
An Automatic Inference of Minimal
Security Types

Dominik Bollmann, Steffen Lortz, Heiko Mantel, and Artem Starostin

Computer Science Department, TU Darmstadt, Germany
<lastname>@mais.informatik.tu-darmstadt.de

Abstract Type-based information-flow analyses provide strong end-to-
end confidentiality guarantees for programs. Yet, such analyses are not
easy to use in practice, as they require all information containers in a
program to be annotated with security types, which is a tedious and
error-prone task — if done manually. In this article, we propose a new
algorithm for inferring such security types automatically. We implement
our algorithm as an Eclipse plug-in, which enables software engineers to
use it for verifying confidentiality requirements in their programs. We
experimentally show our implementation to be effective and efficient.
We also analyze theoretical properties of our security-type inference al-
gorithm. In particular, we prove it to be sound, complete, minimal, and
of linear time-complexity in the size of the program analyzed.

1 Introduction

We present a solution for verifying confidentiality requirements in Java programs.
Our solution consists of a type system for verifying information-flow security, a
language for annotating sources, sinks, and other information containers, and
an algorithm for inferring such annotations. We implement our solution as an
Eclipse plug-in, and our experimental evaluation shows that it significantly out-
performs prior solutions. We prove that our solution is sound and minimal.

Our solution runs in O(n) time, where n is the size of the input program. It
requires annotations of sources to be fixed, while allowing annotations of sinks
and all other information containers to be flexible. Other solutions that run in
O(n) time require either annotations of all information containers to be fixed
(see, e.g., [30]), or at least annotations of all sources and sinks to be fixed (see,
e.g., [10]). On the other side of the spectrum, principal types [12,13,29] provide
enough information for verifying a program against arbitrary annotations of
sources and sinks. A disadvantage of principal types is that their construction
requires O(nv3) time, where n is the size of the input program and v is the
number of its variables [13]. A conceptual novelty of our solution is that, despite
it runs in O(n) time, it achieves minimality, similarly to principal types.

The soundness of our security analysis might not be a distinctive feature be-
cause there are other information-flow analyses that have been proven sound
(e.g., [1, 2, 12, 29–31]), but it is an important one. However, there are also
well-known information-flow analyses for which no soundness result exists (e.g.,

To appear in:
S. Jajodia and C. Mazumdar (Eds.): ICISS 2015, LNCS 9478
c© Springer International Publishing Switzerland 2015
The original publication will be available at www.springerlink.com

[4, 8, 18]). We consider soundness a crucial attribute, because without it, the
guarantees established by a security analysis are unclear.

We implemented our solution as an Eclipse plug-in Adele (Assistant for De-
veloping Leak-free Programs). It supports developers in writing Java programs
with secure information flow. Adele analyzes the source code in the background,
fully automatically, and reports detected information leaks. Due to the minimal-
ity result, Adele provides developers with an overview of all potential sinks
to which the confidential information flows. This overview enables an informed
navigation in the decision space for refactoring the program into a leak-free one.

We experimentally evaluated our solution at a spectrum of Java programs.
We observed that for a single manually annotated information container, our al-
gorithm infers security types for up to 128 other containers. Hence, our algorithm
reduces the burden of manual security-type annotation by up to two orders of
magnitude. Regarding performance, our experiments suggest that our solution
needs, on average, less than 0.02 ms to analyze a line of source code. We also
wanted to compare, in practice, the performance of our solution with that of
principal types. Unfortunately, we did not find any implementation of principal
types that we could have used in an experimental comparison. The other most
flexible sound algorithm for inferring security types [27], that we are aware of, is
implemented in SecJ [26]. Hence, we used it as a point of comparison. We exper-
imentally compared the performance of our solution and SecJ, which revealed
ours to be two orders of magnitude faster (in addition to being more flexible).

In summary, the novelties of this article are both conceptual and practical.
Conceptually, we show how to achieve minimality without having to use principal
types. Practically, we present a solution for the verification of confidentiality
requirements in Java programs that is sound and flexible, and we experimentally
demonstrate it to be effective and efficient.

The article is structured as follows. In Section 2, we define the Java subset
that we focus on. In Section 3, we present our language for annotating infor-
mation containers, our type system for verifying information-flow security, and
a soundness result for the type system. In Section 4, we introduce our type-
inference algorithm. In Section 5, we provide soundness, completeness, mini-
mality, and complexity results for our algorithm. In Section 6, we present the
implementation of our solution. In Section 7, we experimentally evaluate our so-
lution. After a discussion of related work in Section 8, we conclude in Section 9.

Adele, its source code, and our benchmark programs are available for down-
load under the MIT license at www.mais.informatik.tu-darmstadt.de/adele.

2 Programming Language

We focus on a sequential object-oriented fragment of Java with recursive method
calls. Let underspecified sets C, M, F , and X denote the sets of class, method,
field, and variable names, respectively. LetM∩F = ∅, let this, result ∈ X , and
let Object ∈ C. We define the sets of data types T, expressions E, statements
S, method definitions M, and class definitions C by the BNF in Figure 1, where

2

C,D∈C, x∈X , f ∈F , m∈M, and overlined terms, e.g., T x, denote arbitrarily
but finitely many repetitions of the term. We define a program as P ⊆ C.

T ::= boolean | C
E ::= null | true | false | x | E.f | E == E

| E instanceof C | ((C) E)

S ::= E.f = E | x = E | x = new C() | x = E.m(E)

| T x = E; S | if (E) { S; } else { S; } | S; S

M ::= T m(T x) { T result; S; return result; }

C ::= class C extends D { T f ; M }

Figure 1: Programming language
syntax.

A data type is the primi-
tive type boolean or a class
name from C. An expression is
a literal expression null, true,
or false, a variable access x,
a field access e.f , an equal-
ity check e1 == e2, a type
check e instanceof C, or a cast
((C) e). A statement is a field
assignment e1.f = e2, variable
assignment x = e, instance cre-
ation x = new C(), method call
x = e.m(e1, . . . , en), variable declaration T x = e; S, conditional branching
if (e) { S1; } else { S2; }, or sequential composition S1;S2. In a method defi-
nition T m(T1 x1, . . . , Tn xn) { T result; S; return result; }, m denotes the
method name, T1 x1, . . . , Tn xn denote the formal parameters with their data
types, S denotes the method body, and T denotes the data type of the return
value. In a class definition class C extends D { T1 f1; . . . ; Ti fi; M1 . . . Mj },
C denotes the class name, D denotes the name of the immediate superclass of
C, T1 f1, . . . , Ti fi denote the field declarations of C with their data types, and
M1, . . . ,Mj denote the method definitions of C.

Class definitions specify the inheritance hierarchy: For all classes C,D ∈ C
defined in a program P , C is a subclass of D, written C ≤P D, if and only
if D = C or another class D′ ∈ C is defined, such that D′ is the immediate
superclass of C and D′ ≤P D. A subclass C of a class D inherits all field
declarations and method definitions from D. If C defines a method with the
same name as in D, then the method is overridden by the new definition from
C. We assume that Object is the common superclass of all classes in a program,
and that it does not declare any fields or define any methods.

We call a program well-formed if (1) it satisfies type-safety conditions com-
monly imposed by Java compilers, (2) each class has a unique name, fields and
methods have unique names within each class, and local variables and formal
parameters have unique names within each method, and (3) field names declared
in a class are not reused in field declarations of its subclasses, and methods are
only overridden by methods that declare the same formal parameters with the
same data types. In this article, we assume all programs to be well-formed.

The uniqueness of names allows identifying classes within a program P by
elements of C, fields by elements of FID = F ×C, methods by elements of MID =
M×C, and variables by elements of VID = X ×M×C. For all C ∈ C and f ∈ F ,
the partial function fieldsofP : C ⇀ P(F) is defined, such that C ∈ dom(fieldsofP)
if and only if P contains a definition of class C, and f ∈ fieldsofP (C) if and only
if class C in P declares or inherits field f . For all C ∈ C and m ∈M, the partial
function methodsofP : C ⇀ P(M) is defined, such that C ∈ dom(methodsofP) if

3

and only if P contains a definition of class C, and m ∈ methodsofP (C) if and
only if class C in P defines or inherits method m. For all C ∈ C, m ∈ M, and
x ∈ X , the partial function varsofP : MID ⇀ P(X) is defined, such that (m,C) ∈
dom(varsofP) if and only if m ∈ methodsofP (C), x ∈ varsofP (m,C) if and only
if formal parameter x is declared by method m defined or inherited by class C
in P , or local variable x is declared by method m defined by class C in P . The
set of defined identifiers in P is namesP = {(x,m,C)∈VID | x∈ varsofP (m,C)}
∪{(f, C) ∈ FID | f ∈ fieldsofP (C)} ∪ {(m,C) ∈ MID | m ∈ methodsofP (C)}.

The semantics of the language in Figure 1 corresponds to that of a syntacti-
cally equivalent Java subset.

3 A Type System for Verifying Information-Flow Security

We define a security type system in the spirit of [1] for the language from Sec-
tion 2. This type system ensures that confidential information does not flow to
untrusted sinks during a program execution. Which containers store confidential
and which store public information is specified by security-type annotations.

3.1 An Annotation Language and Information-Flow Policy

To specify between which information containers information may flow, every
information container in a program may be annotated with a security-type an-
notation @High or @Low. Such annotations induce an information-flow policy.

An information-flow policy (brief: policy) defines a set of security domains D,
an interference relation v⊆ D×D, and a domain assignment da : VID∪FID ⇀ D.
The security domains (brief: domains) from the set D denote abstract levels
of confidentiality. The interference relation is a partial order on security do-
mains that specifies between which domains information may flow. The do-
main assignment associates some information containers in a program with
a security domain. A policy defines the permitted flows of information be-
tween the information containers: For any two containers a, b ∈ VID ∪ FID with
da(a) = d and da(b) = d′, information from a may be written into b if and only
if d v d′. We assume a two-level information-flow policy (D, da,v) with the
security domains D = {low, high} and the interference relation v= {(low, low),
(low, high), (high, high)}. This policy allows expressing that confidential infor-
mation must not leak to untrusted sinks of a program. While we focus on the
two-level policy, an extension to arbitrary lattices is straightforward.

The domain assignment is induced from the security-type annotations of a
concrete program as follows. For any program P with security-type annotations,
the annotation-induced domain assignment da : VID ∪ FID ⇀ D is defined, such
that for all x ∈ X , m ∈ M, C ∈ C, and f ∈ F : (1) da(f, C) is defined if and
only if program P contains class C that declares field f , and the declaration is
annotated with either @High or @Low, (2) if da(f, C) is defined, da(f, C) = high
if the declaration of field (f, C) in program P is annotated with @High, and
da(f, C) = low otherwise, (3) da(x,m,C) is defined if and only if program P
contains class C that defines method m, and in the definition, the declaration of

4

variable x is annotated with either @High or @Low, (4) if da(x,m,C) is defined,
da(x,m,C) = high if the declaration of variable (x,m,C) is annotated with
@High, and da(x,m,C) = low otherwise. An information-flow policy (D, da,v)
with an annotation-induced domain assignment intuitively requires for an anno-
tated program that information obtained from information containers annotated
with @High shall not flow to those annotated with @Low.

Due to inheritance and overriding, certain identifiers in namesP can be aliases
of the same information container. To ensure that a domain assignment does not
associate different security domains with such identifiers, we require any domain
assignment for P to be consistent for P . For any set X, a partial function
g : namesP ⇀ X is consistent for P if and only if for all C,D ∈ C with C ≤P D
it holds: (1) for all f ∈ fieldsofP (D), if (f, C) ∈ dom(g) and (f,D) ∈ dom(g)
then g(f, C) = g(f,D), (2) for all m ∈ methodsofP (D), if (m,C) ∈ dom(g) and
(m,D) ∈ dom(g), then g(m,C) = g(m,D), (3) for all m ∈ methodsofP (D) and
x ∈ {x | (x1, . . . , xn) = parsP (m,D) ∧ ∃i ∈ {1, . . . , n}.x = xi}, if (x,m,C) ∈
dom(g) and (x,m,D) ∈ dom(g), then g(x,m,C) = g(x,m,D), where the partial
function parsP : MID ⇀ X ∗ is defined for T m(T1 x1, . . . , Tn xn) {. . .} in the
definition of any class C ∈ C in P , such that parsP (m,C) = (x1, . . . , xn), and
parsP (m,C) = parsP (m,D) if C inherits m from superclass D ∈ C.

3.2 A Security Type System

A domain assignment assigns security domains to a subset of fields and variables
in a program. Our security type system requires the domain assignment to be
extended, so that all defined identifiers of fields, methods, and variables are
associated with a security domain. A complete typing (brief: typing) of a program
P is a function t : namesP → D that is consistent for P . Intuitively, a typing
of a program associates all variables, fields, and methods of the program with
security domains, such that all identifiers that could be aliases of the same field,
method, or variable are assigned the same domain. We call typing t compatible
with domain assignment da if and only if for all a ∈ dom(da) it holds t(a) = da(a).

typeP (x,m,C) = vtypeP (x,m,C)

typeP (e1.f,m,C) = ftypeP (f, typeP (e1,m,C))

typeP (((T) e1),m,C) = T

typeP (null,m,C) = Object

typeP (e,m,C) = boolean, for all other e

Figure 2: Data types of expressions.

Our type system uses a
function typeP to determine
data types of information con-
tainers and expressions in a
given program P .The defini-
tion of typeP relies on the par-
tial functions ftypeP : FID ⇀ T
and vtypeP : VID ⇀ T to de-
termine data types of fields and
local variables, respectively. ftypeP (f, C) is defined if and only if f ∈ fieldsofP (C),
and ftypeP (f, C) = T if f is declared with data type T in C, and other-
wise ftypeP (f, C) = ftypeP (f,D), where D is the immediate superclass of C.
vtypeP (x,m,C) is defined if and only if x ∈ varsofP (m,C), and vtypeP (x,m,C) =
T if x is declared with data type T in method m defined by C, and otherwise
vtypeP (x,m,C) = vtypeP (x,m,D), where D is the immediate superclass of C.

5

Finally, the partial function typeP : E×MID ⇀ T is defined in Figure 2, where
e, e1, e2 ∈ E, T ∈ T, x ∈ X , f ∈ F , m ∈M, and C ∈ C.

For a given program P and function γ : namesP → Y , we use method
signatures msigγP : MID ⇀ Y ∗ to denote the values that γ associates with a
method’s formal parameters, return value, and heap effect, e.g., in the signature

msigt
P (m,C) = 〈dt, (d1, . . . , dn)

dh−→ dr〉 of method (m,C) wrt. typing t, dt and
dr denote the security domains associated with this and result, respectively,
d1, . . . , dn denote the domains associated with the method’s parameters, and dh
denotes the domain associated with the method’s heap effect.

Whether a program is typable wrt. a typing is defined by a set of security
typing rules. A selection of our security typing rules corresponding to object-
oriented features is presented in Figure 3. In these rules, the judgment for ex-
pressions is denoted by m,C, P ; t ` e : d, where m,C, P denote the context in
which the expression e is evaluated, and d denotes the security domain of the
value the expression evaluates to wrt. typing t of P . The judgment for state-
ments is denoted by m,C, P ; t ` S : (d′, κ′), where S ∈ S denotes a statement
and d′, κ′ ∈ D denote security domains. The judgment for method definitions is
denoted by C,P ; t ` M , where C denotes the class of program P in which the
method is defined. The judgment for typing program P wrt. complete typing t
of P is denoted by t ` P . It is derivable if the judgment for method definitions
is derivable wrt. t, for all method definitions in all class definitions in P . We say
that program P is accepted by our security type system wrt. complete typing
t : namesP → D for P if and only if the judgment t ` P is derivable.

If a program is accepted by the type system wrt. a complete typing of the pro-
gram, the typing is an approximation of the possible distribution of confidential
information during program’s execution. Intuitively, (1) each security domain
associated by the typing with an information container is an upper bound on
the security domains of containers from which information may flow into this
one, and (2) each security domain associated by the typing with a method is a
lower bound on all security domains of fields that the method may write.

m,C, P ; t ` e1 : d1
d = t(f, typeP (e1,m,C))
d1 v d′ d v d′

m,C, P ; t ` e1.f : d′

m,C, P ; t ` e1 : d1 m,C, P ; t ` e2 : d2
d = t(f, typeP (e1,m,C))

d1 v d d2 v d κ′ v d
m,C, P ; t ` e1.f = e2 : (d′, κ′)

m,C, P ; t ` e1 : d1 . . . m,C, P ; t ` en : dn

msigtP (m2, typeP (e1,m,C)) = 〈d′t, (d′2, . . . , d′n)
d′h−−→ d′r〉

dx = t(x,m,C) ∀i ∈ {2, . . . , n}.di v d′i
d′r v dx d1 v d′t d1 v d′h d1 v dx d′ v dx κ′ v d′h

m,C, P ; t ` x = e1.m2(e2, . . . , en) : (d′, κ′)

m,C, P ; t ` S : (d′, κ′) t(m,C) v κ′

C,P ; t ` Tr m(. . .) { Tr result; S; return result; }

Figure 3: Selected security typing rules.

6

3.3 Soundness of the Security Type System

We prove the soundness of our security type system wrt. a security property
in the style of Noninterference [9]. For an execution of a single method, our
noninterference-like security property intuitively requires that the information
stored in low return values and low object fields on the resulting heap is inde-
pendent from the information stored in high formal parameters and high object
fields on the initial heap. Which information containers are low or high is given
by a typing. If all executions of a method respect our noninterference-like secu-
rity property, we call such a method noninterfering wrt. a typing. A program is
noninterfering wrt. a typing, if all its methods are noninterfering wrt. the typing.

Theorem 1 (Soundness of the Security Type System). Let P ⊆ C be a
program and t : namesP → D be a complete typing for P . If t ` P is derivable,
then P is noninterfering wrt. t.

4 Our Security-Type Inference Algorithm

The type system from Section 3 requires a complete typing of a program for ver-
ification of the program’s information-flow security. In this section, we define our
security type inference algorithm to automatically infer, for a given program and
a domain assignment, a complete typing for the program that is compatible with
the domain assignment. The algorithm consists of four steps: (1) Assignment of
security type variables: Associate each information container and method in the
program not associated with a security domain by the domain assignment with
a type variable. (2) Derivation of constraints: Derive constraints from the pro-
gram that an inferred typings has to satisfy, so that the program is accepted wrt.
the inferred typing by the security type system. (3) Constraint solving : Assign a
domain to each type variable, so that all constraints are satisfied. (4) Inferring a
typing : If constraint solving was successful, output a typing, and an error value
indicating failure, otherwise. Section 4.1 to Section 4.4 present Step 1 to Step 4,
respectively.

4.1 Assignment of Security Type Variables

Let V denote the infinite set of type variables. Each information container and
method in a given program, not associated with a domain by a given domain
assignment, is associated with a type variable by the security context of the
program and domain assignment. Let typevar : VID ∪ FID ∪ MID → V be an
arbitrary but fixed injective function assigning type variables to identifiers of
variables, fields, and methods. A security context for program P and domain
assignment da is a function σ : namesP → D ∪ V, such that:
– for all (f, C) ∈ FID ∩ namesP it holds that (1) if D ∈ C exists, so that

(f,D) ∈ dom(da) and C ≤P D∨D <P C, then σ(f, C) = da(f,D), else (2) if
D ∈ C exists, so that f ∈ fieldsofP (D) and C <P D, then σ(f, C) = σ(f,D),
and (3) σ(f, C) = typevar(f, C), otherwise,

7

– for all (m,C) ∈ MID∩ namesP it holds that (1) if D ∈ C exists, so that m ∈
methodsofP (D) and C <P D, then σ(m,C) = σ(m,D), and (2) σ(m,C) =
typevar(m,C), otherwise, and

– for all (x,m,C) ∈ VID ∩ namesP it holds that (1) if (x,m,C) ∈ dom(da),
then σ(x,m,C) = da(x,m,C), else (2) if D ∈ C exists, so that (x,m,D) ∈
dom(da), C <P D ∨ D <P C, and x ∈ {x | (x1, . . . , xn) = parsP (m,D) ∧
∃i ∈ {1, . . . , n}.x = xi}, then σ(x,m,C) = da(x,m,D), else (3) if D ∈ C
exists, so that m ∈ methodsofP (D), C <P D, and x ∈ {x | (x1, . . . , xn) =
parsP (m,D) ∧ ∃i ∈ {1, . . . , n}.x = xi}, then σ(x,m,C) = σ(x,m,D), and
(4) σ(x,m,C) = typevar(x,m,C), otherwise.
The first condition requires the security context to assign to each field iden-

tifier (1) the same security domain that da assigns to an alias of the field,
(2) the same security type variable the security context assigns to the same field
in a super class, or (3) a unique security type variable if the field is declared
in the class denoted by the identifier. The second and third conditions impose
similar requirements for method identifiers and variable identifiers, respectively.
The third condition distinguishes between formal parameters and local variables,
since only parameters can be aliases of each other, whereas local variables are
only accessible within the declaring method definition.

A security context agrees with the corresponding domain assignment for all
field and variable identifiers, for which the domain assignment is defined, by
construction. All identifiers that are not associated with a security domain based
on the domain assignment are assigned a security type variable. The set of type
variables in the range of σ is denoted by typevarsσ = {α ∈ V | α ∈ rng(σ)}.
The set typevarsσ denotes the set of type variables for which constant security
domains have to be inferred to obtain a complete typing of the program P .

4.2 Derivation of Constraints

In the second step of our security-type inference algorithm, constraints on type
variables are derived that a typing of a program has to satisfy, so that the
program is accepted wrt. the typing by the security type system from Section 3.
We use the notation for constraints and derivations rules in the spirit of [27].

Constraints. We denote constraints on type variables by constraint formulas.
A constraint formula (brief: constraint) is a term λ � λ′, where � is a binary
relation symbol and λ, λ′ ∈ D ∪ V are either security domains or type variables.
The set KV of all constraint formulas over some set of type variables V ⊆ V
is defined by KV = {λ � λ′ | λ, λ′ ∈ D ∪ V }. Intuitively, a constraint formula
λ � λ′ requires that information is permitted to flow from the security domain
denoted by λ to the security domain denoted by λ′. A constraint scheme is a pair
(V,K) of a finite set of type variables V ⊆ V and a set of constraint formulas
K ⊆ KV over the type variables in V . The set S of all constraint schemes is
defined by S = {(V,K) | V ⊆ V ∧ |V | ∈ N0 ∧K ⊆ KV }.
Constraint derivation rules. We define a set of derivation rules that analyze
the possible flow of information through the program and generate a constraint

8

m,C, P ;σ;V0 ` e1 : α1 (V1,K1) λ = σ(f, typeP (e1,m,C))
α ∈ V \ (V0 ∪ V1) V = V1 ∪ {α} K = K1 ∪ {α1 � α, λ � α}

m,C, P ;σ;V0 ` e1.f : α (V,K)

m,C, P ;σ;V0 ` e1 : α1 (V1,K1) m,C, P ;σ;V0 ∪ V1 ` e2 : α2 (V2,K2)
α, β ∈ V \ (V0 ∪ V1 ∪ V2) V = V1 ∪ V2 ∪ {α, β}

λ = σ(f, typeP (e1,m,C)) K = K1 ∪K2 ∪ {α1 � λ, α2 � λ, β � λ}
m,C, P ;σ;V0 ` e1.f = e2 : (α, β) (V,K)

m1, C, P ;σ;V0 ` e1 : α1 (V1,K1)
...

m1, C, P ;σ;
⋃
i∈{0,...,n−1} Vi ` en : αn (Vn,Kn)

〈λt, (λ2, . . . , λn)
λh−−→ λr〉 = msigσP (m2, typeP (e1,m1, C)) λx = σ(x,m1, C)

α, β ∈ V \ (
⋃
i∈{0,...,n} Vi) V =

⋃
i∈{1,...,n} Vi ∪ {α, β}

K = K1 ∪
⋃
i∈{2,...,n}(Ki ∪ {αi � λi})∪

{α1 � λt, α1 � λh, α1 � λx, α � λx, β � λh, λr � λx}
m1, C, P ;σ;V0 ` x = e1.m2(e2, . . . , en) : (α, β) (V,K)

m,C, P ;σ;V0 ` S : (α1, β1) (V1,K1) λh = σ(m,C) K = K1 ∪ {λh � β1}
C,P ;σ;V0 ` T m(. . .) { T result; S; return result; } (V1,K)

Figure 4: Selected constraint derivation rules.

scheme with constraints imposed on an acceptable typing of the program. Most
of the rules impose constraints on auxiliary type variables that are not in the se-
curity context. To ensure the uniqueness of these type variables, all rules, except
the rule for programs take a set V0 of already used type variables, to exclude
when selecting a new auxiliary type variable. Selected constraint derivation rules
for object-oriented features of our language are given in Figure 4.

The judgment for deriving constraint schemes from expressions is of the form
m,C, P ;σ;V0 ` e : α (V,K). It denotes that expression e in method (m,C)
of program P under security context σ is associated with type variable α, and
constraint scheme (V,K) specifies requirements on the security domain that α
denotes. Intuitively, the constraint scheme derived from an expression requires
that the domain denoted by α is an upper bound on the domains of all informa-
tion containers from which information flows into the expression’s value.

The judgment for deriving constraint schemes from statements is of the form
m,C, P ;σ;V0 ` S : (α, β) (V,K). It denotes that statement S in method
(m,C) of program P under security context σ is associated with type variables α
and β, and imposes constraints specified by constraint scheme (V,K). Intuitively,
the derived constraints require that the auxiliary type variable α denotes a lower
bound on all security domains of variables that the statement may write, β
denotes a lower bound on all security domains of fields that the statement may
write, and all security domains of information containers that the statement may
write denote upper bounds on the security domains of the information written
into the respective information container.

9

The judgment for deriving constraint schemes from method definitions is of
the form C,P ;σ;V0 ` T m(. . .) { T result; S; return result; } (V,K).
It denotes that the definition of method (m,C) in program P under security
context σ imposes the constraints specified by constraint scheme (V,K). This
constraint scheme contains the constraints derived from the body of the method
and one additional constraint λh � β1, requiring that the security domain of the
method’s heap effect is a lower bound on the domains of the fields the execution
of the method’s body may write.

The constraint scheme derived from the definition of a class is comprised
of the constraints imposed by the definitions of the methods of this class. The
constraint scheme derived from a program is the union of all constraints of all
defined methods of all classes in the program.

4.3 Constraint Solving

In the third step of our security-type inference algorithm, the constraints in a
derived constraint scheme are solved. The objective is to determine a variable
valuation associating the type variables in the constraints with security domains,
so that all constraints are satisfied if interpreting the binary relation � as v. A
variable valuation is a total function I : V → D, where V ⊆ V and V is finite.
We denote the set of all variable valuations by I. A variable valuation I is lifted
to Î : V ∪D → D so that for all λ ∈ V ∪D that Î(λ) = λ if λ ∈ D and Î(λ) = I(λ),

otherwise. Hence, Î associates all domains with themselves.
A constraint formula λ � λ′ ∈ KV is satisfied by a variable valuation I,

denoted by I |= λ � λ′, if and only if Î(λ) v Î(λ′). For a set of constraint
formulas K ⊆ KV , we write I |= K to denote that I |= λ � λ′ for all λ � λ′ ∈ K.
Intuitively, constraint formula λ � λ′ is satisfied by variable valuation I, if the
interference relation v permits flows from the domain that I associates with the
left operand to the domain that I associates with the right operand. A variable
valuation satisfies a set of constraints if it satisfies all constraints in the set.

To solve a constraint scheme, we adopt a constraint solving algorithm of
Rehof and Mogensen [21]. The algorithm takes a constraint scheme and either
computes variable valuation I satisfying all constraints, or it determines that the
constraint set is not satisfiable and outputs an error value ⊥. We model this
algorithm by the function solve : S → I ∪ {⊥}.

4.4 Inferring a Typing

In the fourth step of our security-type inference algorithm, the results from the
other steps are combined to infer a typing based on a program and a domain
assignment. Our security-type inference algorithm takes a program and a domain
assignment for the program as input, and either outputs a complete typing of the
program, or an error value denoting that no typing could be inferred. We model
our algorithm by the function infer : P(C) × (VID ∪ FID ⇀ D) → (namesP →
D) ∪ {⊥} that is defined for any P ⊆ C and da : VID ∪ FID ⇀ D for P by

10

(1) infer(P, da) = Î ◦ σ if (V,K) ∈ S and I : V → D exist so that solve(V,K) = I
and σ ` P (V,K) is derivable under the security context σ : namesP →
D ∪ V for P and da, and by

(2) infer(P, da) = ⊥, otherwise.

5 Soundness, Completeness, Minimality, Complexity

In this section, we present the soundness, completeness, minimality and com-
plexity results for our security-type inference algorithm.

5.1 Soundness

If our security-type inference algorithm infers a typing for a given program and
domain assignment, then the program is accepted wrt. the inferred typing by
the security type system from Section 3.

Lemma 1 (Correctness). Let P ⊆ C be a program, and da : VID ∪ FID ⇀ D
be a domain assignment for P . If a complete typing t : namesP → D of P exists,
such that infer(P, da) = t, then t ` P is derivable.

In order to express the soundness of our security-type inference algorithm,
we need to lift our notion of noninterference from Section 3 to one wrt. a domain
assignment. For a program P and a domain assignment da : VID ∪ FID ⇀ D for
P , P is noninterfering wrt. da if and only if a complete typing t : namesP → D
exists, such that t is compatible with da and P is noninterfering wrt. t. If a
program is noninterfering wrt. a typing t and t is compatible with a domain
assignment da, then all outputs of the program into information containers that
da associates with low are independent from information stored in containers
that da associates with high. This holds because t agrees with da on all identifiers
for which da is defined, and a noninterfering program wrt. t is guaranteed to have
no flows of information from information containers that t associates with high
to containers that t associates with low. If our algorithm infers a typing for a
given program and domain assignment, then the program is noninterfering wrt.
the domain assignment.

Theorem 2 (Soundness). Let P ⊆ C be a program, and da : VID ∪ FID ⇀ D
be a domain assignment for P . If a complete typing t : namesP → D exists, such
that infer(P, da) = t, then P is noninterfering wrt. da.

5.2 Completeness

The completeness result guarantees that our security-type algorithm always out-
puts a typing for a program and domain assignment, if the domain assignment
can be extended to a complete typing of the program, such that the program is
accepted wrt. the typing by our security type system.

Theorem 3 (Completeness). Let P ⊆ C be a program, and da : VID∪FID ⇀
D be a domain assignment for P . If t : namesP → D exists, so that t is a complete
typing of P , t is compatible with da, and t ` P is derivable, then infer(P, da) 6= ⊥.

11

5.3 Minimality

In order to define the minimality of typings, we first introduce the interference
relation vP ⊆ (namesP → D) × (namesP → D) on typings of a program P ,
that is defined, such that for all typings t, t′ : namesP → D, t vP t′ if and
only if t(a) v t′(a) for all a ∈ namesP . For program P and domain assignment
da : VID ∪ FID ⇀ D for P , a complete typing t : namesP → D is minimal for P
and da, if and only if for all typings t′ : namesP → D, such that t′ is a complete
typing of P , t′ is compatible with da, and t′ ` P is derivable, it holds that
t vP t′. Intuitively, a typing is minimal for a program and domain assignment,
if it is a lower bound on all typings of the program that are compatible to the
domain assignment and under which the program is accepted by our security
type system. Our inference algorithm only infers typings that are minimal.

Theorem 4 (Minimality). Let P ⊆ C be a program, and da : VID∪ FID ⇀ D
be a domain assignment for P . If a typing t : namesP → D exists such that
infer(P, da) = t, then t is minimal for P and da.

Intuitively, an inferred typing for a given program and domain assignment
associates a domain with each information container that is a least upper bound
on all domains of containers from which information may flow into this container.
This offers two appealing opportunities for using our security-type inference
algorithm (1) to explore where the confidential information in a program may
flow, and (2) to verify a program against arbitrary annotations of sinks.

Exploring flows of confidential information. To use our security-type inference
algorithm for exploring where confidential information in a program may flow,
one annotates sources of confidential information, i.e., information containers
from which confidential information is read, in the program with @High. Then
the security-type inference algorithm infers the security domain high for all
information containers to which these confidential inputs may flow, and low for
all other information containers.

Verifying a program against arbitrary annotations of sinks. As long as the
sources annotated with @High remain the same, one inferred typing for a pro-
gram allows to verify the program against different annotations of sinks. Given
an annotation-induced domain assignment da : VID∪ FID ⇀ D for a program P
and an inferred typing t : namesP → D for a domain assignment that associates
the same identifiers of sources with high as da, P is noninterfering wrt. da if
t(a) v da(a) for all identifiers a ∈ dom(da).

5.4 Computational Complexity

Our security-type inference algorithm and security type system analyze a pro-
gram with a worst case time-complexity that is linear in the size of the program.
As the size of a program, we consider the number of nodes in the program’s
abstract syntax tree.

12

Theorem 5 (Complexity). For any program P ⊆ C and domain assignment
da : VID ∪ FID ⇀ D for P , given a precomputed security context σ : namesP →
D ∪ V for P and da, the security-type inference and security type checking take
O(n) time, where n is the size of the program.

6 Implementation as an Eclipse Plug-in

We implemented our solution as an Eclipse plug-in Adele (Assistant for De-
veloping Leak-free Programs). It leverages our security-type inference algorithm
and security type system for the development of Java programs with secure in-
formation flow. Adele integrates into the Eclipse IDE, analyzes the source code
in the background, fully-automatically, and reports detected information leaks.

User interface: input. Adele allows its user to control two parameters of the
analysis: the location of the source code to analyze and the information-flow
policy. The location of the source code can be specified by selecting a source
directory or a package containing Java source files within the current workspace
of Eclipse. Selecting a package within a larger program allows focusing the anal-
ysis on a security-critical part of a given program. The information-flow policy
is specified directly in the source code with Java annotations @High and @Low.
The usage and semantics of these annotations are as described in Section 3.

User interface: output. The output of Adele consists of (1) a report on detected
information leaks, and (2) inferred security types for information containers.
Adele displays this information in the views “Information Flow Problems” and
“Inferred Security Types”, respectively. The view “Information Flow Problems”
(see Figure 5 (a)) lists detected leaks together with information that could be
helpful for mitigating them, e.g., the location of the leak in the code, and sources
and sinks relevant for the leak. The detected leaks are also marked in the source
code editor of Eclipse. In the view “Inferred Security Types” (see Figure 5 (b)),
information containers are structured into categories “Sources”, “Sinks”, and
“Transit Nodes”. “Sources” groups information containers from which informa-
tion is read but not written to. “Sinks” groups information containers to which
flows within the program exist, but which are never read. “Transit Nodes” con-
tains information containers that are read and written. Within these three cat-
egories, the identifiers are grouped by whether they are manually annotated or
have an inferred security type, and by their security types.

7 Evaluation

The experimental evaluation of our solution has the goal of answering the fol-
lowing three questions: (i) What is the ratio between manually annotated and
automatically inferred types, in practice? (ii) What is the performance of our so-
lution, in practice? (iii) What is the relationship between the performance of our
solution and that of SecJ [26], an implementation of a security-type inference
algorithm [27] for a programming language similar to the one that we use?

13

(a) Reporting detected information leaks. (b) Exploring inferred
security types.

Figure 5: User interface of Adele.

Our benchmark applications. We conduct our evaluation on four conceptual Java
applications that we developed ourselves, inspired by real-world applications
with similar functionality. We decided to develop applications ourselves in order
to introduce information leaks into some of them, purposely, and investigate
how the implementation of our solutions detects these leaks. Application “Blood
Pressure History” (short: BPH) allows its user to record blood pressure values
and to view previously recorded values. The application automatically informs
a physician if the measured values are critical. The security concern is that
the user’s blood pressure values leak to third parties. Application “Company
Strategy” (short: CS) allows a company to send resource requests to a supplier
in order to pursue an internal strategy with certain resource requirements. The
security concern is that confidential details about the company’s internal strategy
leak to the supplier. Application “Job Finder” (short: JF) searches a database
for jobs that match the user’s keywords. The security concern is that the user’s
keywords leak to an employer. Application “Online Shop” (short: OS) allows its
users to maintain a wish list that their friends can use for selecting gifts. The
security concern is that confidential information about user’s purchases leaks
to friends. Applications BPH and CS are analyzed in three variants each with
modifications of the code that affect their security.

Our experimental setup. We run all our experiments on a typical laptop with
Intel Core i7 CPU at 2.50GHz×4 and 8Gb of RAM. We use Ububtu 12.04 and
Oracle Java Platform SDK in version 1.8.0 45 for 64-bit Linux.

7.1 Ratio Between Manually Annotated and Inferred Types

For evaluating the ratio between manually annotated and inferred security types,
we annotated each of our benchmark applications with information-flow policies
that reflect the aforementioned security concerns. This results in annotating one
or several information containers that correspond to a source with @High, and

14

one or several containers that correspond to a sink with @Low. Altogether the
number of such manually annotated information containers ranges from 2 to 5 in
our experiments. Our solution infers security types for all remaining information
containers. Table 1 presents the results of our experiments.

Our solution successfully verifies the information-flow security of applica-
tions “Blood Pressure History 1” (BPH 1) and “Company Strategy 3” (CS 3).
All remaining applications are insecure, and our solution successfully detects in-
formation leaks in them. In Table 1, we observe that the ratio between manually
annotated information containers and those containers for which security types
are inferred by our solution varies between 1 :17 and 1 :128 in our experiments.
This suggests that our security-type inference algorithm reduces the burden of
manual security-type annotation by up to two orders of magnitude.

Application LoC Leak M I bM : Ic
1 BPH 1 135 no 4 89 1:22

2 BPH 2 135 yes, explicit 5 88 1:17

3 BPH 3 136 yes, explicit 4 89 1:22

4 CS 1 147 yes, explicit 4 89 1:22

5 CS 2 151 yes, implicit 4 88 1:22

6 CS 3 307 no 4 190 1:47

7 JF 311 yes, implicit 3 187 1:62

8 OS 410 yes, implicit 2 256 1:128

Table 1: Number of security
types in our benchmark

applications: M denotes the
number of manually

annotated information
containers, I denotes the

number of inferred security
types for other information

containers.

7.2 Performance

For evaluating the performance of our solution we use the same benchmark
applications and information-flow policies as in Subsection 7.1. We collect 1000
samples of our solution’s running time on each benchmark application, from
which we compute the estimated mean running time. We measure the running
time in the steady state of the JVM using System.nanoTime() timer. To reduce
the interference of the garbage collection with the measurements, System.gc()
is called before each run of the analysis. Table 2 presents the results of our
performance evaluation (see section “Adele” of the table).

The overall time corresponds to the running time of the analysis from parsing
to reporting. It includes the time of the type inference, the sum of the times of
constraint collecting and solving. By dividing the running times estimated during
the analysis of each application by the corresponding number of the source code
lines, we compute the running time per line of code for the overall analysis, and
for the type inference. We observe: (1) the overall running time of our solution,
averaged among the benchmark applications, lies below 0.02 ms per line of code,
and (2) the running time required for the type inference, averaged among the
benchmark applications, lies below 0.008 ms per line of code. Taking into account
that our solution has a linear time-complexity in size of the analyzed program
(see Theorem 5), our experimental results suggest that our solution shall also be
efficient when analyzing significantly larger applications.

15

Estimated mean running time
Application LoC Overall Inference Collecting Solving Overall Inference

per LoC per LoC

Adele

1 BPH 1 135 2.6600 1.0302 0.9526 0.0776 0.0197 0.0076

2 BPH 2 135 2.6865 0.8723 0.7833 0.0890 0.0199 0.0065

3 BPH 3 136 2.8716 1.0279 0.9318 0.0961 0.0211 0.0076

4 CS 1 147 2.8797 1.1081 0.9704 0.1376 0.0196 0.0075

5 CS 2 151 2.7458 1.0189 0.8581 0.1608 0.0182 0.0067

6 CS 3 307 4.6359 2.0526 1.9852 0.0674 0.0151 0.0067

7 JF 311 5.1064 2.5773 2.2175 0.3598 0.0164 0.0083

8 OS 410 6.8985 3.6433 3.2686 0.3748 0.0168 0.0089

SecJ

1 BPH 1 135 775.9983 24.1443 20.7841 3.3602 5.7481 0.1788

2 BPH 2 135 736.9718 24.3384 21.3163 3.0221 5.4591 0.1803

3 BPH 3 136 801.3648 26.8502 23.1533 3.6968 5.8924 0.1974

4 CS 1 147 745.5113 27.7995 24.2680 3.5315 5.0715 0.1891

5 CS 2 151 757.0713 30.7687 26.6143 4.1543 5.0137 0.2038

6 CS 3 307 1169.3359 130.2044 118.6230 11.5814 3.8089 0.4241

7 JF 311 1279.5666 160.5022 140.3807 20.1215 4.1144 0.5161

8 OS 410 1655.0694 284.5710 249.6445 34.9265 4.0368 0.6941

Table 2: Estimated mean running time of Adele and SecJ, in milliseconds.

7.3 Relationship to SecJ wrt. Performance

For evaluating the relationship of our solution to SecJ wrt. performance, we
run the experiments from Subsection 7.2 also for SecJ [26]. Table 2 presents
the results of this performance evaluation (see section “SecJ” of the table). By
comparing the running time values observed in our experiments for Adele and
SecJ, we conclude: (1) overall, our solution is two order of magnitude faster
than SecJ, and (2) the implementation of our security-type inference algorithm
is an order of magnitude faster than the type inference in SecJ.

public JobRecord makeChoice(JobList jobs) {
@High Element job = jobs.getFirst();
@Low JobRecord choice = (JobRecord)job;
return choice;

}

Leak not detected by SecJ. During
our experiments, we found that the in-
formation leak in the application “Job
Finder” is not detected by SecJ. In
the code snippet, the confidential result of a job search job is converted into an
instance of JobRecord and written to untrusted sink choice. Hence, there is an
information leak from job to choice. SecJ, however, accepts this example as
secure. We inspected the implementation of SecJ and suspect an error in its
constraint derivation for the type casting, which results in the undetected leak.
It seems that the error is caused by a wrong type variable in the implementation.

8 Related Work

The certification of programs for secure information flow [6] is a long-standing
line of research. Starting from the work of Volpano, Irvine, and Smith [30],

16

security type systems have attracted a lot of attention for such certification.
Sabelfeld and Myers provide in [22] a comprehensive overview of this area until
the beginning of 2000s. Since then, a notable branch of this area focused on
making security type systems applicable for realistic object-oriented languages,
like Java. We limit this paragraph to security type systems for such languages,
as we focus on a subset of Java in this article. Strecker [24] formalizes a security
type system for MicroJava in Isabelle/HOL. Banerjee and Naumann [1] propose a
security type system for a Java-like programming language extended with access-
control features. We drew inspiration from their work when we were defining our
programming language and our security type system. Barthe et al. [2] propose a
security type system for a Java-like language that supports exceptions. Rafnsson
et al. [20] propose a security type system that addresses dynamic class loading
and the initialization of static fields. The aforementioned security type systems
have been proven sound in [24], [1], [2], and [20], respectively. There are also
type-based information-flow analyses [4, 8, 16, 18] that target programs written
in larger fragments of Java, some — even full Java. Yet, they are not accompanied
by formal soundness proofs, to the best of our knowledge.

Security type systems require all information containers in a program to be
annotated with security types. Doing such annotations manually is a tedious
and error-prone task. Security-type inference algorithms have a goal of inferring
such annotations automatically. Type inference, in general, has a long-standing
tradition (see, e.g., [7,17,25]). Starting from Volpano and Smith’s type inference
algorithm [31] for the security type system from [30], there has been a growing
interest for type-inference algorithms tailored to information-flow analyses [3,
5, 10–14, 19, 23, 27, 28, 32]. In Table 3, we list attributes of twelve well-known
security-type inference algorithms and compare them to our algorithm.

type-inference imperative, soundness completeness minimality time-
algorithm of object-oriented result result result complexity

language

Volpano/Smith [31] no yes yes no –

Pottier/Simonet [19] no yes yes no –

Sun et al. [27] yes yes yes no O(n)

Deng/Smith [5] no yes yes no O(n2)

Hristova et al. [10] no no no no O(n)

Hunt/Sands [12,13] no yes yes yes O(nv3)

Smith/Thober [23] yes yes yes no O(nn
5

)

King et al. [14] yes no no no –

Terauchi [28] no yes no no polynomial

Bedford et al. [3] no yes yes no –

Weijers et al. [32] no no no no –

Huang et al. [11] yes no no no O(n3)

Our algorithm yes yes yes yes O(n)

Table 3: Attributes of security-type inference algorithms. (A dash means that
the respective article does not provide information on the attribute.)

17

A conceptual novelty of our algorithm over other security-type inference algo-
rithms is that it is accompanied by a formally proven minimality result without
having to use principal types [12,13,29]. Hunt and Sands [12] show how to infer
principal types for programs written in a simple while-language. Their principal
types describe, for each variable, all possible flows of information through the
variable. This description is so fine-grained that is provides enough information
for checking a program’s compliance with an arbitrary information-flow policy.
In [13], Hunt and Sands provide an algorithm for computing principal types
in O(nv3), where n is the size of an input program and v the number of its
variables. In a recent work [29], their principal type system is lifted to support
dynamic policies. Generally, the idea of extending principal types to support an
object-oriented Java-like programming language seems rather appealing. Yet, at
this time it is not clear how to achieve this at low computational costs.

The security-type inference algorithm of Sun et al. [27] is the closest to our
algorithm, supporting a programming language with the same features. The
algorithms differ, most notably, in the following two technical aspects: (1) The
algorithm of Sun et al. [27] maintains a type environment to dynamically read
and keep track of the security types of local variables and formal parameters.
We use a predefined security context to access security types of all information
containers. (2) The algorithm of Sun et al. [27] conducts data type inference
for local variables and expressions in parallel to the derivation of constraints for
security types. As a consequence, all constraint derivation rules for expressions
have to capture also inference of data types, and the type environment has
to store data types of local variables and formal parameters, in addition to
their security types. In contrast, we use results of a separate data-type inference
algorithm just in those rules that require it, i.e., rules for a field access, field
assignment, and method call. Modelling both the type environment and the
inference of data types by separate functions enables implementation of our
algorithm in a clean, modular fashion.

Sun et al. [27] do not comment whether their algorithm infers minimal typ-
ings. We conjecture that it probably does, at least if no polymorphism is used.
However, due to the additional complexity coming with polymorphic classes, we
cannot intuitively assess the minimality of their full algorithm without having
to conduct a formal proof.

9 Conclusion

We presented a new algorithm for inferring security types in Java programs. We
proved it to be sound, complete, minimal, and of linear time-complexity in the
size of the program analyzed. The minimality of our algorithm allows flexible se-
curity analyses, in the sense that programs can be analyzed wrt. information-flow
policies that fix only the annotations of sources, while leaving the annotations
of sinks flexible. Based on our algorithm, we developed a solution for verifying
confidentiality requirements in Java programs. We implemented or solution as
an Eclipse plug-in, and experimentally showed that it is effective and efficient.

18

As future work, we plan to deploy the presented algorithm, after necessary
adaptations, in our information-flow analysis for Dalvik bytecode [15].

Acknowledgements We thank the anonymous reviewers for their valuable com-
ments. We thank Patrick Metzler for his help in the implementation of Adele.
This work has been partially funded by the BMBF within EC SPRIDE and by
the DFG as part of project E2 within the CRC 1119 CROSSING.

References

1. A. Banerjee and D. A. Naumann. Stack-based Access Control and Secure Infor-
mation Flow. Journal of Functional Programming, 15(2):131–177, 2005.

2. G. Barthe, T. Rezk, and D. A. Naumann. Deriving an Information Flow Checker
and Certifying Compiler for Java. In Proceedings of the 27th IEEE Symposium on
Security and Privacy (S&P), pages 230–242. IEEE, 2006.

3. A. Bedford, J. Desharnais, T. G. Godonou, and N. Tawbi. Enforcing Information
Flow by Combining Static and Dynamic Analysis. In Proceedings of the 6th Sym-
posium on Foundations and Practice of Security (FPS), LNCS 8352, pages 83–101.
Springer, 2013.

4. N. Broberg, B. van Delft, and D. Sands. Paragon for Practical Programming with
Information-Flow Control. In Proceedings of the 11th Asian Symposium on Pro-
gramming Languages and Systems (APLAS), LNCS 8301, pages 217–232. Springer,
2013.

5. Z. Deng and G. Smith. Type Inference and Informative Error Reporting for Secure
Information Flow. In Proceedings of the 44th Annual Southeast Regional Conference
(ACM-SE), pages 543–548. ACM, 2006.

6. D. E. Denning and P. J. Denning. Certification of Programs for Secure Information
Flow. Commununications of the ACM, 20(7):504–513, 1977.

7. D. Duggan and F. Bent. Explaining Type Inference. Science of Computer Pro-
gramming, 27(1):37–83, 1996.

8. M. D. Ernst, R. Just, S. Millstein, W. M. Dietl, S. Pernsteiner, F. Roesner,
K. Koscher, P. Barros, R. Bhoraskar, S. Han, P. Vines, and E. X. Wu. Collabora-
tive Verification of Information Flow for High-Assurance App Store. In Proceedings
of the 21st ACM Conference on Computer and Communications Security (CCS),
pages 1092–1104. ACM, 2014.

9. J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Pro-
ceedings of the 3rd IEEE Symposium on Security and Privacy (S&P), pages 11–20.
IEEE, 1982.

10. K. Hristova, T. Rothamel, Y. A. Liu, and S. D. Stoller. Efficient Type Inference for
Secure Information Flow. In Proceedings of the 2006 Workshop on Programming
Languages and Analysis for Security (PLAS), pages 85–94. ACM, 2006.

11. W. Huang, Y. Dong, and A. Milanova. Type-Based Taint Analysis for Java Web
Applications. In Proceedings of the 17th Conference on Fundamental Approaches
to Software Engineering (FASE), LNCS 8411, pages 140–154. Springer, 2014.

12. S. Hunt and D. Sands. On Flow-Sensitive Security Types. In Proceedings of the
33rd ACM Symposium on Principles of Programming Languages (POPL), pages
79–90. ACM, 2006.

13. S. Hunt and D. Sands. From Exponential to Polynomial-Time Security Typing via
Principal Types. In Proceedings of the 20th European Symposium on Programming
(ESOP), LNCS 6602, pages 297–316. Springer, 2011.

19

14. D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit Flows: Can’t Live with ‘Em,
Can’t Live without ‘Em. In Proceedings of the 4th International Conference on
Information Systems Security (ICISS), LNCS 5352, pages 56–70. Springer, 2008.

15. S. Lortz, H. Mantel, A. Starostin, T. Bähr, D. Schneider, and A. Weber. Cassandra:
Towards a Certifying App Store for Android. In Proceedings of the 4th ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM),
pages 93–104. ACM, 2014.

16. A. Lux and A. Starostin. A Tool for Static Detection of Timing Channels in Java.
Journal of Cryptographic Engineering, 1(4):303–313, 2011.

17. R. Milner. A Theory of Type Polymorphism in Programming. Journal of Computer
and System Sciences, 17(3):348–375, 1978.

18. A. C. Myers. JFlow: Practical Mostly-Static Information Flow Control. In Pro-
ceedings of the 26th ACM Symposium on Principles of Programming Languages
(POPL), pages 228–241. ACM, 1999.

19. F. Pottier and V. Simonet. Information Flow Inference for ML. ACM Transactions
on Programming Languages and Systems, 25(1):117–158, 2003.

20. W. Rafnsson, K. Nakata, and A. Sabelfeld. Securing Class Initialization in Java-like
Languages. IEEE Transactions on Dependable and Secure Computing, 10(1):1–13,
2013.

21. J. Rehof and T. A. Mogensen. Tractable Constraints in Finite Semilattices. Science
of Computer Programming, 35(2):191–221, 1999.

22. A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

23. S. F. Smith and M. Thober. Improving Usability of Information Flow Security
in Java. In Proceedings of the 2007 Workshop on Programming Languages and
Analysis for Security (PLAS), pages 11–20. ACM, 2007.

24. M. Strecker. Formal Analysis of an Information Flow Type System for MicroJava.
Technical report, Technische Universität München, 2003.

25. M. Sulzmann. A General Type Inference Framework for Hindley/Milner Style Sys-
tems. In Proceedings of the 5th Symposium on Functional and Logic Programming
(FLOPS), LNCS 2024, pages 248–263. Springer, 2001.

26. Q. Sun. Constraint-Based Modular Secure Information Flow Inference for Object-
Oriented Programs. PhD thesis, Stevens Institute of Technology, 2008.

27. Q. Sun, A. Banerjee, and D. A. Naumann. Modular and Constraint-based Infor-
mation Flow Inference for an Object-oriented Language. In Proceedings of the 11th
Static Analysis Symposium (SAS), pages 84–99. Springer, 2004.

28. T. Terauchi. A Type System for Observational Determinism. In Proceedings of
the 21st IEEE Computer Security Foundations Symposium (CSF), pages 287–300.
IEEE, 2008.

29. B. van Delft, S. Hunt, and D. Sands. Very Static Enforcement of Dynamic Policies.
In Proceedings of the 4th Conference on Principles of Security and Trust (POST),
LNCS 9036, pages 32–52. Springer, 2015.

30. D. Volpano, C. Irvine, and G. Smith. A Sound Type System for Secure Flow
Analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

31. D. M. Volpano and G. Smith. A Type-Based Approach to Program Security. In
Proceedings of the 7th Conference on Theory and Practice of Software Development
(TAPSOFT), LNCS 1214, pages 607–621. Springer, 1997.

32. J. Weijers, J. Hage, and S. Holdermans. Security Type Error Diagnosis for Higher-
Order, Polymorphic Languages. Science of Computer Programming, 95(2):200–218,
2014.

20

