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ABSTRACT
Modern mobile devices store and process an abundance of
data. Although many users consider some of this data as
private, they do not yet obtain satisfactory support for con-
trolling what applications might do with their data.

In this article, we propose Cassandra, a tool that en-
ables users of mobile devices to check whether Android apps
comply with their personal privacy requirements before in-
stalling these apps. Beyond this, Cassandra implements the
core functionality of a conventional app store, including the
browsing of available apps and the delivery of apps for instal-
lation. Cassandra performs the security analysis of apps on a
server. However, a user does not need to trust this server be-
cause Cassandra employs the proof-carrying code paradigm
such that the server’s analysis result can be validated on
the client. We have proven that Cassandra’s security anal-
ysis soundly detects all potential information leaks, i.e., all
flows of information that violate a user’s privacy policy.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—formal methods, correctness proofs; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming
Languages—program analysis; D.4.6 [Operating Systems]:
Security and Protection—information flow controls
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1. INTRODUCTION
Cassandra enables a user to check Android apps against

her personal security requirements before installation. The
primary goal of Cassandra is to ensure that no private data
and no other secrets are leaked by running an app. The silent
leakage of a user’s data is not just a technical possibility, but
a serious threat in reality. For instance [10, 17] show that
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many apps forward private data to the Internet. Cassandra
aims at countering this threat.

The overall functionality of Cassandra resembles the core
functionality of conventional app stores like, e.g., F-Droid
[12]. In particular, a user can browse the available apps on
a server and can select apps for installation on her mobile
device. The additional functionality offered by Cassandra is
that a user can define security policies and verify that apps
adhere to these policies before installation.

More specifically, a user-defined security policy specifies
which flows of information are permissible and which ones
are forbidden. Cassandra’s security analysis checks such se-
curity policies against the flows of information that can be
caused by running a given app. The security analysis is
type based, and we have proven that it soundly enforces
noninterference [16, 29] for a given security policy. Thus, if
Cassandra’s security analysis accepts an app, then it is guar-
anteed that this app’s output to public sinks is independent
from private information, where the security policy deter-
mines which sinks and sources of information are considered
public and private, respectively. If the security analysis re-
jects an app, then Cassandra provides the user with detailed
information about the possible violations of her security pol-
icy, enabling the user to make an informed decision whether
to install the app, nevertheless, or not.

Android already provides security mechanisms. Before in-
stalling an app, a user needs to grant the app access permis-
sions declared in the app’s manifest. Android’s permission
system ensures that apps can only access protected resources
of the mobile device if this is declared in their manifest. The
permission system provides access control, but it does not
control how information obtained from protected resources
is propagated after a legitimate access. Android uses cryp-
tographic signatures to ensure the authenticity and integrity
of apps. These signatures are also used to constrain shar-
ing of resources between apps, i.e., across their sandboxes.
Android’s built-in malware detection service verifies apps
prior to installation and warns users about potential mal-
ware [2]. All these mechanisms are complementary to the
information-flow analysis provided by Cassandra.

Starting with SCanDroid [13], a number of security anal-
ysis tools has been proposed for Android in recent years.
For instance, AndroidLeaks [14], DidFail [19], IccTA [21],
LeakMiner [31], Scandal [18], StaticChecker [23], and Trust-
Droid [32] support the static security analysis of Android
apps at the bytecode level. All of these tools perform a
data flow analysis and do not take implicit information flows
properly into account. In contrast, FlowDroid [3] and the



Information Flow Checker [11] take implicit flows into ac-
count in their information flow analysis of Android apps at
the bytecode level and source code level, respectively. How-
ever, there is no soundness result for these analyses. To our
knowledge, Cassandra is the first tool for verifying the in-
formation flow security of Android apps that takes explicit
as well as implicit information flows into account and whose
security analysis comes with a soundness result. Moreover,
Cassandra does not require any changes to the run-time en-
vironment as some other tools do like, e.g., TaintDroid [9].

The architecture of Cassandra builds on both the client-
server paradigm and the proof-carrying code principle [24].
The client of Cassandra is an Android app itself that runs
on off-the-shelf Android devices. Using the client, a user can
browse available apps, specify security policies, initiate an
information-flow analysis, and examine the analysis results.
The server of Cassandra is implemented in Java and PHP.
It runs on a conventional web server. Cassandra’s server in-
corporates a database of available apps that can be browsed
by a client. The server also performs the information-flow
analysis for a given user-defined security policy. The results
of a successful security analysis are communicated to the
client in a security certificate that carries enough informa-
tion to replay the security analysis on the client. This is
where proof-carrying code is used to avoid that the server
becomes part of the trusted computing base.

In this article, we present Cassandra, our prototypical cer-
tifying app store for Android. In particular, we
• demonstrate how Cassandra can be used to analyze the

security of apps before installation on mobile devices,
• present Cassandra’s architecture and implementation,
• describe the security type system underlying Cassan-

dra’s security analysis,
• define the noninterference-like security property that

this security type system enforces, and present our
soundness result showing that this is, indeed, the case.

A demo video showing the usage of Cassandra, a hands-on
demo, and Cassandra’s source code are available on-line.1

The structure of this article is as follows: Section 2 pro-
vides background on information-flow security and informa-
tion leakage. Section 3 describes the usage of Cassandra.
Section 4 presents the architecture of Cassandra and its im-
plementation. Section 5 describes the theoretical foundation
of Cassandra’s information-flow analysis. The article con-
cludes with a discussion of related work in Section 6 and a
summary of our results and possible future work in Section 7.

Notational conventions. Given a set T , we use T ∗ to de-
note the set of all finite lists over T . We use [] to denote
the empty list and [t0, . . . , tn] to denote the list with the el-
ements t0, . . . , tn ∈ T . Given a list L ∈ T ∗, we use length(L)
to denote the length of L and L[i] to denote the i-th element
of L, where L[0] is the head of a nonempty list L. Given a
set X, we use P(X) to denote the powerset of X.

2. INFORMATION FLOW SECURITY
An information-flow policy (brief: flow policy) defines a

set of security domains D, a domain assignment da, and
an interference relation v⊆ D×D. Each security domain
(brief: domain) represents an abstract level of confidential-
ity. A domain assignment associates each concrete infor-

1URL of the project web-page of Cassandra: http://www.
mais.informatik.tu-darmstadt.de/cassandra.html

mation source and sink in a program with such an abstract
security domain. An interference relation is a partial order
on domains that defines between which domains information
may flow. A flow policy, hence, defines the permitted flows
between sources and sinks in a program.

The semantics of information-flow policies is usually for-
malized using declarative properties in the spirit of Nonin-
terference [16]. Noninterference-like properties require that
if a given flow policy forbids information flow from a do-
main d to a domain d′ (i.e. d 6v d′) then a given program’s
output to sinks associated with level d′ must be completely
independent from input on sources associated with level d.

For violations of noninterference, one usually distinguishes
between explicit flows and implicit flows of information. For
example, consider the following two programs, where the
variables output and phoneNo are of type natural number:

output = phoneNo;

output = 0;
while (0 < phoneNo) {

phoneNo = phoneNo - 1;
output = output + 1;

}

The program on the left explicitly assigns the value of
phoneNo to output. Such an assignment is called an explicit
flow of information. In contrast, the value of phoneNo is not
assigned to output in the program on the right. Instead, the
variable phoneNo influences the control flow and, depending
on the control flow, the value of output is modified. Such a
flow is called an implicit flow of information. In this exam-
ple, the effects of the implicit flow and the explicit flow are
the same: Both copy the initial value of phoneNo to output.

Throughout this article, we use a flow policy with two
security domains D = {low, high} and the interference rela-
tion v = {(low, low), (low, high), (high, high)}. The inter-
ference relation v specifies that information may flow be-
tween any two domains, except for from high to low. This
is suitable for specifying that private information should not
become public. To this end, one defines a domain assign-
ment that associates all sources of private information and
trusted sinks with the domain high, and all sources of public
information and untrusted sinks with the domain low. Since
the domain assignment depends on which sources and sinks
are used in a program, we do not fix it here.

For instance, to express that no information should flow
from phoneNo to output in the above example programs, one
would choose a domain assignment that maps the variable
output to the domain low and the variable phoneNo to the
domain high. Under the resulting flow policy, both example
programs violate noninterference, because the final value of
output depends on the initial value of phoneNo.

3. USING CASSANDRA
The user of a mobile device can employ Cassandra to en-

sure that she only installs apps on the device that respect
her security requirements. Installing apps using Cassandra
is similar to installing apps from regular app stores like, e.g.,
F-Droid [12], but involves additional steps to choose a secu-
rity policy and to analyze apps against this policy.

We illustrate the installation of apps with Cassandra at
the example of the app Minute Man, an app for optimizing
call costs. This app automatically interrupts phone calls
after 59 seconds to avoid the charge for a second minute.
We implemented Minute Man ourselves, inspired by similar
existing Android apps for cost control, e.g., [28].
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Figure 1: User interface of Cassandra’s client

In the first step, the user invokes Cassandra’s client app
and then selects Minute Man among the available apps in
Cassandra’s app browser. Figure 1(a) shows a screenshot of
the app browser’s user interface. Afterwards, the user spec-
ifies which data is private and which sinks are untrusted by
marking categories of information sources and sinks in Cas-
sandra’s policy editor. Our example user wants an overview
of all information flows caused by running Minute Man.
Hence, she marks all displayed categories of information
sources and sinks as private and public, respectively. Fig-
ures 1(b) and 1(c) show screenshots of these selections.

In the second step, the user initiates the information-flow
analysis by clicking the button “Analyze” (see bottom of
Figure 1(b) and Figure 1(c)). The analysis itself is not per-
formed on the client but on a server. After the security
analysis is complete, the user can inspect the analysis result
using Cassandra’s reporter. The reporter either confirms
that the user’s security requirements are satisfied by the
given app or provides information about all violations. In
our example, the reporter warns about one violation, namely
that telephony data might be leaked to other apps (see the
arrow in Figure 1(d)). Based on the result of the security
analysis, the user can make an informed decision whether to
install the app or not.

In the last step, the user clicks the button “Install”, given
that she decided to install the app. This opens the standard
installer of Android, which requests the permissions required
by the app’s manifest. If the user grants the permissions,
the app is installed on the mobile device.

The user’s choice of categories in the policy editor induces
a domain assignment for an interface of an Android app.
Abstractly, an Android app consists of fields and methods.
Some of these methods are entry points, i.e., methods that
can be called to run the app. Examples of entry points
are Activity.onCreate(Bundle), which is called when an app is
initially started, and LocationListener.onLocationChanged(Loca-
tion), which is called when the mobile device’s GPS loca-
tion changes. The parameters of entry points are informa-
tion sources in an app, their return values are information
sinks. An app might also incorporate methods that read
from or write to resources outside the app. Examples of such

methods are TelephonyManager.getDeviceID(), which returns
the unique identifier of the mobile device, and Context.start-
Activity(Intent), which starts a new activity given an intent.
The return values of such methods are information sources
in an app, whereas their parameters are information sinks.

By selecting a source category in the policy editor, the
user indicates that all possible sources of information corre-
sponding to this category shall be associated with high. By
selecting a sink category, the user indicates that all sinks in
this category shall be associated with low. All remaining
sources and sinks in a given app are assigned the security
domains low and high, respectively. The mapping of cate-
gories to sources and sinks is a one-to-many mapping, based
on [23]. In our example analysis of Minute Man, the selection
of the source category “Telephony Data” causes the domain
assignment to assign high, e.g., to the return value of the
method Intent.getStringExtra(Intent.EXTRA PHONE NUMBER).
Moreover, the selection of the sink category “Other Apps”
causes the domain assignment to assign low, e.g., to the
parameter of the method Context.startActivity(Intent).

The domain assignment induced by a user’s choice of cat-
egories in the policy editor, together with the set of security
domains D and the interference relation v, as defined in Sec-
tion 2, constitutes a user-defined information-flow policy. If
Cassandra reports no leaks for a given information-flow pol-
icy, then it is guaranteed that running the app does not
cause any information flow that violates this flow policy.
Otherwise, Cassandra reports for each leak the categories
corresponding to the source and the sink of the leak.

In our example analysis, Cassandra reported an informa-
tion leak from “Telephony Data” to “Other Apps”. Indeed,
the app Minute Man leaks the dialed phone number to the
web browser. The fragment of Minute Man’s source code
that is responsible for this leak is shown below.

private String phonenumber;
private Context context
public void onReceive(Context context, Intent intent) {
this.phonenumber =

intent.getStringExtra(Intent.EXTRA PHONE NUMBER);
this.context = context; ...

}
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Figure 2: The components of Cassandra and their interaction

// the code below is executed after terminating a call
long phoneNo = Long.parseLong(this.phonenumber);
long output = 0;
while (0 < phoneNo) {

phoneNo = phoneNo - 1;
output = output + 1;

}
String url=”http://www.spp-rs3.de/cassandra/leak.php?nr=0X”;
url = url.replace(”X”, String.valueOf(output));
try {

Intent intent = Intent.parseUri(url, 0);
intent.addFlags(Intent.FLAG ACTIVITY NEW TASK);
this.context.startActivity(intent);

} catch (URISyntaxException e) {}

When a phone call is made, the dialed phone number is
retrieved by calling intent.getStringExtra(Intent.EXTRA PHONE

NUMBER) and stored in the field phonenumber. When Minute
Man terminates the call, the stored phone number is con-
verted into a number stored in the variable phoneNo. The
value of phoneNo is then implicitly copied to variable output

by executing the while-loop. Afterwards, the character “X”
in the URL is replaced by the copied number and an in-
tent is created from the URL. Finally, the intent is used
to start a new activity, i.e., the device’s standard browser
app, by calling context.start Activity(intent). At this point, the
information-flow policy from our example is violated because
a dialed phone number has been leaked.

Note that the value of phoneNo implicitly flows to the
variable output, i.e., the variable copied into the URL. Cas-
sandra’s ability to also detect implicit information flows is,
hence, crucial for detecting the flow into the intent and, thus,
the leak to another app. In its current implementation, Cas-
sandra treats all intents, i.e., inter-app and intra-app intents,
equally: An information flow into an intent that is used to
start an activity, as in in the example of Minute Man, is
always considered a potential flow to other apps.

4. DESIGN AND IMPLEMENTATION
In this section, we present the architecture of Cassandra

and some technical details of Cassandra’s implementation.

4.1 Architecture of Cassandra
The architecture of Cassandra builds on the client-server

paradigm, where both the client and the server, again, have
a modular architecture, as depicted in Figure 2.

Cassandra’s client and server perform three interactions
during the installation of an app. Firstly, the client retrieves
the list of available apps and the corresponding list of cate-

gories of information sources and sinks from the server (1).
Secondly, the client informs the server which app, which
source categories, and which sink categories have been se-
lected by the user (2). Thirdly, the server transmits the
app and the result of the security analysis to the client (5).
If an app violates the user-defined information-flow policy,
then detailed information about each violation is sent to the
client. If an app satisfies the policy, then a security certifi-
cate is sent that is based on the proof-carrying-code princi-
ple [24]. That is, the certificate contains enough information
such that the client can efficiently replay the analysis.

Cassandra’s server consists of three components. The
manager (F) accepts requests by clients comprising the se-
lection of an app, of source categories, and of sink cate-
gories. Given a request, the manager retrieves the app from
the database (G) and then calls the certifier (E). The cer-
tifier computes the information flow policy induced by the
selected categories and then performs an information-flow
analysis for the app. Cassandra analyzes apps in a modular
fashion. To enable this modularity, the certifier infers aux-
iliary information about all methods and fields of an app.
If the app passes the analysis, then the certifier generates
a security certificate and, otherwise, compiles a report of
all security violations. The manager forwards the analysis
results of the certifier to the client.

Cassandra’s client consists of four components (see Fig-
ure 2). The app browser (A), the policy editor (B), and the
reporter (D) together constitute the user interface of Cassan-
dra’s client app, which was already introduced in Section 3.
The verifier (C) receives the security certificate generated by
the server and replays the security analysis of the selected
app. By this replay, Cassandra can ensure that it reports the
satisfaction of a user-defined information-flow policy only if
this policy is, indeed, satisfied. The replay is less expen-
sive than the certification because the auxiliary information
about methods and fields is contained in the security certifi-
cate and, hence, does not need to be recomputed.

Cassandra’s use of proof-carrying code in the communica-
tion between server and client removes the server from the
trusted computing base. That is, Cassandra offers security
guarantees that are as reliable as if the analysis were per-
formed by the client app, but without having to perform the
full security analysis on the mobile device.

The modular architecture of Cassandra facilitates the de-
velopment of alternative components. For instance, one
could develop alternative policy editors or other information-
flow analyses than our type-based analysis for Cassandra.



4.2 Security Certificates
Cassandra performs a type-based information-flow analy-

sis that analyzes the methods of an app in a modular fashion.
To this end, the analysis requires a typing of all fields and a
typing of all methods in the app. As types, Cassandra uses
security domains, i.e., elements of the set D.

A typing for fields is a function in FDA = F → D where
F denotes the set of qualified field names. Fields are used
to store information that should be accessible from different
methods. The type of a field restricts the level of confiden-
tiality up to which information may be stored in the field:
If a field is typed high, then the field may be used to store
private as well as public information. A field that is typed
low may only be used for storing public information.

Methods are typed by method signatures. A method sig-
nature associates a type with each formal parameter and
with the return value of a method. LetM denote the set of
all qualified method names and the function params :M→
N0 specify the number of parameters of a method with a
given name. For a method with name m and with n param-
eters, a method signature has the form

(m, [d0, . . . , dn−1], ret) ∈M×D∗ ×D .

This method signature associates the method’s return value
with the type ret, the first parameter of the method with
d0, the second parameter with d1, and so on. Intuitively,
the method signature constitutes a contract that limits the
permissible flows of information from a method’s parameters
to its return value: If the method m is called with arguments
that are typed d′0, . . . , d

′
n, where d′i v di holds for each i ∈

{0, . . . , n− 1}, then the return value of the method may be
assigned to sinks with domain d′ only if ret v d′ holds.

A signature set mda is a set of method signatures, i.e.,
mda ⊆M×D∗×D such that for all (m, [d0, . . . , dn−1], ret) ∈
mda it holds that params(m) = i. We denote the set of all
such signature sets by MDA.

We say that a field typing in fda ∈ FDA is valid for an app
if and only if for each pair of fields f1, f2 ∈ F such that f1
and f2 have the same unqualified names and the class of f1
inherits the field denoted by f2, fda(f1) = fda(f2) holds.

We say that a signature set mda ∈ MDA is valid for an
app if and only if for each pair of methods m1,m2 ∈M such
that m1 and m2 have the same unqualified names and m1

denotes a method declared or inherited in a subclass of the
class in which m2 is declared, the signatures of m2 cover the
signatures of m1, i.e.

{(m, [d0, . . . , dn−1], ret) ∈ mda |m = m1}
⊆ {(m, [d0, . . . , dn−1], ret) ∈ mda |m = m2} .

Note that a signature set mda ∈ MDA associates method
signatures also with methods that are entry points of an app
and with methods that read and write to resources outside
an app. Hence, the induced domain assignment da from
Section 3 can be viewed as a partial signature set: Recall
that a domain assignment da associates a parameter of an
entry point with the security domain high if this parame-
ter corresponds to a source category selected by the user in
Cassandra’s policy editor and with low, otherwise. Which
security domains da assigns to return values of entry points
and to arguments as well as return values of methods that
access resources outside the app also depends on the user’s
choice of source and sink categories in the policy editor, as
already explained in detail in Section 3.

We say that a signature set mda ∈ MDA is compatible with
an app and a domain assignment da if for each method m ∈
M that is an entry point of the app or that accesses resources
outside the app exists one (m′, [d0, . . . , dn−1], ret) ∈ mda
with m′ = m, and for each i ∈ {0, . . . , n− 1}, di equals the
domain that da assigns to the ith parameter of m, and ret
equals the domain that da assigns to the return value of m.

A security certificate of an app comprises a valid typing
for fields and a valid signature set for the app.

Definition 1. A security certificate for an app is a tuple
(fda,mda) ∈ FDA × MDA such that fda and mda are valid
for the app. A security certificate (fda,mda) for an app is
compatible with a flow policy (D, da,v) if and only if mda is
compatible with the app and da.

The certifier computes a compatible security certificate for
an app and a user-defined flow policy in an incremental fash-
ion, starting from a typing that associates all fields with low
and an initial signature set mda ∈ MDA that captures the
user’s domain assignment. That is, mda is a signature set
that is compatible with the app and the user’s domain as-
signment and that contains exactly one method signature
for each entry point of the given app and for each method
that accesses resources outside the app. Note that mda is
uniquely determined by a given app and domain assignment.

An initial security certificate for an app and a domain
assignment is a pair (fda,mda) such that fda is a field typ-
ing that associates all fields with low and mda is the initial
signature set for the given domain assignment.

4.3 Implementation of Cassandra
The client app of Cassandra is implemented in Java. Its

manifest requires the permissions to access the Internet and
to access the memory of the mobile device. These permis-
sions are needed to communicate with the server and to store
the apk-files of apps received from the server. The client
app runs on unmodified Android devices, i.e., it requires no
changes to the operating system or to the Dalvik VM. The
server of Cassandra is implemented in Java and PHP. It is
hosted on a conventional web-server with a MySQL database
and a Java runtime environment.

The information-flow analysis that is performed by the
certifier of Cassandra is implemented in Java. The imple-
mentation of the analysis is based on the security type sys-
tem described in Section 5. It takes the bytecode extracted
from the apk-file of an Android app as well as a security
certificate as input and fully automatically computes a list
of information flows in the app that violate the constraints
imposed by the typings from the certificate.

The certifier repeatedly applies the information flow anal-
ysis to refine the security certificate in a stepwise manner,
starting with an initial security certificate for the domain
assignment induced by the user’s selection of categories. In
each iteration, the information-flow analysis either succeeds
or reports security violations or the security certificate is re-
fined. In particular, the certifier performs the following algo-
rithm for a given app and user-defined flow policy (D,v, da):

1. It computes an initial security certificate (fda,mda) for
the app and the domain assignment da.

2. It extends mda to a signature set mda ∈ MDA that is
valid for the app, that includes all method signatures
of mda, and that contains for each method that is not
already covered by the method signatures in mda a new



signature that types each parameter and the return
value with the domain low.

3. It applies the information-flow analysis to the given
app and the security certificate (fda,mda).

4. Where the analysis detects a flow of private informa-
tion to a target (i.e., a field, a method parameter, or a
return value) that is typed low, the certifier
• records the information flow as a leak if the target

is a sink that has been assigned low by da, or
• adapts the typings such that they type the target

with the security domain high, remain valid for
the app, and compatible to da, otherwise.

5. The certifier repeats the process from step 3 until the
typings and the leak records do not change any more.

Since an app has a finite number of fields and methods for
which the typings can only be upgraded finitely often, the
computation of the certificate is guaranteed to terminate.

If a security certificate is generated without recording an
information leak, it is suitable for the verification of the
app’s information-flow security.

The current implementation of Cassandra’s server sup-
ports the caching of analysis results in the database to in-
crease efficiency. By checking whether a suitable security
certificate already exists for an analysis request before call-
ing the certifier, the manager avoids the unnecessary repe-
tition of the certification algorithm.

Given a security certificate for an app, the verifier checks,
firstly, that the typings in the certificate are valid for the
selected app, secondly, that the certificate is compatible to
the app and the flow policy induced by the user’s choice of
categories in the policy editor, and, thirdly, that the app
adheres to the policy. The verification algorithm checks the
adherence of an app to a flow policy with a single execution
of the information-flow analysis without the need to repeat
the iterative inference process conducted by the certification
algorithm. In case the app passes the analysis with respect
to the certificate, the verifier confirms the app’s security to
the reporter. In case the certificate is not suitable for the
verification of the app’s security, the analysis fails and the
verifier reports an error.

5. THEORETICAL FOUNDATION
We formalize the type-based information flow analysis for

a simplified, Dalvik-bytecode-like language, which we call
ADL. ADL abstracts from details of the Dalvik bytecode
language that are irrelevant for the flow of information in an
app. Our abstraction reduces the number of instructions in
our formalization and, hence, reduces conceptual complexity
of the presentation and of our proofs. The mapping of Dalvik
programs to ADL programs is straightforward.

After sketching the syntax and semantics of our language
ADL in Sections 5.1 and 5.2, we present a noninterference-
like condition that captures information-flow security in Sec-
tion 5.3. We present our security type system at the level
of ADL instructions in Section 5.4 and show that it soundly
verifies the security condition. The mapping between the
original Dalvik bytecode language and our language ADL is
sketched in Section 5.5. The mapping shows that ADL cov-
ers almost the whole instruction set of the Dalvik bytecode
language, 211 of 218 Dalvik bytecode instructions are cov-
ered. The mapping also provides a solid connection between
the formalization of our security type system for ADL and
its implementation for Dalvik bytecode in Cassandra.

Due to space restrictions, we cannot present all details
about ADL, our security type system, our soundness proof,
and the mapping to Dalvik bytecode in this article. These
details are provided in a companion technical report [22].

5.1 Syntax of ADL
We denote the set of fully qualified class names with C and

leave the set underspecified. The set BOP contains symbols
for binary operations, such as addition. ROP is the set of
symbols for operations that compare values, e.g., for equality
tests. The set N contains numbers, e.g., integer numbers.
The set X of register names is defined by X = {xi | i ∈ N0}.
We define the ADL syntax based on these sets.

Definition 2. The set I of all ADL instructions contains

binop xa, xb, xc, bop
new-instance xa, c
iget xa, xb, f
iput xa, xb, f

invoke-virtual-range xa, n,m
if-test xa, xb, n, rop
return xa

for arbitrary xa, xb, xc ∈ X , n ∈ N , bop ∈ BOP, rop ∈
ROP, c ∈ C, f ∈ F , and m ∈M.

Methods comprise multiple instructions. We formalize
methods by non-empty lists of instructions in I∗\{[]}.

The declaration of fields and methods in a program as
well as the class hierarchy that specifies the inheritance of
fields and methods are modeled by the partial functions
fdec : F ⇀ F and mdec : M× C ⇀ I∗ \{[]}. The func-
tion fdec is defined for all qualified field names f, f ′ ∈ F
such that fdec(f) = f ′ if and only if f and f ′ have the same
unqualified name and either f = f ′ and the class of f de-
clares the field, or the class of f inherits the field denoted
by f ′. The function mdec is defined for all m ∈ M, c ∈ C,
and M ∈ I∗ \{[]} such that M = mdec(c,m) if and only
if c is a subclass of or equal to the class of m, and M is
either declared by c with the same unqualified name as m
or inherited from the closest superclass of c that declares
M with the same unqualified name as m. The class names,
field names, and method names of a program are specified
implicitly by the domains of fdec and mdec, the methods of
the program by the range of mdec. The names of methods
by which a program can be executed, the entry points of the
program, are specified by a set EP ⊆M.

Definition 3. An ADL program is a triple (EP, fdec, mdec)
such that EP, dom(fdec), and dom(mdec) are finite.

An ADL program is well-formed if it satisfies the fol-
lowing properties: (1) Only class names, field names, and
method names defined by the program are used in instruc-
tions. (2) Constants given as parameters of instructions are
within sensible bounds (e.g., n in if-test n does not cause a
jump outside the method). (3) The program is type-correct
(e.g., a method is not invoked on a register containing a
number). (4) Non-parameter registers of a method are writ-
ten before they are read for the first time. (5) Each class
has at most one immediate superclass. For the rest of this
section, we assume only well-formed ADL programs.

5.2 Semantics of ADL
The operational semantics of ADL is defined in terms of a

transition relation on states. A state specifies the position of
the next instruction to be executed and the current content
of the memory, consisting of registers and a heap.



We denote the set of locations by L and leave this set un-
derspecified. The set V = N ∪L contains values, which can
be stored in registers and fields. The register res is a dis-
tinguished register for storing the return values of methods.
The elements of the set R = (X ∪{res})→ V model register
states as a mapping of register names to values. Each object
from the set of objects O = C×(F⇀V) consists of a class
name specifying its type, and a mapping of its fields to val-
ues. A heap h : L⇀ O models a memory for storing objects
at locations. The set of heaps H is defined by H = L⇀ O.

Definition 4. The set of states S is defined by S = N0 ×
R×H. The set of final states Sfinal is defined by Sfinal = V×H.

States 〈p, r, h〉 ∈ S consist of a program point p, a register
state r, and a heap h. The program point p denotes the
index of the next instruction to be executed in the current
method. The register state and the heap model the current
memory. When a method terminates, it yields a final state
〈v, h〉 ∈ Sfinal, comprising the return value v of the method
and the heap h at the time the method terminated.

The effect of executing an instruction in a given state is
defined by the relation ;P,M⊆ S × (S ∪ Sfinal). Intuitively,
〈p, r, h〉 ;P,M 〈p′, r′, h′〉 models that the execution of the
instruction at program point p of method M of program
P with the register state r and the heap h results in the
program point p′, the register state r′, and the heap h′.
〈p, r, h〉 ;P,M 〈v, h′〉 models that the execution of the in-
struction at program point p with the register state r and
the heap h terminates the execution of method M , returning
the value v and updating the heap to h′. In the following,
we provide intuitive semantics for the instructions from Def-
inition 2 (for a formal definition of ;P,M , see [22]).

The instruction binop applies the binary operation spec-
ified by bop to the values of xb and xc, and stores the result
in xa. new-instance creates a null-initialized object of the
class c on the heap and stores its location in xa. iget copies
the value of the field f of the object at the location given in
xb to xa. iput copies the value of xa to the field f of the
object at the location given in xb. The instructioninvoke-
virtual-range looks up the method with the name m in the
class of the object at the location given in xa. Then, this
method is executed with the current heap and a fresh register
state that maps the registers x0, . . . , xparams(m)−1 to the val-
ues of xa, . . . , xa+params(m)−1. The returned value is stored
in the distinguished register res. The instructions binop,
new-instance, iget, iput, and invoke-virtual-range de-
termine the next program point to be executed as their own
program point plus one. The remaining instructions allow
for nonlinear control flow: The instruction if-test yields
the program point with the offset n from the current pro-
gram point if the values in xa and xb are related with respect
to rop. Otherwise, if-test yields its own program point
plus one. The instruction return terminates the execution
of the current method and returns the value of xa.

The effect of executing an entire method M of a program
P in a given state is defined by the relation ⇓P,M .

Definition 5. Let P = (EP, fdec,mdec) be a well-formed
program and M ∈ rng(mdec) be a method of P . The exe-
cution relation ⇓P,M⊆ S × Sfinal is defined by the rules

s;P,M t

s ⇓P,M t

s;P,M s′ s′ ⇓P,M t

s ⇓P,M t

where s, s′ ∈ S, and t ∈ Sfinal.

Intuitively, 〈0, r, h〉 ⇓P,M 〈v, h′〉 denotes that the method
M of program P executed in the initial register state r and
heap h terminates in the heap h′ and returns the result v.

The semantics of a program execution depends on the
entry point used to start the program and on the class of the
object on which the entry point is invoked. The semantics of
the program is then defined by the semantics of the method
that the program specifies for the given entry point and class.

Definition 6. Let P = (EP, fdec,mdec) be a well-formed
program, m ∈ EP be an entry point of P , and c ∈ C be a
class name such that (m, c) ∈ dom(mdec). The semantics of
P with respect to m and c is defined by ⇓P,mdec(m,c).

5.3 Security Property
This section introduces the declarative security property

TIN-ADL (Termination-Insensitive Noninterference for the
Abstract Dalvik Language). TIN-ADL intuitively requires
that an observer who knows the content of public sources
and sinks before and after the terminating execution of a
program as well as the bytecode of the program does not
learn anything about private information from executing the
program. We assume that covert channels, e.g., runtime or
power consumption of an app’s execution, cannot be used
to deduce private information. Which information sources
and sinks of a program are public is specified by a security
certificate as defined in Definition 1.

Although register states are considered to be not directly
observable, registers are also typed with security domains to
keep track of the confidentiality of their content. Typings
for registers are functions from the set RDA = (X ∪{res} →
D). The relation v on typings for registers is the pointwise
extension of v on domains: For any two rda1, rda2 ∈ RDA,
rda1 v rda2 holds if and only if rda1(x) v rda2(x) holds for
all registers x ∈ X ∪ {res}.

Given typings to determine which parameters, return val-
ues, registers, and fields are potentially observable, the ob-
server’s capabilities to distinguish values, register states, and
heaps can be formalized. To support a notion of indistin-
guishability that is independent from the actual placement
of objects on the heap, we follow the approach of Banerjee
and Naumann [4] and relate the locations of any two corre-
sponding observable objects with a partial injective function
on locations β : L⇀ L.

Definition 7. Let rda ∈ RDA be a typing for registers,
fda ∈ FDA be a typing for fields, and β : L⇀ L be a partial
injective function on locations. The indistinguishability of
any two values v1, v2 ∈ V, register states r1, r2 ∈ R, objects
o1, o2 ∈ O, and heaps h1, h2 ∈ H with respect to rda, fda,
and β (written v1 ∼β v2, r1 ∼β,rda r2, o1 ∼β,fda o2, and
h1 ∼β,fda h2, respectively) is defined by the following rules:

n ∈ N v1 = v2 = n
v1 ∼β v2

v1, v2 ∈ L β(v1) = v2
v1 ∼β v2

∀x ∈ X ∪ {res}.(rda(x) = low =⇒ r1(x) ∼β r2(x))
r1 ∼β,rda r2

o1 = (c1, F1) o2 = (c2, F2) c1 = c2
∀f ∈ dom(F1).(fda(f) = low =⇒ F1(f) ∼β F2(f))

o1 ∼β,fda o2

dom(β) ⊆ dom(h1) rng(β) ⊆ dom(h2)
∀` ∈ dom(β).h1(`) ∼β,fda h2(β(`))

h1 ∼β,fda h2



Two values are indistinguishable if they are the same nu-
merical value or if they are the locations of corresponding
objects. Two register states are indistinguishable if all reg-
isters with the type low hold indistinguishable values. Two
objects are indistinguishable if they are instances of the same
class and all fields with the type low hold indistinguishable
values. Two heaps are indistinguishable if for all locations
on the first heap that are potentially observable, there exists
a corresponding location on the second heap such that the
objects at both locations are indistinguishable.

The indistinguishability relations are the basis for formal-
izing TIN-ADL: If the two initial states of a method execu-
tion are indistinguishable to an observer, i.e., if the method
is executed with indistinguishable heaps and parameters,
then the final states after the method’s execution must also
be indistinguishable. Otherwise, the observer would learn
about differences of private information in the initial states.

Definition 8. Let P = (EP, fdec,mdec) be a well-formed
program, M ∈ rng(mdec) be a method of P , fda ∈ FDA be a
valid typing for the fields of P , m ∈ M be a method name,
and d0, . . . , di−1, ret ∈ D for i = params(m) be domains.

The method M satisfies TIN-ADL with respect to fda
and (m, [d0, . . . , di−1], ret) if and only if there exists a typ-
ing for registers rda ∈ RDA with dk v rda(xk) for all k ∈
{0, . . . , i− 1} and for all partial injective functions β : L⇀
L, register states r1, r2 ∈ R, heaps h1, h2, h

′
1, h
′
2 ∈ H, and

return values v1, v2 ∈ V such that

r1 ∼β,rda r2,

h1 ∼β,fda h2,

〈0, r1, h1〉 ⇓P,M 〈v1, h′1〉, and

〈0, r2, h2〉 ⇓P,M 〈v2, h′2〉,

there exists a partial injective function on locations β′ ∈
L ⇀ L, such that β ⊆ β′, h′1 ∼β′,fda h

′
2 and, if ret = low,

v1 ∼β′ v2.

A method M satisfies TIN-ADL with respect to a valid
typing for fields and a method signature if and only if for any
two terminating executions of M from initial configurations
with indistinguishable registers and heaps, the final configu-
rations have indistinguishable heaps and, if the return value
is public, the returned values are indistinguishable.

TIN-ADL for methods is lifted to programs by requiring
each method corresponding to an entry point of the program
to satisfy TIN-ADL for all signatures of the entry point.

Definition 9. Let P = (EP, fdec,mdec) be a well-formed
program, and (fda,mda) be a security certificate for P . The
program P satisfies TIN-ADL with respect to (fda,mda) if
and only if for all entry points m ∈ EP, for all security
domains d0, . . . , di, ret ∈ D such that (m, [d0, . . . , di], ret) ∈
mda, and for all classes c ∈ C and methods M ∈ rng(mdec)
such that M = mdec(m, c), method M satisfies TIN-ADL
with respect to fda and (m, [d0, . . . , di], ret).

Intuitively, TIN-ADL requires that if any method corre-
sponding to an entry point of the program is executed in
any two initial states that are indistinguishable to an ob-
server, then the two final states of the execution are also
indistinguishable to the observer. Hence, the execution of
a program that satisfies TIN-ADL never leaks information
from private information sources to public sinks.

5.4 Security Type System
Verifying that a program satisfies TIN-ADL directly based

on the program’s semantics is a tedious task. This section
introduces a security type system to facilitate the automatic
verification that a given program satisfies TIN-ADL.

The security type system captures both explicit leaks of
information and implicit leaks due to control-flow depen-
dencies on private information. Since the syntax of ADL
does not convey control-flow dependencies between program
points, the control-flow dependencies have to be determined
based on the instruction semantics. To make the control-
flow dependencies between program points in a method ex-
plicit, the security type system uses the concept of secu-
rity environments and control dependence regions, which
we adopt from a security type system for Java bytecode by
Barthe, Pichardie, and Rezk [5].

A security environment se : N0 → D for a method speci-
fies for each program point of the method an upper bound
of the security domains of all information sources that de-
termine whether the program point is executed or not.

On which other instructions in a method the execution
of a given instruction depends we derive from the succes-
sor relation of the method. For any well-formed program
P = (EP, fdec,mdec) and method M ∈ rng(mdec) of P , the
successor relation →P,M⊆ N0 × N0 is defined by →P,M=
{(p, p′) ∈ N0 × N0 | ∃r, r′ ∈ R, h, h′ ∈ H.〈p, r, h〉 ;P,M

〈p′, r′, h′〉}. Based on the successor relation, the control-flow
dependencies between program points can be approximated
such that the approximation is safe.

Definition 10. Let P = (EP, fdec,mdec) be a well-formed
program, and M ∈ rng(mdec) be a method of P . The func-
tions regionP,M : N0 → P(N0) and junP,M : N0 ⇀ N0 are a
safe over-approximation of M ’s control dependence regions
if they satisfy the three safe over-approximation properties:

1. For all program points p, p′, p′′ ∈ N0 such that p→P,M

p′, p →P,M p′′, and p′ 6= p′′ (i.e., p is a branching
point), p′ ∈ regionP,M (p) or p′ = junP,M (p).

2. For all program points p, p′, p′′ ∈ N0, if p′ →P,M p′′

and p′ ∈ regionP,M (p), then either p′′ ∈ regionP,M (p)
or p′′ = junP,M (p).

3. For all program points p, p′ ∈ N0, if p′ ∈ regionP,M (p)
and there exists no p′′ ∈ N0 such that p′ →P,M p′′,
then junP,M (p) is undefined.

For all branching points p, a control dependence region
regionP,M (p) that is a safe over-approximation of M ’s con-
trol flow contains at least those program points that are
executed depending on what the branching condition of the
instruction at p evaluates to. The junction point junP,M (p)
specifies the end of the control dependence region of program
point p in the sense that it points to an instruction that is
executed independently of the evaluation of the branching
condition. If the method terminates in a control dependence
region, the region cannot have a junction point.

The typing rules of the security type system are para-
metric in the method M , the control dependence region
regionP,M , the typing for fields fda, the signature set mda,
the domain ret ∈ D of the return value of M , and the secu-
rity environment se. The judgment

M, regionP,M , fda,mda, ret, se ` p : rda→ rda′

denotes that after executing the instruction at program point
p in the context of M, regionP,M , fda,mda, ret, se, the typ-



M [p] =binop xa, xb, xc, bop
rda′ = rda[xa 7→ rda(xb) t rda(xc) t se(p)]

M, regionP,M , fda,mda, ret, se ` p : rda→ rda′

M [p] = new-instance xa, c
rda′ = rda[xa 7→ se(p)]

M, regionP,M , fda,mda, ret, se ` p : rda→ rda′

M [p] = iget xa, xb, f
rda′ = rda[xa 7→ rda(xb) t fda(f) t se(p)]

M, regionP,M , fda,mda, ret, se ` p : rda→ rda′

M [p] = iput xa, xb, f
rda(xa) t rda(xb) t se(p) v fda(f)

M, regionP,M , fda,mda, ret, se ` p : rda→ rda

M [p] = invoke-virtual-range xa, n,m
(m, [rda(xa), . . . , rda(xa+n−1)], ret′) ∈ mda

se(p) = low rda(xa) = low rda′ = rda[res 7→ ret′]

M, regionP,M , fda,mda, ret, se ` p : rda→ rda′

M [p] = if-test xa, xb, n, rop
∀j ∈ regionP,M (p).rda(xa) t rda(xb) v se(j)
M, regionP,M , fda,mda, ret, se ` p : rda→ rda

M [p] = return xa se(p) t rda(xa) v ret
M, regionP,M , fda,mda, ret, se ` p : rda→ rda

Figure 3: Typing rules for the instructions from I

ing for the registers must be rda′ if it was rda before. A
program point within a method is typable, if a judgment is
derivable with respect to the typing rules in Figure 3. In the
definition of these rules, we write d1 t d2 to denote the least
upper bound of two domains d1, d2 ∈ D with respect to the
interference relation v.

The rule for binop types the target register with the least
upper bound of the domains of the argument registers and
of the security environment in which the instruction is exe-
cuted. The rule for new-instance types the target register
with the domain of the security environment. The typing
rule for iget types the target register the least upper bound
of the domains of the register holding the location of the
object, the source field, and the security environment. The
rule for iput ensures that the target field is typed with at
least the highest of the domains of the register holding the
location of the object, the source register, and the security
environment. The rule for invoke-virtual-range ensures
that methods are not executed depending on private infor-
mation (se(p) = low) or on an object at a location from
a private register (rda(xa) = low). Moreover, the rule en-
sures that a method signature exists in the signature set that
types the parameters of the invoked method with the same
domains as the typing of the registers containing the argu-
ments. If such a signature exists, the result register is typed
with the type of the return value declared by the signature.
If multiple such signatures exist then the least restrictive one
is chosen, i.e., the one which assigns the lowest security do-
main to the return value. The rule for if-test ensures that
the security environment of all program points in the control
dependence region of the program point is at least the up-

per bound of the domains of the registers in the branching
condition. The rule for return ensures that the type of the
return value ret of the current method is at least as high
as the domain of the register that contains the return value
and the domain of the security environment.

Taking care that the targets of assignments are typed with
at least the highest domain of all information sources for-
bids explicit leaks of information. The requirement that the
target registers, fields, and return values are typed with a
domain at least as high as the current security environment
rules out implicit information leaks due to control-flow de-
pendencies on private information. The premise of the rule
for if-test ensures that all control-flow dependencies are
taken into account by the security environment. In case of
field accesses, the target register is typed with a domain at
least as high as the domain of the register holding the loca-
tion of the object to prevent implicit information leaks due
to aliasing. The requirement that methods are not executed
depending on private information or on an object at a lo-
cation from a private register prevents implicit leaks due to
observable effects that executing the method may have on
the heap.

An entire method is typable if there exists a declaration
of the security environment and a typing of registers for
each program point such that for each potential step in the
method’s execution, a suitable judgment can be derived.

Definition 11. Let P = (EP, fdec,mdec) be a well-formed
program, M ∈ rng(mdec) be a method of P such that
length(M) = i for some i ∈ N0, (fda,mda) be a security cer-
tificate for P , and regionP,M : N0 → P(N0) be a safe over-
approximation of M ’s control dependence regions. Further-
more, let m ∈M be a method name, and d0, . . . , dj , ret ∈ D
be security domains such that (m, [d0, . . . , dj ], ret) ∈ mda.

The method M is typable with respect to the signature
(m, [d0, . . . , dj ], ret), (fda,mda), and regionP,M if and only if
there exist a security environment se : N0 → D and typings
for registers rda0, . . . , rdai−1 ∈ RDA such that

1. for all k ∈ {0, . . . , j} it holds that dk v rda0(xk),
2. for all p, p′ ∈ N0, if p →P,M p′, there exists a typing

for registers rda′ ∈ RDA such that rda′ v rdap′ and

M, regionP,M , fda,mda, ret, se ` p : rdap → rda′

is derivable, and
3. for all p ∈ N0, if there exists no p′ ∈ N0 such that
p→P,M p′, then the judgment

M, regionP,M , fda,mda, ret, se ` p : rdap → rdap

is derivable.

The first condition ensures that the method treats the pa-
rameters given in the initial register state at least as confi-
dential as they have been declared by the method signature.
The second condition requires that a typing rule is applicable
for each possible transition between program points p and
p′ in the method such that the typing for registers result-
ing from the derivable judgment rda′ does not classify more
registers as private than the fixed typing for registers rdap′ .
The third condition requires that each return instruction in
the method is typable.

The typability of methods is extended to ADL programs
by requiring that each of the program’s methods is typable
with respect to all method signatures that could possibly
refer to the respective method.



Definition 12. Let P = (EP, fdec,mdec) be a well-formed
program, and (fda,mda) be a security certificate for P . The
program P is typable with respect to (fda,mda) if and only
if for all names of methods m ∈ M, classes c ∈ C, methods
M ∈ rng(mdec), and security domains d0, . . . , di, ret ∈ D
such that M = mdec(m, c) and (m, [d0, . . . , di], ret) ∈ mda,
there exists a safe over-approximation of M ’s control de-
pendence regions regionP,M : N0 → P(N0) such that the
method M is typable with respect to (m, [d0, . . . , di], ret),
(fda,mda), and regionP,M .

We have shown in [22] that if a program is typable with
respect to a security certificate, then it satisfies TIN-ADL
with respect to the certificate.

Theorem 1. For all well-formed programs P = (EP, fdec,
mdec), and security certificates (fda,mda) for P , if program
P is typable with respect to (fda,mda), then P satisfies TIN-
ADL with respect to (fda,mda).

5.5 From ADL to Dalvik Bytecode
We designed ADL with the goal to focus on aspects of

the original Dalvik bytecode language that are relevant for
analyzing the information flows in apps. Hence, ADL ab-
stracts from Dalvik’s details that have no impact on the flow
of information, such as Dalvik bytecode instructions that
exist in different variants for arguments of different types.
For example, the Dalvik bytecode instructions iget, iget-
object, iget-boolean, iget-byte, iget-char, and iget-

short essentially all load a value from a field to a register.
These instructions are subsumed by the single ADL instruc-
tion iget. Further language details of Dalvik bytecode from
which ADL abstracts include the bit-width of constant ar-
guments to some Dalvik bytecode instructions (e.g., const,
const/4, const/16, const/high16), the concrete computa-
tion performed by instructions for unary and binary oper-
ations (e.g., add-int, sub-int, mul-int, and so on). The
complete mapping of ADL instructions to their correspond-
ing instructions in Dalvik bytecode is specified in [22].

Overall, the instruction set of ADL comprises 55 instruc-
tions that correspond to 211 Dalvik bytecode instructions.
In particular, ADL covers all arithmetic instructions, all in-
structions for the creation and manipulation of objects and
arrays, all instructions for variants of method calls, and all
instructions that operate on 64 bit arguments (i.e., on ar-
guments comprising two registers) in the Dalvik bytecode
language. Moreover, ADL supports the Dalvik bytecode
instructions for jumps and branching, except for packed-

switch and sparse-switch. Two aspects of Dalvik byte-
code are not yet supported in ADL are the handling of ex-
ceptions (i.e., the Dalvik bytecode instructions check-cast,
move-exception, and throw) as well as synchronization (i.e.,
the instructions monitor-enter and monitor-exit).

Also note that our definition of well-formedness of ADL
programs in Section 5.1 imposes conditions on ADL pro-
grams that are analogous to the conditions enforced by the
Dalvik bytecode verifier on Dalvik bytecode programs [1].

In Section 5.4, we defined the rules of our security type
system for ADL, but we implemented typing rules for Dalvik
bytecode within Cassandra. The mapping of the typing rules
for ADL to the implemented typing rules for Dalvik byte-
code is straightforward. The typing rule for each Dalvik
bytecode instruction in our implementation is analogous to
our ADL typing rule for the corresponding ADL instruction.

For example, the typing rule for the Dalvik instruction iget-

object is analogous to the ADL typing rule for iget. Our
implementation also supports the analysis of apps with in-
structions for the invocation of native methods and methods
of the Android framework that are not automatically ana-
lyzable with our implementation. For such methods, trusted
signatures may be specified manually. We have shown in [22]
that our analysis is sound in the presence of trusted method
signatures if the respective methods satisfy TIN-ADL with
respect to these signatures. This condition could either be
verified manually or with the help of other analysis tools.

Despite the abstraction, our ADL instructions capture all
aspects of the corresponding Dalvik instructions that are rel-
evant for the flow of information when running a program.
Given this, our definition of the security property TIN-ADL
carries over to Dalvik bytecode: The execution of an An-
droid app consists of a sequence of executions of its entry
points reacting to different events, e.g., start of the app, user
inputs, and termination of the app. For an app that satisfies
TIN-ADL, each entry point satisfies TIN-ADL and, hence,
does not leak private information when executed. Thus,
private information is disclosed at no point in any execution
sequence of the app. We are confident that our soundness
result also carries over, but we have not formally verified the
soundness of Cassandra’s implementation.

6. RELATED WORK
Related work for Cassandra includes research on language-

based information-flow security and on Android application
security. Sabelfeld and Myers [25] provide a broad overview
of language-based security, whereas Enck [8] reviews the re-
search on Android application security. In this section, we
focus on concepts for security-certifying app stores, on tools
for the information-flow analysis of Android apps, and on
type-based information-flow analyses with proven soundness
that are applicable for Android and Java programs.

App-store concepts. The approach closest to Cassandra is
a prototypical extension of TouchDevelop [30], a platform for
developing, distributing, and running apps on different op-
erating systems for mobile devices. The extension supports
the static detection of information flows in TouchDevelop
apps and the limitation of these flows during runtime. When
running a TouchDevelop app for the first time, the user gets
an overview of potential information flows in the app and
is asked whether and how these flows shall be mitigated.
The information-flow analysis is based on abstract interpre-
tation and detects explicit leaks and implicit leaks due to
control-flow dependencies on private information. Yet, the
information-flow analysis of TouchDevelop is limited to apps
that have been developed with TouchDevelop and, thus, can-
not be applied to Android apps.

Androlyzer [6] employs a collection of different security
analysis tools to inspect Android apps for security problems.
For each app, an overview of the analysis results, e.g., poten-
tial leaks of sensitive information off the device, is presented
to the user, which allows to assess the risk of installing the
app. An asset of Cassandra in comparison with this tool is
that it provides explicit security guarantees in the case that
no security problems are found.

Gilbert et al. [15], Titze et al. [27], Zhauniarovich et
al. [33], and Ernst et al. [11] propose app stores employing
(semi-)automatic security analyses to verify the security of



an app before making it available for installation. Thus,
apps with malicious behavior are excluded from the store
or at least reported to the user as potentially dangerous.
Cassandra checks apps against user-defined information-flow
policies rather than against security policies of the app store
provider. Thus, Cassandra gives a user the possibility to
specify and check individual flow policies for each app.

Fuchs et al. [13] suggested to employ proof-carrying-code
with their security analysis tool SCanDroid for analyzing
Android apps on a server and verifying the results on a mo-
bile device. However, it was not elaborated how this could
be achieved.

Tools for information-flow analysis. SCanDroid [13],
AndroidLeaks [14], LeakMiner [31], ScanDal [18], Static-
Checker [23], TrustDroid [32], DidFail [19], and IccTA [21]
support the static detection of explicit data leaks in Android
apps. Cassandra, in addition, considers implicit information
flows through control-flow dependencies on secrets.

The tools FlowDroid [3] and Information Flow Checker
[11] support the static analysis of Android apps at the level
of Dalvik bytecode and Java source code, respectively. They
detect both explicit and implicit information leaks. Both
analysis tools were designed for precisely tracking the infor-
mation flows within apps. In contrast, the focus when de-
signing the analysis method of Cassandra was on achieving
provable soundness rather than on maximizing precision.

This makes Cassandra, to the best of our knowledge, the
first security analysis for Android apps that has been proven
sound and detects explicit and implicit information leaks.

Dynamic approaches to verify the information-flow secu-
rity of apps like TaintDroid [9] can precisely detect infor-
mation leakage on mobile devices. To this end, they taint
data and track its propagation within and across apps. Yet,
dynamic information-flow analyses require modifications to
the operating system or the instrumentation of the apps and
induce runtime overhead by monitoring the propagation of
data. By employing a static analysis method, Cassandra
neither requires the modification of the analyzed apps nor
of the operating system and, once installed, analyzed apps
are executed without any runtime overhead.

Security type systems. The first security type system for
an imperative high-level programming language equipped
with a formal proof of soundness was proposed by Volpano,
Irvine, and Smith [29]. Banerjee and Naumann [4] adopted
this concept to define a sound security type system for pro-
grams written in a fragment of the JavaCard programming
language. Security type systems for Java could be used to
analyze Android apps, but only if the source code is avail-
able. For some apps, the source code even cannot be ob-
tained using decompilers [10]. Our security type system was
developed specifically to analyze Dalvik bytecode, such that
access to the source code of an app or the decompilation of
Dalvik binaries are not necessary.

The first security type system with proven soundness for
a bytecode language was proposed by Kobayashi and Shi-
rane [20]. They analyzed a subset of Java bytecode without
object orientation. Barthe, Pichardie, and Rezk [5] pro-
vided a sound security type system for a larger subset of
Java bytecode that includes objects, method calls, arrays,
and exceptions. We adopted some aspects of the security
type system from [5] when defining our security type sys-

tem for Dalvik bytecode, e.g., the handling of implicit infor-
mation flows in unstructured bytecode and the structure of
the soundness proof. Yet, there exist nontrivial differences
between Java bytecode and Dalvik bytecode that had to be
considered. For example, Dalvik programs have multiple en-
try points while Java programs have a single main-method,
and Dalvik bytecode operates on registers whereas the Java
Virtual Machine uses an operand stack.

7. CONCLUSION
To our knowledge, Cassandra offers the first information-

flow analysis for Android apps within a prototypical app
store to enforce user-specified security requirements. More-
over, we are not aware of other information-flow analyses
for Dalvik bytecode with a soundness result. Our analy-
sis could also be used separately from Cassandra, e.g., as a
third-party service allowing to upload and analyze apps, but
we have not explored this possibility yet.

In this article, we used the app Minute Man to illustrate
the use of Cassandra. Cassandra’s database contains fur-
ther apps whose security we have successfully analyzed. For
instance, the Distance Tracker app measures a user’s travel
distance using the device’s GPS location, and the Private
Notes app allows a user to manage personal notes. Like
for Minute Man, the functionality of these self-implemented
apps is similar to that of existing apps (see, e.g., [26, 7]).
In the future, the collection of apps that are available in
Cassandra’s database shall grow further. In this context,
we plan to conduct an experimental evaluation of the per-
formance and the precision of Cassandra’s information-flow
analysis with respect to third-party open-source apps.

We also plan to extend the coverage of the Dalvik bytecode
language by Cassandra’s information-flow analysis in both
the implementation and the underlying theory. Cassandra
already covers 211 of 218 Dalvik instructions. We intend to
add support for the remaining instructions, in particular for
exception handling and synchronization, in a stepwise man-
ner. Adding these instructions will also be helpful for being
able to analyze a wider range of functionalities provided by
existing Android apps.
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