Service Automata for
Secure Distributed Systems”®

Poster Proposal

Richard Gay Heiko Mantel Barbara Sprick
CASED/TU Darmstadt, Germany

{gay,mantel,sprick}@mais.informatik.tu-darmstadt.de

Secure Distributed Systems. Together with the rising popularity and ubiquity of flex-
ible distributed systems paradigms, such as service-oriented architectures and clouds, also
the demand for equally flexible security solutions increases. However, one cannot eas-
ily transfer established security solutions for stand-alone systems to distributed systems,
just as the security of distributed systems cannot be reduced to the security of each its
components or the security of a single large monolithic system.

Consider the example of a company providing software repository storage to other com-
panies in the form of services. Even if we assume that every single service consists of
a perfectly secured repository server, we may not conclude that these services fulfill the
security requirements of the customers: the latter would probably desire that no user of
the services may ever obtain or even manipulate the repository content of two competing
companies, even if the user might have the permission to access each of the two repositories
alone. Here, local access control does not suffice but needs to be supplemented by some
kind of state exchange between services.

Runtime Enforcement. A generic approach for ensuring the adherence of programs to
security policies is enforcing them at runtime. For that purpose, a target program is
monitored while executing and interventions are performed by the mechanism right before
a violation of the given security policy is about to occur. This does not require for security
analyses prior to the use of the program and, hence, allows for a flexible selection of the
security policy based on the users’ demands. The power of runtime enforcement in general is
well-understood [5, 4, 3]. For instance, it has recently been shown how to provably enforce
separation of duty properties with the help of runtime enforcement [1]. This approach
and runtime enforcement in general however cannot be not easily applied to a distributed
system: a naive try could, e.g., introduce a central state-keeping component to be queried
whenever a node in the system wants to execute a security-relevant action. However, such a
central component potentially effects a performance bottleneck and single point of failure.

*This work is supported by CASED (www.cased.de)



Service Automata. Our goal is to provide a runtime enforcement architecture that offers
substantiated security guarantees for distributed systems, while at the same time not in-
troducing bottlenecks or limiting the flexibility of service users and service providers. The
provided security guarantees may target the service users, whose data are protected from
misuse, and/or the service providers, whose services shall not be exploited by their users.

Our architecture will be built upon
service automata: local controllers for
services, which communicate with each
other in a hierarchically structured (see
figure to the right) and efficient fashion
to exchange security state information.
These controllers shall act like encapsu-
lations around services that protect the
services from potential harm by the en-
vironment and the environment from po-
tential harm by the service. They are parametric in the security policy to be enforced,
which makes the architecture deployable easily and flexibly. At the same time, our archi-
tecture does not premise certain implementation details of the services, as it is envisioned
to be a generic approach applicable to a wide range of settings, scenarios and security
demands.

Service Automata Architecture

Enforcing Chinese Wall Policies. We have already developed formal specifications of
service automata which are capable of enforcing, e.g., Chinese Wall security policies [2].
In terms of the scenario depicted above, no user of the repository services would ever be
permitted to access data from competing companies, if the services were protected by our
service automata. In the above figure, repository services would be the gears on the lowest
level of the hierarchy while the superordinate levels are state-keeping and decision-making
components.

Future Plans. Firstly, we strive to extend the class of security policies provably enforce-
able by our service automata and thereby widen the set of target application scenarios.
Secondly, we are also searching for ways to increase the efficiency of the service automata,
for instance by further reducing the communication and state-keeping requirements. Fi-
nally, while our current work aims at providing the foundations for service automata, we
also implement our service automata in order to evaluate their practicability and efficiency.

References.

[1] D. A. Basin, S. J. Burri, and G. Karjoth. Dynamic Enforcement of Abstract Separation of Duty
Constraints. In 14th ESORICS, LNCS 5789, pages 250-267. Springer, 2009.

[2] D. F. Brewer and M. J. Nash. The Chinese Wall Security Policy. In IEEE S&P, 1989.

[3] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computability Classes for Enforcement Mechanisms.
ACM TOPLAS, 28(1):175-205, 2006.

[4] J. Ligatti, L. Bauer, and D. Walker. Edit Automata: Enforcement Mechanisms for Run-time Security
Policies. 1JIS, 4(1-2):2-16, 2005.

[5] F. B. Schneider. Enforceable Security Policies. ACM TISSEC, 3(1):30-50, 2000.



