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Abstract
The controlled declassification of secrets has received much attention in research
on information-flow security, though mostly for sequential programming lan-
guages. In this article, we aim at guaranteeing the security of concurrent pro-
grams. We propose the novel security property WHAT&WHERE that allows one
to limit what information may be declassified where in a program. We show that
our property provides adequate security guarantees independent of the schedul-
ing algorithm (which is non-trivial due to the refinement paradox) and present a
security type system that reliably enforces the property. In a second scheduler-
independence result, we show that an earlier proposed security condition is ade-
quate for the same range of schedulers. These are the first scheduler-independence
results in the presence of declassification.
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1. Introduction
When giving a program access to secrets, one would like to know that the program does not leak them
to untrusted sinks. Such a confidentiality requirement can be formalized by information-flow properties
like, e.g., noninterference [GM82].

Noninterference-like properties require that a program’s output to untrusted sinks is independent
of secrets. Such a lack of dependence obviously ensures that public outputs do not reveal any secrets.
While being an adequate characterization of confidentiality, the requirement is often too restrictive. The
desired functionality of a program might inherently require some correlation between secrets and public
output. Examples are password-based authentication mechanisms (a response to an authentication
attempt depends on the secret password), encryption algorithms (a cipher-text depends on the secret
plain-text), and on-line stores (electronic goods shall be kept secret until they have been ordered).

Hence, it is necessary to relax noninterference-like properties such that a deliberate release of some
secret information becomes possible. While this desire has existed since the early days of research on
information-flow control (e.g. in the Bell/La Padula Model secrets can be released by so called trusted
processes [BL76]), solutions for controlling declassification are just about to achieve a satisfactory level
of maturity (see [SS09] for an overview). However, research on declassification has mostly focused
on sequential programs so far, while controlling declassification in multi-threaded programs is not yet
equally well understood.

Generalizing definitions of information-flow security for sequential programs to security properties
that are suitable for concurrent systems is known to be non-trivial. Already in the eighties, Suther-
land [Sut86] and McCullough [McC87] proposed noninterference-like properties for distributed systems.
These were first steps in a still ongoing exploration of sensible definitions of information-flow security
[Man11]. The information-flow security of multi-threaded programs, on which we focus in this article,
is also non-trivial. Due to the refinement paradox [Jac89], the scheduling of threads requires special
attention. In particular, it does not suffice to simply assume a possibilistic scheduler, because a program
might have secure information-flow if executed with the fictitious possibilistic scheduler, but be insecure
if executed, e.g., with a Round-Robin or uniform scheduler.

Our first main contribution is the formal definition of two schemas for noninterference-like properties
for multi-threaded programs. Our schemas WHATs and WHAT&WHEREs are parametric in a sched-
uler model s. Both schemas can be used to capture confidentiality requirements, but they differ in how
declassification is controlled. If the scheduler is known then s can be specified concretely and, after in-
stantiating one of our schemas with s, one obtains a property that adequately captures information-flow
security for this scheduler.

However, often the concrete scheduler is not known in advance. While, in principle, one could leave the
scheduler parametric and use, e.g., ∀s.WHATs as security condition, such a universal quantification over
all possible schedulers is rather inconvenient, in program analysis as well as in program construction.
Fortunately, an explicit universal quantification over schedulers can be avoided.

Our second main contribution is the definition of a novel security condition WHAT&WHERE and
a scheduler-independence result, which shows that WHAT&WHERE implies WHAT&WHEREs for all
possible scheduler models s. A compositionality result shows that our novel property is compatible
with compositional reasoning about security. Based on this result, we derive a security type system for
verifying our novel security property efficiently.

Our third main contribution is a scheduler-independence result showing that our previously proposed
property WHAT1 [MR07] implies WHATs for all s.

Previous scheduler-independence results were limited to information-flow
properties that forbid declassification (e.g. [SS00, ZM03, MS10]). With this article, we close this gap
by developing the first scheduler-independence results for information-flow properties that support con-
trolled declassification. Scheduler independence provides the basis for verifying security without know-
ing the scheduler under which a program will be run. Our scheduler-independence results also reduce
the conceptual complexity of constructing secure programs. They free the developer from having to
consider concrete schedulers when reasoning about security.

Proofs of all theorems in this article can be found in the Appendix.
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2. Preliminaries
2.1. Multi-threaded Programs
Multi-threaded programs perform computations in concurrent threads that can communicate with each
other, e.g. via shared memory. When the number of threads exceeds the number of available pro-
cessing units, scheduling becomes necessary. Usually, the schedule for running threads is determined
dynamically at run-time based on previous scheduling decisions and on observations about the current
configuration, such as the number of currently active threads.

In this article, we focus on multi-threaded programs that run on a single-core CPU with a shared
memory for inter-thread communication. In this section, we present our model of program execution (a
small-step operational semantics), our model of scheduler decisions (a labeled transition system), and
an integration of these two models. The resulting system model is similar to the one in [MS10].

2.1.1. Semantics of Commands and Expressions.

We assume a set of commands C , a set of expressions E , a set of program variables Var , and a set of
values Val . We leave these sets underspecified, but give example instantiations in Section 2.2.

We define the set of memory states by the function space Mem = Var → Val . A function m ∈Mem
models which values are currently stored in the program variables. We define the set of program states
by Cε = C ∪ {ε}. A program state from C models which part of the program remains to be executed
while the special symbol ε models termination. We define the set of thread pools by C ∗ (i.e. the set of
finite lists of commands). Each command in a thread pool is the program state of an individual thread
in a multi-threaded program. We refer to threads by their position k ∈ N0 in a thread pool thr ∈ C ∗.
If a thread is uniquely determined by thr [k ], i.e. the command at position k , then we sometimes refer
to the thread by this command. We define #(thr) to equal the number of threads in the thread pool
thr ∈ C ∗. The list 〈c0, c1, . . . , cn−1〉 with c0, c1, . . . , cn−1 ∈ C models a thread pool with n threads. The
list 〈〉 models the empty thread pool. Note that the symbol ε does not appear in thread pools.

We model evaluation of expressions by the function eval : E×Mem→Val , where eval(e,m) equals
the value to which e ∈ E evaluates in m ∈Mem .

We model execution steps by judgments of the form 〈|c1,m1|〉
α−_ 〈|c2,m2|〉 where c1 ∈ C , c2 ∈ Cε,

m1,m2 ∈ Mem , and α ∈ C ∗. Intuitively, this judgment models that a command c1 is executed in a
memory state m1 resulting in a program state c2 and a memory state m2. The label α ∈ C ∗ carries
information about threads spawned by the execution step. If the execution step does not spawn new
threads then α = 〈〉 holds, otherwise we have α = 〈c0, c1, . . . , cn−1〉 where c0, c1, . . . , cn−1 ∈ C are the
threads spawned in this order.

We assume deterministic commands, i.e. for each c1 ∈ C andm1 ∈Mem , there exists exactly one tuple
(α, c2,m2) ∈ C ∗ × Cε ×Mem such that 〈|c1,m1|〉

α−_ 〈|c2,m2|〉 is derivable. As an alternative notation
for the effect of a command on the memory, we define the function J• K : C → (Mem → Mem) by
Jc1 K(m1) = m2 iff ∃c2 ∈ Cε. ∃α ∈ C ∗. 〈|c1,m1|〉

α−_ 〈|c2,m2|〉.
As a notational convention, we use v ∈ Val to denote values, x ∈ Var to denote variables, m ∈Mem

to denote memory states, c ∈ Cε to denote program states, e ∈ E to denote expressions, thr ∈ C ∗ to
denote thread pools, and k ∈ N0 to denote positions of threads.

2.1.2. Scheduler Model.

We present a parametric scheduler model that can be instantiated for a wide range of schedulers. For
modeling the behavior of schedulers, we use labeled transition systems as described below.

We assume a set of scheduler states S and a set of possible scheduler inputs In . Scheduler states model
the memory of a scheduler and scheduler inputs model the input to the scheduler by the environment.
We leave the set In underspecified, but require that any in ∈ In reveals at least the number of active
threads in the current thread pool and denote this number by #(in).

We define the set of scheduler decisions by Dec = In × N0 × [0; 1]. Intuitively, a scheduler decision
(in, k , p) ∈ Dec models that the scheduler selects the k th thread with the probability p given the
scheduler input in. The special case p = 1 models a deterministic decision.
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Definition 1. A scheduler model s is a labeled transition system (S , s0,Dec,→), where S is a set of
scheduler states, s0 ∈ S is an initial state, Dec is the set of scheduler decisions, and →⊆ S ×Dec × S
is a transition relation such that:

1. ∀(s1, (in, k , p), s2) ∈ → . (k < #(in) ∧ p 6= 0)

2. ∀s1 ∈ S . ∀in ∈ In .
(
#(in) > 0 =⇒

(∑
(s1,(in,k ,p),s2)∈→ p

)
= 1
)

3. ∀s1, s2, s ′2 ∈ S . ∀in ∈ In . ∀k ∈ N0. ∀p, p′ ∈ ]0; 1].
(((s1, (in, k , p), s2) ∈ →) ∧ ((s1, (in, k , p

′), s ′2) ∈ →) =⇒ p = p′ ∧ s2 = s ′2)

For a scheduler model s, we write (s1, in)
k
 s

p s2 iff (s1, (in, k , p), s2) ∈ →.

Conditions 1 and 2 ensure that a scheduler model definitely selects some thread from the current
thread pool. Condition 3 ensures that the probability of a scheduler decision and the resulting scheduler
state are uniquely determined by the original scheduler state, the scheduler input, and the selected
thread.

Our notion of scheduler models is suitable for expressing a wide range of schedulers, including Round-
Robin schedulers as well as uniform schedulers.

For simplicity of presentation we consider only scheduler models without redundant states. Formally,
we define the bisimilarity of scheduler states coinductively by a symmetric relation ∼ = S × S that is
the largest relation such that for all dec ∈ Dec and for all s1, s ′1, s2 ∈ S , if s1 ∼ s ′1 and (s1, dec, s2) ∈ →
then there exists a scheduler state s ′2 ∈ S with (s ′1, dec, s

′
2) ∈ → and s2 ∼ s ′2. We require that the

equivalence classes of ∼ are singleton sets, i.e. ∀s, s ′ ∈ S . (s ∼ s ′ =⇒ s = s ′), which means that there
are no redundant states. Note that any given scheduler model can be transformed into one that satisfies
this constraint by using the equivalence classes of ∼ as scheduler states.

As a notational convention, we use in ∈ In to denote scheduler inputs, p ∈ [0; 1] to denote probabil-
ities, and s ∈ S to denote scheduler states. For brevity, we often write scheduler instead of scheduler
model.

2.1.3. Integration into a System Model.

We now present the system model which defines the interaction between threads and a scheduler.
We define the set of observation functions by the function space Obs = (C ∗×Mem)→ In . A function

obs ∈ Obs models the input to a scheduler for a given thread pool and memory state. We define the set
of system configurations by Cnf = C ∗×Mem × S . Intuitively, a system configuration 〈|thr ,m, s|〉 ∈ Cnf
models the current state of a multi-threaded program in a run-time environment.

We model system steps by judgments of the form cnf 1 ⇒s
k ,p cnf 2, where cnf 1, cnf 2 ∈ Cnf and

(k , p) ∈ N0×]0; 1]. Intuitively, this judgment models that, in system configuration cnf 1, the scheduler
selects the k th thread with probability p and that this results in cnf 2. We define the rule for deriving
this judgment by:

[SysStep]

(s1, in)
k
 s

p s2
in = obs(thr1,m1)

〈|thr1[k ],m1|〉
α−_ 〈|c2,m2|〉

thr2 = updatek (thr1, c2, α)

〈|thr1,m1, s1|〉 ⇒s
k ,p 〈|thr2,m2, s2|〉

The two premises on the left hand side require the selection of the k th thread with probability p by
scheduler s given the scheduler input obs(thr1,m1). The third premise requires that the execution step
of thread thr1[k ] spawns new threads α and results in program state c2 and memory state m2. The
fourth premise requires that the resulting thread pool thr2 is obtained by updatek (thr1, c2, α).

Intuitively, updatek replaces the program state at a position k by a program state c2 and inserts newly
created threads (i.e. α) after c2. Formally, we define updatek (thr , c, α) by sub(thr , 0, k − 1) :: 〈c〉 :: α ::
sub(thr , k +1,#(thr)− 1) if c 6= ε, and otherwise by sub(thr , 0, k − 1) :: α :: sub(thr , k +1,#(thr)− 1),
where :: is the append operator that has the empty list 〈〉 as neutral element and sub(thr , i, j) equals
the list of threads i to j, i.e. sub(thr , i, j) = 〈thr [i ]〉 :: sub(thr , i + 1, j) if i ≤ j < #(thr), and
sub(thr , i, j) = 〈〉 otherwise.

We define the auxiliary function stepsTos : (Cnf ×P(Cnf )) → P(N0×]0; 1]) by stepsTos(cnf 1,Cnf )
= {(k , p) | ∃cnf 2 ∈ Cnf . cnf 1 ⇒s

k ,p cnf 2}.

2.1 Multi-threaded Programs 5



That is, applying the function stepsTos to cnf 1 and Cnf returns the labels of all possible system
steps from cnf 1 ∈ Cnf to some configuration in Cnf .

We call a property P : Cnf → Bool an invariant under s if P(cnf 1) and cnf 1 ⇒s
k ,p cnf 2 imply

P(cnf 2) for all cnf 1, cnf 2 ∈ Cnf and (k , p) ∈ N0×]0; 1].
As a notational convention, we use cnf ∈ Cnf to denote system configurations. Moreover, we in-

troduce the selectors pool(cnf ) = thr , mem(cnf ) = m, and sst(cnf ) = s for decomposing a system
configuration cnf = 〈|thr ,m, s|〉.

2.2. Exemplary Programming Language
We define security on a semantic level. However, to give concrete examples we introduce a simple multi-
threaded while language with dynamic thread creation. We define E and C of our example language
by:

e ::= v | x | op(e, . . . , e)
c ::= skipι | x :=ιe | c;c

| spawnι(c, . . . , c) | ifι e then c else c fi | whileι e do c od

Some commands carry a label ι ∈ N0 that we will use to identify program points.
The operational semantics for our language defines which instances of the judgment 〈|c1,m1|〉

α−_
〈|c2,m2|〉 are derivable. The only notable aspect of the semantics is the label α. If the top-level command
is spawnι(c0, . . . , cn−1), then we have α = 〈c0, . . . , cn−1〉 while, otherwise, α = 〈〉 holds.

For readability, we also use infix instead of prefix notation for expressions.

2.3. Attacker Model and Security Policies
A security policy describes what information a user is allowed to know based on a classification of
information according to its confidentiality. We use sets of security domains to model different degrees
of confidentiality. Domain assignments associate each program variable with a security domain.

Definition 2. A multi-level security policy (brief: mls-policy) is a triple (D,≤, dom), where D is a
finite set of security domains, ≤ is a partial order on D, and dom : Var → D is a domain assignment.

Intuitively, d 6≤ d ′ with d , d ′ ∈ D models that no information must flow from the security domain d
to the security domain d ′.

A d-observer is a user who is allowed to observe a variable x ∈ Var , only if dom(x ) ≤ d . Hence,
he can distinguish two memory states only if they differ in the value of at least one variable x with
dom(x ) ≤ d . Dual to the ability to distinguish memory states is the following d-indistinguishability.

Definition 3. Two memory states m ∈ Mem and m ′ ∈ Mem are d -equal for d ∈ D (denoted: m =d

m ′), iff ∀x ∈ Var . (dom(x ) ≤ d =⇒ m(x ) = m ′(x )).

An attacker is a d -observer who tries to get information that he must not know. In terms of d -
indistinguishability, this means that an attacker tries to distinguish initially d -equal memory states
by running programs. Conversely, a program is intuitively secure, if running this program does not
enable a d -observer to distinguish any two initial memory states that are d -equal. This intuition will
be formalized by security properties in Section 3.

For the rest of the article, we assume that (D,≤, dom) is an mls-policy.

2.4. Auxiliary Concepts for Relations
For any relation R⊆ A×A, there is at least one subset A′ of A (namely A′ = ∅) such that the restricted
relation R|A′ =R ∩ (A′ × A′) is an equivalence relation on A′. We characterize the subsets A′ ⊆ A for
which R|A′ constitutes an equivalence relation by a predicate EquivOnA ⊆ P(A × A) ×P(A) that we
define by EquivOnA(R,A

′) if and only if R|A′ is an equivalence relation on A′.

2.2 Exemplary Programming Language 6



In our definitions of security, we will use partial equivalence relations (brief: pers), i.e. binary relations
that are symmetric and transitive but that need not be reflexive (see Sections 3 and 4.2). For each per
R ⊆ A× A, there is a unique maximal set A′ ⊆ A such that EquivOnA(R|A′ ,A

′) holds. This maximal
set is the set AR,refl = {e ∈ A | e R e}, i.e. the subset of A on which R is reflexive.

Theorem 1. If R ⊆ A × A is a per on a set A then EquivOnA(R|AR,refl ,AR,refl) holds and ∀A′ ⊆
A. (EquivOnA(R|A′ ,A

′) =⇒ A′ ⊆ AR,refl).

For brevity, we will use the symbol R instead of R|A′ when this does not lead to ambiguities. In
particular, we will write EquivOnA(R,A

′) meaning that EquivOnA(R|A′ ,A
′) holds. Moreover, if R ⊆

A × A is a per, we will use [e]R to refer to the equivalence classes of an element e ∈ AR,refl under
R|AR,refl .

Finally, we define a partial function classesA : P(A × A) ⇀ P(P(A)) by classesA(R) = {[e]R | e ∈
AR,refl} if R is a per, while classesA(R) is undefined if R is not a per. That is, if R is a per, then
classesA(R) equals the set of all equivalence classes of R (meaning the equivalence classes of R|AR,refl).

If the set A is clear from the context we write classes instead of classesA.

3. Declassification in the Presence of Scheduling
A declassification is the deliberate release of secrets or, in other words, an intentional violation of an
mls-policy. Naturally, such a release of secrets must be rigorously constrained to prevent unintended
information leakage.
Example 1. Online music shops rely on not giving out songs for free. Hence, songs are only delivered
to a user after he has paid. However, often downsampled previews are offered without payment to any
user for promotion. The following example program shall implement this functionality.

P1 = if1 paid then out:=2song else out:=3downsample(song, bitrate) fi

Consider an mls-policy with two domains low and high, and the total order ≤ with high 6≤ low . The
domain assignment dom is defined such that dom(song) = high and dom(out) = low hold. Intuitively,
this mls-policy means that song is confidential with respect to out. The program P1 intuitively satisfies
the requirement that any user may receive a downsampled preview, while only a user who has paid may
receive the full song. Note that some information about the confidential song is released in both branches
of P1, i.e. a declassification occurs. However, what information is released differs for the two branches.

♦

As this example shows, an adequate control of declassification needs to respect what information (the
full song or the preview) is released and where this release occurs (e.g., after payment has been checked
by the program). This corresponds to the W-aspects What and Where that we address in this article.
The W-aspects of declassification were first introduced in [MS04] and form the basis for a taxonomy of
approaches to controlling declassification [SS09].

Before presenting our schemaWHAT&WHEREs for scheduler-specific security properties that control
what is declassified where (see Section 3.3), we introduce the simpler schema WHATs (see Section 3.2)
for controlling what is declassified. We show in Section 3.4 that WHAT&WHEREs implies WHATs

and also satisfies the so called prudent principles of declassification from [SS09].

3.1. Escape Hatches and Immediate Declassification Steps
As usual, we use pairs (d , e) ∈ D × E , so called escape hatches [SM04], to specify what information
may be declassified. Intuitively, (d , e) allows a d -observer to peek at the value of e, even if in e occurs a
variable x with dom(x ) 6≤ d . Hence, an escape hatch might enable a d -observer to distinguish memory
states although they are d -equal. Dual to this ability is the following notion of (d ,H )-equality.
Definition 4. Two memory states m and m ′ are (d ,H )-equal for d ∈ D and a set of escape hatches
H ⊆ D × E (denoted: m ∼H

d m ′ ), iff m =d m ′ and ∀(d ′, e) ∈ H . (d ′ ≤ d =⇒ (eval(e,m) =
eval(e,m ′))) hold.
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We employ program points to restrict where declassification may occur. For each program, we assume
a set of program points PP ⊆ N0 and a function pp : C → PP that returns a program point for each
sub-command of the program. Moreover, we assume that program points are unique within a program.

For our example language, we use the labels ι to define the function pp. For instance, pp(out:=2song)
= 2 and pp(if1 paid then . . . else . . . fi) = 1 hold. As sequential composition does not carry a label ι,
we define pp(c1;c2) = pp(c1). Note that, after unwinding a loop, multiple sub-commands in a program
state might be associated with the same program point. This results from copying the body of a while
loop in the operational semantics if the guard evaluates to true.

We augment escape hatches with program points from PP and call the resulting triples local escape
hatches. Like an escape hatch (d , e) ∈ D × E , a local escape hatch (d , e, ι) ∈ D × E × PP intuitively
allows a d -observer to peek at the value of e. However, (d , e, ι) allows this only while the command
at program point ι is executed. We use a set lH ⊆ D × E × PP to specify at which program points a
d -observer may peek at which values. For Example 1, a natural set of local escape hatches would be
{(low , downsample(song, bitrate), 3), (low , song, 2)}.
Definition 5. A local escape hatch is a triple (d , e, ι) ∈ D × E × PP . We call a set of local escape
hatches lH ⊆ D × E × PP global (denoted: Global(lH )) if (d , e, ι) ∈ lH implies (d , e, ι′) ∈ lH for all
d ∈ D, e ∈ E , and ι, ι′ ∈ PP .

To aggregate the information that may be declassified at a given program point, we define the filter
function htchLoc : P(D×E×PP )×PP → P(D×E) by htchLoc(lH , ι) = {(d , e) ∈ D×E | (d , e, ι) ∈ lH }.
Given a set of points PP ⊆ PP , we use htchLoc(lH ,PP) as a shorthand notation for

⋃
{htchLoc(lH , ι) |

ι ∈ PP}. Note that if lH is global then ∀ι, ι′∈PP . (htchLoc(lH , ι)=htchLoc(lH , ι′)).
We call a command an immediate d-declassification command for a set of escape hatches H ⊆ D×E

if its next execution step might reveal information to a d -observer that he should not learn according
to the mls-policy, but that may permissibly be released to him due to some escape hatch in H .
Definition 6. The predicate IDC d on C ×P(D × E) is defined by

IDC d(c,H )⇐⇒
[

(∃m,m ′ ∈Mem . m =d m ′ ∧ Jc K(m) 6=d Jc K(m ′))
∧ (∀m,m ′ ∈Mem . m ∼H

d m ′ =⇒ Jc K(m) =d Jc K(m ′))

]
The predicate IDC d characterizes the immediate d -declassification commands for each set of escape

hatches H . The predicate requires, firstly, that a release of secrets could, in principle, occur (i.e. for
some pair of d -equal memories, the next step results in memories that are not d -equal) and, secondly,
that no more information is released than allowed by the escape hatches (i.e. for all pairs of (d ,H )-equal
memories, the next step must result in d -equal memories).

Remark 1. If IDC d(c, htchLoc(lH , ι)) and c ∈ C is the command at program point ι ∈ PP then c
either has the form x :=ιe or the form x :=ιe; c′. ♦

All concepts defined in this section are monotonic in the set of escape hatches, and the empty set of
escape hatches is equivalent to forbidding declassification.

Theorem 2. For all d ∈ D and H ,H ′ ⊆ D × E the following propositions hold:
1. ∀m,m ′ ∈Mem . ((¬(m ∼H ′

d m ′) ∧H ′ ⊆ H ) =⇒ ¬(m ∼H
d m ′)) ;

2. ∀m,m ′ ∈Mem . (m ∼∅d m ′ ⇐⇒ m =d m ′) ;
3. ∀c ∈ C . ((IDC d(c,H

′) ∧H ′ ⊆ H ) =⇒ IDC d(c,H )) ; and
4. ∀c ∈ C . ¬(IDC d(c, ∅)) .

A command is not a d-declassification command if its next execution step does not reveal any infor-
mation to a d -observer that he cannot observe directly.

Definition 7. The predicate NDC d on C is defined by
NDC d(c)⇐⇒ (∀m,m ′ ∈Mem . m =d m ′ =⇒ Jc K(m) =d Jc K(m ′))

Note that NDC d(c) cannot hold if IDC d(c,H ) holds for some H ⊆ D × E . If c leaks beyond what
H permits then neither IDC d(c,H ) nor NDC d(c) holds.

We use ι ∈ PP to denote program points, H ⊆ D × E to denote sets of escape hatches, and
lH ⊆ D × E × PP to denote sets of local escape hatches.

3.1 Escape Hatches and Immediate Declassification Steps 8



3.2. The Security Conditions WHATs

Security can be characterized based on pers (brief for partial equivalence relations, see Section 2.4).
Following this approach, one defines a program to be secure if it is related to itself by a suitable
per [SS99]. Consequently, the set of secure programs for a per R ⊆ A × A is

⋃
classesA(R). We

will characterize confidentiality by pers that relate two thread pools only if they yield indistinguishable
observations for any two initial configurations that must remain indistinguishable. Which configurations
must remain indistinguishable depends on the observer’s security domain d and on the set H of available
escape hatches. We make this explicit by annotating pers with d and H (as, e.g., in Rd,H ).

Definition 8. Let d ∈ D and H ⊆ D × E . The lifting of a relation Rd,H ⊆ C ∗ × C ∗ to a relation
R↑d,H ⊆ Cnf × Cnf is R↑d,H = (Rd,H × ∼H

d × ∼).

Note that, if two configurations cnf and cnf ′ are related by R↑d,H then they look the same to a
d -observer because mem(cnf )∼H

d mem(cnf ′) implies mem(cnf )=d mem(cnf ′). Moreover, the lifting of
a per to the set Cnf results, again, in a per.

Proposition 1. If Rd,H ⊆ C ∗ × C ∗ is a per, then R↑d,H ⊆ Cnf × Cnf is a per.

3.2.1. Towards a Scheduler-specific Security Condition.

Even if two configurations cnf and cnf ′ look the same to a d -observer, he might be able to infer in
which of the configurations a program run must have started based on the observations that he makes
during the run. For instance, he can exclude the possibility that the run started in cnf ′ if he makes
an observation that is incompatible with all configurations that are reachable from cnf ′. In this case,
he obtains information about the actual initial configuration from the fact that certain observations
are impossible if the program is run under a given scheduler. In addition, an attacker might obtain
information about the initial configuration from the probability of observations. For instance, if he
makes certain observations quite often, when running the program in some initial configuration (which
remains fixed and is initially unknown to the attacker), but the likelihood of this observation would be
rather low if cnf ′ were the initial configuration, then the attacker can infer that cnf ′ is probably not
the unknown initial configuration.1

We aim at defining a security property that rules out deductions of information about secrets based
on the possibility as well as the probability of observations. We will focus on the latter aspect in
the following because deductions based on possibilities are just a special case of deductions based on
probabilities.

The probability of moving from a configuration cnf to some configuration in a set Cnf depends not
only on the program, but also on the scheduler s.

Definition 9. The function probs : Cnf ×P(Cnf )→ [0; 1] is defined by:

probs(cnf ,Cnf ) =
∑

(k ,p)∈stepsTos(cnf ,Cnf ) p .

We will use the function probs in our definition of WHATs to capture that the likelihood of certain
observations is the same in two given configurations.

If strict multi-level security were our goal then we could define security based on a per that relates
two thread pools thr and thr ′ only if any two configurations 〈|thr ,m, s|〉 and 〈|thr ′,m ′, s ′|〉 with m =d m ′

and s ∼ s ′ cause indistinguishable observations. As we aim at permitting declassification, the situation
is more involved. After a declassification occurred, a d -observer might be allowed to obtain information
about the initial configuration that he cannot infer without running the program. However, such
inferences should be strictly limited by the exceptions to multi-level security specified by a given set of
escape hatches.

1By increasing the number of runs such inferences are possible with high confidence, even if the difference between
observed frequency and expected frequency is small.
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3.2.2. WHATs.

We are now ready to define information-flow security. For each scheduler model s, we propose a security
condition WHATs that restricts declassification according to the constraints specified by a set of escape
hatches. Following the per-approach, we define a multi-threaded program as WHATs-secure if it is
related to itself by some relation Rd,H that satisfies the following property.

Definition 10. Let d ∈ D be a security domain and H ⊆ D × E be a set of escape hatches. An
s-specific strong (d ,H )-bisimulation is a per Rd,H ⊆ C ∗×C ∗ that fulfills the following two conditions:

1. ∀(cnf , cnf ′) ∈ R↑d,H . ∀Cls ∈ classes(R↑d,H ).
probs(cnf ,Cls) = probs(cnf ′,Cls)

2. the property λcnf ∈ Cnf . (cnf ∈
⋃
classes(R↑d,H )) is an invariant under s.

Condition 1 in Definition 10 ensures that if a single computation step is performed in two related
configurations cnf and cnf ′ under a scheduler s then each equivalence class of R↑d,H is reached with
the same probability from the two configurations. Condition 2 ensures that all configurations that
can result after a computation step are again contained in some equivalence class of R↑d,H . This lifts
Condition 1 from individual steps to entire runs. The two conditions ensure that if two configurations
are related by R↑d,H (which means they must remain indistinguishable for a d -observer who may use
the escape hatches in H ) then they, indeed, remain indistinguishable when the program is run.

Definition 11. A thread pool thr ∈ C ∗ has secure information flow for (D,
≤, dom) and H ⊆ D × E under s (brief: thr ∈WHATs) iff for each d ∈ D there is a set H ′ ⊆ H and
a relation Rd,H ′ ⊆ C ∗× C ∗ such that (thr Rd,H ′ thr) holds, and such that Rd,H ′ is an s-specific strong
(d ,H ′)-bisimulation.

Definition 11 ensures that if thr ∈ WHATs and m ∼H
d m ′ and s ∼ s ′ then the configurations

〈|thr ,m, s|〉 and 〈|thr ,m ′, s ′|〉 yield indistinguishable observations for d while the multi-threaded program
thr is executed under s.

WHATs will serve as the basis of our first scheduler-independence result in Section 4. More concretely,
we will show that our previously proposed security condition WHAT1 [MR07] impliesWHATs for a wide
range of schedulers. Moreover, we will use WHATs when arguing that our second security condition
WHAT&WHEREs adequately controls what is declassified (see Section 3.4).

3.3. The Security Conditions WHAT&WHEREs

We employ local escape hatches to specify where a particular secret may be declassified. The annotations
of pers are adapted accordingly by replacing H with a set lH of local escape hatches. Moreover a set
of program points PP ⊆ PP is added as third annotation (resulting in Rd,lH ,PP ). The set PP will be
used to constrain local escape hatches in the definition of WHAT&WHEREs.

Definition 12. Let d ∈ D, lH ⊆ D × E × PP , and PP ⊆ PP . The lifting of a relation Rd,lH ,PP ⊆
C ∗ × C ∗ to a relation R↑d,lH ,PP ⊆ Cnf × Cnf is defined by R↑d,lH ,PP = (Rd,lH ,PP × ∼H

d × ∼), where
H = htchLoc(lH ,PP).

Proposition 2. If Rd,lH ,PP ⊆C ∗×C ∗ is a per then R↑d,lH ,PP ⊆Cnf ×Cnf also is a per.

Note that 〈|thr ,m, s|〉 R↑d,lH ,PP 〈|thr
′,m ′, s ′|〉 implies that m ∼htchLoc(lH ,PP)

d m ′ holds. This means that
each variable x ∈ Var has the same value in m as in m ′ if x is visible for a d -observer (i.e. m =d m ′).
Moreover, an expression e ∈ E has the same value in m as in m ′ if it may be declassified to d according
to lH for at least one of the program points in PP (i.e. if ∃(d ′, e, ι) ∈ lH . (d ′ ≤ d ∧ ι ∈ PP)).
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3.3.1. Towards Controlling Where Declassification Occurs.

If NDC d(c) holds then the next step of the command c respects strict multi-level security (i.e. no
declassification to security domain d occurs in this step). If IDC d(c,H ) holds then the next step of c
might declassify information to d , and any such declassification is authorized by the escape hatches in
H . However, if neither NDC d(c) nor IDC d(c,H ) is true then there are memory states m,m ′ ∈ Mem
such that m ∼H

d m ′ holds while Jc K(m) =d Jc K(m ′) does not hold. This means that information might
be leaked whose declassification is not permitted by H .

In our definition of the security condition, we need to rule out this third possibility, i.e. ¬IDCd(c,H )
∧¬NDC d(c) where H is the set of escape hatches that are enabled. Which escape hatches are enabled
in a given computation step depends on the set of local escape hatches and on the set of program points
that might cause the computation step.

The set of program points that might cause a transition from a configuration cnf to some configuration
in a set Cnf depends on the scheduler.

Definition 13. The function ppss : (Cnf ×P(Cnf ))→ P(PP ) is defined by:

ppss(cnf ,Cnf ) = {pp(cnf [k ]) | (k , p) ∈ stepsTos(cnf ,Cnf )} .

Using ppss, we define which hatches might be relevant for a computation step.

Definition 14. The function htchss : (P(D × E × PP ) × Cnf ×P(Cnf )) → P(D × E) is defined by
htchss(lH , cnf ,Cnf ) = htchLoc(lH , ppss(cnf ,Cnf )).

3.3.2. WHAT&WHEREs.

We are now ready to introduce our second schema for scheduler-specific security conditions. Unlike
WHATs, WHAT&WHEREs allows one to control where a particular declassification can occur. This
combined control of the W-aspects What and Where is needed, for instance, in Example 1.

Like in Section 3.2, we define a class of pers on thread pools to characterize indistinguishability from
the perspective of a d -observer. A program is then defined to be secure under a scheduler s if it is
related to itself. Which configurations must remain indistinguishable differs from Section 3.2 because
information may only be declassified in a computation step if this is permitted by the set of local escape
hatches that are enabled at this step. That is, declassification is more constrained than in Section 3.2.

Definition 15. Let d ∈ D be a security domain, lH ⊆ D × E × PP be a set of local escape hatches,
and PP ⊆ PP be a set of program points. An s-specific strong (d , lH ,PP)-bisimulation is a per
Rd,lH ,PP ⊆ C ∗ × C ∗ that fulfills the following three conditions:

1. ∀(thr , thr ′) ∈Rd,lH ,PP . ∀k ∈ N0.
k < #(thr) =⇒ (NDC d(thr [k ]) ∨ IDC d(thr [k ], htchLoc(lH , pp(thr [k ]))))

2. ∀(cnf , cnf ′) ∈ R↑d,lH ,PP . ∀Cls ∈ classes(R↑d,lH ,PP ).
(htchss(lH , cnf ,Cls) ∪ htchss(lH , cnf ′,Cls)) ⊆ htchLoc(lH ,PP)
=⇒ probs(cnf ,Cls) = probs(cnf ′,Cls)

3. λcnf ∈Cnf . (cnf ∈
⋃
classes(R↑d,lH ,PP )) is an invariant under s

Condition 1 in Definition 15 ensures that each thread thr [k ] either causes no declassification to the
security domain d or is an immediate declassification command for the set of locally available escape
hatches. Condition 2 ensures that if a single computation step is performed in two related configurations
cnf and cnf ′ then each equivalence class of R↑d,lH ,PP is reached with the same probability from the two
configurations. In contrast to Condition 1 in Definition 10, this is only required under the condition
that each escape hatch (d ′, e) with d ′ ≤ d , that is available at some program point ι that might cause
the next computation step, is also contained in htchLoc(lH ,PP). Note that this precondition (i.e.
(htchss(lH , cnf ,Cls) ∪ htchss(lH , cnf ′,Cls)) ⊆ htchLoc(lH ,PP)) is trivially fulfilled if PP = PP holds.
However, if PP is a proper subset of PP then the precondition might be violated. That is, choosing a
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set PP that is too small might lead to missing possibilities for information laundering. We will avoid
this pitfall by universally quantifying over all subsets PP ⊆ PP in the definition of WHAT&WHEREs.
Finally, Condition 3 ensures that all configurations that can result after a computation step are again
contained in some equivalence class of R↑d,lH ,PP . This lifts Condition 1 and 2 from individual steps to
entire runs.

Definition 16. A thread pool thr ∈ C ∗ has secure information flow for (D,
≤, dom) and lH ⊆ D×E×PP under s (brief: thr ∈WHAT&WHEREs) iff for each d ∈ D and for each
PP ⊆ PP there are a set lH ′ ⊆ lH and a relation Rd,lH ′,PP ⊆ C ∗ × C ∗ such that (thr Rd,lH ′,PP thr)
holds, and such that Rd,lH ′,PP is an s-specific strong (d , lH ′,PP)-bisimulation.

The structure of Definition 16 is similar to the one of Definition 11. The main differences are, firstly,
that a set lH of local escape hatches is used instead of a set H of escape hatches and, secondly, that
the escape hatches, that are available to a d -observer, are further constrained by a set PP ⊆ PP . The
universal quantification over all subsets PP of PP is crucial for achieving the desired control of where a
declassification can occur. It were not enough to require Condition 2 in Definition 15 just for PP = PP
because the resulting security guarantee would control what is declassified without restricting where
declassification can occur.

Example 2. Let P2 = if1 h then spawn2(l:=30,l:=41) else spawn5(l:=61,l:=70) fi and the set of local escape
hatches be lH = ∅. We consider a biased scheduler s that selects the second of two threads with lower,
but non-zero probability. Independent of the value of h, P2 might terminate with a memory state in
which l = 0 holds as well as with a memory state in which l = 1 holds. Nevertheless, a good guess about
the initial value of h is possible after observing several runs with the same initial memory. If l = 0 is
observed significantly more often than l = 1, then it is likely that h = False holds in the initial state.
Hence, the program is intuitively insecure.
Running P2 with two memories that differ in h deterministically results in two different thread pools,

namely in 〈l:=30, l:=41〉 and 〈l:=61,l:=70〉. These two thread pools must be related by Rlow ,lH ,PP according
to Condition 2 in Definition 15. However, the probability of moving from these two configurations
into the same equivalence class differs as our biased scheduler chooses the first thread with a higher
probability than the second. Therefore, Condition 2 is violated by the second computation step and,
hence, P2 /∈WHAT&WHEREs. ♦

Example 3. Let P3 = h2:=1absolute(h2); if2 h1 then l1:=3h2 else l1:=4-h2 fi and the set of local escape
hatches lH = {(low , h2, 3), (low , h2, 4)}. The assignments in both branches do not reveal more informa-
tion than permitted by the respective local escape hatches. However, the sign of the value stored in l1
after a run reveals information about the initial value of h1 in addition. Hence, the program is intuitively
insecure.
Two consecutive computation steps of P3 in two memories that differ in h1 result in two different

thread pools, namely in 〈l1:=3h2〉 and 〈l1:=4-h2〉. According to Condition 2 in Definition 15, these two
thread pools must be related by Rlow ,lH ,PP . However, a third computation step in each of them results
in two memories that are low -distinguishable and, hence, P3 /∈WHAT&WHEREs. ♦

3.4. Meta-properties of the Scheduler-Specific Security Properties
The security conditions WHAT&WHEREs restrict declassification according to a set of local escape
hatches. This allows one a more fine-grained control of declassification by restricting what information
can be declassified where. In comparison to WHATs, declassification shall be controlled more rigorously,
and WHAT&WHEREs is indeed at least as restrictive as WHATs.

Theorem 3. Let lH ⊆ D × E × PP and thr ∈ C ∗. If thr ∈ WHAT&WHEREs with lH then thr ∈
WHATs with H = htchLoc(lH ,PP ).

In [SS05], various so called prudent principles were proposed as sanity checks for definitions of
information-flow security that are compatible with declassification. In order to convince ourselves about
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the adequacy of our novel security condition, we have checked WHAT&WHEREs against these princi-
ples, and we have shown that it satisfies the following prudent principles (based on the formalization of
a slightly augmented set of prudent principles in [LM09a]):

Semantic consistency [SS05]The (in)security of a program is invariant under semantic-preserving
transformations of declassification-free subprograms.

Monotonicity of release [SS05] Allowing further declassifications for a program that is
WHAT&WHEREs-secure cannot render it insecure.

Persistence [LM09a] For every program that satisfies WHAT&WHEREs, all programs that are reach-
able also satisfy this security condition.

Relaxation [LM09a] Every program that satisfies noninterference also satisfies WHAT&WHEREs.

Noninterference up-to [LM09a] Every WHAT&WHEREs-secure program also satisfies noninterfer-
ence if it were executed in an environment that terminates the program when it is about to
perform a declassification.

Another prudent principle proposed in [SS05] is Non-occlusion. This principle requires that the presence
of a declassifying operation cannot mask other covert information leaks. Unfortunately, a bootstrapping
problem occurs. Any adequate formal characterization of non-occlusion itself is an adequate definition of
information-flow security with controlled declassification. If such an adequate characterization existed
then there would be no need to propose a definition of information-flow security.

4. Secure Declassification for Multi-threaded Programs
When developing a multi-threaded program, usually a specification of the scheduler’s interface is avail-
able, but the concrete scheduler is not known. An interface might reveal to a scheduler information
about the current configuration such as the number of active threads and the values of special program
variables (e.g., for setting scheduling priorities). However, the scheduler should not have direct access
to secrets via the interface because the scheduling of threads might have an effect on the probability of
an attacker’s observations. Hence, one should treat all elements of the scheduler’s interface like public
sinks in a security analysis.

We specify interfaces to schedulers by observation functions (see Section 2.1) and assume that inter-
faces do not give a scheduler access to the value of program counters as well as of variables that might
contain secrets. This is captured by the following restriction on observation functions.

Definition 17. An observation function obs ∈ Obs is confined wrt. an mls-policy (D,≤, dom), iff for
all thr1, thr ′1 ∈ C ∗ and all m1,m

′
1 ∈Mem :

(](thr1) = ](thr ′1) ∧ ∃d ∈ D. m1 =d m ′1) =⇒ obs(thr1,m1) = obs(thr ′1,m
′
1) .

If the interface to the scheduler is confined, then the scheduling behavior is identical for any two
configurations that have the same number of active threads and assign the same value to each variable
that is visible for all security domains.

Remark 2. Note that our restriction to confined observation functions does not eliminate the refinement
problem for schedulers. As already pointed out in [VS98], a program might have secure information flow
if executed with the fictitious possibilistic scheduler, but be insecure if executed with a uniform scheduler.
Since a uniform scheduler bases its decisions only on the number of active threads, its interface can be
captured by a confined observation function. Another example of a scheduler with a confined observation
function is the biased scheduler described in Example 2. The program P2 in this example is insecure if
run with the biased scheduler, but it would be secure if run with the possibilistic scheduler. ♦
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Figure 1: Condition 2 in the definition of strong (d ,H )-bisimulations

As the concrete scheduler is usually not known when developing a program, properties are needed that
allow one to reason about security independently of the concrete scheduler. In this section, we recall the
security property WHAT1 from [MR07] and propose the novel security property WHAT&WHERE. We
show that these properties imply WHATs and WHAT&WHEREs, respectively, for all schedulers s and
confined observation functions. These scheduler-independence results provide the theoretical basis for
reasoning in a sound way about the security of multi-threaded programs without knowing the concrete
scheduler.

4.1. Scheduler-independent WHAT-Security
The following definition of strong (d ,H )-bisimulations is an adaptation of the corresponding notion
from [MR07] to the formal exposition used in this article.

Definition 18. Let d ∈ D be a security domain and H ⊆ D × E be a set of escape hatches. A strong
(d ,H )-bisimulation is a per Rd,H ⊆ C ∗ × C ∗ that fulfills the following two conditions:

1. ∀(thr , thr ′) ∈ Rd,H . #(thr) = #(thr ′) and

2. Rd,H satisfies the formula in Figure 1.

If two thread pools thr , thr ′ ∈ C ∗ are strongly (d ,H )-bisimilar, and the scheduler chooses in some
memory state m the k ’th thread of the first thread pool thr for a step, then the thread at position k
in the second thread pool thr ′ can also perform a computation step in any memory state m ′ that is
(d ,H )-equal to m (see dark-gray boxes in Figure 1). Moreover, the program states as well as the lists of
spawned threads resulting after these two steps are, again, strongly (d ,H )-bisimilar (see medium-gray
box in Figure 1). Finally, the resulting memory states are, again (d ,H )-equal (see light-gray box in
Figure 1).

Definition 19. A thread pool thr has secure information flow for (D,≤, dom) and H ⊆ D × E (brief:
thr ∈ WHAT1) iff for each d ∈ D there is a strong (d ,H )-bisimulation Rd,H ⊆ C ∗ × C ∗ such that
(thr Rd,H thr) holds.

We are now ready to present our scheduler-independence result for WHAT-security. The theorem
states that WHAT1 impliesWHATs for each scheduler model s. Hence, WHAT1 is suitable for reasoning
about WHAT-security in a sound manner without having to explicitly consider scheduling.

Theorem 4. Let (D,≤, dom) be an mls-policy, H ⊆ D×E be a set of escape hatches, obs ∈ Obs be an
observation function that is confined wrt. (D,≤, dom), and thr ∈ C ∗ be a thread pool. If thr ∈WHAT1

holds, then thr ∈WHATs holds for each scheduler model s.

4.2. Scheduler-independent WHAT&WHERE-Security
Like in Section 3.3, we use pers that are annotated with a security domain d , a set lH of local escape
hatches, and a set PP of program points. Unlike in Section 3.3, we constrain pers without referring
to system steps, because system steps depend on the concrete scheduler’s behavior. Our novel security
property WHAT&WHERE shall provide adequate control over what information is declassified where,
independently of the scheduler under that a program is run.

4.1 Scheduler-independent WHAT-Security 14
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′
1 ∈Mem . ∀k ∈ N0. ∀α ∈ C ∗. ∀c ∈ Cε. ∀m2 ∈Mem .
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α−_ 〈|c,m2|〉
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Figure 2: Condition 3 in the definition of strong (d , lH ,PP)-bisimulations

Definition 20. Let d ∈ D be a security domain, lH ⊆ D×E ×PP be a set of local escape hatches, and
PP ⊆ PP be a set of program points. A strong (d , lH ,PP)-bisimulation is a per Rd,lH ,PP ⊆ C ∗ × C ∗
that fulfills the following three conditions:

1. ∀(thr , thr ′) ∈Rd,lH ,PP . #(thr) = #(thr ′),

2. ∀(thr , thr ′) ∈Rd,lH ,PP . ∀k ∈ N0.
k < #(thr) =⇒ (NDC d(thr [k ]) ∨ IDC d(thr [k ], htchLoc(lH , pp(thr [k ])))),

3. Rd,lH ,PP satisfies the formula in Figure 2.

Condition 1 in Definition 20 ensures that related thread pools have equal size (like Condition 1 in
Definition 18). Condition 2 ensures that each thread either causes no declassification to d or is an
immediate declassification command for the set of locally available escape hatches (like Condition 1 in
Definition 15).

Condition 3 bears similarities with Condition 2 in Definition 18 (see Figure 1). If two thread pools
thr , thr ′ ∈ C ∗ are strongly (d , lH ,PP)-bisimilar, and the scheduler chooses in some memory state m the
k ’th thread of thr for a step, then the k ’th thread of thr ′ can also perform a computation step in any
memory state m ′ that is (d ,H )-equal to m (where H = htchLoc(lH ,PP)), and the resulting program
states as well as lists of spawned threads are, again, strongly (d , lH ,PP)-bisimilar (see dark-gray boxes
in Figure 2). Note that an expression e that occurs in a local escape hatch (d ′, e, ι) ∈ lH need not have
the same value in m and m ′ if ι /∈ PP . Consequently, Condition 3 only requires the resulting memory
states to be (d ,H )-equal (see medium-gray box in Figure 2), if no such local escape hatch might affect
the computation step under consideration (see light-gray box in Figure 2). Like in Section 3.3, choosing
a set PP that is too small might lead to missing possibilities for information laundering and, again, we
will avoid this pitfall by universally quantifying over all subsets PP ⊆ PP .

Definition 21. A thread pool thr ∈ C ∗ has secure information flow for an mls-policy (D,≤, dom) and
a set of local escape hatches lH ⊆ D × E × PP (brief: thr ∈ WHAT&WHERE) iff for each d ∈ D
and for each PP ⊆ PP there is a strong (d , lH ,PP)-bisimulation Rd,lH ,PP such that (thr Rd,lH ,PP thr)
holds.

We are now ready to present our second scheduler-independence result.

Theorem 5. Let (D,≤, dom) be an mls-policy, lH ⊆ D × E × PP be a set of local escape hatches,
obs ∈ Obs be an observation function that is confined wrt. (D,≤, dom), and thr ∈ C ∗ be a thread pool.
If thr ∈WHAT&WHERE holds, then thr ∈WHAT&WHEREs holds for each scheduler model s.

The scheduler-independence theorem shows that WHAT&WHERE provides as much control of what
information is declassified where as WHAT&WHEREs, but without referring to specific schedulers.
Hence, WHAT&WHERE is adequate for reasoning about the security of programs when the scheduler
is unknown.

4.2 Scheduler-independent WHAT&WHERE-Security 15



[tconstd]
H ` v : d

[tvard]
dom(x ) = d

H ` x : d
[thatchd]

(d , e) ∈ H

H ` e : d

[topd]
H ` e1 : d1 . . . H ` em : dm ∀i ∈ {1, . . . ,m}. di ≤ d

H ` op(e1, . . . , em) : d

Figure 3: Security type system for expressions

[tassign]
htchLoc(lH , ι) ` e : d d ≤ dom(x ) SubstClosure(lH , x , e)

` x :=ιe

[tseq]
` c1 ` c2
` c1 ; c2

[tif]
∅ ` e : d ′ ∀d ′′. d ′ ≤ d ′′ ` c1 ` c2

` ifι e then c1 else c2 fi
[tskip]

` skipι

[tspawn]
` c0 . . . ` cn−1

` spawnι(c0, . . . , cn−1)
[twhile]

∅ ` e : d ′ ∀d ′′. d ′ ≤ d ′′ ` c

` whileι e do c od

Figure 4: Security type system for commands

5. Security Type System
Our security property WHAT&WHERE is compositional in the following sense:

Theorem 6. Let c0, . . . , cn−1 ∈ C be commands and e ∈ E be an expression. If 〈c0〉, . . . , 〈cn−1〉 ∈
WHAT&WHERE and if (m =d m ′ =⇒ eval(e,m) = eval(e,m ′)) holds for all m,m ′ ∈ Mem and all
d ∈ D, then we have:

1. 〈c0;c1〉 ∈WHAT&WHERE,
2. 〈spawnι(c0, . . . , cn−1)〉 ∈WHAT&WHERE,
3. 〈whileι e do c0 od〉 ∈WHAT&WHERE, and
4. 〈ifι e then c1 else c2 fi〉 ∈WHAT&WHERE.

We will now define a syntactic approximation of WHAT&WHERE for our example language in
Section 2.2 in the form of a type system. Before we present the typing rules for the commands, we
present typing rules for expressions. The judgment H ` e : d (where H ⊆ D × E , e ∈ E and d ∈ D)
can be derived with the typing rules in Figure 3. Intuitively, the judgment H ` e : d shall model
that the value of e only depends on information that a d -observer is permitted to obtain (for a given
mls-policy and the set H of escape hatches). That the typing rules capture this intuition is ensured by
the following theorem:

Theorem 7. Let H ⊆ D × E , e ∈ E , and d ∈ D. If H `e :d is derivable then
∀m,m ′ ∈Mem .

[
m∼H

d m ′ =⇒ eval(e,m) = eval(e,m ′)
]
.

For verifying the security of programs we use judgments of the form ` c (where c ∈ C ). Intuitively,
` c shall express that c satisfies our novel security condition WHAT&WHERE from Section 4.2. The
typing rules for this judgment are presented in Figure 4. The typing rules tseq, tspawn, twhile and
tif correspond to the four cases of the compositionality theorem (i.e., Theorem 6). Note that the first
two preconditions of twhile and tif indeed ensure that (m =d m ′ =⇒ eval(e,m) = eval(e,m ′)) holds
for all m,m ′ ∈ Mem and all d ∈ D. The first two preconditions of the rule for assignments (i.e.,
tassign) ensure that information only flows into a variable x ∈ Var if this is permissible according to
the mls-policy and to the set of locally available escape hatches. The third precondition of rule tassign
prevents information laundering like in the following example.

Example 4. Let P4 = h2:=10; l:=2h1+h2 and lH = {(low , h1+h2, ι) | ι ∈ PP}. If the third precondition
of rule tassign were not present, then P4 would be accepted by the type system. However, the program
reveals the value of h1 to a low -observer, which is not permitted by lH under the two-level mls-policy. ♦
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In order to avoid such possibilities for information laundering via escape hatches, we use the predicate
SubstClosure in the third precondition of rule tassign:

Definition 22. We define SubstClosure ⊆ P(D × E × PP )× Var × E by

SubstClosure(lH , x , e) ⇐⇒ ∀(d ′, e ′, ι′) ∈ lH . (d ′, e ′[x\e], ι′) ∈ lH

where e ′[x\e] is the expression that results from substituting all occurrences of variable x in expression
e ′ by the expression e.

The third precondition of rule tassign (i.e., SubstClosure(lH , x , e)) requires that, if the target x of an
assignment occurs in the expression e ′ of some (d ′, e ′, ι′) ∈ lH then (d ′, e ′[x\e], ι′) ∈ lH must also hold.
This ensures that the local escape hatch (d ′, e ′, ι′) ∈ lH may still be used legitimately, after assigning
e to x .

The following soundness theorem shows that the judgment ` c indeed captures WHAT&WHERE:

Theorem 8. Let c ∈ C . If ` c is derivable then c ∈WHAT&WHERE holds.

If a program is typable with our security type system, then it adequately controls what information
is declassified where, no matter under which scheduler the program is run. This follows from the
soundness theorem above in combination with our scheduler-independence result for WHAT&WHERE
(i.e., Theorem 5).

Example 5. We reconsider the program P1 from Example 1 and the set of local escape hatches
lH = {(low , song, 2), (low , downsample(song, bitrate), 3)}. The judgment ` P1 can be derived by ap-
plying the rules tif, tvard (for paid and d = low), tassign, thatchd (for song), tassign, thatchd (for
downsample(song, bitrate)). From Theorem 8 and Theorem 5 we obtain P1 ∈ WHAT&WHEREs regard-
less of the scheduler s. ♦

Remark 3. The type system presented in this section is suitable for verifying WHAT&WHERE-security
in a sound way. In the definition of the typing rules, we aimed for conceptual simplicity rather than for
maximizing the precision of the analysis. For instance, a more fine-grained treatment of conditionals
could be developed by using safe approximation relations (like in [MS04]). ♦

6. Related Work
Research on information-flow security has addressed scheduler independence as well as declassification,
but not yet the combination of these two aspects.

To achieve scheduler-independent information-flow security, three main directions have been explored.
Observational determinism [ZM03, HWS06] requires that all observations of an attacker are determin-
istically determined by information that this attacker may obtain. This ensures that security is not
affected by how non-determinism is resolved (including the selection of threads by a scheduler). An
alternative approach to achieving scheduler independence requires a non-standard interface to sched-
ulers. Schedulers can be asked to “hide” or “unhide” threads via this interface, where threads classified
as “unhidden” may only be scheduled if no “hidden” threads are active [BRRS07, RS09]. Strong security
[SS00] achieves scheduler independence by defining security based on stepwise bisimulation relations
that match steps of threads at the same position, like in this article. FSI-security [MS10] is also a
scheduler-independent security condition, although it is less restrictive than strong security. None of
these approaches supports declassification.

Scheduler-independence results can be viewed as solutions to the refinement paradox [Jac89] in a
particular domain. In fact, the approach to define security based on observational determinism was
originally developed as a general solution to avoid the refinement paradox [RWW94]. Unfortunately,
this approach also forbids intended non-determinism. An alternative is to identify notions of refinement
that preserve information-flow security. For event-based specifications, such refinement operators are
proposed in [Man01]. For sequential programs, refinements that preserve the property “ignorance of
secrets” are characterized in [Mor06].
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The challenge of certifying information-flow security while permitting declassification is addressed in
various publications (see [SS09] for an overview). In order to make differences in the goals of different
approaches to controlling declassification explicit, three aspects of declassification were distinguished
in [MS04]: What information may be declassified, Where information may be declassified, and Who
may declassify information. Four dimensions of declassification, which are similar to these W-aspects,
are used in [SS09] to classify existing approaches to declassification. Our novel security condition
WHAT&WHERE for multi-threaded programs addresses the aspects What and Where in an integrated
fashion.

For sequential programs, there are solutions addressing the aspectsWhat (e.g., [SM04, LZ05, LM09a]),
Where (e.g., [BS06, AS07a, BS10]), and Who (e.g., [ML00, MSZ06, LM09b]) in isolation. There are also
approaches that control What information is declassified Where. Localized delimited release [AS07b]
and the security conditions in [AS09] permit to specify from which program point on the value of a
given expression may be declassified. Delimited non-disclosure [BCR08] and delimited gradual release
[BNR08] permit to specify exactly at which position a given expression may be declassified. For the
latter two, the value that may be declassified is the value to which the expression evaluates when
the declassification is performed. In all other approaches (including the approach in this article), the
value that may be declassified is the initial value of the expression. The relation between these two
interpretations of escape hatches is clarified in [LM09a]. All previously proposed approaches to control
What is declassified Where were developed for sequential programs.

In a multi-threaded setting, several approaches adopt the ideas underlying strong security [SS00].
Intransitive noninterference [MS04] and WHERE [MR07] permit declassification by dedicated declas-
sification commands that comply with a flow relation, which may be an intransitive relation. The
properties WHAT1 and WHAT2 in [MR07] control that what is declassified complies with a given set of
escape hatches. The conditions SIMP∗D [BPR07] and non-disclosure [AB09] are also based on step-wise
bisimulations. However, they do not require that matching steps are executed by threads at the same
position, which seems necessary for achieving scheduler independence. While some of these approaches
strive for scheduler independence, no scheduler-independence result has been published for them.

7. Conclusion
The scheduler-independence results presented in this article constitute the first two such results for
definitions of information-flow security that are compatible with declassification. We showed that
our previously proposed security condition WHAT1 [MR07] provides adequate control of what can be
declassified, for all schedulers that can be expressed in our scheduler model. When proposing WHAT1,
we had hoped that this condition is scheduler independent, but had no proof for this so far. Our
novel security condition WHAT&WHERE provides adequate control of what can be declassified where,
independent of the scheduler. Our two scheduler-independence results provide the theoretical basis for
reasoning about the security of multi-threaded programs in a sound way, without having to explicitly
consider the scheduler under which a program runs.

The security guarantees provided by WHAT&WHERE go far beyond a mere conjunction of the
previously proposed conditions WHAT1 and WHERE because a fine-grained, integrated control of
what is declassified where is made possible.

The scheduler model (cf. Definition 1) that we used as basis in this article is sufficiently expressive to
capture a wide range of schedulers, including uniform and Round-Robin schedulers. Moreover, to our
knowledge, WHATs and WHAT&WHEREs offer the first scheduler-specific definitions of information-
flow security that are compatible with declassification. We used these schemas as reference points for
our two scheduler-independence results, and they might serve as role models for other scheduler-specific
security conditions in the future.

With this article, we hope to contribute foundations that lead to a better applicability and a more
wide-spread use of information-flow analysis in practice.

Acknowledgments. This work was funded by the DFG under the project RSCP (MA 3326/4-1) in the

18



priority program RS3 (SPP 1496).

References
[AB09] A. Almeida Matos and G. Boudol. On Declassification and the Non-Disclosure Policy. Journal

of Computer Security, 17(5):549–597, 2009.

[AS07a] A. Askarov and A. Sabelfeld. Gradual Release: Unifying Declassification, Encryption and
Key Release Policies. In IEEE Symposium on Security and Privacy, pages 207–221, 2007.

[AS07b] A. Askarov and A. Sabelfeld. Localized Delimited Release: Combining the What and Where
Dimensions of Information Release. In Workshop on Programming Languages and Analysis
for Security, pages 53–60, 2007.

[AS09] A. Askarov and A. Sabelfeld. Tight Enforcement of Information-Release Policies for Dynamic
Languages. In IEEE Computer Security Foundations Symposium, pages 43–59, 2009.

[BCR08] G. Barthe, S. Cavadini, and T. Rezk. Tractable Enforcement of Declassification Policies. In
IEEE Computer Security Foundations Symposium, pages 83–97, 2008.

[BL76] D. E. Bell and L. LaPadula. Secure Computer Systems: Unified Exposition and Multics
Interpretation. Technical Report MTR-2997, MITRE, 1976.

[BNR08] A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive Declassification Policies and
Modular Static Enforcement. In IEEE Symposium on Security and Privacy, pages 339–353,
2008.

[BPR07] A. Bossi, C. Piazza, and S. Rossi. Compositional Information Flow Security for Concurrent
Programs. Journal of Computer Security, 15(3):373–416, 2007.

[BRRS07] G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld. Security of Multithreaded Programs by
Compilation. In ESORICS, LNCS 4734, pages 2–18. Springer, 2007.

[BS06] N. Broberg and D. Sands. Flow Locks: Towards a Core Calculus for Dynamic Flow Policies.
In ESOP, LNCS 3924, pages 180–196. Springer, 2006.

[BS10] N. Broberg and D. Sands. Paralocks: Role-based Information Flow Control and Beyond. In
ACM Symposium on Principles of Programming Languages, pages 431–444, 2010.

[GM82] J. A. Goguen and J. Meseguer. Security Policies and Security Models. In IEEE Symposium
on Security and Privacy, pages 11–20, 1982.

[HWS06] M. Huisman, P. Worah, and K. Sunesen. A Temporal Logic Characterisation of Observational
Determinism. In IEEE Computer Security Foundations Workshop, pages 3–15, 2006.

[Jac89] J. Jacob. On the Derivation of Secure Components. In IEEE Symposium on Security and
Privacy, pages 242–247, 1989.

[LM09a] A. Lux and H. Mantel. Declassification with Explicit Reference Points. In ESORICS, LNCS
5789, pages 69–85. Springer, 2009.

[LM09b] A. Lux and H. Mantel. Who Can Declassify? In FAST 2008, LNCS 5491, pages 35–49.
Springer, 2009.

[LZ05] P. Li and S. Zdancewic. Downgrading Policies and Relaxed Noninterference. In ACM Sym-
posium on Principles of Programming Languages, pages 158–170, 2005.

[Man01] H. Mantel. Preserving Information Flow Properties under Refinement. In IEEE Symposium
on Security and Privacy, pages 78–91, 2001.

References 19



[Man11] H. Mantel. Information Flow and Noninterference. In Henk C. A. van Tilborg and Sushil Ja-
jodia, editors, Encyclopedia of Cryptography and Security (2nd Ed.), pages 605–607. Springer,
2011.

[McC87] D. McCullough. Specifications for Multi-Level Security and a Hook-Up Property. In IEEE
Symposium on Security and Privacy, pages 161–166, 1987.

[ML00] A. C. Myers and B. Liskov. Protecting Privacy using the Decentralized Label Model. ACM
Transactions on Software Engineering and Methodology, 9(4):410–442, 2000.

[Mor06] C. Morgan. The Shadow Knows: Refinement of Ignorance in Sequential Programs. In MPC,
LNCS 4014, pages 359–378. Springer, 2006.

[MR07] H. Mantel and A. Reinhard. Controlling theWhat andWhere of Declassification in Language-
Based Security. In ESOP, LNCS 4421, pages 141–156. Springer, 2007.

[MS04] H. Mantel and D. Sands. Controlled Declassification based on Intransitive Noninterference.
In APLAS, LNCS 3302, pages 129–145. Springer, 2004.

[MS10] H. Mantel and H. Sudbrock. Flexible Scheduler-Independent Security. In ESORICS, LNCS
6345, pages 116–133. Springer, 2010.

[MSZ06] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing Robust Declassification and Qualified
Robustness. Journal of Computer Security, 14:157–196, 2006.

[RS09] A. Russo and A. Sabelfeld. Securing Interaction between Threads and the Scheduler in the
Presence of Synchronization. Journal of Logic and Algebraic Programming, 78(7):593–618,
2009.

[RWW94] A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-interference through Determinism. In
ESORICS, LNCS 875, pages 33–53. Springer, 1994.

[SM04] A. Sabelfeld and A. C. Myers. A Model for Delimited Information Release. In ISSS 2003,
LNCS 3233, pages 174–191. Springer, 2004.

[SS99] A. Sabelfeld and D. Sands. A Per Model of Secure Information Flow in Sequential Programs.
In ESOP, LNCS 1576, pages 50–59. Springer, 1999.

[SS00] A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Programs. In
IEEE Computer Security Foundations Workshop, pages 200–215, 2000.

[SS05] A. Sabelfeld and D. Sands. Dimensions and Principles of Declassification. In IEEE Computer
Security Foundations Workshop, pages 255–269, 2005.

[SS09] A. Sabelfeld and D. Sands. Declassification: Dimensions and Principles. Journal of Computer
Security, 17(5):517–548, 2009.

[Sut86] D. Sutherland. A Model of Information. In National Computer Security Conference, 1986.

[VS98] D. Volpano and G. Smith. Probabilistic Noninterference in a Concurrent Language. In IEEE
Computer Security Foundations Workshop, pages 34–43, 1998.

[ZM03] S. Zdancewic and A. C. Myers. Observational Determinism for Concurrent Program Security.
In IEEE Computer Security Foundations Workshop, pages 29–43, 2003.

References 20



A. Operational Semantics
The operational semantics for the example language in Section 2.2 is defined in Figure 5 (rules for
deriving judgments for expression evaluation) and Figure 6 (rules for deriving judgments for execution
steps). The rule for deriving judgments for system steps is presented in Section 2.1.

v ∈ Val
eval(v ,m) = v

x ∈ Var m(x ) = v

eval(x ,m) = v

eval(e1,m) = v1, . . . , eval(en,m) = vn op(v1, . . . , vn) = v

eval(op(e1, . . . , en),m) = v

Figure 5: Evaluation semantics for expressions

〈|skipι,m|〉
〈〉
−_ 〈|ε,m|〉

eval(e,m) = v

〈|x :=ιe,m|〉
〈〉
−_ 〈|ε,m[x 7→ v ]|〉

eval(b,m) = True

〈|ifι b then c else c′ fi,m|〉
〈〉
−_ 〈|c,m|〉

eval(b,m) = False

〈|ifι b then c else c′ fi,m|〉
〈〉
−_ 〈|c′,m|〉

eval(b,m) = True

〈|whileι b do c od,m|〉
〈〉
−_ 〈|c;whileι b do c od,m|〉

eval(b,m) = False

〈|whileι b do c od,m|〉
〈〉
−_ 〈|ε,m|〉

〈|c,m|〉 α−_ 〈|ε, t |〉
〈|c;c′,m|〉 α−_ 〈|c′, t |〉

〈|c,m|〉 α−_ 〈|c′′, t |〉
〈|c; c′,m|〉 α−_ 〈|c′′;c′, t |〉

〈|spawnι(c0, . . . , cn−1),m|〉
〈c0,...,cn−1〉−−−−−−−_ 〈|ε,m|〉

Figure 6: Small-step operational semantics for threads

B. Partial Equivalence Relations
This section contains the proof of Theorem 1.

Our security conditions build on partial equivalence relations. As stated in Section 2.4, every per
R ⊆ A×A has a unique, maximal subset A′ on which it is an equivalence relation. Theorem 1 captures
this intuition. In the following, we proof that Theorem 1 indeed holds:

Proof (Theorem 1). Let A be a set and R ⊆ A×A be a per on A.
We show EquivOnA(R|AR,refl ,AR,refl) holds by showing reflexivity, symmetry, and transitivity of

R|AR,refl on AR,refl.

Reflexivity: Let e ∈ AR,refl. From definition of AR,refl we get e R e. From e R e and e ∈ AR,refl we
get e R|AR,refl e.

Symmetry: Let e, e ′ ∈ AR,refl such that e R|AR,refl e ′. From definition of R|AR,refl we get e R e ′. From
e R e ′ and symmetry of R we get e ′ R e. From e ′ R e and e, e ′ ∈ AR,refl we get e ′ R|AR,refl e.
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Transitivity: Let e, e ′, e ′′ ∈ AR,refl such that e R|AR,refl e ′ and e ′ R|AR,refl e ′′. From definition of R|AR,refl
we get e R e ′ and e ′ R e ′′. From that and from transitivity of R we get e R e ′′. From that and
from e, e ′′ ∈ AR,refl we get e R|AR,refl e ′′.

We show ∀A′ ⊆ A. (EquivOnA(R|A′ ,A
′) =⇒ A′ ⊆ AR,refl). Let A′ ⊆ A such that EquivOnA(R|A′

,A′). We show A′ ⊆ AR,refl. Let e ∈ A′. From EquivOnA(R|A′ ,A
′) we get e R e. Hence e ∈ AR,refl.

C. Escape Hatches and Declassification
This section contains the proof of Theorem 2.

The concepts defined in Section 3.1 are all monotonic in the set of escape hatches, and the empty set of
escape hatches is equivalent to forbidding declassification. Theorem 2 captures this in four propositions
that are fulfilled for all security domains d ∈ D and all sets of escape hatches H ,H ′ ⊆ D × E . We
prove that this theorem holds:

Proof (Theorem 2).

Item 1: Let d ∈ D be a security domain, H ,H ′ ⊆ (D × E) be two sets of escape hatches and m,m ′ ∈
Mem be two memory states such that ¬(m ∼H ′

d m ′) and H ′ ⊆ H holds. We distinguish two cases.

Case 1 (¬(m =d m ′)):

In this case ¬(m ∼H
d m ′) follows directly from Definition 4.

Case 2 (m =d m):

From Definition 4 and the condition of this case we get ∃(d ′, e) ∈ H ′. eval(e,m) 6= eval(e,m ′)
for some security domain d ′ ∈ D with d ′ ≤ d . From H ′ ⊆ H we get (d ′, e) ∈ H . Hence,
∃(d ′, e) ∈ H . eval(e,m) 6= eval(e,m ′). Consequently, ∀(d ′, e). (d ′ ≤ d =⇒ eval(e,m) =
eval(e,m ′)) does not hold. From Definition 4 we get ¬(m ∼H

d m ′).

Item 2: Follows directly from Definition 4.

Item 3: Let d ∈ D be a security domain, H ,H ′ ⊆ (D ×E) be two sets of escape hatches and c ∈ C be
a command such that IDC d(c,H

′) and H ′ ⊆ H holds.

From Definition 6 and IDC d(c,H
′) we get

(∃m,m ′ ∈Mem . m =d m ′ ∧ Jc K(m) 6=d Jc K(m ′))
∧ (∀m,m ′ ∈Mem . m ∼H ′

d m ′ =⇒ Jc K(m) =d Jc K(m ′)) .

From monotonicity of (d ,H )-equality wrt. to H (Item 1) and H ′ ⊆ H we get that this implies

(∃m,m ′ ∈Mem . m =d m ′ ∧ Jc K(m) 6=d Jc K(m ′))
∧ (∀m,m ′ ∈Mem . m ∼H

d m ′ =⇒ Jc K(m) =d Jc K(m ′)) .

From this and Definition 6 we get IDC d(c,H ).

Item 4: Let d ∈ D be a security domain and c ∈ C be a command. From Definition 6 we get that
∀m,m ′ ∈ Mem . m ∼∅d m ′ =⇒ Jc K(m) =d Jc K(m ′) must hold. From Item 2 we get that this
is equivalent to ∀m,m ′ ∈ Mem . m =d m ′ =⇒ Jc K(m) =d Jc K(m ′). Consequently, (∃m,m ′ ∈
Mem . m =d m ′ ∧ Jc K(m) 6=d Jc K(m ′)) cannot hold. Finally, with Definition 6 we conclude that
¬IDC d(c, ∅) holds.
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D. Metaproperties of WHAT&WHEREs

D.1. WHATs and WHAT&WHEREs

This section contains the proof of Theorem 3.
Our security conditions of the schema WHAT&WHEREs, which control what information may be

declassified where, should be at least as restrictive as the security conditions of the schema WHATs,
which only control what information may be declassified. To show this, we first show that for arbitrary
security domains d ∈ D and sets of local escape hatches lH ⊆ D × E × PP an s-specific strong
(d , lH ,PP)-bisimulation Rd,lH ,PP with PP = PP , is also an s-specific strong (d ,H )-bisimulation with
H = htchLoc(lH ,PP ).

Lemma 1. Let lH ⊆ D × E × PP be a set of local escape hatches, d ∈ D be a security domain and
PP = PP be the set of all program points. If Rd,lH ,PP ⊆ C ∗ × C ∗ is an s-specific strong (d , lH ,PP)-
bisimulation then Rd,lH ,PP is also an s-specific strong (d ,H )-bisimulation with H = htchLoc(lH ,PP).

Proof. Let lH ⊆ D × E × PP be a set of local escape hatches, d ∈ D be a security domain and
PP = PP . We choose an arbitrary relation Rd,lH ,PP ⊆ C ∗ × C ∗ such that Rd,lH ,PP is an s-specific
strong (d , lH ,PP)-bisimulation.

We show that the relation Rd,H =Rd,lH ,PP with H = htchLoc(lH ,PP) is an s-specific strong (d ,H )-
bisimulation.

From Rd,H =Rd,lH ,PP and Definition 15 we get that Rd,H is a per.
We show λcnf ∈ Cnf . (cnf ∈

⋃
classes(R↑d,H )) is an invariant under s. From definition of s-specific

strong (d , lH ,PP)-bisimulation we get that λcnf ∈ Cnf . (cnf ∈
⋃

classes(R↑d,lH ,PP )) is an invariant
under s. From Rd,H =Rd,lH ,PP and H = htchLoc(lH ,PP) we get classes(R↑d,lH ,PP ) = classes(R↑d,H ).
Hence we get that λcnf ∈ Cnf . (cnf ∈

⋃
classes(R↑d,H )) is an invariant under s.

It remains to show that the following holds:

∀(cnf , cnf ′) ∈ R↑d,H . ∀Cls ∈ classes(R↑d,H ).
probs(cnf ,Cls) = probs(cnf ′,Cls) .

We choose cnf , cnf ′ ∈ Cnf arbitrary such that cnfR↑d,H cnf ′. From R↑d,H = R↑d,lH ,PP and Defini-
tion 15 we get

∀Cls ∈ classes(R↑d,lH ,PP ).
(htchss(lH , cnf ,Cls) ∪ htchss(lH , cnf ′,Cls)) ⊆ htchLoc(lH ,PP)
=⇒ probs(cnf ,Cls) = probs(cnf ′,Cls) .

Since PP=PP , (htchss(lH , cnf,Cls) ∪ htchss(lH , cnf ′,Cls)⊆htchLoc(lH ,PP) holds. Hence we have

∀Cls ∈ classes(R↑d,lH ,PP ). prob
s(cnf ,Cls) = probs(cnf ′,Cls) .

From Rd,H =Rd,lH ,PP and H = htchLoc(lH ,PP) we get classes(R↑d,lH ,PP ) = classes(R↑d,H ). Hence
we have

∀Cls ∈ classes(R↑d,H ). probs(cnf ,Cls) = probs(cnf ′,Cls) .

Since we have chosen cnf and cnf ′ arbitrary such that cnfR↑d,H cnf ′, this is what we needed to
show.

Now we can show that our security conditionsWHAT&WHEREs are at least as restrictive asWHATs,
as stated in Theorem 3.

Proof (Theorem 3). Let lH ⊆ D×E×PP be a set of local escape hatches, H ⊆ D×E be a set of escape
hatches, and thr ∈ C ∗ be a thread pool such that H = htchLoc(lH ,PP ) and thr ∈ WHAT&WHEREs

holds.
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From Definition 16 we get that for all d ∈ D and for all sets of program points PP ⊆ PP , a set of
local escape hatches lH ′ ⊆ lH and an s-specific strong (d , lH ′,PP)-bisimulation Rd,lH ′,PP ⊆ C ∗ × C ∗
exist such that thr Rd,lH ′,PP thr .

From Lemma 1 we get that for all security domains d ∈ D and all sets of local escape hatches
lH ⊆ D × E × PP , the s-specific strong (d , lH ′,PP)-bisimulation Rd,lH ,PP with PP = PP is also a
strong s-specific strong (d ,H ′)-bisimulation with H ′ = htchLoc(lH ′,PP).

From lH ′ ⊆ lH and the definition of htchLoc we get htchLoc(lH ′,PP) ⊆ htchLoc(lH ,PP) and,
consequently, H ′ ⊆ H .

We conclude that for each security domain d ∈ D a set of escape hatches H ′ ⊆ H and a relation
Rd,H ′=Rd,lH ,PP exist such that thr Rd,H ′ thr holds, and such that Rd,H ′ is an s-specific strong (d ,H ′)-
bisimulation. Hence, htchLoc(lH ,PP).

D.2. Prudent Principles
In order to express the prudent principles (see Section 3.4) formally, we introduce three auxiliary
concepts.

The principles “Relaxation” and “Non-interference up-to” refer to “Noninterference”. “Noninterference”
means adherence to a strict multi-level security policy, i.e. a d -observer who observes an execution must
not be able to infer any information about initial configurations that he cannot infer without running
the program. We will capture this requirement with a class of partial equivalence relations. We annotate
such a per R⊆ c × c with a security domain d ∈ D, resulting in Rd , to make the security domain of
the observer explicit. We further define the lifting of a relation on thread pools Rd ⊆ c× c to a relation
on configurations to capture which configurations look the same for a d -observer:

Definition 23. Let d ∈ D. The lifting of a relation Rd ⊆ C ∗ × C ∗ to a relation R↑d ⊆ Cnf × Cnf is
R↑d = (Rd × =d × ∼).

Proposition 3. If Rd ⊆ C ∗ × C ∗ is a per, then R↑d ⊆ Cnf × Cnf is a per.

Like in Sections 3.2 and 3.3, we define a class of pers on thread pools to characterize indistinguisha-
bility from the perspective of a d -observer. A program is then defined to be secure under a scheduler
s if it is related to itself under such a per. Which configurations must remain indistinguishable differs
from Section 3.2 and 3.3, because declassification is not permitted.

Definition 24. Let d ∈ D be a security domain. An s-specific strong (d)-bisimulation is a per Rd ⊆
C ∗ × C ∗ that fulfills the following three conditions:

1. ∀(thr , thr ′) ∈ Rd,lH ,PP . ∀k ∈ N0. k < #(thr) =⇒ NDC d(thr [k ])

2. ∀(cnf , cnf ′) ∈ R↑d . ∀Cls ∈ classes(R↑d).
probs(cnf ,Cls) = probs(cnf ′,Cls)

3. the property λcnf ∈ Cnf . (cnf ∈
⋃
classes(R↑d)) is an invariant under s.

Condition 1 in Definition 24 ensures that no thread thr [k ] violates strict multi-level security. Condition
2 ensures that if a single computation step is performed in two related configurations cnf and cnf ′ then
each equivalence class of R↑d is reached with the same probability from the two configurations. Finally,
Condition 3 ensures that all configurations that can result after a computation step are again contained
in some equivalence class of R↑d . This lifts Condition 1 and 2 from individual steps to entire runs.

Definition 25. A thread pool thr ∈ C ∗ has secure information flow for (D,≤, dom) under s (brief:
thr ∈ NIs) iff for each d ∈ D there is a relation Rd ⊆ C ∗ × C ∗ such that (thr Rd thr) holds, and such
that Rd is an s-specific strong (d)-bisimulation.

Definition 25 ensures that if thr ∈ NIs and m =d m ′ and s ∼ s ′ then the configurations 〈|thr ,m, s|〉 and
〈|thr ,m ′, s ′|〉 yield indistinguishable observations for d while the multi-threaded program thr is executed
under s.
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To formally express “transformation of subprogram” (to which “semantic consistency” refers), we
introduce commands where subcommands can be replaced: we define a the set of command contexts
C• as the language defined by the grammar for c in Section 2.2 modified by adding a terminal symbol
•. For cc ∈ C• and c ∈ C we define cc〈c〉 ∈ C to be the command where every occurrence of • in cc is
replaced by c.

To formally express “semantic-preserving” (to which “semantic consistency refers”), we define the
semantic equivalence relation us ⊆ C×C by us = {(c1, c2) ∈ C×C | ∀cc ∈ C•. 〈cc〈c1〉〉 us

high 〈cc〈c2〉〉},
where us

high is the union of all s-specific strong (high)-bisimulations interpreted with respect to the
single-domain policy ({high}, {(high, high)}, dom) where ∀x ∈ Var . dom(x ) = high. The intuition is
that two semantically equivalent commands cause indistinguishable observations for an observer who
can see every variable, independent of the command context in which the commands are inserted.

Theorem 9 (Prudent Principles). Let c, c1, c2 ∈ C be commands, cc ∈ C• be a command context and
lH , lH ′ ⊆ D × E × PP be local escape hatches.

Semantic consistency. If 〈cc〈c1〉〉 ∈ WHAT&WHEREs holds for lH , c1 us c2, and htchLoc(lH , ι) =
∅ holds for all program points ι ∈ PP of the commands c1, c2 and their subcommands, then
〈cc〈c2〉〉 ∈WHAT&WHEREs holds for lH .

Monotonicity of release. If 〈c〉 ∈WHAT&WHEREs holds for lH and lH ⊆ lH ′,
then 〈c〉 ∈WHAT&WHEREs holds for lH ′.

Persistence. Let 〈c〉 ∈ WHAT&WHEREs for lH and thr ∈ C ∗. If 〈c〉 = pool(cnf 0), cnf i ⇒s
ki,pi

cnf i+1 and thr = pool(cnf n) for some n ∈ N0, i ∈ {0, . . . , n− 1}, cnf 0, . . . , cnf n ∈ Cnf , and
(k0, p0), . . . , (kn−1, pn−1) ∈ N0×]0; 1], then thr ∈WHAT&WHEREs holds for lH .

Relaxation. If 〈c〉 ∈ NIs holds then 〈c〉 ∈WHAT&WHEREs holds.

Noninterference up-to. If 〈c〉 ∈ WHAT&WHEREs holds for lH then 〈c〉 ∈ NIs holds if 〈c〉 were
executed with a declassification-prohibiting monitor (equivalent to removing judgments
〈|pool(cnf )[k ],mem(cnf )|〉 α−_ 〈|c,m|〉 if htchss(lH ′, cnf ,Cnf ) 6= ∅ and lH ′ ⊆ lH is a minimal subset
of lH for that 〈c〉 ∈WHAT&WHEREs).

Proof.

Semantic consistency (sketch) Let c1, c2 ∈ C , cc ∈ C•, and lH ⊆ D × E × PP such that 〈cc〈c1〉〉 ∈
WHAT&WHEREs, c1 us c2, and htchLoc(lH , ι) = ∅ holds for all program points ι ∈ PP of
the commands c1, c2 and their subcommands. All configurations of pools reachable in cc〈c2〉
always can do steps into the same equivalence class and equal memory state as a corresponding
configuration of the corresponding pool reachable in cc〈c1〉 starting from the same memory. Us-
ing this and the fact that c1 and c2 do not contain program points associated with non-empty
escape hatch sets, we can simulate execution steps of cc〈c2〉 by execution steps of cc〈c1〉, and by
this, given an s-specific strong (d , lH ,PP)-bisimulation Rd,lH ,PP⊆ C ∗ × C ∗ that relates cc〈c1〉
to itself, construct an s-specific strong (d , lH ,PP)-bisimulation R′d,lH ,PP⊆ C ∗ × C ∗ such that
〈cc〈c2〉〉 R′d,lH ,PP 〈cc〈c2〉〉.
The relation R′d,lH ,PP⊆ C ∗ × C ∗ is defined similar to a transitive closure of Rd,lH ,PP , but where
in between subprograms are replaced by semantically equivalent subprograms. Showing that this
relation is an s-specific strong (d , lH ,PP)-bisimulation is conducted using a nested induction
on the number of concatenated relations and on the syntactic structure of commands (for the
replacement of subcommands).

Monotonicity of release Let c ∈ C and lH , lH ′ ⊆ D × E × PP . We assume c ∈ WHAT&WHEREs

holds for lH , i.e. for each d ∈ D and PP ⊆ PP there exist a set lH ′′ ⊆ lH and a relation
Rd,lH ′′,PP ⊆ C ∗×C ∗ such that (thr Rd,lH ′′,PP thr) holds, and such that Rd,lH ′′,PP is an s-specific
strong (d , lH ′′,PP)-bisimulation. From this and from lH ⊆ lH ′ we get that for each d ∈ D and
PP ⊆ PP there exist a set lH ′′ ⊆ lH ′ such that the same holds, i.e. 〈c〉 ∈WHAT&WHEREs for
lH ′.
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Persistence For this proof we essentially exploit the invariance under s.

Let thr ∈ C ∗, cnf 0, . . . , cnf n ∈ Cnf , and (k0, p0), . . . , (kn−1, pn−1) ∈ N0×]0; 1] such that 〈c〉 ∈
WHAT&WHEREs, 〈c〉 = pool(cnf 0), cnf i ⇒s

ki,pi
cnf i+1 for i ∈ {0, . . . , n − 1}, and thr =

pool(cnf n).

We choose d ∈ D and PP ⊆ PP arbitrary. We prove there exist a set lH ′ ⊆ lH and a relation
Rd,lH ′,PP ⊆ C ∗×C ∗ such that (pool(cnf n) Rd,lH ′,PP pool(cnf n)) holds and such that Rd,lH ′,PP is
an s-specific strong (d , lH ′,PP)-bisimulation by induction on n. For n = 0 we have pool(cnf n) =
〈c〉. Hence from pool(cnf n) ∈WHAT&WHEREs we get a set lH ′ ⊆ lH and a relation Rd,lH ′,PP

⊆ C ∗ × C ∗ exist such that (pool(cnf n) Rd,lH ′,PP pool(cnf n)) holds and Rd,lH ′,PP is an s-specific
strong (d , lH ′,PP)-bisimulation.

For the induction step we consider n > 0. From the induction assumption we get a set lH ′ ⊆ lH
and a relation Rd,lH ′,PP ⊆ C ∗ × C ∗ exist such that (pool(cnf n−1) Rd,lH ′,PP pool(cnf n−1)) holds
and Rd,lH ′,PP is an s-specific strong (d , lH ′,PP)-bisimulation. Hence cnf n−1 R

↑
d,lH ′,PP cnf n−1

holds. From that we get cnf n−1 ∈
⋃

classes(R↑d,lH ′,PP ). From Condition 3 in Definition 15
we get λcnf ∈ Cnf . (cnf ∈

⋃
classes(R↑d,lH ′,PP )) is invariant under s. Hence, we get cnf n ∈⋃

classes(R
Cnf
d,lH ′,PP ) and, consequently, pool(cnf n)R

↑
d,lH ′,PPpool(cnf n).

Since we have chosen d ∈ D, and PP ⊆ PP arbitrarily, we have that for each d ∈ D and PP ⊆ PP
there exist a set lH ′ ⊆ lH and a relation Rd,lH ′,PP ⊆ C ∗ × C ∗ such that (pool(cnf n) Rd,lH ′,PP

pool(cnf n)) holds and Rd,lH ′,PP is an s-specific strong (d , lH ′,PP)-bisimulation, i.e. pool(cnf n) ∈
WHAT&WHEREs.

Relaxation Let c ∈ C and lH ⊆ D × E × PP . We assume c ∈ NIs holds. By definition an s-specific
strong (d)-bisimulation Rd exists for each d ∈ D such that 〈c〉 Rd 〈c〉. Let PP ⊆ PP , lH ′ = ∅,
and Rd,lH ′,PP=Rd . We show that Rd,lH ′,PP is an s-specific strong (d , lH ′,PP)-bisimulation.

We get that Rd,lH ′,PP is a per by Rd,lH ′,PP=Rd and definition of s-specific strong (d)-bisimulation.

From Condition 1 of Definition 24 follows directly that Condition 1 of Definition 15 holds.

We show λcnf ∈ Cnf . (cnf ∈
⋃
classes(R↑d,lH ′,PP )) is an invariant under s. From definition of s-

specific strong (d)-bisimulation we get λcnf ∈ Cnf . (cnf ∈
⋃
classes(R↑d)) is an invariant under s.

From Rd =Rd,lH ′,PP and ∅ = htchLoc(lH ′,PP) we get classes(R↑d,lH ′,PP ) = classes(R↑d). Hence
we get λcnf ∈ Cnf . (cnf ∈

⋃
classes(R↑d,lH ′,PP )) is an invariant under s.

Hence it remains to show that the following holds:

∀(cnf , cnf ′) ∈ R↑d,lH ,PP . ∀Cls ∈ classes(R↑d,lH ,PP ).
(htchss(lH , cnf ,Cls) ∪ htchss(lH , cnf ′,Cls)) ⊆ htchLoc(lH ,PP)
=⇒ probs(cnf ,Cls) = probs(cnf ′,Cls)

From Rd =Rd,lH ′,PP and ∅ = htchLoc(lH ′,PP) we get classes(R↑d,lH ′,PP ) = classes(R↑d). Hence,
it is sufficient to show

∀(cnf , cnf ′) ∈ R↑d . ∀Cls ∈ classes(R↑d).
(htchss(lH , cnf ,Cls) ∪ htchss(lH , cnf ′,Cls)) ⊆ htchLoc(lH ,PP)
=⇒ probs(cnf ,Cls) = probs(cnf ′,Cls)

This holds, because from definition of s-specific strong (d)-bisimulation we get

∀(cnf , cnf ′) ∈ R↑d . ∀Cls ∈ classes(R↑d).
probs(cnf ,Cls) = probs(cnf ′,Cls)

Since we choose PP ⊆ PP arbitrarily, we have shown that for each d ∈ D and PP ⊆ PP there
exists a relation Rd,lH ′,PP ⊆ C ∗×C ∗ such that (〈c〉 Rd,lH ′,PP 〈c〉) holds, and such that Rd,lH ′,PP
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is an s-specific strong (d , lH ′,PP)-bisimulation. Since ∅ = lH ′ =⊆ lH , This means for each
d ∈ D and PP ⊆ PP there exist a set lH ′ ⊆ lH and a relation Rd,lH ′,PP ⊆ C ∗ × C ∗ such that
(〈c〉 Rd,lH ′,PP 〈c〉) holds, and such that Rd,lH ′,PP is an s-specific strong (d , lH ′,PP)-bisimulation,
i.e. 〈c〉 ∈WHAT&WHEREs for lH .

Noninterference up-to (sketch) Let c ∈ C and lH ⊆ D × E × PP .

We assume 〈c〉 ∈WHAT&WHEREs holds for lH . Let lH ′ ⊆ lH be a minimal subset of lH for that
〈c〉 ∈ WHAT&WHEREs. We show that each s-specific strong (d , lH ′, ∅)-bisimulation Rd,lH ′,∅
⊆ C ∗ × C ∗ also is an s-specific strong (d)-bisimulation under monitored semantics (removing
judgments 〈|pool(cnf )[k ],mem(cnf )|〉 α−_ 〈|c,m|〉 if we have htchss(lH ′, cnf ,Cnf ) 6= ∅ and lH ′ ⊆ lH
is a minimal subset of lH for that 〈c〉 ∈ WHAT&WHEREs). That Condition 1 of Definition 24
holds we get from from Condition 1 of Definition 15: threads either are not d -declassification
commands or they are immediate d -declassification commands. The latter are stopped in the
monitored semantics, i.e. they are not d -declassification commands anymore. That Condition 2
of Definition 24 holds we get from that Condition 2 of Definition 15 holds by using that the
condition (htchss(lH , cnf ,Cls) ∪ htchss(lH , cnf ′,Cls)) ⊆ ∅ either holds, then we have equality of
the sums by definition, or it does not hold, then in the monitored semantics all execution steps
are removed and both sums equal 0, which also means they are equal. That such a relation is a
per, and that λcnf ∈ Cnf . (cnf ∈

⋃
classes(R↑d,lH ′,∅)) is invariant under s follows directly from

definition of s-specific strong (d , lH ′, ∅)-bisimulation.

E. Scheduler Independence

E.1. Confined Observation Functions
We provide a lemma about scheduler transitions under the assumption that the scheduler input is
provided by a confined observation function.

Lemma 2. Let s be a scheduler, (D,≤, dom) be an mls-policy, obs ∈ Obs be an observation function that
is confined wrt. (D,≤, dom), and cnf , cnf ′ ∈ Cnf be configurations. If #(pool(cnf )) = #(pool(cnf ′)),
mem(cnf ) =d mem(cnf ′) for some security domain d ∈ D, and sst(cnf ) ∼ sst(cnf ′), then the following
holds:

∀k ∈ N0. ∀p ∈]0; 1]. ∀s ∈ S .[
(sst(cnf ), obs(pool(cnf ),mem(cnf )))

k
 s

p s

⇐⇒ (sst(cnf ′), obs(pool(cnf ′),mem(cnf ′)))
k
 s

p s

]
Proof (Lemma 2). Let s be a scheduler, (D,≤, dom) be an mls-policy, obs ∈ Obs be an observa-
tion function that is confined wrt. (D,≤, dom), and cnf , cnf ′ ∈ Cnf be configurations such that
#(pool(cnf )) = #(pool(cnf ′)), mem(cnf ) =d mem(cnf ′) for some security domain d ∈ D, and
sst(cnf ) ∼ sst(cnf ′).

We choose k ∈ N0, p ∈ ]0; 1] and s ∈ S arbitrarily such that (sst(cnf ),
(obs(pool(cnf ),mem(cnf ), k , p), s) ∈ → holds.

From #(pool(cnf )) = #(pool(cnf ′)), mem(cnf ) =d mem(cnf ′), and Definition 17, we get that
obs(pool(cnf ),mem(cnf )) = obs(pool(cnf ′),mem(cnf ′)) holds.

From obs(pool(cnf ),mem(cnf )) = obs(pool(cnf ′),mem(cnf ′)), sst(cnf ) ∼ sst(cnf ′), and Definition 1
follows that (sst(cnf ′), (obs(pool(cnf ′),mem(cnf ′), (k , p), s) ∈→. Hence, we get

(sst(cnf ), (obs(pool(cnf ),mem(cnf ), k , p), s) ∈ →
=⇒ (sst(cnf ′), (obs(pool(cnf ′),mem(cnf ′), k , p), s) ∈ → .

The argument for the other direction is analogous and, consequently, we have

(sst(cnf ), (obs(pool(cnf ),mem(cnf ), k , p), s) ∈ →
⇐⇒ (sst(cnf ′), (obs(pool(cnf ′),mem(cnf ′), k , p), s) ∈ → .
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Finally, since we choose k , p and s arbitrary, we get from Definition 1 that for all k ∈ N0, p ∈ ]0; 1]
and s ∈ S the following holds:

(sst(cnf ), obs(pool(cnf ),mem(cnf )))
k
 s

p s

⇐⇒ (sst(cnf ′), obs(pool(cnf ′),mem(cnf ′)))
k
 s

p s .

E.2. Scheduler Independence of WHAT
This section contains the proof of Theorem 4.

We employ the up-to technique for proving strong (d ,H )-bisimilarity. We define a class of relations
with conditions that are easier to show than the conditions of strong (d ,H )-bisimulations, but still can
be employed to show strong (d ,H )-bisimilarity of thread pools.

∀thr , thr ′ ∈ C ∗. ∀m1,m
′
1 ∈Mem . ∀k ∈ N0. ∀α ∈ C ∗. ∀c ∈ Cε. ∀m2 ∈Mem . thr R thr ′ ∧m1 ∼H

d m ′1 ∧ 〈|thr [k ],m1|〉
α−_ 〈|c,m2|〉

=⇒ ∃α′ ∈ C ∗. ∃c′ ∈ Cε. ∃m ′2 ∈Mem .
[〈|thr ′[k ],m ′1|〉

α′−_ 〈|c′,m ′2|〉 ∧ 〈c〉(R ∪ Rd,H )〈c′〉 ∧ α(R ∪ Rd,H )α′ ∧m2 ∼H
d m ′2]


Figure 7: Condition 3 in the definition of strong (d ,H )-bisimulations up-to-Rd,H

Definition 26. Let d ∈ D be a security domain, H ⊆ D × E be a set of escape hatches, and Rd,H ⊆
C ∗ × C ∗ be a strong (d ,H )-bisimulation. A strong (d ,H )-bisimulation up-to-Rd,H is a symmetric
relation R ⊆ C ∗ × C ∗ that fulfills the following two conditions:

1. ∀(thr , thr ′) ∈R . #(thr) = #(thr ′),

2. R satisfies the formula in Figure 7.

The definition is similar to Definition 18. Differences are that transitivity is not required and that
on the right hand side of the implication in Condition 3 only (R ∪Rd,H )-relation of resulting pools is
required instead of R-relation.

Lemma 3. Let d ∈ D be a security domain and H ⊆ D×E be a set of escape hatches. If Rd,H ⊆ C ∗×C ∗
is a strong (d ,H )-bisimulation, and R⊆ C ∗ × C ∗ is a strong (d ,H )-bisimulation up-to-Rd,H , then
(Rd,H ∪ R)+ is a strong (d ,H )-bisimulation.

Proof (Lemma 3). Let d ∈ D be a security domain, H ⊆ D × E be a set of escape hatches, Rd,H ⊆
C ∗× C ∗ be a strong (d ,H )-bisimulation, and R∈ C ∗× C ∗ be a strong (d ,H )-bisimulation up-to-Rd,H .

We show that (Rd,H ∪ R)+ is a strong (d ,H )-bisimulation.
Transitivity and symmetry follows from that Rd,H and R are symmetric and from definition of

transitive closure.
We show that Condition 1 in Definition 18 holds. Let thr , thr ′ ∈ C ∗ and n ∈ N0 \ {0} such that

thr(Rd,H ∪ R)nthr ′. We show #(thr) = #(thr ′) by induction on n. The induction base is n = 1. We
have thr Rd,H thr ′ or thr R thr ′. In both cases, from Condition 1 in Definition 18 or Condition 1
in Definition 26 we get #(thr) = #(thr ′). For the induction step we have that thr ′′ ∈ C ∗ exists
such that thr(Rd,H ∪ R)n−1thr ′′ and thr ′′(Rd,H ∪ R)thr ′. From the induction assumption we get
#(thr) = #(thr ′′). Since thr ′′Rd,H thr ′ holds or thr ′′ R thr ′ holds, from Condition 1 in Definition 18 or
Condition 1 in Definition 26 we get #(thr ′′) = #(thr ′). Hence #(thr) = #(thr ′).

We show that Condition 2 in Definition 18 holds. Let thr , thr ′′ ∈ C ∗, m1,m
′
1 ∈ Mem , k ∈ N0. ,

α ∈ C ∗, c ∈ Cε, and m2 ∈Mem such that thr(Rd,H ∪ R)nthr ′′, m1 ∼H
d m ′1, and 〈|thr [k ],m1|〉

α−_ 〈|c,m2|〉.
We prove

∃α′′ ∈ C ∗. ∃c′′ ∈ Cε. ∃m ′′2 ∈Mem .[
〈|thr ′′[k ],m ′1|〉

α′′−−_ 〈|c′′,m ′′2 |〉
∧〈c〉(Rd,H ∪ R)n〈c′′〉 ∧ α(Rd,H ∪ R)nα′′ ∧m2 ∼H

d m ′′2

]
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by induction on n.
The induction base is n = 1. We have thrRd,H thr ′′ or thr R thr ′′. In both cases, from Condition 2

in Definition 18 or Condition 2 in Definition 26 and from the facts Rd,H ⊆ (Rd,H ∪ R) we get that the
induction hypothesis holds.

For the induction step we consider the thr ′∈C ∗ such that thr(Rd,H∪R)n−1thr ′ and thr ′(Rd,H∪R)thr ′′.
From the induction assumption we get that α′ ∈ C ∗, c′ ∈ Cε, and m ′2 ∈Mem exist such that

〈|thr ′[k ],m ′1|〉
α′−_ 〈|c′,m ′2|〉

∧〈c〉(Rd,H ∪ R)n−1〈c′〉 ∧ α(Rd,H ∪ R)n−1α′ ∧m2 ∼H
d m ′2 .

From thr ′(Rd,H ∪ R)thr ′′, m ′1 ∼H
d m ′1 (by reflexivity), 〈|thr ′[k ],m ′1|〉

α′−_ 〈|c′,m ′2|〉, and from Condition 2
in Definition 18 for Rd,H or Condition 2 in Definition 26 for R we get that that α′′ ∈ C ∗, c′′ ∈ Cε, and
m ′′2 ∈Mem exist such that

〈|thr ′′[k ],m ′1|〉
α′′−−_ 〈|c′′,m ′′2 |〉

∧〈c′〉(Rd,H ∪ R)〈c′′〉 ∧ α′(Rd,H ∪ R)α′′ ∧m ′2 ∼H
d m ′′2 .

From 〈c〉(Rd,H ∪ R)n−1〈c′〉 and 〈c′〉(Rd,H ∪ R)〈c′′〉 we get 〈c〉(Rd,H ∪ R)n〈c′′〉, from α(Rd,H ∪ R)n−1α′
and α′(Rd,H ∪ R)α′′ we get α(Rd,H ∪ R)nα′′, and from m2 ∼H

d m ′2 and m ′2 ∼H
d m ′′2 .

Lemma 4. Let d ∈ D be a security domain and H ⊆ D × E be a set of escape hatches.

1. If Rd,H , R
′
d,H ⊆ C ∗×C ∗ are strong (d ,H )-bisimulations, then (Rd,H ∪R′d,H )+ is a strong (d ,H )-

bisimulation.

2. If Rd,H ⊆ C ∗ × C ∗ is a strong (d ,H )-bisimulation then the following relations are strong (d ,H )-
bisimulations:

a) (Rd,H ∪Rd,H ↓)+ where

Rd,H ↓=
{
(〈ci〉, 〈c′i〉) |

∃n ∈ N0. ∃〈c0, . . . , cn〉, 〈c′0, . . . , c′n〉 ∈ Cn.
(〈c0, . . . , cn〉Rd,H 〈c′0, . . . , c′n〉 ∧ i ∈ {0, . . . , n})

}
,

b) (Rd,H ∪Rd,H ↑)+ where

Rd,H ↑=
{

(〈c0, . . . , cn〉, 〈c′0, . . . , c′n〉) ∈ Cn × Cn |
n ∈ N0 ∧ ∀i ∈ {0, . . . , n} . 〈ci〉Rd,H 〈c′i〉

}
,

Proof (Lemma 4). Let d ∈ D and H ⊆ D × E .

1. Let Rd,H , R
′
d,H ⊆ C ∗ × C ∗ be strong (d ,H )-bisimulations.

We show that (Rd,H ∪ R′d,H )+ is a strong (d ,H )-bisimulation by showing that R′d,H is a strong
(d ,H )-bisimulation up-to-Rd,H and applying Lemma 3.

The relation R′d,H is symmetric because it is a per by Definition 18. We get that Condition 1 in
Definition 26 holds for R′d,H directly from Condition 1 in Definition 18. We get that Condition 2
in Definition 26 holds for R′d,H from Condition 2 in Definition 18 and R′d,H ⊆ (Rd,H ∪R′d,H ).

2. Let Rd,H ⊆ C ∗ × C ∗ be a strong (d ,H )-bisimulation.

a) We show that (Rd,H ∪ Rd,H ↓)+ is a strong (d ,H )-bisimulation by showing that Rd,H ↓ is
a strong (d ,H )-bisimulation up-to-Rd,H and applying Lemma 3.

The relation Rd,H ↓ is symmetric because of its definition and because Rd,H is a per by
Definition 18. We get that Condition 1 in Definition 26 holds for Rd,H ↓ directly from the
definition of Rd,H ↓.
We get that Condition 2 in Definition 26 holds for Rd,H ↓ from that, firstly, by definition
of Rd,H ↓ for each (thr , thr ′) ∈ Rd,H ↓ and each k ∈ N0 we have that (thr ′′, thr ′′′) ∈ Rd,H

and k ′ ∈ N0 exist such that thr [k ] = thr ′′[k ′] and thr ′[k ] = thr ′′′[k ′], secondly, Condition 2
in Definition 18 holds for Rd,H , and, thirdly, Rd,H ↓⊆ (Rd,H ∪Rd,H ↓).
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b) We show that (Rd,H ∪ Rd,H ↑)+ is a strong (d ,H )-bisimulation by showing that Rd,H ↓ is
a strong (d ,H )-bisimulation up-to-Rd,H and applying Lemma 3.

The relation Rd,H ↑ is symmetric because of its definition and because Rd,H is a per by
Definition 18. We get that Conditions 1 in Definition 26 holds for Rd,H ↑ directly from the
definition of Rd,H ↑.
We get that Condition 2 in Definition 26 holds for Rd,H ↑ from that, firstly, by definition of
Rd,H ↑ for each (thr , thr ′) ∈ Rd,H ↑ and each k ∈ N0 such that k < #(thr) we have that
(thr ′′, thr ′′′) ∈ Rd,H and k ′ ∈ N0 exist such that thr [k ] = thr ′′[k ′] and thr ′[k ] = thr ′′′[k ′],
secondly, Condition 2 in Definition 18 holds for Rd,H , and, thirdly, Rd,H↑⊆(Rd,H∪Rd,H↑).

We are now ready to show that our scheduler-independence result for the schema WHAT1 holds.

Proof (Theorem 4). We want to show that if thr ∈ WHAT1, then thr ∈ WHATs for all schedulers s
and observation functions that are confined wrt. (D,≤, dom). Hence, let (D,≤, dom) be an mls-policy,
H ⊆ D × E be a set of local escape hatches and thr ∈ C ∗ be a multi-threaded program such that
thr ∈ WHAT1 for (D,≤, dom) and H ⊆ D × E . We choose an arbitrary scheduler s and observation
function obs ∈ Obs such that obs is confined wrt. (D,≤, dom).

From Definition 19 we get that for each d ∈ D exists a strong (d ,H )-bisimulation R′d,H ⊆ C ∗ × C ∗
with thrR′d,H thr . We choose arbitrary d ∈ D.

From Lemma 4 we get get that the relation Rd,H ⊆ C ∗×C ∗ that is defined by Rd,H = ((R′d,H ∪R′d,H ↓
)+ ∪ ((R′d,H ∪R′d,H ↓)+) ↑)+ also is a strong (d ,H )-bisimulation.

We show that Rd,H also is an s-specific strong (d ,H )-bisimulation.
The relation Rd,H is a strong (d ,H )-bisimulation and, hence, a per.
To show that Condition 1 in Definition 10 is fulfilled, we choose arbitrary cnf 1, cnf

′
1 ∈ Cnf and

an arbitrary Cls ∈ classes(R↑d,H ) such that cnf 1R
↑
d,H cnf ′1 hold. From the definition of the lift-

ing cnf 1R
↑
d,H cnf ′1 we get that for the thread pools pool(cnf 1)Rd,H pool(cnf ′1), for the memory states

mem(cnf 1) ∼H
d mem(cnf ′1), and for the scheduler states sst(cnf 1) ∼ sst(cnf ′1) hold.

To show that the equality in Condition 1 holds, we show that the sum in probs(cnf 1,Cls) has the
same addends as the sum in probs(cnf ′1,Cls). To achieve this, we show that (k , p)∈stepsTos(cnf 1,Cls)
if and only if (k , p)∈stepsTos(cnf ′1,Cls). We first show the implication from the left to the right. The
other direction follows from an analogous argument due to the symmetry of Rd,H , ∼H

d , and ∼.
We choose an arbitrary k ∈ N0 and an arbitrary p ∈ ]0; 1] such that (k , p) ∈ stepsTos(cnf 1,Cls) holds.

From the definition of stepsTos we get that cnf 2 ∈ Cls exists such that cnf 1 ⇒s
k ,p cnf 2. From the rule

SysStep we get that α ∈ C ∗ and c ∈ Cε exist such that 〈|pool(cnf 1)[k ],mem(cnf 1)|〉
α−_ 〈|c,mem(cnf 2)|〉

and (sst(cnf 1), obs(pool(cnf 1),mem(cnf 1)))
k
 s

p sst(cnf 2) with pool(cnf 2) = updatek (pool(cnf 1), c, α).
Since Condition 1 in Definition 18 is fulfilled and obs is confined wrt. (D,≤, dom), we get from

Lemma 2 that (sst(cnf ′1), obs(pool(cnf
′
1),mem(cnf ′1)))

k
 s

p s with s = sst(cnf 2) holds. From Condi-
tion 2 in Definition 18 we get that α′ ∈ C ∗, c′ ∈ Cε and m ′ ∈Mem exist such that
〈|pool(cnf ′1)[k ],mem(cnf ′1)|〉

α′−_ 〈|c′,m ′|〉. Hence, from the rule SysStep we get that cnf ′2 ∈ Cnf
exists such that cnf ′1 ⇒s

k ,p cnf ′2, pool(cnf ′2) = updatek (pool(cnf
′
1), c

′, α′), mem(cnf ′2) = m ′, and
sst(cnf ′2) = s.

We show that cnf ′2 ∈ Cls holds. From Condition 2 in Definition 18 follows that αRd,Hα
′ and cRd,H c′

holds. Hence, from the definitions of Rd,H and of updatek follows

updatek (pool(cnf 1), c, α) Rd,H updatek (pool(cnf
′
1), c

′, α′)

and, consequently, pool(cnf 2)Rd,H pool(cnf ′2). From Condition 2 in Definition 18 we also get that
mem(cnf 2) ∼H

d mem(cnf ′2) holds. We already know that sst(cnf 2) = s = sst(cnf ′2). From the
definition of the lifting R↑d,H we get that cnf 2R

↑
d,H cnf ′2 holds and, hence, cnf ′2 ∈ Cls.

From the definition of stepsTos we get (k , p) ∈ stepsTos(cnf ′1,Cls). Since we chose k and p arbitrarily,
we get that (k , p) ∈ stepsTos(cnf 1,Cls) =⇒ (k , p) ∈ stepsTos(cnf ′1,Cls) holds for all k ∈ N0 and
p ∈ ]0; 1]. As mentioned earlier, the other direction follows from an analogous argument due to the
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symmetry of Rd,H , ∼H
d and ∼. Hence, all addends that appear in probs(cnf 1,Cls) also appear in

probs(cnf ′1,Cls) and vice versa. Consequently, probs(cnf 1,Cls) = probs(cnf ′1,Cls) holds and Condition
1 in Definition 10 is fulfilled.

It remains to show that Condition 2 in Definition 10 is fulfilled. We choose arbitrary cnf 1, cnf 2 ∈ Cnf ,
an arbitrary k ∈ N0, and an arbitrary p ∈ ]0; 1] such that cnf 1 ∈

⋃
classes(R↑d,H ) and cnf 1 ⇒s

k ,p cnf 2
hold. From the rule SysStep we get that α∈C ∗ and c∈Cε exist such that 〈|pool(cnf 1)[k ],mem(cnf 1)|〉
α−_ 〈|c,mem(cnf 2)|〉 and pool(cnf 2) = updatek (pool(cnf 1), c, α) hold.
We show that cnf 2 ∈

⋃
classes(R↑d,H ) holds. From Condition 2 in Definition 18 we get that

〈c〉Rd,H 〈c〉 and αRd,Hα. Hence, from the definition of Rd,H follows

updatek (pool(cnf 1), c, α)Rd,Hupdatek (pool(cnf 1), c, α)

and, consequently, pool(cnf 2)Rd,H pool(cnf 2). From reflexivity of ∼H
d and ∼ follow that mem(cnf 2) ∼H

d

mem(cnf 2) and sst(cnf 2) ∼ sst(cnf 2). Hence, from the definition of the lifting R↑d,H we get that
cnf 2R

↑
d,H cnf 2 and, consequently, cnf 2 ∈

⋃
classes(R↑d,H ) holds.

Since we chose cnf 1, cnf 2, k ∈ N0, and p ∈ ]0; 1] arbitrarily we can conclude that λcnf ∈ Cnf . (cnf ∈⋃
classes(R↑d,H )) is an invariant under s. Consequently, Condition 2 in Definition 10 is fulfilled.
Since all conditions in Definition 10 are fulfilled, Rd,H is an s-specific strong (d ,H )-bisimulation.

Since we chose d arbitrarily we get that a strong (d ,H )-bisimulation exists for each d ∈ D that relates
thr to itself. Hence, we get from Definition 11 that thr ∈ WHATs for scheduler s and observation
function obs. Since we chose s and obs arbitrarily such that obs is confined wrt. (D,≤, dom), we can
finally conclude that thr ∈ WHATs holds for all schedulers s and all observation functions obs ∈ Obs
that are confined wrt. (D,≤, dom).

E.3. Scheduler Independence of WHAT&WHERE

This section contains the proof of Theorem 5.
To prove that our scheduler-independence result for WHAT&WHERE holds, we first show that

whenever a strong (d , lH ,PP)-bisimulation exists that relates a thread pool thr to itself, then there
also exists a strong (d , lH ,PP)-bisimulation that relates all thread pools that can be constructed from
thread pools that are related in Rd,lH ,PP using updatek .

Lemma 5. Let d ∈ D be a security domain, lH ⊆ D×E×PP be a set of local escape hatches, PP ⊆ PP
be a set of program points, Rd,lH ,PP ⊆ C ∗ × C ∗ be a strong (d , lH ,PP)-bisimulation and n ∈ N0 be a
natural number. The relation (

⋃
m≤n Rm) ⊆ C ∗×C ∗ that is defined by R0=Rd,lH ,PP and for m > 0 by

Rm=

( updatek (thr , c, α), updatek (thr
′, c′, α′))

| k < #(thr) ∧ ∃j ∈ N0. (j < m =⇒ thr Rj thr
′)

∧∃j ∈ N0. (j < m =⇒ 〈c〉 Rj 〈c′〉) ∧ ∃j ∈ N0. (j < m =⇒ α Rj α
′)

∧∀j ∈ N0. ∀thr ′′.
(
j < m =⇒ (thr ′′, updatek (thr , c, α)) /∈Rj

∧(updatek (thr , c, α), thr
′′) /∈Rj

)
∧∀j ∈ N0. ∀thr ′′.

(
j < m =⇒ (thr ′′, updatek (thr

′, c′, α′)) /∈Rj
∧(updatek (thr

′, c′, α′), thr ′′) /∈Rj

)


is a strong (d , lH ,PP)-bisimulation.

Proof. Let d ∈ D be a security domain, lH ⊆ D ×E × PP be a set of local escape hatches, PP ⊆ PP
be a set of program points, Rd,lH ,PP ⊆ C ∗ × C ∗ be a strong (d , lH ,PP)-bisimulation and n ∈ N0 be a
natural number. We show that each relation Rm with m ∈ N0 and m ≤ n is symmetric and transitive
and that the relation (

⋃
m≤n Rm) is a strong (d , lH ,PP)-bisimulation by induction over the number n

of construction steps.
The induction base is n = 0. Here we have (

⋃
0 R0) =R0=Rd,lH ,PP . Hence, R0 is symmetric and

transitive, and (
⋃

0 R0) is a strong (d , lH ,PP)-bisimulation by definition.
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Our induction hypothesis is that for all m ≤ n the relation Rm is symmetric and transitive, and⋃
m≤n Rm is a strong (d , lH ,PP)-bisimulation.
Let n ∈ N0 be arbitrary for the induction step.
We show thatRn+1 is symmetric. We choose an arbitary pair of related thread pools updatek (thr , c, α)

Rn+1 updatek (thr
′, c′, α′). From the definition of Rn+1 we get that Rh, Ri and Rj with h < n+1 and

i < n+ 1 and j < n+ 1 exist such that thr Rh thr ′, 〈c〉 Ri 〈c′〉 and α Rj α′ hold. From the induction
hypothesis we get that thr ′ Rh thr , 〈c′〉 Ri 〈c〉 and α′ Rj α also hold. From the definition of Rn+1 we
get that updatek (thr

′, c′, α′) Rn+1 updatek (thr , c, α) also holds. Consequently, Rn+1 is symmetric.
We show that Rn+1 is transitive. We choose two arbitrary thread pools updatek (thr , c, α) and

updatek (thr
′, c′, α′) such that the thread pools are related by Rn+1 with an arbitrary distance l. From

the definition of Rn+1 we get that Rh, Ri and Rj with h < n + 1 and i < n + 1 and j < n + 1 exist
such that thr and thr ′, 〈c〉 and 〈c′〉, and α and α′ are each related respectively by a sequence of Rh,
Ri, and Rj with distance l. From the induction hypothesis we get that thr Rh thr ′, 〈c〉 Ri 〈c′〉 and
α Rj α

′ hold. From the definition of Rn+1 we get that updatek (thr , c, α) Rn+1 updatek (thr
′, c′, α′) also

holds. Consequently, Rn+1 is transitive.
From the definition of Rn+1 we get that Rn+1 and (

⋃
m≤n Rm) have disjoint domains. Consequently,

we can conclude with the induction hypothesis that (
⋃
m≤n+1 Rm) is symmetric and transitive. Hence,

(
⋃
m≤n+1 Rm) is a per.
It remains to show that (

⋃
m≤n+1 Rm) fulfills the three conditions in Definition 20. For pairs

thr(
⋃
m≤n Rn)thr

′ this follows directly from the induction hypothesis. Hence we focus on pairs from
Rn+1. We choose an arbitrary pair updatek (thr , c, α) Rn+1 updatek (thr

′, c′, α′).
We show that the pair fulfills Condition 1. From definition of Rn+1 we get that Rh, Ri and Rj with

h < n+1 and i < n+1 and j < n+1 exist such that thr Rh thr ′, 〈c〉 Ri 〈c′〉 and α Rj α′ hold. Hence,
thr(

⋃
m≤n Rm)thr ′, 〈c〉(

⋃
m≤n Rm)〈c′〉 and α(

⋃
m≤n Rm)α′ hold. From the induction hypothesis

we get that #(thr) = #(thr ′), #(〈c〉) = #(〈c′〉), and #(α) = #(α′) hold. From the definition of
updatek we get that #(updatek (thr , c, α)) = #(thr) + #(〈c〉) + #(α) and #(updatek (thr

′, c′, α′)) =
#(thr ′) + #(〈c′〉) + #(α′) and, consequently, #(updatek (thr , c, α)) = #(updatek (thr

′, c′, α′)). Hence,
Condition 1 is fulfilled.

To show that Conditions 2 and 3 hold we exploit the point-wise definition of these conditions. From
the induction hypothesis we get that for all i < #(thr) the pair (thr [i ], thr ′[i ]), and for all j < #(α) the
pair (α[j ], α′[j ]), and the pair (c, c′) fulfill Conditions 2 and 3. Hence, from the definition of updatek we
get that for all i < #(updatek (thr , c, α)) the pair (updatek (thr , c, α)[i ], updatek (thr

′, c′, α′)[i ]) fulfills
Conditions 2 and 3 from the fact that:

for i < k: (thr [i ], thr ′[i ]) fulfills Conditions 2 and 3,

for i = k, if c 6= ε: (〈c〉, 〈c′〉) fulfills Conditions 2 and 3,

for i = k +#(〈c〉) + j with j < #(α): (α[j ], α′[j ]) fulfills Conditions 2 and 3,

for k +#(〈c〉) + #(α) < i < #(updatek (thr , c, α)):
(thr [i −#(〈c〉)−#(α)], thr ′[i −#(〈c〉)−#(α)]) fulfills Conditions 2 and 3.

Hence, exploiting the point-wise definitions of Conditions 2 and 3 we can conclude that the pair
(updatek (thr , c, α), updatek (thr

′, c′, α′)) fulfills Conditions 2 and 3. Since we chose the pair arbitrar-
ily we conclude that this holds for all pairs in Rn+1. Finally we get (

⋃
m<n+1 Rn+1) is a per and

fulfills all conditions of strong (d , lH ,PP)-bisimulations and, consequently, is a strong (d , lH ,PP)-
bisimulation.

We are now ready to show that our scheduler-independence result for the schema WHAT&WHERE
holds.

Proof (Theorem 5). We want to show that if thr ∈WHAT&WHERE, then thr ∈WHAT&WHEREs

for all schedulers s and observation functions that are confined wrt. (D,≤, dom). Hence, let (D,≤, dom)
be an mls-policy, lH ⊆ D × E × PP be a set of local escape hatches and thr ∈ C ∗ be a multi-threaded
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program such that thr ∈ WHAT&WHERE for (D,≤, dom) and lH ⊆ D × E × PP . We choose an
arbitrary scheduler s and observation function obs ∈ Obs such that obs is confined wrt. (D,≤, dom).

From Definition 21 we get that for each d ∈ D and each PP ⊆ PP exists a strong (d , lH ,PP)-
bisimulation that relates thr to itself. We choose arbitrary d ∈ D and PP ∈ PP .

From Lemma 5 we get that a relation that is constructed inductively as defined in Lemma 5 also
is a strong (d , lH ,PP)-bisimulation and relates thread pools that are constructed from related thread
pools with updatek . We choose Rd,lH ,PP ⊆ C ∗ × C ∗ such that it is a relation that is constructed this
way with a sufficiently high number n of construction steps steps such that all thread pools that are
constructed during the execution of thr appear in the relation.

We show that Rd,lH ,PP also is an s-specific strong (d , lH ,PP)-bisimulation.
The relation Rd,lH ,PP is a strong (d , lH ,PP)-bisimulation and, hence, a per. Condition 1 in Defini-

tion 15 follows directly from Condition 2 in Definition 20. It remains to show that Conditions 2 and 3
in Definition 15 are fulfilled.

To show that Condition 2 is fulfilled, we choose arbitrary cnf 1, cnf
′
1 ∈ Cnf and an arbitrary

Cls ∈ classes(R↑d,lH ,PP ) such that the precondition of the implication, i.e. htchss(lH , cnf 1,Cls) ∪
htchss(lH , cnf ′1,Cls) ⊆ htchLoc(lH lH ,PP), and cnf 1R

↑
d,lH ,PPcnf

′
1 hold, because otherwise Condi-

tion 2 were fulfilled trivially. From the definition of the lifting cnf 1R
↑
d,lH ,PPcnf

′
1 we get that for

the pools pool(cnf 1) Rd,lH ,PP pool(cnf ′1), for the memory states mem(cnf 1) ∼H
d mem(cnf ′1) with

H = htchLoc(lH ,PP), and for the scheduler states sst(cnf 1) ∼ sst(cnf ′1) hold.
To show that the equality in Condition 2 holds, we show that the sum in probs(cnf 1,Cls) has the

same addends as the sum in probs(cnf ′1,Cls). To achieve this, we show that (k , p)∈stepsTos(cnf 1,Cls)
if and only if (k , p) ∈ stepsTos(cnf ′1,Cls). We first show the implication from the left to the right.
The other direction follows from an analogous argument due to the symmetry of Rd,lH ,PP , ∼H

d with
H = htchLoc(lH ,PP), and ∼.

We choose an arbitrary k ∈ N0 and an arbitrary p ∈ ]0; 1] such that (k , p) ∈ stepsTos(cnf 1,Cls) holds.
From the definition of stepsTos we get that cnf 2 ∈ Cls exists such that cnf 1 ⇒s

k ,p cnf 2. From the rule
SysStep we get that α ∈ C ∗ and c ∈ Cε exist such that 〈|pool(cnf 1)[k ],mem(cnf 1)|〉

α−_ 〈|c,mem(cnf 2)|〉
and (sst(cnf 1), obs(pool(cnf 1),mem(cnf 1)))

k
 s

p sst(cnf 2) with pool(cnf 2) = updatek (pool(cnf 1), c, α).
Since Condition 1 in Definition 20 is fulfilled and obs is confined wrt. (D,≤, dom), we get from

Lemma 2 that (sst(cnf ′1), obs(pool(cnf
′
1),mem(cnf ′1)))

k
 s

p s with s = sst(cnf 2) holds. From Condition
3 in Definition 20 we get that α′ ∈ C ∗, c′ ∈ Cε and m ′ ∈ Mem exist such that the execution step
〈|pool(cnf ′1)[k ],mem(cnf ′1)|〉

α′−_ 〈|c′,m ′|〉 is derivable. Hence, from the rule SysStep we get that cnf ′2 ∈
Cnf exists such that cnf ′1 ⇒s

k ,p cnf ′2, pool(cnf
′
2) = updatek (pool(cnf

′
1), c

′, α′), mem(cnf ′2) = m ′, and
sst(cnf ′2) = s.

We show that cnf ′2 ∈ Cls holds. From Condition 3 in Definition 20 follows that α Rd,lH ,PP α′ and
c Rd,lH ,PP c′ holds. Hence, from the definition of Rd,lH ,PP follows updatek (pool(cnf 1), c, α) Rd,lH ,PP

updatek (pool(cnf
′
1), c

′, α′) and, consequently, pool(cnf 2) Rd,lH ,PP pool(cnf ′2). From Condition 3 in Def-
inition 20 we also getmem(cnf 2)∼H

d m ′∨htchLoc(lH , pp(pool(cnf 1)[k ])) 6⊆ H with H =htchLoc(lH ,PP).
Since we choose cnf 1, cnf

′
1 and Cls such that htchss(lH , cnf 1,Cls) ∪ htchss(lH , cnf ′1,Cls) ⊆ H holds,

we directly get that htchLoc(lH , pp(pool(cnf 1)[k ])) ⊆ H with H = htchLoc(lH ,PP) holds. Hence, we
get mem(cnf 2) ∼H

d mem(cnf ′2) with H = htchLoc(lH ,PP). We already know that sst(cnf 2) = s =
sst(cnf ′2). From the definition of the lifting R↑d,lH ,PP we get that cnf 2R

↑
d,lH ,PPcnf

′
2 holds and, hence,

cnf ′2 ∈ Cls.
From the definition of stepsTos we get (k , p) ∈ stepsTos(cnf ′1,Cls). Since we chose k and p arbitrarily,

we get that (k , p) ∈ stepsTos(cnf 1,Cls) =⇒ (k , p) ∈ stepsTos(cnf ′1,Cls) holds for all k ∈ N0 and p ∈
]0; 1]. As mentioned earlier, the other direction follows from an analogous argument due to the symmetry
of Rd,lH ,PP , ∼H

d with H = htchLoc(lH ,PP) and ∼. Hence, all addends that appear in probs(cnf 1,Cls)
also appear in probs(cnf ′1,Cls) and vice versa. Consequently, probs(cnf 1,Cls) = probs(cnf ′1,Cls) holds
and Condition 2 in Definition 15 is fulfilled.

It remains to show that Condition 3 in Definition 15 is fulfilled. We choose arbitrary cnf 1, cnf 2 ∈ Cnf ,
an arbitrary k ∈ N0, and an arbitrary p ∈ ]0; 1] such that cnf 1 ∈

⋃
classes(R↑d,lH ,PP ) and cnf 1 ⇒s

k ,p
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∀thr , thr ′ ∈ C ∗. ∀m1,m
′
1 ∈Mem . ∀k ∈ N0. ∀α ∈ C ∗. ∀c ∈ Cε. ∀m2 ∈Mem .

thr R thr ′ ∧m1 ∼htchLoc(lH ,PP)
d m ′1 ∧ 〈|thr [k ],m1|〉

α−_ 〈|c,m2|〉
=⇒ ∃α′ ∈ C ∗. ∃c ∈ Cε. ∃m ′2 ∈Mem .[

〈|thr ′[k ],m ′1|〉
α′−_ 〈|c′,m ′2|〉 ∧ 〈c〉(R ∪Rd,lH ,PP )〈c′〉 ∧ α(R ∪Rd,lH ,PP )α

′

∧
(

m2 ∼htchLoc(lH ,PP)
d m ′2 ∨ htchLoc(lH , pp(thr [k ])) * htchLoc(lH ,PP)

) ]


Figure 8: Condition 3 in the definition of disjoint strong (d , lH ,PP)-bisimulations up-to Rd,lH ,PP

cnf 2. From the rule SysStep we get that α∈C ∗ and c∈Cε exist such that 〈|pool(cnf 1)[k ],mem(cnf 1)|〉
α−_ 〈|c,mem(cnf 2)|〉 and pool(cnf 2) = updatek (pool(cnf 1), c, α) hold.
We show that cnf 2 ∈

⋃
classes(R↑d,lH ,PP ) holds. From Condition 3 in Definition 20 we get that

〈c〉 Rd,lH ,PP 〈c〉 and α Rd,lH ,PP α. Hence, from the definition of Rd,lH ,PP follows

updatek (pool(cnf 1), c, α) Rd,lH ,PP updatek (pool(cnf 1), c, α)

and, consequently, pool(cnf 2) Rd,lH ,PP pool(cnf 2). From reflexivity of ∼H
d with arbitrary H ⊆ D × E

follows that mem(cnf 2) ∼H
d mem(cnf 2) with H = htchLoc(lH ,PP). From reflexivity of ∼ we get

sst(cnf 2) ∼ sst(cnf 2). Hence, from the definition of the lifting R↑d,lH ,PP we get that cnf 2R
↑
d,lH ,PPcnf 2

and, consequently, cnf 2 ∈
⋃
classes(R↑d,lH ,PP ) holds.

Since we chose cnf 1, cnf 2, k ∈ N0, and p ∈ ]0; 1] arbitrarily we can conclude that λcnf ∈ Cnf . (cnf ∈⋃
classes(R↑d,lH ,PP )) is an invariant under s. Consequently, Condition 3 in Definition 15 is fulfilled.
Since all conditions in Definition 15 are fulfilled, Rd,lH ,PP is an s-specific strong (d , lH ,PP)-bisimu-

lation. Since we chose d and PP arbitrarily we get that a strong (d , lH ,PP)-bisimulation exists for
each d ∈ D and each PP ⊆ PP that relates thr to itself. Hence, we get from Definition 16 that thr ∈
WHAT&WHEREs for scheduler s and observation function obs. Since we chose s and obs arbitrarily
such that obs is confined wrt. (D,≤, dom), we can finally conclude that thr ∈WHAT&WHEREs holds
for all schedulers s and all observation functions obs ∈ Obs that are confined wrt. (D,≤, dom).

F. Compositionality of WHAT&WHERE

This section contains the proof of Theorem 6.
We apply the up-to technique. That is, we define an up-to relation that is similar to strong (d , lH ,PP)-

bisimulation, except that in the bisimulation step it is permitted to reach pairs in a given strong
(d , lH ,PP)-bisimulation. The corresponding up-to lemma has as precondition that the bisimulation
up-to relates different thread pools than the bisimulation.

Definition 27. Let d ∈ D be a security domain, lH ⊆ D × E × PP be a set of local escape hatches,
PP ⊆ PP be a set of program points, and Rd,lH ,PP ⊆ C ∗ × C ∗ be a strong (d , lH ,PP)-bisimulation. A
disjoint strong (d , lH ,PP)-bisimulation up-to-Rd,lH ,PP is a per R⊆ C ∗ × C ∗ that fulfills the following
three conditions:

1. ∀(thr , thr ′) ∈R . #(thr) = #(thr ′),

2. ∀(thr , thr ′) ∈R . ∀k ∈ N0.
k < #(thr) =⇒ (NDC d(thr [k ]) ∨ IDC d(thr [k ], htchLoc(lH , pp(thr [k ])))),

3. R satisfies the formula in Figure 8.

Lemma 6. Let lH ⊆ D ×E ×PP be a set of local escape hatches, d ∈ D a security domain, PP ⊆ PP
a set of program points, Rd,lH ,PP ⊆ C ∗ × C ∗ be a strong (d , lH ,PP)-bisimulation, and R ⊆ C ∗ × C ∗ be
a disjoint strong (d , lH ,PP)-bisimulation up-to-Rd,lH ,PP . If AR,refl 6= ARd,lH ,PP ,refl then R ∪Rd,lH ,PP

is a strong (d , lH ,PP)-bisimulation.
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Proof. Let lH ⊆ D ×E × PP be a set of local escape hatches, d ∈ D be a security domain, PP ⊆ PP
be a set of program points, Rd,lH ,PP ⊆ C ∗×C ∗ be a strong (d , lH ,PP)-bisimulation, and R ⊆ C ∗×C ∗
be a disjoint strong (d , lH ,PP)-bisimulation up-to-Rd,lH ,PP such that AR,refl 6= ARd,lH ,PP ,refl.

We get that R ∪Rd,lH ,PP is symmetric directly from symmetry of R and Rd,lH ,PP . We get that
Rd,lH ,PP ∪R′d,lH ,PP is transitive from transitivity of R and Rd,lH ,PP are transitive, because no thread
pool is related by both R and Rd,lH ,PP .

We get that Conditions 1 and 2 in Definition 20 hold for R ∪ Rd,lH ,PP directly from that Conditions 1
and 2 in Definitions 20 and 27 hold for each of R and Rd,lH ,PP .

We get that Condition 3 in Definition 20 holds for R ∪Rd,lH ,PP from that for each (thr , thr ′) ∈ (R
∪Rd,lH ,PP ) we have thr R thr ′ or thrRd,lH ,PP thr

′, from that Condition 3 in Definition 27 holds R and
Condition 3 in Definition 20 holds for Rd,lH ,PP , and from that Rd,lH ,PP ⊆ (R ∪Rd,lH ,PP ).

We can directly apply this lemma to prove that the union of strong (d , lH ,PP)-bisimulations is a
strong (d , lH ,PP)-bisimulation, if their related thread pools are disjoint.

Lemma 7. Let lH ⊆ D ×E ×PP be a set of local escape hatches, d ∈ D a security domain, PP ⊆ PP
a set of program points, and Rd,lH ,PP , R

′
d,lH ,PP ⊆ C ∗ × C ∗ be strong (d , lH ,PP)-bisimulations. If

ARd,lH ,PP ,refl 6= AR′d,lH ,PP ,refl then Rd,lH ,PP ∪R′d,lH ,PP is a strong (d , lH ,PP)-bisimulation.

Proof. Let lH ⊆ D ×E × PP be a set of local escape hatches, d ∈ D be a security domain, PP ⊆ PP
be a set of program points, and Rd,lH ,PP , R

′
d,lH ,PP ⊆ C ∗×C ∗ be strong (d , lH ,PP)-bisimulations such

that ARd,lH ,PP ,refl 6= AR′d,lH ,PP ,refl.
We show thatRd,lH ,PP is a disjoint strong (d , lH ,PP)-bisimulation up-to-R′d,lH ,PP From Definition 20

we get directly that Rd,lH ,PP is a per, and that Conditions 1 and 2 of Definition 27 hold. From
Condition 3 in Definition 20 and from Rd,lH ,PP ⊆ (Rd,lH ,PP ∪ R′d,lH ,PP ) we get that Condition 3 in
Definition 27 holds.

Proof (Theorem 6).
Let c0, . . . , cn−1 ∈C such that 〈c0〉, . . . , 〈cn−1〉 ∈WHAT&WHERE. In addition, let e ∈ E such that

for all m,m ′ ∈Mem and d ∈ D
(m =d m ′ =⇒ eval(e,m) = eval(e ′,m ′))) holds.

Sequential Composition: We choose d ∈ D, PP ⊆ PP arbitrarily.

We show that 〈c1;c2〉 R0 〈c1;c2〉 holds for a disjoint strong (d , lH ,PP)-bisimulation up-to-Rd,lH ,PP

R0 ⊆ C ∗×C ∗ where Rd,lH ,PP ⊆ C ∗×C ∗ is a strong (d , lH ,PP)-bisimulation such that AR0,refl 6=
ARd,lH ,PP ,refl. From Lemma 6 we get that R0 ∪Rd,lH ,PP is a strong (d , lH ,PP)-bisimulation.
This, together with 〈c1;c2〉(R0 ∪Rd,lH ,PP )〈c1;c2〉 and the fact that we choose d and PP arbitrary,
proves that 〈c1;c2〉 ∈WHAT&WHERE.

From definition of WHAT&WHERE we have that R′d,lH ,PP,1R
′
d,lH ,PP,2⊆ C ∗ × C ∗ exist such

that 〈c1〉 R′d,lH ,PP,1 〈c1〉 and 〈c2〉 R′d,lH ,PP,2 〈c2〉. Let Rd,lH ,PP,1 be the relation R′d,lH ,PP,1

restricted to thread pools whose threads only contain program points of c1 and Rd,lH ,PP,2 be the
relation R′d,lH ,PP,2 restricted to thread pools whose threads only contain program points of c2.
Those restricted relations are strong (d , lH ,PP)-bisimulations because by definition of operational
semantics thread pools with program points not in c1 or c2 are not reachable from c1 or c2, and,
since c1 and c2 trivially do only contain program points of themselves, we have 〈c1〉 Rd,lH ,PP,1 〈c1〉
and 〈c2〉 Rd,lH ,PP,2 〈c2〉. Further, since program points are unique in the command c1;c2, we have
ARd,lH ,PP,1,refl 6= ARd,lH ,PP,2,refl. Hence, from Lemma 7 we get that Rd,lH ,PP,1 ∪ Rd,lH ,PP,2 is a
strong (d , lH ,PP)-bisimulation.

We now define a relation R0 such that it is a disjoint strong (d , lH ,PP)-bisimulation up-to-
(Rd,lH ,PP,1 ∪ Rd,lH ,PP,2).

Let
R0= {(〈c1;c2〉, 〈c′1;c′2〉) | 〈c1〉 Rd,lH ,PP,1 〈c′1〉 ∧ 〈c2〉 Rd,lH ,PP,2 〈c′2〉} .

35



Since thread pools related by R0 are constructed according to the grammar of C from thread
pools related by Rd,lH ,PP,1 or Rd,lH ,PP,2, we have AR0,refl 6= A(Rd,lH ,PP,1∪Rd,lH ,PP,2),refl.

That R0 is a per follows from that Rd,lH ,PP,1 and Rd,lH ,PP,2 are pers. We get that Condition 1
in Definition 27 holds from that R0 only relates pools of length 1.

We show that Condition 2 in Definition 27 holds. Let ca, c
′
a ∈ C , and thr0, thr

′
0 ∈R0 such that

thr0 = 〈ca〉 and thr ′0 = 〈c′a〉. From definition of R0 we get ca1, ca2, c
′
a1, c

′
a2 ∈ C exist such that

ca = ca1;ca2, c′a = c′a1;c
′
a2, 〈ca1〉 Rd,lH ,PP,1 〈c′a1〉, and 〈ca2〉 Rd,lH ,PP,2 〈c′a2〉. Let k ∈ N0 such that

k < #(thr0), i.e. k = 0 and thr [k ] = ca. From the operational semantics we get Jca K = Jca1 K and
pp(ca) = pp(ca1). Hence by Definition 6 of IDC d we have:

IDC d(ca, htchLoc(lH , pp(ca)))

⇐⇒

 (∃m,m ′ ∈Mem . m =d m ′ ∧ Jca K(m) 6=d Jca K(m ′))

∧
(
∀m,m ′ ∈Mem .
m ∼htchLoc(lH ,pp(ca))

d m ′ =⇒ Jca K(m) =d Jca K(m ′)

) 
⇐⇒

 (∃m,m ′ ∈Mem . m =d m ′ ∧ Jca1 K(m) 6=d Jca1 K(m ′))

∧
(
∀m,m ′ ∈Mem .
m ∼htchLoc(lH ,pp(ca1))

d m ′ =⇒ Jca1 K(m) =d Jca1 K(m ′)

) 
⇐⇒ IDC d(ca1, htchLoc(lH , pp(ca1)))

With an analogous argument by Definition 7 of NDC d we have:

NDC d(ca)⇐⇒ NDC d(ca1) .

From 〈ca1〉 Rd,lH ,PP,1 〈c′a1〉 and Condition 3 of Definition 20 we get

IDC d(ca1, htchLoc(lH , pp(ca1))) ∨NDC d(ca1) .

From the shown equivalences we also have

IDC d(ca, htchLoc(lH , pp(ca))) ∨NDC d(ca) .

This is what we needed to show.

We now show that Condition 3 in Definition 27 holds. Let ca, c
′
a, cb ∈ C , and thr0, thr

′
0 ∈R0,

ma,m
′
a,mb ∈ Mem such that thr0 = 〈ca〉, thr ′0 = 〈c′a〉, ma ∼htchLoc(lH ,PP)

d m ′a, and 〈|ca,ma|〉
α−_

〈|cb,mb|〉.
From the definition of operational semantics we get cb1 ∈ Cε exists such that 〈|ca1,ma|〉

α−_
〈|cb1,mb|〉, and cb = ca2 (in the case of cb1 = ε) or cb = cb1;ca2.

From ca1 Rd,lH ,PP,1 c′a1 and Condition 3 in Definition 20 we get α′ ∈ C ∗, c′b1 ∈ Cε, and m ′b ∈Mem
exist such that 〈|c′a1,m ′a|〉

α′−_ 〈|c′b1,m ′b|〉, 〈cb1〉 Rd,lH ,PP,1 〈c′b1〉, α Rd,lH ,PP,1 α
′, and

mb ∼htchLoc(lH ,PP)
d m ′b ∨ htchLoc(lH , pp(ca1)) 6⊆ htchLoc(lH ,PP)

From 〈|c′a1,m ′a|〉
α′−_ 〈|c′b1,m ′b|〉 and from the definition of operational semantics we get 〈|c′a,m ′a|〉

α′−_
〈|c′b,m ′b|〉, where c′b = c′a2 (in the case c′b1 = ε) or
c′b = c′b1;c

′
a2. Hence we get 〈cb〉(R0 ∪ Rd,lH ,PP,1 ∪ Rd,lH ,PP,2)〈c′b〉. From α Rd,lH ,PP,1 α

′ we get
α(R0 ∪ Rd,lH ,PP,1 ∪ Rd,lH ,PP,2)α

′.

Hence we showed that the Condition 3 of Definition 27 holds.

Conditional Composition: We choose d ∈ D, PP ⊆ PP arbitrarily.

We show that 〈ifι e then c0 else c1 fi〉 R0 〈ifι e then c0 else c1 fi〉 holds for a disjoint strong
(d , lH ,PP)-bisimulation up-to-Rd,lH ,PP R0 ⊆ C ∗ × C ∗ where Rd,lH ,PP ⊆ C ∗ × C ∗ is a strong
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(d , lH ,PP)-bisimulation such that AR0,refl 6= ARd,lH ,PP ,refl. From Lemma 6 we get that R0

∪Rd,lH ,PP is a strong (d , lH ,PP)-bisimulation. This, together with 〈ifι e then c0 else c1 fi〉(R0

∪Rd,lH ,PP )〈ifι e then c0 else c1 fi〉 and the fact that we choose d and PP arbitrary, proves that
〈ifι e then c0 else c1 fi〉 ∈WHAT&WHERE.

From definition of WHAT&WHERE we have that R′d,lH ,PP,0, R
′
d,lH ,PP,1 ⊆ C ∗ × C ∗ exist such

that 〈c0〉 R′d,lH ,PP,0 〈c0〉 and 〈c1〉 R′d,lH ,PP,1 〈c1〉. Let Rd,lH ,PP,0 be the relation R′d,lH ,PP,0

restricted to thread pools whose threads only contain program points of c0 and Rd,lH ,PP,1 be
the relation R′d,lH ,PP,1 restricted to thread pools whose threads only contain program points
of c1. Those restricted relations are strong (d , lH ,PP)-bisimulations because by definition of
operational semantics thread pools with program points not in c0 or c1 are not reachable from
c0 or c1, and, since c0 and c1 trivially do only contain program points of themselves, we have
〈c0〉 Rd,lH ,PP,0 〈c0〉 and 〈c1〉 Rd,lH ,PP,1 〈c1〉. Further, since program points are identifier for
subcommands in the command ifι e then c0 else c1 fi, we have ARd,lH ,PP,0,refl 6= ARd,lH ,PP,1,refl.
Hence, from Lemma 7 we get that Rd,lH ,PP,0 ∪ Rd,lH ,PP,1 is a strong (d , lH ,PP)-bisimulation.

We now define a relation R0 such that it is a disjoint strong (d , lH ,PP)-bisimulation up-to-
Rd,lH ,PP,0 ∪ Rd,lH ,PP,1. Let

R0={(〈ifι e then c0 else c1 fi〉, 〈ifι′ e then c′0 else c′1 fi〉) |
∀m,m ′ ∈Mem .
(m =d m ′ =⇒ eval(e,m) = eval(e,m ′))

∧ 〈c0〉 Rd,lH ,PP,0 〈c′0〉 ∧ 〈c1〉 Rd,lH ,PP,1 〈c′1〉}

Since thread pools related by R0 are constructed according to the grammar of C from thread pools
related by Rd,lH ,PP,0 or Rd,lH ,PP,1, we have AR0,refl 6= A(Rd,lH ,PP,0∪Rd,lH ,PP,1),refl. That R0 is a per
follows from that Rd,lH ,PP,0 and Rd,lH ,PP,1 are pers. We get that Condition 1 in Definition 27
holds from that R0 only relates pools of length 1.

Let ca, c′a ∈ C , and thr0, thr
′
0 ∈R0 such that thr0 = 〈ca〉 and thr ′0 = 〈c′a〉. From definition of R0

we get c0, c′1, c′0, c′1 ∈ C and ι′ ∈ PP exist such that

• ca = ifι e then c0 else c1 fi,

• ca′ = ifι′ e then c′0 else c′1 fi,

• ∀m,m ′ ∈Mem . (m =d m ′ =⇒ eval(e,m) = eval(e,m ′)), and

• 〈c0〉 Rd,lH ,PP,0 〈c′0〉 ∧ 〈c1〉 Rd,lH ,PP,1 〈c′1〉.
We show that Condition 2 in Definition 27 holds. Let k ∈ N0 such that k < #(thr0), i.e. k = 0
and thr [k ] = ca. From the operational semantics we get that Jca K is the identity function on
Mem . Hence, from Definition 7 of NDC d we get NDC d(thr [k ]). This for that Condition 2 in
Definition 27 holds.

We now show that Condition 3 in Definition 27 holds.

Let cb ∈ C , ma,m
′
a,mb ∈ Mem , ma ∼htchLoc(lH ,PP)

d m ′a, and 〈|ca,ma|〉
α−_ 〈|cb,mb|〉. From the

definition of operational semantics we get mb = ma, cb = c0 (in the case of eval(e,ma) = True)
or cb = c1 (in the case of eval(e,ma) = False), and α = 〈〉. From the definition of operational
semantics we get 〈|c′a,m ′a|〉

〈〉
−_ 〈|c′b,m ′a|〉, where cb′ = c′0 (in the case of eval(e,m ′a) = True) or

c′b = c′1 (in the case of eval(e,mb) = False). From the fact that Jca K and Jc′a K are the identity
function on Mem , we get mb ∼htchLoc(lH ,PP)

d m ′a. Further, from α = 〈〉 we get α Rd,lH ,PP,0 〈〉,
i.e. α(R0 ∪ Rd,lH ,PP,0 ∪ Rd,lH ,PP,1)〈〉. Finally, from ma =d m ′a and ∀ma,m

′
a. (ma =d m ′a =⇒

eval(e,ma) = eval(e,m ′a)) we get (cb = c0 ∧ cb′ = c′0) or (cb = c1 ∧ cb′ = c′1). From that we get
cb(R0 ∪ Rd,lH ,PP,0 ∪ Rd,lH ,PP,1)c

′
b.

Parallel Composition: We choose d ∈ D, PP ⊆ PP arbitrarily.
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We show that 〈spawnι(c0, . . . , cn−1)〉 R0 〈spawnι(c0, . . . , cn−1)〉 holds for some disjoint strong
(d , lH ,PP)-bisimulation up-to-Rd,lH ,PP R0 ⊆ C ∗ × C ∗ where Rd,lH ,PP ⊆ C ∗ × C ∗ is a strong
(d , lH ,PP)-bisimulation such that AR0,refl 6= ARd,lH ,PP ,refl. From Lemma 6 we get that the re-
lation R0 ∪Rd,lH ,PP is a strong (d , lH ,PP)-bisimulation. This with our arbitrary choice of
d and PP and the fact 〈spawnι(c0, . . . , cn−1)〉(R0 ∪Rd,lH ,PP )〈spawnι(c0, . . . , cn−1)〉 proves that
〈spawnι(c0, . . . , cn−1)〉 ∈WHAT&WHERE.

From definition ofWHAT&WHERE we get thatR′d,lH ,PP,i⊆C ∗×C ∗ exists such that 〈ci〉R′d,lH ,PP,i

〈ci〉 for each i ∈ {0, . . . , n−1}. Let Rd,lH ,PP,i be the relation R′d,lH ,PP,i restricted to thread pools
whose threads only contain program points of ci. Those restricted relations are strong (d , lH ,PP)-
bisimulations because by definition of operational semantics thread pools with program points not
in ci are not reachable from ci, and, since ci trivially do only contain program points of themselves,
we have 〈ci〉 Rd,lH ,PP,i 〈ci〉 for each i ∈ {0, . . . , n−1}. Further, since program points are identifier
for subcommands in the command spawnι(c0, . . . , cn−1) we have ARd,lH ,PP,i,refl 6= ARd,lH ,PP,j ,refl for
all i, j ∈ {0, . . . , n − 1} such that i 6= j. Hence, from Lemma 7 we get that

⋃n−1
i=0 Rd,lH ,PP,i is a

strong (d , lH ,PP)-bisimulation.

We now define a relation R0 such that it is a disjoint strong (d , lH ,PP)-bisimulation up-to-⋃n−1
i=0 Rd,lH ,PP,i. Let

R1= {(〈spawnι(c0, . . . , cn−1)〉, 〈spawnι′(c′0, . . . , c′n−1)〉) | ∀i ∈ {0, . . . , n− 1}. 〈ci〉 Rd,lH ,PP,i 〈c′i〉}
R2= {(〈c0, . . . , cn−1〉, 〈c′0, . . . , c′n−1〉) | ∀i ∈ {0, . . . , n− 1}. 〈ci〉 Rd,lH ,PP,i 〈c′i〉}

R0=

{
R1 ∪ R2 if n>1
R1 otherwise.

Since thread pools related by R1 are constructed according to the grammar of C from pools related
by Rd,lH ,PP,i, we have AR1,refl 6= A(

⋃n
i=0Rd,lH ,PP,i),refl and, if n > 1, AR2,refl 6= A(

⋃n
i=0Rd,lH ,PP,i),refl.

Hence we have AR0,refl 6= A(
⋃n
i=0Rd,lH ,PP,i),refl. That R0 is a per follows from that Rd,lH ,PP,i are

pers. We get that Condition 1 in Definition 27 holds from that R0 only relates pools of length 1
or length n.

We show that Condition 2 in Definition 27 holds. Let (thr0, thr
′
0) ∈ R0 and k ∈ N0 such that

k < #(thr0). By definition we have thr0 R1 thr ′0 or thr0 R2 thr ′0. If we have thr0 R1 thr ′0 we get
from the operational semantics that Jthr [k ] K is the identity function on Mem , and, hence, from
Definition 7 of NDC d we get NDC d(thr [k ]). If we have thr0 R2 thr ′0 then 〈thr [k ]〉 Rd,lH ,PP,k

〈thr ′[k ]〉 holds, and we get that Condition 2 in Definition 27 holds from that Condition 2 of
Definition 20 holds for Rd,lH ,PP,k .

We now show that Condition 3 in Definition 27 holds. Let (thr0, thr ′0) ∈ R0, cb ∈ C , ma,m
′
a,mb ∈

Mem , and k ∈ N0 such that ma ∼htchLoc(lH ,PP)
d m ′a and 〈|thr0[k ],ma|〉

α−_ 〈|cb,mb|〉. We distinguish
two cases

thr0 R1 thr ′0:

From the definition of operational semantics we get α = 〈c0, . . . , cn−1〉, mb = ma, and cb = ε.

From the definition of operational semantics we also get 〈|thr ′0[k ],m ′a|〉
〈c′0,...,c

′
n−1

〉

−−−−−−−_ 〈|ε,m ′a|〉.

From the fact that the memory states are not modified, we get that mb ∼htchLoc(lH ,PP)
d m ′a.

We have α R2 〈c′0, . . . , c′n−1〉 (in case n > 1) or α Rd,lH ,PP,0 〈c′0, . . . , c′n−1〉 (in case n = 1), i.e.
α(R0 ∪

⋃n−1
i=0 Rd,lH ,PP,i)〈c′0, . . . , c′n−1〉. Further, from cb = ε we get cb(

⋃n−1
i=0 Rd,lH ,PP,i)ε.

Hence we have cb(R0 ∪
⋃n−1
i=0 Rd,lH ,PP,i)ε

thr0 R2 thr ′0:

From definition of R2 we get 〈thr0[k ]〉 Rd,lH ,PP,k 〈thr ′0[k ]〉. Hence, in this case we get that
Condition 3 in Definition 27 holds from that Condition 3 in Definition 20 holds for Rd,lH ,PP,k

and from that Rd,lH ,PP,k ⊆ (R0 ∪
⋃n−1
i=0 Rd,lH ,PP,i).
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Loop Composition: We choose d ∈ D, PP ⊆ PP arbitrarily.

We show that 〈whileι e do c2 od〉 R0 〈whileι e do c2 od〉 holds for a disjoint strong (d , lH ,PP)-
bisimulation up-to-Rd,lH ,PP R0 ⊆ C ∗ × C ∗ where Rd,lH ,PP ⊆ C ∗ × C ∗ is a strong (d , lH ,PP)-
bisimulation such that AR0,refl 6= ARd,lH ,PP ,refl. From Lemma 6 we get R0 ∪ Rd,lH ,PP is a
strong (d , lH ,PP)-bisimulation. This, together with the fact that we choose d and PP arbi-
trary and 〈whileι e do c2 od〉(R0 ∪ Rd,lH ,PP )〈whileι e do c2 od〉 proves that 〈whileι e do c2 od〉 ∈
WHAT&WHERE.

From definition of WHAT&WHERE we get that R′d,lH ,PP,0 ⊆ C ∗ × C ∗ exists such that
〈c0〉 R′d,lH ,PP,0 〈c0〉. Let Rd,lH ,PP,0 be the relation R′d,lH ,PP,0 restricted to thread pools whose
threads only contain program points of c0. This restricted relation is a strong (d , lH ,PP)-
bisimulations because by definition of operational semantics thread pools with program points
not in c0 are not reachable from c0, and, since c0 trivially does only contain program points of
itself, we have 〈c0〉 Rd,lH ,PP,0 〈c0〉.
We now define a relation R0 such that it is a disjoint strong (d , lH ,PP)-bisimulation up-to-
Rd,lH ,PP,0. Let

R1 = {(〈c1;whileι e do c2 od〉, 〈c′1;whileι′ e ′ do c′2 od〉) |
〈c1〉 Rd,lH ,PP,0 〈c′1〉 ∧ 〈c2〉 Rd,lH ,PP,0 〈c′2〉
∧ ∀ m,m ′ ∈Mem .

(m =d m ′ =⇒ eval(e,m) = eval(e,m ′))}
R2 = {(〈whileι e do c1 od〉, 〈whileι′ e do c′1 od〉) |

〈c1〉 Rd,lH ,PP,0 〈c′1〉
∧ ∀ m,m ′ ∈Mem .

(m =d m ′ =⇒ eval(e,m) = eval(e,m ′) = v)}
R0 = R1 ∪ R2

Since thread pools related by R0 are constructed according to the grammar of C from thread
pools related by Rd,lH ,PP,0 we have AR0,refl 6= ARd,lH ,PP,0,refl. That R0 is a per follows from that
Rd,lH ,PP,0 is a per. We get that Condition 1 in Definition 27 holds from that R0 only relates
thread pools of length 1.

The remaining proof is analog to the proof for Sequential Composition for thread pools related by
R1, and analog to Conditional Composition for thread pools related by R2.

G. Soundness
This section contains the proofs of Theorems 7 and 8.

We first prove Theorem 7 and some lemmas relevant for the skip commands and the assignment
commands. Then the soundness proof, i.e. the proof of Theorem 8, combines those lemmas with the
compositionality results for complex commands.

Proof (Theorem 7). By straightforward induction on the construction of expressions, applying the
Definitions 3 and 4 on memory indistinguishabilities.

The first lemma states the guarantees that we obtain from SubstClosure.

Lemma 8. Let lH ⊆ D × E × PP be a set of local escape hatches, d ∈ D be a security domain,
m1,m

′
1,m2,m

′
2 ∈Mem be memory states, H ∈ {htchLoc(lH , ι) | ι ∈ PP} be a set of escape hatches, x ∈

Var a variable, e ∈ E an expression, v , v ′ ∈ Val values such that m1 ∼H
d m ′1, SubstClosure(lH , x , e),

eval(e,m1) = v , eval(e,m ′1) = v ′, m2 = m1[x 7→ v ], and m ′2 = m ′1[x 7→ v ′]. Then m2 =d m ′2 =⇒
m2 ∼H

d m ′2.
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Proof. Let lH ⊆ D × E × PP , m1,m
′
1,m2,m

′
2 ∈ Mem , H ⊆ D × E , x ∈ Var , e ∈ E , and v , v ′ ∈ Val

be given as in Lemma 8 and such that m2 =d m ′2.
We prove m2 ∼H

d m ′2 by showing that eval(e ′,m2) = eval(e ′,m ′2) for arbitrary (d ′, e ′) ∈ H with
d ′ ≤ d .

We distinguish two cases:

(e ′ does not contain x):

From definition of evaluation and from m2 = m1[x 7→ v ] and m ′2 = m ′1[x 7→ v ′]) we get that
eval(e ′,m1) = eval(e ′,m2) and eval(e ′,m ′1) = eval(e ′,m ′2). From this and from m1 ∼H

d m ′1 we
get eval(e ′,m2) = eval(e ′,m ′2).

(e ′ contains x):

From eval(e,m1) = v , eval(e,m ′1) = v ′, m2(x ) = v , m ′2(x ) = v ′, and from definition of
evaluation we get eval(e ′[x\e],m1) = eval(e ′,m2) and eval(e ′[x\e],m ′1) = eval(e ′,m ′2). From
SubstClosure(lH , x , e) and (d ′, e ′) ∈ H we get (d ′, e ′[x\e]) ∈ H . Hence, from m1 ∼H

d m ′1 we get
eval(e ′,m2) = eval(e ′,m ′2).

The next lemma states that typability of assignment commands ensures Condition 2 in Definition 20.

Lemma 9. Let lH ⊆ D × E × PP be a set of local escape hatches, d ∈ D be a security domain, and
x :=ιe ∈ C be an assignment command. If ` x :=ιe then NDC d(x :=ιe) ∨ IDC d(x :=ιe, htchLoc(lH , ι)).

Proof. Let lH ⊆ D × E × PP , d ∈ D, and x :=ιe ∈ C such that ` x :=ιe. If NDC d(x :=ιe)
then we are done. Hence assume ¬NDC d(x :=ιe). By definition of NDC d this means ∃m,m ′ ∈
Mem . m =d m ′ ∧ Jx :=ιe K(m) 6=d Jx :=ιe K(m ′). Hence, by definition of IDC d it remains to show
∀m,m ′ ∈ Mem . m ∼htchLoc(lH ,ι)

d m ′ =⇒ Jx :=ιe K(m) =d Jx :=ιe K(m ′) is fulfilled in order to show
IDC d(x :=ιe, htchLoc(lH , ι)) holds.

By operational semantics for all m ∈ Mem we have Jx :=ιe K(m) = m[x 7→ eval(e,m)]. Let m,m ′ ∈
Mem such that m ∼htchLoc(lH ,ι)

d m ′. From the definition of ∼htchLoc(lH ,ι)
d we get m =d m ′. From the def-

inition of =d we get ∀x ′ ∈ Var . (dom(x ′) ≤ d =⇒ m(x ′) = m ′(x ′)). We have m[x 7→ eval(e,m)](x ′) =
m(x ′) and m ′1[x 7→ eval(e,m ′)](x ′) = m ′1(x

′) for all x ′ 6= x . From these two statements we get
∀x ′ ∈ Var . ((x ′ 6= x ∧ dom(x ′) ≤ d) =⇒ m1[x 7→ eval(e,m)](x ′) = m ′1[x 7→ eval(e,m ′)](x ′)). It remains
to show dom(x ) ≤ d =⇒ eval(e,m) = eval(e,m ′). Let dom(x ) ≤ d . From the definition of the type
rules we get htchLoc(lH , ι) ` e : d ′ such that d ′ ≤ dom(x ), i.e. d ′ ≤ d . From Theorem 7 we get
eval(e,m1) = eval(e,m ′1).

The next lemma states that the soundness of typability for the skip and assignment commands.

Lemma 10. Let lH ⊆ D × E × PP be a set of local escape hatches, skipι ∈ C be a skip command, and
x :=ιe ∈ C be an assignment command.

1. 〈skipι〉 ∈WHAT&WHERE.

2. If ` x :=ιe then 〈x :=ιe〉 ∈WHAT&WHERE.

Proof. Let lH ⊆ D × E × PP , and skipι, x :=ιe ∈ C .

For 1: Let
R = {(〈skipι〉, 〈skipι〉)} ∪ {(〈〉, 〈〉)}

For all d ∈ D and PP ∈ PP we show that R is a strong (d , lH ,PP)-bisimulation. Hence, from
〈skipι〉 R 〈skipι〉 definition of WHAT&WHERE we get 〈skipι〉 ∈WHAT&WHERE.

The relation R is symmetric and only relates thread pools of equal length by its definition. Since
it only relates identical elements it is transitive, too.

Condition 2 in Definition 20 also is satisfied trivially, since NDC d(skipι).
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Since Condition 3 in Definition 20 is trivially satisfied if no execution step is possible, it is always
satisfied in the case 〈〉 R 〈〉.
Now we consider the other case 〈skipι〉 R 〈skipι〉. Let m1,m2,m

′
1 ∈ Mem , c2 ∈ Cε, and α ∈ C ∗,

such that m1 ∼htchLoc(lH ,PP)
d m ′1 and 〈|skipι,m1|〉

α,ι−−_ 〈|c2,m2|〉.

From operational semantics we get that α = 〈〉, m2 = m1, c2 = ε and that 〈|skipι,m ′1|〉
〈〉,ι
−−_ 〈|ε,m ′1|〉.

From 〈〉 R 〈〉 (by definition of R), m1 ∼H
d m ′1 (by assumption), and 〈ε〉 = 〈〉 the conditions that

we want to show hold, i.e. 〈c2〉 R 〈〉, α R 〈〉, and m2 ∼htchLoc(lH ,PP)
d m ′1.

For 2: Let
R = {(〈x :=ιe〉, 〈x :=ιe〉) |` x :=ιe} ∪ {(〈〉, 〈〉)}

The proof follows as for the first part of the Lemma, except that it remains to consider the case
〈x :=ιe〉 R 〈x :=ιe〉 where from definition of R we get ` x :=ιe.

Letm1,m2,m
′
1 ∈Mem , c2 ∈ Cε, and α ∈ C ∗, such thatm1 ∼htchLoc(lH ,PP)

d m ′1 and 〈|x :=ιe,m1|〉
α,ι−−_

〈|c2,m2|〉.

From operational semantics we get that α = 〈〉, m2 = m1[x 7→ v ], c2 = ε and that 〈|x :=ιe,m ′1|〉
〈〉,ι
−−_

〈|〈〉,m ′1[x 7→ v ′]|〉 for v , v ′ such that eval(e,m1) = v , eval(e,m ′1) = v ′.

From Lemma 9 we get that Condition 2 in Definition 20 holds.

We show that Condition 3 in Definition 20 holds. From 〈〉 R 〈〉 (by definition of R) and
〈ε〉 = 〈〉 we get that the following conditions hold: 〈c2〉 R 〈〉, α R 〈〉. It remains to show
m2 ∼htchLoc(lH ,PP)

d m ′2 ∨ htchLoc(lH , ι) * htchLoc(lH ,PP). If htchLoc(lH , ι) * htchLoc(lH ,PP)
holds, then we are done. So assume we have htchLoc(lH , ι) ⊆ htchLoc(lH ,PP). In particular, this
means m1 ∼htchLoc(lH ,ι)

d m ′1. From this, Lemma 9, and the definitions of NDC d and IDC d we get
m1[x 7→ v ] =d m ′1[x 7→ v ′].

It remains to show m1[x 7→ v ] ∼htchLoc(lH ,PP)
d m ′1[x 7→ v ′]. From definition of type rules we

get SubstClosure(lH , x , e), and we have m1 ∼H
d m ′1. Hence, from Lemma 8 we get m1[x 7→

v ] ∼htchLoc(lH ,PP)
d m ′1[x 7→ v ′].

Proof (Theorem 8). Let lH ⊆ D × E × PP . We prove that ` c =⇒ c ∈ WHAT&WHERE holds for
any c ∈ C by induction on the number of rules in the derivation of ` c. Essentially, we use Lemma 10
for the induction base and Theorem 6 for the induction step.

The induction base is, where only one rule is applied, i.e. the rule tskip or the rule tassign. In both
cases we get c ∈WHAT&WHERE from Lemma 10. For the induction step we distinguish cases by the
last rule applied to derive ` c.

Case 1 (tspawn):

From the definition of the rule tspawn we get c0, . . . , cn−1 ∈ C exist such that ` c0 ∧ . . . ∧ `
cn−1 and c = spawnι(c0, . . . , cn−1). From the induction hypothesis we get that c0, . . . , cn−1 ∈
WHAT&WHERE. From this and from Theorem 6 we get c ∈WHAT&WHERE.

Case 2 (twhile):

From the definition of the rule twhile we get e ∈ E , c0 ∈ C , d ′ ∈ D exist such that c =
whileι e do c0 od and ∅ ` e : d ′ ∧ ∀d ′′ ∈ D. d ′ ≤ d ′′ ∧ ` c0. From ∅ ` e : d ′ and
Theorem 7 we get

∀m,m ′ ∈Mem .
[

m ∼∅d m ′ =⇒ eval(e,m) = eval(e,m ′)
]
.

From this, the definition of ∼∅d , and ∀d ′′ ∈ D. d ′ ≤ d ′′ we get ∀d ′′ ∈ D. (m =d′′ m ′ =⇒
eval(e,m) = eval(e ′,m ′)). From the induction assumption we get c0 ∈WHAT&WHERE. From
this and from Theorem 6 we get c ∈WHAT&WHERE.
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Case 3 (tif):

From the definition of the rule tif we get e ∈ E , c1, c2 ∈ C , d ′ ∈ D exist such that c =
ifι e then c1 else c2 fi and ∅ ` e : d ′ ∧ ∀d ′′ ∈ D. d ′ ≤ d ′′ ∧ ` c1 ∧ ` c2. Like in the case 2
we get ∀d ′′ ∈ D. (m =d′′ m

′ =⇒ (eval(e,m) = eval(e ′,m ′))). From the induction assumption we
get c1, c2 ∈WHAT&WHERE. From this and from Theorem 6 we get c ∈WHAT&WHERE.

Case 4 (tseq):

From the definition of the rule tseq we get c1, c2 ∈ C exist such that c = c1 ; c2 and ` c1 ∧ ` c2.
From the induction assumption we get c1, c2 ∈WHAT&WHERE. From this and from Theorem 6
we get c ∈WHAT&WHERE.
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