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Abstract. When giving a program access to secret information, one
must ensure that the program does not leak the secrets to untrusted
sinks. For reducing the complexity of such an information flow analy-
sis, one can employ compositional proof techniques. In this article, we
present a new approach to analyzing information flow security in a com-
positional manner. Instead of committing to a proof technique at the
beginning of a verification, this choice is made during verification with
the option of flexibly migrating to another proof technique. Our approach
also increases the precision of compositional reasoning in comparison to
the traditional approach. We illustrate the advantages in two exemplary
security analyses, on the semantic level and on the syntactic level.

1 Introduction

Information flow security aims at answering the question: Is a given system
sufficiently trustworthy to access secret information? The two main research
problems are, firstly, finding adequate, formal characterizations of trustworthi-
ness and, secondly, developing sound and efficient verification techniques based
on these characterizations. Information flow security has been a focal research
topic in computer security for more than 30 years. Nevertheless, the problem to
secure the flow of information in systems is far from being solved. In [SM03], the
state of the art was surveyed for approaches to capturing and analyzing infor-
mation flow security of concrete programs. For information flow security at the
level of more abstract specifications, a broad spectrum of approaches has been
developed (see, e.g., [GM82,McC87,McL94,FG95,RS99,Man00a,BMPR03]). The
most popular verification techniques are the unwinding technique on the level
of specifications (see, e.g., [GM84,Rus92,Man00b,BFPR04]), and security type
systems and program logics on the level of programs (see [SM03] for a good
overview). In this article, we focus on a multi-threaded programming language.

We use the standard scenario for investigating information flow security of
imperative programs. That is, the initial values of some variables, the so called
high variables, constitute the secrets that must be protected while the remaining
variables, the low variables, initially store public data. We assume an attacker ζ



who can observe the values of low variables before and at the end of a program
run. The security requirement is that no information flows from the high variables
into low variables during program execution. We use l to denote low variables
and h to denote high variables, i.e. variables that may store secrets.

There are various possibilities for how a program could accidentally or ma-
liciously leak secrets. It could copy a secret into a low variable as, e.g., in
P1 = l:=h. Such leaks are referred to as intra-command leaks or explicit leaks
[Den82]. More subtly, a secret could influence the flow of control, leading to dif-
ferent assignments to low variables as, e.g., in P2 = if h = 0 then l:=0 else l:=1 fi.
If the value of l is 0 at the end of the run, h = 0 must have held initially, and if l is
1 then h 6= 0 held. Such information leaks are referred to as inter-command leaks
or implicit leaks. Even more subtle leaks originate in a multi-threaded setting.

Verification techniques are often based on characterizations of information
flow security that are compositional with respect to the primitives of the pro-
gramming language. Two well known observations motivated our work:

– Compositionality is indeed helpful, both for making verification techniques
efficient and for simplifying the derivation of results at the meta level, e.g.,
for proving a soundness theorem for a syntactic, type-based analysis.

– Compositionality leads to overly restrictive characterizations of security.
Simple programs that are typically rejected include, e.g., while h ≤ 10 do h :=
h + 1 od, l:=h; l:=0, h:=0; l:=h, and if h = 0 then l := 0 else l := 0 fi (for
instance, the security type systems in [VS98,SS00] reject all these programs).

More recent work aimed at relaxing security definitions and type systems such
that intuitively secure programs like the above examples are not rejected any-
more by a security analysis. For instance, [Smi03] and [RS06] provide solutions
for, e.g, while h ≤ 10 do h := h + 1 od (possibly requiring the addition of
auxiliary commands to the program), and [KM06] offers a solution for, e.g.,
if h = 0 then l := 0 else l := 0 fi. While this progress is promising, the ap-
proach taken requires the incremental improvement of each individual analysis
technique. In this article, we present an alternative approach. We show that
and how different analysis techniques can be combined, effectively developing
a higher-level security calculus that can be extended with existing verification
techniques as plugins. This approach applies to the semantic level, where one
applies (semantic) characterizations of security that enjoy desirable meta proper-
ties (such as, e.g., compositionality) and uses a calculus for some general-purpose
logic for verification. The approach also applies to the syntactic level, where one
uses specific security calculi (such as, e.g., security type systems) for verification.
Instead of eliminating weaknesses of each individual verification technique, our
approach aims at combining the strengths of available techniques.

In summary, the contributions of this article are, firstly, a novel approach
to verifying information flow security and, secondly, the illustration of how dif-
ferent verification techniques can be beneficially combined in the information
flow analysis of a fairly realistic example program. The article constitutes an
initial step in the proposed direction, and some issues such as finding a fully
satisfactory baseline characterization will need further investigation.
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〈|skip, s|〉 _ 〈|〈〉, s|〉

〈|Exp, s|〉 ↓ n

〈|Id :=Exp, s|〉 _ 〈|〈〉, [Id = n]s|〉

〈|Exp′

, s|〉 ↓ i 0≤ i<Arr.length 〈|Exp, s|〉 ↓ n

〈|Arr[Exp ′]:=Exp, s|〉 _ 〈|〈〉, [Arr[i] = n]s|〉

〈|Exp ′

, s|〉 ↓ i (i<0 ∨ i≥Arr.length)

〈|Arr[Exp′]:=Exp, s|〉 _ 〈|〈〉, s|〉

〈|C1, s|〉 _ 〈|〈〉, t|〉

〈|C1; C2, s|〉 _ 〈|C2, t|〉

〈|C1, s|〉 _ 〈|〈C′

1〉V, t|〉

〈|C1; C2, s|〉 _ 〈|〈C′

1; C2〉V, t|〉 〈|fork(CV ), s|〉 _ 〈|〈C〉V, s|〉

〈|B, s|〉 ↓ True

〈|if B then C1 else C2 fi, s|〉 _ 〈|C1, s|〉

〈|B, s|〉 ↓ False

〈|if B then C1 else C2 fi, s|〉 _ 〈|C2, s|〉

〈|B, s|〉 ↓ True

〈|while B do C od, s|〉 _ 〈|C; while B do C od, s|〉

〈|B, s|〉 ↓ False

〈|while B do C od, s|〉 _ 〈|〈〉, s|〉

Fig. 1. Small-step deterministic semantics

〈|Ci, s|〉 _ 〈|W, t|〉

〈|〈C0 . . . Cn−1〉, s|〉 → 〈|〈C0 . . . Ci−1〉W 〈Ci+1 . . . Cn−1〉, t|〉

∀i ∈ {0, . . . , n − 1} : (Ci = sync ∧ V
′

i = 〈〉) ∨ (Ci = sync; Di ∧ V
′

i = 〈Di〉)

〈|〈C0, . . . , Cn−1〉, s|〉 → 〈|V ′

0 . . . V ′

n−1, s|〉

Fig. 2. Small-step non-deterministic semantics

2 Information Flow Security in an Imperative Language

To make our approach concrete, we introduce a simple, multi-threaded pro-
gramming language that includes assignments, conditionals, loops, a command
for dynamic thread creation, and a sync command. Without sync command and
arrays, this language is also used, e.g., in [SS00]. The set Com of commands is
defined by (where V is a command vector in Com =

⋃
n∈N

Comn)

C ::= skip | Id :=Exp | Arr[Exp1]:=Exp2 | C1; C2 | if B then C1 else C2 fi

| while B do C od | fork(CV ) | sync.

We restrict program variables to Booleans, integers, and arrays. The length
of an array Arr is denoted by Arr.length and is treated like a constant. The ith
element of Arr is denoted by Arr[i] and treated like a variable. Expressions are
program variables, constants, and terms resulting from applying operators to
expressions: Exp ::= Const | Var | Arr[Exp] | Arr.length | op(Exp1, . . . ,Expn).

A state is a mapping from variables in a given set Var to values in a given
set Val . The set of states is denoted by S. We use [v = n]s to denote the state
that maps v to n and all other variables to the same values like the state s. We
treat arrays like in [DS04]: If an array access a[i] is out of bounds (i.e. i < 0
or i ≥ a.length) then a dummy value is returned (0 for integers and False for
Booleans), no exception is raised and no buffer overflow occurs. We use the
judgment 〈|Exp, s|〉 ↓ n for specifying that expression Exp evaluates to value n in
state s. Expression evaluation is assumed to be total and to occur atomically.

A configuration is a pair 〈|V, s|〉 where the vector V specifies the threads that
are currently active and s defines the current state of the memory.
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The operational semantics is formalized in Figures 1 and 2. Deterministic
judgments have the form 〈|C, s|〉 _ 〈|W, t|〉 expressing that command C performs
a computation step in state s, yielding a state t and a vector of commands W,

which has length zero if C terminated, length one if it has neither terminated nor
spawned any threads, and length greater than one if new threads were spawned.
That is, a command vector of length n can be viewed as a pool of n threads that
run concurrently. Non-deterministic judgments have the form 〈|V, s|〉 → 〈|V ′, t|〉
(note the new arrow), where V and V ′ are thread pools, expressing that some
thread Ci in V performs a step in state s resulting in the state t and some thread
pool W ′. The global thread pool V ′ results then by replacing Ci with W ′.

Our sync command blocks a given thread until each other thread has termi-
nated or is blocked. Executing sync unblocks all threads (see the rule in Figure 2).

The following example illustrates the subtle possibilities for leaking informa-
tion in a multi-threaded setting. It also demonstrates that the parallel composi-
tion of two secure programs can result in an insecure program.

Example 1. If P3 = h:=0; P2 (where P2 = if h = 0 then l:=0 else l:=1 fi) runs
concurrently with P4 = h:=h′ under a shared memory and a round robin sched-
uler then the final value of l is 0 (respectively, 1) given that the initial value of
h′ is 0 (respectively, not 0). This is illustrated below where (vl, vh, vh′) denotes
the state s with s(l) = vl, s(h) = vh, and s(h′) = vh′ :

〈|〈P3, P4〉, (0, 0, 0)|〉
→ 〈|〈P2, P4〉, (0, 0, 0)|〉
→ 〈|〈P2〉, (0, 0, 0)|〉
→ 〈|〈l:=0〉, (0, 0, 0)|〉 → 〈|〈〉, (0, 0, 0)|〉

〈|〈P3, P4〉, (0, 0, 1)|〉
→ 〈|〈P2, P4〉, (0, 0, 1)|〉
→ 〈|〈P2〉, (0, 1, 1)|〉
→ 〈|〈l:=1〉, (0, 1, 1)|〉 → 〈|〈〉, (1, 1, 1)|〉

That is, the final value of l equals the initial value of h′ and, hence, the attacker
is able to reconstruct the secret, initial value of h′ from his observation of l. ♦

In the following, we adopt the naming conventions used so far: s and t denote
states, Exp denotes an expression, B denotes a Boolean expression, Arr denotes
an array, C and D denote commands, and V and W denote command vectors.

2.1 Security Policy, Labelings, and Security Condition

We assume a security lattice that comprises two security domains, a high level
and a low level where the requirement is that no information flows from high
to low. This is the simplest policy for which the problem of information flow
security can be investigated. Each program variable is associated with a security
domain by means of a labeling lab : Var → {low , high}. The intuition is that
values of low variables can be observed by the attacker and, hence, should only
be used to store public data. High variables are used for storing secret data and
their content is not observable for the attacker. For a given array Arr, the content
has a security domain (denoted lab(Arr)) and the length has a security domain
(denoted lab(Arr.length)) that must be at or below the one for the content. All
elements of the array are associated with the same security domain. If Arr : high
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then Arr[i] : high and if Arr : low and i : low then Arr[i] : low . If Arr : low and
i : high then Arr[i] has no security domain and cannot be typed (see [DD77]).

As before, h and l denote high and low variables, respectively. An expression
Exp has the security domain low (denoted by Exp : low ) if all variables in
Exp have domain low and, otherwise, has security domain high (denoted by
Exp : high). The intuition is that values of expressions with domain high possibly
depend on secrets while values of low expressions can only depend on public data.

Definition 1. Two states s, t ∈ S are low equal (denoted by s =L t) iff

∀var ∈ Var : lab(var ) = low =⇒ s(var ) = t(var) .

Two expressions Exp,Exp′ are low equivalent (denoted by Exp ≡L Exp′) iff

∀s, s′ ∈ S : (s =L s′ ∧ 〈|Exp, s|〉 ↓ n ∧ 〈|Exp′, s′|〉 ↓ n′) =⇒ n = n′ .

We decided to use a possibilistic security condition (like in [SV98]) despite the
fact that this condition is not entirely satisfactory from a practical perspec-
tive as it does not take scheduling into account (unlike the conditions in, e.g.,
[VS98,Smi03]) and, in particular, is not scheduler independent (unlike the condi-
tion in [SS00]). However, possibilistic security is conceptually simple and suitable
for illustrating our verification technique, and this is our focus in this article.

Definition 2. A symmetric relation R on command vectors is a possibilistic
low indistinguishability iff for all V, W ∈ Com with V R W the following holds:

∀s, s′, t ∈ S : ((s =L t ∧ 〈|V, s|〉 →∗ 〈|〈〉, s′|〉)

⇒ ∃t′ ∈ S : (〈|W, t|〉 →∗ 〈|〈〉, t′|〉 ∧ s′ =L t′)).

The union of all possibilistic low indistinguishabilities, ∼L, is again a possibilis-
tic low indistinguishability. Note that ∼L is transitive and symmetric, but not
reflexive. For instance, l:=h ∼L l:=h does not hold. Intuitively, only programs
with secure information flow are related to themselves.

Definition 3. A program V is possibilistic low secure iff V ∼L V .

The idea of possibilistic security is that an observer cannot infer from the values
of low-level variables that some high variable did not have a particular value.
That is, any low output that is possible after the system starts in a state s is
also possible when the system starts in any other state that is low equal to s.

Example 2. It is easy to see that P1 = l:=h and P2 = if h = 0 then l:=0 else l:=1 fi,
both are not possibilistic low secure. Moreover, P3 and P4 from Example 1, each
is possibilistic low secure, but 〈P3, P4〉 is not (take s and t as in Example 1). ♦

3 Combining Calculus

In general, compositional reasoning about information flow security is not sound.
This applies, in particular, to our baseline condition, possibilistic low security,
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which is neither preserved under parallel composition nor under sequential com-
position, in general (see Example 2 and below). For making compositional rea-
soning sound, one must strengthen the definition of secure information flow un-
til one arrives at a compositional property. This approach is taken, e.g., in the
derivation of the strong security condition [SS00]. However, the resulting com-
posable security definitions are over-restrictive in the sense that they are violated
by many programs that are intuitively secure.

In this section, we present an approach for deducing the security of a com-
posed program from the fact that each sub-program satisfies some notion of se-
curity that is stronger than the baseline property. We derive sufficient conditions
for sequential composition, for parallel composition, for conditional branching,
and for while loops. This leads us to four compositionality results. These consti-
tute the theoretical basis of our combining calculus, which allows one to flexibly
apply available verification techniques during an information flow analysis. We
then revisit some available verification techniques and provide plugin-rules that
enable the use of these techniques in a derivation with our combining calculus.

3.1 Compositionality Results and Basic Calculus Rules

Auxiliary concepts. If C ∼L C′ and D ∼L D′ hold then C; D ∼L C′; D′ does
not necessarily hold because threads spawned during execution of C might still
be running when D begins execution, influencing computations in D through
races. For instance, the program fork(skip, P2; l:=2); l′:=l where P2 = if h =
0 then l:=0 else l:=1 fi does not satisfy the baseline property (due to the race
between the second assignment to l and the assignment to l′) although it is the
sequential composition of two programs that both satisfy the baseline property.
If the main thread is the last thread to terminate before D (respectively D′) can
begin execution then such problems cannot occur.

Definition 4. A thread pool V is main-surviving in a state s(written MS(V, s)),
if for each 〈C0, . . . , Cn−1〉 and each state t with 〈|V, s|〉 →∗ 〈|〈C0, . . . , Cn−1〉, t|〉 one
of the following two conditions holds:

– There is no state t′ such that 〈|C0, t|〉 _ 〈|〈〉, t′|〉.
– n = 1.

One can make a program main-surviving by adding sync statements. Consider
as an example the program fork(h := 0, h := h′), which is not main-surviving as
both conditions in Definition 4 are violated. Main-surviving programs are, e.g.,
fork(h := 0, h := h′); sync and fork(sync; h := 0, h := h′).

Parallel composition shares the problems of sequential composition: given
V ∼L V ′ and W ∼L W ′ one does not necessarily obtain V W ∼L V ′W ′. This is
caused by races, allowing one thread to influence the behavior of another thread.
Even if the composed thread pools have no low variables in common, we do not
obtain a general compositionality theorem (see Example 1). A sufficient condition
for preserving low indistinguishability is the disjointness of all variables.

Definition 5. We say that two thread pools V and W are variable independent
(V ≷ W ) if the sets of variables occurring in V respectively W are disjoint.
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Compositionality. We are now ready to present our compositionality results:

Theorem 1. Let C, C′, D, and D′ be commands and V, V ′,W, and W ′ be thread
pools such that C ∼L C′, D ∼L D′, V ∼L V ′ and W ∼L W ′. Then

1. if C and C′ are main-surviving then C; D ∼L C′; D′;
2. if V ≷ W and V ′ ≷ W ′ then V W ∼L V ′W ′;
3. if B ≡L B′ then if B then C else D fi ∼L if B′ then C′ else D′ fi; and
4. if B ≡L B′ and C and C′ are main-surviving, then while B do C od ∼L

while B′ do C′ od.

The proof of Theorem 1 will be provided in an extended version of this article.

Basic calculus rules. We raise the possibility for compositional reasoning about
low indistinguishability with Theorem 1 to compositional reasoning about in-
formation flow security. This results in the calculus rules depicted below. The
judgment V ` bls intuitively means that the program V is possibilistic low
secure. A soundness result is provided in Section 3.4.

[SEQ]
C ` bls D ` bls ∀s ∈ S : MS(C, s)

C; D ` bls
[PAR]

V ` bls W ` bls V ≷ W

V W ` bls

[ITE]
C ` bls D ` bls B ≡L B

if B then C else D fi ` bls
[FRK]

〈C〉V ` bls

fork(CV ) ` bls

[WHL]
C ` bls ∀s ∈ S : MS(C, s) B ≡L B

while B do C od ` bls
[SNC]

C ` bls C is sync-free

C; sync ` bls

It should be noted that it is not intended that one proves the security of a com-
plex program solely with the above rules. There are many secure programs for
which the side conditions main surviving and variable independence are too re-
strictive. For analyzing such programs with the combining calculus, one employs
plugin rules. The combining calculus is not intended as an alternative to existing
security-analysis techniques, but rather as a vehicle for using different analysis
techniques in combination. The plugins presented in the following, in particular,
allow one to analyze programs that contain races.

3.2 Plugin: Strong Security

Definition 6 ([SS00]). The strong low-bisimulation uL is the union of all
symmetric relations R on command vectors V, V ′ ∈ Com of equal size, i.e. V =
〈C0, . . . , Cn−1〉 and V ′ = 〈C′

0, . . . , C
′
n−1〉, such that

∀s, s′, t∈ S : ∀i∈{0, . . . , n − 1} : ∀W ∈ Com:
[(V R V ′ ∧ s =L s′ ∧ 〈|Ci, s|〉 _ 〈|W, t|〉)
⇒ ∃W ′ ∈ Com: ∃t′ ∈ S:(〈|C′

i, s
′|〉 _ 〈|W ′, t′|〉 ∧ W R W ′ ∧ t =L t′)] .

Note that uL is only a partial equivalence relation, i.e. it is transitive and sym-
metric, but not reflexive. In fact, uL only relates secure programs to themselves
(note the structural similarity to the relationship between Definitions 2 and 3).
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Definition 7 ([SS00]). A program V is strongly secure iff V uL V holds.

The strong security condition is scheduler independent and enjoys composition-
ality results that make it a suitable basis for a compositional security analysis.

Theorem 2 ([SS00,Pöp05]). Let C, D and V be strongly secure programs
that do not contain any sync statements. If B ≡L B then C; D, fork(CV ),
if B then C else D fi, and while B do C od are strongly secure. If C uL D

holds then if B then C else D fi is also strongly secure (even for B : high).

Proof. [Pöp05] extends the proof in [SS00] to the language with arrays. ut

The strong security condition constitutes a conservative approximation of our
security definition as the following theorem demonstrates.

Theorem 3. If V is strongly secure then V is possibilistic low secure.

Proof. Let s =L t. If 〈|V, s|〉 →∗ 〈|〈〉, s′|〉) then one can, by applying Definition 6,
inductively construct (over the length of the computation sequence) a computa-
tion 〈|W, t|〉 →∗ 〈|〈〉, t′|〉 of the same length such that s′ =L t′. ut

While the strong security condition can be suitable for reasoning about secure
information flow, there are also situations where it is too restrictive.

Example 3. The programs l := h; l := 1, if h then skip else skip; skip fi, and
while h > 0 do h := h − 1 od all have secure information flow (according to
Definition 3). However, none of these programs is strongly secure. ♦

The problems in Example 3 can be overcome by applying our
combining calculus, in which strong security constitutes only
one of several plugins. Its plugin rule is depicted to the right.

[PSLS]
V uL V

V ` bls

When this rule is applied, the premise could be proved, e.g., with a security type
system (see Section 5), or with some general-purpose theorem prover.

3.3 Plugin: Low-Deterministic Security

Roscoe pioneered a characterization of information flow security based on the
notion of low determinism. The resulting security definitions for the process
algebra CSP [Ros95] are intuitively convincing as they ensure that the low-level
behavior of a process is deterministic, no matter what the high-level behavior
is. A disadvantage, however, is that it is unnecessarily restrictive with respect
to nondeterministic system behavior on the low level. Zdancewic and Myers
[ZM03] argue that this disadvantage is acceptable when the approach is applied
to concrete programs. We adopt this approach to our setting.

Definition 8. A program V is low-deterministic secure iff

∀s, t, s′, t′ ∈ S : [(s =L t ∧ 〈|V, s|〉 →∗ 〈|〈〉, s′|〉 ∧ 〈|V, t|〉 →∗ 〈|〈〉, t′|〉) =⇒ s′ =L t′].

8



That is, if one runs a program that is low-deterministic secure in two arbitrary
starting states that are low equal then all final states are also low equal.

Theorem 4. Let V be a program that is low-deterministic secure. Assume fur-
ther, that if the program can terminate in some state it can terminate in each
low equal state (written PLT (V )). Then V is possibilistic low secure.

Proof. Let s, s′, t, t′ be states such that s =L t. Assume that 〈|V, s|〉 →∗ 〈|〈〉, s′|〉
for some state s′. By assumption, V can terminate in t. Hence, there exists t′ ∈ S

such that 〈|V, t|〉 →∗ 〈|〈〉, t′|〉. From Definition 8, we obtain s′ =L t′. ut

In the plugin-rule depicted to the right, we use the
judgment V |= lds . This judgment captures the intu-
ition that V is low-deterministic secure. Again, first-

[PLDS]
V |= lds , PLT (V )

V ` bls

order logic could be used to express and prove the semantic preconditions.

3.4 Soundness and Examples

The combining calculus is sound in the following sense:

Theorem 5. Let V be a program such that V ` bls is derivable in the combining
calculus. Then V is possibilistic low secure.

Proof. The soundness of the rules [SEQ], [PAR], [ITE], and [WHL] follows di-
rectly from Theorem 1, while the soundness of rule [FRK] follows from the
soundness of [PAR], the definition of possibilistic low security, and the opera-
tional semantics. Rule [SNC] is sound since from the operational semantics and
the fact that C contains no sync statements we know that the sync statement is
the last statement to be executed, and because executing sync does not change
the state. The plugin-rules are sound by Theorems 3 and 4. ut

We illustrate the usage of the combining calculus with a simple example.
Consider the program fork(l := 0, l := 1); sync; while h ≤ 5 do h := h + 1 od. By
applying [SEQ] we obtain three new proof obligations, firstly fork(l := 0, l :=
1); sync ` bls, secondly while h ≤ 5 do h := h + 1 od ` bls, and thirdly ∀s ∈ S :
MS(fork(l := 0, l := 1); sync, s). The first one can be proved by the application of
[SNC] and subsequently [PSLS], followed by an analysis of strong security, while
the second one can be proved by the application of [PLDS], followed by an anal-
ysis of low-deterministic security. The third obligation is obviously true. Strong
security does not suffice to prove the program secure, since while loops with high
guards are rejected; an analysis of the whole program with low-deterministic se-
curity would also fail due to the race between l := 0 and l := 1.

4 Information Flow Security of a PDA Application

In this section, we illustrate how the possibility of combining proof techniques can
be exploited in a concrete security analysis. The security of the example program
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fork
0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

//getPortfolio:
esOPl:= getES50old;
ih:=0; pfNameh:=getPFNames;
pfNumh:=getPFNum;
while (ih<pfNameh.length) do
pfTabPrinth:= pfNameh[ih] + ”|”
+ pfNumh[ih];

ih:= ih+ 1 od;
sync

,

//getEuroStoxx50:
jl:=0; nwOutBufl:= getES50;
while (nwInBufl= ””) do skip od;
strArrl:= split(nwInBufl, ”:”);
while (jl<50) do
esNamel[jl] := strArrl[2*jl];
esPl[jl] := strArrl[2*jl+1];
jl:= jl+1 od;

coShortl:= strArrl[100];
coFulll:= strArrl[101]; coIdl:= strArrl[102]
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C

C

C

C

C

C

C

C

C

C

C

C

C

A

;fork
0

B

B

B

B

B

B

B

B

B

@

//computeStatistics:
kl:=0;
while (kl<50) do
lPFh:= locPF(esNamel[kl], pfNameh);
//calculate profit for stock at position kl

sth[kl]:=(esOPl[kl] -esPl[kl])* pfNumh[lPFh]
kl:= kl+1 od

,

//generateOutput:
ml:=0;
while (ml<50) do
while (kl≤ml) do skip od;
outLh[ml] := ml+ ”|”
+ esNamel[ml]+ ”|”
+ esPl[ml] + ”|” + sth[ml];

ml:= ml+1 od

1

C

C

C

C

C

C

C

C

C

A

//displayOutput:
;nl:=0; stTabPrinth(”No. | Name | Price | Profit”);
while (nl<50) do stTabPrinth:= outLh[nl]; nl:= nl+ 1 od;
//showCommercials:
stTabPrinth:= coShortl+ ”Press # to get more information.”;
while (keyl= ’ ’) do skip od;
if (keyl 6= ’#’) then coDispPrinth:= coFulll; nwOutBufl:= ”shownComm:”+ coIdl

else skip fi

Fig. 3. Implementation

can be successfully verified by combining strong security and low-deterministic
security, while none of these security definitions alone provides a suitable basis
for the analysis. The example application is a multi-threaded program for man-
aging finances on mobile devices. The program gives an overview of the current
stock portfolio, possibly illustrating profits, losses, and other trends with statis-
tics. When the user starts the application he obtains a listing of his portfolio,
revealing name and quantity for each stock. In parallel to printing, the current
rates of EuroStoxx50 entries are retrieved. When all data is available, informative
statistics can be computed. For minimizing idle time during this computation, a
background thread already incrementally prepares the printout of the statistics.
Finally the statistics is displayed, together with a pay-per-click commercial.

The implementation of the application (Figure 3) is divided into six blocks:
reading the portfolio from non-volatile storage (getPortfolio), retrieving current
stock rates (getEuroStoxx50), computing statistics (computeStatistics), preparing a
printout of the statistics (generateOutput), displaying the printout (displayOutput),
advertising the commercial by a preview, and waiting for the user’s input. If the

10



Fig. 4. Portfolio Tab Fig. 5. Statistics Tab Fig. 6. Commercial Screen

user decides to view the commercial, it is displayed in full and a confirmation
message is sent to the server (showCommercials).

As an example, we give a detailed description of getEuroStoxx50: After the
initialization of the loop variable jl (where the subscript l indicates that j is
a low variable), a request is sent to the network interface represented by the
variable nwOutBufl. Due to the lack of interrupts we have to do busy waiting
until the variable nwInBufl representing the incoming network stream contains
an answer. The answer is a string (sequence of ASCII numbers) containing name
and current rate of each stock listed in the EuroStoxx50, separated by colons.
To avoid a second network request, the commercial, including the preview, the
full version, and a reference ID are already included, again separated by colons.
The operation split in the third line of getEuroStoxx50 is similar to the method
split of the Java String class. It splits a single string in an atomic step into an
array of strings, which then is processed further in the subsequent loop. After
extracting the commercial data from the array its memory could be deallocated
(but this is outside our language).

We assume that the application is running in a sandbox that protects the
memory from programs outside the sandbox. The only exception is the under-
lying operating system with whom the application communicates via predefined
interface variables. Besides the two interface variables for network communi-
cation (nwInBufl, nwOutBufl), the program uses display variables (pfTabPrinth,
stTabPrinth, coDispPrinth), variables that represent parts of the non-volatile stor-
age (getES50old, getPFNames, getPFNum), and the keyboard variable (keyl). As-
signments to these variables in the program correspond to the output of the
information on the associated interface. Reading these variables corresponds to
retrieving input through the operating system.

The parallel execution of getEuroStoxx50 and getPortfolio prevents blocking
during time-consuming network activity. Concurrent programming increases ef-
ficiency and also complies with programming recommendations for mobile de-
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vices like, e.g., [Knu02,Mah04]. For simplicity, computeStatistics calculates only
the user’s profit for each stock. One could easily imagine more complex statis-
tics. The atomic operation locPF in computeStatistics locates the index of the kth
stock value within the portfolio and returns −1 if the value is not present.

The secret to be protected in the given scenario is the content of the port-
folio. The sink where this information could be leaked is the network interface
(assuming that the display is only accessible for users who are permitted to read
the printouts). Both assignments to the nwOutBufl are intuitively secure. Hence,
there is no direct leakage of secrets and starting a more detailed information
flow analysis is appropriate. For the security analysis, we use a combination of
low-deterministic security and strong security. The strong security of a program
implies that the run-time of this program is independent of the initial value of
high variables. This is obviously not the case for the loop in getPortfolio, where the
run-time is directly influenced by the value of the high variable pfNameh.length.
However, each of the six program blocks can be successfully analyzed. The result
of this investigation is expressed by the following two theorems. Due to space
restrictions we only sketch the proof of the first one.

Theorem 6. The program getPortfolio is low-deterministic secure.

Proof. Since ih is incremented in the body of the loop, the loop will eventually
terminate. Moreover, the only assignment to a low variable, esOPl := getES50old,
obviously does not depend on the initial high values. Hence the final value of
low variables depends deterministically on their initial values. ut

Theorem 7. The five programs getEuroStoxx50, computeStatistics, generateOutput,
displayOutput, and showCommercials are strongly secure.

From these two theorems and the compositionality of strong security, we
conclude that the program fork(computeStatistics, generateOutput); displayOutput;
showCommercials is strongly secure. From the plugin-rules [PSLS] and [PLDS ], we
obtain that getPortfolio and getEuroStoxx50 both satisfy the baseline policy. The
parallel execution of these programs also satisfies the baseline policy according
to rule [PAR], since variable independence holds. After an application of [SNC]
and an application of [SEQ], we conclude that the entire program satisfies the
baseline property. Hence the program is possibilistic low secure.

The application shows that the combining calculus is applicable for fairly
realistic programs. The advantages will become even clearer in Section 5 where
we integrate security type systems. Using a type system for the strong security
condition, one can efficiently verify five parts of the program and only the re-
maining part would require a semantic check of low-deterministic security (for
which no suitable calculus is available yet).

5 Plugins for Type-based Analysis Techniques

While Sections 3 and 4 presented plugin rules for semantic security definitions,
this section illustrates how syntactic, type-based analysis techniques can be in-
tegrated and beneficially exploited. We provide two additional plugins for the
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combining calculus: one to integrate the security type system proposed in [BC01]
and one to integrate the security type system from [SS00]. When introducing the
second type system, we also illustrate the possibility to integrate transforming
type systems. Such type systems may generate a secure program from a given,
possibly insecure program. Additionally, we show how to combine transforming
and non-transforming analysis techniques.

5.1 Plugin : Boudol and Castellani’s Security Type System

In [BC01] Boudol and Castellani propose a type system that does not generally
reject programs containing loops with high guards, unlike the type systems in,
e.g., [SS00] or [SV98]. The type judgments are of the form Γ ` C : (τ, σ) cmd,
where C is a command, τ and σ are security labels, and the context Γ is a
mapping from variables to security labels. In the type judgment, τ is a lower
bound for the level of the variables to which assignments are made in C, and
σ is an upper bound for the security levels occurring in the guards of loops
and conditionals in C. After adapting the typing rules to our language, fixing a
variable labeling and the induced context Γ , we obtain the following result:

Theorem 8. Let C be a command. If Γ ` C : (τ, σ) cmd can be derived for
some security labels τ and σ, then C is possibilistic low secure.1

We obtain the plugin rule depicted at the right.
The combining calculus extended by this rule is
sound due to Theorem 8.

[TBC ]
Γ ` C : (τ, σ) cmd

C ` bls

5.2 Plugin : Sabelfeld and Sand’s Security Type System

In [SS00] Sabelfeld and Sands propose a transforming type system approximating
the strong security condition. Its judgments are of the form V ↪→ V ′ : Sl, where
V is the program to be checked, V ′ a transformation of the program, and Sl

is the type of V ′. The type contains auxiliary information that is used for the
transformation of the program. They provide the following theorem:

Theorem 9 ([SS00]). Whenever V ↪→ V ′ : Sl, then V ′
uL V ′.

That is, when the type check succeeds, then the transformed program is strongly
secure. To integrate plugins for transforming type systems we extend the com-
bining calculus with the transforming rules in Figure 5.2. The intuition of the
judgment C ↪→ C′ ` bls is that the program C is transformed into the possibilis-
tic low secure program C′. The rules [MIX1] and [MIX2] permit the combination
of transforming as well as non-transforming analysis techniques. The first one
relies on the fact that a possibilistic low secure program can be securely trans-
formed into itself.

1 The typing rules differ slightly from the ones used in [BC01]. The adapted rules and
the soundness argument will be provided in an extended version of this article.
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[SEQ’]
C ↪→ C

′ ` bls D ↪→ D
′ ` bls ∀s ∈ S : MS(C′

, s)

C; D ↪→ C′; D′ ` bls

[PAR’]
V ↪→ V

′ ` bls W ↪→ W
′ ` bls V

′ ≷ W
′

V W ↪→ V ′W ′ ` bls

[ITE’]
C ↪→ C

′ ` bls D ↪→ D
′ ` bls B ≡L B

if B then C else D fi ↪→ if B then C′ else D′ fi ` bls

[FRK’]
〈C〉V ↪→ 〈C′〉V ′ ` bls

fork(CV ) ↪→ fork(C′V ′) ` bls
[SNC’]

C ↪→ C
′ ` bls C

′ is sync-free

C; sync ↪→ C′; sync ` bls

[MIX1]
C ` bls

C ↪→ C ` bls
[MIX2]

C ↪→ C
′ ` bls

C′ ` bls

Fig. 7. Additional rules for the combining calculus

The soundness proof of the extended calculus goes along
the same lines as the proof of Theorem 5. We are now
ready to add a plugin for Sabelfeld’s and Sand’s proof
technique. The addition is sound due to Theorem 9.

[TSS ]
C ↪→ C′ : Sl

C ↪→ C′ ` bls

5.3 Exemplary Type-based Security Analysis

We exemplify the use of the plugin rules [TBC ] and [TSS ] with a syntactical
analysis of the program in Section 4. We already argued that some blocks of the
program are strongly secure. Hence we use the combining calculus rules support-
ing transforming type systems. After applying rule [SEQ’]

1. ∀s ∈ S : MS(fork(getPortfolio, getEuroStoxx50), s),
2. fork(getPortfolio, getEuroStoxx50) ↪→ C ` bls, and
3. fork(computeStatistics, generateOutput); displayOutput ↪→ D ` bls

remain to be derived in the calculus. The first statement can be syntactically
shown, since the first thread, getPortfolio, does not contain any conditionals and
ends with a sync statement, while the second thread, getEuroStoxx50, does not
contain any sync statements.

For the second proof obligation we do not use transforming type systems.
We hence instantiate C with fork(getPortfolio, getEuroStoxx50) and apply rule
[MIX1], obtaining fork(getPortfolio, getEuroStoxx50) ` bls. After applying rule
[PAR], we get three new proof obligations, namely getPortfolio ≷ getEuroStoxx50,
getPortfolio ` bls and getEuroStoxx50 ` bls. The first statement can be easily veri-
fied syntactically. Since getPortfolio and getEuroStoxx50 are programs that can be
checked automatically with the type system provided by Boudol and Castellani
we apply the rule [TBC ] to the other two statements and obtain the new proof
obligations Γ ` getPortfolio : (τ, σ) cmd and Γ ` getEuroStoxx50 : (τ ′, σ′) cmd.
Now we need to continue using rules of the adapted type system from [BC01].
One can deduce that getPortfolio can be typed with (L, H) cmd (getPortfolio con-
tains assignments to low variables and high guards, but the low assignment
happens before the loop), while getEuroStoxx50 can be typed with (L, L) cmd

(getEuroStoxx50 contains assignments to low variables, but no high guards).
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For the third proof obligation we apply the rule [TSS ], obtaining the obliga-
tion fork(computeStatistics, generateOutput); displayOutput ↪→ D : Sl. For a deduc-
tion we now use Sabelfeld’s and Sand’s transforming type system. Since neither
computeStatistics, nor generateOutput, nor displayOutput contain high guards the
type system does not perform any modification and we obtain E ↪→ E : Sl for
some type Sl and E = fork(computeStatistics, generateOutput); displayOutput.

Due to space restrictions we omit a more detailed derivation.

6 Conclusion

Obviously, the idea of combining different proof techniques is no novelty. The
contribution of this article is the illustration of how one can benefit more con-
cretely from combining proof techniques in the information flow analysis of a
given program. To our knowledge, no such result was presented before. More-
over, we introduced the combining calculus as a deductive framework that is
based on conditional compositionality results and an extensible set of plugin-
rules for existing verification techniques. As examples, we presented plugin-rules
for restrictive security characterizations (strong security and low-determinism
security), which could be verified with general-purpose logics, and plugin-rules
for typing judgments that can be derived with security type systems, i.e. special-
purpose calculi. We illustrated both possibilities in a fairly realistic example pro-
gram. The addition of further plugin-rules would be desirable, for instance, to
support verification techniques with program-logics (see, e.g., [BDR04,DHS05]).

Based on the experiences gained, our impression is that a baseline charac-
terization of information flow security need not be fully compositional, which
is in contrast, e.g., to the opinion stated in [Mil90]. Nevertheless, the baseline
characterization employed in the current article, which is a possibilistic property
(like, e.g., in [SV98,BC01]), requires further improvements, in particular, re-
garding scheduling aspects. We are currently researching a security definition
that is scheduler independent, but less restrictive than strong security or low-
determinism security (which are both scheduler independent). Strong security is
known to be the least restrictive security definition that is scheduler independent
and compositional [Sab03]. However, as we are not requiring full composition-
ality, less restrictive characterizations that can serve as a justification of our
combining calculus exist (without changing the calculus), where the disjunction
of strong security and low-determinism security is an obvious candidate.

Another direction is the migration to practically relevant languages such as
Java sourcecode or bytecode. In this context, approaches for sequential sub-
languages are available (see, e.g., [BN03,BR05]), and it is not obvious how to
generalize them to a multi-threaded setting. Hence, the possibility of creating a
combining calculus for Java with plugin-rules for such approaches is attractive
and appears, in principle, possible with the help of a rule like [PAR].
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