Verifying Information Flow Security in Visibly
Pushdown Automata*

Barbara Sprick!** and Daniel Staesche?

1 SRH University of Applied Science Heidelberg
Faculty of Informatics,
barbara.sprick@hshd.de
2 Technische Universitit Darmstadt, Department of Computer Science,
Modeling and Analysis of Information Systems
staesche@mais.informatik.tu-darmstadt.de

Abstract. Information flow control is an important area in computer security.
It aims at restricting what a low level observer can deduce from his observa-
tions about high level system behavior. We investigate the problem of verifying
possibilistic information flow properties for visibly pushdown automata. Such
properties can be expressed by Basic Security Predicates (BSPs) in the Modular
Assembly Kit for Security [15]. They are, however, known to be undecidable for
context free languages [8].

The class of visibly pushdown languages (VPLs) [2] lies between regular and
deterministic context free languages. Still, VPLs share many desirable properties
with the class of regular languages. In addition, they allow for model checking
non-regular properties like stack inspection or pre- and post-conditions. Assum-
ing a low level observable stack, we show in this paper how BSPs can be auto-
matically verified for VPLs. In a second step, we extend this result to intransitive
information flow properties.

1 Introduction

Controlling the flow of information is a central concern in computer security. Access
control policies specify, which accesses to which data are allowed for a system. Usage
control restricts the ways in which systems are allowed to make use of data. However,
these methods can only control direct access and usage of data (over overt channels),
leakage of information over covert channels like, e.g. trojan horses or observable system
behavior, are not controllable by such methods. Information flow security approaches
this problem by formally specifying and restricting the information that may flow be-
tween security domains. The original notion of non-interference, introduced by Goguen
and Meseguer [GM82], defines the restriction of information flow as a lack of depen-
dency. Two users/processes of different security domains high (H) and low (L) are

* This work was funded by the DFG (German research foundation) under the project FM-
SecEng in the Computer Science Action Program (MA 3326/1-3). The work is published as
Technical Report at TU Darmstadt under TR-number TUD-CS-2013-0275.

** Work was done while author was affiliated with TU Darmstadt.

considered, and the property states that H is non-interfering with L if L’s observa-
tions of the system do not depend on H’s inputs. The original definition was based on
deterministic state machines and appropriate only for deterministic systems. Further-
more, it was too strict for practical purposes. Since then, many similar information flow
properties were introduced that relaxed this restriction by requiring that every low level
behavior an attacker can observe must also be possible in the context of several (unob-
servable) high level behaviors. These properties are called possibilistic information flow
properties. Noninference [22|19125]], generalized non-interference [18119125]], forward
correctability [14], nondeducibility for outputs [13] and separability [19] are examples
of such properties. Comparing these information flow properties was difficult as they
are based on different system models like, e.g., state event systems, trace-based systems
or process algebras. Several frameworks targeting a uniform description of information
flow properties have been developed, e.g. by McLean [19], Focardi and Gorrieri [[L1],
Zakinthinos and Lee [25]], and Mantel [15]]. For our approach, we choose the Modular
Assembly Kit for Security (MAKS) [15]. The MAKS framework is the most compre-
hensive among them and provides a uniform representation of most possibilistic infor-
mation flow properties known from the literature, including the ones mentioned above.
This framework is based on traces as system model. It contains a set of basic infor-
mation flow properties called Basic Security Predicates (BSPs) that serve as building
blocks for the known non-interference-like information flow properties.

D’Souza et al have shown in [9U7U8] that the Basic Security Predicates in the MAKS
framework are decidable for finite state systems but undecidable for pushdown sys-
tems. In [9], the authors have introduced a set of language-theoretic operations and
have shown, that the question of whether a particular BSD is satisfied for a system 7'r
boils down to the language inclusion problem op; (T'r) C opo(Tr) for some language-
theoretic operations op; and ops.

In this paper we will identify a larger class of systems, namely Visibly Pushdown
Systems, and show that all BSPs and, consequently, all information flow properties
that can be expressed in MAKS are decidable for this class of systems. Finite state
systems are an interesting system class as it is expressive enough for a wide range of
system properties. However, there are some properties like, e.g. pre- and postcondi-
tions or nested structures, that are very desirable for system specifications but cannot be
expressed in a finite state system.

Visibly Pushdown Automata (VPA) [2]] allow for the specification of many non-
regular properties and are yet tractable like finite state systems.

They are pushdown automata which require an explicit partition of the input alpha-
bet into three distinct subsets: call events, return events and internal events where the
type of the input symbol determines the stack operation.

The resulting languages, Visibly Pushdown Languages (VPLs), allow for represen-
tation of data with both a linear as well as a hierarchical ordering as e.g. the execution
of HTML/XML documents or structured programs. The class of VPLs is a strict sub-
class of context-free languages and properly includes the regular languages. VPLs have
the same desirable closure properties as regular languages: they are closed under union,
intersection, complement and Kleene-*. Furthermore, many problems like the word
problem and the inclusion problem are decidable. Deterministic VPAs are as expressive

as their nondeterministic counterparts. Since their introduction by Alur and Madhusu-
dan [2], several issues have been studied. The word problem was shown to be decidable
in linear time, if the VPL is specified by a visibly pushdown grammar [24]. The min-
imization problem has been investigated for several subclasses of automata by [5] and
[[L]. Visibly Pushdown Languages are related to regular languages of nested words [3]],
which can be used for software verification or XML stream processing.

After showing, that properties of the MAKS framework are decidable for Visibly
Pushdown Automata, we will extend our decidability result in another direction. The
above information flow properties assume a transitive flow policy, stating that if infor-
mation may flow from A to B and from B to C, then it may also flow from A to C
directly. However, areas like channel control in distributed systems, explicit declassifi-
cation and information filters require intransitive flow policies where information may
flow from A to C only via B. This line of research was started by Rushby [23]]. In [16],
Mantel developed new properties in the style of BSPs that can cope with intransitive
flow policies.

In this paper we will also obtain a decidability result for intransitive information
flow properties in the style of [[16]. We will show how the language-theoretic operations
used for deciding BSPs can be adapted such that we also get decision procedures for
intransitive information flow properties.

Turning to related work, several decidability results for information flow properties
for finite state systems were established. Focardi and Gorrieri presented decision pro-
cedures for information flow properties that can be defined in the framework presented
in [[L1]. Closely related is the work by D’Souza et al. [9], who have provided decision
procedures for all security properties in the more expressive MAKS framework defined
by [[15]. Also, van der Meyden and Zhang [20] provided algorithmic verification tech-
niques for a subset of these information flow properties.

In our work, we go beyond finite state systems and show decidability of information
flow properties for visibly pushdown systems. In the context of infinite state systems,
several undecidability results were established, e.g. [7] [6]]. However, Dam [6] has also
given decision procedures for strong low bisimulation for simple parallel while pro-
grams. Another work considering infinite state systems was done by Best et al. in [4],
where they showed the intransitive information flow property INI defined on elemen-
tary net systems to be decidable in an extended framework of unbounded Petri nets. We
provide decision procedures for VPLs for all security properties that are expressible in
MAKS, as well as for some intransitive predicates.

Contributions. The contribution of this work is threefold: First, we prove the classical
information flow property noninference to be decidable for VPAs. Second, we prove
that all BSPs in MAKS and, hence, a wide range of information flow properties known
from the literature is decidable for Visibly Pushdown Languages. Third, we extend the
result to intransitive information flow properties.

The remainder of the paper is organized as follows. In Sectiond] we introduce a vari-
ant of Visibly Pushdown Automata (VPAs) and Visibly Pushdown LanguagesVPL. In
Section [3| we introduce the classical information flow property noninference and show,
that noninference is decidable for VPLs. Section [3 introduces the MAKS framework
and shows that all BSPs in MAKS are decidable for VPLs. In Section [6] we extend

the decidability result to intransitive information flow properties that are defined in the
style of BSPs. We do this by appropriately adapting the language-theoretic operations
and showing that the class of VPAs is closed under these modified operations. We fi-
nally conclude in Section[7]

2 Visibly Pushdown Systems

Looking for a more expressive class of languages for which noninference is decidable,
we investigate visibly pushdown languages (VPLs, [2]). They constitute a strict sub-
class of context-free languages and properly include regular languages. Hence, VPLs
are a promising candidate for new decidability results. In contrast to regular languages,
they allow for representation of data with both a linear as well as a hierarchical or-
dering as e.g. structured programs. Despite their expressiveness, VPLs share desirable
closure properties with regular languages: they are closed under union, intersection,
complement and Kleene-*. Furthermore, many problems like the word problem and
the inclusion problem are decidable. VPLs are characterized by visibly pushdown au-
tomata (VPA, [2l]). For our purpose of showing decidability of noninference for VPA
we require a slightly modified definition, which we call VPA®*““. Other than the original
version of VPA, VPA®®“ allow a restricted use of e-transitions. Though this does not
add any expressive power (as we will briefly show at the end of this section), it will,
however, come in handy for the proofs and constructions in section 3]

2.1 Visibly Pushdown Automata for Security

Visibly pushdown automata are similar to pushdown systems but operate on a parti-
tioned alphabet X = (X, X, X;,;) that determines which events modify the stack
in which way: call events (X.) push symbols onto the stack, return events (X)) pop
symbols from it and internal events (X;,,;) leave the stack unmodified.

We define visibly pushdown automata for security (VPA®“¢) as follows:

Definition 21 (VPA®““) A VPA®°° A on finite words over Y= (Xint, Xey Xr) is a tuple
A = (Q, Gin, X, I, 5%, Qr) where Q) is a finite set of states, q;, € Q is an initial
state, I' is a finite stack alphabet that contains | as a special bottom element, and
0% C(QX X xQx (M{L)HU(Q x X x I' x Q)U(Q X Xint U{e} X Q) such
that Qr C Q is a set of final states.

The relation reach 4 : Q — 29 determines the e-closure of states in A. It is the smallest
set satisfying s € reach4(s) and Vq' € Q.Vq € reacha(s) : (q,€,q") € 6°¢° = ¢ €
reacha(s).

The automaton A accepts a word w € X* (with length |w| = k + 1) iff there is a
sequence p = (qo,00) - - - (qk, ok) With o = reach(gin), 0o = L and ¢ € QF such
that for all 0 < ¢ < k the following holds:

Push: Ifw; € Y. thenthereisa~y € I" and ¢’ € @ such that (g;, w;,q’,7y) € §°¢°

and g;+1 € reacha(q’) and 041 = 7y.0;

Pop: If w; € X, then thereis ay € I" and ¢’ € @ such that (¢;, w;,v,q’) € §%¢¢

and ¢;11 € reacha(q’) and either o; = y.04541 ory = 0541 = 0; = L.

Internal: If w; € X, then there is ¢’ € @ such that (g;,w;,q’) € §°° and ¢;11 €

reacha(q') and 0,41 = 0
The language £(A) recognized by A, is the set of all words w € X* accepted by A.

The difference between the original definition of VPA given in [2] and the above
definition of VPA®®“ is that we allow the occurrence of e-transitions as internal events.
Like in the original definition, call and return transitions, that modify the stack, are not
possible on e-events. Interestingly, we can show that our definition of VPA®“® has the
same expressiveness as the original definition:

Theorem 1. Each VPA*““ A over X can be transformed into an (original) VPA A’ over
Y with L(A) = L(A).

Proof sketch: We construct A’ using a power set construction. The set of states of
A’ is the power set of the states of A. A transition from one set of states to another
corresponds to the set of possible moves in A, which is determined by the e-closure of
a transition in A. As a result, we have a VPA with a finite set of states and a transition
function without e-transitions.

The new VPA accepts the same language as the VPA*““. One can show by induction
over finite words w that for each A-run over w there is a corresponding A’-run and
vice versa. Since e-transitions do not alter the stack, the nondeterminism only affects
internal transitions. Consequently, the power set construction is similar to that for finite
automata.

3 Noninference

In this section, we focus on a simple information flow property called noninference [22]
and show that noninference is decidable for Visibly Pushdown Languages. In section[3]
we will generalize our result for a framework for non-interference properties.

3.1 Security by Noninference

Noninference [22] is equivalent to the original definition of non-interference [[12]] for
deterministic systems but also suitable for nondeterministic systems. Intuitively, nonin-
ference assumes two security domains, high and low, and requires that any observable
low-level behavior is also possible in absence of any high level behavior. Hence, any
user who observes low level behavior is unable to detect whether any high level behav-
ior has taken place at all.

Technically, it means that when the system behavior is described as a set of event
traces (consisting of high- as well as low-level events), then for every trace its projection
to low level events must also be a possible trace.

An alphabet E denotes a finite set of events of a system. We assume a partition
on I into high (H) and low (L) events. The behavior of a system is specified by a set
Tr C E~* of event-traces. Noninference is formally defined by

NFE(Tr)y=VreTrrlpeTr

where 7 [, denotes the trace resulting from 7 with all high events being removed.

3.2 Decidability of Noninference

Noninference is a closure property. It requires the set of system behaviors to be closed
under purging of high level events. Despite its simplicity it has been shown to be unde-
cidable for pushdown systems.

Theorem 2. The problem of model checking noninference for deterministic pushdown
systems is undecidable. [7]

However, when the system is specified as finite state system, then model checking
noninference becomes decidable:

Theorem 3. The problem of model checking noninference for finite state systems is
decidable. [9]

In [9] the authors developed an automata based decision procedure that can auto-
matically verify for a finite state system whether it satisfies noninference or not. We will
now extend this result and show, that noninference i~s also decidable for VPLs when the
stack is observable. We first assign every event in X' a security domain L or H. Assum-
ing, that the stack and hence all call and return events, which modify the stack, are low
level observable, we require X, U 3. C L.

We show, that for VPLs with such a domain assignment the question of whether a
system satisfies noninference is decidable:

Theorem 4. Let T'r be a VPL over a partitioned alphabet (X, X, X;nt). Let H C
Yt \ X andL = XU X, U X with X C X4, i.e. all call and return events are low
level.

Then the question whether N F(T'r) holds is decidable.

This theorem can be shown by reduction of satisfiability of /N F' to language inclu-
sion and the following two lemmas.

Lemma 1. Let T'r be a VPL over a partitioned alphabet (X, X\, Xint). Let L = XU
Y UX with X C Xy Tr satisfies NF(T'r) with respect to L iff Tr [L.C T'r, where
Tr L= {7IL |7 € Tr} is the projection of Tr upon L.

This lemma reduces the problem of decidability of N F' to language inclusion. A more
general version of it has already been shown in [9]]. Since VPLs are closed under lan-
guage inclusion [2], we only need to show that VPLs are also closed under projection
toL, withL=X_UX, UXand X C X;,,.

Lemma 2. If Tr is a VPL on (X, Xy, Xint) then also Tr [p withL = X¥. U X, U X
and X C X, is a VPL.

Proof. LetL=2%.UX, U X and X C 3;,;.
The projection of T'r upon L results from eliminating every symbol which is not
in L from all words in T'r. Thus, for all a € X;,,; \ X, all transitions (g,a,q’) € ¢

are replaced by e-transitions (g, €, ¢'). The resulting automaton is a VPA®*® accepting
Tr |1, which hence is a VPL.

Now theorem [6] i.e. the decidability of NF(Tr) for a VPL T'r, follows directly
from lemmas Bland @

4 Decidability of Noninference for a Larger Class of Systems

Looking for a more expressive class of languages for which noninference is decidable,
we investigate visibly pushdown languages (VPLs, [2]). They constitute a strict sub-
class of context-free languages and properly include regular languages. Hence, VPLs
are a promising candidate for new decidability results. In contrast to regular languages,
they allow for representation of data with both a linear as well as a hierarchical or-
dering as e.g. structured programs. Despite their expressiveness, VPLs share desirable
closure properties with regular languages: they are closed under union, intersection,
complement and Kleene-*. Furthermore, many problems like the word problem and
the inclusion problem are decidable. VPLs are characterized by visibly pushdown au-
tomata (VPA, [2l]). For our purpose of showing decidability of noninference for VPA
we require a slightly modified definition, which we call VPA®“¢,

4.1 Visibly Pushdown Automata for Security

Visibly pushdown automata are similar to pushdown systems but operate on a parti-
tioned alphabet X = (X, X, X;,,;) that determines which events modify the stack
in which way: call events (X.) push symbols onto the stack, return events (1) pop
symbols from it and internal events (2;,,;) leave the stack unmodified.

We define visibly pushdown automata for security (VPA®“¢) as follows:

Definition 41 (VPA®““) A VPA®““ A on finite words over Y= (Xint, Xe, X0) is a tuple
A = (Q, Gin, E‘,F, d%¢¢, Q) where Q is a finite set of states, q;, € Q is an initial
state, I' is a finite stack alphabet that contains 1 as a special bottom element, and
0% C (QXZexQx (M{LINHU(Q x X x I'x Q)U(Q X Xint U{e} x Q) such
that Qr C Q is a set of final states.

The relation reach 4 : Q — 29 determines the e-closure of states in A. It is the smallest
set satisfying s € reach4(s) and Vq' € Q.Vq € reacha(s) : (q,€,q') € §°° = ¢ €
reacha(s).

The automaton A accepts a word w € X* (with length |w| = k + 1) iff there is a
sequence p = (go,00) - - - (qk, ok) With o = reach(gin), 0o = L and ¢ € QF such
that for all 0 < ¢ < k the following holds:

Push: Ifw; € Y. thenthereisa~y € I" and ¢’ € @ such that (g;, w;,q’,7y) € §°¢°

and g;+1 € reacha(q’) and 041 = 7y.0;

Pop: If w; € X, then thereis ay € I" and ¢’ € @ such that (¢;, w;,v,q’) € §%¢¢

and ¢;11 € reacha(q’) and either o; = y.04541 ory = 0541 = 0; = L.

Internal: If w; € X, then there is ¢’ € @ such that (g;,w;,q’) € §°° and ¢;11 €

reacha(q') and 0,41 = 0
The language £(A) recognized by A, is the set of all words w € X* accepted by A.

The difference between the original definition of VPA given in [2]] and the above
definition of VPA®®“ is that we allow the occurrence of e-transitions as internal events.
Like in the original definition, call and return transitions, that modify the stack, are not
possible on e-events. Interestingly, we can show that our definition of VPA®® has the
same expressiveness as the original definition:

Theorem 5. Each VPA®“ A over X can be transformed into an (original) VPA A’ over
X with L(A) = L(A).

Proof sketch: We construct A’ using a power set construction. The set of states of
A’ is the power set of the states of A. A transition from one set of states to another
corresponds to the set of possible moves in A, which is determined by the e-closure of
a transition in A. As a result, we have a VPA with a finite set of states and a transition
function without e-transitions.

The new VPA accepts the same language as the VPA®*®“. One can show by induction
over finite words w that for each A-run over w there is a corresponding A’-run and
vice versa. Since e-transitions do not alter the stack, the nondeterminism only affects
internal transitions. Consequently, the power set construction is similar to that for finite
automata.

4.2 Decidability of Noninference for VPLs

We are now ready to identify VPLs as a class of systems that is more expressive than
finite state systems but for which noninference is still decidable. To show this, we first
assign every event in X' a security domain L or H. Assuming, that the stack and hence
all call and return events, which modify the stack, are low level observable, we require
Y. uX, CL.

We show, that for VPLs with such a domain assignment the question of whether a
system satisfies noninference is decidable:

Theorem 6. Let T'r be a VPL over a partitioned alphabet (X, X, X;nt). Let H C
Yt \ X andL = XU X, UX with X C X4, i.e. all call and return events are low
level.

Then the question whether N F(T'r) holds is decidable.

This theorem can be shown by reduction of satisfiability of IV F' to language inclu-
sion and the following two lemmas.

Lemma 3. Let T'r be a VPL over a partitioned alphabet (X, X\, X;nt). Let L = Y. U
YU X with X C Xy Tr satisfies NF(Tr) with respect to L iff Tr [L.C T'r, where
Tr L= {7IL |7 € Tr} is the projection of Tr upon L.

This lemma reduces the problem of decidability of N F' to language inclusion. A more
general version of it has already been shown in [9]]. Since VPLs are closed under lan-
guage inclusion [2], we only need to show that VPLs are also closed under projection
toL, withL =X, UX.UXand X C X;,;.

Lemmad. If Trisa VPL on (X, X, Xint) then also Tr [, withL = X, U X, U X
and X C X, is a VPL.

Proof. LetL=2%.UX, U X and X C 3, ;.

The projection of T'r upon L results from eliminating every symbol which is not
in L from all words in T'r. Thus, for all a € X;,,; \ X, all transitions (g,a,q’) € ¢
are replaced by e-transitions (g, €, ¢"). The resulting automaton is a VPA®*““ accepting
Tr |, which hence is a VPL.

Now theorem [f] i.e. the decidability of NF(Tr) for a VPL T'r, follows directly
from lemmas [land 4]

5 Decidability Results for the Modular Assembly Kit for Security

Besides noninference, many more non-interference-like information flow properties
have been defined in the literature. The Modular Assembly Kit for Security (MAKS)
[[15] provides a uniform representation of a wide range of these properties. The aim
of this section is to generalize our decidability result from the previous section and
show that the Basic Security Predicates (BSPs) in MAKS and, hence, a large set of the
classical information flow properties are decidable for Visibly Pushdown Systems.

In subsection we introduce the MAKS framework. In section we present
the decidability of all MAKS predicates. Section [5.3] give a detailed proof for two of
the BSPs and shows how the proof leads to an automatic decision procedure for these
properties.

5.1 Modular Assembly Kit for Security (MAKS)

MAKS is an approach to uniformly formalize most possibilistic information flow prop-
erties known from the literature. Based on sets of traces as the system model, Mantel has
defined a set of Basic Security Predicates (BSPs) that serve as building blocks for these
information flow properties. Before recalling the definitions of BSPs, we first introduce
some notational conventions.

BSPs are defined over sets of traces of events from an alphabet E. A trace is a finite
sequence of events modeling a particular system behavior. A set of traces is a prefix-
closed language Tr C E*. It includes the empty string denoted by e. We range over
elements of Tr by 7,7’, 71, T2, ... and over sequences in E* by a, o/, 3,5',.... We
represent the concatenation of « and 8 by af. For asequence « € E* andaset X C E
the term « | x denotes the sequence obtained by omitting all elements in « that are in X,
with X = E'\ X. Considering two sequences « and f3, they are equal with disregard for
corrections on events in X iff a [x= S [+. We denote this equivalence with o =x (3

and extend this notation to languages. Consequently, for two languages T'r1,Try C E*
we write TTl QX TT’Q iff TT1 ryg TT‘Q [Y

In MAKS, each basic security predicate is defined with respect to a view V =
(V, N, C), which constitutes a partition of the events in E. The set V' of visible events
denotes the set of events that are directly observable by an adversary. The set C' of events
is the set of events that can not be observed but may not be deducible from observations
either. Finally the set [V is the set of events that cannot be directly observed but are not
confidential either.

The BSPs require, that the occurrence of confidential events may neither increase
nor reduce the possible observable behaviors, i.e. the BSPs express the kind of indepen-
dence of visible and confidential events.

Technically, each trace that is perturbed by either deletion of the last confidential
event or insertion of a last confidential event must be correctable by deletion or insertion
of N-events such that the resulting trace is again a possible system trace.

Four different types of BSPs can be distinguished in MAKS, depending on the cor-
rections they allow: non-strict (allowing corrections anywhere in the trace), strict (al-
lowing no corrections at all), backward strict (allowing corrections only after the event
where the perturbation happened), and forward correctable.

In we recall the definitions of BSPs from [13]]. Let A C E be a set of
events admissible for correction, and let C’ C C and V' C V.

5.2 Decidability Results in MAKS

Like noninference, the BSPs from MAKS are undecidable for context-free languages
[7] but decidable for regular languages [9]. We will now generalize from
[section 4]and show all BSPs in MAKS also to be decidable for VPLs. For this, we adapt
the assumptions of and assume all call and return events to be visible (V)
in terms of a MAKS-view V. The proof of the generalization provides an automatic
decision procedure based on VPAs.

Theorem 7 (BSPs decidable for VPLSs). Let Tr be a VPL over X and V = (V, N, C)
a view with C;N C X Let A = X, U X U X be the set of admissible events for
some X C Xy andletC' CCand V' CV.

Then all BSPs in MAKS are decidable for T'r with respect to view V and event sets
A CandV'.

Proof sketch: We reduce the problem of verifying BSPs to a language inclusion
problem, where the language T'r gets transformed by BSP-specific language-theoretic
operations. Deciding a strict BSP P for T'r involves applying language-theoretic op-
erations f and f’ to T'r and checking whether f(Tr) C f'(Tr). Non-strict BSPs are
decided by checking whether f(Tr) Cn f'(T'r). The latter can be expressed as a lan-
guage inclusion having projected both languages onto N first. Thus, deciding a BSP is
reduced to a language inclusion problem. Recall that language inclusion is decidable
for VPLs. Furthermore, due to and our restriction on the range of N, VPLs

are closed under projection to N.

10.

11.

12.

13.

T'r satisfies R (Removal of Events) iff for all 7 € T'r there exists 7" € T'r such that 7/ [c= €
and 7/ [V: T [V)

Tr satisfies D (Stepwise Deletion of events) iff for all ac8 € T'r, c € C such that 5 [c= e,
we have o’ 8’ € Tr with &/ [vuc= a[vuc and 8 [vue= B vuc.

T'r satisfies I (Insertion of events) iff for all 8 € T'r such that 3 [c= ¢, we have o’c’ €
Tr, for every ¢ € C with 8’ [vue= Blvuc,a’ [vue= alvuc.

Tr satisfies JA“ (Insertion of A-admissible events) iff for all 3 € Tr with 8 [¢c= € and
there exists yc € Tr, c € C withy [a= a4, we have o/ ¢’ € Tr with 8’ [vue= Blvuc,
o' [vue= alvue).

T'r satisfies BSD (Backwards Strict Deletion) iff for all acf8 € T'r, ¢ € C such that 5 [¢c=
¢, we have o8’ € T'r with 8’ [vue= Blvuc.

Tr satisfies BSI (Backwards Strict Insertion) iff for all a3 € T'r such that 5 [¢= €, we
have ac8’ € T, for every c € C with 8’ [vue= B lvuc.

Tr satisfies BSIA# (Backwards Strict Insertion of A-admissible events) iff for all a8 € T'r
with B [c= € and there exists yc € T, ¢ € C with ¥ [a= a [4, we have ac’ € Tr with
B lvue= Blvuc.

T'r satisfies F'CD (Forward Correctable Deletion) iff for all acvB € Tr,c € C',v € V'
with B [c= € we have adv3’ € Tr where § € (N’)* and B’ [vue= B vuc.

Tr satisfies FCI (Forward Correctable Insertion) iff for all cv8 € Tr, v € V' such that
Blc= ¢, we have acdvf’ € Tr, forevery c € C' with § € (N')* and 8’ [vue= Blvuc.

Tr satisfies FCIA“ (Forward Correctable Insertion of A-admissible events) iff for all av8 €
Tr,v € V' with B [c= € and there exists y¢ € Tr, ¢ € C’ with v [a= « [4, we have
acévfB’ € Tr with§ € (N')* and 8’ [vue= Blvuc.

T'r satisfies SD (Strict Deletion) iff for all ac8 € Tr, ¢ € C such that 8 [c= €, we have
ap eTr.

T'r satisfies ST (Strict Insertion) iff for all a8 € T'r such that 5 [c= ¢, we have acB € T'r,
for every c € C.

Tr satisfies STA“ (Strict Insertion of A-admissible events) iff for all a8 € T'r such that
B lc= e and there exists yc € Tr, c € C withy[a= a |4, we have acff € T'r.

Fig. 1. Basic Security Predicates (BSPs) in MAKS

The required language-theoretic operations and their correspondence to BSPs have

already been established in [9]]. It remains to be shown that all language-theoretic oper-
ations f and f’ preserve the language class of VPLs. This can be shown by constructing
a VPA for each of the functions. We present the constructions for all operations in
and appendix [C| The constructions are such that we receive an automatic
decision procedure. This concludes our proof sketch. U

Many known non-interference-like security properties from the literature can be

expressed in the MAKS framework. Hence, we immediately get the following result:

Corollary 1. The problem of verifying information flow properties that are expressible
as conjunctions of BSPs w.r.t. a view V is decidable for VPLs if all call and return events
are visible w.r.t. view V.

1. l-del-mark(T'r). For every trace 7 in T'r, the last symbol of C' is replaced by .
I-del-mark(Tr) := {aff | acB € T'r, c € C, Blc= €}

2. l—ins—adm—markA(Tr). For every trace 7 in T'r, a symbol ¢ from C is inserted, followed by
B, at a position where no more symbols of C' are seen, however only if there is a trace 7’ in
T'r that ends in ¢ and is similar (in the A-events) to the prefix of 7 upto the position where ¢
was inserted in 7. It is defined as

L-ins-adm-mark®(Tr) == {actf | a8 € Tr, Blo= ¢, and
there exists yc € Tr with y [a= a[a, c € C}

3. mark(Tr). Yields a marked language, resulting from inserting a single occurrence of f at
any position of all possible traces.

mark(Tr) :={alf | af € Tr}

4. Marked Projection. This operates on a marked language T over XM where each trace in
Tr™ contains exactly one 1. Every trace in Tr is projected to Y after the mark.

TrM 3= {atf’ | et € Tr, B = Blv}

Fig. 2. Language-theoretic operations

For instance, generalized non-interference (GNI) [18] and its modification GNT*
(a property introduced in [17] that is less restrictive and more appropriate than GNI in
the sense that not every sequence of confidential events is required to be possible), can
both be expressed in the MAKS as conjunctions of BSPs. While GNI is equivalent to
the conjunction of BSD and BSI, the property GNI™ is defined as the conjunction of
BSD and BSIA® with respect to a view V = (V, N, C). Thus, if we can verify BSD
and BSIA™, we can also verify GNI*.

We will now detail the proof of exemplarily for the BSPs BSD and
BSIA®. As was shown in [9], the problem of verifying these BSPs can be characterized
as the following language inclusion problems.

L. Tr satisfies BSDy (T'r) iff I-del-mark(T'r) '2C mark(T'r) |%;

2. Tr satisfies BSTA{(Tr) iff l-ins-adm-mark™ (T'r) %< mark(Tr) %
These characterizations use the operations [-del-mark, l-ins-adm-markA, mark, and
marked projection (|%;). We recall their definitions from [9] in Some op-
erations add a special mark f to the traces, which is not part of the original alpha-
bet. In that case, we write ¥ to mean the partitioned alphabet including the mark,
(Zes Xy Zie U {B}).
A complete list of operations required for characterizing BSPs is provided in ap-
pendix [Al A list of all relations between BSPs and the according language-theoretic
operations can be found in appendix

5.3 VPA constructions for BSD and BSIA

We now complete the proof of for the properties BSD and BSIA. For this,
we show that the class of visibly pushdown languages is closed under the language-
theoretic operations defined in [Figure 2] of [subsection 5.2} As a result, we have decid-
ability of BSPs for VPLs along with an automatic decision procedure. The schema for
constructing the automata is inspired by [9]], however the automata are now VPAs rather
than finite-state machines.

Lemma 5. Let Tr be a VPL over 5 = (Xint, Xe, X)) with N,C C X, for a given
viewV = (V, N,C). In addition, let A = X, U X,. U X for some X C X;;. Then also
I-del-mark(Tr) and l-ins-mark(T'r) are visibly pushdown languages.

Proof. Let A = (Q, ¢in, X ,I',0,Qr) be a VPA that accepts T'r. Without loss of gen-
erality we assume A to be deterministic.

We prove that applying each of the language-theoretic operations to a VPL again
yields a VPL, by showing that thereisa VPA A" = (@', ¢.,,, X', I, ', Q’z) that accepts
the language returned by the operation:

1. I-del-mark(Tr). We construct a VPA**® A’ accepting I-del-mark(T'r). As in [9],
A’ consists of two copies of the set of states of A, while leaving the set of input and
stack symbols unchanged. The initial states are within the first set of states; the final
states are within the second set. The idea is to allow to replace the last occurrence of
¢ € C non-deterministically by adding f-transitions on top of every c-transition, but
whose target now is in the second set of states, where all c-transitions are removed
in order to ensure the ¢ replaced by fj was the last one that would have been read.

The construction is sketched in[Figure 3]
b

Fig. 3. [-del-mark(Tr) with ¢ € C' C X+ and a representing all other transitions, including
calls and returns foray € I'.

Formally, the new VPA®*®® A’ is defined by Q' = @ x {1,2}, ¢}, = (¢in, 1),
Y=xyM pr—p, Q% = Qr x {2} and §’ with the following transitions:
For all q, q/ S Q’ Aint € Eintv Qeqll € 207 Aret € Er:

Internal: ((q,1), aint, (¢',1)) €8 < (q,aint,q') €0

((qa2)a lnt7 (q 2)) S 6/ ad (Q7a‘int7q/) S A Aint ¢ C

((qa 1)5 ()) € 6/ A4 (Q7a‘intaq/) S A Aint € C
Call: ((q,z),amll,(i),7) €0 & (q,acan,q',v) €9, i€{1,2}
Return: ((q,1), aret,’y,(i)) €0 & (¢, aret,7,q") €9, i€{1,2}

Hence, A’ accepts [-del-mark(T'r), which therefore is a visibly pushdown language
over XM

2. l-ins-adm-mark™(T'r). First, we construct a VPA B for Tr(A) | 4 by replacing all
transitions (g, a, ¢’) where a ¢ A with (g, €, ¢’). Then we construct A’ as follows.
Let A’ be given by Q' = (Q x 29) U (Q x {1,2}), ¢\, = (qin,reachs(gin)),
S = M " = I, Q) = Qp x {2}, and by &', which is the smallest set
satisfying:

- Ifa € Xy and a ¢ A, then for each transition (p,a,q) € ¢ of A we have
((p,T),a,(q,T)) € 64 forall T € 2%

— For each transition of A that reads an ¢ € A and goes from p to ¢, maybe
depending on a y € I (there is at most one such for each a, p and g, because
A is deterministic) we have a similar transition reading a but going from (p, T")
to (¢, U) for all T € 2% where U is the set of all states that are reachable from
astate t € T"in B with a corresponding a-transition and maybe e-transitions.

— For each transition (¢,¢,q) € § of Awitht € Q, ¢ € QF and ¢ € C, then for
all T € 29 with ¢ € T and for all p € Q we have ((p,T), ¢, (p,1)) € &'

— For each ¢ € Q of A we have ((¢,1),4,(¢,2)) € ¢ .

— For each transition in ¢ that reads an a ¢ C' and that goes from p to g, there is
a similar transition in ¢’ reading a going from (p, 2) to (g, 2).

That is, in the first part of the automaton we keep track of the word being read and
simultaneously of all states that are A-admissible (they are similar to the current
word’s prefix in terms of projection onto A). If from that set of states we could
reach a final state with a c-transition, we additionally allow a ¢ € C that leads
to the second part of A’, modeling the A-admissible insertion of ¢. Consecutively,
we enforce reading a f, before allowing to proceed, however without reading any
further ¢ € C. Hence, A’ recognizes l-ins-adm-markA(Tr), which thus is a VPL
over XM

3. mark(Tr). We construct VPA** A" consisting of two copies of the sets of state
in A. The initial states are in the first copy and the final states are in the second
copy. In both copies, we leave all transitions as they were but add an additional
f-transition from each state in the first set of states to its corresponding state in
the second set of states. Thus, we allow only sequences where exactly one [} has
occurred at an arbitrary position compared to the original trace. Hence, mark(Tr)
is a VPL over LM

4. Tr™ | We construct VPA®*““ A’ consisting of two copies of the sets of states
in A. The initial states are in the first copy and the final states are in the second
copy. The transitions in the first set of states are left as they were, in the second
set of states we remove all transitions for symbols not in Y. We add a §-transition
from each state in the first set of states to its corresponding state in the second set
of states. By this means, each trace in T is projected to Y only after the single
occurrence of f.

As a result, BSD and BSIA are decidable for BSPs. A similar lemma can be shown
for all other language-theoretic operations provided in appendix [Al This completes our

proof of [Theorem 7}

6 Deciding Intransitive Information Flow Properties

In this chapter, we present an approach to verifying intransitive information flow proper-
ties with visibly pushdown automata. Intransitive policies allow information flow across
intermediate domains while prohibiting immediate flow between certain domains. For
example, consider a scenario where messages may be sent from component A to a com-
ponent B only if they are sent via an encryption component C', while direct communi-
cation between A and B is forbidden. Then the information flow policy is intransitive,
whereas transitivity would imply direct flow from A to B to be legitimate.

Intransitive properties have been developed and analyzed [23] [21]] [[1O] [4], however
for varying system models.

In [16], Mantel proposed extended views in order to allow for intransitive security
policies to be expressed in a similar notion as the BSPs in MAKS. As a result, new
security properties were introduced, prominently IBSD and IBSIA (intransitive back-
wards strict deletion of confidential events and intransitive backwards strict insertion
of admissible confidential events). They not only depend on a view)V but also on an
extension set X C V of events. The extension set X extends the view of domain V' in
the sense that visible events occurring after an event in X may depend on confidential
events preceding this event. Intuitively, the events in X can be seen as downgraders for
confidential events.

In this section, we extend the result of the previous section and provide a deci-
sion procedure for IBSD. To this end, we define a new language-theoretic operation
il-del-mark™ and prove that deciding /BSD can be reduced to language inclusion us-
ing il-del-mark™ . We then show that VPLs are closed under il-del-mark™ . We can also
get a similar result for /BSIA, however, the proof is structurally similar and is hence
not included in this paper.

Definition 61 (IBSD and IBSIA) LetV = (V,N,C)and X C V.

1. Tr satisfies IBSD iff for all ac3 € Tr, ¢ € C such that 8 [cux= €, we have
aff € Trwith Blyv=81v and B’ [cux= €.

2. Tr satisfies IBS[A{)(iff forallap € Tr, c € C suchthat B [cux= €and ac € T'r,
we have acfs’ € Tr with B[v= 0"y and §' [cux= €

[16]

We can adapt the language-theoretic operations such that the new BSPs can be decided
with LTOs. The new operations can be represented by VPAs, resulting in the decidabil-
ity of intransitive BSPs for VPLs. Here, we only present results for /BSD. However,
l-ins-adm-mark® can be extended likewise, giving us a similar decidability result for
IBSIA.

Definition 62 (il-del-mark™) For a language Tr and an extension set X C V we
define il-del-mark™ (Tr) := {ah | acB € Tr,c € C,Blcux= €}

Theorem 8. T'r satisfies IBSD if and only if

il-del-mark™ (T'r) I%CN mark(Tr) |5

Proof.

= Suppose T'r satisfies IBSD. Any trace 7 € il-del-mark™ (Tr) I% has the form
aff’ with 8 [cux= € and there is an ol € il-del-markX(Tr) with 8 [x= 6.
Then there must be a ¢ € C with acf € Tr and 8 [cux= €. Tr satisfying IBSD
implies that there is a3” € Tr with 8" =5 . Then agf” € mark(Tr) holds
by definition and, since 8" =xn 8 =y (', implies afjf’ € mark(Tr) % Hence
il-del-mark™ (Tr) 1% CN mark(Tr) 13-

< Suppose il-del-mark™ (T'r) [%C N mark(Tr) |%. For any trace a8 € Tr with

c € Cand f [cux= € we have ayff € il-del-mark™ (T'r) and thus o’ €
il-del-mark™ (Tr) % for a 3" with 8 |z= p’. Due to the initial assumption,
abB’ € mark(Tr) % Thus, there is an afp” € mark(Tr) with 8" 5= '
and consequently 8”7 =5 3. Then a8” € Tr, hence T'r satisfies IBSD.

Theorem 9 (IBSD Decidable for VPLSs). Let Tr be a VPL over Y= (Xint, X, 20)
with N, C C X+ for a given extended view ((V, N, C), X) with extension set X C V.
Then also il-del-mark™ (T'r) is a visibly pushdown language.

Proof sketch: We have already shown how IBSD can be expressed language-theoretically
using il-del-mark™ . What remains to be shown in order to get a decision procedure for
IBSD is that VPLs are closed under il-del-mark™ .

For a VPA A accepting the language T'r we can construct a VPA A’ recognizing
il-del-mark™ (Tr) similar to the VPA recognizing I-del-mark. Again, A’ consists of
three copies of A, however in the third copy we remove all transitions labeled with
e € (C' U X). The rest of the construction is as before.

7 Conclusion

In this paper we presented new decidability results for a range of information flow
properties. We first proved noninference, a classical non-interference-like information
flow property, to be decidable for visibly pushdown systems. Then a generalization
of this result for the MAKS framework for information flow properties followed. We
chose this framework as it can represent a large class of properties and is more expres-
sive than earlier frameworks. By defining a new language-theoretic operation, we also
proved decidability for an intransitive information flow property for VPLs. Though we
showed this extension only for one property, we claim that it can be easily extended for
other intransitive MAKS-like properties as well. For all decidability results in this pa-
per we assumed call and return events of VPAs to be observable by any low level entity.
Without this restriction, VPLs would not be closed under the given language-theoretic
operations used in this paper. This does not mean that non-interference properties are
not decidable for VPLs in general. Investigating whether such security properties can
be decided over VPLs in general, i.e. with confidential call and returns, remains future
work.

Acknowledgements. This work was funded by the DFG (German research foundation) under
the project FM-SecEng in the Computer Science Action Program (MA 3326/1-3).

References

10.

11.

12.

13.

15.

16.

17.

18.

19.

20.

. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for Visibly Pushdown

Languages. In: Proc. of ICALP. pp. 1102-1114 (2005)

. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. of the Annual ACM Sym-

posium on Theory of Computing (STOC). pp. 202-211. ACM (2004)

. Alur, R., Madhusudan, P.: Adding Nesting Structure to Words. In: Proc. of Developments in

Language Theory. LNCS, vol. 4036, pp. 1-13. Springer (2006)

. Best, E., Darondeau, P., Gorrieri, R.: On the Decidability of Non Interference over Un-

bounded Petri Nets. In: Proc. of International Workshop on Security Issues in Concurrency
(SecCo). pp. 16-33 (2010)

. Chervet, P., Walukiewicz, I.: Minimizing Variants of Visibly Pushdown Automata. In:

Kucera, L., Kucera, A. (eds.) Proc. of Mathematical Foundations of Computer Science
(MFCS), Lecture Notes in Computer Science, vol. 4708, pp. 135-146. Springer (2007)

. Dam, M.: Decidability and proof systems for language-based noninterference relations. SIG-

PLAN 41, 67-78 (January 2006)

. D’Souza, D., Holla, R., Kulkarni, J., Raghavendra, K., Sprick, B.: On The Decidability of

Model-Checking Information Flow Properties. In: Proc. of International Conference on In-
formation Systems Security (ICISS). LNCS, vol. 5352, pp. 26—40. Springer (2008)

. D’Souza, D., Holla, R., Raghavendra, K., Sprick, B.: Model Checking trace-based informa-

tion flow properties. Journal of Computer Security 19(1), 101-138 (2011)

. D’Souza, D., Raghavendra, K., Sprick, B.: An Automata Based Approach for Verifying In-

formation Flow Properties. In: Proc. of Workshop on Automated Reasoning for Security
Protocol Analysis (ARSPA). ENTCS, vol. 135, pp. 39-58 (2005)

Eggert, S., Van Der Meyden, R., Schnoor, H., Wilke, T.: The complexity of in-
transitive noninterference. 2011 IEEE Symposium on Security and Privacy pp. 196—
211 (2011), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5958030

Focardi, R., Gorrieri, R.: A Classification of Security Properties for Process Algebras. Jour-
nal of Computer Security 3, 5-33 (1995)

Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In: Proc. IEEE Symp. on
Security and Privacy. pp. 11-20 (1982)

Guttman, J.D., Nadel, M.E.: "What Needs Securing?”. In: Proceedings of the IEEE Sympo-
sium on security and Privacy. pp. 34-57 (1988)

. Johnson, D.M., Thayer, F.: Security and the Composition of Machines. In: Proceedings of

the Computer Security Foundations Workshop. pp. 72 — 89 (1988)

Mantel, H.: Possibilistic Definitions of Security — An Assembly Kit. In: Proc. of IEEE Com-
puter Security Foundations Workshop (CSFW). pp. 185-199. IEEE (2000)

Mantel, H.: Information flow control and applications - bridging a gap. In: Proc. of Formal
Methods Europe (FME). LNCS, vol. 2021, pp. 153-172. Springer-Verlag (2001)

Mantel, H.: A Uniform Framework for the Formal Specification and Verification of Informa-
tion Flow Security. Ph.D. thesis, Universitét des Saarlandes (2003)

McCullough, D.: Specifications for multilevel security and a hookup property. In: Proc. of
IEEE Symp. Security and Privacy (SP&P) (1987)

McLean, J.: A General Theory of Composition for Trace Sets Closed Under Selective In-
terleaving Functions. In: Proc. of IEEE Symposium on Research in Security and Privacy
(SP&P). pp. 79 — 93. IEEE Computer Society Press (1994)

van der Meyden, R., Zhang, C.: Algorithmic verification of noninterference properties. Elec-
tron. Notes Theor. Comput. Sci. 168, 61-75 (February 2007)

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5958030
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5958030

21.

22.

23.

24.

25.

Meyden, R.V.D.: What, indeed, is intransitive noninterference? Discovery 4734, 235-250
(2007)

O’Halloran, C.: A Calculus of Information Flow. In: Proc. of European Symposium on Re-
search in Computer Security (ESORICS) (1990)

Rushby, J.: Noninterference, transitivity and channel-control security policies. Tech. rep.,
SRI International (1992)

Torre, S., Napoli, M., Parente, M.: The word problem for visibly pushdown languages de-
scribed by grammars. Formal Methods in System Design 31, 265-279 (December 2007)
Zakinthinos, A., Lee, E.S.: A general theory of security properties. In: Proc. of the 1997
IEEE Symposium on Security and Privacy (SP ’97). p. 94. IEEE Computer Society (1997)

A

Language-theoretic operations

Let T'r be language over X and let T+ be a language over M with exactly one occurrence of
f in each word. X is partitioned into the three sets V, N, C. Let A and Y denote arbitrary subsets
of . V', N’ and C’ are subsets of V, N and C, respectively.

1.

e}

10.

11.

12.

13.

B

Projection. The Projection of T'r with respect to Y is defined as
Trly:={rly |7 € Tr} where 7 [y is obtained by deleting all symbols from 7 that are
notinY

. I-del(T'r). For every string 7 in T'r, the last occurring C-symbol is deleted.

I-del(Tr) := {af | acB € Tr, Blc= €}

. l-ins(T'r). For every string 7 in T'r, a symbol from C is inserted at a position where no more

symbols of C' are seen.
Lins(Tr) :=={acf | aB € Tr, Blc=¢€, c € C}

. l-ins-adm™ (Tr) is defined as l-ins-adm” (T'r) :=

{acB | aB € Tr, Blc= ¢, there exists y¢ € Tr, yla=ala, c € C}

. l-del-mark(Tr). In each string 7 in T'r, the last C-symbol is replaced by a mark f.

I-del-mark(Tr) := {ahif | acB € T'r, Blc= €}

. l-ins-mark(T'r). A modified version of l-ins(T'r), where a mark is introduced after the new

symbol in the string.
l-ins-mark(Tr) := {achB | aB € Tr, Blc=¢, c€ C}

. l-ins-adm-mark® (Tr). Similar to [-ins-mark(T'r), it is defined as

l-ins-adm-mark® (T'r) :=
{actf | aB € Tr, Blc=¢, there exists yc € Tr, y[a=ala, c € C}

. mark(Tr) is defined as mark(Tr) := {a | o € Tr}
. Marked Projection. This operates on a marked language. Every string in 77 is projected

to Y after the mark.

TrM 13 {ahf’ | af € TrM, B = Blv}

I-del-con-markc: v+ (T'r) is defined as

I-del-con-markc: v+ (Tr) := {avhB|acvB € Tr, Blc=¢€,c€ C',veV'}
l-ins-con-markc v+ (T'r) is defined as

l-ins-con-markcr v+ (Tr) := {acviB | avB € Tr, Blc=¢€, c€ C', v e V'}
l-ins-adm-con-mark(;. (T'r) is defined as

l-ins-adm-c()n-marké/’V/ (Tr) :=

{acvhf | avB € Tr, Blc=¢, there exists yc € Tr, y[a=ala, c€ C', v e V'}
erase-con-marky v+ (Tr) is defined as

erase-con-marky: v+ (Tr) := {avhB | advB € Tr, § € (N')*, v e V'}

Deciding BSPs by language inclusion

For Y C X and languages T'r; and T3 we define Y := (Z\Y)and Tr1 Cy Tre :=Tr1 [C
T'r2 |3. Then the BSPs of Mantel can be characterized in terms of the language theoretic oper-
ations as follows. Let T'r be a language over X and V = (V, N, C) be a view over X. In the
following statements we assume the properties are w.r.t. the view V.

Ll e

Tr satisfies Riff T'r [yv Cn T'r

T'r satisfies D iff I-del(Tr) Cn Tr

T'r satisfies [iff l-ins(Tr) Cn T'r

Tr satisfies IA w.r.t. A iff l-ins-adm™ (T'r) Cn T

. Tr satisfies BSD iff l-del-mark(Tr) |5 Cn mark(Tr) |57
. Tr satisfies BSI iff l-ins-mark(Tr) |5 Cn mark(Tr) |5
. Tr satisfies BSIA w.r.t. A iff [-ins-adm-mark™ (Tr) I% €~ mark(Tr) %

. T'r satisfies FCD w.r.t. V',C' ,N" iff I-del-con-markc: v (T'r) I% € erase-con-marky: v (Tr) |5
9. Trsatisfies FCI w.rt. V',C",N" iff I-ins-con-markcs v+ (Tr) |3 Cn erase-con-marky v (Tr) |5

10. T'r satisfies FCIA wr.t. A, V',C' N iff l-ins-adm-con-mark(s, v, (Tr) | Cn erase-con-marky: v+ (T) |2

11. T'r satisfies SRiff Tr [C T'r

12. Tr satisfies SD iff I-del(Tr) C T'r

13. T'r satisfies ST iff l-ins(Tr) C Tr

14. Tr satisfies SIA iff I-ins-adm™ (Tr) C Tr

0 J N

C Proof: VPLs closed under language-theoretic operations

We continue our proof of [Theorem

1. l-del(L). The construction of A’ for I-del is similar to that of I-del-mark, however no addi-
tional | is read. Therefore, e-transitions allow for omitting the last occurrence of a ¢ € Y.
Then A" accepts I-del(L). According to[Theorem 5| I-del(L) is a visibly pushdown language
over 3. B

2. [-ins(L). Construct A’ such that A" = (Q x {1,2}, {(qin, 1)}, X, I, 8, Qr x {2}), where
&’ is the smallest set satisfying:

— For each transition in A from q to ¢’ with q,q’ € Q there is a similar transition in A’
that now goes from (g, 1) to (¢’, 1)
— For each transition from ¢ to ¢’ in A, except for c-transitions with ¢ € C, there is a
similar transition in ¢’, now going from (g, 2) to (¢’, 2)
— Forallc € C and forall g € Q thereis a ((q,1),¢,(q,2)) € &'
As a consequence, A’ is a VPA that allows non-deterministic reads of an additional~ ceC
with no following ¢’ € C. Hence, A’ accepts l-ins(L), thus l-ins(L) is a VPL over X.

3. l-ins-adm™ (L). The construction of A’ for I-ins-adm* (L) is similar to that of I-ins-adm-mark® (L),
however no additional fj needs to be read, thus only two copies of the sets of states of A are
necessary.

4. l-ins-mark(L). The construction of A’ for l-ins-mark(L) is similar to that of l-ins(L), how-
ever an additional § € X;,,; must be read after the inserted ¢ € C, which is enforced by a
third copy of \A.

5. mark(L). Let A" = (Q x {1,2}, (qin, 1), &M, I 6',Qr x {2}), where & is the smallest
set satisfying:

— For each transition in A from ¢ to ¢’ with ¢, ¢’ € Q, there is is similar transition in 6’
going from (g, 1) to (¢’, 1) and another one going from (g, 2) to (¢, 2).
— Forallq € Q: ((q,1),4,(q,2)) isin &’
By this means, a single f can be inserted at every position of the originally accepted word.
A’ is a VPA, hence mark(L) is a VPL over 2.

6. M|'%. Let A = (Q x {1,2}, (qin, 1), EM, I 64/, Qr x {2}), where 4/ is the smallest
set satisfying:

— For each transition in A from ¢ to ¢’ with q,¢’ € Q that does not read a f there is a

similar transition from (g, 1) to (¢’, 1) in A’

For each (g, 5,q’) € § thereisa ((q,1), 4, (¢",2)) € .4/

— For each transition from ¢ to ¢’ in A that reads an a € X, there is a similar transition

in A’ from (g, 2) to (¢, 2).

For each (g,a,q’) € § with a ¢ X there is a transition ((q, 2), €, (¢’,2)) € S

10.

With A’ accepting M |, this language is a VPL over oM.

. I-del-con-markc v (L). In order to accept I-del-con-markc: v+ (L) by a VPA with C’ C C

and V' C V, we a VPA®*® A’ that allows non-deterministic skips of ¢’ € C’, then immedi-
ately enforces the original successive v’-transition with v’ € V' and an additional transition
reading a §. We achieve this by using four copies of .4 where the first copy contains all
of the transition in A and additional e-transitions ((g, 1), €, (¢, 2)) leading into the second
copy for all (g, c,q’) € J. From the second copy only v’-transitions exist for each original
v’-transition in \A, yet leading into the third copy, where a f-transition leads into the fourth
copy from (g, 3) to (g, 4) for all ¢ € Q. The fourth copy contains all transitions of .4 except
for ¢’-transitions with ¢’ € C”. B

A’ accepts [-del-con-markc: v+ (L), which therefore is a VPL over X,

. l-ins-con-markc: v+ (L). We construct a VPA®*® A’ by adding ¢’-transitions on top of v’

transitions with ¢’ € C” and v" € V" and then enforce the actual v’-transition followed by a
b-transition. As a result, l-ins-con-markc: v (L) is a VPL over 2.

. l-ins-adm-con-markg \,/(L). We construct A’ that is similar to the VPA*“® recognizing

l-ins-adm® but with two more subautomata. The states of the first and fourth part corre-
spond to the first and second of the automaton for l-ins-adm™, whereas we add additional
' -transitions from the first to the second subautomaton on top of v’-transitions within the
first part, followed by the actual v’-transition going from the second to the third part, hereby
recognizing ¢'-transitions followed by v’-transitions. We enforce a subsequent f-transition
leading from the third to the fourth subautomaton, containing the final states and all transi-
tions except those reading any ¢ € C'. Consequently, l—ins—adm—con—marké,,vl (L)isaVPL
over M.

erase-con-mark: v+ (L). We construct A’ by copying A four times, leaving the transitions
of the first and the fourth copy as they were. All transitions of the second copy reading
a € N’ are replaced by e-transitions, all v’-transitions from p to q are bent such that they go
from p in the second copy to g in the third copy; the remaining transitions within the second
copy are deleted. Within the third copy there are no transitions at all. For each state p in the
first copy we add e-transitions to p in the second copy. From the third copy to the fourth, we
add g-transitions between corresponding states.

Therefore erase-con-marky: v+ (L) is a VPL over XM

	Verifying Information Flow Security in Visibly Pushdown Automata

