
A Framework for Static Detection of Privacy Leaks in
Android Applications

Christopher Mann
Modeling and Analysis of Information Systems

TU Darmstadt, Germany
christophermann@web.de

Artem Starostin
Modeling and Analysis of Information Systems

TU Darmstadt, Germany
starostin@mais.informatik.tu-darmstadt.de

ABSTRACT
We report on applying techniques for static information flow
analysis to identify privacy leaks in Android applications.
We have crafted a framework which checks with the help of
a security type system whether the Dalvik bytecode imple-
mentation of an Android app conforms to a given privacy
policy. We have carefully analyzed the Android API for
possible sources and sinks of private data and identified ex-
emplary privacy policies based on this. We demonstrate the
applicability of our framework on two case studies showing
detection of privacy leaks.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General—Protection
mechanisms

General Terms
Security

Keywords
Information flow security, Static analysis, Privacy, Android

1. INTRODUCTION
Nowadays, mobile devices and, particularly, smartphones

are becoming universal and omnipresent. Gartner1, the
world’s leading information technology research and advi-
sory company, predicts [8] over 500 million smartphones to
be sold in 2012. Among those, the smartphones’ operating
system market share is predicted to be headed by Symbian
(37,4%), Android (18%), BlackBerry (13.9%), and iPhone
(13.6%), with Android being the fastest growing.

The range of applications in the rapidly growing market
of programs for mobile devices vary from clients for on-
line banking to apps for monitoring health conditions, from

1http://www.gartner.com

This is a preprint. Original publication to appear in the Proceedings of
27th Symposium on Applied Computing (SAC): Computer Security Track.
Original paper copyright ACM 2011.
.

sports betting apps to personal calendars. Obviously, many
such applications are intended to operate on users’ private
information. However, recent studies [18, 16] show that
smartphones’ operating systems still do not provide clear
visibility of how third-party applications use the owner’s
private data stored on the smartphone. Moreover, the ex-
perimental results [15] outline a frustrating phenomenon: a
large fraction of mobile applications seem to abuse user’s
privacy by sending the data collected on a smartphone to
advertising companies without notifying the smartphone’s
owner. A public opinion poll [15] accompanying this study
showed that 98,5% of more than 12.000 respondents would
like to be informed whether an application sends data to
other companies.

In a response to this problem, Enck et al. recently pre-
sented TaintDroid [5], an information flow tracking system
for real-time privacy monitoring on Android smartphones.
TaintDroid has been successfully applied to identify poten-
tial misuse of user’s private information across a sample of
stock Android applications. However, there are two funda-
mental limitations of the undertaken approach of dynamic
information flow analysis. First, it always produces some
performance overhead during the application run time. Sec-
ond, it complicates to recognize implicit leaks [13, 9].

In this paper we address the issue from a different per-
spective: we apply static information flow analysis to the
Android apps’ Dalvik bytecode. This bytecode is stored di-
rectly in the application packages and available for analysis
directly on the phone. The novel research results of the
paper are:
• a systematization of a complete Dalvik VM instruc-

tion set (218 instructions) into a significantly smaller
abstract instruction set (61 instructions) capturing rel-
evant information flow aspects,
• a security type system for the abstract instruction set

detecting explicit (in the current version) information
leaks, and
• a carefully identified set of sources and sinks of pri-

vate information in the Android API (version 2.2) from
which a privacy policy is defined.

Based on these three contributions we have implemented in
Java a framework featuring the security type system and
a privacy policy generator. The latter features a carefully
engineered inference algorithm for field and method secu-
rity signatures. We have demonstrated the applicability of
the framework on a number of small self-developed Android
applications. We believe that with this work we lay both
formal and practical foundations for application of static



information flow analysis techniques to detect privacy vio-
lations in stock Android applications.

Related Work.
The related work for this paper can be grouped into two

categories: (i) Android security, and (ii) information flow
analysis for bytecode and assembly languages. As Enck [4]
provides a comprehensive overview of the state of the art in
the area of Android security, we limit this paragraph to high-
lighting the second category. Genaim and Spoto [6] reports
on the first implementation of an information flow analysis
for Java bytecode. Medel et al. [11] introduces a type system
for checking noninterference of simple typed assembly pro-
grams. Barthe et al. [2] presents a noninterference property
and a security type system for simplified Java bytecode.

Outline.
The remainder of this paper is organized as follows. After

giving a bird’s eye overview of the framework in Sect. 2 we
identify in Sect. 3 a set of private information sources and
a sinks on a typical Android smartphone. In Sect. 4 we de-
scribe the abstract instruction set for the Dalvik VM and
present a security type system to track explicit information
flows. In Sect. 5 we show in two case studies how privacy
leaks are detected with the help of our framework. We con-
clude and point out directions for future work in Sect. 6. We
conclude and point out directions for future work in Sect. 6.

2. FRAMEWORK OVERVIEW
The core component of the framework presented in this

paper (Fig. 1) is the implementation of a security type sys-
tem for tracking explicit information flows, i.e., those which
result from passing the information in assignments, in the
Dalvik bytecode of Android apps. The implementation of
the security type system takes as input a privacy policy
which defines method signatures and field signatures for
the API and the application. These signatures define which
method parameters, return values, or fields allowed to con-
tain private information. The tool then checks that all meth-
ods in the application respect the specified signatures.

app's
bytecode

privacy 
policy 
for API policy 

generator

privacy 
policy
to be 

enforced

security 
type 

system

report

Figure 1: Sketch of the Framework

The policy enforced by the security type system comes
from the policy generator. The generator itself requires se-
curity signatures for the API methods invoked by the ap-
plication. It uses afterwards a signature inference algorithm
to generate the signatures of the methods and fields imple-
mented in the application. The security signatures for the
API methods include those which might be used to extract
and transmit users’ private information. In the next section
we analyze a set of such methods used in our work.

3. PRIVATE INFORMATION ON DEVICE
In this section we identify privacy relevant information

which is typically stored on an Android mobile device, and

how this information can be retrieved with the API. Fur-
ther, we identify the ways to send information to the outside
world. The identified sources and sinks are the endpoints for
the information flow analysis performed by the framework.

3.1 Private Information Sources
Several different kinds of private data are available to ap-

plications on an Android smartphone. Below we present five
categories we have identified for this work. In each category
we reference relevant Android API functions and describe
how the private data is obtained. This is not trivial since
there are several different ways to retrieve data from the An-
droid API and, therefore, types of information sources. We
distinguish return values of functions, parameters of callback
methods, content resolvers used to iterate over data sets, and
intent messages for inter-process communication. The addi-
tional information on these peculiarities of Android’s mid-
dleware could be found in the Android Developer’s Guide [7].

Note that the resulted lists of private information sources
is obtained by the analysis of Android API in the version 2.2
and reflect our subjective view of which user’s data should
be denoted as private and, thus, might be incomplete.

Location Data.
Typically, location data can be retrieved either from a

GPS receiver which is available on most smartphones, or
it can be approximated based on the location of the used
base station for either the cellular network or WLAN. The
class LocationManager gives access to location data and sup-
ports different providers, like a GPS receiver or the mobile
phone network. The method getLastKnownLocation(String
provider) returns a Location object representing the last lo-
cation fix acquired by the given provider. Alternatively, the
location data can be accessed by using the class Location-
Listener which can be extended by the application to mon-
itor the phone’s location. The application can overwrite
the method onLocationChanged(Location location) which is
called by the application framework to inform the applica-
tion about a new location fix contained in the parameter
location. The monitoring is activated by calling the method
requestLocationUpdates(..., LocationListener listener) with an
instance of the application class extending the class Loca-
tionListener as the parameter listener.

Unique Identifiers.
A cell phone stores several unique identifiers like the Inter-

national Mobile Equipment Identity (IMEI) which is glob-
ally unique for each GSM based mobile phone, or the Inter-
national Mobile Subscriber Identity (IMSI) which is glob-
ally unique for each subscriber of GSM services. These
unique identifiers can be used to identify devices and sub-
scribers very accurately. The class TelephonyManager gives
access to such identifiers. We consider that the following
methods return privacy relevant data: getDeviceId() re-
turns the IMEI of the phone; getDeviceSoftwareVersion() re-
turns the IMEISV which is the IMEI extended with two
digits giving the version number of the phone’s software;
getLine1Number() returns the primary phone number asso-
ciated with this phone; getNetworkCountryIso() returns coun-
try code of the network in which the phone is currently
logged in; getSubscriberId () returns the IMSI from the SIM
card.



Call State.
Android applications can watch the current state of the

cell phone. The applications are then informed about the
starting and ending of incoming and outgoing calls. The
class PhoneStateListener can be extended by the application
to monitor the incoming phone calls. When extending the
class, the application can overwrite the method onCallState-
Changed(int state, String incomingNumber) which is called by
the application framework if the call state changes. The pa-
rameter incomingNumber contains the phone number of the
incoming call. The monitoring is activated by calling the
method TelephonyManager.listen(PhoneStateListener listener,
int events) with an instance of the class which extends the
class PhoneStateListener as the parameter listener.

Authentication Data.
Android provides a single sign-on system where applica-

tions can request authentication tokens from the Android
OS to access accounts at Internet services without having
the user to enter the credentials. The class AccountManager
is used to acquire an authentication token for a user account
stored on the Android phone. If the user stored the password
for the account on the phone or an authentication token is
already cached, the user will not be informed about the re-
quest and the token will be provided in the background.
An authentication token can be requested with the method
getAuthToken(...) which returns an AccountManagerFuture.

Contact and Calendar Data.
Android smart phones are almost always used for per-

sonal information management and therefore store addresses
and phone numbers as well as appointments. Such data
is typically provided by a content provider and can be ac-
cessed with query operations which use SQL-like syntax to
specify the retrieved data. A query can be executed, for
instance with the methods Activity.managedQuery(Uri uri,
...) or ContentResolver.query(Uri uri, ...). The parameter
uri specifies with an URI the content provider and data set
to be accessed. Normally, these URIs are retrieved from
class constants. For example, the constant ContactsCon-
tract.Contacts.CONTENT URI contains the URI referencing
the content provider to access the contacts stored in the
phone. All these methods return a Cursor object which is
used to iterate over the retrieved result set.

3.2 Information Sinks
As long as private information is stored in some variable

of an Android application, several possibilities arise for it to
flow to the outer world. Below we describe a set of informa-
tion sinks we considered in our work.

SMS Communication.
The class SMSManager can be used to send SMS to other

phones. The method sendTextMessage(String destinationAd-
dress, ... , String text, ...) sends an SMS with the content
text to the phone number specified by destinationAddress.

File Output.
Android applications can write to files which are glob-

ally readable. This allows other applications to access the
written data. The Android application framework contains
the classes from the java.io package which provide an uni-
fied interface for writing data to different sinks, like files or

network sockets. A sink is represented by a OutputStream
object which provides methods to write binary data to the
sink. In most cases, the subclasses of Writer are used to wrap
the output streams as they provide a more convenient char-
acter based interface. For example, the method write(String
str) writes the string provided by the parameter str to the
sink. An output stream for writing a file can be acquired by
creating a new FileOutputStream with the constructor File-
OutputStream(String path). The parameter path expects a
string giving the file to write to.

Network Communication.
Android applications can access the Internet via several

different APIs including a socket-like API and a high level
HTTP client. The class Socket models the endpoint of a net-
work connection. A new network connection can be created
by calling the constructor Socket(String dstName, int dst-
Port). The parameter dstName expects a string giving the
IP-address or domain name of the destination and the pa-
rameter dstPort expects a port number on which the destina-
tion is to be contacted. With the method getOutputStream
(), an output stream is retrieved from an open socket, which
can be used to write to the open network connection. The
written data is then transmitted to the destination.

Intents.
Android applications can send Intent objects containing

data to other components. The class Context contains the
methods startActivity, startService, and sendBroadcast which
can be used to activate other components of the same or dif-
ferent application. Each of these methods expects an Intent
object as the single parameter. It can contain arbitrary data
which is transmitted to the activated component.

Content Resolver.
The content provider/resolver API can also be used to

modify the stored data with SQL-like statements. Besides
retrieving data, the class ContentResolver can also be used
to store data at a content provider. The method insert(Uri
uri, ContentValues values) can be used to store an additional
entry in the data set managed by the content provider. The
method update(Uri uri, ContentValues values, ...) can be used
to modify a subset of the already existing entries in the data
set. The parameter uri specifies the content provider and
data set, whereas the parameter values expects a Content-
Values object containing the values to store in the content
provider’s data set.

4. ENFORCING PRIVACY POLICIES
In order to statically analyze whether a Dalvik bytecode

program respects a provided privacy policy we adopt the
concept of a security type system [17]. Similarly to data
type systems [12] which ensure that operations are applied
only to correct instances of data types, security type systems
ensure that information represented by the language con-
structs does not flow such that confidential information be-
comes public. This includes checking of explicit flows when
information is passed in assignments as well as implicit flows
when information is passed via control flow structures [3].

Security type systems are defined with the typing rules
which have to cover all language constructs, i.e., all DVM
bytecode instructions in our case. In order to reduce the



size of the type system we reorganized the complete DVM
instruction set [14] of 218 instructions into an abstract one of
61 instructions by grouping several DVM instructions under
one abstract instruction.

4.1 Abstract Instruction Set
The abstract instruction set [10, Ch. 3] captures all in-

formation flow aspects of DVM bytecode while leaving out
irrelevant details. The nature of the abstractions we have
made is as follows. Since Dalvik VM has been optimized for
small bytecode size and execution time, many DVM instruc-
tions exist in several different versions which only differ in
the maximal size of their parameters, but not in their se-
mantics. For the analysis, these instructions are grouped
together, which greatly reduces the number of instructions
to handle. Besides that, all instructions with similar seman-
tics, e.g., different binary arithmetic operations, are grouped
together, if the semantical differences are irrelevant for the
information flow analysis. Further, we have abstracted the
varying instruction lengths. Finally, several other implemen-
tation details are also abstracted, like the complex way to
build type, method, and field identifiers out of several ref-
erences, or the way in which tables for switch instructions
are stored. Finally, several other implementation details are
also abstracted, like the complex way to build type, method,
and field identifiers out of several references, or the way in
which tables for switch instructions are stored.

4.2 Program Model
Let the code of a method to be analyzed consists of NPP

of program points, each corresponding to a single DVM in-
struction. The set PP = {i ∈ N | 1 ≤ i ≤ NPP } contains all
these program points. A method is modeled by a function P
which maps each program point to its instruction and and a
set E, which contains the exception handlers of the method
(defined below).

Since DVM is a register-transfer machine, most of its in-
structions take registers as parameters and store their re-
sult to a register. Let Nreg be the number of registers,
that are available to the method. The set ID = {i ∈
N | 1 ≤ i ≤ Nreg} contains the register identifiers, that
are valid inside a method. To model semantics of instruc-
tions, we extend the set ID with three invisible registers:
ID′ = ID ∪ {resL, resH, excp}. Besides the identifiers for
registers, we introduce the sets IDC , IDF , and IDM which
contains identifiers for classes, fields, and methods, respec-
tively. Method identifier consists of the method name and
the method’s descriptor which gives the type of each param-
eter and the return type. This design decision allows us to
properly handle Java’s method overloading.

Now, the set E is defined as E ⊆ PP × IDC × PP . The
entry (i, c, j) ∈ E denotes, that an exception assignment
compatible to the class c occurring at program point i is
handled by the exception handler starting at the program
point j. The set is expected to be consistent in the way that
for every program point and every exception the exception
handler is unique.

4.3 Security Type System
The type system given in this thesis is inspired by the

type system in [2] for a JVM-like language. The lattice
SL = {L,H} with L vSL L,L vSL H,H vSL H defines the
available security levels. Any privacy relevant information is

given the security level H, all other information the security
level L. The function tSL : SL× SL→ SL returns the least
upper bound of the two parameters. The set ST = SL ∪
{rt :: ct | rt ∈ SL, ct ∈ SL} contains the possible security
types. This definition follows [1] and allows more precise
handling of arrays. For non-array types the security type
is just the security level of the stored data. For arrays the
security type is rt ::ct, where rt gives the security level of
the array’s reference and length, and ct gives the security
type of the array’s content. The type system is restricted to
one dimensional arrays to simplify the implementation. The
relation vST and the least upper bound function tST are
defined similarly. The set PPST = ID′ → ST defines the
possible types for a program point. A type for a program
point is a function ppst ∈ PPST, that maps each register
to the register security type it has after the execution of
the program point’s instruction. The relation vPPST and
the function tPPST are just the pointwise extensions of the
relation vST and the function tST. In the following, the
relation v and the function t are used, as it should be clear
from the context, which relation or function is meant.

Further, the security types for fields and result values
of method invocations are required. These signatures will
be provided by the sets FS ⊆ IDC × IDF × ST and
MS ⊆ IDC×IDM×(ST∗)×ST. By (c.f, s) ∈ FS we denote
that the field f in the class c has the security type s. We
perform the analysis classwise and do not distinguish partic-
ular instances of a class. By (c.m, (p1, . . . , pn), r) ∈ MS we
denote that if the method m in the class c is invoked with
n parameters with the security types p1, . . . , pn, the return
value has the security type r.

The judgment for instructions P,MS, FS, r ` i : ppst →
ppst′ with r ∈ ST and ppst, ppst′ ∈ PPST denotes that for
given sets MS, FS the type of the program point must be
ppst′ after the execution of the instruction P (i) at program
point i, if it was ppst before the instruction’s execution and
the instruction’s execution does not violate any of the secu-
rity types given by the sets MS and FS. Additionally, if the
instruction P (i) is a return instruction, the security type of
the returned value is less than or equal to r.

The purpose of the type system we design is to ensure
that a method respects a given method signature for given
sets MS and FS. The judgment for methods MS,FS `
c.m, (p1, . . . , pn), r denotes that the method c.m respects
the method signature (c.m, (p1, . . . , pn), r) for given sets MS
and FS. Formally, this judgment is defined as

∃mst ∈ PP → PPST . ∀i, j ∈ PP . ∃ppst′ ∈ PPST .

i→ j =⇒ P,MS, FS, r ` j : mst(i)→ ppst′ ∧ ppst′ v mst(j)

Figure 2 lists selected typing rules of our security type
system which are used to deduce the above introduced judg-
ments for instructions. In the figure, ⊕ is the notation for
function update and at : PP ⇀ ST is a partial function
which gives for each program point where an array is cre-
ated the security type for the content of the new array. Al-
together we have defined 61 typing rules corresponding to
the number of instructions in the abstract instruction set.

5. CASE STUDIES
In this section we demonstrate how our framework detects

privacy violating information flow on example of two small
applications with undesired behavior. Although the analysis



binop
P (i) = binop va, vb, vc

P,MS, FS, r ` i : ppst→ ppst⊕ {va 7→ ppst(vb) t ppst(vc)}

iget
P (i) = iget va, vb, c.f (c.f, st) ∈ FS

P,MS, FS, r ` i : ppst→ ppst⊕ {va 7→ ppst(vb) t st}

iput
P (i) = iput va, vb, c.f

(c.f, st) ∈ FS ppst(va) t ppst(vb) v st

P,MS, FS, r ` i : ppst→ ppst

invoke
P (i) = invoke va, vb, vc, vd, ve, n, c.m

x = (va, vb, vc, vd, ve)
(c.m, (ppst(x1), . . . , ppst(xn−1)), st) ∈MS

P,MS,FS, r ` i : ppst→ ppst⊕ {resL 7→ st, resH 7→ st}

throw
P (i) = throw va ppst(va) = L

P,MS, FS, r ` i : ppst→ ppst

new-array
P (i) = new-array va, vb, t

P,MS, FS, r ` i : ppst→ ppst⊕ {va 7→ ppst(vb)::at(i)}

array-length
P (i) = array-length va, vb ppst(vb) = rt::ct

P,MS, FS, r ` i : ppst→ ppst⊕ {va 7→ rt}

Figure 2: Selected Typing Rules

is performed on the level of Dalvik bytecode we present the
source code of applications to increase readability of the ex-
amples. Each example is accompanied with a privacy policy
assigning privacy levels to each parameter and return value
of the occurring methods. However, due to space limitations
we do not present the complete policies, but rather describe
textually the assigned security levels.

Leaking Device ID through a Network Connection.
The code in Fig. 3 shows a small activity which retrieves

a unique device identifier and sends it to the Internet by
writing to an output socket stream. As identified in Sect. 3,
device ids are considered private, and, hence, the security
policy assigns the security level H to return value of the
method getDeviceId() (line 10). To protect private data from
sinking over the socket the security policy allows the method
write(String str) only to be called with a parameter of secu-
rity type L (line 15). With the provided security policy, the
analysis terminates with the report that a signature is miss-
ing which allows the invocation of write(String str) with a
parameter of type H. This means, that the implementation
tracked the information flow through the method and the
malicious leakage to the Internet was discovered.

Leaking Phone’s Location by Sending an Intent.
The code in Fig. 4 shows another small activity which sub-

scribes itself as a location listener on creation. The callback

1public class MainScreen extends Activity {
2public static final String HOST = ”10.0.2.2”;
3public static final int PORT = 2000;
4
5@Override
6public void onCreate(Bundle savedInstanceState) {
7super.onCreate(savedInstanceState);
8TelephonyManager telephonyManager = (TelephonyManager)
9getSystemService(Context.TELEPHONY SERVICE);
10String imei = telephonyManager.getDeviceId();
11try {
12Socket socket = new Socket(HOST, PORT);
13BufferedWriter writer = new BufferedWriter
14(new OutputStreamWriter(socket.getOutputStream()));
15writer.write(imei);
16writer.newLine();
17writer.close();
18} catch (FileNotFoundException e) { e.printStackTrace(); }
19catch (IOException e) { e.printStackTrace(); }
20}
21}

Figure 3: Source Code of Case Study 1

method onLocationChanged(Location location) is called by
the application framework if a new location fix is available.
Inside the callback method a new Intent object is created
which contains an URL with the coordinates supplied by
the Location object from the callback method’s parameters.
The Intent object is then used to start a new activity which
will receive this intent. The activity to be started is deter-
mined by the OS, and as the intent contains a web URL,
the web browser is started to display the given URL. Since
Location objects always contain a location fix and thereby
privacy relevant information, the security policy assigns the
security level H to the return values of the methods get-
Longitude() and getLatitude() (lines 15 and 17). An Intent
object is a potential information sink as it is used as trans-
port object for the communication with other components.
Therefore, the security policy must not allow to create new
Intent objects containing data with the security type H or to
store data with the security type H into an existing Intent
object. Consequently, the security policy allows invocation
of the method parseUri(String uri, int flags) only with param-
eters of the security type L, as this method creates a new
Intent object containing the URI as a parameter (line 14).

The return values of the methods (Uri.encode(String s))
and String.valueOf(double value) only depend on the given
parameter and the methods do not have any side effects.
Therefore, it is secure to allow their invocation with the se-
curity types L and H (lines 15 and 17). The security type
of the return value must be equal to the security level of
the parameter. As for the method concat(String string), it
is secure to allow the invocation of the method with param-
eters of any security type (lines 15–17). The security type
of the return value must then be the least upper bound of
the parameter security types. This is reflected by the corre-
sponding entries in the security policy.

With the described security policy, the analysis of the
method onLocationChanged(Location location) terminates
with the report that a signature is missing which allows
the invocation of the method Intent.parseUri(String uri, int
flags) with a first parameter with the security type H. This
means, that the implementation tracked the information
flow through the method and discovered the malicious in-
formation flow to the newly created Intent object.



1public class MainScreen extends Activity implements LocationListener {
2@Override
3public void onCreate(Bundle savedInstanceState) {
4super.onCreate(savedInstanceState);
5LocationManager locManager = (LocationManager)
6getSystemService(Context.LOCATION SERVICE);
7locManager.requestLocationUpdates(LocationManager.GPS PROVIDER,
80, 0, this);
9}
10
11@Override
12public void onLocationChanged(Location location) {
13try {
14Intent i = Intent.parseUri(”http://10.0.2.2:2000/gps?lat=”
15.concat(Uri.encode(String.valueOf(location.getLatitude())))
16.concat(”&long=”)
17.concat(Uri.encode(String.valueOf(location.getLongitude()))), 0);
18startActivity(i);
19} catch (URISyntaxException e) {}
20}
21...
22}

Figure 4: Source Code of Case Study 2

6. SUMMARY AND FUTURE WORK
In this paper we have presented a framework for detection

of privacy-violating information flow inside Android appli-
cations by means of static analysis of the application’s byte-
code. The framework is based on a carefully crafted se-
curity type system and supports the complete instruction
set of the Dalvik virtual machine. We have analyzed the
Android API and identified a meaningful set of private in-
formation sources and sinks which we have used to specify
privacy policies to be enforced by the framework. A couple
of case studies have shown the applicability of the frame-
work. We conclude by a number of directions of our future
work comprising scientific as well as engineering efforts.

Implicit Leaks. The type system presented in this paper is
designed to track only explicit information flow. How-
ever a situation when an application sinks user’s pri-
vate data via an implicit leak is easily imaginable. One
of our current efforts is concentrated on a type system
for Dalvik bytecode which will be able to detect im-
plicit leaks due to the program control flow.

Semantical Foundations. We work on a formal specifi-
cation of our execution model which will allow us to
provide provable privacy and security guarantees for
the programs accepted by our type system(s).

Inference of Signatures for API. It would be worth-
while to have a tool for generation of method and
field signatures for the application framework auto-
matically. Two different ways seem to be possible. The
first way would be to analyze the Java source code of
the application framework. The second way would be
to extract the DVM bytecode of the application frame-
work from a phone and analyze it with a modified ver-
sion of the tool presented in the paper. Independently
of the selected way, the difficulty of handling calls to
functions written only in the native code will occur.

Infrastructure. A custom application installer for An-
droid could be developed which will use the results of
this paper to check an application for privacy-violating
information flows prior to installing it.

Acknowledgements.
This work was supported by the German Research Foun-

dation (DFG) under the project RSCP within the Priority
Programme 1496 RS3.

7. REFERENCES
[1] A. Askarov and A. Sabelfeld. Security-Typed

Languages for Implementation of Cryptographic
Protocols: A Case Study. In Proc. of 10th ESORICS,
pages 197–221. Springer, 2005.

[2] G. Barthe, D. Pichardie, and T. Rezk. A Certified
Lightweight Non-interference Java Bytecode Verifier.
In Proc. of 16th ESOP, pages 125–140. Springer, 2007.

[3] D. E. Denning and P. J. Denning. Certification of
Programs for Secure Information Flow. Commun. of
the ACM, 20(7):504–513, 1977.

[4] W. Enck. Defending Users Against Smartphone Apps:
Techniques and Future Directions. In Proc. of 7th
ICISS. Springer, 2011.

[5] W. Enck et al. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on
Smartphones. In Proc. of 9th OSDI, pages 393–407.
USENIX, 2010.

[6] S. Genaim and F. Spoto. Information Flow Analysis
for Java Bytecode. In Proc. of 6th VMCAI, pages
346–362. Springer, 2005.

[7] Google Inc. The Android Developer’s Guide.
http://developer.android.com/guide/, 2011.

[8] M. Hamblen. Symbian, Android Will Be Top
Smartphone OSes in ’12, Gartner Reiterates.
http://www.computerworld.com/s/article/

9139301/Symbian_Android_will_be_top_

smartphone_OSes_in_12_Gartner_reiterates, 2009.

[9] J. Ligatti, L. Bauer, and D. Walker. Edit Automata:
Enforcement Mechanisms for Run-time Security
Policies. Int. J. of Inf. Sec., 4(1):2–16, 2005.

[10] C. Mann. A Static Framework for Privacy Analysis of
Android Applications. Bachelor’s thesis, TU
Darmstadt, 2011.

[11] R. Medel, A. B. Compagnoni, and E. Bonelli. A
Typed Assembly Language for Non-interference. In
Proc. of 9th ICTCS, pages 360–374. Springer, 2005.

[12] J. C. Mitchell. Handbook of Theoretical Computer
Science, chapter Type Systems for Programming
Languages, pages 365–458. MIT Press, 1990.

[13] F. B. Schneider. Enforceable Security Policies. ACM
Trans. on Inf. Sys. Sec., 3(1):30–50, 2000.

[14] The Android Open Source Project. Bytecode for the
Dalvik VM. http://source.android.com/tech/
dalvik/dalvik-bytecode.html, 2007.

[15] The Wall Street Journal Blogs. What They Know -
Mobile. http://blogs.wsj.com/wtk-mobile/, 2010.

[16] S. Thurm and Y. I. Kane. Your Apps Are Watching
You. Available at http://online.wsj.com/, 2010.

[17] D. Volpano, G. Smith, and C. Irvine. A Sound Type
System for Secure Flow Analysis. J. of Comp. Sec.,
4(3):1–21, 1996.

[18] A. Yeager. Researchers Find Phone Apps Sending
Data without Notification.
http://www.physorg.com/news204978481.html, 2010.


