
Controlling the What and Where ofDe
lassi�
ation in Language-Based Se
urityHeiko Mantel and Alexander ReinhardSe
urity Engineering Group, RWTH Aa
hen University, Germanymantel�
s.rwth-aa
hen.de, reinhard�i4.informatik.rwth-aa
hen.deAbstra
t. While a rigorous information �ow analysis is a key step in ob-taining meaningful end-to-end
on�dentiality guarantees, one must alsopermit possibilities for de
lassi�
ation. Sabelfeld and Sands
ategorizedthe existing approa
hes to
ontrolling de
lassi�
ation in their overviewalong four dimensions and a

ording to four prudent prin
iples [16℄.In this arti
le, we propose three novel se
urity
onditions for
ontrollingthe dimensions where and what, and we explain why these
onditions
onstitute improvements over prior approa
hes. Moreover, we present atype-based se
urity analysis and, as another novelty, prove a soundnessresult that
onsiders more than one dimension of de
lassi�
ation.1 Introdu
tionResear
h on information �ow se
urity aims at �nding better ways to
hara
ter-izing and analyzing se
urity requirements
on
erning aspe
ts of
on�dentialityand integrity. Regarding
on�dentiality, the aim of an information �ow analysisis to answer: �Can a given program be trusted to operate in an environmentwhere it has read a

ess to se
ret data and write a

ess to untrusted informa-tion sinks?� There is a variety of approa
hes to information �ow se
urity onthe level of
on
rete programs (see [12℄ for an overview). In the simplest
ase,one has a two-level poli
y demanding that information
annot �ow from high tolow. Se
ure information �ow
an then be
hara
terized using the idea underlyingnoninterferen
e [6℄: If low outputs of the program do not depend on high inputsthen there is no danger that se
ret data is leaked to untrusted sinks.Noninterferen
e provides an intuitively
onvin
ing, de
larative
hara
teriza-tion of information �ow se
urity. However, there are se
urity me
hanisms andappli
ation s
enarios that need some information to �ow from high to low. Forinstan
e, a password-based authenti
ation me
hanism ne
essarily reveals someinformation about the se
ret password, de
ryption relies on a dependen
e be-tween a
ipher-text and the se
ret plain-text that it en
odes, and ele
troni

om-mer
e requires se
ret data to be released after it has been paid for. For makinginformation �ow se
urity
ompatible with su
h requirements, one must permitex
eptions in the se
urity poli
y. But, this raises the question how to
ontrolthat one does not introdu
e possibilities for unintended information leakage.

For
larifying the intentions underlying the various approa
hes to
ontrollinginformation release, three dimensions were introdu
ed in [9℄: what informationis de
lassi�ed, who
an
ontrol whether de
lassi�
ation o

urs, and where
ande
lassi�
ation happen. In [16℄, Sabelfeld and Sands develop a taxonomy that
ategorizes the existing approa
hes along these dimensions1 and propose fourprudent prin
iples of
ontrolling de
lassi�
ation. The taxonomy
lari�ed the re-lationship between the various approa
hes, and it revealed some anomalies andmis
on
eptions that had previously gone unnoti
ed. Another interesting out
omeis that ea
h approa
h mainly aims at a single dimension and does not provideadequate
ontrol for any of the respe
tive other dimensions.In this arti
le, our s
ope is
ontrolling the what and where of de
lassi�
ationin a type-based se
urity analysis. In summary, our resear
h
ontributions are:� A novel se
urity
hara
terization for
ontrolling where de
lassi�
ation o
-
urs. Our property WHERE is similar to intransitive noninterferen
e [9℄,but WHERE satis�es the prudent prin
iples of de
lassi�
ation from [16℄, in-
luding monotoni
ity, whi
h is not satis�ed by intransitive noninterferen
e.� Two novel se
urity
hara
terizations for
ontrolling what is de
lassi�ed. Ourproperties WHAT1 and WHAT2 are similar to sele
tive dependen
y [3℄ andits des
endants (e.g., [13℄), but, unlike these properties, WHAT1 andWHAT2are appli
able to
on
urrent programs. Lifting a se
urity
hara
terizationfrom a sequential to a
on
urrent setting is often not straightforward, inparti
ular, one must address the danger of internal timing leaks [15℄.� A se
urity type system for analyzing the information �ow in
on
urrentprograms under poli
ies that permit
ontrolled ex
eptions. Our type systemlo
alizes where de
lassi�
ation o

urs and
ontrols what is de
lassi�ed. Weprove soundness results with respe
t to ea
h of our properties WHERE,WHAT1, and WHAT2. To our knowledge, the only other formal soundnessresult for an information �ow type system that
onsiders where and what isthe one by Li and Zdan
ewi
 [7℄. However, they aim at sequential programsand mainly at
ontrolling the what dimension [16℄.In our proje
t, we gained some further insights on
ontrolling de
lassi�
ation.For instan
e, our property WHAT1 is
ompositional but does not satisfy themonotoni
ity prin
iple, while our property WHAT2 is not
ompositional butsatis�es monotoni
ity. We found that, when
ontrolling the what dimension ofde
lassi�
ation, one fa
es a fundamental di�
ulty when attempting to satisfy
ompositionality as well as monotoni
ity (see Se
t. 3.2). While using the prudentprin
iples of de
lassi�
ation as a sanity
he
k for our se
urity
hara
terizations,we found that formalizing the informal des
riptions of the prin
iples from [16℄is not always
ompletely straightforward, and in some
ases more than one for-malization is sensible. As an example, we provide two alternative formalizationsof the
onservativity prin
iple for WHERE (see Theorem 2).1 The taxonomy distinguishes lo
alization of de
lassi�
ation with respe
t to aspe
tsof time during program exe
ution (when) from other aspe
ts of lo
alization (where)and
ategorizes a

ording to the four dimensions: what, who, where, and when.

2 Controlling De
lassi�
ation in Dimension whereWe propose a novel
hara
terization of information �ow se
urity that
ontrolswhere de
lassi�
ation
an o

ur. It is ensured that de
lassi�
ation is lo
alized tospe
i�
 parts of the se
urity poli
y as well as to spe
i�
 parts of the
omputation.De�nition 1. A multi-level se
urity poli
y (brief: MLS poli
y) is a pair (D,≤),where D is a set of se
urity domains and ≤⊆ D×D is a partial order. The triple
(D,≤,) is an MLS poli
y with ex
eptions where ⊆ D×D. The minimal andthe maximal domain in (D,≤) are
alled low and high , respe
tively, if they exist.Computation steps are modeled by labeled transitions between
on�gurations ofthe form 〈|〈C1 . . . Cn〉, s|〉. Here, the state s is a mapping from program variablesto values, and the ve
tor models a pool of n threads that
on
urrently exe
ute the
ommands C1, . . . , Cn ∈ Com , respe
tively. For simpli
ity, we do not distinguishbetween
ommands and
ommand ve
tors of length one in the notation and usethe term program for referring to
ommands as well as to
ommand ve
tors.We distinguish ordinary
omputation steps, whi
h are modeled by a transi-tion relation _o, from de
lassi�
ation steps, whi
h are modeled by a family ofrelations (_D1→D2d)D1,{D2}⊆D. Given a poli
y (D,≤,), the intuition is thatan ordinary transition must stri
tly obey the ordering ≤ (whi
h means that in-formation may only �ow upwards a

ording to ≤), while de
lassi�
ation stepsmay violate this ordering by downgrading information from the domains in D1to the domain D2. However, su
h violations must
omply with the relation .2.1 PreliminariesGiven a set Var of program variables, a domain assignment is a fun
tion dom :
Var → D. By assigning a se
urity domain dom(Id) to ea
h variable, it
reates a
onne
tion between the
on�gurations in a
omputation and the se
urity poli
y.Taking the perspe
tive of an observer in a se
urity domain D, two states s, t areindistinguishable if all variables at or below this domain have the same value.De�nition 2. For a given domain D ∈ D, two states s and t are D-equal(denoted by s =D t) if ∀Id ∈ Var : dom(Id) ≤ D =⇒ s(Id) = t(Id).In the following, let (D,≤,) be a poli
y and dom be a domain assignment. Weadopt the naming
onventions used above: D denotes a se
urity domain, s and
t denote states, C denotes a
ommand, and V and W denote
ommand ve
tors.The PER approa
h [14℄
hara
terizes information �ow se
urity based on in-distinguishability relations on programs. Two programs are indistinguishable fora se
urity domain D if running them in two D-equal states reveals no se
rets toan observer in D, unless this is expli
itly permitted by the given se
urity poli
y.The D-indistinguishability relation is not re�exive. It only relates programs tothemselves if they have se
ure information �ow.De�nition 3 ([15℄). A strong D-bisimulation is a symmetri
 relation R on
ommand ve
tors of equal size that satis�es the formula in Fig. 1 where the partwith dark-gray ba
kground is deleted. The relation ≅D is the union of all strong
D-bisimulations. A program V is strongly se
ure if V ≅D V holds for all D ∈ D.

∀s, s′, t : ∀i ∈ {1 . . . n} : ∀W :
(V R V ′ ∧ 〈|Ci, s|〉_ 〈|W, t|〉 ∧ s =D s′)
⇒ ∃W ′

, t
′ :W R W

′ ∧ 〈|C′
i, s

′|〉_ 〈|W ′
, t

′|〉

∧

2

6

6

6

4

t =D t
′ ∨

2

6

6

4

∃D1, {D2} ⊆ D :
2

4

〈|Ci, s|〉_
D1→D2

d 〈|W, t|〉
∧ ∀D′ ∈ D1 : (D′

 D2 ∨D′ ≤ D2)
∧ D2 ≤ D ∧ ∃D′ ∈ D1 : s 6=D′ s′

3

5

3

7

7

5

3

7

7

7

5Fig. 1. Chara
terization of Strong (D,)-Bisimulation Relations (see De�nition 4)where V = 〈C1, . . . , Cn〉, V ′ = 〈C′
1, . . . , C

′
n〉, and _ = _o ∪ (

S

D1,{D2}⊆D _
D1→D2d)For two
ommands C, C′ ∈ Com , being strongly D-bisimilar (C ≅D C′) meansthat ea
h
omputation step that is possible for C in a state s
an be simulated inea
h D-equal state s′ by a
omputation step of C′, where the resulting programs

W and W ′ are strongly D-bisimilar and the resulting states t and t′ are D-equal.As a
onsequen
e, strong se
urity enfor
es the �ow of information to
omply withthe ordering ≤ without permitting any ex
eptions. The strong se
urity
onditionis the weakest se
urity de�nition that is s
heduler independent and is preservedunder parallel and sequential
omposition [11℄. Te
hni
ally, the former is a
on-sequen
e of requiring strongly D-bisimilar programs to exe
ute in lo
k-step.2.2 A Novel Chara
terization of Flow Se
urityIn this arti
le, we propose several
hara
terizations of information �ow se
uritythat permit de
lassi�
ation while
ontrolling it in a parti
ular dimension. Ourse
urity
onditions are derived using the PER approa
h, and ea
h of them ispresented as a variant of the strong se
urity
ondition. We use the terms what-se
urity and where-se
urity to indi
ate in whi
h dimension de
lassi�
ation is
ontrolled and distinguish di�erent variants for the same dimension with indi
es.De�nition 4 (WHERE). A strong (D,)-bisimulation is a symmetri
 re-lation R on
ommand ve
tors of equal size that satis�es the entire formula inFig. 1. The relation ≅

D is the union of all strong (D,)-bisimulations. A pro-gram V has se
ure information �ow while
omplying with the restri
tions wherede
lassi�
ation
an o

ur if V ≅

D V holds for all D ∈ D (brief: V is where-se
ure or V ∈WHERE).De
lassi�
ation is possible as t and t′ in Fig. 1 need not be D-equal. However,su
h ex
eptions are
onstrained by the formula with dark-gray ba
kground:� steps
ausing de
lassi�
ation must be de
lassi�
ation transitions _
D1→D2

d ;� information �ow must be permitted from ea
h D′ ∈ D1 to D2 (by or ≤);� de
lassi�
ation may only a�e
t D if D2 is observable, and it may only revealdi�eren
es between s and s′ that
an be observed from domains in D1.

That is, where-se
urity lo
alizes ex
eptions, within a
omputation, to the de-
lassi�
ation steps and, within an MLS poli
y, to where permits it. In thisrespe
t, our
ondition is similar to intransitive noninterferen
e [9℄, but the twose
urity
onditions are not identi
al. Most importantly, where-se
urity satis�esall prudent prin
iples of de
lassi�
ation (see Se
t. 2.3), unlike intransitive non-interferen
e [16℄. Te
hni
ally, the di�eren
es be
ome apparent in the de�nitionof the respe
tively underlying notion of a strong D-bisimulation. In [9℄, �rstly,de
lassi�
ation steps downgrade information from a single domain D1 (ratherthan from a set of domains D1), se
ondly, de
lassi�
ation steps may only makeinformation �ow a

ording to the relation (rather than a

ording to ∪ ≤),and thirdly, ea
h transition must be simulated by a transition with the identi-
al annotation (while Fig. 1 requires nothing about the labels of the transition
〈|C′

i, s
′|〉 _ 〈|W ′, t′|〉). The �rst two relaxations are helpful for a �exible
ombi-nation with a
ontrol of what is downgraded. The third relaxation is
ru
ial forsatisfying the prin
iple monotoni
ity of release (see Se
t. 2.3).2.3 Prudent Prin
iples and CompositionalityTo investigate our se
urity de�nition more
on
retely, we augment the multi-threaded while language MWL from [15℄ with a de
lassifying assignment:

C ::= skip | Id :=Exp | C1; C2 | if B then C1 else C2 � | while B do C od
| fork(CV) | [Id :=Exp]We use B and Exp for denoting Boolean-valued and integer-valued expressions,respe
tively. The language E for expressions shall not be spe
i�ed here. We onlyassume that the evaluation of expressions is atomi
 and deterministi
. Thatexpression Exp evaluates to value n in state s is denoted by 〈|Exp, s|〉 ↓ n. Weassume a fun
tion sources that returns for an expression the set of se
uritydomains on whi
h the value of the expression possibly depends or, more formally,

∀s, t : (((∀D ∈ sources(Exp) : s =D t)∧〈|Exp, s|〉 ↓ n∧〈|Exp, t|〉 ↓ m) =⇒ n = m).The semanti
s of MWL instantiate the transition relations _o and _
D1→D2d .A
ommand [Id :=Exp]
auses a _

D1→D2d transition where D1 = sources(Exp)and D2 = dom(Id). Assignments, skip,
onditionals, loops, and fork
ause ordi-nary transitions. The statement fork(CV) spawns the threads 〈C〉V where C isthe designated main thread. If threads are
reated within the sub-
ommand C1of a sequential
omposition C1; C2 then C2 is exe
uted after the main thread hasterminated. A formal de�nition of the semanti
s is provided in Appendix A.Sabelfeld and Sands propose the following prin
iples of de
lassi�
ation [16℄:Semanti

onsisten
y: The (in)se
urity of a program is invariant under se-manti
s-preserving transformations of de
lassi�
ation-free subprograms.Conservativity: The se
urity of a program with no de
lassi�
ations is equiv-alent to noninterferen
e.Monotoni
ity of release: Adding further de
lassi�
ations to a se
ure pro-gram
annot render it inse
ure.Non-o

lusion: The presen
e of a de
lassi�
ation operation
annot mask other
overt information leaks.

We now validate our se
urity
hara
terization against these prudent prin
iples.As suggested in [16℄, we de�ne semanti
 equivalen
e between programs by
≅ = ≅high , where ≅high is the strong high-bisimulation for the single-domainpoli
y ({high}, {(high , high)}). A
ontext C is a program where the hole • mayo

ur as an atomi
 sub-
ommand. We use C[C] to denote the program that oneobtains by repla
ing ea
h o

urren
e of • with C. The proof of the following andall other theorems in this arti
le will be provided in an extended version.Theorem 1 (Semanti

onsisten
y). Let C, C′ be programs without de
lassi-�
ation
ommands. Then C′

≅ C and C[C] ∈WHERE imply C[C′] ∈WHERE.2Strong se
urity follows from where-se
urity not only if there are no de
lassi�
a-tion operations in a program, but also if the poli
y does not permit any ex
ep-tions. In the other dire
tion, where-se
urity is a weakening of strong se
urity.Theorem 2 (Conservativity).1. If = ∅ and V ∈WHERE then V is strongly se
ure.2. If no de
lassi�
ation o

urs in V and V ∈WHERE then V is strongly se
ure.3. If V is strongly se
ure then V ∈WHERE.Monotoni
ity holds with respe
t to the ex
eptions permitted by the poli
y andalso with respe
t to the de
lassi�
ation operations in the program.Theorem 3 (Monotoni
ity). Let ⊆ ′.1. If V ∈WHERE for (D,≤,) then V ∈WHERE for (D,≤, ′).2. If C[Id :=Exp]∈WHERE then C[[Id :=Exp]]∈WHERE.Theorems 1�3 demonstrate that our novel se
urity
hara
terization satis�es the�rst three prin
iples of de
lassi�
ation from [16℄. A formal proof of the fourthprudent prin
iple is impossible. Su
h a proof would require a formal
hara
teriza-tion of se
ure information �ow as a referen
e point, whi
h we do not have a priorias De�nition 4 de�nes a
hara
terization based on an intuitive understanding.The following
ompositionality results hold for WHERE. We de�ne expres-sions Exp,Exp′ to be D-indistinguishable (denoted by Exp ≡D Exp′) if ∀s, t :
((s =D t ∧ 〈|Exp, s|〉 ↓ n ∧ 〈|Exp′, t|〉 ↓ m)⇒ n = m).Theorem 4. If C1 ≅

D C′
1
, C2 ≅

D C′
2
and V ≅

D V ′ then1. C1; C2 ≅

D C′
1
; C′

2
;2. fork(C1V) ≅

D fork(C′
1V

′);3. B ≡D B′ ⇒ (while B do C1 od ≅

D while B′ do C′
1 od);4. (B≡D B′ ∨C1 ≅

D C2)⇒ (if B then C1 else C2 � ≅

D if B′ then C′
1
else C′

2
�).3 Controlling De
lassi�
ation in the Dimension whatWe propose two
hara
terizations of information �ow se
urity that
ontrol whatis de
lassi�ed. Ea
h of them is a natural adaptation of the idea underlying Co-hen's sele
tive dependen
y [3℄ (and its des
endants like, e.g., delimited release[13℄ or abstra
t noninterferen
e [5℄) to a multi-threaded language.2 As usual, the proposition does not hold if one repla
es sub-
ommands with de
lassi-�
ation
ommands. For instan
e,
onsider C = •, C = [l:=h], and C′ = l:=h for thetwo-domain poli
y where dom(h) = high, dom(l) = low , and high low .

De�nition 5. An MLS poli
y with es
ape hat
hes is a triple (D,≤,H), where
(D,≤) is an MLS poli
y, and H ⊆ D×E is a set of es
ape hat
hes.From now, we assume that (D,≤,H) denotes an MLS poli
y with es
ape hat
hes.Given a poli
y (D,≤,H) the intuition is that, for any D, the visible behaviorof se
ure programs may depend on the initial value of identi�ers visible to Dand also on the initial values of expressions Exp if (D′,Exp) ∈ H and D′ ≤ D.Formally, an observer in a domain D may be able to determine whi
h equivalen
e
lass of the relation =H

D
ontains the initial state, but no further information.De�nition 6. Two states s and t are (D,H)-equal (s =H
D t) if1. s =D t and2. ∀(D′,Exp) ∈ H : (D′ ≤ D =⇒ ((〈|Exp, s|〉 ↓ n ∧ 〈|Exp, t|〉 ↓ m)⇒ n = m))That is, an es
ape hat
h (D′,Exp) ∈ H indi
ates that observers in domain D ≥

D′ may learn the initial value of expression Exp during a program's exe
ution.The following lemma shows that (D,H)-equality is a subset of D-equality.Lemma 1. ∀D : ∀s, t : [(∀H : (s =H
D t =⇒ s =D t)) ∧ (s =D t =⇒ s =∅

D t)]3.1 Two Novel Chara
terizations of Flow Se
urityOur
onditions WHAT1 and WHAT2
onstitute adaptations of strong se
urity(De�nition 3) that permit de
lassi�
ation while
ontrolling what is de
lassi�ed.De�nition 7 (WHAT1). A strong (D,H)-bisimulation is a symmetri
 rela-tion R on
ommand ve
tors of equal size that satis�es the formula in Fig. 2.The relation ≅
H
D is the union of all strong (D,H)-bisimulations. A program Vhas se
ure information �ow while
omplying with the restri
tions what
an bede
lassi�ed if ∀D : V ≅

H
D V (brief: V is what1-se
ure or V ∈WHAT1).The di�eren
e between De�nition 7 and the de�nition of strong D-bisimulations(see De�nition 3) is that =H

D o

urs instead of =D on both sides of the impli
a-tion. In the premise, s =H
D s′ o

urs instead of s =D s′. This modi�
ation leadsto a relaxation of the se
urity
ondition (see Lemma 1): di�eren
es in the valuesof an expression Exp that o

urs in an es
ape hat
h (D′,Exp) may be revealedto an observer in domain D if D′ ≤ D. In the
onsequen
e, using t =H

D t′ insteadof t =D t′ leads to a strengthening of the se
urity
ondition: the states t and t′must not di�er in the values of expressions Exp that o

ur in an es
ape hat
h
(D′,Exp) ∈ H with D′ ≤ D. The intention is to prevent unintended informationleakage via subsequent de
lassi�
ations that involve es
ape hat
hes.Example 1. In this and the following examples we assume the two-level poli
y.For illustrating the �rst modi�
ation, letH = {(low, h1+h2)}, C1 = l:=h1+h2,and C2 = [l:=h1+h2]. Neither C1 nor C2 is strongly se
ure (take low -equal statesthat di�er in the value of h1+h2), but both are what1-se
ure. Re
all that what1-se
urity does not aim at lo
alizing where de
lassi�
ation o

urs and, hen
e, de-
lassifying assignments are treated like usual assignments (unlike in Se
t. 2).For illustrating the se
ond modi�
ation, let C3 = h1:=0; [l:=h1+h2]. Thisprogram leaks the initial value of h2 and, hen
e, does not
omply with the se
uritypoli
y. In fa
t, this program is not what1-se
ure due to the requirement t =H

D t′.

∀s, s′, t : ∀i ∈ {1 . . . n} : ∀W :
(V R V ′ ∧ 〈|Ci, s|〉_ 〈|W, t|〉 ∧ s =H

D s′)
⇒ ∃W ′, t′ : 〈|C′

i, s
′|〉_ 〈|W ′, t′|〉 ∧ t =H

D t′ ∧W R W ′Fig. 2. Chara
terization of Strong (D,H)-Bisimulation Relations (see De�nition 7)where V = 〈C1, . . . , Cn〉, V ′ = 〈C′
1, . . . , C

′
n〉, and _ = _o ∪ (

S

D1,{D2}⊆D _
D1→D2d)Unfortunately, what1-se
urity does not satisfy the monotoni
ity prin
iple (seeSe
t. 3.2). As a solution, we propose another se
urity
hara
terization.De�nition 8 (WHAT2). A program V has se
ure information �ow while
om-plying with the restri
tions what
an be de
lassi�ed if ∀D : ∃H′ ⊆ H : V ≅

H′

D V(brief: V is what2-se
ure or V ∈WHAT2).Note that De�nition 8 is also based on the notion of a strong (D,H)-bisimulation.The di�eren
e from De�nition 7 is the existential quanti�
ation over H′. Thisrelaxation
ould be exploited in a se
urity analysis by treating expressions ines
ape hat
hes like usual expressions if they are not used for de
lassi�
ation.Another e�e
t of the relaxation is that the monotoni
ity prin
iple is satis�ed.3.2 Prudent Prin
iples and CompositionalityWe now validate the se
urity
hara
terizations of this se
tion against the prudentprin
iples (see Se
t. 2.3) and use the results to
ompare the
hara
terizations.Interestingly, WHAT1 and WHAT2 are preserved even if one repla
es arbi-trary sub-programs with semanti
ally equivalent ones.Theorem 5 (Strong semanti

onsisten
y). Let C, C′ be programs (possi-bly
ontaining de
lassi�
ation
ommands).1. If C′
≅ C and C[C] ∈WHAT1 then C[C′] ∈WHAT1.2. If C′
≅ C and C[C] ∈WHAT2 then C[C′] ∈WHAT2.Both se
urity
onditions satisfy the
onservativity prin
iple. Additionally, what2-se
urity is a relaxation of strong se
urity. Due to the stri
t handling of variablesin es
ape hat
hes, what1-se
urity is not a relaxation of strong se
urity if H 6= ∅.Theorem 6 (Conservativity).1. (a) If H = ∅ and V ∈WHAT1 then V is strongly se
ure.(b) If H = ∅ and V ∈WHAT2 then V is strongly se
ure.2. (a) If H = ∅ and V is strongly se
ure then V ∈WHAT1.(b) If V is strongly se
ure, then V ∈WHAT2.Theorem 7 (Monotoni
ity of Release).Let H ⊆ H′. If V ∈WHAT2 for (D,≤,H) then V ∈WHAT2 for (D,≤,H′).Example 2. Consider C4 = h1:=0. Intuitively, this program has se
ure infor-mation �ow for the two-domain poli
y (where dom(h1) = high), and it alsosatis�es the strong se
urity
ondition. For any set H, we obtain C4 ∈ WHAT2from C4 ≅

∅
low C4 (take H′ = ∅). However, C4 is not what1-se
ure for H =

{(low, h1+h2)} as it updates the variable h1, whi
h o

urs in the es
ape hat
h.

Example 2 demonstrates that WHAT1 does not satisfy monotoni
ity. The prob-lem is that the
ondition V ≅
H
D V does not permit the updating of variablesthat o

ur in some es
ape hat
h in H. While su
h updates might lead to aninformation leak in subsequent assignments, they are harmless given that thevariable only o

urs in es
ape hat
hes that are never used for de
lassi�
ation.This problem does not arise with WHAT2 as one
an
hoose H′ su
h that it only
ontains es
ape hat
hes that are used.While we are
on�dent that our
hara
terizations WHAT1 and WHAT2 areadequate, a formal proof of the non-o

lusion prin
iple is not possible as we arede�ning what se
urity means (as already explained for WHERE in Se
t. 2.3).However, we
an analyze the
ompositionality of our se
urity
hara
teriza-tions. We de�ne expressions Exp,Exp′ to be (D,H)-indistinguishable (denotedby Exp ≡H

D Exp′) if ∀s, t : ((s =H
D t ∧ 〈|Exp, s|〉 ↓ n ∧ 〈|Exp′, t|〉 ↓ m)⇒ n = m).Theorem 8. If C1 ≅

H
D C′

1
, C2 ≅

H
D C′

2
, and V ≅

H
D V ′ then1. C1; C2 ≅

H
D C′

1
; C′

2
;2. fork(C1V) ≅

H
D fork(C′

1
V ′);3. B ≡H

D B′ ⇒ (while B do C1 od ≅
H
D while B′ do C′

1
od);4. (B≡H

D B′ ∨ C1 ≅
H
D C2)⇒ (if B then C1 else C2 � ≅

H
D if B′ then C′

1 else C′
2 �).Corollary 1. If C1, C2, V ∈WHAT1 then1. C1; C2 ∈WHAT1;2. fork(C1V) ∈WHAT1;3. if the poli
y has a domain low and B≡H

low B then while B do C1 od ∈WHAT1;4. [∀D∈D : (B 6≡H
D B =⇒ C1 ≅

H
D C2)] =⇒ if B then C1 else C2 � ∈WHAT1.Due to the existential quanti�
ation of H′ in De�nition 8, WHAT2 is not
om-positional. This is illustrated by the following example.Example 3. The programs C2 = [l:=h1+h2] and C4 = h1:=0 (from Examples 1and 2) are both what2-se
ure for the set H = {(low , h1+h2)}. However, neither

C3 = C4; C2 nor C5 = fork(C4〈C2〉) is what2-se
ure.In summary, none of our two
hara
terizations WHAT1 and WHAT2 is superiorto the respe
tive other
hara
terization. While WHAT1 is
ompositional (seeCorollary 1) but does not satisfy the monotoni
ity prin
iple (see Example 2),WHAT2 satis�es monotoni
ity (see Theorem 7) but is not
ompositional (see Ex-ample 3). It would be desirable to obtain a se
urity
hara
terization that is
om-positional and that satis�es the monotoni
ity prin
iple. Unfortunately, one fa
esa fundamental di�
ulty when one also wants to
ontrol the what dimension ofde
lassi�
ation. As dis
ussed in Example 3, C3 = C4; C2 and C5 = fork(C4〈C2〉)both violate the two-level poli
y for the setH = {(low , h1+h2)} and, hen
e, theseprograms should not be
onsidered as what-se
ure. However, being able to de-
lassify the expression h1+h2 is the very purpose of the es
ape hat
h (low , h1+h2)and, hen
e, the program C2 = [l:=h1+h2] should be
onsidered as what-se
ure.The inherent trade-o� be
omes apparent when
onsidering C4 = h1:=0. If one
lassi�es this program as what-se
ure then one arrives at a se
urity
ondition

that is not
ompositional (as, e.g., C3 and C5 are not what-se
ure). However, ifone
lassi�es C4 as not what-se
ure then one arrives at a se
urity
ondition thatdoes not satisfy monotoni
ity be
ause C4 is what-se
ure for H = ∅.34 A Sound Type System for Information Flow Se
urityWe present a se
urity type system that
an be used as a basis for automatingthe information �ow analysis. The type system provides an integrated
ontrol ofthe where dimension and of the what dimension of de
lassi�
ation.De�nition 9. If (D,≤,) is an MLS poli
y with ex
eptions and (D,≤,H) isan MLS poli
y with es
ape hat
hes then the tuple (D,≤, ,H) is an MLS poli
y
ontrolling the where and what of de
lassi�
ation.In the following, let (D,≤, ,H) be a poli
y and dom be a domain assignment.The
ore of the type system is the rule for de
lassi�
ation
ommands asthis is where de
lassi�
ation a
tually o

urs. Our se
urity
hara
terizations inSe
tions 2 and 3 provide some guidan
e for developing su
h a rule, but there arestill some pitfalls that one must avoid. As an example,
onsider the rule below,where Var(Exp) denotes the set of identi�ers o

urring in the expression Exp:
dom(Id) = D ∀D′ ∈ sources(Exp) : D′ (≤ ∪) D Exp ≡H

D Exp
∀(D′,Exp′) ∈ H : ((D′ ≤ D ∧ Id ∈ Var(Exp′)) =⇒ Exp ≡H

D′ Exp)

[Id :=Exp]

(1)In the above rule, the se
ond premise ensures that de
lassi�
ation
omplies with
 or, in other words, that the where of de
lassi�
ation is lo
alized a

ording tothe poli
y. The third premise ensures that exe
uting the de
lassi�
ation
om-mand in (D,H)-equal states leads to D-equal states. Finally, the fourth premise
ontrols the information �ow into variables that o

ur in es
ape hat
hes.Nevertheless, the above typing rule is not sound in a
ompositional se
urityanalysis. For instan
e, Rule (1) allows one to derive [h1:=0] as well as [l:=h1+h2],but the sequential
omposition of these
ommands leaks the initial value of h2and, hen
e, does not
omply with the two-level poli
y for H = {(low , h1+h2)}.In order to avoid su
h problems, the rule also needs to ensure that a de
lassi-�
ation does not enable information leakage in assignments that are exe
utedsubsequently.4 A solution would be to forbid assignments to variables that o

urin es
ape hat
hes that
ontain
omplex expressions (i.e., expressions that are notidenti�ers). This solution
an be implemented by adding the following
onditionas another premise to Rule (1):

∀(D′,Exp′) ∈ H : (Id ∈ Var(Exp′) =⇒ Exp′ = Id)3 It is not an option to
lassify C4 as not what-se
ure for H = ∅ be
ause then onewould essentially have to
lassify all assignments as not what-se
ure.4 Note that, in a
on
urrent program, su
h assignment may o

ur after the given de-
lassi�
ation (sequential
omposition), before the de
lassi�
ation (ba
kwards jumpsdue to loops), and also in a program exe
uted by a
on
urrent thread.

⊢ Const : ∅

dom(Id) = D

⊢ Id : {D}

⊢ Exp1 : D1 . . . ⊢ Expm : Dm

⊢ Op(Exp1, . . . , Expm) :
S

i∈{1,...,m}DiFig. 3. Type rules for expressions
⊢ skip ⊢ Exp : D′ ∀D ∈ D′ : D ≤ dom(Id) Id ← Exp

⊢ Id :=Exp

⊢ C ⊢ V

⊢ fork(CV)

⊢ Exp : D′ ∀D ∈ D′ : D(∪ ≤)dom(Id) Id ← Exp

⊢ [Id :=Exp]

⊢ C0 . . . ⊢ Cn−1

⊢ 〈C0, . . . Cn−1〉

⊢ C1 ⊢ C2

⊢ C1 ; C2

⊢ B : {low} ⊢ C

⊢ while B do C od
⊢ C1 ⊢ C2 ∀D : B ≡D B ⇒ C1 ≅

D C2 ∀D : B ≡H
D B ⇒ C1 ≅

H
D C2

⊢ if B then C1 else C2 �Fig. 4. Rules of the Integrated Se
urity Type SystemIn the type system, we use the judgment ⊢ Exp : D′ instead of the fun
tion
sources . Intuitively, ⊢ Exp : D′ means that if Id ∈ Var(Exp) then dom(Id) ∈ D′and that if D ∈ D′ then there is a variable Id ∈ Var(Exp) with dom(Id) =
D. The judgment is de�ned formally by the rules in Fig. 3, and it ful�lls therequirements for the fun
tion sources as the following theorem shows.Theorem 9. If ⊢ Exp : D′ and ∀D′ ∈ D′ : D′ ≤ D then Exp ≡D Exp.To improve the readability of the typing rules, we introdu
e a judgment Id ←
Exp. Intuitively, this judgment
aptures that Exp may be assigned to Id in a de-
lassifying assignment. The following formal de�nition is based on the
onditionsthat we have motivated earlier in this se
tion.De�nition 10. We de�ne the judgment Id ← Exp by

Id ← Exp ≡ ∀D ∈ D : ((D = dom(Id) ∨ (D, Id) ∈ H)⇒ Exp ≡H
D Exp)

∧ ∀(D′,Exp′) ∈ H : (Id ∈ Var(Exp′) =⇒ Exp′ = Id).The integrated se
urity type system for
ommands is presented in Fig. 4. Re
allthat we impli
itly assume (D,≤, ,H) to be anMLS poli
y
ontrolling the whereand what of de
lassi�
ation. To make the poli
y expli
it, we use the notation
⊢D,≤, ,H V for denoting that ⊢ V is derivable with the typing rules.Note that the rule for
onditionals has two semanti
 side
onditions. In thisrespe
t our presentation of the typing rules is similar to the one of the typingrules for intransitive noninterferen
e in [9℄. In that arti
le, it is demonstratedhow su
h semanti
 side
onditions
an be synta
ti
ally approximated by safeapproximation relations in a sound way, and similar
onstru
tions are possiblefor our side
onditions. Moreover, the premises of the typing rules for assignmentsand de
lassi�
ation involve the judgment Id ← Exp. Due to spa
e limitations,we also omit the fairly straightforward synta
ti
 approximation of De�nition 10.

(a) (b) (
)
public

network

filter

reader

dom(mail) = network
dom(rmail) = reader

dom(p
he
k) = publi

dom(fmail) = �lter

dom(f
he
k) = �lter H =
{(reader,mail),
(publi
, noMalware(mail)),
(reader, fmail),
(publi
, f
he
k)}Fig. 5. (a) MLS poli
y with ex
eptions, (b) domain assignment, (
) es
ape hat
hesf
he
k:=noMalware(mail); %
he
k that the mail
ontains no malware

[p
he
k:=f
he
k]; % make
he
k result publi
if
he
k then fmail:=mail %
opy the mail into an auxiliary variableelse fmail:=0 �; % set the auxiliary variable to a dummy value
[rmail:=fmail] % forward mail to readerFig. 6. An example for a �lter programTheorem 10 (Soundness of Se
urity Type System).1. If ⊢D,≤, ,H V then V is where-se
ure.2. If ⊢D,≤, ,H V then V is what1-se
ure.3. If ⊢D,≤, ,H V then V is what2-se
ure for all (D,≤, ,H′) with H ⊆ H′.That is, the type system is sound with respe
t to the se
urity
hara
terizationsintrodu
ed in Se
t. 2 and 3. In parti
ular, the what and where of de
lassi�
ationin type-
orre
t programs
omplies with the respe
tively given poli
y.5 An Exemplary Se
urity AnalysisIn our appli
ation s
enario, an e-mail arrives via a network and is forwardedto a user. Before the user reads an e-mail in the mail reader, the e-mail mustpass a �lter. The �lter shall
he
k whether the e-mail is infe
ted by malwareand shall also make the result of the
he
k publi
ly available, e.g., to permit the
omputation of statisti
s about the infe
tion rate of in
oming e-mail. For thiss
enario, we
an distinguish four se
urity domains, a domain for the network,a domain for the �lter, a domain for the mail reader, and a domain for publi
information. The main se
urity requirements are that all e-mail from the networkpasses the �lter before rea
hing the reader and that no e-mails are made publi
.The resulting se
urity poli
y is depi
ted in Fig. 5. The �rst se
urity require-ment is
aptured by this poli
y as the only path from domain network to domainreader is via domain �lter. The se
ond requirement is
aptured by the set of es-
ape hat
hes as the only es
ape hat
h with variable mail as expression has readeras target domain. The �rst requirement
on
erns the where dimension while these
ond requirement
on
erns the what dimension of de
lassi�
ation. A simple

example for a �lter program is depi
ted in Fig. 6. Note that de
lassifying assign-ments are used to de
lassify the result of the malware
he
k (whi
h depends onthe variable mail) to domain publi
 and to de
lassify an in
oming mail to domainreader. The �lter program forwards mail only if the malware
he
k was negative.While this what aspe
t of de
lassi�
ation is not
aptured in our se
urity poli
y,it would also be possible to de�ne an MLS poli
y that
aptures this aspe
t. Werefrain from pursuing su
h possibilities here.An analysis of the �lter program with the typing rules from Fig. 4 yields thatthe program is type
orre
t (three appli
ations of the rule for sequential
ompo-sition, one appli
ation of the rule for
onditionals, three appli
ations of the rulefor assignments, and two appli
ations of the rule for de
lassifying assignments).Theorem 10 allows us to
on
lude that the program in Fig. 6 is where-se
ure,what1-se
ure, and what2-se
ure for the MLS poli
y in Fig. 5.6 Related WorkDe
lassi�
ation is a
urrent topi
 in language-based information �ow se
urity andthere already is a variety of approa
hes to
ontrolling de
lassi�
ation [16℄. In thewhat dimension this survey lists, for instan
e, [8, 13℄, and in the where/when di-mension, for instan
e, [4, 10, 9℄. Non-dis
losure is a re
ent approa
h in the wheredimension that aims at multi-threaded programs [2, 1℄. The idea is to expandthe �ow relation ≤ a

ording to annotations at the exe
uting sub-programs. Agiven expansion of ≤ lo
alizes where de
lassi�
ation
an o

ur in the program.The
onstru
tion of expansions impli
itly assumes that the ex
eptions that arepermitted
orrespond to a transitive relation, an assumption that we do not needto make for WHERE.Very few approa
hes limit de
lassi�
ation in more than one dimension.A

ording to [16℄, relaxed noninterferen
e [7℄ mainly addresses the what di-mensions, but it also addresses some aspe
ts of the where dimension. Relaxednoninterferen
e has a synta
ti
 �avor as de
lassi�
ation may only involve syn-ta
ti
ally equivalent λ-terms.5 While this approa
h appears quite restri
tive, thebene�t is that one obtains some lo
alization in the program as de
lassi�
ation
an only happen where a parti
ular synta
ti
 expression o

urs. Sin
e relaxednoninterferen
e only
onsiders a two-level poli
y, there is no notion of limitingwhere de
lassi�
ation
an o

ur in the �ow poli
y.A

ording to [16℄, abstra
t noninterferen
e [5℄ mainly addresses the what-dimension. In fa
t, it is a generalization of sele
tive dependen
y like delimitedrelease [13℄, WHAT1, and WHAT2. However, abstra
t noninterferen
e also hassimilarities to robust de
lassi�
ation [17℄, whi
h is a prominent representativefor
ontrolling the who dimension.Another aspe
t, in whi
h our work di�ers frommany other approa
hes, is thatwe address
on
urrent programs. Lifting a se
urity analysis from a sequential to a
on
urrent setting is often nontrivial as one must
onsider the possibility of ra
es5 In [7℄ Li and Zdan
ewi
 use a β− η-equivalen
e. But they already point out, that itis not
lear if this is an useful
hoi
e or what would be more useful.

and address the danger of internal timing leaks. For an overview on approa
hesaddressing
on
urren
y, we
an only refer to [12℄ due to spa
e restri
tions.7 Con
lusionWhile a number of approa
hes to
ontrolling de
lassi�
ation in a language-basedse
urity analysis has been proposed in re
ent years, little work has addressed
ontrolling multiple dimensions of de
lassi�
ation in an integrated fashion.The aim of our investigation was to more adequately
ontrol the where andwhat of de
lassi�
ation. For
ontrolling the where dimension, we proposed the
ondition WHERE, and we proved that it is
ompositional and satis�es theprudent prin
iples of de
lassi�
ation (unlike, e.g., intransitive noninterferen
e).For
ontrolling what, we proposed the
onditions WHAT1 and WHAT2, and weidenti�ed an inherent trade-o� between the monotoni
ity prin
iple and
omposi-tionality. To our knowledge, the soundness result for our type system is the �rstsu
h result that
learly identi�es whi
h aspe
ts of where and what are
ontrolled.The starting point for deriving our novel se
urity
hara
terizations was thestrong se
urity
ondition. The advantages of this
ondition in
lude that it is
ompositional and robust with respe
t to
hoi
es of the s
heduler (see [15℄ fora more detailed analysis). The strong se
urity
ondition also rules out dangersof internal leaks in
on
urrent programming without making any assumptionsabout the possibilities of ra
e
onditions in a program. As a
onsequen
e, this
ondition is somewhat restri
tive, whi
h is te
hni
ally due to the use of a strongbisimulation relation that requires a lo
k-step exe
ution of related programs.While a less restri
tive baseline
hara
terization would be desirable, we do notknow of any
onvin
ing solutions for
ontrolling the where dimension in multi-threaded programs based on a less restri
tive se
urity
ondition.A
knowledgments. We thank Henning Sudbro
k for helpful
omments. We alsothank the anonymous reviewers for their suggestions.This work was funded by the DFG in the Computer S
ien
e A
tion Program andby the Information So
iety Te
hnologies program of the European Commission, Futureand Emerging Te
hnologies under the IST-2005-015905 MOBIUS proje
t. This arti
lere�e
ts only the authors' views, and the Commission, the DFG, and the authors arenot liable for any use that may be made of the information
ontained therein.Referen
es1. A. Almeida Matos. Typing se
ure information �ow: de
lassi�
ation and mobility.PhD thesis, É
ole Nationale Supérieure des Mines de Paris, 2006.2. A. Almeida Matos and G. Boudol. On de
lassi�
ation and the non-dis
losurepoli
y. In In Pro
. IEEE Computer Se
urity Foundations Workshop, 2005.3. E. Cohen. Information transmission in sequential programs. In Foundations ofSe
ure Computation, pages 297�335. A
ademi
 Press, 1978.4. M. Dam and P. Giambiagi. Information �ow
ontrol for
ryptographi
 ap-plets, 2003. Presentation at Dagstuhl Seminar on Language-Based Se
urity,http://kathrin.dagstuhl.de/03411/Materials2/.

5. R. Gia
obazzi and I. Mastroeni. Abstra
t non-interferen
e: Parameterizing non-interferen
e by abstra
t interpretation. In Pro
. of the 31st Annual ACMSIGPLAN-SIGACT Symposium on Prin
iples of Programming Languages, pages186�197, 2004.6. J. A. Goguen and J. Meseguer. Se
urity Poli
ies and Se
urity Models. In Pro
eed-ings of the IEEE Symposium on Se
urity and Priva
y, pages 11�20, Oakland, CA,USA, 1982.7. P. Li and S. Zdan
ewi
. Downgrading poli
ies and relaxed noninterferen
e. In Pro
.of the 32nd ACM SIGPLAN-SIGACT symposium on Prin
iples of programminglanguages, pages 158�170, New York, NY, USA, 2005.8. G. Lowe. Quantifying information �ow. In Pro
. of the 15th IEEE ComputerSe
urity Foundations Workshop, page 18, Washington, DC, USA, 2002.9. H. Mantel and D. Sands. Controlled De
lassi�
ation based on Intransitive Non-interferen
e. In Pro
eedings of the 2nd ASIAN Symposium on Programming Lan-guages and Systems, APLAS 2004, LNCS 3303, pages 129�145, Taipei, Taiwan,2004.10. A. Di Pierro, C. Hankin, and H. Wikli
ky. Approximate Non-Interferen
e. Journalof Computer Se
urity, 12(1):37�81, 2004.11. A. Sabelfeld. Con�dentiality for Multithreaded Programs via Bisimulation. In Pro-
eedings of Andrei Ershov 5th International Conferen
e on Perspe
tives of SystemInformati
s, number 2890 in LNCS, pages 260�274, 2003.12. A. Sabelfeld and A. C. Myers. Language-based Information-Flow Se
urity. IEEEJournal on Sele
ted Areas in Communi
ation, 21(1):5�19, 2003.13. A. Sabelfeld and A. C. Myers. A model for delimited information release. InPro
eedings of the International Symposium on Software Se
urity, 2004.14. A. Sabelfeld and D. Sands. A Per Model of Se
ure Information Flow in SequentialPrograms. In Pro
eedings of the 8th European Symposium on Programming, LNCS,pages 50�59, 1999.15. A. Sabelfeld and D. Sands. Probabilisti
 Noninterferen
e for Multi-threaded Pro-grams. In Pro
eedings of the 13th IEEE Computer Se
urity Foundations Workshop,pages 200�215, Cambridge, UK, 2000.16. A. Sabelfeld and D. Sands. Dimensions and Prin
iples of De
lassi�
ation. InPro
eedings of the 18th IEEE Computer Se
urity Foundations Workshop, pages255�269. IEEE Computer So
iety, 2005.17. S. Zdan
ewi
 and A. Myers. Robust de
lassi�
ation. In 14th IEEE ComputerSe
urity Foundations Workshop (CSFW '01), pages 15�26, Washington - Brussels- Tokyo, 2001.A Operational Semanti
s of MWLThe intuition of a deterministi
 judgment of the form 〈|C, s|〉 _ 〈|W, t|〉 is that
ommand C performs a
omputation step in state s, yielding a state t and ave
tor of
ommands W , whi
h has length zero if C terminated, length one ifit has neither terminated nor spawned any threads, and length greater thanone if new threads were spawned. The transition arrow is labeled to distinguishordinary
omputation steps (labeling: _o) from de
lassi�
ation steps (labeling:
_

D1→D2d). An indu
tive de�nition of the semanti
s is given by the rules in Fig. 7.To model
on
urrent
omputations, the deterministi
 judgment is lifted to anondeterministi
 judgment of the form 〈|V, s|〉 → 〈|V ′, t|〉. The intuitive meaning

〈|skip, s|〉_o 〈|〈〉, s|〉

〈|Exp, s|〉 ↓ n

〈|Id :=Exp, s|〉_o 〈|〈〉, [Id = n]s|〉 〈|fork(CV), s|〉_o 〈|〈C〉V, s|〉

〈|B, s|〉 ↓ True
〈|if B then C1 else C2 �, s|〉_o 〈|C1, s|〉

〈|B, s|〉 ↓ False
〈|if B then C1 else C2 �, s|〉_o 〈|C2, s|〉

〈|B, s|〉 ↓ True
〈|while B do C od, s|〉_o 〈|C;while B do C od, s|〉 〈|B, s|〉 ↓ False

〈|while B do C od, s|〉_o 〈|〈〉, s|〉
〈|C1, s|〉_o 〈|〈〉, s′|〉
〈|C1; C2, s|〉_o 〈|C2, s

′|〉

〈|C1, s|〉_o 〈|C′
1V, s′|〉

〈|C1; C2, s|〉_o 〈|〈C′
1; C2〉V, s′|〉

〈|Exp, s|〉 ↓ n sources(Exp) = D1 dom(Id) = D2

〈|[Id :=Exp], s|〉_
D1→D2d 〈|〈〉, [Id = n]s|〉

〈|C1, s|〉_
D1→D2d 〈|〈〉, s′|〉

〈|C1; C2, s|〉_
D1→D2d 〈|C2, s

′|〉Fig. 7. Deterministi
 operational semanti
s of MWLis that some thread Ci in V performs a step in state s resulting in the state tand some thread pool W ′. The global thread pool V ′ results then by repla
ing
Ci with W ′. This is formalized by the rules in Fig. 8.

〈|Ci, s|〉_o 〈|W
′, s′|〉

〈|〈C0 . . . Cn−1〉, s|〉 → 〈|〈C0 . . . Ci−1〉W
′〈Ci+1 . . . Cn−1〉, s

′|〉

〈|Ci, s|〉_ 〈|W ′, s′|〉

〈|〈C0 . . . Cn−1〉, s|〉 → 〈|〈C0 . . . Ci−1〉W
′〈Ci+1 . . . Cn−1〉, s

′|〉Fig. 8. Non-deterministi
 operational semanti
s of MWL

