
Exemplary Formalization of
Secure Coding Guidelines
Technical Report TUD-CS-2010-0060
March 2010

Markus Aderhold 1

Jorge Cuéllar 2

Heiko Mantel 1

Henning Sudbrock 1

1 Technische Universität Darmstadt
2 Siemens AG, München

Modeling and Analysis of
Information Systems

Contents

1 Introduction 3

2 Specification Formalism 4
2.1 Linear Temporal Logic (LTL) . 5
2.2 Linking LTL Specifications with Programs . 6

3 Formalizations for Selected Secure Coding Guidelines 10
3.1 Validate the User Input . 12
3.2 Sanitize the Output . 17
3.3 Secure the Internal Flow . 22
3.4 Secure the Login and Authentication Procedures 26
3.5 Maintain Session Control . 32
3.6 Enforce a Strict Authorization Model . 36
3.7 Use Cryptography Properly . 41

4 Outlook 45

5 Conclusion 49

References 51

2 Contents

1 Introduction

Programming errors are the cause for a multitude of security vulnerabilities in software sys-
tems. This makes common attacks like, for instance, buffer overflow exploits, cross-site request
forgery, cross-site scripting, or SQL injections possible. Secure coding guidelines describe pro-
gramming practices that support the developer in improving the quality of software systems with
respect to security so that the number of security vulnerabilities is reduced.

This report describes the results of a collaboration between Siemens AG and TU Darmstadt.
The objective of this collaboration was the exemplary formalization of secure coding guidelines.
The resulting formalizations shall provide reference points for secure coding that are more pre-
cise than the informal descriptions of secure coding guidelines (like the CERT Secure Coding
Standards such as [Sea08]). Another goal was to investigate the feasibility of formalizations
of secure coding guidelines in different domains (such as maintaining session control or using
cryptography properly).

In this report, we provide formalizations for seven secure coding guidelines from different
domains. Our formalization facilitates a structured presentation of secure coding guidelines:
Firstly, the formalization concisely exposes the program actions that are relevant to each guide-
line. Secondly, it precisely defines the causal and temporal relations between these program
actions as required by the guideline. This structured presentation may simplify the correct appli-
cation of secure coding guidelines by developers. In addition, our formalizations reveal unclari-
ties in the informal descriptions of secure coding guidelines. Based on those insights we provide
several recommendations to eliminate these unclarities.

The formalizations lend themselves to further potential uses such as automated code inspec-
tion with respect to secure coding guidelines, for example. An outlook on two such possibilities
for the future, namely runtime monitoring and verification, is also given in this report.

Structure of this report. In Section 2, we introduce the specification formalism that we
employ for the formalizations. Section 3 constitutes the core of this report and describes our
formalizations for seven secure coding guidelines. In Section 4, we discuss further potential
uses of the formalizations. Section 5 highlights our results and concludes with an outlook on
further perspectives to exploit the formalization of secure coding guidelines.

1. Introduction 3

2 Specification Formalism

Informal descriptions of secure coding guidelines are typically formulated at different levels of
abstraction. On the concrete level, the descriptions refer to the execution of commands like, for
instance, “invoking the equals-method of a Java object”. Other execution steps are described on
a more abstract level, like, for instance, “storing input” or “detecting suspicious user behavior”.
In this section, we describe a formalism that facilitates the formal specification of secure coding
guidelines in a uniform manner despite this varying degree of abstraction.

In our formalizations of secure coding guidelines we use labels to describe execution steps of
a program both on the concrete level and on more abstract levels. Labels are expressions which
describe the execution steps that occur during a program run. Each execution step is associated
with one label describing the command that is executed (the concrete label) and may addition-
ally be associated with one or more labels describing the execution step on a more abstract level
(the abstract labels). As an example, consider the Java command a = reader.read(). The ex-
ecution of this command is associated with the concrete label “a= reader.read()”. If the object
reader provides user input, then the execution of the command implies that user input is stored
in variable a. We could express this more abstract fact by an abstract label writeInputTo(a) that
we additionally associate with the execution of the command. In order to associate a label with
complex commands, these complex commands can be split up into several lines. In this way,
each line can be associated with a specific label. For instance, a line break after the symbol “=”
could be inserted into the line a = reader.read() in order to associate the execution steps cor-
responding to the variable assignment and to the method call, respectively, with distinct labels.

The association of abstract labels with execution steps is usually performed implicitly in the
developer’s mind when applying a secure coding guideline. As this procedure is error-prone
and time consuming, we suggest to make the mapping from execution steps to abstract labels
explicit. Our formalizations provide a basis for such an explicit mapping by concisely describing
the relevant execution steps for a given secure coding guideline. Recording and using explicit
mappings shall help developers to correctly apply a secure coding guideline with less effort and
shall reduce the risk of mistakes.

For the formalizations, we employ a variant of the specification formalism called Linear Tem-
poral Logic (abbreviated by LTL) where we use labels as propositions. This formalism allows
us to make precise statements about occurrences of and dependencies between execution steps
occurring during a program run.

In Section 2.1, we provide a brief introduction to LTL with several examples. Section 2.2
introduces Labeled Transition Systems to model program executions and establishes the con-
nection between LTL specifications and program executions. Our recapitulation of LTL is tai-
lored to the formalizations in Section 3; a general textbook introduction into LTL can be found
in [HR04], for example. LTL formulas offer a promising basis for inspecting programs or mon-
itoring program executions with respect to formally specified secure coding guidelines. We
discuss these perspectives in Section 4.

4 Section 2. Specification Formalism

2.1 Linear Temporal Logic (LTL)

LTL formulas are composed of a small set of temporal operators (�, ♦, �, and U), standard
operators from propositional logic (¬,∧,∨, and −→), and labels as atomic propositions. In the
following, we illustrate how to read LTL formulas with several concrete examples and provide
a formal definition of LTL formulas afterwards.

1. �(¬UnhandledNullPointerException)

Intuitively, this LTL formula specifies that a program will never throw an unhandled null
pointer exception.

This is formalized by using the temporal operator “�” (read: “globally”) that specifies that
a property must hold at every execution step and the abstract label UnhandledNullPointer-
Exception describing execution steps where an unhandled null pointer exception is thrown.
Thus the above formula specifies that no execution step may correspond to an unhandled
null pointer exception (the operator “¬” formalizes negation, i.e., the formula ¬A states
that the formula A must not be satisfied).

2. �
(
FailedAuthn −→ �AuthnException

)
Intuitively, this LTL formula specifies that whenever an authentication attempt fails, then
the next execution step must correspond to an authentication exception.

The “�”-operator (read: “next”) specifies that a property must hold at the next execution
step. The formula uses the labels FailedAuthn describing a failed authentication attempt
and AuthnException describing that an authentication exception is thrown. The whole for-
mula is read as follows: At all execution steps, if the execution step corresponds to a failed
authentication, then the subsequent execution step must correspond to an authentication
exception (the operator “−→” formalizes implication, i.e., the formula A −→ B states that
if A is satisfied then B must also be satisfied).

3. (¬Connection.send)U Connection.open

Intuitively, this LTL formula specifies that data will never be sent on a connection unless
the connection has been opened.

The temporal formula “A U B” (read: “A unless B”) specifies that A must hold at each
execution step, but if B holds at some execution step, A does not need to hold any longer
from that step on. (For the reader familiar with LTL, note that the Unless-operator differs
from the Until-operator, as it does not require that B must hold at some execution step.) The
two labels Connection.send and Connection.open describe execution steps corresponding
to sending data on a connection and opening a connection, respectively. The whole formula
is read as follows: No execution step may correspond to sending on a connection up to an
execution step corresponding to opening the connection.

2.1. Linear Temporal Logic (LTL) 5

4.
(
(¬Connection.send)U Connection.open

)
∧

�
(
Connection.close −→

(
(¬Connection.send)U Connection.open

))
Intuitively, this LTL formula provides a refined specification for the correct usage of a
connection than the specification in the previous example. The same condition as in the
previous example must be satisfied, but a further requirement is added: Whenever the con-
nection is closed, the program must not send data on the connection unless the connection
is opened again (the operator “∧” formalizes conjunction, i.e., the formula A∧B states that
both formulas A and B must be satisfied).

5. �
(
Connection.open −→ �

(
(¬Connection.open)U Connection.close

))
Intuitively, this LTL formula specifies that a connection which has already been opened
must not be opened again.
The formula is read as follows: Whenever a connection is opened, from the next execution
step on the connection must not be opened again unless it has been closed (specified by
�((¬Connection.open)U Connection.close)).

6. �
(
Connection.open −→ ♦Connection.close

)
Intuitively, this LTL formula specifies that whenever a connection is opened, it must even-
tually be closed.
The specification is formalized by using the temporal operator “♦” (read: “eventually”)
which states that the program must eventually behave as specified by the formula following
the ♦-operator. In this example, the specification states that at all times, if the connection
is opened, it must eventually be closed.

A table listing the intuitive meanings of the temporal operators in a concise form is provided in
Section 2.2. Formally, LTL formulas are defined as follows:

Definition 1 (Syntax of LTL Formulas). An LTL formula is an expression that is constructed
according to the following rules:

– If l is a label, then l is an LTL formula.
– If P is an LTL formula, then ¬(P), �(P), �(P), and ♦(P) are LTL formulas.
– If P and Q are LTL formulas, then (P ∧ Q), (P ∨ Q), (P −→ Q), and (P U Q) are LTL

formulas.

As in the preceding examples, we often omit parentheses to keep the formulas readable.

2.2 Linking LTL Specifications with Programs

In the previous section, we illustrated by example how LTL formulas and labels can be employed
to specify the behavior of programs. In this section, we describe the connection between an
LTL specification and a program in more detail. This connection is important in order to state
precisely whether a program satisfies an LTL specification.

We describe the possible program executions via so-called Labeled Transition Systems. La-
beled transition systems can be used to describe executions of programs written in programming

6 Section 2. Specification Formalism

a: 8

b: 3

c: 0

. . .

a: 2

b: 3

c: 0

. . .

a: 2

b: 3

c: 5

. . .

{a= reader.read(),
writeInputTo(a)}

{c= a+b,
writeInputTo(c)}

Figure 1: Excerpt of a labeled transition relation

languages such as Java (see, e.g., [KN06, DE99] for Java semantics in the form of transition
systems). Formally, we define labeled transition systems as follows:

Definition 2 (Labeled transition systems). A labeled transition system is a tuple (S , S 0, L,→)
consisting of a set of program states S , a set of initial program states S 0 ⊆ S , a set of labels L,
and a labeled transition relation→ ⊆ S × (P(L) \ {∅}) × S (where P(L) denotes the powerset of
L and ∅ denotes the empty set).

Intuitively, program states describe the current execution state of a program (e.g., the current
heap, the current frame stack, and the pointer to the next program instruction for a Java program),
and initial program states describe those execution states in which program executions may start.
The labels are expressions that provide information about execution steps either on a concrete
or on a more abstract level. The transition relation → describes the possible execution steps.
If (s, L′, s′) ∈ →, this means that there is an execution step from program state s to program
state s′, and that this execution step is described by the labels in L′. Note that L′ ⊆ L is a
nonempty set of labels, because each execution step is annotated with at least one label; i.e., it
can be annotated with multiple labels (one concrete label and zero or more abstract labels).

Figure 1 shows an excerpt of a labeled transition relation. Program states are depicted by
boxes. Each box shows the current values of the variables a, b, and c. The ellipses indicate
that the states contain further information which is not shown in this excerpt (like, for instance,
the values of further variables and a pointer to the command that will be executed in the next
execution step). The transitions are depicted by labeled arrows. In the example, each transi-
tion is annotated with a set containing two labels: The first label in each set is a concrete label
(i.e., describing the execution of a command) and the second label is an expression that de-
scribes the corresponding execution step on a more abstract level. The abstract labels of the
form writeInputTo(v) describe execution steps that modify the content of variable v such that the
new value depends on data that has been provided as input to the program.

Labeled transition systems describe all possible execution sequences in the following sense:

Definition 3 (Execution sequences). An execution sequence of the labeled transition system
(S , S 0,→, L) is a pair σ =

(
(si)i∈{0,1,...}, (Li)i∈{0,1,...}

)
of infinite sequences, written as

s0
L0
−−→ s1

L1
−−→ . . .

in the following, where s0, s1, . . . ∈ S are program states and L0, L1, . . . ∈ P(L) are sets of labels
such that the following two conditions are satisfied:

2.2. Linking LTL Specifications with Programs 7

1. For all i ∈ {0, 1, . . .},

i) either (si, Li, si+1) ∈ → (note that Li , ∅ holds in this case)
ii) or Li = ∅, si+1 = si, and there do not exist L′i ∈ P(L) \ {∅} and s′i ∈ S such that

(si, L′i , s
′
i) ∈ →.

2. For all i ∈ {0, 1, . . .}, if Li = ∅, then L j = ∅ for all j > i.

We write σi for the execution sequence that results from σ by removing the first i transitions and

states (i.e., σ0 = σ and, for instance, σ3 = s3
L3
−−→ s4

L4
−−→ . . .).

Execution sequences either represent non-terminating program executions or terminating pro-
gram executions. For non-terminating program executions, all the label sets Li are nonempty and

each transition si
Li
−→ si+1 is specified by the transition relation of the labeled transition system

(compare condition 1.i)). For terminating program executions, there is some index i such that
the transition relation→ does not specify any possible transition from the state si. In this case,
all subsequent states in the execution sequence are equal to si, and all subsequent label sets are
empty (compare conditions 1.ii) and 2).

The following definition establishes the connection between execution sequences and LTL
formulas by specifying which execution sequences satisfy a given LTL formula, and which
execution sequences do not satisfy this formula:

Definition 4 (Semantics of LTL formulas). The execution sequence σ = s0
L0
−−→ s1

L1
−−→ . . .

satisfies the LTL formula P, written σ |= P, if and only if:

P = l and l ∈ L0,

P = �Q and σi |= Q for all i ∈ {0, 1, 2, . . .},

P = �Q and σ1 |= Q,

P = ♦Q and σi |= Q for some i ∈ {0, 1, 2, . . .},

P = QU R and either σi |= Q for all i ∈ {0, 1, 2, . . .}, or there exists some i ∈ {0, 1, 2, . . .}
such that σi |= R as well as σ j |= Q for all j < i,

P = ¬Q and σ |= Q does not hold,

P = Q ∧ R and both σ |= Q and σ |= R hold,

P = Q ∨ R and σ |= Q or σ |= R holds, or

P = Q −→ R and σ |= R whenever σ |= Q.

For a labeled transition system (S , S 0,→, L) and an LTL formula P we write (S , S 0,→, L) |= P

if each execution sequence σ = s0
L0
−−→ s1

L1
−−→ . . . of (S , S 0,→, L) with s0 ∈ S 0 satisfies P.

The intuitive meaning of the temporal operators for execution sequences of labeled transition
systems are summarized in Table 1.

In the following sections, it will become evident that LTL formulas provide a suitable speci-
fication formalism for the formalization of secure coding guidelines. Section 4 gives an outlook
on how such specifications can be exploited further for the inspection of programs with respect
to secure coding guidelines.

8 Section 2. Specification Formalism

Temporal formula Intuitive meaning

�P (read: Globally P) The property specified by P must be satisfied at all execution
steps.

�P (read: Next P) The property specified by P must be satisfied at the next
execution step.

♦P (read: Eventually P) The property specified by P must be satisfied at some future
execution step.

PU Q (read: P unless Q) The property specified by P must either be satisfied in all
future execution steps, or up to an execution step where the
property specified by Q is satisfied.

P (without temporal con-
struct)

The property specified by P must be satisfied at the first exe-
cution step. If P = l, where l ∈ L is a label, then P specifies
that the first execution step must be annotated with the la-
bel l.

Table 1: Intuitive meaning of the temporal operators that are used in this report

2.2. Linking LTL Specifications with Programs 9

3 Formalizations for Selected Secure Coding Guidelines

This section contains formalizations for seven secure coding guidelines. These guidelines were
selected from a list of exemplary guidelines that have been kindly provided by Siemens for
examination purposes [Sie09]. They are similar (but not identical) to Siemens-internal secure
coding guidelines that were developed as recommendations for programmers. Please note that
this paper makes no claim about the use of secure coding guidelines within any specific Siemens
products. Siemens has identified several thematic domains of secure coding, which we call
secure coding domains in the following. The selected guidelines belong to seven different secure
coding domains. Table 2 gives an overview of the selected secure coding guidelines and the
corresponding secure coding domains.

Secure coding guidelines often consist of several secure coding aspects. For instance, con-
sider the secure coding guideline “Use prepared statements for database queries” (Section 3.3).
Examples for secure coding aspects of this guideline are “Make sure that user input is only bound
to parameters in the prepared statement. It must not affect the logic of the query” and “When
utilizing stored procedures or prepared queries, make sure to use prepared statements also in the
definition of the procedures or queries.” We formalized one such secure coding aspect for each
of the selected secure coding guidelines.

Structure of the formalizations. Sections 3.1–3.7 contain the formalizations of seven secure
coding aspects. Each section starts with the title and the description of the corresponding secure
coding guideline as well as the secure coding aspect that is formalized. Subsequently, a more
precise formulation of the secure coding aspect is provided if necessary. The actual formalization
of the secure coding aspect is then given as an LTL formula, which is displayed inside a frame.

For each formalization, a table lists all relevant abstract labels, describes their intuitive mean-
ing, and gives examples for execution steps that typically should be associated with these labels.
Each section also contains at least one application scenario that illustrates which execution steps
should be associated with which abstract label for concrete Java programs.

In case that the formalization revealed imprecisions in the informal description of a given
secure coding aspect, we provide recommendations for making the informal description more
precise at the end of the section. These recommendations are accompanied by corresponding
formalizations in the form of LTL formulas.

How to use the formalizations in practice. In order to check if some source code complies
with the formalized secure coding aspect of a given secure coding guideline, we suggest a two-
stage approach: First, the pieces of code should be identified that correspond to the labels used in
the formalization. This can be done with the help of the respective table provided in this report,
which lists and describes the labels that are relevant for the secure coding aspect. In the second
step, one should convince oneself that the pieces of code that were identified in the first step are
executed in the required order in any conceivable case. This should be done using the respective
LTL formula. Alternatively, one could decide to use a precise informal description of the secure
coding aspect instead of the formula in the last step. The precise informal descriptions suggested
in the rest of this section could be used for this alternative, less formal approach.

10 Section 3. Formalizations for Selected Secure Coding Guidelines

Section Secure Coding Domain Secure Coding Guideline

3.1 Validate the User Input When calling system commands, ensure
the execution logic cannot be manipu-
lated by user input

3.2 Sanitize the Output Sanitize outgoing data and replace spe-
cial characters with HTML representa-
tion

3.3 Secure the Internal Flow Use prepared statements for database
queries

3.4 Secure the Login and Authentication
Procedures

Limit login attempts, transmit pass-
words encrypted and store hash or en-
crypted only

3.5 Maintain Session Control Invalidate session after logout, timeout
or suspicious user-activity and destroy
all related data on server side

3.6 Enforce a Strict Authorization Model For every request, check and enforce
user permission for the resource consid-
ering given parameters and current con-
text

3.7 Use Cryptography Properly Use storage mechanisms for key mate-
rial provided by framework or operating
system

Table 2: Selected secure coding guidelines

3. Formalizations for Selected Secure Coding Guidelines 11

3.1 Validate the User Input

Secure Coding Guideline (provided by Siemens [Sie09]):
“When calling system commands, ensure the execution logic cannot be manipulated by
user input”

“The execution of system commands should be generally avoided. Use the standard docu-
mented API or framework instead whenever possible. If the execution of system commands
is inevitable, follow these rules:

(a) Validate every input thoroughly before passing it to system commands
(b) Sanitize any character that might manipulate the logic of the command. [. . .] Use

whitelist filtering whenever possible.
(c) Use predetermined values for dynamic data if they are known
(d) Run command as a lower privileged user [. . .].”

Selected Secure Coding Aspect:
“(a) Validate every input thoroughly before passing it to system commands.”

Precise formulation of the selected secure coding aspect: Whenever program input is
passed to a system command or used for the computation of values that are passed to a system
command, this program input must be validated before passing it to a system command or using
it in computations.

Formalization of the selected secure coding aspect:

The labeled transition system (S , S 0, L,→) satisfies the selected secure coding aspect, if and
only if the following property is satisfied for all v ∈ Mem:

(S , S 0, L,→) |= �
(
inputForSysCmd(v) −→(
(¬useInComputation(v) ∧ ¬passToSysCmd(v))U validate(v)

))
The formalization uses four labels that are parametric in an element v of the set Mem. The

elements of this set correspond to the memory locations used in a program. Note that memory
locations do not necessarily correspond to program variables, as multiple program variables
could reference the same memory location. For instance, if two Java variables reference the
same object, then these variables correspond to the same element v ∈ Mem. The label input-
ForSysCmd(v) describes execution steps where input data is written into the memory location v

12 Section 3. Formalizations for Selected Secure Coding Guidelines

1 p u b l i c vo id d e l e t e F i l e () throws IOExcep t i on {

2 S t r i n g f i l e n a m e = new B u f f e r e d R e a d e r (System . i n) . r e a d L i n e () ;
3 i f (v a l i d F i l e n a m e (f i l e n a m e))
4 {

5 S t r i n g cmd = ”rm − f ” + f i l e n a m e ;
6 Runtime . ge tRun t ime () . exec (cmd) ;
7 }

8 }

Listing 1: Validate input before passing it to system commands

and this input might either be passed to a system command or used to compute values that will
be passed to a system command. The label useInComputation(v) describes execution steps that
use the value of v in a computation. The label passToSysCmd(v) describes execution steps that
pass the value of v to a system command. The label validate(v) describes execution steps that
correspond to the successful completion of the validation of v.

The formalization specifies that whenever input data is stored in memory location v and this
data or data depending on it is later passed to a system command, the value of v must be validated
before being used in computations or being passed to a system command.

Exemplary mapping of labels to execution steps: Table 3 lists the abstract labels used
in the formalization and provides an informal description of the execution steps that are de-
scribed by each label. Moreover, the table illustrates how to map the abstract labels to execution
steps by providing at least one example for each label.

Application scenario: As a concrete example consider the Java method deleteFile shown
in Listing 1. The method removes a file whose filename is provided by user input. The re-
moval is performed by a system command (more specifically, a Linux shell command): The
value ("rm -f " + filename) is assigned to the String variable cmd, and the execution of the
method exec() of the Runtime-object with parameter cmd triggers the execution of the system
command removing the file. Before its usage, the user-provided filename is validated.

In this scenario, the assignment to the variable filename in line 2 has to be annotated with
the label inputForSysCmd(f ilename). The usage of the variable filename in line 5 has to be
annotated with the label useInComputation(f ilename). The return from the method valid-
Filename with return value true for the parameter filename has to be annotated with the
label validate(f ilename). The invocation of the method Runtime.getRuntime().exec(cmd)
in line 6 has to be annotated with the label passToSysCmd(cmd).

The method deleteFile satisfies the formalization, because the content of the variable
filename is validated before using it to compute the value cmd that is passed to a system com-
mand.

Conservative alternative formulation and formalization: Requiring the validation of
all input The secure coding guideline requires that all inputs that are used to compute val-
ues passed to system commands must be validated, while inputs that are not used to com-
pute such values need not be validated. In the formalization, this is taken care of by the label

3.1. Validate the User Input 13

Label Description Exemplary execution steps

inputForSysCmd(v) Label indicating that
input data is written
into memory location v
that (later on) will be
directly passed to a sys-
tem command or will
be used for the com-
putation of a parame-
ter passed to a system
command

1. Executing the assignment v =
req.getParameter("input"), where
req references an object of type Http-
ServletRequest, and v is used to con-
struct a system command executed by the
Servlet
2. Executing the assignment v =
BufferedReader.readln(), where
the BufferedReader-object provides in-
put from the user console that is used as a
parameter of a system command

useInComputation(v) Label indicating that
memory location v is
used in a computation,
except for computa-
tions that are performed
to validate v

1. Executing the assignment cmdparam
= "rm -f "+v

2. Executing the statement escape-
Spaces(v), where the method escape-
Spaces escapes spaces in the String
value v

passToSysCmd(v) Label indicating that the
value in memory loca-
tion v is passed as a
parameter to a system
command

1. Invoking the method Run-
time.exec() of the Java API with the
parameter ("rm -f "+v)
2. Invoking the method
stdin.println(v), where stdin refer-
ences the input stream associated with a
Process-object of the standard Java API

validate(v) Label indicating that
the value of memory
location v is validated
successfully

1. The method p.matcher(v).
matches() returns true, where p refer-
ences an instance of the Java class Pat-
tern representing valid input strings
2. The method whitelist.con-
tains(v) returns true, where white-
list references a Java object of type
Vector containing admissible inputs

Table 3: Labels used in the formalization of the secure coding aspect

14 Section 3. Formalizations for Selected Secure Coding Guidelines

inputForSysCmd(v). This label describes only execution steps where input that will be passed
to system commands is stored in the memory location v. However, if this label is forgotten at
some execution steps or accidentally attached to a different execution step, this has severe con-
sequences. If such errors occur, then programs passing unvalidated inputs to system commands
could satisfy the formalization1. In comparison, if one annotates too many execution steps with
that label, then the consequences are less severe: In such cases, programs satisfying the for-
malization do not pass unvalidated input to system commands, but rather perform too many
validations by validating input data that is never passed to system commands.

Based on this observation, one stays on the safe side when one validates all input to a program.
To formalize this conservative alternative of the secure coding guideline, we introduce the new
label input(v). This label describes execution steps where input enters the program, no matter
whether the input is used to compute values passed to system commands or not. Using this label,
we formalize this alternative as follows:

The labeled transition system (S , S 0, L,→) satisfies the conservative alternative of the se-
lected secure coding aspect, if and only if the following property is satisfied for all v ∈ Mem:

(S , S 0, L,→) |= �
(
input(v) −→(
(¬useInComputation(v) ∧ ¬passToSysCmd(v))U validate(v)

))
Note that the above formula differs from the formalization of the selected secure coding as-

pect, as the label inputForSysCmd(v) is replaced by the label input(v). In consequence, this
formalization requires the validation of each input, including input that is not passed to system
commands. (Apart from that, the two formalizations are equivalent.) This formalization sim-
plifies the correct placement of labels, because one simply annotates all execution steps where
the program reads input; i.e., one does not need to think about whether input will eventually be
passed to a system command.

Validation of data retrieved from databases: The informal description of the secure cod-
ing aspect requires the validation of all input before passing it to system commands. In some
cases, however, program input might be handled as follows: In a first step, program input is
stored in a database. At a later point, possibly in a different execution of the program or even
in an execution of a different program, the same data is retrieved from the database and passed
to a system command. If this data is not validated, unvalidated input data is passed to a system
command. It is therefore sensible to also validate data retrieved from a database. The following
formalization includes this additional requirement, where the label retrieveFromDatabaseFor-
SysCmd(v) describes execution steps where the result of a database query is stored in the memory
location v:

1Note that this constitutes a mistake in applying the formalization; it is not a problem of the formalization.

3.1. Validate the User Input 15

The labeled transition system (S , S 0, L,→) satisfies the selected secure coding aspect with
the additional requirement described above, if and only if the following property is satisfied
for all v ∈ Mem:

(S , S 0, L,→) |= �
((

inputForSysCmd(v) ∨ retrieveFromDatabaseForSysCmd(v)
)

−→
(
(¬useInComputation(v) ∧ ¬passToSysCmd(v))U validate(v)

))

16 Section 3. Formalizations for Selected Secure Coding Guidelines

3.2 Sanitize the Output

Secure Coding Guideline (provided by Siemens [Sie09]):
“Sanitize outgoing data and replace special characters with HTML representation”

“Do not send a http response or other special characters to the client. Sanitize by replacing
characters with their HTML representations. The following table shows a selection but not
a complete list of dangerous special characters, commonly used in attacks.

Special Definition HTML-Entity/-
Character Representation
< less-than sign <

> greater-than sign >

& ampersand &

" double quotation mark "

’ single quotation mark '

; semicolon ;

Whenever possible sanitize all output data of untrusted sources (i.e. user input) before it
is sent to the browser. Avoid embedding user input into client side script code whenever
possible. Use existing sanitization functions of frameworks if available.”

Selected Secure Coding Aspect:
“Whenever possible sanitize all output data of untrusted sources (i.e. user input) before it
is sent to the browser.”

3.2. Sanitize the Output 17

Precise formulation of the selected secure coding aspect: Values that contain data from
untrusted sources (i.e., user input) or that have been computed based on such data must be
sanitized before they are sent to the browser.

Formalization of the selected secure coding aspect:

The labeled transition system (S , S 0, L,→) satisfies the selected secure coding aspect, if and
only if the following property is satisfied for all v ∈ Mem:

(S , S 0, L,→) |= �
(
writeUntrustedDataTo(v) −→(

(¬sendToBrowser(v))U (sanitize(v) ∨ overwrite(v))
))

The formalization uses four labels that are parametric in an element v of the set Mem. The
elements of this set correspond to the memory locations used in a program. The label writeUn-
trustedDataTo(v) describes execution steps where the value of the memory location v is changed
such that the new value depends on data from an untrusted source and the new value is not
the result of a sanitization method. The label sendToBrowser(v) describes execution steps that
cause the value in v to be sent the browser. The label sanitize(v) describes execution steps
that correspond to the completion of the sanitization of the value in v. The label overwrite(v)
describes execution steps in which the value in v is overwritten with a value that does not depend
on data from untrusted sources.

The formalization specifies that whenever data depending on untrusted sources is written to a
memory location v and that data is not the result of a sanitization method, then the contents of
this memory location must not be sent to the browser unless the value in v has been sanitized or
overwritten with a value not depending on data from untrusted sources.

Exemplary mapping of labels to execution steps: Table 4 lists the abstract labels used
in the formalization and provides an informal description of the execution steps that are de-
scribed by each label. Moreover, the table illustrates how to map the abstract labels to execution
steps by providing at least one example for each label.

Application scenario: As an example we consider the Java Servlet shown in Listing 2. This
Servlet provides the possibility to leave messages on a website in a simple fashion. The Servlet
stores the messages in the linked list entries (compare lines 2 and 7). The user can add a new
message by providing the HTTP request parameter named message (compare lines 6 to 8). The
PrintWriter provided by the object res of type HttpServletResponse is used to send the
Servlet’s response to the browser. The response is constructed in lines 10 to 17 via calls to the
method out.write generating HTML code for all entries contained in the list entries. Before
being passed to the PrintWriter, the entries are sanitized by replacing special characters with
their HTML representation (compare line 13).

In this scenario, the user-provided messages constitute input data that will be used to com-
pute data sent to the browser. Therefore, the assignment in line 7 has to be annotated with

18 Section 3. Formalizations for Selected Secure Coding Guidelines

Label Description Exemplary execution steps

writeUntrustedDataTo(v) Label indicating that
the value of memory
location v is changed,
such that the new
value depends on un-
trusted data (except
when storing the re-
sult of a sanitization
method in v)

1. The return value of the method
req.getParameter("userinput")

is assigned to the variable v, where
req references an object of type
HttpServletRequest of the Java
Servlet API
2. The return value of
the method result-
set.getString("columnName")

is assigned to the variable v, where
resultset references an object of
type ResultSet of the JDBC API
3. Assignment of a value depending
on untrusted input data to the vari-
able v

sendToBrowser(v) Label indicating that
the value of the mem-
ory location v is sent
to the browser

Invoking the method println(v) of
the PrintWriter-object associated to
a Java Servlet

sanitize(v) Label indicating that
the sanitization of the
value in memory loca-
tion v has completed

1. Executing the assignment entry =
sanitize(entry), where the method
sanitize sanitizes a String value
2. A method of the object v sanitizing
the data fields of the object terminates

overwrite(v) Label indicating that
a value not depending
on data from untrusted
sources is written into
the memory location v

A hard-coded constant is assigned to
variable v

Table 4: Labels used in the formalization of the secure coding aspect

3.2. Sanitize the Output 19

1 p u b l i c c l a s s Shoutbox ex tends H t t p S e r v l e t {
2 p r i v a t e L i s t <S t r i n g > e n t r i e s = new L i n k e d L i s t <S t r i n g > () ;
3
4 p u b l i c vo id doGet (H t t p S e r v l e t R e q u e s t req , H t t p S e r v l e t R e s p o n s e r e s)
5 throws S e r v l e t E x c e p t i o n , IOExcep t ion {

6 i f (r e q . g e t P a r a m e t e r (” message ”) != n u l l) {
7 e n t r i e s . add (r e q . g e t P a r a m e t e r (” message ”)) ;
8 }

9 P r i n t W r i t e r o u t = r e s . g e t W r i t e r () ;
10 o u t . w r i t e (”<html><head>< t i t l e >shoutbox < / t i t l e ></ head><body>”) ;
11 f o r (i n t i =0; i < e n t r i e s . s i z e () ; i ++) {
12 S t r i n g e n t r y = e n t r i e s . e l emen tAt (i) ;
13 e n t r y = H t m l U t i l . h tmlEscape (e n t r y) ;
14 o u t . w r i t e (e n t r y) ;
15 o u t . w r i t e (”<hr /> ”) ;
16 }

17 o u t . w r i t e (” </ body></ html>”) ;
18 }

19 }

Listing 2: Java Servlet using sanitization

the label writeUntrustedDataTo(entries). In consequence, the assignment to the variable en-
try in line 12 has to be annotated with the label writeUntrustedDataTo(entry). The execution
step corresponding to the method call out.write(entry) has to be annotated with the label
sendToBrowser(entry). The execution step corresponding to the return from the method Html-
Util.htmlEscape(entry) has to be annotated with the label sanitize(entry). Note that the
assignment to the variable entry in line 13 need not be annotated with the label writeUntrus-
tedDataTo(entry), as it assigns the result of a sanitization to the variable entry.

The Servlet satisfies the formalized secure coding aspect as all data depending on untrusted
sources is sanitized before being sent to the browser.

Revisiting the formalization from Section 3.1: There is a certain similarity between the
validation of input before passing it to system commands and the sanitization of output be-
fore sending it to the browser. In both cases, data needs to be checked (i.e., validated or san-
itized, respectively) before relaying it. By simply replacing the labels in the formalization of
input validation from Section 3.1 (see page 12), we get the following formalization of out-
put sanitization, where inputForSysCmd(v) is replaced by untrustedInputForBrowserOutput(v),
passToSysCmd(v) is replaced by sendToBrowser(v), and validate(v) is replaced by sanitize(v):

The labeled transition system (S , S 0, L,→) satisfies the selected secure coding aspect, if and
only if the following property is satisfied for all v ∈ Mem:

(S , S 0, L,→) |= �
(
untrustedInputForBrowserOutput(v) −→(

(¬useInComputation(v) ∧ ¬sendToBrowser(v))U sanitize(v)
))

The label untrustedInputForBrowserOutput(v) describes execution steps where input from an
untrusted source is written to memory location v that will be sent to the browser or used to com-

20 Section 3. Formalizations for Selected Secure Coding Guidelines

pute values that will be sent to the browser. Similarly to Section 3.1, label useInComputation(v)
describes execution steps where the value of v is used in computations. The resulting formaliza-
tion specifies that whenever input data from untrusted sources is stored in a memory location v
such that this value will be sent to the browser or used to compute values that will be sent to the
browser, then the contents of v may neither be used in computations nor be sent to the browser
before being sanitized.

This is a sensible course of action as well, because the final browser output will only de-
pend on data that has already been sanitized. Hence the above formalization could inspire an
additional secure coding guideline, which requires the sanitization of data before it is used in
the computation of the actual browser output. Thus, the computation may already assume that
it operates on sanitized data. The original secure coding aspect (as formalized on page 18) in
addition ensures that the final output is sanitized as well.

Recommendations for making the secure coding guideline more precise: The for-
malization of the secure coding guideline reveals that the informal guideline should be made
more precise. In particular, the meaning of “whenever possible” should be elaborated on so that
the formalization can reflect this relaxation. In order to clarify the informal guideline, it seems
promising to collect and investigate code examples of output sanitization.

3.2. Sanitize the Output 21

3.3 Secure the Internal Flow

Secure Coding Guideline (provided by Siemens [Sie09]):
“Use prepared statements for database queries”

“Prepared statements are a feature of a database to prepare instructions to the database
without supplying the parameters. Instead of the parameters placeholders are used. The
parameters provided later on are checked for validity first before being processed. There-
fore, prepared statements prevent SQL injections effectively and shall always be used for
security as well as performance reasons.

Make sure that user input is only bound to parameters in the prepared statement. It must
not affect the logic of the query.

Stored procedures, parameterized queries
When utilizing stored procedures or prepared queries, make sure to use prepared statements
also in the definition of the procedures or queries.

Object-Relational Mappers
Object-Relational Mappers store objects in a relational database, which appears to the pro-
gram as a object oriented database. When applying Object-Relational Mappers make sure
that they use prepared statements for all queries to the database.”

Selected Secure Coding Aspect:
“Make sure that user input is only bound to parameters in the prepared statement. It must
not affect the logic of the query.”

22 Section 3. Formalizations for Selected Secure Coding Guidelines

Precise formulation of the selected secure coding aspect: User input or data that has
been derived from user input must never be used in the construction of Prepared Statements.
Such data may only be bound to parameters in Prepared Statements.

Formalization of the selected secure coding aspect:

The labeled transition system (S , S 0, L,→) satisfies the selected secure coding aspect, if and
only if the following property is satisfied for all v ∈ Mem:

(S , S 0, L,→) |= �
(
writeInputTo(v) −→(

(¬constructPreparedStatementWith(v))U overwrite(v)
))

This formalization uses three labels that are parametric in an element v of the set Mem.
The elements of this set correspond to the memory locations used in a program. The label
writeInputTo(v) describes execution steps where the value of the memory location v is changed
such that the new value depends on user input. The label constructPreparedStatementWith(v)
describes execution steps where the value of the memory location v is used as a parameter for
a method that constructs a Prepared Statement (i.e., the formula ¬constructPreparedStatement-
With(v) states that no Prepared Statement is constructed using the value in memory location v).
The label overwrite(v) describes execution steps that overwrite the memory location v with data
that does not depend on user input.

The formula specifies that whenever values depending on user input are written into a memory
location v, the value of this memory location must not be used in the construction of Prepared
Statements unless it is overwritten with a value that does not depend on user input.

Exemplary mapping of labels to execution steps: Table 5 lists the abstract labels used
in the formalization and provides an informal description of the execution steps that are de-
scribed by each label. Moreover, the table illustrates how to map the abstract labels to execution
steps by providing at least one example for each label.

Application scenario: As examples we consider the three Java methods insertUser1, in-
sertUser2, and insertUser3 shown in Listing 3. Method insertUser1 initially reads a
username from the command line (compare line 3). Then it creates a Prepared Statement with
one parameter for the username (lines 4 and 5), sets this parameter to the previously read user-
name (line 6), and executes the Prepared Statement (line 7). In addition to a username, method
insertUser2 reads a group ID from the command line (compare line 13), and then prepares
a statement where this group ID is used as a part of the table into which the username is in-
serted (lines 14 and 15). Afterwards, it performs the same actions as the method insertUser1.
The method insertUser3 differs from the method insertUser2, as it does not use the String
groupID in the creation of the Prepared Statement, but rather adds an additional parameter for
the table name to the Prepared Statement (compare lines 24 and 25). Before executing the Pre-
pared Statement, this additional parameter is set to the value of the variable groupID (line 26).

3.3. Secure the Internal Flow 23

Label Description Exemplary execution steps

writeInputTo(v) Label indicating that
the value of memory
location v is changed
and now depends on
input data

1. Assigning the value
("SELECT * FROM "+in-

put) to variable v, where
variable input contains user
input
2. Assigning the re-
turn value of the Java
method Buffere-
dReader.readln() to
v, where the Buffere-
dReader-class provides in-
put from the user console
3. Assigning the re-
turn value of the Java
method req.getParame-
ter("input") to variable v,
where req references an ob-
ject of type HttpServle-
tRequest

constructPreparedStatementWith(v) Label indicating that
memory location v
is used as parameter
for a method con-
structing a Prepared
Statement

Invoking the method
conn.prepare-

Statement("SELECT *

FROM "+v), where conn
references an object of type
Connection of the JDBC
API
If the expression used as
parameter for the method
prepareStatement does
not contain any variables,
this method call does not
obtain this label

overwrite(v) Label indicating
that the value of the
memory location v
is changed and now
does not depend on
input data

1. A constant value is as-
signed to variable v
2. Variable v is overwritten
by data that does not depend
on user input

Table 5: Labels used in the formalization of the secure coding aspect

24 Section 3. Formalizations for Selected Secure Coding Guidelines

1 p u b l i c vo id i n s e r t U s e r 1 () throws IOExcept ion , SQLException {

2 B u f f e r e d R e a d e r i n = new B u f f e r e d R e a d e r (new I n p u t S t r e a m R e a d e r (System . i n)) ;
3 S t r i n g username = i n . r e a d L i n e () ;
4 P r e p a r e d S t a t e m e n t s t m t = con . p r e p a r e S t a t e m e n t (
5 ”INSERT INTO ‘ u s e r s ‘ (‘ name ‘) VALUES (?) ”) ;
6 s t m t . s e t S t r i n g (1 , username) ;
7 s t m t . e x e c u t e () ;
8 }

9
10 p u b l i c vo id i n s e r t U s e r 2 () throws IOExcept ion , SQLException {

11 B u f f e r e d R e a d e r i n = new B u f f e r e d R e a d e r (new I n p u t S t r e a m R e a d e r (System . i n)) ;
12 S t r i n g username = i n . r e a d L i n e () ;
13 S t r i n g groupID = i n . r e a d L i n e () ;
14 P r e p a r e d S t a t e m e n t s t m t = con . p r e p a r e S t a t e m e n t (
15 ”INSERT INTO ‘ g r o u p ” + groupID + ” ‘ (‘ name ‘) VALUES (?) ”) ;
16 s t m t . s e t S t r i n g (1 , username) ;
17 s t m t . e x e c u t e () ;
18 }

19
20 p u b l i c vo id i n s e r t U s e r 3 () throws IOExcept ion , SQLException {

21 B u f f e r e d R e a d e r i n = new B u f f e r e d R e a d e r (new I n p u t S t r e a m R e a d e r (System . i n)) ;
22 S t r i n g username = i n . r e a d L i n e () ;
23 S t r i n g groupID = ” g r o u p ” + i n . r e a d L i n e () ;
24 P r e p a r e d S t a t e m e n t s t m t = con . p r e p a r e S t a t e m e n t (
25 ”INSERT INTO ? (‘ name ‘) VALUES (?) ”) ;
26 s t m t . s e t S t r i n g (1 , groupID) ;
27 s t m t . s e t S t r i n g (2 , username) ;
28 s t m t . e x e c u t e () ;
29 }

Listing 3: User input and Prepared Statements

In these methods, the assignments to the variable username in lines 3, 12, and 22 and to the
variable groupID in lines 13 and 23 have to be annotated with the labels writeInputTo(username)
and writeInputTo(groupID), respectively, as these values are user-provided. The method call to
Connection#prepareStatement in the method insertUser2 (compare line 14) has to be
annotated with the label constructPreparedStatementWith(groupID). Note that the calls of the
method Connection#prepareStatement in lines 4 and 24 do not obtain a constructPrepared-
StatementWith-label, as the parameters reference constant String values and do not depend on
any program variables.

The method insertUser1 satisfies the formalization, as no user input is used to construct the
Prepared Statement. In contrast, the method insertUser2 does not satisfy the formalization,
as the group ID provided as user input is used in the construction of the Prepared Statement.The
method insertUser3 circumvents the problem of the method insertUser2 by adding an ad-
ditional parameter to the Prepared Statement. In consequence, all user input is only bound to
parameters of the Prepared Statement, and the method insertUser3 satisfies the formalization.

3.3. Secure the Internal Flow 25

3.4 Secure the Login and Authentication Procedures

Secure Coding Guideline (provided by Siemens [Sie09]):
“Limit login attempts, transmit passwords encrypted and store hash or encrypted only”

“During the login process, realize the following requirements:
(a) Limit login attempts to 5 tries per account.

After 5 failed login attempts lock the account for at least 10 min. If this happens again,
lock the account for longer periods of time. Do not use a sleep or delay function
(after the unsuccessful login attempts) to “lock” the account, this will provide DoS
vulnerability.

(b) Print only a generic error message.
An example of generic message is: “User name and password combination not
found.” Do not give to the user any further information, for instance whether he en-
tered a correct user name or not.

For the transmission and storage of passwords, the following rules are obligatory:
(c) Transmit passwords using an encrypted channel.

Recommendation: SSL/TLS, [. . .], or IPsec in transport mode (end-to-end encryp-
tion).

(d) Whenever possible, store only a salted hash of the password and compare the
hashes.
The salted hash is created by applying a hash function to the password and a fixed
(secret) value called salt. The salt prevents attackers from easily building a list of
hash values of guessed passwords. The salt must be stored encrypted.

(e) If necessary to know the password, store it in encrypted form.
In very seldom cases, the application requires knowledge of the clear text passwords,
for instance when the application uses the passwords to authenticate itself. In those
cases, document the reason for this need and store the passwords in encrypted form
[. . .]

(f) Clear passwords from memory immediately after use, to avoid password exposure
in core and dump files.

(g) Do not hard-code passwords (or keys) in source code [. . .]”

Selected Secure Coding Aspect:
“(a) Limit login attempts to 5 tries per account. After 5 failed login attempts lock the
account for at least 10 min. If this happens again, lock the account for longer periods of
time. Do not use a sleep or delay method (after the unsuccessful login attempts) to ”lock”
the account, this will provide DoS vulnerability.”

26 Section 3. Formalizations for Selected Secure Coding Guidelines

Precise formulation of the selected secure coding aspect: When five failed login at-
tempts have been performed for an account, then that account must be locked for at least ten
minutes. Whenever another five failed login attempts have been performed for the same ac-
count, it must be locked for a longer period of time than the last time it had been locked. When
counting the failed login attempts, do not consider those login attempts that fail just because the
account is currently locked.

Formalization of the selected secure coding aspect:

The labeled transition system (S , S 0, L,→) satisfies the selected secure coding aspect, if and
only if the following property is satisfied for all a ∈ Accounts:

(S , S 0, L,→) |= P(a, 5, 10) ∧ �
(
∀k.
(
lock(a, k) −→ ∃k′ > k. P(a, 5, k′)

))
,

where P(a, 0, k) =
(
∃k′ ≥ k. lock(a, k′)

)
and

P(a, n, k) =
(
(¬fail(a)) U �P(a, n − 1, k)

)
for n > 0.

The formalization uses two labels, fail(a) and lock(a, k). The label fail(a) is parametric in
an element a of the set Accounts, whose elements correspond to the accounts within a system.
It describes execution steps that correspond to a failed login attempt for the account a except
for failures caused by the account being currently locked. The label lock(a, k) is parametric in
an element a of the set Accounts, and in a number k. This label describes execution steps that
correspond to locking the account a for k minutes.

The formula P(a, n, k) specifies that after n failed login attempts for the account a the account
must be locked for at least k minutes. For n = 0, this is expressed by specifying that the account
is locked for k′ minutes with k′ ≥ k. For n > 0, this is specified by requiring that either no more
failed login attempts for that account occur, or that after the first failed login attempt the formula
P(a, n − 1, k) must be satisfied, i.e., after n − 1 failed login attempts the account must be locked
for at least k minutes. The formalization can hence be read as follows: After the first five failed
login attempts an account must be locked for at least ten minutes, and whenever the account is
locked for k minutes, it must be locked for more than k minutes after the next five failed login
attempts.

Exemplary mapping of labels to execution steps: Table 6 lists the abstract labels used
in the formalization and provides an informal description of the execution steps that are de-
scribed by each label. Moreover, the table illustrates how to map the abstract labels to execution
steps by providing at least one example for each label.

Application scenario: Consider the Java class providing an authentication mechanism that
is shown in Listing 4. The class provides password-based authentication via the method login.
We list reasons why this class does not satisfy the secure coding aspect after describing its func-
tioning and which execution steps should be annotated with the labels used in the formalization.

3.4. Secure the Login and Authentication Procedures 27

Label Description Exemplary execution steps

fail(a) Label indicating a failed
login attempt for the ac-
count a that is not caused by
the account being locked

A login method called for the account a throws
an exception (e.g., the method LoginCon-
text.login of the Java API JAAS throws a
LoginException)

lock(a, k) Label indicating that the ac-
count a is being locked for
k minutes. Sleep or delay
methods must not be anno-
tated with this label

A method provided by the authorization API for
locking accounts is called with a parameter cor-
responding to a locking duration of k minutes.

Table 6: Labels used in the formalization of the secure coding aspect

In the case of a successful login, the method returns a Session object for the authenticated user,
otherwise it throws an exception. In line 5, a User object for the provided username is obtained
from the user database. The first check in line 6 determines if the user account is locked. If the
account is locked, an exception is thrown in line 7. The second check in line 9 determines if
the maximal number of failed login attempts for the account is exceeded. If this is the case, the
account is locked for ten minutes (compare line 10) and an exception is thrown. The final check
in line 13 determines if the provided password is correct. If it is incorrect, the number of failed
login attempts for the account is incremented (compare line 14). If it is correct, the number of
failed attempts is reset (line 17) and the method returns a Session object (line 18).

In this scenario, the set Accounts corresponds to the set of Java String values which are valid
usernames. All execution steps corresponding to method calls of User#lock have to be anno-
tated with the label lock(a, k), where a is the username associated with the object the method
is called on and k is the parameter of the method call. The label fail(a) has to be assigned to
execution steps corresponding to throwing a LoginException, where a is the username of the
authentication attempt. Note that login attempts that fail just because the account is locked must
not be annotated with the label fail(a).

This class does not satisfy the formalization for several reasons: For instance, accounts are
always locked for ten minutes, although the time that an account is locked should be incremented
after each sequence of five failed login attempts. Another reason is that accounts are not locked
directly after the fifth failed login attempt. Furthermore, the counter for failed login attempts is
reset after a successful login. While the first two reasons are obvious violations of the guideline,
the last “problem” of the program (i.e., resetting the counter for failed login attempts after a
successful login attempt) looks like program behavior that should be accepted by the secure
coding guideline. We address this point in the following recommendation.

28 Section 3. Formalizations for Selected Secure Coding Guidelines

1 c l a s s A u t h e n t i c a t o r {
2 p r i v a t e UserDB u s e r s ;
3 . . .
4 p u b l i c S e s s i o n l o g i n (S t r i n g username , S t r i n g password) throws E x c e p t i o n {

5 User u s e r = u s e r s . que ryUse r (username) ;
6 i f (u s e r . i s L o c k e d ()) {

7 throw new Accoun tLockedExcep t ion () ;
8 }

9 i f (u s e r . g e t F a i l A t t e m p t s () > 5) {
10 u s e r . l o c k (1 0) ;
11 throw new Accoun tLockedExcep t ion () ;
12 }

13 i f (! u s e r . checkPassword (password)) {
14 u s e r . i n c F a i l A t t e m p t s () ;
15 throw new L o g i n E x c e p t i o n () ;
16 }

17 u s e r . r e s e t F a i l A t t e m p t s () ;
18 re turn new S e s s i o n (u s e r) ;
19 }

20 }

Listing 4: Validate input before passing it to system commands

Recommendations for making the secure coding guideline more precise:

1. Resetting the number of unsuccessful login requests. In the above formulation of the
secure coding guideline, accounts are locked after five failed login attempts, even if a successful
login attempt for that account occurs before the fifth failed attempt. This appears too strict, when
one considers that even login attempts by authorized users may fail, e.g., due to typing errors.
We therefore recommend the following more precise formulation:

When five failed login attempts have been performed for an account and no suc-
cessful login attempt has been performed for that account between those failed at-
tempts, then that account must be locked for at least ten minutes. Whenever five
failed login attempts occur again without an intermediate successful login attempt
for that account, the account must be locked for a longer period of time than the last
time it had been locked. When counting the failed login attempts, do not consider
those login attempts that fail just because the account is currently locked.

The formalization of this more precise formulation is as follows:

The labeled transition system (S , S 0, L,→) satisfies the more precise variant of the selected
secure coding aspect, if and only if the following property is satisfied for all a ∈ Accounts:

(S , S 0, L,→) |= P′(a, 5, 10) ∧ �
(
succ(a) −→ P′(a, 5, 10)

)
∧

�
(
∀k.
(
lock(a, k) −→ ∃k′ > k. P′(a, 5, k′)

))
,

where P′(a, 0, k) =
(
∃k′ ≥ k. lock(a, k′)

)
and

P′(a, n, k) =
(
(¬fail(a))U

((
�P′(a, n − 1, k)

)
∨ succ(a)

))
for n > 0.

3.4. Secure the Login and Authentication Procedures 29

Here, a successful login request (described by the label succ(a)) must reset the number of pos-
sible login requests to five and the minimal time for which the account needs to be locked to ten
minutes.

2. Unlocking locked accounts. In the current formulation of the secure coding guideline it
is not intended that locked accounts are unlocked, e.g., by an administrator. Since locking the
account for numerous times may result in locking times much larger than ten minutes, this would
allow “denial of service”-attacks against a user. We therefore recommend the following more
precise formulation that supports resetting accounts:

When five failed login attempts have been performed for an account, then that
account must be locked for at least ten minutes. Whenever another five failed login
attempts have been performed for the same account, the account must be locked for a
longer period of time than the last time it had been locked. When counting the failed
login attempts, do not consider those login attempts that fail just because the account
is currently locked.

If an account is unlocked, reset the required minimal locking time back to ten
minutes.

The formalization of this more precise formulation is as follows:

The labeled transition system (S , S 0, L,→) satisfies the more precise variant of the selected
secure coding aspect, if and only if the following property is satisfied for all a ∈ Accounts:

(S , S 0, L,→) |= P′′(a, 5, 10) ∧ �
(
reset(a) −→ P′′(a, 5, 10)

)
∧

�
(
∀k.
(
lock(a, k) −→ ∃k′ > k. P′′(a, 5, k′)

))
,

where P′′(a, 0, k) =
(
∃k′ ≥ k. lock(a, k′)

)
and

P′′(a, n, k) =
(
(¬fail(a))U

(
(�P′′(a, n − 1, k)) ∨ reset(a)

))
for n > 0.

Execution steps that correspond to the unlocking of the account a must be annotated with the
label reset(a). Whenever a reset occurs, the number of possible unsuccessful login requests must
be reset to five and the minimal time that the account needs to be locked must be reset to ten
minutes.

3. The two previous recommendations can be combined as follows:

When five failed login attempts have been performed for an account and no suc-
cessful login attempt has been performed for that account between those failed at-
tempts, then that account must be locked for at least ten minutes. Whenever five
failed login attempts occur again without an intermediate successful login attempt
for that account, the account must be locked for a longer period of time than the last

30 Section 3. Formalizations for Selected Secure Coding Guidelines

time it had been locked. When counting the failed login attempts, do not consider
those login attempts that fail just because the account is currently locked.

If an account is unlocked, reset the required minimal locking time back to ten
minutes.

It is straightforward to obtain a formalization for this more precise formulation by combining
the previous two specifications in one single LTL specification:

The labeled transition system (S , S 0, L,→) satisfies the combination of both proposed more
precise variants of the selected secure coding aspect, if and only if the following property is
satisfied for all a ∈ Accounts:

(S , S 0, L,→) |= P′′′(a, 5, 10) ∧ �
(
(reset(a) ∨ succ(a)) −→ P′′′(a, 5, 10)

)
∧

�
(
∀k.
(
lock(a, k) −→ ∃k′ > k. P′′′(a, 5, k′)

))
,

where P′′′(a, 0, k) =
(
∃k′ ≥ k. lock(a, k′)

)
and

P′′′(a, n, k) =
(
(¬fail(a))U

(
(�P′′′(a, n − 1, k)) ∨ reset(a) ∨ succ(a)

))
for n > 0.

3.4. Secure the Login and Authentication Procedures 31

3.5 Maintain Session Control

Secure Coding Guideline (provided by Siemens [Sie09]):
“Invalidate session after logout, timeout or suspicious user-activity and destroy all related
data on server side”

“After the logout all user-related session IDs must be immediately invalidate the session
on the server side in the following situations:

– Logout
– Timeout
– Occurrence of a condition that indicates that the user is misbehaving (e.g. trying to

access information by suspicious input, or trying to enter a script, etc)
The Logout procedure must obey the following rules:

– Logout link/button needs to be visible on every page
– Logout procedure must start immediately after clicking logout button/link or the cor-

responding confirmation dialogue to logout.
Timeout good practice:

– Limit session time to the minimum still acceptable value, from user experience per-
spective

Invalidation procedure:
– Delete all information in session object after logout
– Save only necessary persistent data in databases, files, etc.
– Do not reuse session objects
– Invalidate on the server side”

Selected Secure Coding Aspect:
“After the logout all user-related session IDs must be immediately invalidate the session on
the server side in the following situations:

– Logout
– Timeout
– Occurrence of a condition that indicates that the user is misbehaving (e.g., trying to

access information by suspicious input, or trying to enter a script, etc)”

32 Section 3. Formalizations for Selected Secure Coding Guidelines

Precise formulation of the selected secure coding aspect: Session IDs must be invali-
dated immediately under the following circumstances:

– Whenever the user logs out, the session IDs related to that user must be immediately inval-
idated.

– If the session of a user ID has timed out, the session IDs related to that user ID must be
immediately invalidated.

– If a condition indicates that a user with a certain user ID misbehaves, the session IDs related
to that user ID must be immediately invalidated.

Formalization of the selected secure coding aspect:

The labeled transition system (S , S 0, L,→) satisfies the selected secure coding aspect if and
only if the following property is satisfied for all u ∈ UserIDs:

(S , S 0, L,→) |= �
(
logout(u) −→ �invalidate(u)

)
∧

�
(
timeout(u) −→ �invalidate(u)

)
∧

�
(
suspicious(u) −→ �invalidate(u)

)
The formalization uses four labels that are parametric in an element of the set UserIDs. The

elements of this set correspond to the user IDs in a system. The labels logout(u), timeout(u),
and suspicious(u) describe execution steps that correspond to the logout of u, to a timeout for u,
or to the detection of suspicious behavior of u, respectively. The label invalidate(u) describes
execution steps that invalidate the session IDs of u.

Hence the formalization specifies that whenever a user with ID u logs out or the session of the
user with ID u times out or suspicious behavior of the user with ID u is detected, the session IDs
related to the user ID u are invalidated immediately, i.e., in the next execution step.

Exemplary mapping of labels to execution steps: Table 7 lists the abstract labels used
in the formalization and provides an informal description of the execution steps that are de-
scribed by each label. Moreover, the table illustrates how to map the abstract labels to execution
steps by providing at least one example for each label.

Application scenario: The application scenario shown in listing 5 contains a simple Java
Servlet that is called when a user presses a logout button. The first command of the method
doGet obtains a reference to the session object corresponding to the request and invalidates the
session of that request via the corresponding method of the session object. Afterwards, a log
entry is generated.

The invocation of the doGet method has to be annotated with the label logout(u), where u is
the user ID the Servlet is executed for. The corresponding invocation of the method invalidate
has to be annotated with the label invalidate(u).

3.5. Maintain Session Control 33

Label Description Exemplary execution steps

logout(u) Label indicating that
the user with ID u has
logged out

Invoking the doGet or doPost method of a Java
Servlet that is called by user ID u signalling that
the user wishes to log out

timeout(u) Label indicating that
the session of user
ID u has timed out

A method used as a timeout-listener is invoked

suspicious(u) Label indicating that
suspicious behavior
of the user with ID u
has been detected

An input validation method returns the value
false, because the user with ID u has provided
an input containing JavaScript code

invalidate(u) Label indicating that
all session IDs for
user ID u are being
invalidated

1. Invoking the method HttpSession.
invalidate() of the Java Servlet API for the
HttpSession-object associated with user ID u
2. Invoking the method SecurityContext-
Holder.getContext().setAuthentication

of the Spring Security Framework with parame-
ter null

Table 7: Labels used in the formalization of the secure coding aspect

1 p u b l i c c l a s s L o g o u t S e r v l e t ex tends H t t p S e r v l e t {
2 p u b l i c L o g o u t S e r v l e t () { super () ; }
3
4 p u b l i c vo id doGet (H t t p S e r v l e t R e q u e s t req , H t t p S e r v l e t R e s p o n s e r e s p) {
5 r e q . g e t S e s s i o n () . i n v a l i d a t e () ;
6 l o g g e r . l o g (” User l o g s o u t : ”+ r e q . ge tRemoteUser ()) ;
7 r e t u r n L o g o u t P a g e (r e s p) ;
8 }

9 . . .
10 }

Listing 5: Invalidating session IDs

34 Section 3. Formalizations for Selected Secure Coding Guidelines

Recommendation for making the secure coding guideline more precise: The secure
coding guideline states that session IDs must be invalidated immediately when the user logs out.
However, it is unclear how immediate the invalidation should and can occur. Firstly, even in
the above application scenario the first action is a call of the method getSession, and not of
the method invalidate. Secondly, if resources bound to a session (like, e.g., database connec-
tions) must be closed before invalidating the session ID, this conflicts with the requirement to
immediately invalidate the session ID. We propose to use a formulation that is more explicit than
requiring the “immediate” invalidation of session IDs. We choose an approach that replaces “im-
mediately” with the requirement that session IDs are invalidated within the method that handles
the logout, the timeout, or the detection of suspicious behavior, respectively. The corresponding
formulation is as follows:

Provide specific methods for handling the logout of a user, the timeout of a session, and the
detection of suspicious behavior of a user. These methods shall be called when a user logs out,
when a session times out, or when suspicious user behavior is detected, respectively. Within
these methods, the session IDs of the corresponding user ID must be invalidated.

This formulation is made precise with the following formalization, where logoutDone(u) de-
scribes execution steps corresponding to the return from the method handling the logout pro-
cedure, timeoutDone(u) describes execution steps corresponding to the return from the method
handling a timeout, and suspiciousDone(u) describes execution steps that correspond to the re-
turn from methods handling occurrences of suspicious user behavior:

The labeled transition system (S , S 0, L,→) satisfies the more precise variant of the selected
secure coding aspect if and only if the following property is satisfied for all u ∈ UserIDs:

(S , S 0, L,→) |=

�
(
logout(u) −→

(
♦invalidate(u) ∧

(
(¬logoutDone(u))U invalidate(u)

)))
∧

�
(
timeout(u) −→

(
♦invalidate(u) ∧

(
(¬timeoutDone(u))U invalidate(u)

)))
∧

�
(
suspicious(u) −→

(
♦invalidate(u) ∧

(
(¬suspiciousDone(u))U invalidate(u)

)))
The formalization specifies that if a logout, a timeout, or suspicious behavior occurs, then the

session IDs must eventually be invalidated, and the invalidation must occur before returning
from the method that handles the corresponding event.

3.5. Maintain Session Control 35

3.6 Enforce a Strict Authorization Model

Secure Coding Guideline (provided by Siemens [Sie09]):
“For every request, check and enforce user permission for the resource considering given
parameters and current context”

“Check on each request for a resource whether the user has all required permissions: Do
not link users directly to permissions, instead link users to roles and roles to permissions.
Instead of roles, it is possible to link users to groups and/or to attributes, but the concept of
roles should be preferred, because it is simpler, and more extensively used.

To access a specific resource, often not only a role is relevant, but also a further role pa-
rameter or user attribute.

Some generic permissions may be granted to all users within a certain role, independent of
the parameter or attribute. But to access a specific information or resource the parameters
or attributes may be relevant. In those cases, be sure to check these values too.”

Selected Secure Coding Aspect:
“Check on each request for a resource whether the user has all required permissions: Do
not link users directly to permissions, instead link users to roles and roles to permissions.”

Precise formulation of the selected secure coding aspect: A resource may only be
requested for a user after having performed a successful check that the user is assigned a role
that has sufficient permissions to use the resource. For each subsequent request, an additional
successful check must be performed.

Formalization of the selected secure coding aspect:

The labeled transition system (S , S 0, L,→) satisfies the selected secure coding aspect if and
only if the following property is satisfied for all u ∈ UserIDs and all r ∈ Resources:

(S , S 0, L,→) |= P(u, r) ∧ �
(
request(u, r) −→ �P(u, r)

)
where P(u, r) =

(
(¬request(u, r))U checkOK(u, r)

)

The formalization uses two labels that are both parametric in u and r, the first being an element
of the set UserIDs, the second being an element of the set Resources. The elements of the set

36 Section 3. Formalizations for Selected Secure Coding Guidelines

Label Description Exemplary execution steps

request(u, r) Label indicating that
the user with ID u
requests resource r

1. A method called by the user with user ID u that
creates a reference to a file with fully qualified
name r in the form of an object of type Input-
Stream

2. The user with ID u invokes the method find-
ByPrimaryKey of an Entity Bean’s home inter-
face that returns a pointer to a corresponding re-
mote interface r

checkOK(u, r) Label indicating that
a successful check
has been performed
whether user ID u
is assigned a role
that has sufficient
permissions to use
the resource r

1. A method that checks whether the calling user
has sufficient permissions to read a given file re-
turns a value indicating that the check was suc-
cessful
2. Successful return from a method that queries
an LDAP-server whether a user has a certain role
and then checks whether that role is allowed to
access data represented by a Java Entity Bean

Table 8: Labels used in the formalization of the secure coding aspect

UserIDs correspond to the users in a system, and the elements of the set Resources correspond
to the resources that can be requested by those users. The label request(u, r) describes execution
steps that start a request of the resource r for the user u, and the label checkOK(u, r) describes
execution steps that correspond to a successful check whether user u is assigned a role that has
sufficient permissions for r.

In the formalization, the formula P(u, r) specifies that the user u must not request the re-
source r unless it has been successfully checked that u has sufficient permissions for r. The
complete formalization hence specifies that a request from user u for the resource r must not oc-
cur before the corresponding successful check for u and r, and that after each subsequent request
an additional successful check must precede the next request.

Exemplary mapping of labels to execution steps: Table 8 lists the abstract labels used
in the formalization and provides an informal description of the execution steps that are de-
scribed by each label. Moreover, the table illustrates how to map the abstract labels to execution
steps by providing at least one example for each label.

Application scenarios: The following two application scenarios illustrate how to apply the
formalization for a Java application and for a Java Servlet. The two application scenarios demon-
strate that the formalization can be used for quite different kinds of resources and authorization
checks.

3.6. Enforce a Strict Authorization Model 37

Scenario 1: Accessing files in Java Consider the Java Program shown in Listing 6. The
method readBudget receives a username via a String parameter. The method checks whether
the corresponding user has read permissions for the file budget.txt by invoking the method
checkRead (compare line 6). If the check fails, the method readBudget returns the string "not
supported" (line 7). If the check succeeds, the first line of the file budget.txt is returned
(lines 8 and 10).

In this example, execution steps corresponding to the method checkRead returning the value
true have to be annotated with the label check(u, r), where u is the username provided as param-
eter to the method readBudget and r represents the file "budget.txt". Execution steps corre-
sponding to the creation of objects providing methods to read the file budget.txt (here via the
constructor new FileReader(filename)) have to be annotated with the label request(u, r).

Scenario 2: Using resources in Java Servlets Consider the Java Servlet in Listing 7
that adds billing items to an invoice. If a user has authenticated via HTTP-Authentication,
his username is obtained through the invocation of the method req.getRemoteUser (compare
line 11). The used resources are invoices, their IDs are provided via the request parameter
invoiceId. Whether a user has sufficient permissions to access an invoice is checked in line 12.
Subsequently, the corresponding invoice object is requested and then used in the following loop.

In this scenario, the execution step corresponding to the return from the method checkPer-
mission in line 12 has to be annotated with the label check(u, r), where u is the username stored
in the variable user and r is the ID of the invoice. The execution step corresponding to the in-
vocation of the method getInvoice in line 18 has to be annotated with the label request(u, r),
where u and r are as above.

Recommendation for making the secure coding guideline more precise: In the above
formalization of the secure coding aspect the permissions of a user for a resource have to be
checked before the user makes a request to that resource. In some scenarios where resources are
hierarchically structured (consider, e.g., files and directories), it may be sufficient to perform this
check for some hierarchically higher resource instead of the resource itself (e.g., for a directory
containing a file instead of the file itself). We propose the following more precise formulation
supporting hierarchically structured resources:

A resource may only be requested for a user if it has been successfully checked that the user
is assigned a role that has all required permissions to request the resource. If suitable, the check
can also be performed for another resource containing the requested resource. Such a check is
required on each request for a resource.

38 Section 3. Formalizations for Selected Secure Coding Guidelines

1 p u b l i c c l a s s Budget {
2
3 p u b l i c S t r i n g r e a d B u d g e t (S t r i n g username) {
4 S t r i n g f i l e n a m e = ” b ud ge t . t x t ” ;
5
6 i f (! checkRead (username , f i l e n a m e))
7 re turn ” n o t s u p p o r t e d ” ;
8 S t r i n g s = (new B u f f e r e d R e a d e r (new F i l e R e a d e r (f i l e n a m e))) . r e a d L i n e () ;
9

10 re turn s ;
11 }

12 }

13
14 p u b l i c c l a s s App {
15
16 p u b l i c s t a t i c vo id main (S t r i n g a r g s []) {

17 Budget b = new Budget () ;
18 S t r i n g s = b . r e a d B u d g e t (a r g s [0]) ;
19 System . o u t . p r i n t l n (s) ;
20 }

21 }

Listing 6: Accessing files in Java

1 p u b l i c c l a s s A d d I n v o i c e I t e m s ex tends H t t p S e r v l e t {
2
3 p r i v a t e I n v o i c e S t o r a g e i n v o i c e s ;
4 p u b l i c vo id s e t I n v o i c e S t o r a g e (I n v o i c e S t o r a g e i n v o i c e s) {
5 t h i s . i n v o i c e s = i n v o i c e s ;
6 }

7
8 p u b l i c vo id do Pos t (H t t p S e r v l e t R e q u e s t req , H t t p S e r v l e t R e s p o n s e r e s p) {
9

10 I n v o i c e I d i d = new I n v o i c e I d (r e q . g e t P a r a m e t e r (” i n v o i c e I d ”)) ;
11 S t r i n g u s e r = r e q . ge tRemoteUser () ;
12 t r y { A c c e s s C o n t r o l l e r . c h e c k P e r m i s s i o n (use r , i d) ; }
13 catch (A c c e s s C o n t r o l E x c e p t i o n e) {
14 r e s p . s e n d E r r o r (H t t p S e r v l e t R e s p o n s e . SC FORBIDDEN) ;
15 re turn ;
16 }

17
18 I n v o i c e i n v o i c e = i n v o i c e s . g e t I n v o i c e (i d) ;
19 i n t i t emCount = I n t e g e r . p a r s e I n t (r e q . g e t P a r a m e t e r (” i t emCount ”)) ;
20 f o r (i n t i = 0 ; i < i t emCount ; i ++) {
21 S t r i n g i t e m D e s c r = r e q . g e t P a r a m e t e r (” i t e m D e s c r ” + i) ;
22 i n t i t emVal = I n t e g e r . p a r s e I n t (r e q . g e t P a r a m e t e r (” i t e m V a l ” + i)) ;
23 i n v o i c e . a d d B i l l i n g I t e m (i t emDescr , i t emVal) ;
24 }

25
26 i n v o i c e s . commit () ;
27
28 / / Genera te HTML r e s p o n s e
29 . . .
30 }

31 }

Listing 7: Using resources in Java Servlets

3.6. Enforce a Strict Authorization Model 39

This more precise formulation is formalized as follows:

The labeled transition system (S , S 0, L,→) satisfies the selected secure coding aspect for
hierarchically structured resources if and only if the following property is satisfied for all
u ∈ UserIDs and r ∈ Resources:

(S , S 0, L,→) |= P′′(u, r) ∧ �
(
request(u, r) −→ �P′′(u, r)

)
where P′′(u, r) =

(
(¬request(u, r))U (checkOK(u, r) ∨ checkAboveOK(u, r))

)

Here, the label checkAboveOK(u, r) describes execution steps that correspond to a successful
check whether the user u is assigned a role that has sufficient permissions for a resource that
contains r.

40 Section 3. Formalizations for Selected Secure Coding Guidelines

3.7 Use Cryptography Properly

Secure Coding Guideline (provided by Siemens [Sie09]):
“Use storage mechanisms for key material provided by framework or operating system”

“Key material is defined as:

– Passwords (DB and OS)
– symmetric keys
– private keys
– public keys
– certificates

If key material has to be stored on your system, never store it in clear text in the file system
instead use one of the following mechanisms:

– Use storage mechanisms provided by the framework
– Try using the storage mechanisms of the operating system (e.g., Windows Keystore)
– For embedded systems, consider the usage of secure memory or crypto controller

For the handling of the passwords protecting the keystores, the following rules apply:

(a) No passwords in source code
(b) If possible, use external tokens
(c) If possible, let user enter the password
(d) If stored in configuration files: protect the configuration file appropriately [. . .]”

Selected Secure Coding Aspect:
“If key material has to be stored on your system, never store it in clear text in the filesystem
instead use one of the following mechanisms:

– Use storage mechanisms provided by the framework
– Try using storage mechanisms of the operating system (e.g., Windows Keystore)
– For embedded systems, consider the usage of secure memory or crypto controller”

3.7. Use Cryptography Properly 41

Formalization of the selected secure coding aspect:

The labeled transition system (S , S 0, L,→) satisfies the selected secure coding aspect, if and
only if the following property is satisfied for all v ∈ Mem:

(S , S 0, L,→) |= �
(
writeKeyDataTo(v) −→(

(¬store(v))U (overwrite(v) ∨ writeEncKeyDataTo(v))
))

This formalization uses four labels that are parametric in an element v of the set Mem.
The elements of this set correspond to the memory locations used in a program. The label
writeKeyDataTo(v) describes execution steps that write clear text key data into the memory loca-
tion v. The label store(v) describes execution steps that store the contents of v in the file system.
The label overwrite(v) describes execution steps where the value of v is overwritten with data
that does not depend on key data. The label writeEncKeyDataTo(v) describes execution steps
where encrypted key data is written into the memory location v.

The formalization states that whenever clear text key data is written into a memory location v,
then the contents of this memory location must not be stored in the filesystem unless the value
of v is overwritten with data that does not depend on key data or overwritten with encrypted key
data.

Exemplary mapping of labels to execution steps: Table 9 lists the abstract labels used
in the formalization and provides an informal description of the execution steps that are de-
scribed by each label. Moreover, the table illustrates how to map the abstract labels to execution
steps by providing at least one example for each label.

Application scenario: As an example, consider the program shown in Listing 8. The method
setPassword obtains a new password from the command line (compare line 8), which is then
encrypted. The encrypted version is written to a file via the println method of the Buffered-
Writer-object out (compare lines 4 and 11).

Here, the execution step corresponding to the assignment from line 8 needs to be annotated
with the label writeKeyDataTo(pwd), the execution step corresponding to the assignment from
line 10 needs to be annotated with the label writeEncKeyDataTo(encodedPwd), and the execu-
tion step corresponding to the method invocation of println in line 11 needs to be annotated
with the label store(encodedPwd).

This program satisfies the formalized aspect. However, when replacing the code from line 11
with the statement in the comment from line 12, this is no longer true, as pwd is not overwritten
with encrypted key data or with data that is independent of key data before passing it as a
parameter to the method out.println.

42 Section 3. Formalizations for Selected Secure Coding Guidelines

Label Description Exemplary execution steps

writeKeyDataTo(v) Label indicating that clear
text key data is written into
memory location v

1. Assigning a value derived from
another variable containing clear
text key data to variable v
2. Assigning the return value of the
method Keystore.getKey from
the Java Cryptography Architecture
to variable v

writeEncKeyDataTo(v) Label indicating that en-
crypted key data is written
into memory location v,
for instance via an en-
cryption, or via a storage
mechanism of the frame-
work or the operating sys-
tem, or via a crypto con-
troller

1. Assigning the value computed by
the method Cipher.doFinal from
the Java Cryptography Architecture
for an argument containing clear
text key data to variable v
2. Copying the value of a memory
location containing encrypted key
data to memory location v

overwrite(v) Label indicating that data
which is independent of
key data is written into
memory location v

Assignment of arbitrary, non-key
related data to variable v

store(v) Label indicating that the
data in memory location v
is stored in the filesystem

Invoking the Java method
Filewriter.write with argu-
ment v

Table 9: Labels used in the formalization of the secure coding aspect

3.7. Use Cryptography Properly 43

1 p u b l i c c l a s s PwdExample {
2 s t a t i c S t r i n g key = K e y s t o r e . getKey () ;
3 s t a t i c B u f f e r e d R e a d e r i n = new B u f f e r e d R e a d e r (new I n p u t S t r e a m R e a d e r (System . i n)) ;
4 s t a t i c B u f f e r e d W r i t e r o u t = new B u f f e r e d W r i t e r (new F i l e W r i t e r (” p w d s t o r e . t x t ”)) ;
5
6 p u b l i c vo id s e t P a s s w o r d () {
7 System . o u t . p r i n t l n (” E n t e r new password : ”) ;
8 S t r i n g pwd = i n . r e a d l n () ;
9

10 S t r i n g encodedPwd = e n c r y p t (pwd , key) ;
11 o u t . p r i n t l n (encodedPwd) ; / / OK
12 / / Not OK: o u t . p r i n t l n (pwd) ;
13 }

14
15 p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
16 (new PwdExample ()) . s e t P a s s w o r d () ;
17 }

18 }

Listing 8: Changing password

44 Section 3. Formalizations for Selected Secure Coding Guidelines

4 Outlook

The precision gained by specifying program properties formally is already a significant advan-
tage over informal specifications. Formal specifications clearly identify the execution steps that
are relevant for a given property, and often reveal imprecisions and unclarities in the informal
descriptions of properties. In addition, formal specifications of secure coding guidelines lay
the foundation for the following possibilities (which are outside the scope of this report): dy-
namically monitoring if a program execution adheres to a secure coding guideline and statically
verifying that a program satisfies a secure coding guideline. In this section, we give a brief
outlook on these possibilities for the future. Another potential direction for future work is to
support the correct application of secure coding guidelines further by providing assistance for
the placement of labels. We briefly discuss this possibility at the end of this section.

LTL specifications and runtime monitoring. A runtime monitor is a process that runs in
parallel to the program that is to be watched. It monitors whether the program adheres to a given
specification (e.g., a secure coding guideline).

LTL formulas offer a basis to construct such runtime monitors. We demonstrate this with the
example of the formalization for a secure coding guideline focusing on authorization models
(see Section 3.6): An aspect of this secure coding guideline states that for each request for a
resource it must be checked whether the requesting user has sufficient permissions to access the
resource. For user u and resource r, the formalization is given by the following LTL formula:

P(u, r) ∧ �
(
request(u, r) −→ �P(u, r)

)
,

where P(u, r) =
(
(¬request(u, r))U checkOK(u, r)

)
.

The LTL specification makes explicit which execution steps must be observed by a runtime
monitor for this secure coding guideline: To monitor a program with respect to this secure
coding guideline, the runtime monitor must observe all execution steps that correspond to a
request for a resource and all execution steps that correspond to a successful check that a user
has sufficient permissions to access a resource. Whenever the runtime monitor observes a request
without having observed a corresponding successful check earlier, the secure coding guideline
is not respected by the program. In this case, the runtime monitor could, for instance, stop the
program to inhibit a security violation, or it could simply log the error for auditing purposes.

The construction of a runtime monitor for an LTL formalization of a concrete secure coding
guideline provides some challenges. For instance, one has to provide a way to specify the
execution steps that the runtime monitor has to observe, e.g., based on program annotations. For
these program annotations a well-defined semantics is required so that the program monitor is
able to correctly associate the execution steps with the labels from the annotations. Besides,
one has to provide an efficient mechanism that allows the runtime monitor to infer whether the
LTL formalization is violated by the currently observed execution step. This mechanism could
possibly be based on a representation of LTL formulas as finite state automata.

LTL specifications and verification. The goal of verification is to prove once and for all
that a program satisfies a specification (e.g., a secure coding guideline). The resulting proof

4. Outlook 45

guarantees that each possible program execution complies with a specification, whereas a run-
time monitor always considers just a given single program execution. Consequently, one can
view verification as a way of making runtime monitoring redundant, because a runtime monitor
never has to intervene in the program execution if the program has been proven to satisfy the
given LTL specification.2

This extensive security guarantee provided by verification comes at a cost: Program verifica-
tion is typically much more time-consuming than implementing and running a runtime monitor.
To verify a program, either the source code or the compiled code is scrutinized wrt. the speci-
fication. In order to verify that a given program satisfies the secure coding guideline discussed
above, one needs to show that on each execution sequence all resource requests are preceded by
a corresponding successful check of the user’s permissions to access the resource.

A benefit of formal specifications (such as LTL formulas) is that they can be processed by a
computer. Thus so-called proof assistants can be used to support the verification process by ap-
plying formal methods. For certain programs, model checking tools such as NuSMV [CCG+02]
or SPIN [Hol03] can automatically check if an LTL formula is satisfied. Furthermore, interactive
verification tools such as Isabelle [NPW02], KeY [BHS07], or VSE [AHL+00] help to manage
the complexity of the verification task.

Verification can be fruitfully combined with runtime monitoring: A new program can be
observed by a runtime monitor to detect accidental security violations during testing. When
these security flaws have been fixed so that the program code is stable (in the sense that it is
not going to be changed soon), verification of the program can start to ensure that no security
flaws have been overlooked in the testing phase. Alternatively, if some parts of a large program
are formally verified (for instance, some core API methods), then a runtime monitor can be
employed to prevent security violations within the non-verified parts of the program.

Support for label placement. While it is straightforward to associate execution steps with
corresponding concrete labels like, for instance, a = reader.read(), there is a potential for mak-
ing mistakes when associating execution steps with abstract labels. One might, for instance,
miss a method invocation corresponding to a call of a system command when associating execu-
tion steps with the label passToSysCmd(v) from Section 3.1. For some abstract labels, one also
needs to take into account in which context a command is used. For such labels, one might more
easily make a mistake such as forgetting to associate an execution step with a label.

As an example, suppose that a developer wishes to check if the Java Servlet shown in Listing 9
complies with the formalized secure coding aspect from Section 3.1, i.e., if the Servlet validates
every input before passing it to system commands. Let us begin with the straightforward part
of the label placement: The return from method validFilename with return value true for
parameter filename in line 7 has to be annotated with the label validate(f ilename). Each usage
of the variable filename in lines 8, 11, and 12 has to be annotated with the label useInCom-
putation(f ilename). Similarly, each usage of the variable action in lines 9 and 10 has to be
annotated with the label useInComputation(action). The invocation of the function exec with

2Conversely, runtime monitoring could be viewed as a way of making verification redundant, because if a program
is augmented with a runtime monitor that reliably enforces the LTL specification, then the combination of the
program with the runtime monitor satisfies the specification by construction.

46 Section 4. Outlook

1 p u b l i c c l a s s F i l e S e r v l e t ex tends H t t p S e r v l e t {
2
3 p u b l i c vo id doGet (H t t p S e r v l e t R e q u e s t req , H t t p S e r v l e t R e s p o n s e r e s)
4 throws S e r v l e t E x c e p t i o n , IOExcep t ion {

5 S t r i n g f i l e n a m e = r e q . g e t P a r a m e t e r (” f i l e n a m e ”) ;
6 S t r i n g a c t i o n = r e q . g e t P a r a m e t e r (” a c t i o n ”) ;
7 i f (! v a l i d F i l e n a m e (f i l e n a m e)) throw new S e r v l e t E x c e p t i o n (” I n v a l i d f i l e n a m e ”) ;
8 f i l e n a m e = ” / u s e r f i l e s / ” + f i l e n a m e ;
9 a c t i o n = S t r i n g . toLowerCase (a c t i o n) ;

10 i f (a c t i o n . e q u a l s (” d e l e t e ”))
11 d e l e t e F i l e (f i l e n a m e) ;
12 e l s e b a c k u p F i l e (f i l e n a m e) ;
13 }

14
15 p r i v a t e void d e l e t e F i l e (S t r i n g f i l e n a m e) throws IOExcep t i on {

16 F i l e f i l e = new F i l e (f i l e n a m e) ;
17 f i l e . d e l e t e () ;
18 }

19
20 p r i v a t e void b a c k u p F i l e (S t r i n g f i l e n a m e) throws IOExcep t i on {

21 S t r i n g cmd = ” cp ” + f i l e n a m e + ” ” + f i l e n a m e + ” . bak ” ;
22 Runtime . ge tRun t ime () . exec (cmd) ;
23 }

24
25 }

Listing 9: Java Servlet using input validation

parameter cmd in line 22 has to be annotated with the label passToSysCmd(cmd).
Now what about the assignments in lines 5 and 6? In line 5, the assignment to the vari-

able filename has to be annotated with the label inputForSysCmd(f ilename), because this user
input will be used in the computation of a parameter for a system command. In contrast, the as-
signment to the variable action in line 6 should not be labeled with inputForSysCmd(action);
although user input is written to action, this user input will not be used as a parameter of a sys-
tem command. Obviously, one needs to trace the flow of user input through memory locations
to find out if an assignment to a variable v needs to be labeled with inputForSysCmd(v) or not.
In more complex pieces of code, this may be less apparent and, hence, more error-prone than in
this small example Servlet.

In order to avoid errors in the association of execution steps with labels such as inputFor-
SysCmd(v), some support is desirable that helps developers in this process. For instance, it
might be helpful to give feedback whether label annotations are correct or even to identify label
annotations automatically. Giving such support provides some challenges: A first step would be
to determine a precise criterion for the correctness of a label annotation. A promising approach
for developing such a criterion is the usage of so-called information flow properties. Information
flow properties allow to make precise statements about the flow of information in a program, e.g.,
whether information flows from a variable containing user input to a variable that is passed to a
system command. For such a criterion, one could then develop analysis techniques that check
whether the label annotations for a given program satisfy the criterion, e.g., whether user input
is actually used to compute parameters passed to system commands. Beyond that, one could
develop analysis techniques that identify the necessary annotations. For instance, these analysis

4. Outlook 47

techniques could be based on information where input enters a program and which memory
locations are passed to system commands.

The Java Servlet from above demonstrates that one needs to consider the effects of commands
in the source code thoroughly when applying a secure coding guideline; e.g., one needs to reason
about the flow of user input in the example. Of course, these considerations are also necessary
when applying the formalized guideline. The explicit association of execution steps with labels
provides a basis for checking if all relevant execution steps have been considered correctly for
a given guideline. Consequently, automated support for the placement of labels would be a
promising future step.

48 Section 4. Outlook

5 Conclusion

In this collaboration between Siemens AG and TU Darmstadt we developed formalizations of
individual aspects of seven secure coding guidelines. These guidelines have been kindly pro-
vided by Siemens for examination purposes [Sie09]. They are similar to Siemens-internal se-
cure coding guidelines that were developed as recommendations for programmers. The selected
guidelines cover a broad spectrum of secure coding domains, which shows that formalizations
for such guidelines are feasible.

As the guidelines describe programming practices that support developers in avoiding com-
mon security vulnerabilities, the importance of adopting these practices when writing programs
is widely acknowledged. Applying these guidelines requires a good understanding of them,
which in turn is supported by a precise formulation of the guidelines.

Our formalizations for the secure coding guidelines systematically present the components of
the guidelines, i.e., the relevant program actions as well as the required relations between those
program actions. The precision gained by the formalization may help developers to identify
critical points in the code that are relevant for a given secure coding guideline, and thereby
simplifies the correct application of the secure coding guidelines.

Furthermore, the formalization revealed unclarities as well as missing concepts in the secure
coding guidelines. This enabled us to give recommendations to improve the formulation of the
informal guidelines. These recommendations contribute to reducing the risk that guidelines are
misinterpreted and to facilitating that developers can adopt them more consistently.

In summary, the exemplary formalizations for secure coding guidelines provide reference
points for secure coding that are more precise than informal descriptions. The formalizations
suggest a structured approach to apply them during the development process. We expect that
this helps developers to follow these guidelines more easily.

Possible future directions. The precision of the formalized secure coding guidelines creates
interesting opportunities for further support of the development of secure programs: With the
help of runtime monitors based on the formalization, quality assurance can be improved by au-
tomatically detecting hazardous situations (i.e., potential violations of the secure coding guide-
lines) at runtime. Since runtime monitors use label annotations from the programs they monitor,
it is important to assign these labels correctly. Therefore quality assurance can be supported
even further by developing formal criteria to check the label annotations for correctness. These
formal criteria could possibly be checked by an automated tool to simplify the labeling process.
An automated verification of the placement of labels could also be beneficial for developers,
e.g., during a program inspection. Another potential strand of future work is the development
of static verification mechanisms that facilitate a more general analysis of programs wrt. secure
coding guidelines: Instead of monitoring the program behavior at runtime, an “offline” analysis
investigates all conceivable program executions and checks whether a formalized secure coding
guideline is satisfied.

The results described in this report show that a formalization of secure coding guidelines is
feasible. In order to increase the benefits of secure coding, it would be desirable to formalize
further secure coding guidelines.

5. Conclusion 49

Acknowledgements

We thank Michael Drescher who contributed numerous illustrative examples to this report.

50 Acknowledgements

References

[AHL+00] S. Autexier, D. Hutter, B. Langenstein, H. Mantel, G. Rock, A. Schairer, W. Stephan,
R. Vogt, and A. Wolpers. VSE: Formal Methods Meet Industrial Needs. Interna-
tional Journal on Software Tools for Technology Transfer, Special Issue on Mecha-
nized Theorem Proving for Technology, 3(1), 2000.

[BHS07] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of Lecture Notes in Computer Science.
Springer-Verlag, 2007.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV Version 2: An Open Source Tool for Symbolic
Model Checking. In Proceedings of the International Conference on Computer-
Aided Verification (CAV-2002), volume 2404 of Lecture Notes in Computer Science.
Springer-Verlag, 2002.

[DE99] S. Drossopoulou and S. Eisenbach. Describing the Semantics of Java and Proving
Type Soundness. In Formal Syntax and Semantics of Java, pages 41–82, 1999.

[Hol03] G. J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

[HR04] M. Huth and M. Ryan. Logic in Computer Science. Cambridge University Press,
2004.

[KN06] G. Klein and T. Nipkow. A Machine-checked Model for a Java-like Language, Vir-
tual Machine, and Compiler. ACM Trans. Program. Lang. Syst., 28(4):619–695,
2006.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer-
Verlag, 2002.

[Sea08] R. C. Seacord. The Cert C Secure Coding Standard. Addison-Wesley, SEI Series in
Software Engineering, 2008.

[Sie09] Exemplary secure coding guidelines provided by Siemens AG as input. The ex-
emplary guidelines are similar, but not identical to Siemens-internal secure coding
guidelines that were developed as recommendations for programmers. 2009.

References 51

