
The Framework of Selective Interleaving Functions
and the Modular Assembly Kit

Heiko Mantel∗
RWTH Aachen University, Germany

mantel@cs.rwth-aachen.de

ABSTRACT
The Framework of Selective Interleaving Functions and the
Modular Assembly Kit for Security Properties both provide
a basis for the uniform representation and formal analysis
of noninterference-like properties. In this article, we clarify
the relationship between these two frameworks. Our main
result is that each property that can be represented in the
Framework of Selective Interleaving Functions can also be
represented in the assembly kit. In fact, the latter frame-
work is strictly more expressive, which we demonstrate by
several example properties.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation–Formal Methods; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about
Programs–Specification techniques

General Terms
Security, verification

Keywords
Formal specification and analysis of security properties, in-
formation flow security, noninterference

1. INTRODUCTION
Noninterference [6] provides a basis for formally analyz-

ing the security of information systems. Numerous vari-
ants of the original noninterference property were proposed,
often with the aim to better address concurrent and dis-
tributed systems. Generalized noninterference and restric-
tiveness [18], noninference [22], and separability [19] are
prominent examples of such properties, and the number of

∗Most of this work has been performed while being a mem-
ber of the Information Security Group at the ETH Zurich.
The author gratefully acknowledges support by the DFG.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FMSE’05, November 11, 2005, Fairfax, Virginia, USA.
Copyright 2005 ACM 1-59593-231-3/05/0011 ...$5.00.

variants is still growing (see, e.g., [9, 30]). This rich body
of work gives one much flexibility in the choice of a security
property and of a corresponding analysis technique when
investigating the security of a given system. However, un-
less the relationship between the different properties is suffi-
ciently clear, this variety makes it also difficult to determine
the property that is most appropriate for analyzing a given
system. Therefore, the comparison of noninterference-like
properties has been a focal research topic.

For simplifying such analyzes and comparisons, several
frameworks were developed. McLean proposed the Frame-
work of Selective Interleaving Functions [19], Focardi and
Gorrieri introduced the process algebra SPA [3], Zakinthi-
nos and Lee put forward Low-Level Equivalence Sets [33],
Ryan and Schneider used common notions of process equiv-
alence [27], and the author developed the Modular Assem-
bly Kit for Security Properties [11]. The detailed analy-
sis of noninterference-like properties with these frameworks
deepened the community’s understanding of the existing
properties and also inspired the definition of novel prop-
erties. The resulting achievements include taxonomies of
noninterference-like properties, verification techniques (un-
winding theorems) as well as compositionality results.

McLean’s Framework of Selective Interleaving Functions
(abbreviated by FSIF) provides schemata for representing
noninterference-like properties that are restrictive enough
to investigate entire classes of properties at once. This over-
comes the need for investigating similar properties individu-
ally when deriving compositionality results and in compar-
isons to other properties. McLean’s work has been quite in-
fluential in the information-flow-security community, and it
is unfortunate that most subsequently proposed frameworks
do not support the derivation of parametric compositionality
results. It was the author’s main motivation for developing
the Modular Assembly Kit for Security Properties (abbre-
viated by MAKS) to overcome the limited expressiveness
of the FSIF without giving up the ability of investigating
entire classes of properties at once. While the latter goal
was clearly achieved (see, e.g., [12, 14]), a rigorous inves-
tigation of the former aspect has remained an open issue.
The current article resolves this issue by clarifying the re-
lationship between the FSIF and the MAKS with respect
to expressiveness. This formal comparison turned out to be
more involved than initially expected, which is due to the
different flavor of the basic concepts in the two frameworks.

For enabling a formal comparison between the two frame-
works, we had to develop an event-based variant of the FSIF.
In summary, our main contributions are: (1) the definition

of a variant of the FSIF for the model of event systems,
(2) a theorem showing that all properties that can be rep-
resented in the FSIF can also be represented in the MAKS,
and (3) the observation that some noninterference-like prop-
erties can be represented in the MAKS but not in the FSIF.

We argue in detail for the adequacy of our variant of the
FSIF and explain why it captures the original framework
more adequately than a previously proposed variant [32].
Our variant incorporates formal definitions of range and do-
main restrictions, which goes beyond [19, 20] where these
notions were only introduced by example. We illustrate
the limited expressiveness of the FSIF with several exam-
ple properties and, based on these investigations, point out
possible directions for improving its expressiveness.

2. PRELIMINARIES

2.1 Event Systems
We employ a trace-based system model throughout this

article. A trace is a sequence of events that models one
possible execution sequence of a given system. An event
is a term modeling an atomic action like, e.g., sending or
receiving a message. We use 〈〉 to denote the empty trace
and separate the occurrences of events in a trace by commas
(e.g., 〈send (m, c), rcv (m, c′)〉 can be read as: a message m
is sent on channel c and then forwarded on channel c′).

For a given system, we distinguish between input, output,
and internal events. The underlying intuition is that input
events are controlled by the environment while output and
internal events are controlled by the system. We do not
make the assumption that input events are always enabled.
This makes our observations applicable to systems that are
input total as well as to systems that are not input total.

In summary, an event system [18] ES is a tuple (E, I, O, Tr)
where E is a set of events, I, O ⊆ E, respectively, are dis-
joint sets of input and output events, and Tr ⊆ E∗ is the set
of possible traces, i.e. a set of finite sequences over E. Each
trace τ ∈ Tr models a possible behavior of ES. The set Tr
must be closed under prefixes, i.e. any prefix of a trace in Tr
must also be in Tr. Event systems allow for the specifica-
tion of nondeterministic systems where nondeterminism is
reflected by the choice between the different events that are
enabled. The model of event systems is a possibilistic sys-
tem model that leaves it unspecified how nondeterministic
choices are resolved.

In this article, we adopt the notation used above. That
is, ES denotes an event system (E, I, O, Tr). The projection
t|E′ of a trace t ∈ E∗ to a set E′ ⊆ E results from t by
removing all events that are not in E′. Given two traces
t1 ∈ E∗

1 and t2 ∈ E∗
2 over two disjoint sets of events (i.e. E1∩

E2 = ∅), an interleaving of t1 and t2 is a trace t ∈ (E1∪E2)
∗

with t|E1
= t1 and t|E2

= t2. We denote the set of all
interleavings of t1 and t2 by interleaving(t1, t2).

2.2 Noninterference-Like Properties
Following the definition of noninterference by Goguen and

Meseguer [6], various other noninterference-like properties
have been proposed (see [15] for an overview). In this sec-
tion, we recall the four properties that McLean represented
in his framework [19, 20]. We assume a two-level flow policy
that forbids information flow from a high level H to a low
level L, which is the simplest setting in which the problem
of information flow security can be studied. Moreover, we

assume a function dom : E → {L, H} that associates each
event with one of these security domains and use H and L
to denote the set of high-level events and the set of low-level
events, respectively. Further properties are discussed in Sec-
tion 5 where we investigate the limitations of the FSIF.

Separability [19, 33] captures noninterference in a very in-
tuitive way. Satisfying separability means for a system that
it could have been built from two disconnected components,
a high-level component and a low-level component, without
any communication lines in between. As the two compo-
nents cannot communicate with each other, it is intuitively
clear that there is no danger of information leaking from the
high level to the low level. The requirement is somewhat re-
strictive though, because information cannot flow from the
low-level component to the high-level component either, al-
though such information flow is usually unproblematic.

If one views {τ |H | τ ∈ Tr} and {τ |L | τ ∈ Tr} as the sets
of possible traces of a low-level component and a high-level
component, respectively, then the requirement that there
is no communication between two parallel components is
equivalent to the requirement that all interleavings of pos-
sible traces of the two components are contained in Tr.

Definition 1. An event system ES satisfies separability
(denoted SEP(ES)) if and only if the following condition
holds: ∀τl, τh ∈ Tr : ∀τ ∈ interleaving(τh|H , τl|L) : τ ∈ Tr.

Generalized noninterference [18] was one of the first variants
of noninterference for nondeterministic systems. This prop-
erty requires that for all perturbations of the occurrences of
high-level input events in a possible trace it must be possi-
ble to modify the occurrences of internal high-level events
and high-level output events such that the result is again a
possible trace. There are several variants of generalized non-
interference whose definitions differ in which perturbations
of occurrences of high-level input events must be consid-
ered and where occurrences of internal high-level events and
high-level output events may be corrected (see [15] for an
overview). The variant that we consider here, perturbs the
given trace τl by modifying occurrences of high-level input
events such that the resulting sequence of high-level input
events corresponds to the one in some other possible trace
τhi, and it permits corrections at arbitrary places.

Definition 2. ES satisfies interleaving-based generalized
noninterference (denoted IBGNI ∗(ES)) if and only if

∀τl, τhi ∈ Tr : ∀t ∈ interleaving(τhi|H∩I , τl|L) :
∃τ ∈ Tr : τ |(H∩I)∪L = t.

Noninference ensures that low-level users cannot deduce that
progress has been made in the high-level computation. That
is, for every observation that a low-level user can possibly
make, there must be a possible trace that yields the same ob-
servation and in which no high-level events occur. The vari-
ant of noninference usually used today [19, 33] has evolved
from three different information flow properties, namely Ja-
cob’s ignorance of progress [10], O’Halloran’s noninference
[22], and O’Halloran’s weak ignorance of progress [22].

Definition 3. A system ES satisfies noninference (de-
noted NF(ES)) if and only if the following condition holds:
∀τ ∈ Tr : τ |L ∈ Tr.

Generalized noninference [19] is a weak variant of noninfer-
ence, which ensures that a low-level user cannot deduce that
high-level input has been received.

Definition 4. A system ES satisfies generalized nonin-
ference (denoted GNF(ES)) if and only if the following con-
dition holds: ∀τ ∈Tr : ∃τ ′ ∈Tr : [τ ′|H∩I = 〈〉 ∧ τ ′|L = τ |L].

For more detailed discussions of these and many other non-
interference-like properties, we refer to [15, 11, 20].

3. THE FSIF
McLean proposed the FSIF for simplifying the compari-

son of noninterference-like properties and for investigating
the preservation of these properties under composition. A
selective interleaving function (abbreviated sif) is a func-
tion that takes two traces as arguments and returns a third
trace. Each sif belongs to one or more types that prescribe
how the returned trace depends on the argument traces. A
noninterference-like property is expressed in the FSIF by
the requirement that the set of traces must be closed under
sifs of a particular type. This allows one to compare prop-
erties by comparing the types used in their representation.
Types are the key concept for representing and analyzing
properties in the FSIF.

3.1 Representing Properties
The FSIF was originally developed for a state-based sys-

tem model. For making a formal comparison with the MAKS

possible, we had to migrate the FSIF to the system model
on which the MAKS is based. In the following, we intro-
duce our event-based variant of the FSIF and argue why it
properly reflects the original framework.

Definition 5. Let κ : E → {0, 1, 2} be a function. A
function f : (E∗ × E∗) → E∗ is a selective interleaving
function of type Fκ if and only if

∀t, t1, t2∈E∗ : [f(t1, t2)= t ⇒ (t|Eκ
1

= t1|Eκ
1
∧ t|Eκ

2
= t2|Eκ

2
)]

where Eκ
0 , Eκ

1 , Eκ
2 ⊆ E are defined by Eκ

j = {e ∈ E | κ(e) =
j} for j ∈ {0, 1, 2}.

The type imposes constraints on how sifs construct traces
from their arguments. The result f(t1, t2) must equal t1
(t2) in the occurrences of events in Eκ

1 (Eκ
2) and these must

have the same order as in the respective argument trace.
Otherwise, there are no restrictions on the relative ordering
of events e1, e2 ∈ E with κ(e1) 6= κ(e2) and occurrences of
events in Eκ

0 may be freely inserted.

Definition 6. ES is closed under a set of sifs F if and
only if ∀f ∈ F : ∀τ1, τ2 ∈ Tr : f(τ1, τ2) ∈ Tr.1

Example 1. For representing separability, one uses the
function κSEP that returns 1 (2) if the argument is a high-
level event (low-level event). If a set of traces Tr is closed
under a sif f of type FκSEP then, for each pair of traces
τh, τl ∈ Tr, there is some interleaving of τh|H and τl|L,
namely f(τh, τl), that is a possible trace in Tr. Being closed
under some sif of type FκSEP is a necessary but not a suf-
ficient requirement for satisfying separability. In order to
satisfy separability, ES must be closed under the set of all
sifs of type FκSEP (see Theorem 2).

1For brevity, we also write that ES is closed under f meaning
ES is closed under {f}.

Example 2. For representing interleaving-based general-
ized noninterference, one uses the function κIBGNI∗ that re-
turns 1 (2) if the argument is a high-level input event (low-
level event) and returns 0 if the argument is an internal
high-level event or a high-level output event. If a system
is closed under all sifs of type FκIBGNI∗

then it also satis-
fies IBGNI ∗. The implication in the other direction does
not hold in general. To see this, we define a system ES2 =
(E2, I2, O2,Tr2) by I2 = {li}, O2 = {ho}, E2 = I2 ∪O2, and
Tr2 = {〈〉, 〈li〉, 〈ho〉}. We consider the two-level security pol-
icy with dom(li) = L and dom(ho) = H. As there are no
high-level input events, IBGNI ∗(ES2) holds trivially. How-
ever, ES2 is not closed under the sif f2 : (E∗

2 × E∗
2) → E∗

2

of type FκIBGNI∗
that is defined in the table below because

〈ho〉, 〈li〉 ∈ Tr2, but f2(〈ho〉, 〈li〉) = 〈ho, li〉 /∈ Tr2.

f2 〈〉 〈ho〉 〈li〉

〈〉 〈〉 〈〉 〈li〉
〈ho〉 〈〉 〈〉 〈ho, li〉
〈li〉 〈li〉 〈ho, li〉 〈li〉

While Example 1 illustrates that it does not suffice to require
Tr to be closed under a single sif , Example 2 shows that, if
Eκ

0 is not empty then being closed under all sifs of a partic-
ular type is a too restrictive requirement. We introduce the
notion of a covering set to soften the latter requirement.

Definition 7. A set F of sifs of type Fκ covers type Fκ
2

if and only if

∀t1, t2 ∈ E∗ : ∀t ∈ interleaving(t1|Eκ
1
, t2|Eκ

2
) :

∃f ∈ F : f(t1, t2)|Eκ
1
∪Eκ

2
= t .

Theorem 1. The set of all sifs of type Fκ covers Fκ.

Proof. Let E, κ : E → {0, 1, 2}, t1, t2 ∈ E∗, and t ∈
interleaving(t1|Eκ

1
, t2|Eκ

2
) be arbitrary. Take an arbitrary sif

g of type Fκ and define f : E∗ × E∗ → E∗ by f(t′1, t
′
2) =

g(t′1, t
′
2) for t′1, t

′
2 ∈ E∗ if t′1 6= t1 or t′2 6= t2 and by f(t1, t2) =

t. Then f is a sif of type Fκ with f(t1, t2)|Eκ
1
∪Eκ

2
= t.

The following schema can now be used for uniformly repre-
senting noninterference-like properties:

ES is closed under a covering set F of sifs of type Fκ. (1)

The schema is parametric in the event system ES and in the
type Fκ. For representing a given property, one only needs
to define an appropriate type. We illustrate this for separa-
bility and interleaving-based generalized noninterference.

Theorem 2. SEP(ES) holds if and only if ES is closed
under some covering set F of sifs of type FκSEP where κSEP

is defined like in Example 1.

Theorem 3. IBGNI ∗(ES) if and only if ES is closed un-
der some covering set F of sifs of type FκIBGNI∗

where κIBGNI∗

is defined like in Example 2.

Theorems 2 and 3 are proved in Section A.1 with the help
of our main result.

Unfortunately, Schema (1) is not expressive enough for
capturing noninference or generalized noninference. As a

2For brevity, we say F is a covering set of sifs of type Fκ

meaning F is a set of sifs of type Fκ that covers Fκ.

solution, McLean points out two alternatives for modifying
the schema, namely (a) restricting the range of sifs in the set
F and (b) restricting the domain of sifs in the set F . Un-
fortunately, he introduces these concepts only by example
without giving formal definitions. We provide formal defi-
nitions, which are in accordance with McLean’s examples,
and argue that, while each alternative offers a solution for
representing noninference and generalized noninference, the
second alternative is preferable to the first.

3.2 Range Restrictions
The following two theorems illustrate how noninference

and generalized noninference can be represented by restrict-
ing the range of sifs. The proofs are in Section A.1.

Theorem 4. Let κNF : E → {0, 1, 2} be the function that
returns 0 (2) if the argument is a high-level event (low-level
event). NF(ES) holds if and only if ES is closed under some
covering set F of sifs of type FκNF where ∀f ∈ F : ∀t1, t2 ∈
E∗ : f(t1, t2)|EκNF

0

= 〈〉.

Theorem 5. GNF(ES) holds if and only if ES is closed
under some covering set F of sifs of type FκNF where ∀f ∈
F : ∀t1, t2 ∈ E∗ : f(t1, t2)|EκNF

0
∩I

= 〈〉.

For representing noninference and generalized noninference,
Theorems 4 and 5 restrict the range of sifs in F . That is,
Schema (1) is strengthened by an additional requirement.
This approach leads to a rather weak schematic part in the
representation of properties. In fact, the schematic part for
representing noninference and generalized noninference in
Theorems 4 and 5 is trivially satisfied.

Theorem 6. If κ : E → {0, 1, 2} is a function with ∀e ∈
E : κ(e) 6= 1 or ∀e ∈ E : κ(e) 6= 2 then ES is closed under
some covering set of sifs of type Fκ.

Proof. Follows from Definitions 6 and 7.

It is a direct consequence of Theorem 6 that the type FκNF

is not very helpful in the analysis of these properties. For-
tunately, the use of this type can be avoided in the rep-
resentation by using domain restrictions instead of range
restrictions.

3.3 Domain Restrictions
We restrict the domain of the first universal quantifier in

the coverage requirement.

Definition 8. A set F of sifs of type Fκ covers type Fκ

under the domain restriction Ei (Ei ⊆ E) if and only if

∀t1∈(E\Ei)
∗ : ∀t2∈E∗ : ∀t∈ interleaving(t1|Eκ

1
, t2|Eκ

2
) :

∃f ∈F : f(t1, t2)|Eκ
1
∪Eκ

2
= t .

This leads to the following relaxation of Schema (1):

ES is closed under a set F of sifs of type Fκ that covers
Fκ under the domain restriction Ei.

(2)

For representing a given property with this schema, one
needs to define a type and a domain restriction. The follow-
ing two theorems illustrate this for noninference and gener-
alized noninference. The proofs are in Section A.1.

Theorem 7. NF(ES) holds if and only if ES is closed
under some set F of sifs of type FκSEP that covers Fκ under
the domain restriction E.

Theorem 8. GNF(ES) holds if and only if ES is closed
under some set F of sifs of type FκIBGNI∗

that covers Fκ

under the domain restriction E.

The representation of noninference and generalized noninfer-
ence with domain restrictions involves more restrictive, i.e.
more meaningful, types than the representation with range
restrictions in Theorems 4 and 5, respectively. The more
restrictive types immediately reveal that SEP(ES) implies
NF(ES) (cf. Theorems 2, 7, and 9) and that IBGNI ∗(ES)
implies GNF(ES) (cf. Theorems 3, 8, and 9). This was not
so obvious from the representation with range restrictions.

Observe also that the same domain restriction, i.e. E, is
used in Theorems 7 and 8. We presume that this is the only
nontrivial domain restriction foreseen in the FSIF, which is
in-line with the examples given in [19, 20]. Having no do-
main restriction is equivalent to the trivial domain restric-
tion ∅ (see Theorem 9 below). This observation allows one
to also represent separability and interleaving-based gener-
alized noninterference with Schema (2).

Theorem 9. A set F of sifs of type Fκ covers Fκ if and
only if it covers Fκ under the domain restriction ∅.

Proof. Follows from Definitions 7 and 8.

This leads to the following final schema for representing
properties in the FSIF:

ES is closed under a set F of sifs of type Fκ that covers
Fκ under the domain restriction Ei where Ei ∈ {∅, E}.

(3)

Permitting other domain restrictions than ∅ and E is one
possibility for increasing the expressiveness of the FSIF. We
discuss further possibilities in Section 5.4.

3.4 A Prior Variant of the FSIF
In his thesis [32], Zakinthinos proposes a variant of the

FSIF that substantially differs from the one proposed here.
The main difference in the closure requirement is that Za-
kinthinos requires a set of traces to be closed under some
sif of the given type (rather than under a set of sifs). How-
ever, being closed under a single sif of type κSEP does not
necessarily imply that separability is satisfied by the given
system (cf. Example 1).3 Separability requires all possible
interleavings of a high-level trace with a low-level trace to
be possible traces. This can be expressed by requiring clo-
sure under a sufficiently large set of sifs where each sif is
responsible for the construction of a particular interleaving
of two given traces. Our coverage requirement ensures that
for each interleaving of a high-level trace with a low-level
trace, the set contains a sif that constructs this interleaving.
Requiring all interleavings to be possible is in accordance
with Guttman and Nadel’s earlier observation that a secu-
rity property needs to prevent attackers not only from ob-
taining information about whether confidential events have
occurred or not, but also about the order in which events
have occurred [8].

Another problem results from the definition of sifs in [32].
Rather than demanding f(t1, t2)|Eκ

1
= t1|Eκ

1
, Zakinthinos

requires that f(t1, t2)|Eκ
1
∩I = t1|Eκ

1
∩I and f(t1, t2)|Eκ

1
∩O =

t1|Eκ
1
∩O hold. However, these two conditions do not imply

f(t1, t2)|Eκ
1

= t1|Eκ
1

and, hence, do not ensure that input
and output events in Eκ

1 occur in the right order in f(t1, t2).

3The representation of separability in [32] is not adequate.

RV(Tr) ≡ ∀τ ∈ E∗ : (τ ∈ Tr ⇒ ∃τ ′ ∈ E∗ : (τ ′ ∈ Tr ∧ τ ′|C = 〈〉 ∧ τ ′|V = τ |V)

IV(Tr) ≡ ∀α, β ∈ E∗ : ∀c ∈ C :
((β.α ∈ Tr ∧ α|C = 〈〉)
⇒ ∃α′,β′∈E∗ : (β′.〈c〉.α′∈Tr ∧ β′|V ∪C =β|V ∪C ∧ α′|V ∪C =α|V ∪C))

IA ρ
V(Tr) ≡ ∀α, β ∈ E∗ : ∀c ∈ C :

((β.α ∈ Tr ∧ α|C = 〈〉 ∧ Adm ρ
V(Tr, β, c))

⇒ ∃α′,β′∈E∗ : (β′.〈c〉.α′∈Tr ∧ β′|V ∪C =β|V ∪C ∧ α′|V ∪C =α|V ∪C))

where Adm ρ
V(Tr, β, e) ≡ ∃γ ∈ E∗ : (γ.〈e〉 ∈ Tr ∧ γ|ρ(V) = β|ρ(V)).

Figure 1: Formal definitions of the BSPs R, I, and IA
ρ (see Definition 10)

4. COMPARISON TO THE ASSEMBLY KIT

4.1 The MAKS
The Modular Assembly Kit for Security Properties sup-

ports a modular representation of noninterference-like prop-
erties. The representation of a given property consists of two
elements, a set VS of views, defining a security policy, and a
security predicate SP , giving a definition of secure informa-
tion flow that is parametric in a view. A security predicate
is, again, defined in a modular fashion by composing one or
more basic security predicates (abbreviated BSP). A col-
lection of predefined BSPs exists, where each BSP imposes
rather primitive restrictions on the information flow. The
schema for representing properties in the MAKS is:

BSP1
V(Tr)∧. . .∧BSPn

V(Tr) holds for each view V ∈ VS
where BSP1, . . . , BSPn are the BSPs from which SP
is assembled.

(4)

Before illustrating how the security properties from Sec-
tion 2.2 can be represented with this schema, we introduce
the basic concepts of the MAKS to the extent necessary.

A view defines the secrets and the observational capabil-
ities of the attacker. This is achieved by identifying the
set of all events that introduce secrets into the system and
the set of all events whose occurrences are visible to the at-
tacker. As a convention, we denote the set of confidential
events by C and the set of visible events by V (possibly with
sub-/superscripts and primes). The intersection of C and V
must be empty because, otherwise, there would be an imme-
diate security breach. However, there may be events whose
occurrences are neither confidential nor visible. We denote
this set by N (for non-confidential/non-visible).

Definition 9. A view V = (V, N, C) in E is a triple such
that V , N , C forms a disjoint partition of E.

A basic security predicate BSP is a primitive closure con-
dition on sets of traces that is parametric in a view. The
basic idea of possibilistic information flow security is that
if the set of traces is closed then, for any given observation
of the attacker, so many traces could have possibly gener-
ated the observation that the attacker is unable to deduce
secret information from his observations. Technically, the
closure condition is defined based on two constructions, a
perturbation and a set of permissible corrections, each be-
ing a transformation on traces. The closure condition is
that one must be able to correct each perturbation of each
possible trace to another possible trace solely by applying
permissible corrections. As a convention, neither perturba-
tions nor corrections affect occurrences of visible events in

a given trace and, hence, the original trace and the correc-
tion of the perturbed trace look the same to the attacker.
Depending on the perturbation, BSPs are classified into one
of two dimensions. BSPs from the first dimension perturb
a trace by deleting occurrences of confidential events and
thereby ensure that an attacker cannot deduce that a par-
ticular confidential event must have occurred. The reasoning
is as follows: If a set of traces is closed under a BSP from the
first dimension then for each observation of the attacker that
can be generated by a possible trace in which a confidential
event occurs, there is another possible trace that generates
the same observation and in which the confidential event
does not occur. BSPs from the second dimension perturb
a trace by inserting occurrences of confidential events and
thereby prevent an attacker from deducing that a particular
confidential event cannot have occurred.

Definition 10. The BSPs R (for Removal), I (for In-
sertion), and IAρ (for Insertion of ρ-Admissible events) are
defined in Figure 3.4.

The BSP R perturbs a given trace by removing all occur-
rences of confidential events. The BSPs I and IAρ perturb
a trace β.α by inserting a single occurrence of a confidential
event at a position where it is not followed by other oc-
currences of confidential events (α|C = 〈〉). The difference
between the two BSPs is that IAρ inserts a confidential event
c only if it is ρ-admissible at this position, which is the case
if c occurs after some possible trace γ that equals β in its
projection to the set ρ(V) ⊆ E. All three BSPs permit cor-
rections that modify occurrences of events in N at arbitrary
positions in the perturbed trace.

We are now ready to show how separability, interleaving-
based generalized noninterference, noninference, and gener-
alized noninference can be represented.

Theorem 10 ([15]). Define two views by H= (L, ∅, H)
and HI = (L,H\I, H ∩ I). Moreover, let ρC be the func-
tion from views in E to subsets of E that is defined by
ρC((V, N, C))=C. Then the following equivalences are valid:

SEP(ES) ⇔ RH(Tr) ∧ IA ρC

H (Tr) (5)

IBGNI ∗(ES) ⇔ RHI(Tr) ∧ IA ρC

HI(Tr) (6)

NF(ES) ⇔ RH(Tr) (7)

GNF(ES) ⇔ RHI(Tr) (8)

Interestingly, the representation of the four properties in the
MAKS reveals the same facts as the representation in the
FSIF with domain restrictions in Section 3.3: SEP(ES) ⇒
NF(ES) and IBGNI ∗(ES) ⇒ GNF(ES) follow from the fact

BSDV(Tr) ≡ ∀α, β ∈ E∗ : ∀c ∈ C : ((β.〈c〉.α ∈ Tr ∧ α|C = 〈〉)
⇒ ∃α′∈E∗ : (β.α′∈Tr ∧ α′|V ∪C =α|V ∪C))

BSIV(Tr) ≡ ∀α, β ∈ E∗ : ∀c ∈ C : ((β.α ∈ Tr ∧ α|C = 〈〉)
⇒ ∃α′∈E∗ : (β.〈c〉.α′∈Tr ∧ α′|V ∪C =α|V ∪C))

BSIA ρ
V(Tr) ≡ ∀α, β ∈ E∗ : ∀c ∈ C : ((β.α ∈ Tr ∧ α|C = 〈〉 ∧ Adm ρ

V(Tr, β, c))
⇒ ∃α′∈E∗ : (β.〈c〉.α′∈Tr ∧ α′|V ∪C =α|V ∪C))

Figure 2: Formal definitions of the BSPs BSD, BSI, and BSIA
ρ (see Definition 11)

that the first conjunct in the representation of the two re-
lated properties is identical, i.e., RH(Tr) and RHI(Tr), re-
spectively. Moreover, we have SEP(ES) ⇒ IBGNI ∗(ES)
and NF(ES) ⇒ GNF(ES) [15].

Numerous other properties have been represented in the
MAKS [15] and this provided a basis for the derivation of
unwinding theorems [12] and of compositionality results [14].
There are extensions of the MAKS for capturing declassifi-
cation [13] and encrypted communication [9]. The MAKS

has also been applied in concrete case studies [16, 17, 29].

4.2 Representation Theorems
Separability and interleaving-based generalized noninter-

ference can be represented in the FSIF without range or
domain restrictions (see Theorems 2 and 3). The repre-
sentations of these properties in the MAKS (Theorem 10)
follow a common pattern, namely RV(Tr)∧ IA ρC

V (Tr), and
differ only in the view. The following theorem generalizes
this observation by showing that the set of all properties
that can be represented in the FSIF without range or do-
main restrictions coincides with the set of properties that
can be represented with this pattern in the MAKS. This is
the first of the two main theorems of this article.

Theorem 11. Let κ : E → {0, 1, 2} be a function, V =
(V, N, C) be a view in E, and ρC be like in Theorem 10.
If Eκ

0 = N , Eκ
1 = C, and Eκ

2 = V then the following two
propositions are equivalent:

1. ES is closed under some covering set of sifs of type Fκ.

2. RV(Tr) and IA ρC

V (Tr) hold.

The proof of Theorem 11 is in Appendix A.2.
Noninference and generalized noninference are represented

with the domain restriction E in the FSIF (Theorems 7
and 8) and their representation in the MAKS (Theorem 10)
also follows a common pattern, namely RV(Tr). The follow-
ing theorem generalizes this observation by showing that the
set of all properties that can be represented in the FSIF with
the domain restriction E coincides with the set of properties
that can be represented with this pattern in the MAKS.

Theorem 12. Let κ, V, ρC, Eκ
0 , Eκ

1 , and Eκ
2 be defined

like in Theorem 11. If Eκ
0 = N , Eκ

1 = C, and Eκ
2 = V then

the following two propositions are equivalent:

1. ES is closed under a set F of sifs of type Fκ that covers
Fκ under the domain restriction E.

2. RV(Tr) holds.

The proof of Theorem 12 is in Appendix A.3.
As a consequence of Schema (3), Theorem 11, and Theo-

rem 12, we obtain the following corollary:

Corollary 1. A property can be represented in the FSIF

if and only if it can be represented in the MAKS in one of
the forms RV(Tr) and RV(Tr) ∧ IA ρC

V (Tr).

5. LIMITATIONS OF THE FSIF
In this section, we explore the current limitations of the

FSIF. We discuss three classes of properties that can be
represented in the MAKS but not in the FSIF. To this end,
we vary the schema RV(Tr) ∧ IA ρC

V (Tr) in three different
ways, namely, (1) by dropping the ρC-admissibility condi-
tion, (2) by modifying the function ρC , and (3) by restricting
the permissible corrections. We also sketch possibilities for
improving the expressiveness of the FSIF.

5.1 Dropping the Admissibility Condition
Dropping Adm ρ

V(Tr, β, c) in the definition of IAρ results
in the BSP I. By replacing IAρC with I in the MAKS

representation of IBGNI ∗(ES) (cf. Theorem 10), we obtain
a property that is equivalent to IBGNI(ES), the variant
of interleaving-based generalized noninterference defined in
[33]. As IBGNI(ES) is equivalent to RHI(Tr) ∧ IHI(Tr)
[15], IBGNI ∗(ES) is equivalent to RHI(Tr)∧IAρC

HI(Tr), and
GNF(ES) is equivalent to RHI(Tr), we have IBGNI(ES) ⇒
IBGNI ∗(ES) and IBGNI(ES) ⇒ GNF(ES).

5.2 Modifying the function ρC

The function ρ is a parameter in the definition of the BSP
IAρ. It is instantiated with ρC (defined by ρC((V, N, C)) =
C) in the representations of SEP(ES) and IBGNI ∗(ES)
(cf. Theorem 10). Other choices are possible. For instance,
the function ρE (defined by ρE((V,N, C)) = V ∪N ∪C) can
be used to represent the perfect security property [33]. That
is, PSP(ES) is equivalent to RH(Tr) ∧ IA ρE

H (Tr) [15]. An-
other example is the function ρUI (defined by ρUI(V, N, C) =
C∪(V ∩UI) where UI ⊆ I is a set of user inputs), which can
be used to represent nondeducibility for outputs [8]. That
is, NDO ∗(ES) is equivalent to RH(Tr)∧IA ρUI

H (Tr) [15]. The
representation of these properties in the MAKS immediately
reveals the following implications: SEP(ES) ⇒ NDO ∗(ES),
NDO ∗(ES) ⇒ PSP(ES), and PSP(ES) ⇒ NF(ES).

5.3 Restricting the Permissible Corrections
The BSPs R, I, and IAρ permit corrections that modify

occurrences of events in the set N of the given view and
leave occurrences of events in V ∪ C unchanged. The per-
missible corrections can be further restricted by disallowing
modifications before the first position where a change has
been caused by the perturbation. The underlying intuition
is that corrections should causally depend on the perturba-
tion. Benefits of such a restriction are that it often facilitates
the preservation of the resulting property under composition
and also prevents some subtle dangers of information leakage

(see Section 3.4.4 in [15] for further details). By disallowing
non-causal corrections, we obtain the following BSPs:

Definition 11. The BSPs BSD (for Backwards Strict
Deletion), BSI (for Backwards Strict Insertion), and BSIAρ

(for Backwards Strict Insertion of ρ-Admissible events) are
defined in Figure 4.

The original definition of generalized noninterference [18]
can be expressed with these BSPs: GNI(ES) is equivalent
to BSDHI(Tr) ∧ BSIHI(Tr). One can define another sensi-
ble variant of generalized noninterference by GNI ∗(ES) ≡
BSDHI(Tr) ∧ BSIA ρC

HI(Tr). The relationship of GNI(ES)
to GNI ∗(ES) is analogous to the one of IBGNI(ES) to
IBGNI ∗(ES). In particular GNI ∗(ES) perturbs a trace
by inserting a high-level input event only if the event is
ρC-admissible at the given position. The representation of
these properties in the MAKS immediately reveals the fol-
lowing implications: GNI(ES) ⇒ IBGNI(ES), GNI(ES) ⇒
GNI ∗(ES), and GNI ∗(ES) ⇒ IBGNI ∗(ES).4

5.4 Possibilities for Improving the FSIF
The diagram below summarizes the ordering induced by

the implications between noninterference-like properties that
we have derived so far. Based on this taxonomy and the
observations made in the previous paragraphs, we discuss
possibilities for modifying the FSIF in order to increase its
expressiveness. However, a full elaboration of such exten-
sions is outside the scope of the current article.

GNF(ES)

NF(ES)

PSP(ES)

NDO ∗(ES)

SEP(ES)

GNI ∗(ES)

IBGNI ∗(ES)

GNI(ES)

IBGNI(ES)

According to Theorem 3, IBGNI ∗(ES) is equivalent to:
Tr is closed under a covering set of sifs of type FκIBGNI∗

.
One needs to strengthen the closure requirement for repre-
senting IBGNI(ES), which the implication IBGNI(ES) ⇒
IBGNI ∗(ES) already suggests, and – as elaborated in Sec-
tion 5.1 – this strengthening must correspond to dropping
the ρC-admissibility condition. One obvious candidate for a
solution is to modify the closure requirement to

∀f ∈ F : ∀τ1 ∈ E∗ : ∀τ2 ∈ Tr : f(τ1, τ2) ∈ Tr

Note that τ1 ∈ Tr is not required, which is the difference
to Definition 6. As a consequence, the trace τ2 is perturbed
by an arbitrary sequence of events in Eκ

1 , i.e. an arbitrary
sequence of high input events.

Being closed under a covering set of sifs of type FκSEP is
equivalent to SEP(ES) (cf. Theorem 2). In order to rep-
resent NDO ∗(ES) and PSP(ES), we have to relax this re-
quirement as SEP(ES) implies NDO ∗(ES) and PSP(ES).
As elaborated in Section 5.2, this relaxation must corre-
spond to exchanging the parameter ρC with ρE and ρUI, re-
spectively. A candidate for a solution, e.g., for representing
BSIAρE would be to permit partial functions in the defini-
tion of sifs. This would allow one to restrict the sifs under

4Note that BSDHI(Tr) ⇒ RHI(Tr) follows from the defini-
tions of R and BSD.

considerations to ones that interleave two traces t1, t2 only
if they have a particular form, i.e. t1 = β.〈c〉 and t2 = β.α.

In order to represent GNI(ES) and GNI ∗(ES), one would
have to strengthen the closure requirement for IBGNI ∗(ES)
such that only causal corrections are permitted – as elabo-
rated in Section 5.3. This seems the greatest challenge. We
do not yet see any elegant possibilities for improving the
expressiveness of FSIF in this direction.

6. RELATED WORK
There are several other frameworks in which noninterfe-

rence-like properties can be analyzed. Roscoe and his co-
workers show how noninterference can be captured through
determinism [26, 24, 25]. This leads to very rigorous notions
of noninterference, but the drawback is that only very lim-
ited forms of nondeterministic behavior are permitted. In
[3], Focardi and Gorrieri represent properties in the model of
labeled transition systems and introduce the process algebra
SPA, a variant of Milner’s CCS [21], as a syntactic frame-
work. The results derived in their framework include tax-
onomies of noninterference-like properties and various com-
positionality results. There are several extensions of the ba-
sic framework, e.g., for capturing declassification [2] or mo-
bility [5]. Peri, Wulf, and Kienzle represent noninterference-
like properties in a many-sorted predicate logic [23]. This
is a very expressive framework (though the authors limit
their investigation to the four properties already considered
in [19]), but seems too general to derive parametric composi-
tionality results. Zakinthinos and Lee [32, 33] introduce the
concept of Low-Level Equivalence Sets and, based on this
concept, a uniform schema for representing noninterference-
like properties. They derive a taxonomy of noninterference-
like properties, unwinding theorems, and compositionality
results. However, the schema seems not suitable for the
derivation of parametric results, and it is not expressive
enough to represent properties like, e.g., separability or the
perfect security property. In order to express these proper-
ties, Zakinthinos and Lee violate their schema. Ryan and
Schneider elaborate a correspondence between noninterfe-
rence-like properties and various notions of process equiva-
lence [27, 28]. By exploiting this correspondence, they an-
alyze several noninterference-like properties, compare them
to each other and derive unwinding results as well as com-
positionality results. Focardi and Martinelli [4] propose a
uniform schema for representing security properties. They
illustrate how this schema can be instantiated to capture
several noninterference-like properties as well as other se-
curity properties. Based on their uniform representation,
they clarify the relationship between these security proper-
ties. All of these frameworks primarily aim at possibilistic
properties. Beyond this, there are also probabilistic variants
of noninterference (cf., e.g., [31, 7, 1]).

In [32], Zakinthinos argues that every property represent-
able in the FSIF can also be represented in his framework.
However, his variant of the FSIF for event systems does not
adequately reflect the original framework (cf. Section 3.4).

7. CONCLUSION
In this article, we clarified the relationship between the

Framework of Selective Interleaving Functions [19, 20] and
the Modular Assembly Kit for Security Properties [11, 14,
15]. Our main result is that the MAKS is strictly more
expressive than the FSIF in its current form.

We showed that all noninterference-like properties that
can be represented in the FSIF can also be represented in
the MAKS and that there are properties that can be rep-
resented in the MAKS but not in the FSIF. To enable this
formal comparison, we had to develop a variant of the FSIF

for the model of event systems. We explained why our vari-
ant adequately reflects the original framework and showed
that our variant is adequate for representing all properties
that were represented in the original FSIF. McLean intro-
duced the notions of range restrictions and domain restric-
tions only by example. We showed how these notions can
be formalized and found that domain restrictions better sup-
port a comparison of different properties. The variant of the
FSIF in this article is an improvement of an earlier attempt
by Zakinthinos [32] that did not capture the original frame-
work in an adequate way (see Section 6).

We investigated three classes of noninterference-like prop-
erties that cannot be represented in the FSIF. Based on the
representation of these properties in the MAKS, we illus-
trated for which concepts of the MAKS there is no counter-
part in the FSIF. This also inspired some ideas for modifying
the FSIF in order to improve its expressiveness. It would
be interesting to investigate such possibilities in more detail,
but this remains a task for the future. Another interesting
question is how the two frameworks compare with respect
to the compositionality results that one can derive.

8. REFERENCES
[1] Backes, M., and Pfitzmann, B. Computational Probabilistic

Non-Interference. International Journal of Information
Security (IJIS) 3, 1 (2004), 42–60.

[2] Bossi, A., Piazza, C., and Rossi, S. Modelling Downgrading in
Information Flow Security. In Proceedings of the IEEE
Computer Security Foundations Workshop (2004),
pp. 187–201.

[3] Focardi, R., and Gorrieri, R. A Classification of Security
Properties for Process Algebras. Journal of Computer
Security 3, 1 (1995), 5–33.

[4] Focardi, R., and Martinelli, F. A Uniform Approach to the
Definition of Security Properties. In Proceedings of FM’99 –
Formal Methods (vol. 1) (1999), vol. 1708 of LNCS,
pp. 794–813.

[5] Focardi, R., and Rossi, S. Information Flow Security in
Dynamic Contexts. In Proceedings of the 15th IEEE
Computer Security Foundations Workshop (2002),
pp. 307–319.

[6] Goguen, J. A., and Meseguer, J. Security Policies and Security
Models. In Proceedings of the IEEE Symposium on Security
and Privacy (1982), pp. 11–20.

[7] Gray, J. W. Toward a Mathematical Foundation for
Information Flow Security. In Proceedings of the IEEE
Symposium on Security and Privacy (1991), pp. 21–34.

[8] Guttman, J. D., and Nadel, M. E. “What Needs Securing?”.
In Proceedings of the IEEE Computer Security Foundations
Workshop (1988), pp. 34–57.

[9] Hutter, D., and Schairer, A. Possibilistic Information Flow
Control in the Presence of Encrypted Communication. In
Proceedings of the European Symposium on Research in
Computer Security (2004), vol. 3193 of LNCS, pp. 209–224.

[10] Jacob, J. On the Derivation of Secure Components. In
Proceedings of the IEEE Symposium on Security and Privacy
(1989), pp. 242–247.

[11] Mantel, H. Possibilistic Definitions of Security – An Assembly
Kit. In Proceedings of the IEEE Computer Security
Foundations Workshop (2000), pp. 185–199.

[12] Mantel, H. Unwinding Possibilistic Security Properties. In
Proceedings of the European Symposium on Research in
Computer Security (2000), vol. 1895 of LNCS, pp. 238–254.

[13] Mantel, H. Information Flow Control and Applications –
Bridging a Gap. In Proceedings of FME 2001: Formal
Methods for Increasing Software Productivity (2001),
vol. 2021 of LNCS, pp. 153–172.

[14] Mantel, H. On the Composition of Secure Systems. In
Proceedings of the IEEE Symposium on Security and Privacy
(2002), pp. 88–104.

[15] Mantel, H. A Uniform Framework for the Formal
Specification and Verification of Secure Information Flow.
PhD thesis, Saarland University, Saarbrücken, Germany, 2003.

[16] Mantel, H., and Sabelfeld, A. A Generic Approach to the
Security of Multi-threaded Programs. In Proceedings of the
14th IEEE Computer Security Foundations Workshop
(2001), pp. 126–142.

[17] Mantel, H., Schairer, A., Kabatnik, M., Kreutzer, M., and
Zugenmaier, A. Using Information Flow Control to Evaluate
Access Protection of Location Information in Mobile
Communication Networks. Tech. Rep. 159, Computer Science
Department, University of Freiburg, 2001.

[18] McCullough, D. Specifications for Multi-Level Security and a
Hook-Up Property. In Proceedings of the IEEE Symposium
on Security and Privacy (1987), pp. 161–166.

[19] McLean, J. D. A General Theory of Composition for Trace
Sets Closed under Selective Interleaving Functions. In
Proceedings of the IEEE Symposium on Research in Security
and Privacy (1994), pp. 79–93.

[20] McLean, J. D. A General Theory of Composition for a Class of
“Possibilistic” Security Properties. IEEE Transaction on
Software Engineering 22, 1 (1996), 53–67.

[21] Milner, R. Communication and Concurrency. International
Series in Computer Science. Prentice Hall, 1989.

[22] O’Halloran, C. A Calculus of Information Flow. In
Proceedings of the European Symposium on Research in
Computer Security (1990), pp. 147–159.

[23] Peri, R. V., Wulf, W. A., and Kienzle, D. M. A Logic of
Composition for Information Flow Predicates. In Proceedings
of the 9th IEEE Computer Security Foundations Workshop
(1996), pp. 82–93.

[24] Roscoe, A. W. CSP and Determinism in Security Modelling. In
Proceedings of the IEEE Symposium on Security and Privacy
(1995), pp. 114–127.

[25] Roscoe, A. W., and Goldsmith, M. H. What is intransitive
noninterference? In Proceedings of the 12th IEEE Computer
Security Foundations Workshop (1999), pp. 228–238.

[26] Roscoe, A. W., Woodcock, J. C. P., and Wulf, L.
Non-interference through Determinism. In Proceedings of the
European Symposium on Research in Computer Security
(1994), vol. 875 of LNCS, pp. 33–53.

[27] Ryan, P. Y. A., and Schneider, S. A. Process Algebra and
Non-interference. In Proceedings of the 12th IEEE Computer
Security Foundations Workshop (1999), pp. 214–227.

[28] Ryan, P. Y. A., and Schneider, S. A. Process Algebra and
Non-Interference. Journal of Computer Security 9, 1/2
(2001), 75–103.

[29] Schäfer, I. Information Flow Control for Multiagent Systems,
A Case Study in Comparison Shopping. Master’s thesis,
Universität Rostock, 2004.

[30] v. Oheimb, D. Information Flow Control Revisited:
Noninfluence = Noninterference + Nonleakage. In Proceedings
of the European Symposium on Research in Computer
Security (2004), vol. 3193 of LNCS, pp. 225–243.

[31] Wittbold, J. T., and Johnson, D. M. Information Flow in
Nondeterministic Systems. In Proceedings of the IEEE
Symposium on Research in Security and Privacy (1990),
pp. 144–161.

[32] Zakinthinos, A. On the Composition of Security Properties.
PhD thesis, Graduate Department of Electrical and Computer
Engineering, University of Toronto, 1996.

[33] Zakinthinos, A., and Lee, E. S. A General Theory of Security
Properties. In Proceedings of the IEEE Symposium on
Security and Privacy (1997), pp. 94–102.

APPENDIX

A. PROOFS

A.1 Representation of the Example Properties

Proof of Theorem 2. Theorem 10 shows SEP(ES) and
RH(Tr) ∧ IA ρC

H (Tr) to be equivalent. Theorem 11 implies
that the latter statement is equivalent to the requirement

that ES is closed under some covering set of sifs of type
FκSEP .

Proof of Theorem 3. Theorem 10 shows IBGNI ∗(ES)
and RHI(Tr)∧IA ρC

HI(Tr) to be equivalent. Theorem 11 im-
plies that the latter statement is equivalent to the require-
ment that ES is closed under some covering set of sifs of
type FκIBGNI ∗

.

Proof of Theorem 4. Firstly, assume that there is a
covering set F of sifs of type FκNF such that ES is closed
under F and f(t1, t2)|EκNF

0

= 〈〉 holds for all f ∈ F and

all t1, t2 ∈ E∗. Let τ ∈ Tr (if Tr = ∅ then the statement
holds trivially) and f ∈ F (F is nonempty because it covers
FκNF) be arbitrary. Since f is a sif and EκNF

2 = L, we have
f(〈〉, τ)|L = τ |L. Since EκNF

0 = H , we have f(〈〉, τ)|H = 〈〉
according to our assumptions about F . From EκNF

1 = ∅, we
obtain f(〈〉, τ) = τ |L. Since ES is closed under F , τ |L ∈ Tr
holds. Hence, NF(ES) holds.

Secondly, assume that NF(ES) holds. Define

F =

f is a sif of type FκNF

˛

˛

˛

˛

∀t1, t2 ∈ E∗ :
f(t1, t2)|EκNF

0

= 〈〉

ff

.

Let f ∈ F and τ1, τ2 ∈ Tr be arbitrary. Since f(τ1, τ2) =
τ2|L (follows from EκNF

1 = ∅ and our definition of F) and
τ2|L ∈ Tr (follows from NF(ES)), we have f(τ1, τ2) ∈ Tr.
Hence, ES is closed under F . It remains to show F covers
FκNF . Let t1, t2 ∈ E∗ and t ∈ interleaving(t1|EκNF

1

, t2|EκNF
2

)

be arbitrary. Since EκNF
1 = ∅, we have t = t2|EκNF

2

. Define

f by: ∀t′1, t
′
2 ∈ E∗ : f(t′1, t

′
2) = t′2|EκNF

2

. Obviously, f ∈ F

and f(t1, t2) = t2|EκNF
2

= t hold. Hence, F covers FκNF .

Proof of Theorem 5. Firstly, assume that there is a
covering set F of sifs of type FκNF such that ES is closed
under F and f(t1, t2)|EκNF

0
∩I

= 〈〉 holds for all f ∈ F and

all t1, t2 ∈ E∗. Let τ ∈ Tr and f ∈ F be arbitrary. Since
f is a sif and EκNF

2 = L, we have f(〈〉, τ)|L = τ |L. Since
EκNF

0 = H , f(〈〉, τ)|H∩I = 〈〉 follows from our assumptions
about F . For τ ′ = f(〈〉, τ), we have τ ′ ∈ Tr (ES is closed
under F), τ ′|L = τ |L, and τ ′|H∩I = 〈〉. Hence, GNF(ES)
holds.

Secondly, assume that GNF(ES) holds. Define F = {f}
where

f(t1, t2) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

t2|EκNF
2

if t2 /∈ Tr

t′2 if t2 ∈ Tr
where t′2 ∈ E∗ is a trace with
t′2 ∈ Tr, t′2|L = t2|L, and
t′2|H∩I = 〈〉 (t′2 with these prop-
erties exists because GNF(ES)
holds)

Hence, ES is closed under F . It remains to show F covers
FκNF . Let t1, t2 ∈ E∗ and t ∈ interleaving(t1|EκNF

1

, t2|EκNF
2

)

be arbitrary. Since EκNF
1 = ∅, we have t = t2|EκNF

2

. Since

f(t1, t2)|EκNF
1

∪E
κNF
2

= t2|EκNF
2

= t and t1, t2, t were chosen

arbitrarily, we conclude that F covers FκNF .

Proof of Theorem 7. NF(ES) and RH(Tr) are equiv-
alent (cf. Theorem 10). The latter statement is equivalent
to the requirement that ES is closed under some set of sifs
of type FκSEP that covers FκSEP under the domain restriction
E (cf. Theorem 12).

Proof of Theorem 8. GNF(ES) and RHI(Tr) are equi-
valent (cf. Theorem 10). The latter statement is equivalent
to the requirement that ES is closed under some set of sifs
of type FκIBGNI∗

that covers FκIBGNI ∗
under the domain re-

striction E (cf. Theorem 12).

A.2 First Representation Theorem
We first prove a lemma that is used in the proof of Theo-

rem 11.

Lemma 1. Let V = (V, N, C) be a view in E and ρC be
defined like in Theorem 10. Define κ : E → {0, 1, 2} by
Eκ

0 = N , Eκ
1 = C, and Eκ

e = V .
If RV(Tr)∧ IA ρC

V (Tr) holds then, for every n ∈ IN, there

is a set Fn ⊆ ((
S

n′≤n En′

) × E∗) → E∗ for which the
following three propositions hold:

1. Each f ∈ Fn approximates a sif of type Fκ, i.e.

∀f ∈ Fn : ∀t1 ∈
S

n′≤n
En′

: ∀t2 ∈ E∗ : (9)

[(f(t1, t2))|Eκ
1

= t1|Eκ
1
∧ (f(t1, t2))|Eκ

2
= t2|Eκ

2
]

2. Fn approximates the coverage requirement, i.e.

∀ι ∈ ((
S

n′≤n
En′

) × E∗) → (Eκ
1 ∪ Eκ

2)∗ : (10)

[(∀t′1 ∈
S

n′≤n
En′

: ∀t′2 ∈ E∗ :

ι(t′1, t
′
2) ∈ interleaving(t′1|Eκ

1
, t′2|Eκ

2
))

⇒∃f ∈ Fn : ∀t1 ∈
S

n′≤n
En′

: ∀t2 ∈ E∗ :

f(t1, t2)|Eκ
1
∪Eκ

2
= ι(t1, t2)]

3. ES is closed under every f ∈ Fn, i.e.

∀f ∈ Fn : ∀t1 ∈
S

n′≤n
En′

: ∀t2 ∈ E∗ : (11)

[(t1 ∈ Tr ∧ t2 ∈ Tr) ⇒ f(t1, t2) ∈ Tr]

Proof. The proof proceeds by induction on n.

Base case (n = 0):
S

n′≤n
En′

= {〈〉} holds. We construct

F0 by F0 = {f0} where f0 is defined as follows for t1 ∈
S

n′≤n
En′

(i.e. t1 = 〈〉) and t2 ∈ E∗:

f0(t1, t2) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

t2|Eκ
2

if t2 /∈ Tr

t′2 if t2 ∈ Tr
where t′2 ∈ E∗ is some trace with
t′2 ∈ Tr, t′2|Eκ

2
= t2|Eκ

2
, and t′2|Eκ

1
=

〈〉 (existence of such a t′2 follows
from Eκ

1 = C, Eκ
2 = V , and RV(Tr)

From the construction of f0, we immediately obtain (9) and
(11) for n = 0.

As n = 0, there is only one function ι0 ∈ ((
S

n′≤0 En′

)×

E∗) → (Eκ
1 ∪Eκ

2)∗ such that ∀t′1 ∈
S

n′≤n En′

: ∀t′2 ∈

E∗ : ι0(t′1, t
′
2) ∈ interleaving(t′1|Eκ

1
, t′2|Eκ

2
) and ι0(t′1, t

′
2) =

t2|Eκ
2
. By construction, we have that f0(t1, t2)|Eκ

1
∪Eκ

2
=

f0(〈〉, t2)|Eκ
1
∪Eκ

2
= t2|Eκ

2
= ι0(t1, t2) holds for all t1 ∈ E0

and t2 ∈ E∗. Hence, (10) holds for n = 0.
Step case (n > 0): We construct Fn as follows:

Fn=

8

>

>

>

>

>

<

>

>

>

>

>

:

fn
ι

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

fn
ι : ((

S

n′≤n
En′

) × E∗) → E∗

∧ ι : ((
S

n′≤n
En′

) × E∗) → (Eκ
1 ∪ Eκ

2)∗

∧ (∀t′1, t
′
2 ∈ E∗ :

ι(t′1, t
′
2) ∈ interleaving(t′1|Eκ

1
, t′2|Eκ

2
))

∧ Deffn
ι

9

>

>

>

>

>

=

>

>

>

>

>

;

where Deffn
ι

defines fn
ι as follows for t1 ∈

S

n′≤n
En′

and

t2 ∈ E∗:

Deffn
ι
≡ fn

ι (t1, t2) =

8

>

>

>

>

<

>

>

>

>

:

ι(t1, t2) if t1 /∈ Tr or t2 /∈ Tr

tt1,t2 if t1, t2 ∈ Tr
where tt1,t2 ∈ E∗ is a
trace with tt1,t2 ∈Tr and
tt1,t2 |Eκ

1
∪Eκ

2
= ι(t1, t2)

The validity of (9), (10), and (11) follows immediately from
this construction. It only remains to prove that fn

ι (t1, t2)
is well defined, i.e. that there always is a trace tt1,t2 ∈ Tr
such that tt1,t2 |Eκ

1
∪Eκ

2
= ι(t1, t2). For proving the existence

of tt1,t2 , we make a case distinction on (1) t1 ∈
S

n′<n
En′

and (2) t1 ∈ En:

Case 1 (t1 ∈
S

n′<n
En′

): There exists a function ι′ :

((
S

n′<n En′

) × E∗) → (Eκ
1 ∪ Eκ

2)∗ that equals ι on the re-

stricted domain (
S

n′<n
En′

) × E∗, i.e. ι′(t3, t4) = ι(t3, t4)

for all t3 ∈
S

n′<n
En′

and t4 ∈ E∗. According to the induc-

tion assumption, there is a function fn−1
ι′

∈ Fn−1 such that,

for all t3 ∈
S

n′<n
En′

and t4 ∈ E∗, fn−1
ι′

(t3, t4)|Eκ
1
∪Eκ

2
=

ι′(t3, t4) holds and t3, t4 ∈ Tr implies fn−1
ι′

(t3, t4) ∈ Tr. We

choose tt1,t2 = fn−1
ι′

(t1, t2). Consequently, tt1,t2 ∈ Tr holds.
Moreover, tt1,t2 |Eκ

1
∪Eκ

2
= ι(t1, t2) as tt1,t2 |Eκ

1
∪Eκ

2
= ι′(t1, t2)

and ι′ equals ι for the restricted domain (
S

n′<n
En′

)× E∗.

Case 2 (t1 ∈ En): Let t′1 ∈ En−1 and e ∈ E be defined
by t1 = t′1.〈e〉. We make another case distinction on e: (2a)
e /∈ Eκ

1 and (2b) e ∈ Eκ
1 .

Case 2a (e /∈ Eκ
1): There is a function ι′ : ((

S

n′<n En′

)×
E∗)→ (Eκ

1∪Eκ
2)∗ such that ι′(t′1, t2)= ι(t1, t2) and ι′(t3, t4)∈

interleaving(t3|Eκ
1
, t4|Eκ

2
) holds for all t3 ∈

S

n′<n
En′

and
t4 ∈ E∗. According to the induction assumption, there is a

function fn−1
ι′

∈ Fn−1 such that, for all t3 ∈
S

n′<n
En′

and

t4 ∈ E∗, fn−1
ι′

(t3, t4)|Eκ
1
∪Eκ

2
= ι′(t3, t4) holds and t3, t4 ∈ Tr

implies fn−1
ι′

(t3, t4) ∈ Tr. For tt1,t2 = fn−1
ι′

(t′1, t2), we ob-
tain tt1,t2 ∈ Tr and tt1,t2 |Eκ

1
∪Eκ

2
= ι′(t′1, t2) = ι(t1, t2).

Case 2b (e ∈ Eκ
1): Define α, β ∈ E∗ by ι(t′1.〈e〉, t2) =

β.〈e〉.α and α|Eκ
1

= 〈〉. There is a function ι′ : ((
S

n′<n
En′

)×

E∗) → (Eκ
1 ∪ Eκ

2)∗ such that ι′(t′1, t2) = β.α and ι(t3, t4) ∈

interleaving(t3|Eκ
1
, t4|Eκ

2
) hold for all t3 ∈

S

n′<n
En′

and
t4 ∈ E∗. According to the induction assumption, there is a

function fn−1
ι′

∈ Fn−1 such that, for all t3 ∈
S

n′<n
En′

and

t4 ∈ E∗, fn−1
ι′

(t3, t4)|Eκ
1
∪Eκ

2
= ι′(t3, t4) holds and t3, t4 ∈

Tr implies fn−1
ι′

(t3, t4) ∈ Tr. Since fn−1
ι′

(t′1, t2)|Eκ
1
∪Eκ

2
=

ι′(t′1, t2)=β.α, there are α′, β′ ∈ E∗ with β′.α′ =fn−1
ι′

(t′1, t2),
β′|Eκ

1
∪Eκ

2
= β|Eκ

1
∪Eκ

2
, α′|Eκ

2
= α|Eκ

2
, and α′|Eκ

1
= 〈〉. From

t′1|Eκ
1

= β′|Eκ
1

and t′1.〈e〉 ∈ Tr, we obtain AdmρC

V (Tr, β′, e).

We conclude from IA ρC

V (Tr) that there are α′′, β′′ ∈ E∗ with
β′′.〈e〉.α′′ ∈ Tr, β′′|Eκ

1
∪Eκ

2
= β′|Eκ

1
∪Eκ

2
, α′′|Eκ

2
= α′|Eκ

2
, and

α′′|Eκ
1

= 〈〉. For tt1,t2 = β′′.〈e〉.α′′, we obtain tt1,t2 ∈ Tr and

tt1,t2 |Eκ
1
∪Eκ

2
= (β′′.〈e〉.α′′)|Eκ

1
∪Eκ

2
= (β′.〈e〉.α′)|Eκ

1
∪Eκ

2
=

(β.〈e〉.α)|Eκ
1
∪Eκ

2
= ι(t1, t2).

Note that RV(Tr) is applied only in the base case of the
proof for Lemma 1 and that IA ρC

V (Tr) is applied only in
Case 2b of the step case.

We are now ready to prove Theorem 11.

Proof of Theorem 11. Firstly, assume ES is closed un-
der some covering set F of sifs of type Fκ. We have to show
that RV(Tr) and IA ρC

V (Tr) hold.

For proving RV(Tr), let τ ∈ Tr be arbitrary (if Tr = ∅
then the proposition holds trivially). Let f ∈ F be arbitrary
and define τ ′ = f(〈〉, τ). As ES is closed under F and 〈〉, τ ∈
Tr holds (〈〉 ∈ Tr because ES is closed under prefixes), we
have τ ′ ∈ Tr. As f is a sif of type Fκ, we have τ ′|C =
τ ′|Eκ

1
= f(〈〉, τ)|Eκ

1
= 〈〉 and τ ′|V = τ ′|Eκ

2
= f(〈〉, τ)|Eκ

2
=

τ |Eκ
2

= τ |V . Thus, RV(Tr) holds.
For proving IA ρC

V (Tr), let α, β ∈ E∗ and c ∈ C be ar-
bitrary. Assume β.α ∈ Tr, α|C = 〈〉, and AdmρC

V (Tr, β, c).
Hence α|Eκ

1
= 〈〉 and c ∈ Eκ

1 . Since AdmρC

V (Tr, β, c) there
is a trace γ ∈ E∗ with γ.〈c〉 ∈ Tr and γ|Eκ

1
= β|Eκ

1
. Conse-

quently, (β.〈c〉.α)|Eκ
1
∪Eκ

2
∈ interleaving((γ.〈c〉)|Eκ

1
, (β.α)|Eκ

2
)

holds. Since F covers Fκ, there is a sif f ∈ F such that
(f(γ.〈c〉, β.α))|Eκ

1
∪Eκ

2
= (β.〈c〉.α)|Eκ

1
∪Eκ

2
. Let β′, α′ ∈ E∗ be

the subsequences of f(γ.〈c〉, β.α) before and after the last oc-
currence of c, respectively, i.e. f(γ.〈c〉, β.α) = β′.〈c〉.α′ and
α′|Eκ

1
= 〈〉. Since ES is closed under F , we obtain β′.〈c〉.α′ ∈

Tr. From β′.〈c〉.α′ ∈ Tr, α′|C = 〈〉, and (β′.〈c〉.α′)|V ∪C =
(β.〈c〉.α)|V ∪C we conclude that IA ρC

V (Tr) holds.
Secondly, assume RV(Tr) and IA ρC

V (Tr). We have to
show that ES is closed under some covering set F of sifs of
type Fκ. We choose F =

S

n∈IN Fn where Fn is defined
like in the proof of Lemma 1. Hence, ES is closed under
F . It remains to prove that F covers Fκ. Let t1, t2 ∈ E∗

and t ∈ interleaving(t1|Eκ
1
, t2|Eκ

2
) be arbitrary. Let n ∈ IN

be the length of t1 (i.e. t1 ∈ En). Then there is a function

ι ∈ ((
S

n′≤n
En′

) × E∗) → (Eκ
1 ∪ Eκ

2)∗ such that ∀t′1 ∈
S

n′≤n
En′

: ∀t′2 ∈ E∗ : ι(t′1, t
′
2) ∈ interleaving(t′1|Eκ

1
, t′2|Eκ

2
)

and ι(t1, t2) = t. According to Lemma 1 there is a f ∈ F
with f(t1, t2)|Eκ

1
∪Eκ

2
= ι(t1, t2) = t. Hence, F covers Fκ.

A.3 Second Representation Theorem

Proof of Theorem 12. Firstly, assume ES is closed un-
der some set F of sifs of type Fκ that covers Fκ under the do-
main restriction E. Hence, F cannot be empty. Let τ ∈ Tr
be arbitrary (if Tr = ∅ then the proposition holds trivially).
Let f ∈ F be arbitrary and define τ ′ = f(〈〉, τ). As ES is
closed under F and 〈〉, τ ∈ Tr holds (〈〉 ∈ Tr because ES
is closed under prefixes), we have τ ′ ∈ Tr. As f is a sif
of type Fκ, we have τ ′|C = τ ′|Eκ

1
= f(〈〉, τ)|Eκ

1
= 〈〉 and

τ ′|V = τ ′|Eκ
2

= f(〈〉, τ)|Eκ
2

= τ |Eκ
2

= τ |V . Thus, RV(Tr).

Secondly, assume RV(Tr). We choose F = F0 where F0

is like in the proof of Lemma 1. Hence, ES is closed under F .
It remains to prove that F covers Fκ under the domain re-
striction E. Let t1 ∈ (E \E)∗ (i.e. t1 = 〈〉), t2 ∈ E∗, and t ∈
interleaving(t1|Eκ

1
, t2|Eκ

2
) be arbitrary. Then there is a func-

tion ι ∈ ((
S

n′≤0 En′

) × E∗) → (Eκ
1 ∪ Eκ

2)∗ such that ∀t′1 ∈
S

n′≤0 En′

: ∀t′2 ∈ E∗ : ι(t′1, t
′
2) ∈ interleaving(t′1|Eκ

1
, t′2|Eκ

2
)

and ι(t1, t2) = t. According to Lemma 1 there is a f ∈ F
with f(t1, t2)|Eκ

1
∪Eκ

2
= ι(t1, t2) = t.

