
Controlling the What and Where ofDelassi�ation in Language-Based SeurityHeiko Mantel and Alexander ReinhardSeurity Engineering Group, RWTH Aahen University, Germanymantel�s.rwth-aahen.de, reinhard�i4.informatik.rwth-aahen.deAbstrat. While a rigorous information �ow analysis is a key step in ob-taining meaningful end-to-end on�dentiality guarantees, one must alsopermit possibilities for delassi�ation. Sabelfeld and Sands ategorizedthe existing approahes to ontrolling delassi�ation in their overviewalong four dimensions and aording to four prudent priniples [16℄.In this artile, we propose three novel seurity onditions for ontrollingthe dimensions where and what, and we explain why these onditionsonstitute improvements over prior approahes. Moreover, we present atype-based seurity analysis and, as another novelty, prove a soundnessresult that onsiders more than one dimension of delassi�ation.1 IntrodutionResearh on information �ow seurity aims at �nding better ways to harater-izing and analyzing seurity requirements onerning aspets of on�dentialityand integrity. Regarding on�dentiality, the aim of an information �ow analysisis to answer: �Can a given program be trusted to operate in an environmentwhere it has read aess to seret data and write aess to untrusted informa-tion sinks?� There is a variety of approahes to information �ow seurity onthe level of onrete programs (see [12℄ for an overview). In the simplest ase,one has a two-level poliy demanding that information annot �ow from high tolow. Seure information �ow an then be haraterized using the idea underlyingnoninterferene [6℄: If low outputs of the program do not depend on high inputsthen there is no danger that seret data is leaked to untrusted sinks.Noninterferene provides an intuitively onvining, delarative harateriza-tion of information �ow seurity. However, there are seurity mehanisms andappliation senarios that need some information to �ow from high to low. Forinstane, a password-based authentiation mehanism neessarily reveals someinformation about the seret password, deryption relies on a dependene be-tween a ipher-text and the seret plain-text that it enodes, and eletroni om-mere requires seret data to be released after it has been paid for. For makinginformation �ow seurity ompatible with suh requirements, one must permitexeptions in the seurity poliy. But, this raises the question how to ontrolthat one does not introdue possibilities for unintended information leakage.



For larifying the intentions underlying the various approahes to ontrollinginformation release, three dimensions were introdued in [9℄: what informationis delassi�ed, who an ontrol whether delassi�ation ours, and where andelassi�ation happen. In [16℄, Sabelfeld and Sands develop a taxonomy thatategorizes the existing approahes along these dimensions1 and propose fourprudent priniples of ontrolling delassi�ation. The taxonomy lari�ed the re-lationship between the various approahes, and it revealed some anomalies andmisoneptions that had previously gone unnotied. Another interesting outomeis that eah approah mainly aims at a single dimension and does not provideadequate ontrol for any of the respetive other dimensions.In this artile, our sope is ontrolling the what and where of delassi�ationin a type-based seurity analysis. In summary, our researh ontributions are:� A novel seurity haraterization for ontrolling where delassi�ation o-urs. Our property WHERE is similar to intransitive noninterferene [9℄,but WHERE satis�es the prudent priniples of delassi�ation from [16℄, in-luding monotoniity, whih is not satis�ed by intransitive noninterferene.� Two novel seurity haraterizations for ontrolling what is delassi�ed. Ourproperties WHAT1 and WHAT2 are similar to seletive dependeny [3℄ andits desendants (e.g., [13℄), but, unlike these properties, WHAT1 andWHAT2are appliable to onurrent programs. Lifting a seurity haraterizationfrom a sequential to a onurrent setting is often not straightforward, inpartiular, one must address the danger of internal timing leaks [15℄.� A seurity type system for analyzing the information �ow in onurrentprograms under poliies that permit ontrolled exeptions. Our type systemloalizes where delassi�ation ours and ontrols what is delassi�ed. Weprove soundness results with respet to eah of our properties WHERE,WHAT1, and WHAT2. To our knowledge, the only other formal soundnessresult for an information �ow type system that onsiders where and what isthe one by Li and Zdanewi [7℄. However, they aim at sequential programsand mainly at ontrolling the what dimension [16℄.In our projet, we gained some further insights on ontrolling delassi�ation.For instane, our property WHAT1 is ompositional but does not satisfy themonotoniity priniple, while our property WHAT2 is not ompositional butsatis�es monotoniity. We found that, when ontrolling the what dimension ofdelassi�ation, one faes a fundamental di�ulty when attempting to satisfyompositionality as well as monotoniity (see Set. 3.2). While using the prudentpriniples of delassi�ation as a sanity hek for our seurity haraterizations,we found that formalizing the informal desriptions of the priniples from [16℄is not always ompletely straightforward, and in some ases more than one for-malization is sensible. As an example, we provide two alternative formalizationsof the onservativity priniple for WHERE (see Theorem 2).1 The taxonomy distinguishes loalization of delassi�ation with respet to aspetsof time during program exeution (when) from other aspets of loalization (where)and ategorizes aording to the four dimensions: what, who, where, and when.



2 Controlling Delassi�ation in Dimension whereWe propose a novel haraterization of information �ow seurity that ontrolswhere delassi�ation an our. It is ensured that delassi�ation is loalized tospei� parts of the seurity poliy as well as to spei� parts of the omputation.De�nition 1. A multi-level seurity poliy (brief: MLS poliy) is a pair (D,≤),where D is a set of seurity domains and ≤⊆ D×D is a partial order. The triple
(D,≤, ) is an MLS poliy with exeptions where  ⊆ D×D. The minimal andthe maximal domain in (D,≤) are alled low and high , respetively, if they exist.Computation steps are modeled by labeled transitions between on�gurations ofthe form 〈|〈C1 . . . Cn〉, s|〉. Here, the state s is a mapping from program variablesto values, and the vetor models a pool of n threads that onurrently exeute theommands C1, . . . , Cn ∈ Com , respetively. For simpliity, we do not distinguishbetween ommands and ommand vetors of length one in the notation and usethe term program for referring to ommands as well as to ommand vetors.We distinguish ordinary omputation steps, whih are modeled by a transi-tion relation _o, from delassi�ation steps, whih are modeled by a family ofrelations (_D1→D2d )D1,{D2}⊆D. Given a poliy (D,≤, ), the intuition is thatan ordinary transition must stritly obey the ordering ≤ (whih means that in-formation may only �ow upwards aording to ≤), while delassi�ation stepsmay violate this ordering by downgrading information from the domains in D1to the domain D2. However, suh violations must omply with the relation  .2.1 PreliminariesGiven a set Var of program variables, a domain assignment is a funtion dom :
Var → D. By assigning a seurity domain dom(Id) to eah variable, it reates aonnetion between the on�gurations in a omputation and the seurity poliy.Taking the perspetive of an observer in a seurity domain D, two states s, t areindistinguishable if all variables at or below this domain have the same value.De�nition 2. For a given domain D ∈ D, two states s and t are D-equal(denoted by s =D t) if ∀Id ∈ Var : dom(Id) ≤ D =⇒ s(Id) = t(Id).In the following, let (D,≤, ) be a poliy and dom be a domain assignment. Weadopt the naming onventions used above: D denotes a seurity domain, s and
t denote states, C denotes a ommand, and V and W denote ommand vetors.The PER approah [14℄ haraterizes information �ow seurity based on in-distinguishability relations on programs. Two programs are indistinguishable fora seurity domain D if running them in two D-equal states reveals no serets toan observer in D, unless this is expliitly permitted by the given seurity poliy.The D-indistinguishability relation is not re�exive. It only relates programs tothemselves if they have seure information �ow.De�nition 3 ([15℄). A strong D-bisimulation is a symmetri relation R onommand vetors of equal size that satis�es the formula in Fig. 1 where the partwith dark-gray bakground is deleted. The relation ≅D is the union of all strong
D-bisimulations. A program V is strongly seure if V ≅D V holds for all D ∈ D.
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D1,{D2}⊆D _
D1→D2d )For two ommands C, C′ ∈ Com , being strongly D-bisimilar (C ≅D C′) meansthat eah omputation step that is possible for C in a state s an be simulated ineah D-equal state s′ by a omputation step of C′, where the resulting programs

W and W ′ are strongly D-bisimilar and the resulting states t and t′ are D-equal.As a onsequene, strong seurity enfores the �ow of information to omply withthe ordering ≤ without permitting any exeptions. The strong seurity onditionis the weakest seurity de�nition that is sheduler independent and is preservedunder parallel and sequential omposition [11℄. Tehnially, the former is a on-sequene of requiring strongly D-bisimilar programs to exeute in lok-step.2.2 A Novel Charaterization of Flow SeurityIn this artile, we propose several haraterizations of information �ow seuritythat permit delassi�ation while ontrolling it in a partiular dimension. Ourseurity onditions are derived using the PER approah, and eah of them ispresented as a variant of the strong seurity ondition. We use the terms what-seurity and where-seurity to indiate in whih dimension delassi�ation isontrolled and distinguish di�erent variants for the same dimension with indies.De�nition 4 (WHERE). A strong (D, )-bisimulation is a symmetri re-lation R on ommand vetors of equal size that satis�es the entire formula inFig. 1. The relation ≅
 

D is the union of all strong (D, )-bisimulations. A pro-gram V has seure information �ow while omplying with the restritions wheredelassi�ation an our if V ≅
 

D V holds for all D ∈ D (brief: V is where-seure or V ∈WHERE).Delassi�ation is possible as t and t′ in Fig. 1 need not be D-equal. However,suh exeptions are onstrained by the formula with dark-gray bakground:� steps ausing delassi�ation must be delassi�ation transitions _
D1→D2

d ;� information �ow must be permitted from eah D′ ∈ D1 to D2 (by  or ≤);� delassi�ation may only a�et D if D2 is observable, and it may only revealdi�erenes between s and s′ that an be observed from domains in D1.



That is, where-seurity loalizes exeptions, within a omputation, to the de-lassi�ation steps and, within an MLS poliy, to where  permits it. In thisrespet, our ondition is similar to intransitive noninterferene [9℄, but the twoseurity onditions are not idential. Most importantly, where-seurity satis�esall prudent priniples of delassi�ation (see Set. 2.3), unlike intransitive non-interferene [16℄. Tehnially, the di�erenes beome apparent in the de�nitionof the respetively underlying notion of a strong D-bisimulation. In [9℄, �rstly,delassi�ation steps downgrade information from a single domain D1 (ratherthan from a set of domains D1), seondly, delassi�ation steps may only makeinformation �ow aording to the relation (rather than aording to  ∪ ≤),and thirdly, eah transition must be simulated by a transition with the identi-al annotation (while Fig. 1 requires nothing about the labels of the transition
〈|C′

i, s
′|〉 _ 〈|W ′, t′|〉). The �rst two relaxations are helpful for a �exible ombi-nation with a ontrol of what is downgraded. The third relaxation is ruial forsatisfying the priniple monotoniity of release (see Set. 2.3).2.3 Prudent Priniples and CompositionalityTo investigate our seurity de�nition more onretely, we augment the multi-threaded while language MWL from [15℄ with a delassifying assignment:

C ::= skip | Id :=Exp | C1; C2 | if B then C1 else C2 � | while B do C od
| fork(CV ) | [Id :=Exp]We use B and Exp for denoting Boolean-valued and integer-valued expressions,respetively. The language E for expressions shall not be spei�ed here. We onlyassume that the evaluation of expressions is atomi and deterministi. Thatexpression Exp evaluates to value n in state s is denoted by 〈|Exp, s|〉 ↓ n. Weassume a funtion sources that returns for an expression the set of seuritydomains on whih the value of the expression possibly depends or, more formally,

∀s, t : (((∀D ∈ sources(Exp) : s =D t)∧〈|Exp, s|〉 ↓ n∧〈|Exp, t|〉 ↓ m) =⇒ n = m).The semantis of MWL instantiate the transition relations _o and _
D1→D2d .A ommand [Id :=Exp] auses a _

D1→D2d transition where D1 = sources(Exp)and D2 = dom(Id). Assignments, skip, onditionals, loops, and fork ause ordi-nary transitions. The statement fork(CV ) spawns the threads 〈C〉V where C isthe designated main thread. If threads are reated within the sub-ommand C1of a sequential omposition C1; C2 then C2 is exeuted after the main thread hasterminated. A formal de�nition of the semantis is provided in Appendix A.Sabelfeld and Sands propose the following priniples of delassi�ation [16℄:Semanti onsisteny: The (in)seurity of a program is invariant under se-mantis-preserving transformations of delassi�ation-free subprograms.Conservativity: The seurity of a program with no delassi�ations is equiv-alent to noninterferene.Monotoniity of release: Adding further delassi�ations to a seure pro-gram annot render it inseure.Non-olusion: The presene of a delassi�ation operation annot mask otherovert information leaks.



We now validate our seurity haraterization against these prudent priniples.As suggested in [16℄, we de�ne semanti equivalene between programs by
≅ = ≅high , where ≅high is the strong high-bisimulation for the single-domainpoliy ({high}, {(high , high)}). A ontext C is a program where the hole • mayour as an atomi sub-ommand. We use C[C] to denote the program that oneobtains by replaing eah ourrene of • with C. The proof of the following andall other theorems in this artile will be provided in an extended version.Theorem 1 (Semanti onsisteny). Let C, C′ be programs without delassi-�ation ommands. Then C′

≅ C and C[C] ∈WHERE imply C[C′] ∈WHERE.2Strong seurity follows from where-seurity not only if there are no delassi�a-tion operations in a program, but also if the poliy does not permit any exep-tions. In the other diretion, where-seurity is a weakening of strong seurity.Theorem 2 (Conservativity).1. If  = ∅ and V ∈WHERE then V is strongly seure.2. If no delassi�ation ours in V and V ∈WHERE then V is strongly seure.3. If V is strongly seure then V ∈WHERE.Monotoniity holds with respet to the exeptions permitted by the poliy andalso with respet to the delassi�ation operations in the program.Theorem 3 (Monotoniity). Let  ⊆ ′.1. If V ∈WHERE for (D,≤, ) then V ∈WHERE for (D,≤, ′).2. If C[Id :=Exp]∈WHERE then C[ [Id :=Exp] ]∈WHERE.Theorems 1�3 demonstrate that our novel seurity haraterization satis�es the�rst three priniples of delassi�ation from [16℄. A formal proof of the fourthprudent priniple is impossible. Suh a proof would require a formal harateriza-tion of seure information �ow as a referene point, whih we do not have a priorias De�nition 4 de�nes a haraterization based on an intuitive understanding.The following ompositionality results hold for WHERE. We de�ne expres-sions Exp,Exp′ to be D-indistinguishable (denoted by Exp ≡D Exp′) if ∀s, t :
((s =D t ∧ 〈|Exp, s|〉 ↓ n ∧ 〈|Exp′, t|〉 ↓ m)⇒ n = m).Theorem 4. If C1 ≅
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�).3 Controlling Delassi�ation in the Dimension whatWe propose two haraterizations of information �ow seurity that ontrol whatis delassi�ed. Eah of them is a natural adaptation of the idea underlying Co-hen's seletive dependeny [3℄ (and its desendants like, e.g., delimited release[13℄ or abstrat noninterferene [5℄) to a multi-threaded language.2 As usual, the proposition does not hold if one replaes sub-ommands with delassi-�ation ommands. For instane, onsider C = •, C = [l:=h], and C′ = l:=h for thetwo-domain poliy where dom(h) = high, dom(l) = low , and high  low .



De�nition 5. An MLS poliy with esape hathes is a triple (D,≤,H), where
(D,≤) is an MLS poliy, and H ⊆ D×E is a set of esape hathes.From now, we assume that (D,≤,H) denotes an MLS poliy with esape hathes.Given a poliy (D,≤,H) the intuition is that, for any D, the visible behaviorof seure programs may depend on the initial value of identi�ers visible to Dand also on the initial values of expressions Exp if (D′,Exp) ∈ H and D′ ≤ D.Formally, an observer in a domain D may be able to determine whih equivalenelass of the relation =H

D ontains the initial state, but no further information.De�nition 6. Two states s and t are (D,H)-equal (s =H
D t) if1. s =D t and2. ∀(D′,Exp) ∈ H : (D′ ≤ D =⇒ ((〈|Exp, s|〉 ↓ n ∧ 〈|Exp, t|〉 ↓ m)⇒ n = m))That is, an esape hath (D′,Exp) ∈ H indiates that observers in domain D ≥

D′ may learn the initial value of expression Exp during a program's exeution.The following lemma shows that (D,H)-equality is a subset of D-equality.Lemma 1. ∀D : ∀s, t : [(∀H : (s =H
D t =⇒ s =D t)) ∧ (s =D t =⇒ s =∅

D t)]3.1 Two Novel Charaterizations of Flow SeurityOur onditions WHAT1 and WHAT2 onstitute adaptations of strong seurity(De�nition 3) that permit delassi�ation while ontrolling what is delassi�ed.De�nition 7 (WHAT1). A strong (D,H)-bisimulation is a symmetri rela-tion R on ommand vetors of equal size that satis�es the formula in Fig. 2.The relation ≅
H
D is the union of all strong (D,H)-bisimulations. A program Vhas seure information �ow while omplying with the restritions what an bedelassi�ed if ∀D : V ≅

H
D V (brief: V is what1-seure or V ∈WHAT1).The di�erene between De�nition 7 and the de�nition of strong D-bisimulations(see De�nition 3) is that =H

D ours instead of =D on both sides of the implia-tion. In the premise, s =H
D s′ ours instead of s =D s′. This modi�ation leadsto a relaxation of the seurity ondition (see Lemma 1): di�erenes in the valuesof an expression Exp that ours in an esape hath (D′,Exp) may be revealedto an observer in domain D if D′ ≤ D. In the onsequene, using t =H

D t′ insteadof t =D t′ leads to a strengthening of the seurity ondition: the states t and t′must not di�er in the values of expressions Exp that our in an esape hath
(D′,Exp) ∈ H with D′ ≤ D. The intention is to prevent unintended informationleakage via subsequent delassi�ations that involve esape hathes.Example 1. In this and the following examples we assume the two-level poliy.For illustrating the �rst modi�ation, letH = {(low, h1+h2)}, C1 = l:=h1+h2,and C2 = [l:=h1+h2]. Neither C1 nor C2 is strongly seure (take low -equal statesthat di�er in the value of h1+h2), but both are what1-seure. Reall that what1-seurity does not aim at loalizing where delassi�ation ours and, hene, de-lassifying assignments are treated like usual assignments (unlike in Set. 2).For illustrating the seond modi�ation, let C3 = h1:=0; [l:=h1+h2]. Thisprogram leaks the initial value of h2 and, hene, does not omply with the seuritypoliy. In fat, this program is not what1-seure due to the requirement t =H

D t′.
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D1,{D2}⊆D _
D1→D2d )Unfortunately, what1-seurity does not satisfy the monotoniity priniple (seeSet. 3.2). As a solution, we propose another seurity haraterization.De�nition 8 (WHAT2). A program V has seure information �ow while om-plying with the restritions what an be delassi�ed if ∀D : ∃H′ ⊆ H : V ≅

H′

D V(brief: V is what2-seure or V ∈WHAT2).Note that De�nition 8 is also based on the notion of a strong (D,H)-bisimulation.The di�erene from De�nition 7 is the existential quanti�ation over H′. Thisrelaxation ould be exploited in a seurity analysis by treating expressions inesape hathes like usual expressions if they are not used for delassi�ation.Another e�et of the relaxation is that the monotoniity priniple is satis�ed.3.2 Prudent Priniples and CompositionalityWe now validate the seurity haraterizations of this setion against the prudentpriniples (see Set. 2.3) and use the results to ompare the haraterizations.Interestingly, WHAT1 and WHAT2 are preserved even if one replaes arbi-trary sub-programs with semantially equivalent ones.Theorem 5 (Strong semanti onsisteny). Let C, C′ be programs (possi-bly ontaining delassi�ation ommands).1. If C′
≅ C and C[C] ∈WHAT1 then C[C′] ∈WHAT1.2. If C′
≅ C and C[C] ∈WHAT2 then C[C′] ∈WHAT2.Both seurity onditions satisfy the onservativity priniple. Additionally, what2-seurity is a relaxation of strong seurity. Due to the strit handling of variablesin esape hathes, what1-seurity is not a relaxation of strong seurity if H 6= ∅.Theorem 6 (Conservativity).1. (a) If H = ∅ and V ∈WHAT1 then V is strongly seure.(b) If H = ∅ and V ∈WHAT2 then V is strongly seure.2. (a) If H = ∅ and V is strongly seure then V ∈WHAT1.(b) If V is strongly seure, then V ∈WHAT2.Theorem 7 (Monotoniity of Release).Let H ⊆ H′. If V ∈WHAT2 for (D,≤,H) then V ∈WHAT2 for (D,≤,H′).Example 2. Consider C4 = h1:=0. Intuitively, this program has seure infor-mation �ow for the two-domain poliy (where dom(h1) = high), and it alsosatis�es the strong seurity ondition. For any set H, we obtain C4 ∈ WHAT2from C4 ≅

∅
low C4 (take H′ = ∅). However, C4 is not what1-seure for H =

{(low, h1+h2)} as it updates the variable h1, whih ours in the esape hath.



Example 2 demonstrates that WHAT1 does not satisfy monotoniity. The prob-lem is that the ondition V ≅
H
D V does not permit the updating of variablesthat our in some esape hath in H. While suh updates might lead to aninformation leak in subsequent assignments, they are harmless given that thevariable only ours in esape hathes that are never used for delassi�ation.This problem does not arise with WHAT2 as one an hoose H′ suh that it onlyontains esape hathes that are used.While we are on�dent that our haraterizations WHAT1 and WHAT2 areadequate, a formal proof of the non-olusion priniple is not possible as we arede�ning what seurity means (as already explained for WHERE in Set. 2.3).However, we an analyze the ompositionality of our seurity harateriza-tions. We de�ne expressions Exp,Exp′ to be (D,H)-indistinguishable (denotedby Exp ≡H

D Exp′) if ∀s, t : ((s =H
D t ∧ 〈|Exp, s|〉 ↓ n ∧ 〈|Exp′, t|〉 ↓ m)⇒ n = m).Theorem 8. If C1 ≅

H
D C′

1
, C2 ≅

H
D C′

2
, and V ≅

H
D V ′ then1. C1; C2 ≅

H
D C′

1
; C′

2
;2. fork(C1V ) ≅

H
D fork(C′

1
V ′);3. B ≡H

D B′ ⇒ (while B do C1 od ≅
H
D while B′ do C′

1
od);4. (B≡H

D B′ ∨ C1 ≅
H
D C2)⇒ (if B then C1 else C2 � ≅

H
D if B′ then C′

1 else C′
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D C2)] =⇒ if B then C1 else C2 � ∈WHAT1.Due to the existential quanti�ation of H′ in De�nition 8, WHAT2 is not om-positional. This is illustrated by the following example.Example 3. The programs C2 = [l:=h1+h2] and C4 = h1:=0 (from Examples 1and 2) are both what2-seure for the set H = {(low , h1+h2)}. However, neither

C3 = C4; C2 nor C5 = fork(C4〈C2〉) is what2-seure.In summary, none of our two haraterizations WHAT1 and WHAT2 is superiorto the respetive other haraterization. While WHAT1 is ompositional (seeCorollary 1) but does not satisfy the monotoniity priniple (see Example 2),WHAT2 satis�es monotoniity (see Theorem 7) but is not ompositional (see Ex-ample 3). It would be desirable to obtain a seurity haraterization that is om-positional and that satis�es the monotoniity priniple. Unfortunately, one faesa fundamental di�ulty when one also wants to ontrol the what dimension ofdelassi�ation. As disussed in Example 3, C3 = C4; C2 and C5 = fork(C4〈C2〉)both violate the two-level poliy for the setH = {(low , h1+h2)} and, hene, theseprograms should not be onsidered as what-seure. However, being able to de-lassify the expression h1+h2 is the very purpose of the esape hath (low , h1+h2)and, hene, the program C2 = [l:=h1+h2] should be onsidered as what-seure.The inherent trade-o� beomes apparent when onsidering C4 = h1:=0. If onelassi�es this program as what-seure then one arrives at a seurity ondition



that is not ompositional (as, e.g., C3 and C5 are not what-seure). However, ifone lassi�es C4 as not what-seure then one arrives at a seurity ondition thatdoes not satisfy monotoniity beause C4 is what-seure for H = ∅.34 A Sound Type System for Information Flow SeurityWe present a seurity type system that an be used as a basis for automatingthe information �ow analysis. The type system provides an integrated ontrol ofthe where dimension and of the what dimension of delassi�ation.De�nition 9. If (D,≤, ) is an MLS poliy with exeptions and (D,≤,H) isan MLS poliy with esape hathes then the tuple (D,≤, ,H) is an MLS poliyontrolling the where and what of delassi�ation.In the following, let (D,≤, ,H) be a poliy and dom be a domain assignment.The ore of the type system is the rule for delassi�ation ommands asthis is where delassi�ation atually ours. Our seurity haraterizations inSetions 2 and 3 provide some guidane for developing suh a rule, but there arestill some pitfalls that one must avoid. As an example, onsider the rule below,where Var(Exp) denotes the set of identi�ers ourring in the expression Exp:
dom(Id) = D ∀D′ ∈ sources(Exp) : D′ (≤ ∪ ) D Exp ≡H

D Exp
∀(D′,Exp′) ∈ H : ((D′ ≤ D ∧ Id ∈ Var(Exp′)) =⇒ Exp ≡H

D′ Exp)

[Id :=Exp]

(1)In the above rule, the seond premise ensures that delassi�ation omplies with
 or, in other words, that the where of delassi�ation is loalized aording tothe poliy. The third premise ensures that exeuting the delassi�ation om-mand in (D,H)-equal states leads to D-equal states. Finally, the fourth premiseontrols the information �ow into variables that our in esape hathes.Nevertheless, the above typing rule is not sound in a ompositional seurityanalysis. For instane, Rule (1) allows one to derive [h1:=0] as well as [l:=h1+h2],but the sequential omposition of these ommands leaks the initial value of h2and, hene, does not omply with the two-level poliy for H = {(low , h1+h2)}.In order to avoid suh problems, the rule also needs to ensure that a delassi-�ation does not enable information leakage in assignments that are exeutedsubsequently.4 A solution would be to forbid assignments to variables that ourin esape hathes that ontain omplex expressions (i.e., expressions that are notidenti�ers). This solution an be implemented by adding the following onditionas another premise to Rule (1):

∀(D′,Exp′) ∈ H : (Id ∈ Var(Exp′) =⇒ Exp′ = Id)3 It is not an option to lassify C4 as not what-seure for H = ∅ beause then onewould essentially have to lassify all assignments as not what-seure.4 Note that, in a onurrent program, suh assignment may our after the given de-lassi�ation (sequential omposition), before the delassi�ation (bakwards jumpsdue to loops), and also in a program exeuted by a onurrent thread.



⊢ Const : ∅

dom(Id) = D

⊢ Id : {D}

⊢ Exp1 : D1 . . . ⊢ Expm : Dm

⊢ Op(Exp1, . . . , Expm) :
S

i∈{1,...,m}DiFig. 3. Type rules for expressions
⊢ skip ⊢ Exp : D′ ∀D ∈ D′ : D ≤ dom(Id) Id ← Exp

⊢ Id :=Exp

⊢ C ⊢ V

⊢ fork(CV )

⊢ Exp : D′ ∀D ∈ D′ : D( ∪ ≤)dom(Id) Id ← Exp

⊢ [Id :=Exp]

⊢ C0 . . . ⊢ Cn−1

⊢ 〈C0, . . . Cn−1〉

⊢ C1 ⊢ C2

⊢ C1 ; C2

⊢ B : {low} ⊢ C

⊢ while B do C od
⊢ C1 ⊢ C2 ∀D : B ≡D B ⇒ C1 ≅

 

D C2 ∀D : B ≡H
D B ⇒ C1 ≅

H
D C2

⊢ if B then C1 else C2 �Fig. 4. Rules of the Integrated Seurity Type SystemIn the type system, we use the judgment ⊢ Exp : D′ instead of the funtion
sources . Intuitively, ⊢ Exp : D′ means that if Id ∈ Var(Exp) then dom(Id) ∈ D′and that if D ∈ D′ then there is a variable Id ∈ Var(Exp) with dom(Id) =
D. The judgment is de�ned formally by the rules in Fig. 3, and it ful�lls therequirements for the funtion sources as the following theorem shows.Theorem 9. If ⊢ Exp : D′ and ∀D′ ∈ D′ : D′ ≤ D then Exp ≡D Exp.To improve the readability of the typing rules, we introdue a judgment Id ←
Exp. Intuitively, this judgment aptures that Exp may be assigned to Id in a de-lassifying assignment. The following formal de�nition is based on the onditionsthat we have motivated earlier in this setion.De�nition 10. We de�ne the judgment Id ← Exp by

Id ← Exp ≡ ∀D ∈ D : ((D = dom(Id) ∨ (D, Id) ∈ H)⇒ Exp ≡H
D Exp)

∧ ∀(D′,Exp′) ∈ H : (Id ∈ Var(Exp′) =⇒ Exp′ = Id).The integrated seurity type system for ommands is presented in Fig. 4. Reallthat we impliitly assume (D,≤, ,H) to be anMLS poliy ontrolling the whereand what of delassi�ation. To make the poliy expliit, we use the notation
⊢D,≤, ,H V for denoting that ⊢ V is derivable with the typing rules.Note that the rule for onditionals has two semanti side onditions. In thisrespet our presentation of the typing rules is similar to the one of the typingrules for intransitive noninterferene in [9℄. In that artile, it is demonstratedhow suh semanti side onditions an be syntatially approximated by safeapproximation relations in a sound way, and similar onstrutions are possiblefor our side onditions. Moreover, the premises of the typing rules for assignmentsand delassi�ation involve the judgment Id ← Exp. Due to spae limitations,we also omit the fairly straightforward syntati approximation of De�nition 10.



(a) (b) ()
public

network

filter

reader

dom(mail) = network
dom(rmail) = reader

dom(phek) = publi
dom(fmail) = �lter

dom(fhek) = �lter H =
{(reader,mail),
(publi, noMalware(mail)),
(reader, fmail),
(publi, fhek)}Fig. 5. (a) MLS poliy with exeptions, (b) domain assignment, () esape hathesfhek:=noMalware(mail); % hek that the mail ontains no malware

[phek:=fhek]; % make hek result publiif hek then fmail:=mail % opy the mail into an auxiliary variableelse fmail:=0 �; % set the auxiliary variable to a dummy value
[rmail:=fmail] % forward mail to readerFig. 6. An example for a �lter programTheorem 10 (Soundness of Seurity Type System).1. If ⊢D,≤, ,H V then V is where-seure.2. If ⊢D,≤, ,H V then V is what1-seure.3. If ⊢D,≤, ,H V then V is what2-seure for all (D,≤, ,H′) with H ⊆ H′.That is, the type system is sound with respet to the seurity haraterizationsintrodued in Set. 2 and 3. In partiular, the what and where of delassi�ationin type-orret programs omplies with the respetively given poliy.5 An Exemplary Seurity AnalysisIn our appliation senario, an e-mail arrives via a network and is forwardedto a user. Before the user reads an e-mail in the mail reader, the e-mail mustpass a �lter. The �lter shall hek whether the e-mail is infeted by malwareand shall also make the result of the hek publily available, e.g., to permit theomputation of statistis about the infetion rate of inoming e-mail. For thissenario, we an distinguish four seurity domains, a domain for the network,a domain for the �lter, a domain for the mail reader, and a domain for publiinformation. The main seurity requirements are that all e-mail from the networkpasses the �lter before reahing the reader and that no e-mails are made publi.The resulting seurity poliy is depited in Fig. 5. The �rst seurity require-ment is aptured by this poliy as the only path from domain network to domainreader is via domain �lter. The seond requirement is aptured by the set of es-ape hathes as the only esape hath with variable mail as expression has readeras target domain. The �rst requirement onerns the where dimension while theseond requirement onerns the what dimension of delassi�ation. A simple



example for a �lter program is depited in Fig. 6. Note that delassifying assign-ments are used to delassify the result of the malware hek (whih depends onthe variable mail) to domain publi and to delassify an inoming mail to domainreader. The �lter program forwards mail only if the malware hek was negative.While this what aspet of delassi�ation is not aptured in our seurity poliy,it would also be possible to de�ne an MLS poliy that aptures this aspet. Werefrain from pursuing suh possibilities here.An analysis of the �lter program with the typing rules from Fig. 4 yields thatthe program is type orret (three appliations of the rule for sequential ompo-sition, one appliation of the rule for onditionals, three appliations of the rulefor assignments, and two appliations of the rule for delassifying assignments).Theorem 10 allows us to onlude that the program in Fig. 6 is where-seure,what1-seure, and what2-seure for the MLS poliy in Fig. 5.6 Related WorkDelassi�ation is a urrent topi in language-based information �ow seurity andthere already is a variety of approahes to ontrolling delassi�ation [16℄. In thewhat dimension this survey lists, for instane, [8, 13℄, and in the where/when di-mension, for instane, [4, 10, 9℄. Non-dislosure is a reent approah in the wheredimension that aims at multi-threaded programs [2, 1℄. The idea is to expandthe �ow relation ≤ aording to annotations at the exeuting sub-programs. Agiven expansion of ≤ loalizes where delassi�ation an our in the program.The onstrution of expansions impliitly assumes that the exeptions that arepermitted orrespond to a transitive relation, an assumption that we do not needto make for WHERE.Very few approahes limit delassi�ation in more than one dimension.Aording to [16℄, relaxed noninterferene [7℄ mainly addresses the what di-mensions, but it also addresses some aspets of the where dimension. Relaxednoninterferene has a syntati �avor as delassi�ation may only involve syn-tatially equivalent λ-terms.5 While this approah appears quite restritive, thebene�t is that one obtains some loalization in the program as delassi�ationan only happen where a partiular syntati expression ours. Sine relaxednoninterferene only onsiders a two-level poliy, there is no notion of limitingwhere delassi�ation an our in the �ow poliy.Aording to [16℄, abstrat noninterferene [5℄ mainly addresses the what-dimension. In fat, it is a generalization of seletive dependeny like delimitedrelease [13℄, WHAT1, and WHAT2. However, abstrat noninterferene also hassimilarities to robust delassi�ation [17℄, whih is a prominent representativefor ontrolling the who dimension.Another aspet, in whih our work di�ers frommany other approahes, is thatwe address onurrent programs. Lifting a seurity analysis from a sequential to aonurrent setting is often nontrivial as one must onsider the possibility of raes5 In [7℄ Li and Zdanewi use a β− η-equivalene. But they already point out, that itis not lear if this is an useful hoie or what would be more useful.



and address the danger of internal timing leaks. For an overview on approahesaddressing onurreny, we an only refer to [12℄ due to spae restritions.7 ConlusionWhile a number of approahes to ontrolling delassi�ation in a language-basedseurity analysis has been proposed in reent years, little work has addressedontrolling multiple dimensions of delassi�ation in an integrated fashion.The aim of our investigation was to more adequately ontrol the where andwhat of delassi�ation. For ontrolling the where dimension, we proposed theondition WHERE, and we proved that it is ompositional and satis�es theprudent priniples of delassi�ation (unlike, e.g., intransitive noninterferene).For ontrolling what, we proposed the onditions WHAT1 and WHAT2, and weidenti�ed an inherent trade-o� between the monotoniity priniple and omposi-tionality. To our knowledge, the soundness result for our type system is the �rstsuh result that learly identi�es whih aspets of where and what are ontrolled.The starting point for deriving our novel seurity haraterizations was thestrong seurity ondition. The advantages of this ondition inlude that it isompositional and robust with respet to hoies of the sheduler (see [15℄ fora more detailed analysis). The strong seurity ondition also rules out dangersof internal leaks in onurrent programming without making any assumptionsabout the possibilities of rae onditions in a program. As a onsequene, thisondition is somewhat restritive, whih is tehnially due to the use of a strongbisimulation relation that requires a lok-step exeution of related programs.While a less restritive baseline haraterization would be desirable, we do notknow of any onvining solutions for ontrolling the where dimension in multi-threaded programs based on a less restritive seurity ondition.Aknowledgments. We thank Henning Sudbrok for helpful omments. We alsothank the anonymous reviewers for their suggestions.This work was funded by the DFG in the Computer Siene Ation Program andby the Information Soiety Tehnologies program of the European Commission, Futureand Emerging Tehnologies under the IST-2005-015905 MOBIUS projet. This artilere�ets only the authors' views, and the Commission, the DFG, and the authors arenot liable for any use that may be made of the information ontained therein.Referenes1. A. Almeida Matos. Typing seure information �ow: delassi�ation and mobility.PhD thesis, Éole Nationale Supérieure des Mines de Paris, 2006.2. A. Almeida Matos and G. Boudol. On delassi�ation and the non-dislosurepoliy. In In Pro. IEEE Computer Seurity Foundations Workshop, 2005.3. E. Cohen. Information transmission in sequential programs. In Foundations ofSeure Computation, pages 297�335. Aademi Press, 1978.4. M. Dam and P. Giambiagi. Information �ow ontrol for ryptographi ap-plets, 2003. Presentation at Dagstuhl Seminar on Language-Based Seurity,http://kathrin.dagstuhl.de/03411/Materials2/.
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_

D1→D2d ). An indutive de�nition of the semantis is given by the rules in Fig. 7.To model onurrent omputations, the deterministi judgment is lifted to anondeterministi judgment of the form 〈|V, s|〉 → 〈|V ′, t|〉. The intuitive meaning



〈|skip, s|〉_o 〈|〈〉, s|〉

〈|Exp, s|〉 ↓ n

〈|Id :=Exp, s|〉_o 〈|〈〉, [Id = n]s|〉 〈|fork(CV ), s|〉_o 〈|〈C〉V, s|〉

〈|B, s|〉 ↓ True
〈|if B then C1 else C2 �, s|〉_o 〈|C1, s|〉

〈|B, s|〉 ↓ False
〈|if B then C1 else C2 �, s|〉_o 〈|C2, s|〉

〈|B, s|〉 ↓ True
〈|while B do C od, s|〉_o 〈|C;while B do C od, s|〉 〈|B, s|〉 ↓ False

〈|while B do C od, s|〉_o 〈|〈〉, s|〉
〈|C1, s|〉_o 〈|〈〉, s′|〉
〈|C1; C2, s|〉_o 〈|C2, s

′|〉

〈|C1, s|〉_o 〈|C′
1V, s′|〉

〈|C1; C2, s|〉_o 〈|〈C′
1; C2〉V, s′|〉

〈|Exp, s|〉 ↓ n sources(Exp) = D1 dom(Id) = D2

〈|[Id :=Exp], s|〉_
D1→D2d 〈|〈〉, [Id = n]s|〉

〈|C1, s|〉_
D1→D2d 〈|〈〉, s′|〉

〈|C1; C2, s|〉_
D1→D2d 〈|C2, s

′|〉Fig. 7. Deterministi operational semantis of MWLis that some thread Ci in V performs a step in state s resulting in the state tand some thread pool W ′. The global thread pool V ′ results then by replaing
Ci with W ′. This is formalized by the rules in Fig. 8.

〈|Ci, s|〉_o 〈|W
′, s′|〉

〈|〈C0 . . . Cn−1〉, s|〉 → 〈|〈C0 . . . Ci−1〉W
′〈Ci+1 . . . Cn−1〉, s

′|〉

〈|Ci, s|〉_ 〈|W ′, s′|〉

〈|〈C0 . . . Cn−1〉, s|〉 → 〈|〈C0 . . . Ci−1〉W
′〈Ci+1 . . . Cn−1〉, s

′|〉Fig. 8. Non-deterministi operational semantis of MWL


