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Abstract. Many algorithms on data structures such as terms (finitely
branching trees) are naturally implemented by second-order recursion:
A first-order procedure f passes itself as an argument to a second-order
procedure like map, every , foldl , foldr , etc. to recursively apply f to the
direct subterms of a term. We present a method for automated termina-
tion analysis of such procedures. It extends the approach of argument-
bounded functions (i) by inspecting type components and (ii) by adding
a facility to take care of second-order recursion. Our method has been
implemented and automatically solves the examples considered in the lit-
erature. This improves the state of the art of inductive theorem provers,
which (without our approach) require user interaction even for termina-
tion proofs of simple second-order recursive procedures.

1 Introduction

Functional programs frequently use higher-order procedures such as map and
every that expect functions as parameters [7,12]. For instance, map applies a
function to each element of a list and returns the list of the result values. Sim-
ilarly, every(p, k) yields true iff p(x) evaluates to true for all elements x of a
list k. If a procedure f calls a higher-order procedure g using f as an argument
for g, e. g., g(f, . . .), we say that f is defined by higher-order recursion [8,14].

In this paper, we consider the automated termination analysis of functional
programs that may use second-order recursion.1 Typical examples arise in algo-
rithms on finitely branching trees such as terms; e. g., applying a substitution
to a term or collecting variables in a term. Termination analysis for such pro-
grams is non-trivial: In the higher-order theorem provers Isabelle [8,10,14] and
PVS [11], the user needs to assist the system to prove termination in these cases.
In contrast, the method we propose solves typical termination problems auto-
matically. Furthermore, our method supplies information that allows a theorem
prover to generate useful induction axioms for proofs about such programs.

Figure 1 shows an example program. In Fig. 1(a), data types bool , N, and
list [@A] are defined by enumerating the respective data constructors true, false,
0, succ, ø, and “::”. Each argument position of a data constructor is assigned a

1 As in [3], we define the order o(τ) of base types τ like N or list [N] as 0; the order of
a functional type τ1 × . . .× τn → τ is 1 + maxi o(τi) for a base type τ .
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(a) structure bool <= true, false

structure N <= 0, succ(pred : N)

structure list [@A] <= ø, ::(hd : @A, tl : list [@A])

procedure last(k : list [@A]) : @A <=
assume k =/ ø; if tl(k) = ø then hd(k) else last(tl(k)) end

(b) structure variable.symbol <= variable(varID : N)

structure function.symbol <= func(funcID : N)

structure term <=
var(vsym : variable.symbol),
apply(fsym : function.symbol , args : list [term])

procedure every(p : @A→ bool , k : list [@A]) : bool <=
if k = ø then true else if p(hd(k)) then every(p, tl(k)) else false end end

procedure groundterm(t : term) : bool <=
if ?var(t) then false else every(groundterm, args(t)) end

Fig. 1. A functional program with (a) the first-order procedure last and
(b) the second-order procedure every and second-order recursion in proce-
dure groundterm

selector function; e. g., selector pred denotes the predecessor function. Expres-
sions of the form ?cons(t) check if t denotes a value of the form cons(. . .). In
Fig. 1(b), procedure every is a second-order procedure that gets a first-order
function p as argument. Procedure groundterm uses second-order recursion to
check if a term t (modeled by data type term) does not contain any variables.

Our approach extends the method of argument-bounded functions [15,18] that

is used, for instance, in the semi-automated verifier XeriFun [17] for termination
analysis and the synthesis of suitable induction axioms. Using this approach,
termination of every can be easily proved: Selector tl is argument-bounded, which
intuitively means #(k) ≥ #(tl(k)) for all lists k =/ ø, where #(k) counts the
occurrences of list-constructors ø and :: in k (and thus corresponds to the length
of list k plus 1). A system-generated difference procedure [15,18] ∆tl : list [@A]→
bool decides if this inequality is strict for a given list k, which is the case if k =/ ø.
To prove that the second argument of procedure every gets strictly smaller in the
recursive call every(p, tl(k)), it suffices to show the trivial termination hypothesis
∀k : list [@A]. k =/ ø ∧ p(hd(k))→ ∆tl(k).

Proving termination of groundterm, however, is challenging and hence is the
main problem we tackle in this paper. The key observation is that every applies p
only to members x of list k. While in Isabelle the user needs to state and prove
this knowledge explicitly as a congruence theorem, our approach automatically
extracts such information from the definition of every . More specifically, our
approach detects that for any instantiation of type variable @A with a type τ ,
the number of τ -constructors in each value x : τ that p is applied to by every is
bounded by the number of τ -constructors in the elements e of list k:

∑
e∈k #(e) ≥

#(x). We say that every is call-bounded wrt. p. For the second-order recursion
in groundterm and args(t) = t1 :: . . . :: tn :: ø this means #(t1) + . . . + #(tn) ≥
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#(x). Since t = apply(fsym(t), args(t)) contains one term-constructor more than
args(t), we have #(t) > #(t1)+ . . .+#(tn) ≥ #(x), so groundterm is only called
recursively with arguments x that are smaller than t, which ensures termination.

Formally, we parameterize the size measure # by a type position so that for
args(t) : list [term] we can separately count the list- and term-constructors. This
allows us to consider args : term → list [term] as argument-bounded wrt. type
component term (i. e., args(t) contains no more term-constructors than t).

The contributions of this paper are:

(1) An extended notion of argument-boundedness that also considers components
of types (Sect. 2), along with a corresponding extension of the estimation
calculus to automate size estimation proofs (Sect. 3). These extensions allow
our approach to prove termination of several purely first-order procedures
that cannot be handled by the original approach in [15,18].

(2) The novel notion of call-boundedness to automatically prove termination of
procedures with second-order recursion (Sect. 4). This extension maintains
the advantage that “optimized” induction axioms can be synthesized.

We discuss related work and experimental results in Sect. 5. Proofs of the theo-
rems in this paper are given in [1] and [2] along with further details and examples.

2 Size Estimation for Polymorphic Data Types

In this section we define the basic ingredients for size estimation proofs. We
begin with a brief account of the programming language L (which is the input

language of XeriFun [17] and roughly corresponds to the second-order fragment
of Haskell with strict evaluation); see [1,2,16] for formal details on L.

2.1 Programming Language

The input language L ofXeriFun consists of definition principles for freely gener-
ated polymorphic data types, for first-order and second-order procedures (based
on non-mutual recursion,2 case analyses via if -expressions, and functional com-
position) that operate on these data types, and for statements about the data
types and procedures. Each function symbol can be associated with a so-called
context requirement, which is stipulated explicitly for procedures (as for last in

Fig. 1) and implicitly for all selectors. XeriFun enforces via proof obligations
that the context requirement be satisfied for each function call [13]; e. g., last ,
hd , and tl may only be called on non-empty lists.

A base type is a type variable @A or an expression of the form str [τ1, . . . , τk],
where τ1, . . . , τk are base types and str is a k-ary type constructor (k ≥ 0). A
type is a base type or an expression of the form τ1 × . . . × τk → τ for types
τ1, . . . , τk, τ . Type constructors are defined by expressions of the following form:

structure str [@A1, . . . ,@Ak] <= . . . , cons(sel1 : τ1, . . . , seln : τn), . . . (1)

2 Our approach can be extended to handle mutual recursion without much difficulty.
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The τj are base types, and str may only occur as str [@A1, . . . ,@Ak] in the τj .
Each cons is called a data constructor and the sel j are called selectors.

We will address type symbols (i. e., type constructors and type variables) in
a base type by their position π ∈ N∗: @A|ε := @A, str [τ1, . . . , τk]|ε := str , and
str [τ1, . . . , τk]|hπ′ := τh|π′ for h ∈ {1, . . . , k}. Pos(τ) ⊆ N∗ denotes the set of all
valid positions in type τ . For a data constructor cons(sel1 : τ1, . . . , seln : τn) and
a type symbol S , the set

PosS (cons) := {(j, π) ∈ {1, . . . , n} ×N∗ | π ∈ Pos(τj), τj |π = S} (2)

contains the positions of all occurrences of S in the selector types of cons, given
by a selector number j and a position π in τj . Data constructor cons is called
reflexive if Posstr (cons) 6= ∅, and irreflexive otherwise.

Subsequently, we let Σ(P ) denote the signature of all function symbols de-
fined by an L-program P . As usual, T (Σ(P ),V) denotes the set of all terms over
Σ(P ) and a set V of variables. We write T (Σ(P )) instead of T (Σ(P ), ∅) for the
set of all ground terms over Σ(P ). Σ(P )c ⊂ Σ(P ) contains all data constructors
of P . CL(Σ(P ),V) is the set of clauses over Σ(P ), i. e., sets of literals. A literal
is an if -free Boolean term or the negation if (b, false, true) of such a term.

For a ground type3 τ , V(P )τ denotes the “values” of type τ : If τ is a ground
base type, V(P )τ := T (Σ(P )c)τ , and for each ground type τ = τ1 × . . .× τk →
τk+1, V(P )τ contains all closed (i. e., no free variables) λ-expressions of type τ ;
e. g., λt : term. groundterm(t) ∈ V(P )term→bool .

The call-by-value interpreter evalP : T (Σ(P )) 7→ V(P ) is a partial function
that defines the operational semantics of L [2]. The evaluation of a ground term t
either (i) succeeds and yields a value evalP (t) ∈ V(P ) or (ii) diverges, because
a procedure called in t does not terminate.

A procedure procedure f(x1 : τ1, . . . , xn : τn) : τ <= assume cf ; Bf of a pro-
gram P terminates iff the interpreter evalP returns a value for each procedure
call f(q1, . . . , qn). The qi are either constructor ground terms or λ-expressions
that contain only calls of arbitrary, but terminating functions. Program P ter-
minates iff all procedures f defined in P terminate.

A universally quantified formula of the form ∀x1 : τ1, . . . , xn : τn. b, where
b ∈ T (Σ(P ),V)bool , is true iff P terminates and evalP ′(b[~q]) = true for each
terminating program P ′ ⊇ P and all q1, . . . , qn ∈ V(P ′).4

2.2 A Size Measure for Values of Base Types

Our size measure #(t, π) for terms t is parameterized with a type position π so
that we can precisely specify which data constructors are to be counted. Fig-
ure 2 sketches an implementation of Mergesort: Procedure split splits list k into
two lists that are recursively sorted and then merged together by some proce-
dure merge. To prove termination of msort , we need to show that split is strictly
argument-bounded: #(k, ε) > #(split(k),1) and #(k, ε) > #(split(k),2). The
type position distinguishes between the list-constructors of the pair of lists.

3 A ground (base) type is a (base) type without type variables; e. g., list [N].
4 Program P ′ may define additional data types and procedures.
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structure pair [@A,@B ] <= mkpair(fst : @A, snd : @B)

procedure split(k : list [@A]) : pair [list [@A], list [@A]] <= . . .

procedure msort(k : list [N]) : list [N] <=
if k = ø then ø else if tl(k) = ø then k

else merge(msort(fst(split(k))),msort(snd(split(k)))) end end

procedure filter(k : list [@A], p : @A→ bool) : list [@A] <=
if k = ø then ø else if p(hd(k)) then hd(k) :: filter(tl(k), p)

else filter(tl(k), p) end end

procedure qsort(k : list [N]) : list [N] <=
if k = ø then ø else qsort(filter(tl(k), λn :N. n≤ hd(k))) <> hd(k) ::

qsort(filter(tl(k), λn :N. n> hd(k))) end

Fig. 2. Implementation of Mergesort (sketch) and Quicksort

Definition 1. For each ground base type τ = str [τ ′1, . . . , τ
′
k] as in (1) the size

measure #τ : T (Σ(P )c)τ ×Pos(τ)→ N is defined by #τ (cons(t1, . . . , tn), π) :=
1 if π = ε and cons is irreflexive,

2 +
∑

(j,π′)∈Posstr (cons) #θ(τj)(tj , π
′) if π = ε and cons is reflexive,∑

(j,π′)∈Pos@Ah
(cons) #θ(τj)(tj , π

′π′′) if π = hπ′′,

where θ := {@A1/τ
′
1, . . . ,@Ak/τ

′
k} instantiates the type variables of str . If type τ

is obvious from the context, we will usually omit the type index in #τ .

Intuitively, the size #(t, π) of a term t ∈ T (Σ(P )c)τ is computed as follows:
We replicate the type (and data) constructor definitions so that each type con-
structor occurs at most once in type τ . Then #(t, π) counts the τ |π-constructors
in t. For example, list [list [N]] is transformed into listA[listB [N]], so #(t, ε) counts
the listA-constructors in t and #(t,1) counts the listB -constructors in t.

The formal definition of the size measure above directly uses the type position
without needing to replicate any type constructors. Irreflexive data constructors
get weight 1. A reflexive data constructor cons(sel1 : τ1, . . . , seln : τn) in a term
cons(t1, . . . , tn) is counted with weight5 2 and we recurse into those tj : θ(τj)
that by definition of cons may also contain str -constructors (τj |π′ = str). For
instance, for τ := list [list [N]] and π := ε we recursively add the size #(t2, ε) of
the tl -component of t1 :: t2, whereas we do not recurse into the hd -component t1.
Finally, for π = hπ′′ we recursively add up the sizes of those tj that contain τ ′h|π′′ -
constructors, so we recurse into the occurrences of the h-th type parameter @Ah

in τj . For example, for τ := list [list [N]], term t1 :: t2, and π := 1, #list[N](t1, ε) +
#list[list[N]](t2,1) counts the list-constructors of the inner lists.

Example 1. For type τ := list [N], #list[N](t, ε) = 2R + I for the numbers R
and I = 1 of occurrences of :: and ø in t, respectively, whereas #list[N](t,1) is the

5 This simplifies some size estimation proofs; e. g., one can prove that apply(f, l) is
greater than var(v) without having to check if the argument list l is non-empty.
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sum of the sizes of the elements in list t. Note that #list[N](ø,1) = 0, whereas
#list[N](0 :: ø,1) = #N(0, ε) = 1 6= 0. Thus #list[N](t,1) = 0 iff t = ø. This a
useful property, cf. the end of Sect. 2.4. ♦

Example 2. For terms t ∈ T (Σ(P )c)term , #term(t, ε) counts the occurrences of
term-constructors var (with weight 1) and apply (with weight 2) in t. ♦

2.3 Argument-Bounded Functions

A function f is called argument-bounded iff the result f(. . . , t, . . .) of a function
call is bounded by argument t of the call wrt. the size measure (provided that
the function may be applied to t); e. g., #(tl(k), ε) ≤ #(k, ε) for each k =/ ø. Such
facts are used to show that some parameter x of a procedure p decreases in
recursive calls if f is used in the argument of a recursive call; e. g., p(f(x)). For
the sake of readability we consider only unary functions here, which can be easily
generalized to arbitrary arity [1].

Definition 2. A function f : τ → τ ′ with context requirement cf is (π, %)-
argument-bounded for π ∈ Pos(τ) and % ∈ Pos(τ ′) iff (i) τ is a base type
with τ |π = τ ′|% and (ii) #(q, π) ≥ #(evalP (f(q)), %) for all q ∈ V(P ) with
evalP (cf [q]) = true.6

Example 3. Procedure last (Fig. 1) is (1, ε)-argument-bounded: The size of the
last element of list k is bounded by the sum of the sizes of k’s elements.

Procedure filter (Fig. 2) is (ε, ε)-argument-bounded wrt. k, because the list
of all elements x in k that satisfy p(x) is not longer than k. ♦

Selectors are argument-bounded, as they return a component of their input:

Theorem 1. Let sel j : τ → τj be a selector as in (1), τ = str [@A1, . . . ,@Ak],
π ∈ Pos(τ), and % ∈ Pos(τj). If τ |π = τj |%, then sel j is (π, %)-argument-bounded.

Example 4. pred(. . .) : N → N is (ε, ε)-argument-bounded. hd : list [@A] → @A
is (1, ε)-argument-bounded: The size of the first element of a non-empty list k is
bounded by the sum of the sizes of all elements in k. tl : list [@A] → list [@A] is
(ε, ε)-argument-bounded, as tl(k) contains fewer list-constructors “::” than k. tl
is also (1,1)-argument-bounded, because tl(k) contains a subset of the elements
in k. Finally, selector args : term → list [term] is (ε,1)-argument-bounded. ♦

2.4 Difference Procedures

Using argument-bounded functions, we can establish inequalities like #(k, ε) ≥
#(tl(k), ε) to ensure that the second argument of procedure every does not in-
crease in the recursive call (cf. Fig. 1). However, this inequality needs to be
strict to guarantee termination of every . Strictness of such inequalities is ex-
pressed by so-called difference procedures; e. g., ∆ε,ε

tl : list [@A] → bool returns
true iff #(k, ε) > #(tl(k), ε).

6 “q ∈ V(P )” implicitly means that τ is instantiated to a ground base type.
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(a) procedure ∆ε,ε
pred(...)(x :N) : bool <= assume ?succ(x); true

procedure ∆ε,ε
tl (k : list [@A]) : bool <= assume ?::(k); true

procedure ∆ε,1
args(t : term) : bool <= assume ?apply(t); true

(b) procedure ∆1,ε
hd (k : list [@A]) : bool <= assume ?::(k); ?::(tl(k))

procedure ∆1,1
tl (k : list [@A]) : bool <= assume ?::(k); true

Fig. 3. Some automatically synthesized difference procedures for selectors

Definition 3. For a (π, %)-argument-bounded function f : τ → τ ′ with context
requirement cf , ∆π,%

f : τ → bool is a (π, %)-difference function for f iff (i) ∆π,%
f

also has context requirement cf and (ii) for all q ∈ V(P ) with evalP (cf [q]) = true

evalP
(
∆π,%
f (q)

)
= true ⇐⇒ #(q, π) > #(evalP (f(q)), %) .

(ε, %)-argument-bounded selectors have quite simple difference procedures,
because the selector cancels the leading data constructor, cf. Fig. 3(a):

Theorem 2. Let sel j : τ → τj be an (ε, %)-argument-bounded selector for some %.
Then a (ε, %)-difference procedure for sel j is given by

procedure ∆ε,%
selj

(x : τ) : bool <= assume ?cons(x); true .

The synthesis of (π, %)-difference procedures for selectors with π 6= ε is a bit
more involved and described in [1,2]. Figure 3(b) illustrates the idea by examples.
∆1,ε

hd returns true iff list k contains at least two elements: Since the size of each
element in k is ≥ 1, the size of the first element hd(k) is smaller than the sum of
the sizes of all elements in k. The uniform synthesis of such procedures uses the
fact that #(hd(k) :: tl(k),1) > #(hd(k), ε) iff #(tl(k),1) > 0, i. e., iff ?::(tl(k)).

3 Estimation Proofs

So-called estimation proofs can be used to verify that a procedure computes an
argument-bounded function. We obtain estimation proofs from the estimation
calculus, which is also used to synthesize difference procedures for argument-
bounded procedures and to generate termination hypotheses for recursively de-
fined procedures.

3.1 The Estimation Calculus

The estimation calculus is used to prove inequalities #(t1, π1) ≥ #(t2, π2). The
inequalities to be shown are given by some set E. When proving an inequality, a
clause ∆ (called a difference equivalent of E) is synthesized such that the proved
inequality is strict iff one of the literals in ∆ holds.

Definition 4. For a terminating program P , let Γπ,% be a family of (π, %)-
argument-bounded function symbols in P . Given a call context C ∈ CL(Σ(P ),V),
the estimation calculus is defined by:
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Language: Estimation tuples of the form 〈∆,E〉, where ∆ ∈ CL(Σ(P ),V) and
E ⊂fin E(Σ(P ),V) := {(t1, π1) < (t2, π2) | ti ∈ T (Σ(P ),V)τi for some
base types τ1, τ2, πi ∈ Pos(τi) for i = 1, 2 and τ1|π1

= τ2|π2
}.

Inference Rules: The following estimation rules are given for each type con-
structor str and data constructors cons, rcons, ircons, ircons1, and ircons2
of str , where rcons is reflexive and all irconsi are irreflexive: 7

Identity

(1)
〈∆,E ] {(t, π) < (t, π)}〉

〈∆,E〉

Equivalence

(2)
〈∆,E ] {(t1, ε) < (t2, ε)}〉

〈∆,E〉 if C ` ?ircons1(t1) and C ` ?ircons2(t2)

Strong Estimation

(3)
〈∆,E ] {(t1, ε) < (t2, ε)}〉

〈∆ ∪ {true}, E〉 if C ` ?rcons(t1) and C ` ?ircons(t2)

Strong Embedding

(4)
〈∆,E ] {(t1, ε) < (t2, π2)}〉

〈∆ ∪ {true}, E ∪ {(SELj(t1), π1) < (t2, π2)}〉
if C ` ?rcons(t1) and

(j, π1) ∈ Posstr (rcons)

Argument Estimation

(5)
〈∆,E ] {(t′, π′) < (f(t, t1, . . . , tn), %)}〉

〈∆ ∪ {∆π,%
f (t, t1, . . . , tn)}, E ∪ {(t′, π′) < (t, π)}〉 if f ∈ Γπ,%

Weak Embedding

(6)
〈∆,E ] {(t1, ε) < (t2, ε)}〉

〈∆,E ∪ { (SELj(t1), π) < (SELj(t2), π) | (j, π) ∈ Posstr (rcons)}〉
if C ` ?rcons(t1) and C ` ?rcons(t2)

Constructor Wrapping

(7)
〈∆,E ] {(t, %) < (cons(t1, . . . , tn), hπ′)}〉

〈∆,E ∪ {(t, %) < (tj , ππ′)}〉 if Pos@Ah(cons) = {(j, π)}

Minimum

(8)
〈∆,E ] {(t1, ε) < (t2, ε)}〉

〈∆ ∪ {?rcons(t1) | rcons ∈ R} , E〉
if C ` ?ircons(t2) and R is the set of all reflexive constructors of str

Deduction: We write 〈∆0, E0〉VΓ,C 〈∆1, E1〉 iff 〈∆1, E1〉 results from 〈∆0, E0〉
by applying some estimation rule. V∗Γ,C denotes the reflexive and transi-
tive closure of VΓ,C . 〈∆0, E0〉 V∗Γ,C 〈∆n, En〉 is called a deduction of
〈∆n, En〉 from 〈∆0, E0〉. We use the notation `Γ,C 〈∆, (t1, π1) < (t2, π2)〉
iff 〈∅, {(t1, π1) < (t2, π2)}〉 V∗Γ,C 〈∆, ∅〉. (t1, π1) >Γ,C (t2, π2) denotes the
existence of a difference equivalent ∆ with `Γ,C 〈∆, (t1, π1) < (t2, π2)〉.

7 The rules are applied from top to bottom. We write C ` ?cons(t) iff (i) t = cons(. . .)
or (ii) ?cons(t) ∈ C or (iii) ¬ ?cons ′(t) ∈ C for all str -constructors cons ′ 6= cons.
SELj(t) stands for tj if t = cons(. . . , tj , . . .), and abbreviates sel j(t) otherwise.
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Definition 4 extends the calculus from [15,18] by type positions π and rule (7)
for data constructors such as mkpair (Fig. 2) that just wrap the item of interest;
e. g., to show #(t, %) ≥ #(mkpair(t1, t2),1) it suffices to show #(t, %) ≥ #(t1, ε).

Example 5. We get the following estimation proof for call context C := {k =/ ø}:

〈∅, {(k, ε) < (filter(tl(k), g), ε)}〉
VΓ,C 〈{∆ε,ε

filter (tl(k), g)}, {(k, ε) < (tl(k), ε)}〉 by (5)

VΓ,C 〈{true, ∆ε,ε
filter (tl(k), g)}, {(tl(k), ε) < (tl(k), ε)}〉 by (4)

VΓ,C 〈{true, ∆ε,ε
filter (tl(k), g)}, ∅〉 by (1) ♦

In the following, we use expressions of the form (i) (t1, π1) ># (t2, π2) and
(ii) (t1, π1) ># (t2, π2) for terms ti ∈ T (Σ(P ),V)τi and positions πi ∈ Pos(τi),
i = 1, 2, with τ1|π1

= τ2|π2
. Such expressions are true iff (i) #(evalP (t1), π1) ≥

#(evalP (t2), π2) or (ii) #(evalP (t1), π1) > #(evalP (t2), π2), respectively.

Theorem 3. The estimation calculus is sound: If `Γ,C 〈∆, (t1, π1) < (t2, π2)〉,
then the following formulas are true (where x1, . . . , xn are all variables in C, t1,
and t2 such that xi ∈ Vτi for all i ∈ {1, . . . , n}):

(1) ∀x1 : τ1, . . . , xn : τn.
∧
C → (t1, π1) ># (t2, π2)

(2) ∀x1 : τ1, . . . , xn : τn.
∧
C →

[∨
∆↔ (t1, π1) ># (t2, π2)

]
Theorem 4. The set { (t1, π1) < (t2, π2) ∈ E(Σ(P ),V) | (t1, π1) >Γ,C (t2, π2)}
of provable size estimation problems is decidable.

Thus whenever a proof procedure for the estimation calculus finds a proof of
(t1, π1) >Γ,C (t2, π2), we know that t1 is at least as big as t2 by Theorem 3. If
no estimation proof exists, the inequality might still hold, because the estima-
tion calculus is incomplete. However, it is powerful enough to solve termination
problems that are relevant in practice, see Sect. 5.

3.2 Proving Argument-Boundedness of Procedures

Using the estimation calculus, we can prove argument-boundedness of a pro-
cedure f by analyzing the result terms t1, . . . , tn of f (these are maximal if -
free terms outside an if -condition in the body Bf ). The call context Ci ∈
CL(Σ(P ),V) of a result term ti consists of the conditions in Bf that lead to ti.

Theorem 5. Let procedure f(x : τ) : τ ′ <= assume cf ; Bf be a terminating
procedure, π ∈ Pos(τ), and % ∈ Pos(τ ′) such that (i) τ is a base type with

τ |π = τ ′|% and (ii) `fΓ,Ci
〈∆i, (x, π) < (ti, %)〉 for each result term ti of f under

call context Ci and some ∆i, where `fΓ,Ci
differs from `Γ,Ci in that the Argument

Estimation rule (5) may also be used for each recursive call f(t′) in ti.
Then f is (π, %)-argument-bounded and procedure ∆π,%

f (x : τ) : bool <= B∆f

is a (π, %)-difference procedure for f , where B∆f
is derived from Bf by replacing

each result term ti with the disjunction
∨
∆i (represented by if-conditionals).
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procedure ∆1,ε
last(k : list [@A]) : bool <=

assume k =/ ø; if tl(k) = ø then false else true end

procedure ∆ε,ε
filter (k : list [@A], p : @A→ bool) : bool <=

if k = ø then false else if p(hd(k)) then ∆ε,ε
filter (tl(k), p) else true end end

Fig. 4. Difference procedures for argument-bounded procedures

Example 6. Procedure last shown in Fig. 1(a) is (1, ε)-argument-bounded, be-
cause `last

Γ,C1
〈∆1, (k,1) < (hd(k), ε)〉 for C1 := {k =/ ø, tl(k) = ø},∆1 :=

{
∆1,ε

hd (k)
}

,

and `last
Γ,C2

〈∆2, (k,1) < (last(tl(k)), ε)〉 for C2 := {k =/ ø, tl(k) =/ ø}, ∆2 :={
∆1,1

tl (k), ∆1,ε
last(tl(k))

}
.
∨
∆1 simplifies to false and

∨
∆2 simplifies to true

using the definition of the difference procedures (Fig. 3) and call contexts C1

and C2. Difference procedure ∆1,ε
last is shown in Fig. 4: The last element of list k

is smaller than the sum of the sizes of all list elements if the length of k is ≥ 2.♦

Example 7. For procedure filter (Fig. 2), the difference procedure ∆ε,ε
filter wrt.

parameter k (Fig. 4) reflects the intuition that the returned sublist of k is shorter
than k iff at least one element x of k does not satisfy p(x). ♦

4 Automated Termination Proofs

We implicitly assume procedure bodies to be in η-long form to clearly exhibit in-
direct function calls; e. g., every(p, tl(k)) abbreviates every(λx : @A. p(x), tl(k))
in Fig. 1, because p =η λx : @A. p(x). Subterm p(x) is an indirect function call,
whereas p(hd(k)) and every(λx : @A. p(x), tl(k)) are direct function calls:

Definition 5. A direct call of a function f in a term t is a subterm f(t1, . . . , tn)
of t that occurs outside a λ-expression. A subterm f(t1, . . . , tn) of t inside a λ-
expression is an indirect call of f .

Definition 6. For a procedure or λ-expression f with body Bf and parameters
x1, . . . , xn, a procedure or λ-expression g, and q1, . . . , qn, q

′
1, . . . , q

′
m ∈ V(P ),

we write f(q1, . . . , qn) B g(q′1, . . . , q
′
m) iff Bf contains a subterm h(t′1, . . . , t

′
m)

under some call context C such that for σ := {x1/q1, . . . , xn/qn}, σ(h) =η g,
evalP (σ(c)) = true for all c ∈ C, and q′i = evalP (σ(t′i)) for all i = 1, . . . ,m.

Intuitively, relation B means “requires evaluation of”. For instance, we have
every(groundterm, var(q) :: ø) B groundterm(var(q)).

Now we are ready to state a termination criterion for procedures without
second-order recursion. The formulas (ii) of Theorem 6 are so-called termination
hypotheses; if these formulas are true, the procedure terminates.

Theorem 6. A procedure procedure f(x : τ) : τ ′ <= assume cf ; Bf terminates
if all procedures g 6= f occurring in Bf and cf terminate and if there is some
π ∈ Pos(τ) such that each recursive call f(t) in Bf under some call context C ∈
CL(Σ(P ),V) is a direct procedure call such that (i) `Γ,C 〈∆, (x, π) < (t, π)〉 for
some ∆, and (ii) ∀x : τ.

∧
C →

∨
∆ is true.
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Example 8. Procedure qsort (Fig. 2) terminates. For π := ε, C := {k =/ ø}, and
any g, (k, ε) >Γ,C (filter(tl(k), g), ε) with

∨
∆ = true, cf. Example 5. ♦

Example 9. Procedure termlist .size terminates according to Theorem 6:

procedure termlist .size(k : list [term]) : N <=
if k = ø then 0

else if ?var(hd(k))
then 1 + termlist .size(tl(k))
else 1 + termlist .size(tl(k)) + termlist .size(args(hd(k)))

end end

For position π := 1 it is easy to show (k,1) >Γ,C1 (tl(k),1) and (k,1) >Γ,C2

(args(hd(k)),1) for the respective call contexts C1 and C2. The resulting termi-
nation hypotheses ∀k : list [term]. k =/ ø∧ . . .→ ∆1,1

tl (k) and ∀k : list [term]. k =/ ø∧
¬ ?var(hd(k))→

(
∆1,ε

hd (k) ∨∆ε,1
args(hd(k))

)
are obviously true, cf. Fig. 3. ♦

Example 9 cannot be solved by the original method in [15,18], because there
a list is always measured by its length (the special case π = ε of our theorem).

4.1 Call-Bounded Procedures

Call-bounded procedures f are well-behaved in the sense that they call their
functional parameter only with arguments of a bounded size: For each sequence
f(g, q) B∗ g(q′) of procedure calls, the size of q is a bound of the size of q′.
We consider only procedures with two parameters in the following definition for
readability reasons; the straightforward generalization is given in [1].

Definition 7. A procedure procedure f(F : τ ′ → τ ′′, x : τ) : τ ′′′ <= assume cf ;
Bf is (π, %)-call-bounded for π ∈ Pos(τ) and % ∈ Pos(τ ′) iff τ is a base type with
τ |π = τ ′|% such that #(q, π) ≥ #(q′, %) for all g ∈ V(P )τ ′→τ ′′ and q ∈ V(P )τ
with f(g, q) B h1(. . .) B . . . B hn(. . .) B g(q′), where hi 6= g for all i = 1, . . . , n.

Example 10. every is (1, ε)-call-bounded, because parameter p will only be called
with an argument x with #(k,1) ≥ #(x, ε). More formally, #(q,1) ≥ #(q′, ε)
whenever every(g, q) B every(g, q1) B . . . B every(g, qn) B g(q′) for some n ≥ 0.
For the same reason, filter is also (1, ε)-call-bounded. ♦

The next theorem allows us to easily identify many call-bounded procedures.

Theorem 7. A procedure procedure f(F : τ ′ → τ ′′, x : τ) : τ ′′′ <= assume cf ;
Bf is (π, %)-call-bounded for π ∈ Pos(τ) and % ∈ Pos(τ ′) if τ is a base type with
τ |π = τ ′|% and F occurs in Bf only

(1) in direct function calls F (t) under some call context C such that
`Γ,C 〈∆, (x, π) < (t, %)〉 for some ∆, or

(2) in direct recursive calls f(F, t′) under some call context C ′ such that
`Γ,C′ 〈∆′, (x, π) < (t′, π)〉 for some ∆′.

Example 11. Procedure every (Fig. 1) is easily proved (1, ε)-call-bounded:

(1) `Γ,C 〈{∆1,ε
hd (k)}, (k,1) < (hd(k), ε)〉, where C = {k =/ ø}

(2) `Γ,C′ 〈{∆1,1
tl (k)}, (k,1) < (tl(k),1)〉, where C ′ = {k =/ ø, p(hd(k))} ♦
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Generalized Detection of Call-Bounded Procedures. Theorem 7 handles
the frequently occurring special case of Definition 7 where h1 = . . . = hn = f ,
i. e., the functional parameter F is either called directly or passed to the recursive
call f(F, t′) without modification. The theorem can be generalized (i) to allow f
to pass F to another call-bounded procedure hi 6= f , (ii) to allow modification
of F in recursive calls by encapsulating it in a λ-expression λx′. . . . F (t′′) . . .,
and (iii) to allow F to occur in indirect recursive calls as well, see [1].

4.2 Proving Termination of Procedures

The concept of call-bounded procedures allows us to prove termination of pro-
cedures that pass themselves to a call-bounded second-order procedure: In the
following theorem, the arguments t of direct recursive calls need to decrease,
cf. requirements (1) and (2). Indirect recursive calls need to occur via a call-
bounded procedure g, cf. (3). This procedure g must be called with a bounding
argument t′ that is strictly smaller than the argument x of f , cf. (4) and (5).

Theorem 8. A procedure f(x : τ) : τ ′ <= assume cf ; Bf terminates if all pro-
cedures g 6= f occurring in Bf and cf terminate and if there is some π ∈ Pos(τ)
such that for each direct recursive call f(t) in Bf under some call context C

(1) `Γ,C 〈∆, (x, π) < (t, π)〉 for some ∆ and
(2) ∀x : τ.

∧
C →

∨
∆ is true

and for each indirect recursive call g(f, t′) in Bf under some call context C ′

(3) procedure g is (π′, π)-call-bounded for some π′,
(4) `Γ,C′ 〈∆′, (x, π) < (t′, π′)〉 for some ∆′, and
(5) ∀x : τ.

∧
C ′ →

∨
∆′ is true.

Example 12. Procedure groundterm of Fig. 1 terminates by Theorem 8:

(3) every is (1, ε)-call-bounded, see Example 11 (i. e., π := ε)
(4) `Γ,C′ 〈{∆ε,1

args(t)}, (t, ε) < (args(t),1)〉, where C ′ := {¬?var(t)}
(5) ∀t : term. ¬?var(t)→ ∆ε,1

args(t) is trivially true, see Fig. 3 ♦

Similarly to [15,18], Theorem 8 can be generalized in a straightforward way
from a single parameter and type position to a set of parameter indices and posi-
tions (e. g., for a lexicographic combination of size orders to prove termination of
procedures like the Ackermann function). Furthermore, indirect recursive calls
f(t′′) may be (deeply) nested within λ-expressions; e. g., in g(λy. . . . f(t′′) . . . , t′),
see [1] for details and examples.

Induction Axioms. From a terminating procedure one can uniformly syn-
thesize a sound induction axiom. Our method maintains the advantage of the
original approach [15,18] that the induction axiom(s) can be optimized by ana-
lyzing the termination proof: Some variables can be universally quantified in the
induction hypotheses (as in [9]) and irrelevant premises are removed [2].
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5 Related Work and Experimental Results

Our method is intended to be used in inductive theorem provers: In this setting
it is important that many procedures can be proved terminating without user
interaction so that the user can quickly move on to the actual verification task.

In Isabelle 2009 [8,10,14] a termination proof of a procedure with second-
order recursion requires the user to state and prove a congruence theorem about
the second-order procedure involved. For instance, Isabelle can only prove ter-
mination of groundterm when the user has proved and explicitly tagged k = k′ ∧(
∀x : @A. x ∈ k → p(x) = p′(x)

)
→ every(p, k) = every(p′, k′) as a congruence rule

about procedure every . Our approach with call-bounded procedures can be con-
sidered as automatically discovering and proving congruence theorems such as
k = k′ ∧

(
∀x : @A. #(x, ε) < #(k,1)→ p(x) = p′(x)

)
→ every(p, k) = every(p′, k′).

In PVS [11] the user needs to supply a measure function that computes the
size of a data object, so there is no automation as in our approach.

Since Coq does not offer automated termination analysis either, Barthe et
al. [4] suggest an approach that ensures termination by typing. Their system
uses sized types, i. e., types that contain information about the size of values.
For instance, argument-boundedness of procedure split (cf. Fig. 2) is expressed
by assigning type list`[@A]→ pair [list`[@A], list`[@A]] to split , where list`[@A]
represents lists of length ≤ `. This analysis is less detailed than ours, because
it does not detect the cases when the resulting lists are strictly smaller than
the input list. Thus the termination proof of Mergesort fails in this approach,
whereas our method succeeds using difference procedures that identify these
cases [1]. In the terminology of sized types, call-boundedness of every could be
expressed by assigning type (@A` → bool) × list [@A`] → bool to every , thus
constraining the items of the list to be of size ≤ `. The approach by Barthe et
al. has not been integrated into Coq.

ACL2 [5,9] offers heuristics for automated termination proofs, but procedures
cannot be defined by second-order recursion.

There are also several stand-alone approaches for termination analysis, which
are useful if only termination of a procedure is to be proved (i. e., if there is no
need to synthesize induction axioms for subsequent proofs about the procedure).
As an example, we mention the Haskell termination analyzer by Giesl et al. [6].

Experimental Results. Our approach has been integrated into the verifier
XeriFun, which allows us to compare its performance with Isabelle.8 Table 1
shows the results of our experiments: We evaluated our approach on 16 represen-
tative procedures with second-order recursion, including all examples from [8,10,11,14].
These procedures are based on 8 common second-order procedures without
second-order recursion (e. g., map, foldl , and every). The set of first-order exam-
ples comprises auxiliary procedures for the examples of second-order recursion
as well as the examples from [15,18], which we included to make sure that our

8 See http://www.informatik.tu-darmstadt.de/pm/~aderhold for an experimental
version of XeriFun and a list of the example procedures.
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Table 1. Termination proving capabilities of inductive provers

number and category of examples Isabelle XeriFun
16 procedures with second-order recursion 0 15
8 second-order procedures without second-order recursion 8 8

40 first-order procedures without second-order recursion 24 38

64 procedures in total 32 61

approach properly subsumes the original approach. Indeed, our approach only
fails on procedures that the original approach already fails on (e. g., because a
parameter is increased in recursive calls).

Isabelle fails on the examples of second-order recursion, because we only
supplied the raw definition of the procedures. When the user states and proves
the required congruence theorems, 15 procedures can be shown terminating as
well. The remaining procedure is an artificial example (computing the constant
zero function) by Krauss [8] that our approach also fails on, because we would
need information about the procedure’s semantics before proving its termination.

We did not base our method on the sized types approach [4] (although this
would be feasible in principle), because the latter cannot solve many naturally
occurring examples; e. g., it succeeds on only 21 of 40 first-order procedures in
the example set and fails on several common sorting algorithms from [15].

In summary, the experimental results show that the extended estimation
calculus (though incomplete) is powerful enough to prove termination of the
everyday examples of second-order recursion that frequently occur in practice.

6 Conclusion

We extended the concept of argument-bounded functions [15,18] in two respects:
Firstly, we parameterized the size measure to also consider components of types.
This facilitates automated termination proofs (e. g., for the Mergesort imple-
mentation in Fig. 2) that were impossible with the original method. Secondly,
we identified the new notion of call-boundedness to automate termination proofs
for procedures with second-order recursion, which the original method could not
cope with at all.

Our method has been integrated into XeriFun [17]. It automatically solves
the typical examples of second-order recursion considered in the literature [8,10,11,14]
and in this paper within few seconds, whereas other state-of-the-art theorem
provers require guidance by the user.

Information gathered from termination analysis is among the most impor-
tant keys for guiding highly automated verifiers such as ACL2 and XeriFun
when selecting useful induction axioms. In all examples of second-order recur-
sion, XeriFun synthesizes optimal induction axioms using the results of our
method for termination analysis. Although the examples are not overly difficult,
such procedures using second-order recursion via map, every , filter , foldl , foldr ,
and similar procedures on other data types (e. g., trees) are widely used in func-
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tional programming. Hence our method significantly improves the state of the
art in automated theorem proving by reducing the need for user interaction.

Acknowledgment. I am grateful to Jürgen Giesl, Alexander Krauss, Simon
Siegler, and Christoph Walther for helpful discussions, to Nathan Wasser for
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