use of specifications as well as of proofs. In the case
study this re-use has mostly be done by hand, however, fur-
ther automation is desirable. Based on our experiences we
have outlined how the transformation could be automated
such that much of the specification can be re-used. Many of
the interactions in the construction of proofs for the trans-
formed specification were rather mechanical and could be
done using the original proofs as guidelines. Further au-
tomation of the re-use appears to be achievable. However,
the realization of this automation is a different issue which
needs further investigation.

Results and Conclusions
Modeling the effects of faults as a transformation has opened
the domain of verifying fault-tolerant systems to the realm of
mechanical verification. As indicated above, fault assump-
tions can be translated into transformations and “applied” to
given systems and their specifications rather mechanically.
The transformed systems can then be reasoned about using
standard tools and methodologies. It has often been argued
that the difficulty in reasoning about fault-tolerant systems
mainly lies in the additional system complexity caused by
faults (mainly the state space explosion). However, a modu-
lar view of the system reveals that — when proving a fault-
tolerant system correct — many parts of the proof do not
actually involve reasoning about faults. These refer exactly
to those parts of the system which are not affected by the



fault assumption. Thus, proofs for the fault-free case can be
re-used directly.

This case study has shown that these ideas can indeed help
proving fault-tolerant systems correct in practice. Using a
simple but important problem of fault-tolerant computing as
an example, we observed that over two thirds of the spec-
ification modules remained unchanged under the transfor-
mation. Even in the modules which were affected by the
transformation many parts remained unchanged. This saved
an substantial amount of work in developing the specifica-
tion for the fault-affected case. It also facilitated the veri-
fication process because the proofs for the unchanged parts
of the specification remained valid. This allowed us to fo-
cus on those proofs which involve reasoning about faulty
behaviour.

In our case study, the transformation has been performed
by hand. However, we have outlined how the transforma-
tion can be automated. By generalizing these results, our ap-
proach appears to be feasible also for fault assumptions other
than crash. There is much evidence that transformations can
modelall types of faulty system behavior (Gärtner 1999).
Intuitively this is due to the fact that to an outside observer,
faulty behavior is just another type of (programmable) sys-
tem behavior. This means that the methods which we have
studied here and also the core of our results can be applied to
other fault assumptions and other systems. Thus, the exam-
ple we have given here is only the starting point for a whole
new set of investigations for formal methods research.

It could be argued that the benefit of modular reason-
ing decreases with the percentage of specification modules
which are not affected by fault transformations. However,
note that fault assumptions which merely affect process be-
havior (like even the very unfavorableByzantinefault as-
sumption) will not change more specification modules than
our case study has made necessary. Thus, re-use of specifi-
cation modules can be expected to be constant for this type
of fault assumption. The differences between fault assump-
tions will become apparent only in the parts of the speci-
fication which are affected. However, we have argued that
for each specification module the effects of different trans-
formations are similar and have conjectured that they can be
formalized in a uniform way.

It could also be argued that we have restricted our atten-
tion to proving safety properties. However, note that the
traces we have considered are always finite by definition.
Consequently, systems will always be triviallylive in the
sense of Alpern and Schneider (1985). In the future, we
plan to study also liveness issues using the successor tool
VSE-II (Hutteret al. 1998). Also, we are interested in au-
tomating the fault-tolerance transformations which we have
performed by hand as well as in improving the automated
re-use of proofs. This may contribute further to easing the
fault-tolerance complexity burden.

Acknowledgments
We would like to thank Serge Autexier, Dieter Hutter, and
Axel Schairer for valuable comments on an earlier version
of this paper which helped us to improve the presentation.

References
Alpern, B., and Schneider, F. B. 1985. Defining liveness.
Information Processing Letters21:181–185.
Arora, A., and Kulkarni, S. S. 1998. Component based de-
sign of multitolerant systems.IEEE Transactions on Soft-
ware Engineering24(1):63–78.
Chandy, K. M., and Misra, J. 1988.Parallel Program
Design: A Foundation. Reading, Mass.: Addison-Wesley.
Gärtner, F. C. 1998. Specifications for fault tolerance: A
comedy of failures. Technical Report TUD-BS-1998-03,
Darmstadt University of Technology, Darmstadt, Germany.
Gärtner, F. C. 1999. Transformational approaches to
the specification and verification of fault-tolerant systems:
Formal background and classification.Journal of Univer-
sal Computer Science (J.UCS)5(10):668–692. Special Is-
sue on Dependability Evaluation and Assessment.
Hadzilacos, V., and Toueg, S. 1994. A modular approach
to fault-tolerant broadcasts and related problems. Technical
Report TR94-1425, Cornell University, Computer Science
Department.
Hutter, D.; Langenstein, B.; Sengler, C.; Siekmann, J. H.;
Stephan, W.; and Wolpers, A. 1996. Verification support
environment (VSE).High Integrity Systems1(6):523–530.
Hutter, D.; Mantel, H.; Rock, G.; Stephan, W.; Wolpers,
A.; Balser, M.; Reif, W.; Schellhorn, G.; and Stenzel, K.
1998. VSE: Controlling the complexity in formal soft-
ware developments. InProceedings of the International
Workshop on Applied Formal Methods – FM-Trends, num-
ber 1641 in Lecture Notes in Computer Science, 351–358.
Boppard, Germany: Springer-Verlag.
Kulkarni, S. S.; Rushby, J.; and Shankar, N. 1999. A case-
study in component-based mechanical verification of fault-
tolerant programs. In Arora, A., ed.,Proceedings of the
19th IEEE International Conference on Distributed Com-
puting Systems Workshop on Self-Stabilizing Systems, 33–
40. Austin, TX, USA: IEEE Computer Society Press.
Lincoln, P., and Rushby, J. 1993. Formal verification of an
algorithm for interactive consistency under a hybrid fault
model. In Courcoubetis, C., ed.,Computer-Aided Verifica-
tion, CAV ’93, volume 697 ofLecture Notes in Computer
Science, 292–304. Elounda, Greece: Springer-Verlag.
Liu, Z., and Joseph, M. 1992. Transformation of pro-
grams for fault-tolerance.Formal Aspects of Computing
4(5):442–469.
Peled, D., and Joseph, M. 1994. A compositional frame-
work for fault-tolerance by specification transformation.
Theoretical Computer Science128:99–125.
Qadeer, S., and Shankar, N. 1998. Verifying a self-
stabilizing mutual exclusion algorithm. In Gries, D., and
de Roever, W.-P., eds.,IFIP International Conference on
Programming Concepts and Methods (PROCOMET ’98),
424–443. Shelter Island, NY: Chapman & Hall.


