
Appeared in M. Backes, P. Ning (Eds.): ESORICS 2009, LNCS 5789, pp. 69–85, 2009

c© Springer-Verlag Berlin Heidelberg 2009

Declassification with Explicit Reference Points

Alexander Lux and Heiko Mantel

Computer Science, TU Darmstadt, Germany, {lux,mantel}@cs.tu-darmstadt.de

Abstract. Noninterference requires that public outputs of a program
must be completely independent from secrets. While this ensures that
secrets cannot be leaked, it is too restrictive for many applications. For in-
stance, the output of a knowledge-based authentication mechanism needs
to reveal whether an input matches the secret password. The research
problem is to allow such exceptions without giving up too much. Though
a number of solutions has been developed, the problem is not yet satis-
factorily solved. In this article, we propose a framework to control what
information is declassified. Our contributions include a policy language,
a semantic characterization of information flow security, and a sound se-
curity type system. The main technical novelty is the explicit treatment
of so called reference points, which allows us to offer substantially more
flexible control of what is released than in existing approaches.

1 Introduction

Information systems process a wide range of secrets, including national secrets,
private data, and electronic goods. Confidentiality requirements may also orig-
inate from security mechanisms, e.g., the confidentiality of passwords (for au-
thentication mechanisms), of cryptographic keys (for encryption), of random
challenges (for security protocols), or of capabilities (for access controls).

Static program analysis can be applied to ensure that secrets cannot be leaked
during program execution or, in other words, that the flow of information in a
program is secure. The resulting security guarantee is usually captured as a lack-
of-dependency property, which states that the output to untrusted observers is
independent from all data that they are not authorized to obtain.

While strict lack-of-dependency properties like noninterference [1] are rather
attractive from a theoretical point of view, they become impractical if secrets
shall be deliberately released. For instance, an electronic good (initially a secret)
should be released to a customer after it has been paid for and an authentication
attempt necessarily reveals some information about the stored password. In these
cases, it is necessary to relax strict lack of dependency to some extent – but
how much? The research community has been actively searching for solutions
and proposed a number of approaches in recent years. However, the problem of
controlled declassification is not yet satisfactorily solved.

Mantel and Sands proposed in [2] to distinguish carefully whether a given
approach controls what can be declassified, where declassification can occur, and

who can initiate declassification. Based on these dimensions of declassification, a
taxonomy of known approaches to control declassification was developed in [3].
In this article, we focus on what information may be declassified.

When reviewing existing approaches to controlling the what dimension with
similar syntax, we found significant differences on the semantic level.

For instance, delimited release [4] uses so called escape hatches to indicate
what may be declassified by a program. An escape hatch has the syntax
declassify(exp, d), where exp is an expression and d is a security domain in the
given flow policy. Semantically, the escape hatch specifies that the value of exp

in the initial state (i.e. before program execution begins) may be revealed to
the security domain d . This permission dominates all restrictions that are de-
fined by a given flow relation . That is, if the policy contains an escape hatch
declassify(exp, d) then the initial value of exp may be revealed to d – even if exp

incorporates variables from a security domain d ′ such that d ′ 6 d .

Delimited non-disclosure [5] indicates that the expression exp may be declas-
sified in the program c by commands of the form declassify (exp) in {c}. Security
domains are not explicitly mentioned in declassification commands because im-
plicitly a flow policy with only two domains, public and secret, is assumed. Under
this flow policy, declassification always constitutes an exception to the restric-
tion that information must not flow from secret to public. Interestingly, delimited
non-disclosure permits declassification of the value exp in any state in which exp

is evaluated during the execution of the command c. This local view is different
from permitting the declassification of the initial value of exp or of the value of
exp in the state before the execution of the command c starts.

That is, despite the syntactic similarities between delimited release and de-
limited non-disclosure, these approaches differ significantly in their semantics.
The implicit assumptions of initial and local reference points can also be observed
in further approaches, e.g., in [6–8] and [9], respectively.

In this article, we propose explicit reference points as a concept to support a
flexible specification of what secrets may be declassified. A declassification guard
dguard(r , exp, d) specifies the values that may be declassified by an expression
exp and by a reference point r . The reference point determines a set of states
with the intention that the value of exp in any of these states may be decl-
assified to domain d . Unlike in earlier approaches, our framework allows one to
make explicit in which states exp is evaluated. Delimited release and delimited
non-disclosure can be simulated by placing reference points at the beginning
of a program or at all points where exp is evaluated, respectively. However, our
framework goes far beyond providing a uniform view on initial and local reference
points. Rather, explicit reference points can be placed at any point in a program,
and this is adequately supported by our semantic characterization of security.

In Section 2, we elaborate the limitations of leaving reference points implicit
and sketch the use of our declassification framework. Our novel technical contri-
butions are presented in Section 3 (policy language), Section 4 (security condi-
tion), and Section 5 (security type system and soundness result). We conclude
with a presentation of further examples and a comparison to related work.

2

2 From Implicit to Explicit Reference Points

Many approaches to controlling what is declassified implicitly assume that ref-
erence points are either always initial or always local (see Section 1). We point
out the limitations of this assumption in Section 2.1 and offer a first glance at
the explicit treatment of reference points in our framework in Section 2.2.

2.1 Initial versus Local Reference Points

As a running example, we consider a program that calculates the average of
100 salaries. We assume that the individual salaries (which constitute inputs
to the program) must be kept secret, but that the resulting average may be
published. We capture this requirement by a two-level flow policy forbidding
that information flows from a security domain secret to a security domain public

(i.e., secret 6 public). The domain assignment associates the program variables
sal1, . . . , sal100 (storing the individual salaries) with the domain secret and the
program variable avg (storing the resulting average) with the domain public.

The desired control of what is declassified can be expressed with delimited
release (see P1 below) as well as with delimited non-disclosure (see P2 below):

P1 = avg := declassify((sal1 + sal2 + ... + sal100) / 100, public)

P2 = declassify((sal1 + sal2 + ... + sal100) / 100)

in {avg:=(sal1 + sal2 + ... + sal100) / 100}

So far, we do not observe any significant differences between the two implicit
assumptions of initial versus local reference points. However, differences become
apparent if we place the program fragments into a larger context. For instance,

P3 = sal1 := sal1; sal2 := sal1; . . . ; sal100 := sal1; P1

effectively assigns sal1 to avg. Intuitively, this clearly is a breach of security
because the policy permits only to declassify the average value of all salaries,
but not the value of any individual salary. In this case, delimited release is,
indeed, a suitable characterization because P3 violates this security condition.

In contrast, delimited non-disclosure is not suitable to detect such an infor-
mation leak. Each of the following two programs (where Avg = (sal1 + sal2 +
... + sal100) / 100) satisfies delimited non-disclosure although P4 as well as P5

intuitively incorporate the same insecurity as P3:

P4 = sal1 := sal1; sal2 := sal1; . . . ; sal100 := sal1; P2

P5 = declassify(Avg)
in { sal1 := sal1; sal2 := sal1; . . . ; sal100 := sal1; avg:=Avg}

However, this does not mean that delimited release is fully satisfactory. There
are programs for which delimited release is too restrictive. Consider, for instance,

P6 = sal1 <- input; sal2 <- input; . . . ; sal100 <- input; P1

where input is an input channel that supplies the ith salary for the ith assignment
in the first line of the program. This program would be rejected by delimited

3

release1 although, intuitively, the program is secure given that inputs are indeed
delivered as specified. The underlying reason is that delimited release implic-
itly assumes initial reference points, which are not adequate in this scenario.
Interestingly, delimited non-disclosure is fulfilled by the following program:

P7 = declassify(Avg)
in { sal1 <- input; sal2 <- input; . . . ; sal100 <- input; avg:=Avg}

Hence, the implicit assumptions of initial reference points (delimited release)
and of local reference points (delimited non-disclosure) both have their limits.

2.2 Towards Explicit Reference Points

We propose declassification guards as a means to indicate more explicitly what
may be declassified. A declassification guard has the form dguard(r , exp, d), where
dguard is a keyword, r is a reference label, exp is an expression, and d is a secu-
rity domain. Reference labels are also used to annotate selected commands in a
given program. Hereby, each reference label specifies a set of r-labeled program
configurations, namely those configurations that can be reached in a run of the
program such that the next command to be executed is annotated with r . In-
tuitively, a declassification guard dguard(r , exp, d) specifies that if an r -labeled
configuration occurs in a given run, then the value of exp in this configuration
may be released to domain d afterwards in this run.

We illustrate declassification guards at our running example for two scenarios
with different security requirements. In the first scenario, the initial values of the
program variables sal1, . . . , sal100 must be kept secret, while the average of these
initial values may be declassified. In the second scenario, the values read from an
input channel into sal1, . . . , sal100 must be kept secret, while the average of these
inputs may be declassified. To make things concrete, we consider the following
variants of the programs P3 and P6:

P ′
3 = ref1 : sal1 := sal1; sal2 := sal1; . . . ; sal100 := sal1;

ref101 : avg :=Avg

P ′
6 = ref1 : sal1 <- input; sal2 <- input; . . . ; sal100 <- input;

ref101 : avg :=Avg

The intended control of declassification in the first scenario can be captured by
the declassification guard dguard(ref1,Avg, public) for P ′

3. In the second scenario,
the intended control can be captured by dguard(ref101,Avg, public). For these de-
classification guards, our security condition (to be presented in Section 4) is
violated by P ′

3 but satisfied by P ′
6, which is exactly as desired because P ′

3 is
intuitively insecure (the initial value of sal1 is revealed to public), while P ′

6 intu-
itively is secure. Note that the explicit treatment of reference points is crucial
to achieve this. While an initial reference point is appropriate in the first sce-
nario, a local reference point is needed for P ′

6 in the second scenario. Therefore,

1 The programming languages in [4] and [5] lack explicit I/O-commands. We assume
here a straightforward extension of delimited release and delimited non-disclosure
that treats input commands like non-deterministic assignments.

4

implicitly assuming that reference points are either always initial or always local
(as assumed by delimited release and by delimited non-disclosure, respectively),
is not satisfactory (also recall the examples in Section 2.1).

Our framework is not restricted to initial and local reference points. This fea-
ture is helpful if a value may be declassified that originates in some intermediate
state of a run without being immediately released. In fact, a declassification
guard should always contain the earliest point in a program where the value to
be declassified originates. This helps to detect insecurities of the following kind:

P8 = ref1 : sal1 <- input; sal2 <- input; . . . ; sal100 <- input;
ref101 : sal1 := sal1; sal2 := sal1; . . . ; sal100 := sal1;
ref201 : avg :=Avg

For the second scenario, one should choose dguard(ref101, exp, public) and not
dguard(ref201, exp, public) because the second declassification guard would occlude
that the intermediate computation leaks an individual input (sal1). Our security
condition (to be presented in Section 4) is, indeed, violated by P8 for the first
declassification guard (but not for the second).

3 Security Policies with Explicit Reference Points

The specification of a security policy comprises four parts: a specification of the
security domains, of the assignment of security domains to program variables
and to communication channels, of the regular flow between security domains,
and of the exceptional flow by a list of declassification guards.

Definition 1. Let D be a set of security domains, Var be a set of program
variables, I and O be two disjoint sets of input and output channels, respectively,
E be a set of expressions, and R be a set of reference labels.

A policy specification has the following form:

Spec ::= SecurityDomains DomSpec DomainAssign DomA

RegularFlow Flow ExceptionalFlow DGuards EndPolicy

The sub-specifications are defined by the following grammar (where d ∈D, x ∈
Var , ch∈I ∪O , exp∈E, and r ∈R):

DomSpec ::= ; | d ; DomSpec

DomA ::= ; | x :d ; DomA | ch :d ; DomA

Flow ::= ; | d=>d ; Flow

DGuards ::= ; | dguard(r , exp, d); DGuards

In order to make policy specifications more concise, we introduce two assump-
tions. Firstly, we assume that there is a domain public ∈ D and that all program
variables and communication channels are associated with public by default, i.e.,
unless otherwise explicitly specified. Secondly, we consider the flow relation mod-
ulo reflexivity and transitivity. If a flow relation is given by a policy specification
then the reflexive and transitive closure is implicitly computed.

If a security domain is listed more than once in DomSpec, if a domain is used
in DomA, Flow or DGuards that is not listed in DomSpec, or if DomA contains

5

multiple declarations for the same program variable or communication channel,
then we call the policy specification inconsistent. We also call it inconsistent if
it induces a flow relation that is not an ordering (violation of anti-symmetry).
Otherwise, a policy specification is consistent.

Semantically, a policy specification corresponds to a quadruple.

Definition 2. A security policy Pol is a tuple (D , dom,≤,G), where D is a
finite set of security domains, dom : (Var ∪I ∪O) → D is a domain assignment,
≤⊆ D ×D is a partial order expressing the permitted flow between domains
(analogously to in Section 1), and G ⊆ (R× E × D) is a set of guards.

The semantic of a policy specification Spec is a quadruple (D , dom,≤,G) that
is defined as follows. The set D equals the union of the set of all domains listed
in DomSpec with {public}. The function dom returns domain d for a variable x

or for a channel ch if x : d or ch : d , respectively, appears in DomA. Otherwise,
dom returns public. The relation ≤ relates d1 and d2 if d1 = d2, if d1=>d2, or
if there is a sequence of domains d3, . . . , dn such that Flow contains d1=>d3,
dn=>d2, and di=>di+1 for all i ∈ {3, . . . , n − 1}. The set G contains (r , exp, d)
iff dguard(r , exp, d) appears in DGuards. Note that this construction reflects our
two assumptions from above and ensures that consistent policy specifications
induce quadruples that are security policies according to Definition 2.

4 Characterization of Security

We are now ready to formalize under which conditions a given policy is fulfilled.
The main innovation of our security condition is that explicit reference points are
adequately supported. The key difficulty we faced when defining this condition
was to collect the values that may be declassified on the fly during a run.

Our exposition in this section focuses on the semantic level. That is, we
use a semantic model of program execution to define when a given program
model satisfies a given security policy. We lift security to the syntactic level, by
defining that a policy specification is fulfilled by a program if and only if the
corresponding security policy is fulfilled by the semantic model of the program.

4.1 A Semantic Model of Program Execution

In the rest of the article, we assume sets C (programs), Var (program variables), I
(input channels), O (output channels), and Val (values). Snapshots of a program
in execution are modeled by configurations 〈|c, s|〉 which consist of a program c ∈
C (or the special symbol ǫ modeling termination) and a memory state s : Var →
Val (assigning a value to each variable in Var). The set of all configurations is
denoted by Conf = C × (Var → Val).

Program execution is modeled by a transition relation on configurations:
_⊆ Conf × Conf . This transition relation is split into the sub-relations: _O

and (_ch,v)ch∈I∪O, v∈Val , i.e., _ = _O ∪
⋃

ch,v _ch,v . A relation _ch,v ⊆
Conf × Conf specifies the steps with input or output of value v on channel

6

ch. The relation _O ⊆ Conf × Conf specifies execution steps without I/O,
i.e., ordinary steps. If the special symbol ǫ occurs in a configuration instead of a
program then this is a final configuration. We assume that all transition relations
are deterministic. The only exceptions to this assumption are the values of input
steps because the environment chooses the value v . In contrast, the channel ch

is completely determined by the source configuration.
As notational conventions for the rest of the article, we denote meta-variables

for elements of D by d , of R by r , of C by c, of Var by x , of Var → Val by s

and t , of E by exp and b, of I by in, of O by out , of I ∪O by ch, and of Val by
v , all possibly with indices or primes. We also assume a policy (D , dom,≤,G).

4.2 A Novel Security Condition for Explicit Reference Points

We define the security condition based on the idea underlying non-interference,
i.e., that the observations of an attacker must not depend on secret data.

Attacker Model. For each security domain d ∈ D , we assume a d -observer who
can see the values of variables x with dom(x) ≤ d . Hence, he can distinguish two
memory states if they differ in the value of at least one d -observable variable.

Definition 3. For a given domain d , two memory states s and s ′ are d -equal,
denoted by s =d s ′, iff ∀x ∈ Var . (dom(x) ≤ d ⇒ s(x) = s ′(x)).

Accordingly, we assume that a d -observer can see which values are input and
output on channels ch with dom(ch) ≤ d , i.e, he can distinguish two commu-
nication steps on ch if different values are transmitted. He can also distinguish
communication steps on such a d-observable channel from communication steps
on other channels as well as from ordinary steps. Otherwise, he can distinguish
two computation steps only if he can distinguish the two corresponding mem-
ory states before or after the step. We define a sub-relation of _ capturing
the computation steps that do not communicate on d -observable channels by
_ 6≤d= (_ \(

⋃

dom(ch)≤d,v _ch,v)). This relation and the assumptions about
d -observability of steps will be relevant when defining the security condition.

In addition to values of variables that he can directly observe, a d -observer
may learn further information about memory states due to permissible declas-
sifications. We represent what may be declassified by hatches. A hatch is a
pair (exp, d) consisting of an expression exp and a security domain d . A hatch
(exp, d ′) with d ′ ≤ d gives any d -attacker the possibility to peek at the value
of exp through this hatch. Given a set H ⊆ E × D , a d -observer may distin-
guish two d -equal memory states only if they differ in the value of at least one
expression exp for which there is a hatch (exp, d ′) ∈ H with d ′ ≤ d .

Definition 4. For a given domain d and a given set of hatches H ⊆ E × D ,
two memory states s and s ′ are (d ,H)-equal, denoted by s =H

d
s ′, iff

– s =d s ′ and
– ∀(exp, d ′) ∈ H . [d ′ ≤ d ⇒ ∀v ∈ Val . (〈|exp, s|〉 ↓ v ⇔ 〈|exp, s ′|〉 ↓ v)].

Here 〈|exp, s|〉 ↓ v denotes that exp evaluates to v in the memory state s, where
we assume that the evaluation of expressions is total, atomic, and unambiguous.

7

From Guards to Hatches. Note that d -equality (Definition 3) captures what a d -
attacker cannot observe while (d ,H)-equality (Definition 4) captures what must
be kept secret from him. The two notions of equality coincide if H is empty. If
program execution starts with an empty set, then this means that attackers must
not learn more than what they can directly see. This requirement is relaxed,
whenever the run reaches a point referred to by a reference label r . For each
guard (r , exp, d ′) ∈ G in the policy, a hatch (exp, d ′) is added to the current
set of hatches. This means that a d -observer may learn from now on the value
of exp given that d ′ ≤ d holds. This is exactly what we had in mind when we
introduced the notion of declassification guards with explicit reference points.

We use a function ah : C × P(R × E × D) → P(E × D) to formalize which
hatches are added for a given step. If the program c has no top-level reference
label, then we have ah(c,G) = ∅. Otherwise, if r is the top-level reference label
of c, then ah(c,G) contains each hatch (exp, d) for which (r , exp, d) ∈ G . We
will define a concrete instance of ah in Section 5.1.

Maintaining Hatches. In order to obtain an adequate security condition, it does
not suffice to merely add the right hatches whenever a reference point is reached.
It is also necessary to identify all hatches that are invalidated by a computation
step. For instance, if the current set of hatches is H = {((h1 + h2), public)},
then the assignment h2:=0 invalidates the hatch ((h1 + h2), public) because any
subsequent evaluation of h1 + h2 could reveal the value of h1. This is not a
permissible declassification, unless (h2, public) were also in the set of hatches.

We use a function ih : C ×P(E ×D) → P(E ×D) to capture the invalidation
of hatches. For a program c and a set of hatches H , ih(c,H) is the subset of
all hatches in H that are not invalidated by the next computation step of c. We
will define a concrete instance of ih in Section 5.1.

Capturing Secure Flow. Intuitively, a program c has secure information flow for
a policy (D , dom,≤,G) if attackers cannot learn information about the initial
state and about inputs that they are not authorized to obtain. That is,

if c is run in d -equal states s0 and s′0 then a d -observer must see the same
values on d -observable output channels and in d -observable variables,
given that no declassification occurs (e.g., G = ∅) and that, in the two
runs, the same values are provided on all d -observable input channels.

If declassification can occur, then the setting is somewhat more complicated
because permitting declassification means to relax the indistinguishability re-
quirement to some extent. In particular, when a reference point r is passed in a
run, some previously secret values might become declassifiable (as determined by
the guards in G with reference point r). Given a set of hatches H (determining
what may be revealed in addition to what can be observed), the requirement is

if c is run in two (d ,H)-equal states s0 and s′0 and if the same val-
ues are provided on d -observable input channels, then, by observing d -
observable variables and output channels, a d -observer must not learn
any information beyond what he can already observe and beyond what
he is permitted to learn by H and by hatches originating during the run.

8

Fobs ≡ ∀ch, v .

»

(〈|c1, s|〉 _ch,v 〈|c2, t |〉 ∧ dom(ch) ≤ d)
=⇒ ∃c′

2, t
′. (〈|c′

1, s
′|〉 _ch,v 〈|c′

2, t
′|〉 ∧ Fconcl)

–

Fnoobs ≡ 〈|c1, s|〉 _6≤d 〈|c2, t |〉 ⇒

»

∃c′
2, t

′. 〈|c′
1, s

′|〉 _6≤d 〈|c′
2, t

′|〉
∧ ∀c′

2, t
′. (〈|c′

1, s
′|〉 _6≤d 〈|c′

2, t
′|〉 ⇒ Fconcl)

–

Fconcl ≡ ∀Hnew.

2

4

Hnew = ih(c1,H ∪ (ah(c1,G) ∩ ah(c′
1,G)))

∩ih(c′
1,H ∪ (ah(c1,G) ∩ ah(c′

1,G)))

=⇒ (c2 RHnew c′
2 ∧ t =Hnew

d
t ′)

3

5

Fig. 1. The Subformulas used in Definition 5

For the definition of our security condition, we use the PER-approach [10]. We de-
fine indistinguishability relations on configurations as products of partial equiv-
alence relations on programs and the (d ,H)-equality on memory states. More
precisely, we characterize a family (RH)H ⊆E×D of partial equivalence relations
(PERs) on programs. If two programs are related by some RH in such a family,
then running these programs in two (d ,H)-equal memory states does not reveal
any information to a d -observer that he is not authorized to obtain. Note that
a relation RH might not be reflexive, because programs that leak secrets cannot
be related to themselves. Given that the requirements for the family of partial
equivalence relations are properly defined, one obtains a definition of security by
saying that a program c is secure if c R∅ c holds.

Partial Equivalences on Programs. The parameter H captures which values have
been declassified in the past. If H is the current set of hatches and c1 RH c′1
holds, then performing a computation step in two (d ,H)-equal memory states,
respectively, must not leak any secrets. However, the two steps may reveal in-
formation that has been termed declassifiable in the past (captured by H) and
about values that may be declassified due to guards that point to c1 as well as
to c′1 (captured by ah(c1,G) and ah(c′1,G), respectively).

Definition 5. A strong (d ,G)-bisimulation is a family (RH)H ⊆E×D of relations
RH on C that are symmetric such that the following formula is satisfied for all
H ⊆ E × D (where Fobs and Fnoobs are defined in Figure 1):

Fmain ≡ ∀c1, c
′
1, c2.

∀s, s ′, t .

(

c1 RH c′1 ∧ s =
H∪(ah(c1,G)∩ah(c′

1
,G))

d
s ′

)

=⇒

Fobs ∧ Fnoobs ∧ ah(c1,G) = ah(c′1,G)
∧ ih(c1,H ∪ (ah(c1,G) ∩ ah(c′1,G)))

= ih(c′1,H ∪ (ah(c1,G) ∩ ah(c′1,G)))

The left hand side of the implication in Fmain restricts c1, c′1, s, and s ′

by c1 RH c′1 and s =
H∪(ah(c1,G)∩ah(c′

1
,G))

d
s ′. The rest of Fmain captures that a

computation step in 〈|c1, s|〉 cannot lead to undesired information leakage. Within
Fmain, the sub-formula Fconcl occurs only on the right hand side of implications
(within Fobs and Fnoobs that will be explained below). Within Fconcl, the set Hnew

captures which values may be declassified in future steps. The set Hnew results

9

from H by adding new hatches (determined by ah) and by deleting invalidated
hatches (according to ih). The propositions c2 RHnew c′2 and t =Hnew

d
t ′ ensure

that no information will be leaked to d -observers in the future, other than what
they can already see in the current state or what may be declassified to them
(as specified by Hnew). Naturally, it is crucial that the functions ah and ih are
defined with care. In particular, Hnew must not be too large.

Had we restricted ourselves to programs without I/O in this article, then it
would suffice to use Fconcl as the right hand side of the implication in Fmain.
However, we decided to tackle a more realistic program model, which supports
I/O operations. Consequently, the definition of indistinguishability must addi-
tionally ensure (1) that inputs on channels that are not d -observable are kept
secret from d -observers and (2) that transmissions on d -observable channels do
not reveal any secrets. This is the purpose of the formulas Fnoobs and Fobs. If the
step 〈|c1, s|〉 _ 〈|c2, t |〉 causes the transmission of a value v on a d -observable chan-
nel ch, then the step from 〈|c′1, s

′|〉 must also transmit v on ch (captured by Fobs).
Formula Fnoobs is slightly more involved. If the step 〈|c1, s|〉 _ 〈|c2, t |〉 does not
cause any d -observable transmission, then the step from 〈|c′1, s

′|〉 must not cause
any d -observable transmission either. Note that it would not suffice to require
only that Fconcl holds for at least one 〈|c′2, t

′|〉 with 〈|c′1, s
′|〉 _6≤d 〈|c′2, t

′|〉, because
this requirement would be too weak. Different steps are possible in 〈|c′1, s

′|〉 if
input is expected on some channel because the environment chooses the value
(recall Section 4.1). Hence, the quantification over all possible steps is needed.
Note also, that d -observable input is covered by Fobs, while Fnoobs covers input
on channels that are not d -observable.

A Novel Security Condition. As usual for the PER-approach, we define the
security condition via the largest reflexive sub-relation on programs.

Theorem 1. The set of all (d ,G)-bisimulations has a maximal element under
the point-wise subset ordering. We denote this maximal element by (≅H

d
)H ⊆E×D .

Definition 6. A program c has secure information flow for a security policy
(D , dom,≤,G) if c ≅

∅
d

c holds for all d ∈ D . For a given policy, we also say
that c is secure while respecting explicit reference points (brief: c is WERP).

Note that ∅ occurs as super-script of ≅d in Definition 6. This reflects that,
before program execution begins, no values are declassifiable. The set of hatches
becomes non-empty as soon as a state is reached that is referred to by some
guard in the security policy. In particular, it is possible that a guard refers to
the top-level program, i.e., initial reference points are supported.

In the PER-approach, the adequacy of a security condition follows directly
from the adequacy of the strong bisimulation relation on programs. In our pre-
sentation, we have derived the definition of strong (d ,G)-bisimulations in a step-
wise manner and argued in detail for the various elements in formula Fmain in
Definition 5. The following theorem shall provide further confidence in our novel
security condition WERP (formalized by Definition 6).

Intuitively, the theorem states that, if a program is WERP and contains
no output commands, then running this program cannot reveal any differences

10

between d -equal memory states or about input on d -invisible channels, unless a
reference point is passed and some guard (r , exp, d ′) ∈ G allows a d -observer to
distinguish the corresponding intermediate states in the two runs.

Theorem 2. Let m,n, c0, c1, . . . , cn, c′1, . . . , c
′
n, s0, s1, . . . , sn, s ′0, s

′
1, . . . , s

′
n,

in1, in2, . . . , inm, and v1, v2, . . . , vm, v ′
1, v

′
2, . . . , v

′
m such that m < n and

〈|c0, s0|〉_O〈|c1, s1|〉_O. . ._O〈|ci1 , si1 |〉_in1,v1
. . ._O〈|ci2 , si2 |〉_in2,v2

. . ._O〈|cn, sn|〉
〈|c0, s

′
0|〉_O〈|c

′
1, s

′
1|〉_O. . ._O〈|c

′
i1

, s ′i1 |〉_in1,v ′

1
. . ._O〈|c

′
i2

, s ′i2 |〉_in2,v ′

2
. . ._O〈|c

′
n, s ′n|〉

If c0 is WERP, s0=d s ′0, and ∀j ∈ 1, . . . ,m. (dom(inj) ≤ d ⇒ vj = v ′
j), but

sn 6=d s ′n, then there are i∈ {0, . . . , n}, d ′ ≤ d and (exp,d ′)∈ ah(ci,G) such that
the value of exp in si differs from the one in s ′i.

Theorem 2 can be generalized to programs with output.

5 Security Type System and Soundness

Security type systems provide a suitable basis for automating an information
flow analysis. We illustrate how a sound security type system for WERP can be
derived for an exemplary programming language with I/O.

5.1 Exemplary Programming Language

We investigate a simple while-language (WL). Below, we present a grammar for
three sub-languages: uc (the commands that may be annotated with reference
labels), lc (annotated and non-annotated commands), and c (the entire WL).

uc ::= skip | x :=exp | exp -> out | x <- in | if b then c else c fi |while b do c od

lc ::= r : uc | uc

c ::= lc | c ; c

The operational semantics of WL instantiates the step relations. Output
commands exp -> out result in an output step _out,v , where v is the value of
exp in the current memory state. Input commands x <- in result in an input
step _in,v , where v can be any value. Reference labels are irrelevant for the
operational semantics, i.e., 〈|r : c, s|〉 _lab 〈|c′, s ′|〉 if 〈|c, s|〉 _lab 〈|c′, s ′|〉, where lab

is O or ch, v . We omit the formal definition of the operational semantics which
is similar to the one in [11].

Instantiation of ah and ih for WL. We instantiate the functions ah and ih

from Section 4.2 for our language WL. We inductively define the function ah :
C×P(R×E×D) → P(E×D) for a given set G . Firstly, ah(uc,G) = ∅ and ah(r :
uc,G) = {(exp, d) ∈ E ×D | (r , exp, d) ∈ G} for all uc. Secondly, ah(c1;c2,G) =
ah(c1,G) for all c1, c2, because the first execution step of a sequentially composed
command corresponds to the first step of its first component. Therefore, the first
component determines the set of additional hatches.

We assume a function vars : E → P(Var), such that vars(exp) contains all
variables on which the value of exp depends. The instantiation of ih : C ×P(E ×

11

∀x ∈ vars(exp). dom(x) ≤ d

H ′ ⊢ exp : d

(exp, d) ∈ H ′

H ′ ⊢ exp : d

H ′ ⊢ exp : d d ≤ dom(x)

H ′ ⊢ x :=exp : ih(x :=exp,H ′)

H ′ ⊢ skip : H ′

dom(in) ≤ dom(x)

H ′ ⊢ x <- in : ih(x <- in,H ′)

H ′ ⊢ exp : d d ≤ dom(out)

H ′ ⊢ exp -> out : H ′

H ′ ∪ {(exp, d) ∈ E × D |(r , exp, d) ∈ G} ⊢ c : Hǫ

H ′ ⊢ (r : c) : Hǫ

H ′ ⊢ c1 : H ′′ H ′′ ⊢ c2 : Hǫ

H ′ ⊢ c1 ; c2 : Hǫ

H ′ ⊢ B : low H ′ ⊢ c : H ′

H ′ ⊢ while b do c od : H ′

H ′ ⊢ c1 : Hǫ H ′ ⊢ c2 : Hǫ H ′ ⊢ B : low

H ′ ⊢ if b then c1 else c2 fi : Hǫ

Fig. 2. Rules of the Security Type System

D) → P(E×D) for WL invalidates a hatch (exp, d) if some variable in vars(exp)
might be modified by the next execution step. We inductively define ih by

ih(c1;c2,H) = ih(c1,H),
ih(r : uc,H) = ih(uc,H),
ih(uc,H) = {(exp′, d)∈H | x 6∈vars(exp′)} if uc = x :=exp or uc = x <- in,
ih(uc,H) = H otherwise.

5.2 Security Type System

With respect to declassification the two main objectives of the type system are,
firstly, to identify at which subprogram which set of hatches represents informa-
tion that may be declassified, and, secondly, to ensure that each command has
secure information flow, given the set of hatches for this command.

The type system defines judgments H ′ ⊢ c : Hǫ for commands. The sets of
hatches help to achieve the first objective. The set Hǫ is the set of declassifiable
hatches when c stops, if we assume H ′ is the set of declassifiable hatches when
c starts. Hence, Hǫ is the set for the direct successor of c, if the successor exists.

The type system defines judgments H ′ ⊢ exp : d for expressions. A judgment
H ′ ⊢ exp : d guarantees that the value of exp only depends on variables that
are visible to d , or that H ′ specifies that the value may be learned by the d -
observer. We exploit the guarantees to ensure secure information flow from exp

by comparing d to the security domains of potential targets of information flow.
The rules to derive the judgments are defined in Figure 2. We assume low ∈ D

such that ∀d . low ≤ d . In judgments H ′ ⊢ c : Hǫ for labeled commands and
commands that write to variables, i.e. input commands and assignments, Hǫ is
modified in comparison to H ′. In the first case hatches are added as determined
by guards with the label of the respective command. In the latter case the func-
tion ih is applied. The type rules for loops and conditionals require the branching
condition to be typable with security domain low , because this means the value
of the condition may be learned by anyone. How to define a more fine-grained
syntactic requirement that takes into account a comparison of the branches is
demonstrated in [2]. We omit such a requirement due to space limitations.

Theorem 3 (Soundness). If ∅ ⊢ c : Hǫ for some Hǫ then c is WERP.

This is the soundness result for the security type system.

12

6 Applying the Security Type System

We illustrate the capabilities of our novel framework by applying the security
type system to example programs.

Example 1. We revisit the example about the average of 100 salaries, i.e. the
programs P ′

3, P ′
6, and P8. Let (D , dom,≤,G) be the security policy denoted by

SecurityDomains secret; DomainAssign sal1:secret; . . . ; sal100:secret; input:secret;

RegularFlow public=>secret; ExceptionalFlow dguard(r ,Avg, public); EndPolicy
,

where Avg = (sal1+. . . + sal100)/100. The reference label r is chosen differently
for the programs as argued in Section 2.2. Let H = {(Avg, public)}.

First we consider the program P ′
6, which reads the salary values from the

channel input, and, intuitively, is secure. Here r = ref101. We derive H ⊢ Avg :
public, H ⊢ avg:=Avg : H , and ∅ ⊢ (ref101 : avg :=Avg) : H by the rules for
expressions, assignments, and labeled commands. We derive ∅ ⊢ sali <- input : ∅
for all i ∈ {1 . . . 100} by the rule for input commands. We derive ∅ ⊢ P ′

6 : H by
the rule for sequential composition. That is the type system accepts P ′

6.
Now we consider P ′

3 with r = ref1. The judgment ∅ ⊢ Avg : public is not
derivable by any of the two rules for expressions. Hence, ∅ ⊢ avg:=Avg : Hǫ is
not derivable for any Hǫ. However, this is a precondition to derive ∅ ⊢ ref101 :
avg:=Avg : Hǫ, because {(r ′, exp, d) ∈ G |r ′ = ref101} = ∅. For any derivation of
H ′ ⊢ sal100 <- input : Hǫ we have (Avg, public) /∈ Hǫ, because sal100 ∈ vars(Avg).
Hence, for P ′

3 the rule for sequential composition does not apply. For P8, where
r = ref101, we argue as for P ′

3. The type system does not accept P ′
3 or P8.

The novel type system classifies the three programs exactly as we intended.

Example 2. In an example from [4] an electronic wallet stores an amount of
money in the wallet (variable h), and an amount spent so far (variable l). An
amount to spend (variable k) is moved from the wallet to the money spent so
far if enough money is in the wallet. We consider an interactive variant with an
input channel toSpend for the amount to spend, and an output channel loyalty to
a customer loyalty application. The amount of money in the wallet is a secret,
i.e., h must not leak to loyalty. However, it is inherent in the functionality of
the program that the loyalty application obtains whether money is spent, i.e.,
whether the amount in the wallet is enough for the amount to spend. Hence, one
decides to exceptionally permit this flow.

Spec = SecurityDomains secret; DomainAssign h:secret; RegularFlow public=>secret;

ExceptionalFlow dguard(ref, (h >= k), public); EndPolicy

P9 = while True do

k <- toSpend;

ref : if (h >= k) then h:=h-k ; l:=l+k ; l -> loyalty else skip fi

od

We set the reference point ref right behind the input of the amount to spend,
because here the value to be declassified originates. Since the reference label is
at the conditional and the condition is the expression of the guard, P9 is typable.

The example demonstrates the typability in cases, where the declassifiable
information depends on fresh input in each iteration of a loop and on calculations.

13

Table 1. Typability of Programs (“x” means “typable”, “-” “not typable”)

WERP delimited release delimited non-disclosure Remark

avg. with copying sal1 - (P ′
3) - (P3) x (P5) leaks secret

avg. with input x (P ′
6) - (P6) x (P7) -

avg. with both - (P8) - (P ′
8) x (P ′′

8) leaks secret
wallet x (P9) - (P ′

9) x (P ′′
9) -

7 Related Work

Comparison of Analysis. We compare the application of our security type system
in Section 6 with the application of security type systems from the literature in
order to compare our framework to frameworks that implicitly assume initial
(delimited release [4]) or local reference points (delimited non-disclosure [5]).

The security type system in [4] accepts declassification of expression that are
escape hatches. In order to detect expressions that are declassified after they are
updated, for each command two sets of variables are collected, one for variables
that are updated and one for variables that appear in declassifiable expressions.

The security type system in [5] associates declassifiable information with the
security domain low at program points within the declassification statement.

Both security type systems are defined for languages without explicit I/O-
commands. In order to enable a comparison, without any claims on the sound-
ness, we assume a straightforward extension of the security type systems from
[4, 5] that treats I/O-commands similar to assignments.

We consider the programs P3, P5, P6, P7, and the following programs:

P ′
8 = sal1 <- input; . . . ; sal100 <- input;

sal1:=sal1; . . . ; sal100:=sal1; avg:=declassify(Avg,public)

P ′′
8 = declassify (Avg) in {sal1 <- input; . . . ; sal100 <- input;

sal1:=sal1; . . . ; sal100:=sal1; avg:=Avg}

Let the program P ′
9 be P9 with an escape hatch as condition of the conditional.

Let P ′′
9 be P9 with a declassification command around the conditional.

We list the results of applying the security type systems in Table 1. The rows
represent the programs and the columns represent the security type systems for
the security conditions named at the head. Our security type system is more
precise than the security type system for delimited release [4], for instance in the
wallet example where some input is not available at the start of the program. Our
security type system is stricter than the security type system for delimited non-
disclosure [5], for instance for the programs that leak sal1. Hence this strictness
is desirable for these programs.

Related Approaches. Many prior frameworks for controlling what is declassified
implicitly assume that reference points are either always local or always

Localized delimited release [8] requires that an expression is only declassified
after a declassification expression for this expression has appeared in the code.
The information that may be declassified is the initial value of the expression.
Policies for the security conditions WHAT1, WHAT2 [7] specify a set of pairs

14

of hatches externally to the program. For SIMP∗
D [6] just a set of expressions is

specified. These three conditions are based on step-wise bisimulations. Unlike for
WERP, the set of declassifiable expressions is fixed over steps, i.e. only the initial
values of the expressions may be declassified. In conditioned gradual release [9],
commands can be annotated with a flowspec, which is a triple of a formula on
program variables, a set of expressions, and a variable. Declassification is only
permitted if the current command is annotated with a flowspec whose formula
is satisfied. Moreover, only the local value of an expression in the specified set
may be declassified, and only to the variable specified in the flowspec.

Complementing control of what, control of other dimensions of declassifica-
tion [2, 3] has been developed. Examples for control of where declassification can
occur are intransitive noninterference [2], WHERE [7], gradual release [12], non-
disclosure [13], and flow locks [14]. Examples for control of who can declassify
are the decentralized label model [15], WHERE&WHO [11], and robustness [16].

The security conditions gradual release and conditioned gradual release are
based on characterizations of deducible knowledge. Given the observation about
a run up to some point, the set of initial states that might have caused this
observation becomes known. In contrast, in a PER-based condition like WERP,
the indistinguishability of memory states represents the deducible information.
The PER-approach facilitates the collection of values that may be declassified
on the fly. Once information is represented in the indistinguishability relation,
the origin, i.e. some intermediate state, does not matter anymore. It remains
to be investigated how this would be done best in a knowledge-based approach.
In a recent article [17], input from channels is treated in a knowledge-based
fashion by modelling input as streams that are part of the initial state. Still,
declassification of values that are calculated on the fly, like, e.g., in Example 2,
is not captured by this approach.

8 Conclusion

We developed a framework that permits to control what information may be
declassified by declassification guards with explicit reference points. The frame-
work comprises a policy language, a security condition, and a sound security
type system. We illustrated the benefits of our framework with several concrete
example programs. In comparison to earlier approaches, our framework allows
one to characterize more precisely what may be declassified.

Explicit reference points clarify the implicit differences between the afore-
mentioned existing approaches to controlling the what dimension. However, our
framework goes beyond providing a uniform view and a straightforward combina-
tion of prior approaches. Reference points can be placed anywhere in a program.
In particular, they can refer to where declassifiable information originates, even
if the information is not immediately released.

We expect that an integration of WERP will be feasible with approaches
to controlling other dimensions of declassification, in particular if the respective
other security condition is also defined based on a step-wise bisimulation relation
with the PER-approach (like, e.g., WHERE [7] or WHERE&WHO [11]).

15

Acknowledgments. We thank Henning Sudbrock for helpful comments and the

anonymous reviewers for their suggestions. This work was funded by the DFG in the

Computer Science Action Program and by the Information Society Technologies pro-

gram of the European Commission, Future and Emerging Technologies under the IST-

2005-015905 MOBIUS project, and supported by CASED (www.cased.de). This article

reflects only the authors’ views, and CASED, the Commission, the DFG, and the au-

thors are not liable for any use that may be made of the information contained therein.

References

1. Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In: 3rd IEEE
Symposium on Security and Privacy, IEEE (1982) 11–20

2. Mantel, H., Sands, D.: Controlled Declassification based on Intransitive Noninter-
ference. In: APLAS 2004. Volume 3302 of LNCS., Springer (2004) 129–145

3. Sabelfeld, A., Sands, D.: Dimensions and Principles of Declassification. In: 18th
IEEE Computer Security Foundations Workshop, IEEE (2005) 255–269

4. Sabelfeld, A., Myers, A.C.: A Model for Delimited Information Release. In: ISSS
2004, Springer (2004) 174–191

5. Barthe, G., Cavadini, S., Rezk, T.: Tractable Enforcement of Declassification Poli-
cies. In: 21st IEEE Computer Security Foundations Symposium, IEEE (2008)
83–97

6. Bossi, A., Piazza, C., Rossi, S.: Compositional Information Flow Security for
Concurrent Programs. Journal of Computer Security 15(3) (2007) 373–416

7. Mantel, H., Reinhard, A.: Controlling the What and Where of Declassification in
Language-Based Security. In: ESOP 2007. Volume 4421 of LNCS., Springer (2007)
141–156

8. Askarov, A., Sabelfeld, A.: Localized Delimited Release: Combining the What
and Where Dimensions of Information Release. In: Workshop on Programming
Languages and Analysis for Security, ACM (2007) 53–60

9. Banerjee, A., Naumann, D.A., Rosenberg, S.: Expressive Declassification Policies
and Modular Static Enforcement. In: 29th IEEE Symposium on Security and
Privacy, IEEE (2008) 339–353

10. Sabelfeld, A., Sands, D.: A Per Model of Secure Information Flow in Sequential
Programs. In: ESOP 1999. LNCS, Springer (1999) 50–59

11. Lux, A., Mantel, H.: Who Can Declassify? In: FAST 2008. Volume 5491 of LNCS.,
Springer (2009) 35–49

12. Askarov, A., Sabelfeld, A.: Gradual Release: Unifying Declassification, Encryption
and Key Release Policies. In: 28th IEEE Symposium on Security and Privacy,
IEEE (2007) 207–221

13. Almeida Matos, A., Boudol, G.: On Declassification and the Non-Disclosure Policy.
In: 18th IEEE Computer Security Foundations Workshop, IEEE (2005) 226–240

14. Broberg, N., Sands, D.: Flow Locks: Towards a Core Calculus for Dynamic Flow
Policies. In: ESOP 2006. Volume 3924 of LNCS., Springer (2006) 180–196

15. Myers, A.C., Liskov, B.: Protecting Privacy using the Decentralized Label Model.
ACM Transactions on Software Engineering and Methodology 9(4) (2000) 410–442

16. Zdancewic, S., Myers, A.C.: Robust Declassification. In: 14th IEEE Computer
Security Foundations Workshop, IEEE (2001) 15–23

17. Askarov, A., Sabelfeld, A.: Tight Enforcement of Information-Release Policies for
Dynamic Languages. In: 22nd IEEE Computer Security Foundations Symposium,
IEEE (2009)

16

