
Controlling the What and Where of

Declassification in Language-Based Security

Heiko Mantel and Alexander Reinhard

Security Engineering Group, RWTH Aachen University, Germany
mantel@cs.rwth-aachen.de, reinhard@i4.informatik.rwth-aachen.de

Appeared in R. De Nicola (Ed.): ESOP 2007, LNCS 4421, pp. 141–156, 2007

c© Springer-Verlag Berlin Heidelberg 2007

Abstract. While a rigorous information flow analysis is a key step in ob-
taining meaningful end-to-end confidentiality guarantees, one must also
permit possibilities for declassification. Sabelfeld and Sands categorized
the existing approaches to controlling declassification in their overview
along four dimensions and according to four prudent principles [16].
In this article, we propose three novel security conditions for controlling
the dimensions where and what, and we explain why these conditions
constitute improvements over prior approaches. Moreover, we present a
type-based security analysis and, as another novelty, prove a soundness
result that considers more than one dimension of declassification.

1 Introduction

Research on information flow security aims at finding better ways to character-
izing and analyzing security requirements concerning aspects of confidentiality
and integrity. Regarding confidentiality, the aim of an information flow analysis
is to answer: “Can a given program be trusted to operate in an environment
where it has read access to secret data and write access to untrusted informa-
tion sinks?” There is a variety of approaches to information flow security on
the level of concrete programs (see [12] for an overview). In the simplest case,
one has a two-level policy demanding that information cannot flow from high to
low. Secure information flow can then be characterized using the idea underlying
noninterference [6]: If low outputs of the program do not depend on high inputs
then there is no danger that secret data is leaked to untrusted sinks.

Noninterference provides an intuitively convincing, declarative characteriza-
tion of information flow security. However, there are security mechanisms and
application scenarios that need some information to flow from high to low. For
instance, a password-based authentication mechanism necessarily reveals some
information about the secret password, decryption relies on a dependence be-
tween a cipher-text and the secret plain-text that it encodes, and electronic com-
merce requires secret data to be released after it has been paid for. For making
information flow security compatible with such requirements, one must permit
exceptions in the security policy. But, this raises the question how to control
that one does not introduce possibilities for unintended information leakage.

For clarifying the intentions underlying the various approaches to controlling
information release, three dimensions were introduced in [9]: what information
is declassified, who can control whether declassification occurs, and where can
declassification happen. In [16], Sabelfeld and Sands develop a taxonomy that
categorizes the existing approaches along these dimensions1 and propose four
prudent principles of controlling declassification. The taxonomy clarified the re-
lationship between the various approaches, and it revealed some anomalies and
misconceptions that had previously gone unnoticed. Another interesting outcome
is that each approach mainly aims at a single dimension and does not provide
adequate control for any of the respective other dimensions.

In this article, our scope is controlling the what and where of declassification
in a type-based security analysis. In summary, our research contributions are:

– A novel security characterization for controlling where declassification oc-
curs. Our property WHERE is similar to intransitive noninterference [9],
but WHERE satisfies the prudent principles of declassification from [16], in-
cluding monotonicity, which is not satisfied by intransitive noninterference.

– Two novel security characterizations for controlling what is declassified. Our
properties WHAT1 and WHAT2 are similar to selective dependency [3] and
its descendants (e.g., [13]), but, unlike these properties, WHAT1 and WHAT2

are applicable to concurrent programs. Lifting a security characterization
from a sequential to a concurrent setting is often not straightforward, in
particular, one must address the danger of internal timing leaks [15].

– A security type system for analyzing the information flow in concurrent
programs under policies that permit controlled exceptions. Our type system
localizes where declassification occurs and controls what is declassified. We
prove soundness results with respect to each of our properties WHERE,
WHAT1, and WHAT2. To our knowledge, the only other formal soundness
result for an information flow type system that considers where and what is
the one by Li and Zdancewic [7]. However, they aim at sequential programs
and mainly at controlling the what dimension [16].

In our project, we gained some further insights on controlling declassification.
For instance, our property WHAT1 is compositional but does not satisfy the
monotonicity principle, while our property WHAT2 is not compositional but
satisfies monotonicity. We found that, when controlling the what dimension of
declassification, one faces a fundamental difficulty when attempting to satisfy
compositionality as well as monotonicity (see Sect. 3.2). While using the prudent
principles of declassification as a sanity check for our security characterizations,
we found that formalizing the informal descriptions of the principles from [16]
is not always completely straightforward, and in some cases more than one for-
malization is sensible. As an example, we provide two alternative formalizations
of the conservativity principle for WHERE (see Theorem 2).

1 The taxonomy distinguishes localization of declassification with respect to aspects
of time during program execution (when) from other aspects of localization (where)
and categorizes according to the four dimensions: what, who, where, and when.

2 Controlling Declassification in Dimension where

We propose a novel characterization of information flow security that controls
where declassification can occur. It is ensured that declassification is localized to
specific parts of the security policy as well as to specific parts of the computation.

Definition 1. A multi-level security policy (brief: MLS policy) is a pair (D,≤),
where D is a set of security domains and ≤⊆ D×D is a partial order. The triple
(D,≤,) is an MLS policy with exceptions where ⊆ D×D. The minimal and
the maximal domain in (D,≤) are called low and high, respectively, if they exist.

Computation steps are modeled by labeled transitions between configurations of
the form 〈|〈C1 . . . Cn〉, s|〉. Here, the state s is a mapping from program variables
to values, and the vector models a pool of n threads that concurrently execute the
commands C1, . . . , Cn ∈ Com, respectively. For simplicity, we do not distinguish
between commands and command vectors of length one in the notation and use
the term program for referring to commands as well as to command vectors.

We distinguish ordinary computation steps, which are modeled by a transi-
tion relation _o, from declassification steps, which are modeled by a family of
relations (_D1→D2

d
)D1,{D2}⊆D. Given a policy (D,≤,), the intuition is that

an ordinary transition must strictly obey the ordering ≤ (which means that in-
formation may only flow upwards according to ≤), while declassification steps
may violate this ordering by downgrading information from the domains in D1

to the domain D2. However, such violations must comply with the relation .

2.1 Preliminaries

Given a set Var of program variables, a domain assignment is a function dom :
Var → D. By assigning a security domain dom(Id) to each variable, it creates a
connection between the configurations in a computation and the security policy.
Taking the perspective of an observer in a security domain D, two states s, t are
indistinguishable if all variables at or below this domain have the same value.

Definition 2. For a given domain D ∈ D, two states s and t are D-equal
(denoted by s =D t) if ∀Id ∈ Var : dom(Id) ≤ D =⇒ s(Id) = t(Id).

In the following, let (D,≤,) be a policy and dom be a domain assignment. We
adopt the naming conventions used above: D denotes a security domain, s and
t denote states, C denotes a command, and V and W denote command vectors.

The PER approach [14] characterizes information flow security based on in-
distinguishability relations on programs. Two programs are indistinguishable for
a security domain D if running them in two D-equal states reveals no secrets to
an observer in D, unless this is explicitly permitted by the given security policy.
The D-indistinguishability relation is not reflexive. It only relates programs to
themselves if they have secure information flow.

Definition 3 ([15]). A strong D-bisimulation is a symmetric relation R on
command vectors of equal size that satisfies the formula in Fig. 1 where the part
with dark-gray background is deleted. The relation ≅D is the union of all strong
D-bisimulations. A program V is strongly secure if V ≅D V holds for all D ∈ D.

∀s, s′, t : ∀i ∈ {1 . . . n} : ∀W :
(V R V ′ ∧ 〈|Ci, s|〉_ 〈|W, t|〉 ∧ s =D s′)
⇒ ∃W ′

, t
′ :W R W

′ ∧ 〈|C′
i, s

′|〉_ 〈|W ′
, t

′|〉

∧

2

6

6

6

4

t =D t
′ ∨

2

6

6

4

∃D1, {D2} ⊆ D :
2

4

〈|Ci, s|〉_
D1→D2

d 〈|W, t|〉
∧ ∀D′ ∈ D1 : (D′

 D2 ∨D′ ≤ D2)
∧ D2 ≤ D ∧ ∃D′ ∈ D1 : s 6=D′ s′

3

5

3

7

7

5

3

7

7

7

5

Fig. 1. Characterization of Strong (D,)-Bisimulation Relations (see Definition 4)
where V = 〈C1, . . . , Cn〉, V ′ = 〈C′

1, . . . , C
′
n〉, and _ = _o ∪ (

S

D1,{D2}⊆D _
D1→D2

d
)

For two commands C,C ′ ∈ Com, being strongly D-bisimilar (C ≅D C ′) means
that each computation step that is possible for C in a state s can be simulated in
each D-equal state s′ by a computation step of C ′, where the resulting programs
W and W ′ are strongly D-bisimilar and the resulting states t and t′ are D-equal.
As a consequence, strong security enforces the flow of information to comply with
the ordering ≤ without permitting any exceptions. The strong security condition
is the weakest security definition that is scheduler independent and is preserved
under parallel and sequential composition [11]. Technically, the former is a con-
sequence of requiring strongly D-bisimilar programs to execute in lock-step.

2.2 A Novel Characterization of Flow Security

In this article, we propose several characterizations of information flow security
that permit declassification while controlling it in a particular dimension. Our
security conditions are derived using the PER approach, and each of them is
presented as a variant of the strong security condition. We use the terms what-
security and where-security to indicate in which dimension declassification is
controlled and distinguish different variants for the same dimension with indices.

Definition 4 (WHERE). A strong (D,)-bisimulation is a symmetric re-
lation R on command vectors of equal size that satisfies the entire formula in
Fig. 1. The relation ≅

D is the union of all strong (D,)-bisimulations. A pro-
gram V has secure information flow while complying with the restrictions where
declassification can occur if V ≅

D V holds for all D ∈ D (brief: V is where-
secure or V ∈WHERE).

Declassification is possible as t and t′ in Fig. 1 need not be D-equal. However,
such exceptions are constrained by the formula with dark-gray background:

– steps causing declassification must be declassification transitions _
D1→D2

d ;

– information flow must be permitted from each D′ ∈ D1 to D2 (by or ≤);

– declassification may only affect D if D2 is observable, and it may only reveal
differences between s and s′ that can be observed from domains in D1.

That is, where-security localizes exceptions, within a computation, to the de-
classification steps and, within an MLS policy, to where permits it. In this
respect, our condition is similar to intransitive noninterference [9], but the two
security conditions are not identical. Most importantly, where-security satisfies
all prudent principles of declassification (see Sect. 2.3), unlike intransitive non-
interference [16]. Technically, the differences become apparent in the definition
of the respectively underlying notion of a strong D-bisimulation. In [9], firstly,
declassification steps downgrade information from a single domain D1 (rather
than from a set of domains D1), secondly, declassification steps may only make
information flow according to the relation (rather than according to ∪ ≤),
and thirdly, each transition must be simulated by a transition with the identi-
cal annotation (while Fig. 1 requires nothing about the labels of the transition
〈|C ′

i, s
′|〉 _ 〈|W ′, t′|〉). The first two relaxations are helpful for a flexible combi-

nation with a control of what is downgraded. The third relaxation is crucial for
satisfying the principle monotonicity of release (see Sect. 2.3).

2.3 Prudent Principles and Compositionality

To investigate our security definition more concretely, we augment the multi-
threaded while language MWL from [15] with a declassifying assignment:

C ::= skip | Id :=Exp | C1;C2 | if B then C1 else C2 fi | while B do C od

| fork(CV) | [Id :=Exp]

We use B and Exp for denoting Boolean-valued and integer-valued expressions,
respectively. The language E for expressions shall not be specified here. We only
assume that the evaluation of expressions is atomic and deterministic. That
expression Exp evaluates to value n in state s is denoted by 〈|Exp, s|〉 ↓ n. We
assume a function sources that returns for an expression the set of security
domains on which the value of the expression possibly depends or, more formally,
∀s, t : (((∀D ∈ sources(Exp) : s =D t)∧〈|Exp, s|〉 ↓ n∧〈|Exp, t|〉 ↓ m) =⇒ n = m).

The semantics of MWL instantiate the transition relations _o and _
D1→D2

d
.

A command [Id :=Exp] causes a _
D1→D2

d
transition where D1 = sources(Exp)

and D2 = dom(Id). Assignments, skip, conditionals, loops, and fork cause ordi-
nary transitions. The statement fork(CV) spawns the threads 〈C〉V where C is
the designated main thread. If threads are created within the sub-command C1

of a sequential composition C1;C2 then C2 is executed after the main thread has
terminated. A formal definition of the semantics is provided in Appendix A.

Sabelfeld and Sands propose the following principles of declassification [16]:

Semantic consistency: The (in)security of a program is invariant under se-
mantics-preserving transformations of declassification-free subprograms.

Conservativity: The security of a program with no declassifications is equiv-
alent to noninterference.

Monotonicity of release: Adding further declassifications to a secure pro-
gram cannot render it insecure.

Non-occlusion: The presence of a declassification operation cannot mask other
covert information leaks.

We now validate our security characterization against these prudent principles.
As suggested in [16], we define semantic equivalence between programs by

≅ = ≅high , where ≅high is the strong high-bisimulation for the single-domain
policy ({high}, {(high, high)}). A context C is a program where the hole • may
occur as an atomic sub-command. We use C[C] to denote the program that one
obtains by replacing each occurrence of • with C. The proof of the following and
all other theorems in this article will be provided in an extended version.

Theorem 1 (Semantic consistency). Let C,C ′ be programs without declassi-
fication commands. Then C ′

≅ C and C[C] ∈WHERE imply C[C ′] ∈WHERE.2

Strong security follows from where-security not only if there are no declassifica-
tion operations in a program, but also if the policy does not permit any excep-
tions. In the other direction, where-security is a weakening of strong security.

Theorem 2 (Conservativity).
1. If = ∅ and V ∈WHERE then V is strongly secure.
2. If no declassification occurs in V and V ∈WHERE then V is strongly secure.
3. If V is strongly secure then V ∈WHERE.

Monotonicity holds with respect to the exceptions permitted by the policy and
also with respect to the declassification operations in the program.

Theorem 3 (Monotonicity). Let ⊆ ′.
1. If V ∈WHERE for (D,≤,) then V ∈WHERE for (D,≤, ′).
2. If C[Id :=Exp]∈WHERE then C[[Id :=Exp]]∈WHERE.

Theorems 1–3 demonstrate that our novel security characterization satisfies the
first three principles of declassification from [16]. A formal proof of the fourth
prudent principle is impossible. Such a proof would require a formal characteriza-
tion of secure information flow as a reference point, which we do not have a priori
as Definition 4 defines a characterization based on an intuitive understanding.

The following compositionality results hold for WHERE. We define expres-
sions Exp,Exp′ to be D-indistinguishable (denoted by Exp ≡D Exp′) if ∀s, t :
((s =D t ∧ 〈|Exp, s|〉 ↓ n ∧ 〈|Exp′, t|〉 ↓ m)⇒ n = m).

Theorem 4. If C1 ≅

D C ′
1
, C2 ≅

D C ′
2

and V ≅

D V ′ then
1. C1; C2 ≅

D C ′
1
; C ′

2
;

2. fork(C1V) ≅

D fork(C ′
1
V ′);

3. B ≡D B′ ⇒ (while B do C1 od ≅

D while B′
do C ′

1
od);

4. (B≡D B′ ∨C1 ≅

D C2)⇒ (if B then C1 else C2 fi ≅

D if B′
then C ′

1
else C ′

2
fi).

3 Controlling Declassification in the Dimension what

We propose two characterizations of information flow security that control what
is declassified. Each of them is a natural adaptation of the idea underlying Co-
hen’s selective dependency [3] (and its descendants like, e.g., delimited release
[13] or abstract noninterference [5]) to a multi-threaded language.

2 As usual, the proposition does not hold if one replaces sub-commands with declassi-
fication commands. For instance, consider C = •, C = [l:=h], and C′ = l:=h for the
two-domain policy where dom(h) = high, dom(l) = low , and high low .

Definition 5. An MLS policy with escape hatches is a triple (D,≤,H), where
(D,≤) is an MLS policy, and H ⊆ D×E is a set of escape hatches.

From now, we assume that (D,≤,H) denotes an MLS policy with escape hatches.
Given a policy (D,≤,H) the intuition is that, for any D, the visible behavior
of secure programs may depend on the initial value of identifiers visible to D

and also on the initial values of expressions Exp if (D′,Exp) ∈ H and D′ ≤ D.
Formally, an observer in a domain D may be able to determine which equivalence
class of the relation =H

D contains the initial state, but no further information.

Definition 6. Two states s and t are (D,H)-equal (s =H
D t) if

1. s =D t and
2. ∀(D′,Exp) ∈ H : (D′ ≤ D =⇒ ((〈|Exp, s|〉 ↓ n ∧ 〈|Exp, t|〉 ↓ m)⇒ n = m))

That is, an escape hatch (D′,Exp) ∈ H indicates that observers in domain D ≥
D′ may learn the initial value of expression Exp during a program’s execution.
The following lemma shows that (D,H)-equality is a subset of D-equality.

Lemma 1. ∀D : ∀s, t : [(∀H : (s =H
D t =⇒ s =D t)) ∧ (s =D t =⇒ s =∅

D t)]

3.1 Two Novel Characterizations of Flow Security

Our conditions WHAT1 and WHAT2 constitute adaptations of strong security
(Definition 3) that permit declassification while controlling what is declassified.

Definition 7 (WHAT1). A strong (D,H)-bisimulation is a symmetric rela-
tion R on command vectors of equal size that satisfies the formula in Fig. 2.
The relation ≅

H
D is the union of all strong (D,H)-bisimulations. A program V

has secure information flow while complying with the restrictions what can be
declassified if ∀D : V ≅

H
D V (brief: V is what1-secure or V ∈WHAT1).

The difference between Definition 7 and the definition of strong D-bisimulations
(see Definition 3) is that =H

D occurs instead of =D on both sides of the implica-
tion. In the premise, s =H

D s′ occurs instead of s =D s′. This modification leads
to a relaxation of the security condition (see Lemma 1): differences in the values
of an expression Exp that occurs in an escape hatch (D′,Exp) may be revealed
to an observer in domain D if D′ ≤ D. In the consequence, using t =H

D t′ instead
of t =D t′ leads to a strengthening of the security condition: the states t and t′

must not differ in the values of expressions Exp that occur in an escape hatch
(D′,Exp) ∈ H with D′ ≤ D. The intention is to prevent unintended information
leakage via subsequent declassifications that involve escape hatches.

Example 1. In this and the following examples we assume the two-level policy.
For illustrating the first modification, letH = {(low, h1+h2)}, C1 = l:=h1+h2,

and C2 = [l:=h1+h2]. Neither C1 nor C2 is strongly secure (take low -equal states
that differ in the value of h1+h2), but both are what1-secure. Recall that what1-
security does not aim at localizing where declassification occurs and, hence, de-
classifying assignments are treated like usual assignments (unlike in Sect. 2).

For illustrating the second modification, let C3 = h1:=0; [l:=h1+h2]. This
program leaks the initial value of h2 and, hence, does not comply with the security
policy. In fact, this program is not what1-secure due to the requirement t =H

D t′.

∀s, s′, t : ∀i ∈ {1 . . . n} : ∀W :
(V R V ′ ∧ 〈|Ci, s|〉_ 〈|W, t|〉 ∧ s =H

D s′)
⇒ ∃W ′, t′ : 〈|C′

i, s
′|〉_ 〈|W ′, t′|〉 ∧ t =H

D t′ ∧W R W ′

Fig. 2. Characterization of Strong (D,H)-Bisimulation Relations (see Definition 7)
where V = 〈C1, . . . , Cn〉, V ′ = 〈C′

1, . . . , C
′
n〉, and _ = _o ∪ (

S

D1,{D2}⊆D _
D1→D2

d
)

Unfortunately, what1-security does not satisfy the monotonicity principle (see
Sect. 3.2). As a solution, we propose another security characterization.

Definition 8 (WHAT2). A program V has secure information flow while com-
plying with the restrictions what can be declassified if ∀D : ∃H′ ⊆ H : V ≅

H′

D V

(brief: V is what2-secure or V ∈WHAT2).

Note that Definition 8 is also based on the notion of a strong (D,H)-bisimulation.
The difference from Definition 7 is the existential quantification over H′. This
relaxation could be exploited in a security analysis by treating expressions in
escape hatches like usual expressions if they are not used for declassification.
Another effect of the relaxation is that the monotonicity principle is satisfied.

3.2 Prudent Principles and Compositionality

We now validate the security characterizations of this section against the prudent
principles (see Sect. 2.3) and use the results to compare the characterizations.

Interestingly, WHAT1 and WHAT2 are preserved even if one replaces arbi-
trary sub-programs with semantically equivalent ones.

Theorem 5 (Strong semantic consistency). Let C,C ′ be programs (possi-
bly containing declassification commands).

1. If C ′
≅ C and C[C] ∈WHAT1 then C[C ′] ∈WHAT1.

2. If C ′
≅ C and C[C] ∈WHAT2 then C[C ′] ∈WHAT2.

Both security conditions satisfy the conservativity principle. Additionally, what2-
security is a relaxation of strong security. Due to the strict handling of variables
in escape hatches, what1-security is not a relaxation of strong security if H 6= ∅.

Theorem 6 (Conservativity).

1. (a) If H = ∅ and V ∈WHAT1 then V is strongly secure.
(b) If H = ∅ and V ∈WHAT2 then V is strongly secure.

2. (a) If H = ∅ and V is strongly secure then V ∈WHAT1.
(b) If V is strongly secure, then V ∈WHAT2.

Theorem 7 (Monotonicity of Release).
Let H ⊆ H′. If V ∈WHAT2 for (D,≤,H) then V ∈WHAT2 for (D,≤,H′).

Example 2. Consider C4 = h1:=0. Intuitively, this program has secure infor-
mation flow for the two-domain policy (where dom(h1) = high), and it also
satisfies the strong security condition. For any set H, we obtain C4 ∈ WHAT2

from C4 ≅
∅
low C4 (take H′ = ∅). However, C4 is not what1-secure for H =

{(low, h1+h2)} as it updates the variable h1, which occurs in the escape hatch.

Example 2 demonstrates that WHAT1 does not satisfy monotonicity. The prob-
lem is that the condition V ≅

H
D V does not permit the updating of variables

that occur in some escape hatch in H. While such updates might lead to an
information leak in subsequent assignments, they are harmless given that the
variable only occurs in escape hatches that are never used for declassification.
This problem does not arise with WHAT2 as one can choose H′ such that it only
contains escape hatches that are used.

While we are confident that our characterizations WHAT1 and WHAT2 are
adequate, a formal proof of the non-occlusion principle is not possible as we are
defining what security means (as already explained for WHERE in Sect. 2.3).

However, we can analyze the compositionality of our security characteriza-
tions. We define expressions Exp,Exp′ to be (D,H)-indistinguishable (denoted
by Exp ≡H

D Exp′) if ∀s, t : ((s =H
D t ∧ 〈|Exp, s|〉 ↓ n ∧ 〈|Exp′, t|〉 ↓ m)⇒ n = m).

Theorem 8. If C1 ≅
H
D C ′

1
, C2 ≅

H
D C ′

2
, and V ≅

H
D V ′ then

1. C1; C2 ≅
H
D C ′

1
; C ′

2
;

2. fork(C1V) ≅
H
D fork(C ′

1
V ′);

3. B ≡H
D B′ ⇒ (while B do C1 od ≅

H
D while B′

do C ′
1

od);
4. (B≡H

D B′ ∨ C1 ≅
H
D C2)⇒ (if B then C1 else C2 fi ≅

H
D if B′

then C ′
1

else C ′
2

fi).

Corollary 1. If C1, C2, V ∈WHAT1 then

1. C1; C2 ∈WHAT1;
2. fork(C1V) ∈WHAT1;
3. if the policy has a domain low and B≡H

low B then while B do C1 od ∈WHAT1;
4. [∀D∈D : (B 6≡H

D B =⇒ C1 ≅
H
D C2)] =⇒ if B then C1 else C2 fi ∈WHAT1.

Due to the existential quantification of H′ in Definition 8, WHAT2 is not com-
positional. This is illustrated by the following example.

Example 3. The programs C2 = [l:=h1+h2] and C4 = h1:=0 (from Examples 1
and 2) are both what2-secure for the set H = {(low , h1+h2)}. However, neither
C3 = C4;C2 nor C5 = fork(C4〈C2〉) is what2-secure.

In summary, none of our two characterizations WHAT1 and WHAT2 is superior
to the respective other characterization. While WHAT1 is compositional (see
Corollary 1) but does not satisfy the monotonicity principle (see Example 2),
WHAT2 satisfies monotonicity (see Theorem 7) but is not compositional (see Ex-
ample 3). It would be desirable to obtain a security characterization that is com-
positional and that satisfies the monotonicity principle. Unfortunately, one faces
a fundamental difficulty when one also wants to control the what dimension of
declassification. As discussed in Example 3, C3 = C4;C2 and C5 = fork(C4〈C2〉)
both violate the two-level policy for the setH = {(low , h1+h2)} and, hence, these
programs should not be considered as what-secure. However, being able to de-
classify the expression h1+h2 is the very purpose of the escape hatch (low , h1+h2)
and, hence, the program C2 = [l:=h1+h2] should be considered as what-secure.
The inherent trade-off becomes apparent when considering C4 = h1:=0. If one
classifies this program as what-secure then one arrives at a security condition

that is not compositional (as, e.g., C3 and C5 are not what-secure). However, if
one classifies C4 as not what-secure then one arrives at a security condition that
does not satisfy monotonicity because C4 is what-secure for H = ∅.3

4 A Sound Type System for Information Flow Security

We present a security type system that can be used as a basis for automating
the information flow analysis. The type system provides an integrated control of
the where dimension and of the what dimension of declassification.

Definition 9. If (D,≤,) is an MLS policy with exceptions and (D,≤,H) is
an MLS policy with escape hatches then the tuple (D,≤, ,H) is an MLS policy
controlling the where and what of declassification.

In the following, let (D,≤, ,H) be a policy and dom be a domain assignment.
The core of the type system is the rule for declassification commands as

this is where declassification actually occurs. Our security characterizations in
Sections 2 and 3 provide some guidance for developing such a rule, but there are
still some pitfalls that one must avoid. As an example, consider the rule below,
where Var(Exp) denotes the set of identifiers occurring in the expression Exp:

dom(Id) = D ∀D′ ∈ sources(Exp) : D′ (≤ ∪) D Exp ≡H
D Exp

∀(D′,Exp′) ∈ H : ((D′ ≤ D ∧ Id ∈ Var(Exp′)) =⇒ Exp ≡H
D′ Exp)

[Id :=Exp]

(1)

In the above rule, the second premise ensures that declassification complies with
 or, in other words, that the where of declassification is localized according to
the policy. The third premise ensures that executing the declassification com-
mand in (D,H)-equal states leads to D-equal states. Finally, the fourth premise
controls the information flow into variables that occur in escape hatches.

Nevertheless, the above typing rule is not sound in a compositional security
analysis. For instance, Rule (1) allows one to derive [h1:=0] as well as [l:=h1+h2],
but the sequential composition of these commands leaks the initial value of h2

and, hence, does not comply with the two-level policy for H = {(low , h1+h2)}.
In order to avoid such problems, the rule also needs to ensure that a declassi-
fication does not enable information leakage in assignments that are executed
subsequently.4 A solution would be to forbid assignments to variables that occur
in escape hatches that contain complex expressions (i.e., expressions that are not
identifiers). This solution can be implemented by adding the following condition
as another premise to Rule (1):

∀(D′,Exp′) ∈ H : (Id ∈ Var(Exp′) =⇒ Exp′ = Id)

3 It is not an option to classify C4 as not what-secure for H = ∅ because then one
would essentially have to classify all assignments as not what-secure.

4 Note that, in a concurrent program, such assignment may occur after the given de-
classification (sequential composition), before the declassification (backwards jumps
due to loops), and also in a program executed by a concurrent thread.

⊢ Const : ∅

dom(Id) = D

⊢ Id : {D}

⊢ Exp1 : D1 . . . ⊢ Expm : Dm

⊢ Op(Exp1, . . . , Expm) :
S

i∈{1,...,m}Di

Fig. 3. Type rules for expressions

⊢ skip

⊢ Exp : D′ ∀D ∈ D′ : D ≤ dom(Id) Id ← Exp

⊢ Id :=Exp

⊢ C ⊢ V

⊢ fork(CV)

⊢ Exp : D′ ∀D ∈ D′ : D(∪ ≤)dom(Id) Id ← Exp

⊢ [Id :=Exp]

⊢ C0 . . . ⊢ Cn−1

⊢ 〈C0, . . . Cn−1〉

⊢ C1 ⊢ C2

⊢ C1 ; C2

⊢ B : {low} ⊢ C

⊢ while B do C od

⊢ C1 ⊢ C2 ∀D : B ≡D B ⇒ C1 ≅

D C2 ∀D : B ≡H
D B ⇒ C1 ≅

H
D C2

⊢ if B then C1 else C2 fi

Fig. 4. Rules of the Integrated Security Type System

In the type system, we use the judgment ⊢ Exp : D′ instead of the function
sources. Intuitively, ⊢ Exp : D′ means that if Id ∈ Var(Exp) then dom(Id) ∈ D′

and that if D ∈ D′ then there is a variable Id ∈ Var(Exp) with dom(Id) =
D. The judgment is defined formally by the rules in Fig. 3, and it fulfills the
requirements for the function sources as the following theorem shows.

Theorem 9. If ⊢ Exp : D′ and ∀D′ ∈ D′ : D′ ≤ D then Exp ≡D Exp.

To improve the readability of the typing rules, we introduce a judgment Id ←
Exp. Intuitively, this judgment captures that Exp may be assigned to Id in a de-
classifying assignment. The following formal definition is based on the conditions
that we have motivated earlier in this section.

Definition 10. We define the judgment Id ← Exp by

Id ← Exp ≡ ∀D ∈ D : ((D = dom(Id) ∨ (D, Id) ∈ H)⇒ Exp ≡H
D Exp)

∧ ∀(D′,Exp′) ∈ H : (Id ∈ Var(Exp′) =⇒ Exp′ = Id).

The integrated security type system for commands is presented in Fig. 4. Recall
that we implicitly assume (D,≤, ,H) to be an MLS policy controlling the where
and what of declassification. To make the policy explicit, we use the notation
⊢D,≤, ,H V for denoting that ⊢ V is derivable with the typing rules.

Note that the rule for conditionals has two semantic side conditions. In this
respect our presentation of the typing rules is similar to the one of the typing
rules for intransitive noninterference in [9]. In that article, it is demonstrated
how such semantic side conditions can be syntactically approximated by safe
approximation relations in a sound way, and similar constructions are possible
for our side conditions. Moreover, the premises of the typing rules for assignments
and declassification involve the judgment Id ← Exp. Due to space limitations,
we also omit the fairly straightforward syntactic approximation of Definition 10.

(a) (b) (c)

public

network

filter

reader

dom(mail) = network
dom(rmail) = reader

dom(pcheck) = public
dom(fmail) = filter

dom(fcheck) = filter

H =
{(reader, mail),

(public, noMalware(mail)),

(reader, fmail),

(public, fcheck)}

Fig. 5. (a) MLS policy with exceptions, (b) domain assignment, (c) escape hatches

fcheck:=noMalware(mail); % check that the mail contains no malware
[pcheck:=fcheck]; % make check result public
if check then fmail:=mail % copy the mail into an auxiliary variable

else fmail:=0 fi; % set the auxiliary variable to a dummy value
[rmail:=fmail] % forward mail to reader

Fig. 6. An example for a filter program

Theorem 10 (Soundness of Security Type System).

1. If ⊢D,≤, ,H V then V is where-secure.
2. If ⊢D,≤, ,H V then V is what1-secure.
3. If ⊢D,≤, ,H V then V is what2-secure for all (D,≤, ,H′) with H ⊆ H′.

That is, the type system is sound with respect to the security characterizations
introduced in Sect. 2 and 3. In particular, the what and where of declassification
in type-correct programs complies with the respectively given policy.

5 An Exemplary Security Analysis

In our application scenario, an e-mail arrives via a network and is forwarded
to a user. Before the user reads an e-mail in the mail reader, the e-mail must
pass a filter. The filter shall check whether the e-mail is infected by malware
and shall also make the result of the check publicly available, e.g., to permit the
computation of statistics about the infection rate of incoming e-mail. For this
scenario, we can distinguish four security domains, a domain for the network,
a domain for the filter, a domain for the mail reader, and a domain for public
information. The main security requirements are that all e-mail from the network
passes the filter before reaching the reader and that no e-mails are made public.

The resulting security policy is depicted in Fig. 5. The first security require-
ment is captured by this policy as the only path from domain network to domain
reader is via domain filter. The second requirement is captured by the set of es-
cape hatches as the only escape hatch with variable mail as expression has reader
as target domain. The first requirement concerns the where dimension while the
second requirement concerns the what dimension of declassification. A simple

example for a filter program is depicted in Fig. 6. Note that declassifying assign-
ments are used to declassify the result of the malware check (which depends on
the variable mail) to domain public and to declassify an incoming mail to domain
reader. The filter program forwards mail only if the malware check was negative.
While this what aspect of declassification is not captured in our security policy,
it would also be possible to define an MLS policy that captures this aspect. We
refrain from pursuing such possibilities here.

An analysis of the filter program with the typing rules from Fig. 4 yields that
the program is type correct (three applications of the rule for sequential compo-
sition, one application of the rule for conditionals, three applications of the rule
for assignments, and two applications of the rule for declassifying assignments).
Theorem 10 allows us to conclude that the program in Fig. 6 is where-secure,
what1-secure, and what2-secure for the MLS policy in Fig. 5.

6 Related Work

Declassification is a current topic in language-based information flow security and
there already is a variety of approaches to controlling declassification [16]. In the
what dimension this survey lists, for instance, [8, 13], and in the where/when di-
mension, for instance, [4, 10, 9]. Non-disclosure is a recent approach in the where
dimension that aims at multi-threaded programs [2, 1]. The idea is to expand
the flow relation ≤ according to annotations at the executing sub-programs. A
given expansion of ≤ localizes where declassification can occur in the program.
The construction of expansions implicitly assumes that the exceptions that are
permitted correspond to a transitive relation, an assumption that we do not need
to make for WHERE.

Very few approaches limit declassification in more than one dimension.
According to [16], relaxed noninterference [7] mainly addresses the what di-

mensions, but it also addresses some aspects of the where dimension. Relaxed
noninterference has a syntactic flavor as declassification may only involve syn-
tactically equivalent λ-terms.5 While this approach appears quite restrictive, the
benefit is that one obtains some localization in the program as declassification
can only happen where a particular syntactic expression occurs. Since relaxed
noninterference only considers a two-level policy, there is no notion of limiting
where declassification can occur in the flow policy.

According to [16], abstract noninterference [5] mainly addresses the what-
dimension. In fact, it is a generalization of selective dependency like delimited
release [13], WHAT1, and WHAT2. However, abstract noninterference also has
similarities to robust declassification [17], which is a prominent representative
for controlling the who dimension.

Another aspect, in which our work differs from many other approaches, is that
we address concurrent programs. Lifting a security analysis from a sequential to a
concurrent setting is often nontrivial as one must consider the possibility of races

5 In [7] Li and Zdancewic use a β − η-equivalence. But they already point out, that it
is not clear if this is an useful choice or what would be more useful.

and address the danger of internal timing leaks. For an overview on approaches
addressing concurrency, we can only refer to [12] due to space restrictions.

7 Conclusion

While a number of approaches to controlling declassification in a language-based
security analysis has been proposed in recent years, little work has addressed
controlling multiple dimensions of declassification in an integrated fashion.

The aim of our investigation was to more adequately control the where and
what of declassification. For controlling the where dimension, we proposed the
condition WHERE, and we proved that it is compositional and satisfies the
prudent principles of declassification (unlike, e.g., intransitive noninterference).
For controlling what, we proposed the conditions WHAT1 and WHAT2, and we
identified an inherent trade-off between the monotonicity principle and composi-
tionality. To our knowledge, the soundness result for our type system is the first
such result that clearly identifies which aspects of where and what are controlled.

The starting point for deriving our novel security characterizations was the
strong security condition. The advantages of this condition include that it is
compositional and robust with respect to choices of the scheduler (see [15] for
a more detailed analysis). The strong security condition also rules out dangers
of internal leaks in concurrent programming without making any assumptions
about the possibilities of race conditions in a program. As a consequence, this
condition is somewhat restrictive, which is technically due to the use of a strong
bisimulation relation that requires a lock-step execution of related programs.
While a less restrictive baseline characterization would be desirable, we do not
know of any convincing solutions for controlling the where dimension in multi-
threaded programs based on a less restrictive security condition.

Acknowledgments. We thank Henning Sudbrock for helpful comments. We also
thank the anonymous reviewers for their suggestions.

This work was funded by the DFG in the Computer Science Action Program and
by the Information Society Technologies program of the European Commission, Future
and Emerging Technologies under the IST-2005-015905 MOBIUS project. This article
reflects only the authors’ views, and the Commission, the DFG, and the authors are
not liable for any use that may be made of the information contained therein.

References

1. A. Almeida Matos. Typing secure information flow: declassification and mobility.
PhD thesis, École Nationale Supérieure des Mines de Paris, 2006.

2. A. Almeida Matos and G. Boudol. On declassification and the non-disclosure
policy. In In Proc. IEEE Computer Security Foundations Workshop, 2005.

3. E. Cohen. Information transmission in sequential programs. In Foundations of
Secure Computation, pages 297–335. Academic Press, 1978.

4. M. Dam and P. Giambiagi. Information flow control for cryptographic ap-
plets, 2003. Presentation at Dagstuhl Seminar on Language-Based Security,
http://kathrin.dagstuhl.de/03411/Materials2/.

5. R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In Proc. of the 31st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
186–197, 2004.

6. J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Proceed-
ings of the IEEE Symposium on Security and Privacy, pages 11–20, Oakland, CA,
USA, 1982.

7. P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In Proc.
of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 158–170, New York, NY, USA, 2005.

8. G. Lowe. Quantifying information flow. In Proc. of the 15th IEEE Computer
Security Foundations Workshop, page 18, Washington, DC, USA, 2002.

9. H. Mantel and D. Sands. Controlled Declassification based on Intransitive Non-
interference. In Proceedings of the 2nd ASIAN Symposium on Programming Lan-
guages and Systems, APLAS 2004, LNCS 3303, pages 129–145, Taipei, Taiwan,
2004.

10. A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate Non-Interference. Journal
of Computer Security, 12(1):37–81, 2004.

11. A. Sabelfeld. Confidentiality for Multithreaded Programs via Bisimulation. In Pro-
ceedings of Andrei Ershov 5th International Conference on Perspectives of System
Informatics, number 2890 in LNCS, pages 260–274, 2003.

12. A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security. IEEE
Journal on Selected Areas in Communication, 21(1):5–19, 2003.

13. A. Sabelfeld and A. C. Myers. A model for delimited information release. In
Proceedings of the International Symposium on Software Security, 2004.

14. A. Sabelfeld and D. Sands. A Per Model of Secure Information Flow in Sequential
Programs. In Proceedings of the 8th European Symposium on Programming, LNCS,
pages 50–59, 1999.

15. A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Pro-
grams. In Proceedings of the 13th IEEE Computer Security Foundations Workshop,
pages 200–215, Cambridge, UK, 2000.

16. A. Sabelfeld and D. Sands. Dimensions and Principles of Declassification. In
Proceedings of the 18th IEEE Computer Security Foundations Workshop, pages
255–269. IEEE Computer Society, 2005.

17. S. Zdancewic and A. Myers. Robust declassification. In 14th IEEE Computer
Security Foundations Workshop (CSFW ’01), pages 15–26, Washington - Brussels
- Tokyo, 2001.

A Operational Semantics of MWL

The intuition of a deterministic judgment of the form 〈|C, s|〉 _ 〈|W, t|〉 is that
command C performs a computation step in state s, yielding a state t and a
vector of commands W , which has length zero if C terminated, length one if
it has neither terminated nor spawned any threads, and length greater than
one if new threads were spawned. The transition arrow is labeled to distinguish
ordinary computation steps (labeling: _o) from declassification steps (labeling:
_

D1→D2

d
). An inductive definition of the semantics is given by the rules in Fig. 7.

To model concurrent computations, the deterministic judgment is lifted to a
nondeterministic judgment of the form 〈|V, s|〉 → 〈|V ′, t|〉. The intuitive meaning

〈|skip, s|〉_o 〈|〈〉, s|〉

〈|Exp, s|〉 ↓ n

〈|Id :=Exp, s|〉_o 〈|〈〉, [Id = n]s|〉 〈|fork(CV), s|〉_o 〈|〈C〉V, s|〉

〈|B, s|〉 ↓ True

〈|if B then C1 else C2 fi, s|〉_o 〈|C1, s|〉

〈|B, s|〉 ↓ False

〈|if B then C1 else C2 fi, s|〉_o 〈|C2, s|〉

〈|B, s|〉 ↓ True

〈|while B do C od, s|〉_o 〈|C; while B do C od, s|〉

〈|B, s|〉 ↓ False

〈|while B do C od, s|〉_o 〈|〈〉, s|〉

〈|C1, s|〉_o 〈|〈〉, s
′|〉

〈|C1; C2, s|〉_o 〈|C2, s
′|〉

〈|C1, s|〉_o 〈|C
′
1V, s′|〉

〈|C1; C2, s|〉_o 〈|〈C
′
1; C2〉V, s′|〉

〈|Exp, s|〉 ↓ n sources(Exp) = D1 dom(Id) = D2

〈|[Id :=Exp], s|〉_
D1→D2

d
〈|〈〉, [Id = n]s|〉

〈|C1, s|〉_
D1→D2

d
〈|〈〉, s′|〉

〈|C1; C2, s|〉_
D1→D2

d
〈|C2, s

′|〉

Fig. 7. Deterministic operational semantics of MWL

is that some thread Ci in V performs a step in state s resulting in the state t

and some thread pool W ′. The global thread pool V ′ results then by replacing
Ci with W ′. This is formalized by the rules in Fig. 8.

〈|Ci, s|〉_o 〈|W
′, s′|〉

〈|〈C0 . . . Cn−1〉, s|〉 → 〈|〈C0 . . . Ci−1〉W
′〈Ci+1 . . . Cn−1〉, s

′|〉

〈|Ci, s|〉_ 〈|W ′, s′|〉

〈|〈C0 . . . Cn−1〉, s|〉 → 〈|〈C0 . . . Ci−1〉W
′〈Ci+1 . . . Cn−1〉, s

′|〉

Fig. 8. Non-deterministic operational semantics of MWL

