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Abstract. It is a growing concern of companies and end users whether
the agents of an IT system, i.e., its processes and users, comply with
security policies, which, e.g., stipulate how sensitive data must and must
not be used by the agents. We present a scalable solution for compliance
checking based on monitoring the agents’ behavior, where policies are
specified in an expressive temporal logic and the system actions are
logged. In particular, our solution utilizes the MapReduce framework to
parallelize the process of monitoring the logged actions. We also provide
the theoretical underpinnings of our solution as a theoretical framework
for slicing logs, i.e., the reorganization of the logged actions into parts
that can be analyzed independently of each other. We present orthogonal
methods for generating such slices and provide means to combine these
methods. Finally, we report on a real-world case study, which demonstrates
the feasibility and the scalability of our monitoring solution.

1 Introduction

Both public and private companies are increasingly required to check whether the
agents of their IT systems, i.e., users and processes, comply with security policies,
which, e.g., specify permissive and obligatory actions for agents and stipulate the
usage of sensitive data. For example, US hospitals must follow the US Health
Insurance Portability and Accountability Act (HIPAA) [1] and financial services
must conform to the Sarbanes-Oxley Act (SOX) [2]. For end users, it is also a
growing concern whether their private data collected by and shared within IT
systems is used only in the intended way. A prominent approach to checking
system compliance is based on monitoring the actions of the users and processes.
Either the actions are checked online by a monitor, which reports violations when
an action does not comply with a policy, or the observed actions are logged and
a monitor checks the logs offline at a later time, such as during an audit.

Although various monitoring approaches have been developed for different
policy specification languages, see, e.g., [10, 18, 19, 22, 30], they fall short for
checking compliance of larger IT systems like cloud-based services and systems
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that process machine-generated data. The monitors in these approaches do not
cope with the enormous amount of logged system actions: these systems typically
log terabytes or even petabytes of actions each day.

In this paper, we provide a scalable solution for offline monitoring, where the
system components log their actions and monitors inspect the logged actions for
detecting and reporting policy violations. An overview of our solution is as follows:
For a given policy, we reorganize the logged actions into small parts, called slices.
We show that each slice can be meaningfully monitored independently of the
other slices. This allows us to parallelize and distribute the monitoring process
over multiple computers.

In general, it is not obvious how to reorganize the logged actions into slices
such that the slices can be analyzed independently. The slices must be sound
and complete for the given policy and the logged data, that is, when monitoring
these slices only valid violations are reported and every violation is reported by
at least one of the monitors. We lay the foundations for obtaining slices with
these properties. In particular, we provide a theoretical slicing framework, where
logs are represented as temporal structures and policies are specified as formulas
in metric first-order temporal logic (MFOTL) [9, 10]. Although we use temporal
structures and MFOTL, the underlying principles of our slicing framework are
general and apply also to other representations of logs and policy specification
languages.

We present two basic orthogonal methods to generate sound a complete
slices. With the first method, a slice is used to check system compliance during
a specified period of time, e.g., a particular week. Based on the timestamps
that record when an action is performed, the slicing method ensures that a
slice contains those actions that are needed to check compliance of the system
during the specified period of time. Note that not only the actions from the
specified period of time are relevant since the policy might require actions that
must have or must not have happened at previous or later time points. With the
second method, a slice is used to check system compliance for specific entities,
such as all users whose login names start with the letter “a.” Again, note that
actions of other users might also be relevant to determining whether a particular
user is compliant. The slicing method uses the data parameters of the logged
actions to ensure that a slice contains all those actions that are needed to check
system compliance for the specific entities. In addition to these two basic slicing
methods we describe filtering methods, which can also be understood as slicing
methods. Filtering discards parts of a slice to speed up the monitoring process.
Furthermore, we show that our slicing and filtering methods are compositional.
This allows us to split a log into slices with respect to the different dimensions of
time and data.

We implement our monitoring approach using the MapReduce framework [14].
MapReduce allows us to efficiently reorganize large logs into slices and monitor
these slices in parallel. In general, MapReduce computations comprise a map
phase, followed by a reduce phase. In the map phase, one applies multiple instances
of a map function and in the reduce phase, one applies multiple instances of



Checking System Compliance by Slicing and Monitoring Logs 3

a reduce function. Each of these instances accesses only a portion of the data
set, which is exploited by the MapReduce framework to run these instances in
parallel on multiple computers. In our monitoring solution, we identify in the
map phase, for each slice, in parallel the relevant actions for the given policy.
The identified actions for a slice are then collected by the MapReduce framework,
which generates the slice and passes it to an instance of our reduce function. The
slices are then monitored, again in parallel, in the reduce phase.

Finally, we evaluate our monitoring solution in a large real-world case study,
where we check more than 35,000 computers for compliance. The policies consid-
ered concern the processes of updating system configurations and the access to
sensitive resources. We successfully monitor the logs of these computers, which
consist of several billion log entries from a two year period. This shows the
scalability of our approach.

We summarize our contributions as follows. We lay the foundations for splitting
logs into slices for monitoring. Moreover, we provide a scalable algorithmic
realization for monitoring large logs in an offline setting. Both our foundations
and our algorithmic realization account for compositionality. We experimentally
evaluate our compliance checking approach in a real-world setting, thereby
demonstrating its effectiveness and scalability.

The remainder of the text is structured as follows. In Section 2, we lay the
foundations for generating sound and complete slices. In the Sections 3 and 4,
we present the different slicing and filtering methods based on data parameters
and timestamps. In Section 5, we describe our case study and the experimental
evaluation of our approach. In Section 6, we discuss related work before we draw
conclusions in Section 7. Additional proof details are given in the appendix.

2 Slice and Monitor

In this section, we introduce the theory underpinning our approach of splitting
logs and monitoring them separately and in parallel. We begin with a motivating
example.

2.1 Motivating Example

We assume that a system logs the actions together with the time when they
are carried out. Actions are initiated by agents, such as users or processes. For
example, when an SSH connection to the computer c with session identifier s at
time τ is established, we assume that the system logs the action ssh login(c, s)@τ .
Since the system is concurrent and distributed, multiple actions can be logged
at the same time at different places. We monitor these logs to check whether
the agents’ behavior complies to policies, where we assume that the policies
are specified in terms of the actions. An example of such a policy is that SSH
connections must be closed after at most 24 hours.

We illustrate the splitting of logs into slices on this policy. Assume that we
log two kinds of actions: ssh login(c, s)@τ and ssh logout(c, s)@τ , which have
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the expected interpretation. We split the log data into slices, where each slice
consists of the actions with respect to a specified set of computers. If the specified
sets together cover all computers, it should intuitively be clear that it suffices to
monitor each of the slices separately to detect policy violations. Note that for
this example, we can alternatively “slice” the log data with respect to the session
identifiers.

In the remainder of this section, we present the foundations of meaningfully
splitting logs. We present these foundations for temporal structures, which we
use for representing logs, and metric first-order temporal logic (MFOTL), which
we use as a specification language for policies. We proceed by giving background
on MFOTL.

2.2 Background on MFOTL

Syntax and Semantics. Let I be the set of nonempty intervals over N. We
write an interval I ∈ I as [b, b′) := {a ∈ N |b ≤ a < b′}, where b ∈ N, b′ ∈ N∪{∞},
and b < b′. A signature S is a tuple (C,R, ι), where C is a finite set of constant
symbols, R is a finite set of predicate symbols disjoint from C, and the function
ι : R → N associates each predicate symbol r ∈ R with an arity ι(r) ∈ N. In
the following, let S = (C,R, ι) be a signature and V a countably infinite set of
variables, assuming V ∩ (C ∪R) = ∅.

Formulas over the signature S are given by the grammar

φ ::= t1 ≈ t2
∣∣ t1 ≺ t2 ∣∣ r(t1, . . . , tι(r)) ∣∣ (¬φ)

∣∣ (φ ∨ φ)
∣∣ (∃x. φ)

∣∣
( I φ)

∣∣ (#I φ)
∣∣ (φ SI φ)

∣∣ (φ UI φ) ,

where t1, t2, . . . range over the elements in V ∪C, and r, x, and I range over the
elements in R, V , and I, respectively.

To define MFOTL’s semantics, we need the following notions. A structure D

over the signature S consists of a domain |D| 6= ∅ and interpretations cD ∈ |D|
and rD ⊆ |D|ι(r), for each c ∈ C and r ∈ R. A temporal structure over S is
a pair (D̄, τ̄), where D̄ = (D0,D1, . . . ) is a sequence of structures over S and
τ̄ = (τ0, τ1, . . . ) is a sequence of natural numbers, where the following conditions
hold:

(1) The sequence τ̄ is monotonically increasing (that is, τi ≤ τi+1, for all i ≥ 0)
and makes progress (that is, for every i ≥ 0, there is some j > i such that
τj > τi).

(2) D̄ has constant domains, that is, |Di| = |Di+1|, for all i ≥ 0. We denote the
domain by |D̄| and require that its elements are strictly linearly ordered by
the relation <.

(3) Each constant symbol c ∈ C has a rigid interpretation, that is, cDi = cDi+1 ,

for all i ≥ 0. We denote c’s interpretation by cD̄.

We call the indexes of the τis and Dis time points and the τis timestamps.
In particular, τi is the timestamp at time point i ∈ N. Note that there can be
successive time points with equal timestamps. Furthermore, note that the relations
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rD0 , rD1 , . . . in a temporal structure (D̄, τ̄) corresponding to a predicate symbol
r ∈ R may change over time. In contrast, the interpretation of the constant
symbols c ∈ C and the domain of the Dis do not change over time.

A valuation is a mapping v : V → |D̄|. We abuse notation by applying a

valuation v also to constant symbols c ∈ C, with v(c) = cD̄. We write f [x← [ y]
for altering a function f : X → Y pointwise at x ∈ X. In particular, for a
valuation v, a variable x, and d ∈ |D̄|, v[x←[ d] is the valuation mapping x to d
and leaving other variables’ valuation unchanged.

Satisfaction in MFOTL is defined by a binary relations |= over a tuple
consisting of a temporal structure, a valuation, and an index on the on side and
an MFOTL formula on the other side. In the following, (D̄, τ̄) is a temporal
structure over the signature S, with D̄ = (D0,D1, . . . ), τ̄ = (τ0, τ1, . . . ), v a
valuation, i ∈ N, and φ a formula over S.

(D̄, τ̄ , v, i) |= t ≈ t′ iff v(t) = v(t′)
(D̄, τ̄ , v, i) |= t ≺ t′ iff v(t) < v(t′)
(D̄, τ̄ , v, i) |= r(t1, . . . , tι(r)) iff

(
v(t1), . . . , v(tι(r))

)
∈ rDi

(D̄, τ̄ , v, i) |= (¬φ) iff (D̄, τ̄ , v, i) 6|= φ
(D̄, τ̄ , v, i) |= (φ ∨ ψ) iff (D̄, τ̄ , v, i) |= φ or (D̄, τ̄ , v, i) |= ψ
(D̄, τ̄ , v, i) |= (∃x. φ) iff (D̄, τ̄ , v[x← [ d], i) |= φ, for some d ∈ |D̄|
(D̄, τ̄ , v, i) |= ( I φ) iff i > 0, τi − τi−1 ∈ I, and (D̄, τ̄ , v, i− 1) |= φ
(D̄, τ̄ , v, i) |= (#I φ) iff τi+1 − τi ∈ I and (D̄, τ̄ , v, i+ 1) |= φ
(D̄, τ̄ , v, i) |= (φ SI ψ) iff for some j ≤ i, τi − τj ∈ I, (D̄, τ̄ , v, j) |= ψ,

and (D̄, τ̄ , v, k) |= φ, for all k ∈ [j + 1, i+ 1)
(D̄, τ̄ , v, i) |= (φ UI ψ) iff for some j ≥ i, τj − τi ∈ I, (D̄, τ̄ , v, j) |= ψ,

and (D̄, τ̄ , v, k) |= φ, for all k ∈ [i, j)

The temporal operators  I (“previous”), #I (“next”), SI (“since”),
and UI (“until”) allow us to express both quantitative and qualitative prop-
erties with respect to the ordering of elements in the relations of the Dis in the
temporal structure (D̄, τ̄). Note that they are labeled with intervals I and a
formula of the form ( I φ), (#I φ), (φ SI ψ), or (φUI ψ) is only satisfied in (D̄, τ̄)
at the time point i, if it is satisfied within the bounds given by the interval I of
the respective temporal operator, which are relative to the current timestamp τi.

When a formula is not satisfied, we say that it is violated for the given
valuation and i.

Terminology and Notation. We omit parentheses where possible by using
the standard conventions about the binding strengths of the logical connectives.
For instance, Boolean operators bind stronger than temporal ones and unary
operators bind stronger than binary ones. We use standard syntactic sugar such
as �I φ := true SI φ, �I φ := true UI φ, �I φ := ¬ �I ¬φ, and �I φ := ¬ �I ¬φ,
where true := ∃x. x ≈ x. Intuitively, the formula �I φ states that φ holds at
some time point in the past within the time window I and the formula �I φ
states that φ holds at all time points in the past within the time window I. If
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the interval I includes zero, then the current time point is also considered. The
corresponding future operators are �I and �I . We also use non-metric operators
like �φ := �[0,∞) φ. A formula φ is bounded if the interval I of every temporal
operator UI occurring in φ is finite. We use standard terminology like atomic
formula and subformula.

Monitoring Logs. We illustrate our use of MFOTL and our tool for monitoring
a single stream of system actions [8]. Consider the policy stating that SSH
connections must last no longer than 24 hours. This can be formalized in MFOTL
as

�∀c.∀s. ssh login(c, s)→ �[0,25) ssh logout(c, s) ,

where we assume that time units are in hours and the signature consists of the
two binary predicate symbols ssh login and ssh logout . We also assume in the
following that the actions for establishing SSH connections and ending SSH
connections are logged in relations. Specifically, for each time point i ∈ N, we
have the relations SSH LOGIN i and SSH LOGOUT i such that (1) (c, s) ∈
SSH LOGIN i iff an SSH connection with session identifier s to the computer c is
established and (2) (c, s) ∈ SSH LOGOUT i iff the SSH connection with session
identifier s to the computer c is closed. Observe that at the same time point
multiple SSH connections can be established and closed. Furthermore, every
time point i has a timestamp τi ∈ N, recording the time when the actions in
SSH LOGIN i and SSH LOGOUT i occurred.

The corresponding temporal structure (D̄, τ̄) is as follows. The domain of
D̄ contains all possible computer names and session identifiers. Without loss
of generality, we assume that both computer names and session identifiers are
represented as natural numbers, that is, |D̄| = N. The ith structure in D̄ contains
the relations SSH LOGIN i and SSH LOGOUT i, interpreting the predicate
symbols ssh login and ssh logout at time point i. The ith timestamp in τ̄ is
simply τi.

To detect policy violations, we use the monitoring tool MONPOLY [8], which
implements the monitoring algorithm in [10]. MONPOLY iteratively processes
the temporal structure (D̄, τ̄) representing the stream of logged actions. This can
be done offline or online. At each time point i, it outputs the valuations satisfying
the negation of the formula ψ = ssh login(c, s)→ �[0,25) ssh logout(c, s), which
is ¬ψ and equivalent to ssh login(c, s) ∧ ¬ �[0,25) ssh logout(c, s). Note that we
drop the outermost quantifiers since we are not only interested in whether the
policy is violated but we also want additional information about the violations
themselves, e.g., the session identifiers of the SSH connections that lasted longer
than 24 hours.

In general, we assume that policies formalized in MFOTL are of the form �ψ,
where ψ is bounded. Since ψ is bounded, the monitor only needs to process a
finite prefix of (D̄, τ̄) when determining the valuations satisfying ¬ψ at any given
time point. To effectively determine all these valuations, we also assume here that
predicate symbols have finite interpretations in (D̄, τ̄), that is, the relation rDj is
finite, for every predicate symbol r and every j ∈ N. Furthermore, we require that
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¬ψ can be rewritten to a formula that is temporal safe-range [10], a generalization
of the standard notion of safe-range database queries [3]. We refer to [10] for a
detailed description of the monitoring algorithm. The tool MONPOLYis publicly
available at https://projects.developer.nokia.com/MonPoly/.

2.3 Slicing Framework

In the remainder of the text, we assume that all temporal structures are over the
same signature (C,R, ι), have the same domain D, and the constant symbols in
C are interpreted equally. Recall that V is the set of variables. Furthermore, we
assume without loss of generality that variables are quantified at most once in a
formula and that quantified variables are disjoint from its free variables.

Slices. The theoretical core of our work is to split a temporal structure, which
represents a stream of logged system actions, into smaller temporal structures. The
smaller temporal structures, called slices, are formally defined in Definition 2.1.

Definition 2.1. Let (D̄, τ̄) and (D̄′, τ̄ ′) be temporal structures, ` ∈ N ∪ {∞} a
length, and s : [0, `)→ N a strictly increasing monotonic function. (D̄′, τ̄ ′) is a
slice of (D̄, τ̄) if τ ′i = τs(i) and rD

′
i ⊆ rDs(i) , for all i ∈ [0, `) and all r ∈ R.

Intuitively, a slice consists only of some of the logged system actions, up to the
time point `. The function s determines the source of the structure D′i and the
timestamp τ ′i , for each i ∈ [0, `). The case where ` is not ∞ corresponds to the
situation where we consider only a finite subsequence of the stream of logged
data. However, since temporal structures are by definition infinite sequences of
structures and timestamps, we mark the end of the finite sequence by ` ∈ N. The
suffix of (D̄, τ̄) after the position ` is irrelevant.

In practice, we can only monitor finite prefixes of temporal structures. Hence,
the original temporal structure and the slices are finite prefixes in an implemen-
tation. To ease the exposition, we require that temporal structures and thus also
logs describe infinite streams of system actions.

Soundness and Completeness Requirements. To meaningfully monitor
slices separately, we impose that at least one of the slices violates the given
policy if and only if the original temporal structure violates the policy. We relax
this requirement by associating each slice with a space that restricts the kind of
violations. In the following, we define soundness and completeness requirements
for the slices relative to such spaces. We call these spaces restrictions.

Definition 2.2. A restriction is a pair (D,T ), where D : V → 2D and T ⊆ N is
an interval.

A valuation v is permitted by the restriction (D,T ) if v(x) ∈ D(x), for every
variable x ∈ V . A timestamp τ is permitted by the restriction (D,T ) if τ ∈ T .
The restriction (D,T ) with D(x) = D, for each x ∈ V , and T = N is called the
non-restrictive restriction.
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Definition 2.3. Let (D̄, τ̄) and (D̄′, τ̄ ′) be temporal structures, (D,T ) a restric-
tion, and φ a formula.

(i) (D̄′, τ̄ ′) is (D,T )-sound for (D̄, τ̄) and φ if for all valuations v permitted
by (D,T ) and for all timestamps t ∈ T , it holds that (D̄, τ̄ , v, i) |= φ, for
all i ∈ N with τi = t, implies (D̄′, τ̄ ′, v, j) |= φ, for all j ∈ N with τ ′j = t.

(ii) (D̄′, τ̄ ′) is (D,T )-complete for (D̄, τ̄) and φ if for all valuations v permitted
by (D,T ) and for all timestamps t ∈ T , it holds that (D̄, τ̄ , v, i) 6|= φ, for
some i ∈ N with τi = t, implies (D̄′, τ̄ ′, v, j) 6|= φ, for some j ∈ N with
τ ′j = t.

Each slice of a temporal structure is associated with a restriction. The original
temporal structure is associated with the non-restrictive restriction. If we split
a temporal structure into slices, we must associate a restriction with each slice.
These restrictions refine the restriction associated to the given temporal structure.
In Definition 2.4 we give conditions that the refined restrictions must fulfill.

Definition 2.4. A family of restrictions (Dk, T k)k∈K refines the restriction
(D,T ) if

(R1) D(x) ⊇
⋃
k∈K D

k(x), for every x ∈ V ,

(R2) T ⊇
⋃
k∈K T

k, and
(R3) for every valuation v permitted by (D,T ) and for every t ∈ T , there is

some k ∈ K such that v is permitted by (Dk, T k) and t ∈ T k.

Intuitively, the conditions (R1) and (R2) require that the refined restrictions
do not permit more than the original restriction. That is, the family of refined
restrictions must not permit valuations and timestamps that are not permitted by
the original restriction. The condition (R3) requires that the refined restrictions
cover everything covered by the original restriction. That is, every combination
of a valuation and a timestamp permitted by the original restriction must be
permitted by at least one of the refined restrictions.

Slicers. We call a mechanism that generates the slices and the associated
restrictions a slicer. In Definition 2.5 we give requirements that the slices and
the associated restrictions produced by a slicer must fulfill. In Theorem 2.1
we show that these requirements suffice to ensure that monitoring the slices is
equivalent to monitoring the original temporal structure with respect to the
associated restrictions. In the Sections 3 and 4, we provide specific slicers that
split a temporal structure by data and by timestamps and filter out parts of the
temporal structure that are “irrelevant” with respect to the monitored formula.
Algorithmic realizations of slicers are given in Section 5.

Definition 2.5. A slicer sφ for the formula φ is a function that takes as input
a temporal structure (D̄, τ̄) and a restriction (D,T ). It returns a family of
temporal structures (D̄k, τ̄k)k∈K and a family of restrictions (Dk, T k)k∈K , where
the returned families satisfy the following criteria:
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(S1) (Dk, T k)k∈K refines (D,T ).
(S2) (D̄k, τ̄k) is (Dk, T k)-sound for (D̄, τ̄) and φ, for each k ∈ K.
(S3) (D̄k, τ̄k) is (Dk, T k)-complete for (D̄, τ̄) and φ, for each k ∈ K.

Theorem 2.1. Let sφ be a slicer for the formula φ. Let sφ, on input temporal
structure (D̄, τ̄) and restriction (D,T ), return the family of temporal structures
(D̄k, τ̄k)k∈K and the family of restrictions (Dk, T k)k∈K as output. The following
conditions are equivalent:

(1) (D̄, τ̄ , v, i) |= φ, for all valuations v permitted by (D,T ) and all i ∈ N with
τi ∈ T .

(2) (D̄k, τ̄k, v, i) |= φ, for all k ∈ K, all valuations v permitted by (Dk, T k), and
all i ∈ N with τki ∈ T k.

Proof. (2) follows from (1) because (Dk, T k)k∈K refines (D,T ) (condition (S1)
in Definition 2.5) and because (D̄k, τ̄k) is (Dk, T k)-sound for (D̄, τ̄) and φ, for
each k ∈ K (condition (S2) in Definition 2.5).

To show that (2) implies (1), we show that the contrapositive. Let v be a
valuation and i ∈ N such that (D̄, τ̄ , v, i) 6|= φ, v is permitted by (D,T ) and
τi ∈ T . Because (Dk, T k)k∈K refines (D,T ) (condition (S1) in Definition 2.5),
there is a k ∈ K such that v is permitted by (Dk, T k) and τi ∈ T k. Because
(D̄k, τ̄k) is (Dk, T k)-complete for (D̄, τ̄) and φ (condition (S3) in Definition 2.5),
(D̄k, τ̄k, v, j) 6|= φ, for some j ∈ N with τkj = τi. ut

Note that Theorem 2.1 does not require that if the original temporal structure
is violated then a slice is violated for the same valuation and timestamp as the
original temporal structure. The theorem’s proof establishes a stronger result.
Namely, the valuation and timestamp for a violation must match between the
original temporal structure and the slice.

Combination. For temporal structures representing very large logs, a single
slicer may not suffice to obtain slices of manageable sizes. To overcome this
problem, we combine slicers: the slices produced by one slicer can be further
decomposed by another slicer to obtain smaller slices. We formalize the combina-
tion of slicers in Definition 2.6. Afterwards, in Theorem 2.2, we prove that the
combination of slicers is again a slicer.

Definition 2.6. Let sφ and s′φ be slicers for the formula φ. Given input temporal

structure (D̄, τ̄) and restriction (D,T ), the combination s′φ ◦k̂ sφ for the index k̂

produces output as follows. Let (D̄k, τ̄k)k∈K and (Dk, T k)k∈K be the family of
temporal structures and the family of restrictions returned by sφ for the input
(D̄, τ̄) and (D,T ).

– If k̂ 6∈ K then s′φ ◦k̂ sφ returns (D̄k, τ̄k)k∈K and (Dk, T k)k∈K .

– If k̂ ∈ K then s′φ ◦k̂ sφ returns (D̄k, τ̄k)k∈K′′ and (Dk, T k)k∈K′′ , where

K ′′ := (K \ {k̂}) ∪K ′ and (D̄k, τ̄k)k∈K′ and (Dk, T k)k∈K′ are the families

returned by s′φ for the input (D̄k̂, τ̄ k̂) and (Dk̂, T k̂), assuming K ∩K ′ = ∅.
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Intuitively, we first apply the slicer sφ. The index k̂ specifies which of the

obtained slices should be sliced further. If there is no k̂th slice, the second slicer
s′φ does nothing. Otherwise, we use s′φ to make the k̂th slice smaller. Note that
by combing the slicer sφ with different indices, we can slice all of sφ’s outputs
further. Note too that an algorithmic realization of the function s′φ ◦k̂ sφ does
not necessarily need to compute the output of sφ first before applying s′φ.

Theorem 2.2. The combination s′φ ◦k̂ sφ of the slicers sφ and s′φ for the formula
φ is a slicer for the formula φ.

Proof. We show that s′φ ◦k̂ sφ satisfies the conditions (S1) to (S3) in Definition 2.5.

Regarding (S1), sφ is a slicer and therefore the family (Dk, T k)k∈K refines

(D,T ). If k̂ 6∈ K, then we are done. If k̂ ∈ K, then s′φ is a slicer and therefore

the family (Dk, T k)k∈K′ refines (Dk̂, T k̂). From K ∩ K ′ = ∅, it follows that
(Dk, T k)k∈(K\{k̂})∪K′ refines (D,T ).

Regarding (S2), sφ is a slicer and therefore (D̄k, τ̄k) is (Dk, T k)-sound for

(D̄, τ̄) and φ, for every k ∈ K. If k̂ 6∈ K, then we are done. If k̂ ∈ K, then

s′φ is a slicer and therefore (D̄k, τ̄k) is (Dk, T k)-sound for (D̄k̂, τ̄ k̂) and φ, for

every k ∈ K ′. Because (Dk, T k)k∈K′ refines (Dk̂, T k̂) and because (D̄k̂, τ̄ k̂) is

(Dk̂, T k̂)-sound for (D̄, τ̄) and φ, it follows that (D̄k, τ̄k) is (Dk, T k)-sound for
(D̄, τ̄) and φ, for every k ∈ K ′. From K ∩ K ′ = ∅, it follows that (D̄k, τ̄k) is

sound for (D̄, τ̄) and φ, for every k ∈ (K \ {k̂}) ∪K ′.
Finally, the proof for (S3) is analogous to the proof for (S2). ut

3 Slicing Data

In this section, we present slicers that split the relations of a temporal structure.
We call the resulting slices data slices. Formally, the temporal structure (D̄′, τ̄ ′) is
a data slice of the temporal structure (D̄, τ̄) if (D̄′, τ̄ ′) is a slice of (D̄, τ̄), where
the function s : [0, `)→ N in Definition 2.1 is the identity function and ` =∞. In
the following, we present concrete slicers, so-called data slicers, that return sound
and complete data slices relative to a restriction. We also present a fragment
of MFOTL for which the produced data slices are sound with respect to less
restrictive restrictions.

3.1 Data Slicer

In a nutshell, a data slicer works as follows. A data slicer for a formula φ, a
slicing variable x, which is a free variable in φ, and slicing sets, that is, sets of
possible values for x, constructs one slice for each slicing set. The slicing sets can
be chosen freely, and can overlap, as long as their union covers all possible values
for x. Intuitively, each slice excludes the elements of the relations interpreting
the predicate symbols that are irrelevant to determine φ’s truth value when x
takes values from the slicing set. For values outside of the slicing set, the formula
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may evaluate to a different truth value on the slice than on the original temporal
structure.

We begin by defining the slices that a data slicer outputs.

Definition 3.1. Let φ be a formula, x ∈ V a slicing variable, (D̄, τ̄) a temporal
structure, and S ⊆ D a slicing set. The (S, x, φ)-slice of (D̄, τ̄) is the data
slice (D̄′, τ̄ ′), where the relations are as follows. For all r ∈ R, all i ∈ N,
and all a1, . . . , aι(r) ∈ D, it holds that (a1, . . . , aι(r)) ∈ rD

′
i iff for every j with

1 ≤ j ≤ ι(r), there is an atomic subformula of φ of the form r(t1, . . . , tι(r)) that
fulfills at least one of the following conditions:

(a) tj is the variable x and aj ∈ S.
(b) tj is a variable y different from x.

(c) tj is a constant symbol c with cD̄ = aj.

Intuitively, the Conditions (a)–(c) ensure that a slice contains all elements
from the relations interpreting predicate symbols that are needed to evaluate φ
when x takes values from the slicing set. For this, we only need to consider atomic
subformulas of φ that contain a predicate symbol. The elements themselves are
tuples and every item of the tuple must satisfy at least one of the conditions. If
a predicate symbol includes the slicing variable, then only values from the slicing
set are relevant (Condition (a)). If it includes another variable, then all possible
values are relevant (Condition (b)). Finally, if it includes a constant symbol,
then the interpretation of the constant symbol is relevant (Condition (c)). In the
special case of a predicate symbols with arity 0, tuples from the interpretation of
these predicate symbols are always included in a data slice independently of the
formula. Further optimizations are possible, namely, including only tuples from
the interpretation of those predicate symbols that occur in the formula.

The following example illustrates Definition 3.1. It also demonstrates that the
choice of the slicing variable can influence how lean the slices are and how much
overhead, that is duplication of log data in slices, the slicing causes. Ideally, we
want each logged action to appear in exactly one slice, but some logged actions
may have to be duplicated in multiple slices. In the worst case, each slice contains
the complete original temporal structure.

Example 3.1. Consider the formula φ = snd(src,msg) → �[0,6) rcv(0,msg),
where scr and msg are variables and 0 is a constant symbol that is interpreted by
the domain element 0. Intuitively, the formula φ formalizes that all sent messages
are received by node 0 within 5 time units. Assume that at time point 0 the
relations of D0 of the original temporal structure (D̄, τ̄) for the predicate symbols
snd and rcv are

sndD0 = {(1, 1), (1, 2), (3, 3), (4, 4)} and rcvD0 = {(0, 1), (0, 2), (0, 3), (0, 4)} .

We slice on the variable src. For the slicing sets S = {1, 2}, the (S, src, φ)-slice
contains the structure D′0 with

sndD′
0 = {(1, 1), (1, 2)} and rcvD′

0 = {(0, 1), (0, 2), (0, 3), (0, 4)} .
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For the predicate symbol snd , only those tuples are included where the first
parameter takes values from the slicing set. This is because the first parameter
occurs as the slicing variable src in the formula. For the predicate symbol rcv ,
those tuples are included where the first parameter is 0 because it occurs as a
constant symbol in the formula.

For the slicing set S′ = {3, 4}, the (S′, src, φ)-slice contains the structure D′′0
with

sndD′′
0 = {(3, 3), (4, 4)} and rcvD′′

0 = {(0, 1), (0, 2), (0, 3), (0, 4)} .

The tuples in the relation for the predicate symbol rcv are duplicated in all slices
because the first element of the tuples, 0, occurs as a constant symbol in the
formula. Condition (c) in Definition 3.1 is therefore always satisfied and the tuple
is included.

Next, we slice on the variable msg instead of the variable src. The (S,msg , φ)-
slice contains the structure D′0 with

sndD′
0 = {(1, 1), (1, 2)} and rcvD′

0 = {(0, 1), (0, 2)} .

For both predicate symbols snd and rcv , only those tuples are included where
the second parameter (variable msg) takes values from the slicing set S. This is
because the second parameter occurs as the slicing variable msg in the formula.
The (S′,msg , φ)-slice contains the structure D′′0 with

sndD′′
0 = {(3, 3), (4, 4)} and rcvD′′

0 = {(0, 3), (0, 4)} .

The following lemma shows that an (S, x, φ)-slice is truth preserving for
valuations of the slicing variable x within the slicing sets S. We use the lemma
to establish the soundness and completeness of data slices, thereby showing in
Theorem 3.1 that a data slicer is a slicer, and therefore Theorem 2.1 applies.

Lemma 3.1. Let φ be a formula, x ∈ V a variable not bound in φ, (D̄, τ̄) a
temporal structure, S ⊆ D a slicing set, and (D̄′, τ̄) the (S, x, φ)-slice of (D̄, τ̄).
For all i ∈ N and valuations v with v(x) ∈ S it holds that (D̄′, τ̄ , v, i) |= φ iff
(D̄, τ̄ , v, i) |= φ.

Proof. We proceed by induction over the structure of the formula φ. The base
case consists of the atomic formulas t ≺ t′, t ≈ t, and r(t1, . . . , tι(r)).

Satisfaction of t ≺ t′ and t ≈ t depends only on the valuation, so it trivially
follows that (D̄′, τ̄ , v, i) |= t ≺ t′ iff (D̄, τ̄ , v, i) |= t ≺ t′ and (D̄′, τ̄ , v, i) |= t ≈ t′

iff (D̄, τ̄ , v, i) |= t ≈ t′. For the formula r(t1, . . . , tι(r)) we show the two directions
of the equivalence separately.

1. We first show that (D̄′, τ̄ , v, i) |= r(t1, . . . , tι(r)) implies (D̄, τ̄ , v, i) |=
r(t1, . . . , tι(r)). From (D̄′, τ̄ , v, i) |= r(t1, . . . , tι(r)) it follows that

(v(t1), . . . , v(tι(r))) ∈ rD
′
i . Since (D̄′, τ̄) is a data slice of (D̄, τ̄) it fol-

lows that (v(t1), . . . , v(tι(r))) ∈ rDi and hence (D̄, τ̄ , v, i) |= r(t1, . . . , tι(r)).
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2. Next, we show that (D̄′, τ̄ , v, i) 6|= r(t1, . . . , tι(r)) implies (D̄, τ̄ , v, i) 6|=
r(t1, . . . , tι(r)). From (D̄′, τ̄ , v, i) 6|= r(t1, . . . , tι(r)) it follows that

(v(t1), . . . , v(tι(r))) 6∈ rD
′
i . We first show that one of the Conditions (a)–(c)

in Definition 3.1 is satisfied for the tuple (v(t1), . . . , v(tι(r))). For any j
with 1 ≤ j ≤ ι(r), we make a case split based on whether the term tj in
r(t1, . . . , tι(r)) is the slicing variable x, another variable y 6= x, or a constant
symbol c.
(a) If tj is the slicing variable x then from v(x) ∈ S we know that v(tj) ∈ S.

Therefore, Condition (a) is satisfied.
(b) If tj is a variable y 6= x then Condition (b) is satisfied.

(c) If tj is the constant symbol c then v(tj) = cD̄ and hence Condition (c) is
satisfied.

It follows that (v(t1), . . . , v(tι(r))) 6∈ rDi and hence (D̄, τ̄ , v, i) 6|=
r(t1, . . . , tι(r)).

The step case follows straightforwardly from the base case and the fact that
the slice and the original temporal structure use the same τ̄ . In particular, any
difference when evaluating a formula stems only from a difference in the evaluation
of its atomic subformulas. ut

According to Definition 3.2 and Theorem 3.1 below, a data slicer is a slicer
that splits a temporal structure into a family of (S, x, φ)-slices. Furthermore, it
refines the given restriction with respect to the given slicing sets.

Definition 3.2. A data slicer dφ,x,(Sk)k∈K
for the formula φ, slicing variable

x ∈ V , and family of slicing sets (Sk)k∈K is a function that takes as input a
temporal structure (D̄, τ̄) and a restriction (D,T ). It returns a family of temporal
structures (D̄k, τ̄k)k∈K and a family of restrictions (Dk, T k)k∈K , where (D̄k, τ̄k)
is the (Sk ∩D(x), x, φ)-slice of (D̄, τ̄) and (Dk, T k) = (D[x ←[ Sk ∩D(x)], T ),
for each k ∈ K.

Theorem 3.1. A data slicer dφ,x,(Sk)k∈K
is a slicer for the formula φ if the

slicing variable x is not bound in φ and
⋃
k∈K S

k = D.

Proof. We show that dφ,x,(Sk)k∈K
satisfies the criteria (S1)–(S3) in Definition 2.5.

For (S1), we show that the family (Dk, T k)k∈K fulfills the conditions (R1)–
(R3) in Definition 2.4: (R1) follows from

⋃
k∈K D

k(x) =
⋃
k∈K(Sk ∩ D(x)) ⊆⋃

k∈K D(x) = D(x). (R2) follows from T k = T , for each k ∈ K. (R3) follows

from the assumption
⋃
k∈K S

k = D and the equalities Dk = D[x← [ Sk ∩D(x)]

and T k = T , for each k ∈ K.
(S2) and (S3) follow directly from Lemma 3.1. ut

3.2 Data Filter

We can speed up the monitoring of temporal structures by filtering them before
monitoring. Filtering removes those parts of the temporal structure that are not
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needed to evaluate the monitored formula. In the following, we present a slicer,
which we call a data filter, that discards logged actions.

A data filter is a special case of a data slicer, where the slicing variable does
not occur in φ and where we consider only the single slicing set of all possible
values. The data filter produces a single slice, the filtered temporal structure, and
a single restriction, which is identical to the restriction of the original temporal
structure. Intuitively, the obtained slice excludes all tuples from the relations
interpreting those predicate symbols that do not occur in φ. Furthermore, if
a predicate symbol r ∈ R occurs in φ only with arguments that are constant
symbols, then tuples with interpretations of those constant symbols are excluded
that do not occur in φ as arguments of r.

Definition 3.3. A data filter fφ for the formula φ is a data slicer dφ,x,(Sk)k∈K
,

where the slicing variable x ∈ V does not occur in φ, S0 = D, and K = {0}.

It is easy to see that the slice that a data filter outputs is independent of the
choice of the slicing variable and therefore the slice is unique. From Lemma 3.1 we
obtain that the filtered and the original temporal structures are equivalent in the
sense that the filtered temporal structure satisfies the formula φ exactly when the
original temporal structure satisfies the formula with respect to the restriction
(D,T ). If D does not restrict the range of the slicing variable, we obtain full
equivalence in the sense that, irrespective of any restrictions, the filtered temporal
structure satisfies φ exactly when the original temporal structure satisfies φ. Note
that the data filter is a slicer by Theorem 3.1.

The filtering feature of the data filter is built-in into the data slicer. Therefore,
applying the data filter to a data slice would have no effect. However, such a
filtering feature may be missing in other slicers, such as the time slicer described
in Section 4.1, so it makes sense to data filter slices in general.

3.3 A Non-Restrictive Fragment

In the following, we describe a fragment where no restrictions are needed. By
Lemma 3.1 the slices from Definition 3.1 are sound and complete for valuations
where the slicing variable takes values from the slicing set. That is, policy
violations where the slicing variable takes values outside of the slicing set are
“spurious” violations. For formulas in the fragment, no spurious violations exist.
This allows us to use any MFOTL monitoring algorithm without modifying it to
suppress the spurious violations.

To describe the fragment, we first introduce the notion of valid slicing sets in
Definition 3.4 and variable overlap in Definition 3.5. Intuitively, a slicing set is
valid if it includes the interpretations of the constant symbols from the signature.
Note that we can always assume the smallest such set that contains only the
constant symbols that occur in the formula φ. Distinct variables overlap in a
formula if they are used as the same argument of a predicate symbol.

Definition 3.4. The set S is a valid slicing set for the temporal structure (D̄, τ̄)

if cD̄ ∈ S, for all c ∈ C.
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Example 3.2. Consider the formula φ = �(p(x) → q(x)) ∧ p(c), where c is
a constant symbol. Suppose we slice for the variable x, where we choose an
invalid slicing set S that does not contain c’s interpretation. In the slice, due to
Condition (c) in Definition 3.1, c’s interpretation is included in p’s interpretation
at a time point whenever it is contained in p’s interpretation in the original
temporal structure. However, it is not in q’s interpretation. Therefore, spurious
violations might be reported when monitoring the (S, x, φ)-slice.

Definition 3.5. Two distinct variables x and y overlap in the formula φ if for
some predicate symbol r ∈ R, φ contains atomic subformulas r(s1, . . . , sι(r)) and
r(t1, . . . , tι(r)) where sj = x and tj = y, for some j with 1 ≤ j ≤ ι(r),

Example 3.3. If the slicing variable overlaps with another variable for the predi-
cate symbol r ∈ R, then all tuples from r’s interpretation are included in a slice,
independently of the contents of the slicing set. This leads to spurious violations
if there is no such variable overlap for other predicate symbols. For example,
consider the formula �(p(x)→ q(x)) ∨�[0,3) ¬p(y) and slicing for the variable x.
Only some tuples from the relations for q are included in a slice but all tuples of
the relations of p are included. Therefore, spurious violations might be reported
when monitoring the slice.

Next, we define the sets DT, DF, and DE. Membership of a formula in these
sets reflects whether the monitored formula is satisfied on the slice for a slicing
variable interpretation that lies outside of the slicing set. In a nutshell, for all
slicing variable interpretations outside of the slicing set, a formula in the set DF
is never satisfied, a formula in the set DT is always satisfied, and a formula in
the set DE is satisfied whenever it is satisfied on the original temporal structure.
The sets are parametrized by the slicing variable. For example, for the slicing
variable x, the sets are DTx, DFx, and DEx.

Definition 3.6. Let φ be a formula and x ∈ V a variable that does not overlap
with another variable in φ.

1. φ ∈ DTx iff for all formulas ζ where x does not overlap with another variable
in ζ and φ is a subformula of ζ, all temporal structures (D̄, τ̄), all slicing
sets S ⊆ D that are valid for (D̄, τ̄) and φ, all valuations v with v(x) 6∈ S,
and all i ∈ N, it holds that (P̄, τ̄ , v, i) |= φ, where (P̄, τ̄) is the (S, x, ζ)-slice
of (D̄, τ̄),

2. φ ∈ DFx iff for all formulas ζ where x does not overlap with another variable
in ζ and φ is a subformula of ζ, all temporal structures (D̄, τ̄), all slicing
sets S ⊆ D that are valid for (D̄, τ̄) and φ, all valuations v with v(x) 6∈ S,
and all i ∈ N, it holds that (P̄, τ̄ , v, i) 6|= φ, where (P̄, τ̄) is the (S, x, ζ)-slice
of (D̄, τ̄),

3. φ ∈ DEx iff for all formulas ζ where x does not overlap with another variable
in ζ and φ is a subformula of ζ, all temporal structures (D̄, τ̄), all slicing
sets S ⊆ D that are valid for (D̄, τ̄) and φ, all valuations v with v(x) 6∈ S,
and all i ∈ N, it holds that (P̄, τ̄ , v, i) |= φ iff (D̄, τ̄ , v, i) |= φ, where (P̄, τ̄) is
the (S, x, ζ)-slice of (D̄, τ̄).
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r(t1, . . . , tι(r)) : DFx
x ∈ {t1, . . . , tι(r)}

r(t1, . . . , tι(r)) : DEx
x 6∈ {t1, . . . , tι(r)}

t ≈ t′ : DEx t ≺ t′ : DEx true : DTx true : DEx
ψ : DFx

¬ψ : DTx

ψ : DTx

¬ψ : DFx

ψ : DEx

¬ψ : DEx

ψ : DTx

ψ ∨ χ : DTx

χ : DTx

ψ ∨ χ : DTx

ψ : DFx χ : DFx

ψ ∨ χ : DFx

ψ : DEx χ : DEx

ψ ∨ χ : DEx

ψ : DTx

∃y. ψ : DTx
x 6= y

ψ : DFx

∃y. ψ : DFx
x 6= y

ψ : DEx

∃y. ψ : DEx
x 6= y

ψ : DFx

 I ψ : DFx

ψ : DEx

 I ψ : DEx

ψ : DFx

#I ψ : DFx

ψ : DEx

#I ψ : DEx

χ : DTx

ψ SI χ : DTx

χ : DFx

ψ SI χ : DFx

ψ : DEx χ : DEx

ψ SI χ : DEx

χ : DTx

ψ UI χ : DTx

χ : DFx

ψ UI χ : DFx

ψ : DEx χ : DEx

ψ UI χ : DEx

Figure 1. Labeling Rules (Slicing by Data)

Membership in the sets DTx, DFx, and DEx is in general undecidable. We
delay the proof of this statement to the end of this section because the proof uses
Lemmas and Theorems established in the rest of this section. Note that these
Lemmas and Theorems do not rely on the statement about undecidability or its
proof.

Given undecidability, we approximate membership with syntactic fragments.
The fragments are defined in terms of a labeling algorithm that assigns the labels
DTx, DFx, and DEx to a formula. The fragments are sound but incomplete in the
sense that if a formula is assigned to a label (DTx, DFx, or DEx) then the formula
is in the corresponding set (DTx, DFx, or DEx, respectively). However, not every
formula in one of the sets is assigned to the corresponding label. The algorithm
labels atomic subformulas of a formula and propagates the labels bottom-up to
the formula’s root using the labeling rules in Figure 1. Note that any syntactic
sugar must be unfolded before applying the rules.

Remark 3.1. From the labeling rules for true and the operators S and U we see
that the formulas �I ψ, �I ψ, �I ψ, and �I ψ are labeled exactly as the formula
ψ, that is, DTx if ψ : DTx, DFx if ψ : DFx, and DEx if ψ : DEx.

Remark 3.2. We cannot propagate the label DTx over the operators  I and #I
because we do not know whether τi − τi−1 ∈ I and τi+1 − τi ∈ I, respectively.
For  I , we also do not know whether i > 0.

Example 3.4. Consider the formula � snd(src,msg)→ �[0,6) rcv(0,msg). After
unfolding the syntactic sugar for → we obtain the formula �¬snd(src,msg) ∨
�[0,6) rcv(0,msg). We explain the labeling for the variables msg . The atomic
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subformulas snd(src,msg) and rcv(0,msg) are labeled DFmsg . The subfor-
mula ¬snd(src,msg) is labeled DTmsg . The label DTmsg propagates through
the operator ∨ and through the temporal operator �, so �¬snd(src,msg) ∨
�[0,6) rcv(0,msg) is labeled DTmsg . The labeling for the variable src is analogous

and �¬snd(src,msg) ∨ �[0,6) rcv(0,msg) is labeled DTsrc .

Example 3.5. Consider the formula � ssh login(c, s) → �[0,25) ssh logout(c, s).
After unfolding the syntactic sugar for → we obtain the formula
�¬ssh login(c, s) ∨ �[0,25) ssh logout(c, s). We explain the labeling for
the variable c. The atomic subformulas ssh login(c, s) and ssh logout(c, s)
are labeled DFc. ¬ssh login(c, s) is labeled DTc. The label DTc propa-
gates through the operator ∨ and then through the temporal operator
�, so ¬ssh login(c, s) ∨ �[0,25) ssh logout(c, s). and �¬ssh login(c, s) ∨
�[0,25) ssh logout(c, s) are labeled DTc. The labeling for the variable s is

analogous and �¬ssh login(c, s) ∨ �[0,25) ssh logout(c, s) is labeled DTs.

Theorem 3.2. For all formulas φ and all variables x ∈ V , if the derivation
rules shown in Figure 1 assign the label DTx, DFx, or DEx to φ then φ is in the
set DTx, DFx, or DEx, respectively.

Theorem 3.2 establishes the correctness of our labeling rules. The proof,
which uses induction on the size of the derivation tree, is in Appendix A.1. Here,
we explain just the most representative rules. In the explanations, we consider
formula satisfaction only for valuations of the slicing variable with values outside
of the slicing set. For ease of exposition, we do not explicitly state this in every
sentence.

The first line in Figure 1 shows rules for predicate symbols. If the predicate
symbol contains as a parameter the slicing variable x, then it will not be satisfied
on a data slice for values outside of the slicing set, it is therefore in DFx. If the
predicate symbol does not contain as a parameter the slicing variable x, then
it will evaluate on the slice exactly as it would evaluate on the original log and
hence it is in DEx.

The next line shows rules for the other atomic formulas. The formulas t ≈ t′
and t ≺ t′ are in DEx because their evaluation depends only on the valuation, so
they evaluate in the same way on a data slice as they evaluate on the original
log. The formula true is syntactic sugar for ∃y. y ≈ y. This formula is always
satisfied, so it is in DTx. It also evaluates in the same way on a data slice as it
evaluates on the original log: it is satisfied. Therefore, it is also in DEx.

The third line shows rules for negation. Memberships in the sets DTx and
DFx are swapped: if a formula is satisfied on the slice then its negation will not
be satisfied on the slice and vice versa for the set DFx. If a formula is in DEX
then it is satisfied on the slice whenever it is satisfied on the original log. The
negation of this formula will also be satisfied on the slice whenever it is satisfied
on the original log, so the negation is also in DEx.

The next two lines show rules for disjunction. If one of the disjunction operands
is always satisfied (in DTx) then the disjunction is also always satisfied and is in
DTx. If neither of the operands is ever satisfied (in DFx) then so is the disjunction.
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If both operands of the disjunction are satisfied on the slice whenever they are
satisfied on the original log (in DEx) then so is the disjunction and it is in DEx.

Finally, we explain the rules for the operator S in the second to last line in
Figure 1. Consider the formula φ SI ψ. If ψ is always satisfied (in DTx) then
independently of φ the formula φSI ψ is also satisfied and is in DTx. If ψ is never
satisfied (in DFx) then independently of φ the formula φ SI ψ cannot be satisfied.
In this case it is in DFx. If both φ and ψ are satisfied on the slice whenever they
are satisfied on the original log (in DEx) then so is φ SI ψ and it is in DEx.

We next show that no spurious violations exist in a data slice for a formula
from the sets DE and DT. We use this result subsequently in Theorem 3.3 to
show that in this case the data slicer does not need to tighten the restrictions.

Lemma 3.2. Let ζ be a formula, x ∈ V a variable that does not overlap with
another variable in ζ, (D̄, τ̄) a temporal structure, S ⊆ D a slicing set that is
valid for (D̄, τ̄), and (P̄, τ̄) the (S, x, ζ)-slice of (D̄, τ̄). If the formula ζ is in
DEx or DTx, then for all i ∈ N and all valuations v with v(x) 6∈ S, it holds that
(D̄, τ̄ , v, i) |= ζ implies (P̄, τ̄ , v, i) |= ζ.

Proof. If ζ is in DTx, then it follows from v(x) 6∈ S that (P̄, τ̄ , v, i) |= ζ. Because
the consequence of the implication is satisfied, it follows trivially that (D̄, τ̄ , v, i) |=
ζ implies (P̄, τ̄ , v, i) |= ζ.

If ζ is in DEx, then it follows from v(x) 6∈ S that (P̄, τ̄ , v, i) |= ζ iff (D̄, τ̄ , v, i) |=
ζ. ut

Theorem 3.3. Let ζ be a formula, x ∈ V a variable that does not overlap with
another variable in ζ, (D̄, τ̄) a temporal structure, S ⊆ D a slicing set that is
valid for (D̄, τ̄), and (P̄, τ̄) the (S, x, ζ)-slice of (D̄, τ̄). If the formula ζ is in
DEx or DTx, then (P̄, τ̄) is (D,T )-sound for (D̄, τ̄) and ζ, where (D,T ) is a
non-restrictive restriction.

Proof. The theorem follows directly from Lemma 3.2. ut

Finally, we show that membership in the sets DTx, DFx, or DEx is undecidable.
We first establish Lemma 3.3 that we use in the undecidability proof.

Lemma 3.3. If a formula φ does not contain the variable x ∈ V then φ is in
the set DEx.

Proof. We proceed by induction on the structure of the formula φ. The base case
consists of the atomic formulas t ≺ t′, t ≈ t, and r(t1, . . . , tι(r)). Since φ does not
contain the variable x, x is not in {t1, . . . , tι(r)} and hence all atomic formulas
can be labeled with DEx.

The step case follows straightforwardly from the fact that all atomic sub-
formulas are labeled with DEx and from the fact that, according to the labeling
rules in Figure 1, all operators propagate the label DEx when all their operands
are labeled with DEx. Therefore, φ can be labeled with DEx. It follows from
Theorem 3.2 that φ is in the set DEx. ut
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Theorem 3.4 establishes undecidability of set membership. The theorem
follows from the undecidability of the tautology problem for FOTL formulas,
that is, MFOTL formulas that do not have any metric constraints, established
in [9] in Lemma B.4.

Theorem 3.4. Given a formula φ and a variable x, it is undecidable whether φ
is in the set DTx, DFx, or DEx.

Proof. First, we show that membership in the set DTx is undecidable for an
MFOTL formula φ and a variable x ∈ V . Without loss of generality, we restrict
ourselves to FOTL formulas. Given a FOTL formula φ, we pick a variable x ∈ V
that does not occur in φ and proceed by reducing the problem of deciding whether
φ is a tautology to deciding whether φ is in the set DTx. To this end, we show
that φ is a tautology iff φ ∨ true is in the set DTx.

We first show the direction from left to right. (D̄, τ̄ , v, i) |=  true and hence
(D̄, τ̄ , v, i) |= φ∨ true, for every i ∈ N with i > 0, temporal structure (D̄, τ̄), and
valuation v. For i = 0, it follows from φ being a tautology that (D̄, τ̄ , v, 0) |= φ
and hence (D̄, τ̄ , v, 0) |= φ ∨  true, for every temporal structure (D̄, τ̄) and
valuation v. Because these temporal structures include the (S, x, ζ)-slices of any
temporal structure, for all slicing sets S and all formulas ζ, and the valuations
include all valuations with v(x) 6∈ S, φ is in the set DTx.

We show the direction from right to left. That is, we show that if φ is not a
tautology then φ ∨ true is not in the set DTx. From φ not being a tautology
it follows that there is a temporal structure (D̄, τ̄) and a valuation v such that
(D̄, τ̄ , v, 0) 6|= φ. From Lemma 3.3 it follows that φ is in the set DEx. Therefore
(D̄′, τ̄ ′, v, 0) 6|= φ, where (D̄′, τ̄ ′) is the (S, x, ζ)-slice of (D̄, τ̄), for some slicing set
S with S ( D and formula ζ of which φ is a subformula. Since the variable x does
not occur in φ, it follows that (D̄′, τ̄ ′, v[x← [ d], 0) 6|= φ, for every d ∈ D\S. There
is at least one such value d because S ( D. From (D̄′, τ̄ ′, v[x←[ d], 0) 6|=  true it
follows that (D̄′, τ̄ ′, v[x← [ d], 0) 6|= φ ∨ true. Therefore φ ∨ true is not in the
set DTx.

To show that membership in the set DFx is undecidable for an MFOTL
formula φ and a variable x ∈ V , we reduce the problem of deciding whether φ is
a tautology to deciding whether ¬(φ ∨ true) is in the set DFx, for a variable
x ∈ V that does not occur in φ. The proof is analogous to the case DTx.

Finally, we show that membership in the set DEx is undecidable for an
MFOTL formula φ and a variable x ∈ V . Without loss of generality, we restrict
ourselves to FOTL formulas. Given a FOTL formula φ, we pick a variable x ∈ V
and a predicate symbol of arity 1, p ∈ R, that are not used in φ. We proceed by
reducing the problem of deciding whether φ is a tautology to deciding whether
φ ∨ p(x) ∨ true is in the set DEx.

We first show the direction from left to right. (D̄, τ̄ , v, i) |=  true and
hence (D̄, τ̄ , v, i) |= φ ∨ p(x) ∨  true, for every i ∈ N with i > 0, temporal
structure (D̄, τ̄), and valuation v. For i = 0, it follows from φ being a tautology
that (D̄, τ̄ , v, 0) |= φ, for every temporal structure (D̄, τ̄) and valuation v. As a
consequence, (D̄, τ̄ , v, 0) |= φ ∨ p(x) ∨ true. Hence, φ ∨ p(x) ∨ true is in the
set DEx.
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We show the direction from right to left. That is, we show that if φ is not
a tautology then φ ∨ p(x) ∨  true is not in the set DEx. From φ not being a
tautology it follows that there is a temporal structure (D̄, τ̄) and a valuation v
such that (D̄, τ̄ , v, 0) 6|= φ. Let the temporal structure (D̄′, τ̄ ′) be like (D̄, τ̄) except
that pD0 = {d}, for some d ∈ D. It follows that (D̄′, τ̄ ′, v[x← [ d], 0) |= p(x) and
hence (D̄′, τ̄ ′, v[x← [ d], 0) |= φ ∨ p(x) ∨ true. Let S be a slicing set with d 6∈ S.
Then (D̄′′, τ̄ ′′, v[x← [ d], 0) 6|= p(x), where (D̄′′, τ̄ ′′) is the (S, x, φ∨ p(x)∨ true)-
slice of (D̄′, τ̄ ′). From Lemma 3.3 it follows that φ is in the set DEx. Therefore,
it follows from (D̄, τ̄ , v, 0) 6|= φ that (D̄′, τ̄ ′, v, 0) 6|= φ and (D̄′′, τ̄ ′′, v, 0) 6|= φ.
From x not being used in φ it follows that (D̄′′, τ̄ ′′, v[x ← [ d], 0) 6|= φ. Finally,
from (D̄′′, τ̄ ′′, v[x ←[ d], 0) 6|=  true it follows that (D̄′′, τ̄ ′′, v[x ←[ d], 0) 6|=
φ∨p(x)∨ true. Since (D̄′, τ̄ ′, v[x← [ d], 0) |= φ∨p(x)∨ true, but (D̄′′, τ̄ ′′, v[x←[
d], 0) 6|= φ∨p(x)∨ true, the formula φ∨p(x)∨ true is not in the set DEx. ut

4 Slicing Time

In this section, we present slicers that slice temporal structures in their temporal
dimension. We call them time slicers and they produce time slices. Formally,
the temporal structure (D̄′, τ̄ ′) is a time slice of the temporal structure (D̄, τ̄) if
(D̄′, τ̄ ′) is a slice of (D̄, τ̄), where ` ∈ N∪ {∞} and the function s : [0, `)→ N are
according to Definition 2.1 such that rD

′
i = rDs(i) , for all r ∈ R and i ∈ [0, `).

4.1 Time Slicer

In the following, we slice logs by time. For a formula φ, we determine a time
range of a log that is sufficient to evaluate a formula on a single time point of
the log. The time range depends on the temporal operators and their attached
intervals. The log is then split by a time slicer into slices according to this time
range. Each slice can be monitored separately and in parallel.

We proceed as follows. In Definition 4.1 we show how we determine the
relevant time range for a formula. We formalize the slicing of a log by time in
Definition 4.2 and in Definition 4.3 we formalize the time slicer.

We extend the notation for intervals over N to denote intervals over Z. For
example, for b, b′ ∈ Z, [b, b′] denotes the set {a ∈ Z | b ≤ a ≤ b′}. Moreover, we
use the following operations, where I and J are intervals over Z:

– I d J := K, where K is the smallest interval with I ⊆ K and J ⊆ K.
– I ⊕ J := {i+ j | i ∈ I and j ∈ J}.

Definition 4.1. The relative interval of the formula φ, RI(φ) ⊆ Z, is defined
recursively over the formula structure:

– [0, 0], if φ is an atomic formula.
– RI(ψ), if φ is of the form ¬ψ or ∃x. ψ.
– RI(ψ) d RI(χ), if φ is of the form ψ ∨ χ.
– (−b, 0] d

(
(−b,−a]⊕ RI(ψ)

)
, if φ is of the form  [a,b) ψ.
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– [0, b) d
(
[a, b)⊕ RI(ψ)

)
, if φ is of the form #[a,b) ψ.

– (−b, 0]d
(
(−b, 0]⊕RI(ψ)

)
d
(
(−b,−a]⊕RI(χ)

)
, if φ is of the form ψ S[a,b) χ.

– [0, b) d
(
[0, b)⊕ RI(ψ)

)
d
(
[a, b)⊕ RI(χ)

)
, if φ is of the form ψ U[a,b) χ.

We give intuition for Definition 4.1. The relative interval of φ specifies a range of
timestamps. To evaluate φ on a particular time point, it is sufficient to consider
all time point whose time stamp falls within this range. The range is relative
to the timestamp of the evaluated time point. Timestamps in the future are
indicated with a positive value and timestamps in the past are indicated with a
negative value.

The intuition about the relative intervals for a formula is as follows. Atomic
formulas only depend on the current time point. Therefore, it is sufficient to
consider time points with equal timestamps. Formulas of the form ¬ψ, ∃x. ψ, and
ψ∨χ depend only on the time points required for their subformulas. Analogously,
we only need to consider time stamps in the intervals of the subformulas. Formulas
of the form #I ψ depend on the time points whose timestamps fall into the interval
needed by the subformula ψ, shifted by the interval I. Furthermore, the timestamp
of the next time point must be the same in the time slice as in the original log.
This is ensured by considering the interval from 0 to the furthest value from 0
in I. Considering only an interval I with 0 6∈ I would allow for additional time
points to be inserted in the time slice between the current time point and the
original next time point.

The evaluation of formulas of the form ψ UI χ, with I = [a, b), depends
on having the same timestamps for the time points in the time slice as in the
original log between the current time point and the one furthest away, but with
its timestamp still falling into I. This is ensured by [0, b). The subformula ψ is
evaluated on time points between the current time point and the furthest time
point with a timestamp that falls into I, so we need to consider the relative
interval of this subformula shifted by [0, b). The subformula χ is evaluated only on
time points whose timestamps fall within the range of I, so we need to consider
the relative interval of this subformula shifted by [a, b).

Formulas of the form  I ψ and ψ SI χ, which include past operators, are
treated similarly to formulas with the corresponding future operators. However,
the relative intervals are mirrored over 0, with negative values indicating that
past time points are relevant to evaluate the formula.

Definition 4.2. Let (D̄, τ̄) be a temporal structures and T ⊆ Z an interval. A
T -slice of (D̄, τ̄) is a time slice (D̄′, τ̄ ′) of (D̄, τ̄) with ` = |{i ∈ N | τi ∈ T}|,
s(i′) = i′ + c, where c = min{i ∈ N | τi ∈ T}, D′i′ = Ds(i′), for all i′ ∈ [0, `), and
τ ′` 6∈ T .

Figure 2 illustrates Definition 4.2, where the original log refers to the temporal
structure (D̄, τ̄) and a T -slice of the original log to (D̄′, τ̄ ′). Intuitively, the first
time point in a T -slice is the first time point in (D̄, τ̄) with the timestamp in
T . There are ` time points in (D̄, τ̄) whose timestamps fall into T . Those time
points are identical in the T -slice. To ensure the soundness and completeness of
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original

log
-

time

0 c s(i′) = i′ + c

T -slice -
time

0 i′ `

︸ ︷︷ ︸
T

Figure 2. Illustration of a T -slice.

time slices, the `th time point in the T -slice must have a timestamp that lies
outside of T , just like the corresponding time point in (D̄, τ̄).

Definition 4.3. A time slicer tφ,(Ik)k∈K
for the formula φ and family of intervals

(Ik)k∈K is a function that takes as input a temporal structure (D̄, τ̄) and a
restriction (D,T ). It returns a family of temporal structures (D̄k, τ̄k)k∈K and a
family of restrictions (Dk, T k)k∈K , where (D̄k, τ̄k) is a

(
(Ik ∩ T )⊕ RI(φ)

)
-slice

of (D̄, τ̄) and (Dk, T k) = (D, Ik ∩ T ), for each k ∈ K.

The following theorem shows that a time slicer is a slicer.

Theorem 4.1. The time slicer tφ,(Ik)k∈K
is a slicer for the formula φ if⋃

k∈K I
k = N.

The proof of Theorem 4.1 has the same structure as the proof of Theorem 3.1.
The main lemma, which establishes the soundness and completeness of the slices,
is proven by induction over the formula structure, as the corresponding Lemma 3.1.
In contrast to Lemma 3.1, the arguments for the atomic subformulas are trivial
and the arguments for the non-atomic subformulas are complex. However, the
proof needs additional machinery. Therefore, along with proof of Theorem 4.1, it
is in Appendix B.

For RI(φ) that extends beyond 0, the slices must partially overlap. Since the
monitor has to inspect those overlapping parts more than once (once for each
slice), we try to minimize the overlap. This leads to a trade-off between how
many slices we create (and hence how many monitors can run in parallel) and
how much overhead there is due to monitoring overlapping time points.

So how would we split a large log into time slices? Any set of time slices that
satisfies the condition in Theorem 4.1 will do, but, as illustrated by Example 4.1,
the choice can influence the overhead of monitoring the slices.

Example 4.1. Consider the formula � p → �[0,15) q and assume a log, where
the timestamps are given as days. We have that RI(p → �[0,15) q) = (−15, 0].
To evaluate the formula over the given log we can split the log into time slices
that are equivalent with the original log over 1-week periods. In addition to the
1-week equivalent period, each time slice includes the 14 days prior to the 1-week
equivalent period. Each time point would be monitored three times. Namely, once
when monitoring the 1-week equivalent period and in each of the two slices when
monitoring the next two week periods. If we split the log into time slices that are
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equivalent with the original log over 4-weeks periods then half of the time points
are monitored once and half are monitored twice. This longer period produces less
overhead for monitoring. However, less parallelization of the monitoring process
is possible.

4.2 Filtering Time Points

After removing tuples from relations in a temporal structure via a data slicer,
there may be many time points with just empty relations. Removing these
empty time points can noticeably speed up the monitoring. The empty-time-point
filter removes such time points (Definition 4.6). However, the filtered temporal
structure is not sound and complete for some formulas. We identify a fragment
for which it can be safely used (Theorem 4.3).

Definition 4.4. Let (D̄, τ̄) be a temporal structure. The time point i ∈ N is
empty if rDi = ∅, for every predicate symbol r, and non-empty otherwise.

Definition 4.5. The temporal structure (D̄′, τ̄ ′) is the empty-time-point-filtered
slice of the temporal structure (D̄, τ̄) if (D̄′, τ̄ ′) is a time slice of (D̄, τ̄), where
` =∞ and s : [0, `)→ N satisfies the following conditions:

– If (D̄, τ̄) contains finitely many non-empty time points then s is the identity
function.

– Otherwise, s is the monotonically increasing injective function such that
i 6∈ {s(i′) ∈ N | i′ ∈ N} iff i is an empty time point in (D̄, τ̄), for every i ∈ N.

Note that the function s in Definition 4.5 is uniquely determined in both cases.
We make a case distinction in the above definition because if there are only
finitely many non-empty time points, then removing all the empty time points
would result in a finite “temporal structure,” but temporal structures are by
definition infinite sequences. In practice, we monitor always only a finite prefix of
a temporal structure from which we remove the empty time points. We assume
here that the suffix of the temporal structure contains infinitely many non-empty
time points.

Definition 4.6. The empty-time-point filter f′φ for the formula φ is a function

that takes as input a temporal structure (D̄, τ̄) and a restriction (D,T ). It returns
a family that contains only the temporal structure (D̄′, τ̄ ′) and a family that
contains only the restriction (D,T ), where (D̄′, τ̄ ′) is the empty-time-point-filtered
slice of (D̄, τ̄).

Next, we present a fragment of formulas for which the empty-time-point-
filtered slice is sound and complete with respect to the original temporal structure.
See Theorem 4.3. To define the fragment, we use the sets FT, FF, and FE.
Membership of a formula in these sets reflects whether the formula is satisfied at
an empty time point. In a nutshell, at an empty time point, a formula in the set
FF is not satisfied, a formula in the set FT is satisfied, and the satisfaction of a
formula in the set FE is not affected by the addition or removal of empty time
points in the temporal structure.
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r(t1, . . . , tι(r)) : FF true : FT

φ : FF

¬φ : FT

φ : FT

¬φ : FF

φ : FT

φ ∨ ψ : FT

ψ : FT

φ ∨ ψ : FT

φ : FF ψ : FF

φ ∨ ψ : FF

φ : FT

∃y. φ : FT

φ : FF

∃y. φ : FF

Figure 3. Labeling Rules 1 (Empty-time-point Filter)

Definition 4.7. The sets FT, FF, and FE are defined such that for every formula
φ the following holds:

– φ ∈ FT iff (D̄, τ̄ , v, i) |= φ, for all temporal structures (D̄, τ̄), all valuations v,
and all empty time points i of (D̄, τ̄).

– φ ∈ FF iff (D̄, τ̄ , v, i) 6|= φ, for all temporal structures (D̄, τ̄), all valuations v,
and all empty time points i of (D̄, τ̄).

– φ ∈ FE iff the equivalence

(D̄′, τ̄ ′, v, i′) |= φ iff (D̄, τ̄ , v, s(i′)) |= φ

holds, for all temporal structures (D̄, τ̄) and (D̄′, τ̄ ′), all valuations v, and
all non-empty time points i′ of (D̄′, τ̄ ′), where (D̄′, τ̄ ′) is the empty-time-
point-filtered slice of (D̄, τ̄) and s is the function used in the filtering of
(D̄, τ̄).

We approximate membership in the sets FT, FF, and FE with syntactic
fragments. The fragments are defined in terms of a labeling algorithm that
assigns the labels FT, FF, and FE to formulas. The fragments are sound but
incomplete in the sense that if a formula is assigned to a label (FT, FF, FE) then
the formula is in the corresponding set (FT, FF, FE, respectively). However,
not every formula in one of the sets is assigned to the corresponding label. The
algorithm labels the atomic subformulas of a formula and propagates the labels
bottom-up to the formula’s root. It first propagates the labels FF, FT according
to the labeling rules are shown in Figure 3. Afterwards, it assigns the label FE
according to the rules in Figure 4. Note that syntactic sugar must be unfolded
before applying the rules. We use the expression φ : ` as shorthand for the formula
φ being labeled with the label `. We show the soundness of our labeling rules in
Theorem 4.2.

Theorem 4.2. For all formulas φ, if the derivation rules shown in Figures 3
and 4 assign the label FT, FF, or FE to φ then φ is in the set FT, FF, or FE,
respectively.

Theorem 4.3. The empty-time-point filter f′φ is a slicer for the formula φ if the
formula φ is in both FE and FT.
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r(t1, . . . , tι(r)) : FE t ≈ t′ : FE t ≺ t′ : FE

φ : FE

¬φ : FE

φ : FE

∃x. φ : FE

φ : FE ψ : FE

φ ∨ ψ : FE

φ : FE φ : FT ψ : FE ψ : FF

φ SI ψ : FE

φ : FE φ : FT ψ : FE ψ : FF

φ UI ψ : FE

φ : FE φ : FF

�I �J φ : FE
0 ∈ I ∩ J

φ : FE φ : FF

�I �J φ : FE
0 ∈ I ∩ J

φ : FE φ : FT

�I �J φ : FE
0 ∈ I ∩ J

φ : FE φ : FT

�I �J φ : FE
0 ∈ I ∩ J

Figure 4. Labeling Rules 2 (Empty-time-point Filter)

The proofs for Theorem 4.2 and for Theorem 4.3 are similar to the proofs
of Theorem 3.2 and Theorem 3.1 and are in Appendix B.2 and Appendix B.3,
respectively.

It follows from Theorem 4.3 that the empty-time-point filter is a slicer for all
formulas that can be labeled with FE and FT.

The empty-time-point filter is implemented in the monitoring tool MONPOLY.
The tool checks whether the monitored formula can be labeled with FE and FT
and if so, then it applies the filter to the input temporal structure by default
unless disabled by command line flags.

5 The Google Case Study

In this section, we describe our deployment of compliance monitoring in a case
study with Google. We first explain the scenario, the monitored policies, and the
logging and monitoring setup. Afterwards, we present our experimental results.

5.1 Setting

Scenario. In our case study, we consider a setting of over 35,000 computers that
are used both within Google while connected directly to the corporate network and
outside of Google, accessing Google’s network from remote unsecured networks.
These computers are used to access other computers and sensitive resources.

To minimize the risk of unauthorized access to sensitive resources, access
control mechanisms are used. In particular, computers must obtain authentication
tokens via a tool, which we refer to as AUTH. The validity of the token is limited
in time. Furthermore, the Secure Shell protocol (SSH) is used to remotely login
into other computers. Additionally, to minimize the risk of security exploits,
computers must regularly update their configuration and apply security patches
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according to a centrally managed configuration. To achieve this, every computer
regularly starts an update tool, which we refer to as UPD, connects to the central
server to download the latest centrally managed configuration, and attempts
to reconfigure and update itself. To prevent over-burdening the configuration
server, if the computer has successfully updated its configuration recently then
the update tool UPD aborts and does not attempt a connection to the server.

Policies. We give below a set of policies specifying restrictions on the autho-
rization process, SSH sessions, and the update process. Afterwards, we formalize
them in MFOTL. The computers in our case study are intended to comply
with these policies. However, due to misconfiguration, server outages, hardware
failures, etc. this is not always the case. The policies are as follows:

P1 : Entering the credentials with the tool AUTH must take at least 1 second.
The motivation is that authentication with the tool AUTH must not be
automated. That is, the authentication credentials must be entered manually
and not by a script when executing the tool.

P2 : The tool AUTH may only be used if the computer has been updated to the
latest centrally-managed configuration within the last 3 days.

P3 : Long-running SSH sessions present a security risk. Therefore, they must
not last longer than 24 hours.

P5 : Each computer must be updated at least once every 3 days unless it is
turned off or not connected to the corporate network.

P6 : If a computer connects to the central configuration server and downloads
the new configuration, then it should successfully reconfigure itself within
the next 30 minutes.

P7 : If the tool UPD aborts the update process claiming that the computer was
successfully updated recently, then there must have been a successful update
within the last 24 hours.

Formalization. We formalize the above policies in MFOTL. The signature
contains the predicate symbols alive, net, upd start, upd connect, upd success,
upd skip, auth, ssh login, and ssh logout. Their interpretations at a time point in
a temporal structure are as follows:

– alive(c : string): The computer c is running. This event is generated at least
once every 20 minutes when the computer c is running. For busy computers,
we limit this to at most 2 events every 5 minutes.

– net(c : string): The computer c is connected to the corporate network. This
event is generated at least once every 20 minutes when the computer c is
connected to the corporate network. For busy computers, we rate limit this
event to at most 1 every 5 minutes.

– auth(c : string , t : integer): The tool AUTH is invoked to obtain an authenti-
cation token on the computer c. The second argument t indicates the time in
milliseconds it took the user to enter the authentication credentials.

– upd start(c : string): The tool UPD started on the computer c.
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Table 1. Policy formalizations in MFOTL

Policy MFOTL formalization

P1 �∀c. ∀t . auth(c, t)→ 1000 ≺ t

P2 �∀c. ∀t . auth(c, t)→ �[0,3d] �[0,0] upd success(c)

P3
�∀c. ∀s. ssh login(c, s)∧(

�[1min,20min] net(c) ∧�[0,1d]�[0,0] net(c)→ �[1min,20min] net(c)
)
→

�[0,1d) �[0,0] ssh logout(c, s)

P5
�∀c.net(c) ∧

(
�[10min,20min] net(c)

)
∧(

�[1d,2d] alive(c)
)
∧ ¬
(
�[0,3d] �[0,0] upd success(c)

)
→

�[0,20min) �[0,0] upd connect(c)

P6
�∀c. upd connect(c) ∧

(
�[5min,20min] alive(c)

)
→

�[0,30min) �[0,0] upd success(c) ∨ upd skip(c)

P7 �∀c. upd skip(c)→ �[0,3d] �[0,0] upd success(c)

– upd connect(c : string): The tool UPD on the computer c connected to the
central server and downloaded the latest configuration.

– upd success(c : string): The tool UPD successfully updated the local configu-
ration and applied security patches on the computer c.

– upd skip(c : string): The tool UPD on the computer c terminated because it
believes that the computer was successfully updated recently.

– ssh login(c : string , s : string): An SSH session with identifier s to the
computer c was opened. We use the session identifier s to match the login
event with the corresponding logout event.

– ssh logout(c : string , s : string): An SSH session with identifier s to the
computer c was closed.

Our formalization of the policies is shown in Table 1. We explain the less
obvious aspects of the formalization. We use the variable c to represent a computer,
the variable s to represent an SSH session, and the variable t to represent the time
it takes a user the enter authentication credentials. In the policy P3 , we assume
that if a computer is disconnected from the corporate network, then the SSH
session is closed. In the policy P5 , because of the subformula �[1d,2d] alive(c) we
only consider computers that have recently been used. This is an approximation
to not consider newly installed computers. Similarly, we only require an update
of a computer if it is connected to the network for a certain amount of time.
In the policy P6 , since computers can be turned off after downloading the
latest configuration but before modifying its local configuration, we only require
a successful update if the computer is still running in 5 to 20 minutes after
downloading the new configuration from the central server.

The actions performed by the different computers are logged with a timestamp
recording when the actions happened. If actions are logged by different computers
with the same timestamp, then we do not know the relative ordering of these
actions. However, we do not care about the actual ordering of such actions
and express this by including the operators �[0,0], �[0,0], and �[0,0] in the
formalization of the policies. This makes the formulas collapse-sufficient [9], that
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is, all possible orderings of actions logged with an equal timestamp either all satisfy
or all violate a policy. We monitor the policies on a collapsed temporal structure,
that is, on a temporal structure where structures with an equal timestamp are
merged into a single structure. This allows us to omit the operators �[0,0], �[0,0],
and �[0,0] from the formulas that we actually monitor.

The monitored formulas representing the policies P1 to P7 are temporal-
domain independent and fall within the fragment of MFOTL that the tool
MONPOLY handles. After removing the leading � operator and making the
variable c a free variable, all formulas can be labeled with FE, FT, and DTc (see
Sections 4.2 and 3.3 for details about the labels). Therefore, filtering empty time
points and slicing on the variable c do not introduce any spurious violations that
would need to be removed from the monitor output in a post-processing step.

Note that we use the constant symbol 1000. Since its corresponding value,
namely 1,000 ms, does not represent a computer identifier, the slicing carrier sets
need not contain this value.

Logs. The relevant computers log locally and upload their logs to a log cluster.
These logs consist of entries describing the system events that occurred. Every
day, approximately 1 TB of log data is uploaded. Due to their sizes, the logs
are stored in a distributed file system spread across a large number of physical
computers. In our case study, we restricted ourselves to log data that spans
approximately two years. Furthermore, the logs also contain entries that are
irrelevant for our policies.

We processed the logs to obtain a temporal structure that consists of the
events relevant for our policies. We used regular expression matching to find log
entries for extracting the corresponding interpretations of the predicate symbols
at each time point in the temporal structure. For example, to determine the
elements c in the relations for the predicate symbol alive, we considered every
logged entry of the computer c and extracted at most two of them every five
minutes for the computer c.

To account for the fact that the events are carried out in a concurrent
setting, we collapsed the extracted temporal structure [9]. The collapsed temporal
structure contains approximately 77.2 million time points and 26 billion log events,
i.e., tuples in the relations interpreting the predicate symbols. A breakdown of
the numbers of logged events in the collapsed temporal structure by predicate
symbols is presented in Table 2. The collapsed temporal structure encoded in a
protocol buffer format [20] amounts to approximately 600 MB per day on average
and to 0.4 TB for the two years. Protocol buffer formats are widely used within
Google and well-supported by the infrastructure that we used.

5.2 Monitoring Setup

We first motivate why a MapReduce framework is suitable to implement our
monitoring setup. Afterwards, we describe and evaluate our implementation.

We have not considered other parallelization frameworks beyond MapReduce
because MapReduce’s performance was sufficient for monitoring the logs in this
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Table 2. Log statistics by log event

Event Count

alive 16 billion (15,912,852,267)
net 8 billion (7,807,707,082)
auth 8 million (7,926,789)
upd start 65 million (65,458,956)
upd connect 46 million (45,869,101)
upd success 32 million (31,618,594)
upd skip 6 million (5,960,195)
ssh login 1 billion (1,114,022,780)
ssh logout 1 billion (1,047,892,209)

case study. A comparison of the performance of various frameworks for the
parallelization of computations is beyond the scope of this article.

Why MapReduce? The logs are too large to be reasonably stored and processed
on a single computer. They are stored in a distributed file system where their
content is spread across multiple physical computers.

Although we could write a script to split the log into slices and start monitoring
processes for the different slices on different computers, existing MapReduce
frameworks like Hadoop or the one we used in our case study at Google [14]
offer several advantages over such a manual approach. A MapReduce framework
automatically allocates the monitoring tasks to different machines, restarts failed
tasks, and speculatively starts tasks on multiple computers in order to minimize
the time until all tasks complete. It also attempts to minimize the fetching of
data over the network by allocating tasks to computers on which the required
data is already present.

However, the main advantage of MapReduce frameworks is efficient shuffling,
that is, transferring the output of the mappers to the correct reducers and sorting
the data for each reducer. We use the shuffling to rearrange how the temporal
structure is split when it is stored across multiple computers. Given the size of
the log data, we assume that it is initially stored in a distributed file system and
spread across multiple computers. The way it is distributed might not correspond
to the way that we want to slice the extracted temporal structure. Even if the
initial distribution corresponds to one slicing method, different policies may
require different slicing methods. We use the sorting in the shuffling phase to
ensure that the slices are sorted by timestamps. This is a prerequisite for the
correctness of the MFOTL monitoring algorithm.

We use the mappers in MapReduce to split the temporal structure into slices
and we use the reducers to check the slices for compliance with the policies. This
allows us to reap the benefits of the shuffling phase between map and reduce.

Realization. To monitor the temporal structure, obtained from logged data as
described in Section 5.1, for checking compliance with the policies, we used the
MONPOLY tool [8] together with Google’s MapReduce framework [14]. For each
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policy, we used 1,000 computers for slicing and monitoring. We split the temporal
structure into 10,000 slices so that each computer had to process 10 slices on
average. The decision of using a magnitude more slices than computers follows
the recommendation of making the individual map and reduce computations
small. In particular, if the monitoring of a slice fails and has to be restarted, less
computational power has been wasted.

We implemented only data slicing by the variable c. With Definition 3.1 we
obtain a method for constructing the slices in a straight-forward way. Namely,
for each time point in the original temporal structure, iterate through the tuples
in the relations interpreting predicate symbols and copy only those tuples that
satisfy conditions specified in Definition 3.1. The other slicing methods can be
implemented in a similar way.

Instead of listing the members of the slicing sets explicitly, we provide a
function mapping every interpretation of the variable c to a slicing set. Each slicing
set is identified by a natural number between 0 and 9,999. The function applies
a variant of the MurmurHash [32] hash function to the variable interpretation,
which is a computer identifier, and takes the remainder after division by the
desired number of slices. This function leads to a relatively even distribution of
the size of slices, as shown in Figure 5. Since the slices obtained in this way were
sufficient for our purposes, we did not implement other slicing methods, such as
slicing by time.

We explain our use of the MapReduce framework in more detail. The mappers
split the relations of the temporal structure into data slices by the variable c
and output each element of a relation as a separate structure along with two
keys. The primary key indicates the log slice and the secondary key contains the
timestamp.

During the shuffling phase, the output of the mappers is passed to the reducers.
Because we use the primary key to identify a slice, for each slice, a reducer receives
all structures of the slice. The structures are sorted by the timestamp because
we use the timestamp as the secondary key.

The reducer collapses the received temporal structure. That is, it merges all
structures with the same timestamp into a single structure. Since the structures
are already sorted by the timestamp, this can be done in time linear in the slice’s
length. For each slice, a reducer starts a MONPOLY instance in a child process.
It converts the collapsed temporal structure into the MONPOLY format on the
fly and pipes it into the MONPOLY process in one thread. In another thread, it
reads the output of the MONPOLY process and returns it as the output of the
reducer.

Note that due to the way we implemented slicing, empty time points are
filtered out from the slices. To further improve efficiency, the MONPOLY tool
additionally filters out “irrelevant” tuples with a data filter and any subsequent
empty time points with the empty-time-point filter. As explained in Section 5.1,
the filtering and slicing does not introduce any spurious violations that must be
removed from the monitor output in a post-processing step.
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Table 3. Monitor performance

Policy Runtime [hh:mm]

P1 2:04

P2 2:10

P3 11:56

P5 2:32

P6 2:28

P7 2:13

The output of the reducers in our monitoring setup with MapReduce contains
the actual policy violations. Those can be fed into various auditing and monitoring
dashboards. They can also be further processed to generate alerts based on
statistical anomaly detection or predefined limits, such as on the number of
detected violations per time unit.

Evaluation. We evaluate our monitoring approach to show that it is feasible to
check compliance of large IT systems and that our monitoring approach scales to
large logs. In particular, each of the policies in Table 1 could be monitored within
12 hours on logs as large as 0.4 TB. In the following, we provide details about
the distribution of the size of the slices and how the monitoring tool MONPOLY
performed.

Figure 5 shows the distribution of the size of log slices in the MONPOLY
format used as input for the monitoring tool MONPOLY. On the y-axis is the
percentage of slices whose size is smaller or equal to the value on the x-axis. From
the figure, we see that the log volume is rather evenly distributed among the
slices. The median size of a slice is 61 MB and 90% of the slices have a size of
at most 94 MB (93% of at most 100 MB and 99% of at most 135 MB). There
are three slices with sizes over 1GB and the largest slice is 1.8 GB. The total log
volume, that is the sum of the sizes of all slices, is 626.6 GB. Note that we used
the same slicing method for all policies.

Note that the sum of the size of all slices (0.6 TB) is larger than the size of the
collapsed temporal structure (0.4 TB). Since we slice by the computer (variable
c), the slices do not overlap. However, some overhead results from timestamps
and predicate symbol names being replicated in multiple slices. Furthermore, we
consider the size of the collapsed temporal structure in a protocol buffer format
and the size of the slices in the more verbose text-based MONPOLY format.

In Table 3 we show the time it took to monitor each policy using our monitoring
setup. 4 For most policies, the monitoring took up to two and a half hours.
Monitoring the policy P3 took almost 12 hours.

We first discuss the time it took to monitor the different slices and then
how much memory the monitoring tool used. Table 4 presents details about the

4 This is the time for the whole MapReduce job. That is, from starting the MapReduce
job until the monitor on the last slice has finished and its output has been collected
by the corresponding reducer.
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Table 4. Monitor performance per slice

Policy Runtime Memory used
median max sum median max

[sec] [hh:mm] [days] [MB] [MB]

P1 169 0:46 21.4 6.1 6.1

P2 170 0:51 21.4 6.1 10.3

P3 170 10:40 22.7 7.1 510.2

P5 169 1:06 21.3 9.2 13.1

P6 168 1:01 21.3 6.1 6.1

P7 168 0:48 21.1 6.1 7.1

monitoring of the individual slices. For the policy P3 , Figure 6 shows on the
y-axis the percentage of slices for which the monitoring time is within the limit
on the x-axis. Curves for the other policies are not shown as they are almost
identical to P3 . The almost identical curves indicate that for most slices the
monitoring time does not differ across policies. Independently of the monitored
policy, the median time to monitor a slice is around 3 minutes, 90% of the slices
can be monitored within 5 minutes each (99% within 8.2 minutes), and the sum
of the time to monitor each slice is between 21 and 23 days. However, there is a
difference in monitoring the few large slices. For each policy except for P3 , the
maximum time to monitor a slice is between 46 minutes and 66 minutes. For
policy P3 , 30 slices took longer than one hour to monitor each with the largest
1.8 GB slice taking almost 11 hours. An additional burden of policy P3 is the
nesting of multiple temporal operators, in particular three of them. This burden
exhibits itself especially on the large slices.

Independently of the monitored policies, the median amount of memory
needed by the monitoring tool is between 6 MB and 10 MB and 90% of the slices
do not require more than 14 MB (99% are within 35 MB). For all policies except
for P3 , the monitor never needed more than 13 MB of memory. The few large
slices present outliers for the policy P3 , where memory usage grew up to 510
MB. As Figure 7 demonstrates these outliers represent a very small proportion
of the slices.

From the analysis of the time it took to monitor the individual slices, we see
that we end up waiting for a few “stragglers”, that is, slices that take significantly
longer to monitor than other slices. There are several options to deal with these
slices. We can stop the monitor after a timeout and ignore the slice and any
policy violations on the slice. Note that the monitoring of the other slices and
the validity of violations found on them would not be affected. Alternatively,
we can split the large slice into smaller slices, either in advance before we start
monitoring or after a timeout when monitoring the large slice. For policy P3 , we
can slice further by the variable c. As the formalization of the policy P3 can be
labeled DTs we can also slice by the variable s. Finally, we can slice by time.

Given the sheer size of the logs, the time spent monitoring them is reasonable.
After implementing a solution to deal with the stragglers, even faster monitoring
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times can be achieved by using more computers for monitoring. In our setup,
every computer monitored ten slices on average. We could increase the number of
computers tenfold so that each computer would monitor only a single slice. For
even larger logs and more computers available to do the monitoring, we could
further increase the number of possible slices by doing both slicing by data on
the variable c and slicing by time. The MapReduce framework makes it trivial
to add more computers.

Due to the sensitive nature of the logs, we do not report on the detected
violations of the monitored policies. However, we remark that monitoring a large
population of computers and aggregating the violations found by the monitor
can be used to identify systematic policy violations as well as policy violations
due to reconfiguring the system setup. An example of the former is not letting a
computer update after the weekend before using it to access sensitive resources
on Monday (policy P2 ). As an example of the latter, the monitoring turned
out to be helpful in determining when the update process was not operating
as expected for certain type of computers during a specific time period. This
information can be helpful for identifying seemingly unrelated changes in the
configuration of other components in the IT infrastructure.

6 Related Work

Temporal logics have been widely used to formalize and analyze security and
privacy policies. For example, Zhang et al. [33] formalize the UCONABC model [27]



Checking System Compliance by Slicing and Monitoring Logs 35

for usage control in the temporal logic of actions [25]. The Obligation Specification
Language, presented by Hilty et al. [23], includes temporal operators. Barth et
al. [7] present a framework for specifying privacy policies in a first-order temporal
logic and DeYoung et al. [17] show how parts of the HIPAA and GLBA policies
can be formalized in this framework. The focus of these works is primarily on
formalizing policies whereas we focus on monitoring compliance with policies, in
particular on handling large amounts of log data.

Based on formally specified policies, various algorithms have been presented
for monitoring system behavior with a single monitor [6,8,10,18,21,22]. However,
these approaches do not scale to large logs due to a lack of parallelization.

Similar to our approach, Barre et al. [5] monitor parts of a log in parallel and
independently of the other log parts with a MapReduce framework. While we
split the log into multiple slices and evaluate the whole formula on these slices in
parallel, they evaluate the given formula in multiple iterations of MapReduce.
All subformulas of the same depth are evaluated in the same MapReduce job
and the results are used to evaluate subformulas of a lower depth during another
MapReduce job. The evaluation of a subformula is performed in both the Map
and the Reduce phase. While the evaluation in the Map phase is parallelized for
different time points of the log, the results of the Map phase for a subformula
for the whole log are collected and processed in a single reducer. Therefore,
the reducer becomes a bottleneck and the scalability of their approach remains
unclear. Furthermore, their case study with a log consisting of less than five
million log tuples, monitored on a single computer, is rather small and they
evaluated their approach only for a propositional temporal logic, which is limited
in expressing realistic policies.

Roşu and Chen [29] present a general extension for different property specifica-
tion languages and associated monitoring algorithms where they add parameters
to logged events. This allows them to monitor parts of a log in parallel and inde-
pendently of the other log parts. For monitoring, the log with events containing
parameters is split into slices, with one slice for each parameter value in case
of a single parameter, and one slice for each combination of values for different
parameters in case multiple parameters are used. The slices are processed by
the original monitoring algorithm unaware of parameters. In contrast to our
work, they do not use a MapReduce framework. Neither do they explain how
their monitoring approach can be implemented to run in parallel. We note that
a parametric extension of a propositional temporal logic is less expressive than
a first-order extension, such as MFOTL used in our work. Roşu and Chen also
describe a case study with up to 155 million log events, all monitored on a single
computer. This is orders of magnitude smaller than the log monitored in the
Google case study.

Since most IT systems are distributed, events are initiated and carried out
locally, that is, by their system components. As a consequence, logs are generated
distributively. We collect the logged events and redistribute them to the monitors
such that each monitor obtains the necessary events. In contrast, the monitoring
approaches presented by Sen et al. [31], Bauer and Falcone [11], and Zhou et al. [34]
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directly monitor the system components and their monitors communicate their
observations. These approaches work in an online setting and the communication
is needed because not every monitor necessarily observes all log events that it needs
to evaluate the policy. In contrast, our approach is restricted to an offline setting
and we use the MapReduce framework to provide each monitor with the necessary
log events. As a result of the communication in these approaches, one slow
monitor can slow down all other monitors. Furthermore, it remains unclear how
the communicating monitors cope with a monitor that crashes. In our approach,
a crashed monitor is automatically restarted by the MapReduce framework. In
the following, we discuss further differences between those distributed monitoring
approaches and our approach.

To specify properties, Sen et al.’s [31] distributed monitoring approach uses a
propositional past linear-time distributed temporal logic with epistemic opera-
tors [28] that reflect the local knowledge of a process. The semantics of temporal
operators in this logic is defined with respect to a partial ordering, the causal
ordering [24] commonly used in distributed systems. Their logic therefore does
not allow one to express temporal constraints on events that are not causally
related. Policies are defined with respect to the local view point of a single process
and checked with respect to these view points, using the last known states of
other processes. Thus two processes can reach different verdicts as to whether a
property is satisfied or violated. This is in contrast to our approach where the
semantics of the temporal operators is defined with respect to a total ordering
based on the time stamps of the logged events.

Bauer and Falcone [11] present a distributed monitoring algorithm for proposi-
tional future linear-time temporal logic where monitors are distributed throughout
the system and exchange partially evaluated formulas between each other. They
assume that observations of the system are done simultaneously in lock-step. Each
monitor evaluates the subformulas for which it can observe the relevant system
actions and the monitoring progresses in lock-step, requiring synchronization
between the monitors, so one slow monitor slows down all other monitors. This is
in contrast to our approach, where different slices can be monitored independently
and at different speeds.

Zhou et al. [34] present a distributed monitoring framework aimed at monitor-
ing network protocols. Instead of using a temporal logic to specify properties, they
rely on a Datalog-like language with additional support for temporal constraints.
The monitors are executed together with the network protocols.

Instead of formalizing policies in a temporal logic and using dedicated moni-
toring algorithms for checking system compliance, one can use SQL-like languages
to express policies as database queries and evaluate the queries with a database
managements system (DBMS). Techniques used to parallelize the evaluation
of such queries in parallel DBMSs, see [15, 26], are related our work. In the
terminology of the DBMS community [26], the slicing of logs can be seen as
vertical fragmentation, that is, partitioning the data in a database table by rows
of the table. Monitoring log slices in parallel for compliance with a single formula
corresponds to intra-query parallelism in DBMSs, that is, evaluating a query in
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parallel on multiple computers. Here, two orthogonal techniques are used in par-
allel DBMSs: intra-operator and inter-operator parallelism. With intra-operator
parallelism, the same operator is evaluated in parallel on subsets of the data.
With inter-operator parallelism, different operators are evaluated in parallel. The
monitoring of slices corresponds to intra-operator parallelism. Inter-operator
parallelism in our setting would correspond to evaluating different subformulas
of the monitored formula in parallel, similar to the approach of Barre et al. [5],
but we evaluate the whole formula in parallel on different log slices. In contrast
to DBMSs, the results of evaluating a formula on different slices can easily be
combined by concatenating them, as long as the restrictions corresponding to
the slices do not overlap. DBMSs use more complex algorithms [16] to merge the
results of evaluating the join operator on subsets of the data.

We have restricted ourselves to compliance checking in an offline setting. One
of the reasons for this restriction is that the MapReduce framework is inherently
offline: the Reduce phase can start only after all mappers have finished processing
all of their inputs. Condie et al. [12] overcome this limitation and present an
extension of MapReduce where the reducers process the output of mappers while
the mappers are still running. It needs to be further investigated whether this
extension of MapReduce allows for a scalable deployment of our monitoring
approach in an online setting. Note that only data slicing can be used in an
online setting, time slicing is inherently restricted to an offline setting.

In the context of an online setting, a disadvantage of DBMSs is their inherent
restriction to an offline setting: they must first import the complete data set
before they can evaluate any queries on it. This restriction of DBMSs is overcome
by complex event processing systems. These systems continuously evaluate queries
expressed in SQL-like languages [4] on rapidly evolving data streams in an online
setting. We refer to [13] for a survey on complex event processing. Since the
specification languages employed by these systems are not based on temporal
logics, a direct comparison is difficult and it remains to be seen if and how we
can benefit from work in this domain.

7 Conclusion

We presented a solution for compliance checking of IT systems, where the behavior
of the system agents is monitored offline and checked against security policies.
Our case study shows the scalability of our solution. The scalability is rooted in
parallelizing the monitoring process, for which we provide a theoretical framework
and an algorithmic realization within the MapReduce framework.

The MapReduce framework is particularly well suited for implementing the
monitoring process: First, it allows us to efficiently reorganize a huge log, which
contains the actions carried out by the system agents, into slices. Second, it
allocates and distributes the computations for monitoring the slices, accounting
for the available computational resources, the location of the logged data, failures,
and so on. Third, additional computers can easily be added to speedup the
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monitoring process when splitting the log into more slices, thereby increasing the
degree of parallelization.

Our theoretical framework allows one to slice in multiple dimensions by
composing different slicing methods. It remains as future work to exploit and
evaluate the possibilities to obtain a larger number of smaller slices that are
equally expensive to monitor. It also remains to be seen how to utilize and extend
the framework for obtaining a scalable solution for checking system compliance
online.
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A Additional Proof Details for Slicing Data

In this appendix, we provide additional proof details for the assertions made in
Section 3.

A.1 Theorem 3.2

We prove Theorem 3.2 by induction on the size of the derivation tree assigning
label ` to formula φ. We make a case distinction based on the rules applied to
label the formula, that is, the rule at the tree’s root. However, for clarity, we
generally group cases by the formula’s form.

For readability, and without loss of generality, we fix the slicing variable x
and the temporal structure (D̄, τ̄). Consider formula φ of the form:

– r(t1, . . . , tι(r)) where x ∈ {t1, . . . , tι(r)}. For every formula ζ where x does
not overlap with another variable inζ and φ is a subformula of ζ, every
slicing set S ⊆ D that is valid for (D̄, τ̄) and φ, every i ∈ N, and every
valuations v with v(x) 6∈ S, let (P̄, τ̄) be the (S, x, ζ)-slice of (D̄, τ̄). For the
tuple (v(t1), . . . , v(tι(r))), none of the Conditions (a)–(c) in Definition 3.1
are satisfied. In particular, Condition (a) is not satisfied because v(x) 6∈ S.
Condition (b) is not satisfied because the variable x does not overlap with any
other variable in ζ. Finally, Condition (c) is not satisfied because v(x) 6∈ S
and S is a valid slicing set for (D̄, τ̄). It follows that (v(t1), . . . , v(tι(r)) 6∈ rPi ,
(P̄, τ̄ , v, i) 6|= r(t1, . . . , tι(r)), and hence r(t1, . . . , tι(r)) is in DFx.

– r(t1, . . . , tι(r)) where x 6∈ {t1, . . . , tι(r)}. For every formula ζ where x does
not overlap with another variable in ζ and φ is a subformula of ζ, every
slicing set S ⊆ D that is valid for (D̄, τ̄) and φ, every i ∈ N, and every
valuations v with v(x) 6∈ S, let (P̄, τ̄) be the (S, x, ζ)-slice of (D̄, τ̄). We
show that (P̄, τ̄ , v, i) |= r(t1, . . . , tι(r)) iff (D̄, τ̄ , v, i) |= r(t1, . . . , tι(r)), so that
r(t1, . . . , tι(r)) is in DEx.
We first show the implication from right to left. Suppose that (D̄, τ̄ , v, i) |=
r(t1, . . . , tι(r)), i.e., (v(t1), . . . , v(tι(r)) ∈ rDi . Because the variable x is not
among the terms t1, . . . , tι(r), those terms consist only of constants and of
variables other than x. It follows that at least one of the Conditions (a)–(c)
in Definition 3.1 is satisfied for every such tuple (v(t1), . . . , v(tι(r))). Hence,

(v(t1), . . . , v(tι(r)) ∈ rPi and thus (P̄, τ̄ , v, i) |= r(t1, . . . , tι(r)).
We show the implication from left to right by contradiction. Suppose that
(D̄, τ̄ , v, i) 6|= r(t1, . . . , tι(r)), i.e., (v(t1), . . . , v(tι(r)) 6∈ rDi . It follows that

(v(t1), . . . , v(tι(r)) 6∈ rPi and (P̄, τ̄ , v, i) 6|= r(t1, . . . , tι(r)).
– t ≺ t′. For every formula ζ where x does not overlap with another variable in
ζ and φ is a subformula of ζ, every slicing set S ⊆ D that is valid for (D̄, τ̄)
and φ, every i ∈ N, and every valuations v with v(x) 6∈ S, let (P̄, τ̄) be the
(S, x, ζ)-slice of (D̄, τ̄). Satisfaction of t ≺ t′ depends only on the valuation, so
it trivially follows that (P̄, τ̄ , v, i) |= t ≺ t′ iff (D̄, τ̄ , v, i) |= t ≺ t′. Therefore,
t ≺ t′ is in DEx.

– t ≈ t′. This case is analogous to the previous one.
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– true. The subformula true is syntactic sugar for ∃y. y ≈ y. Note that we can
always take a fresh variable y without affecting the meaning of the formula φ.
Therefore, the assumption made at the beginning of the section that variables
are quantified at most once holds.

For every formula ζ where x does not overlap with another variable in ζ
and φ is a subformula of ζ, every slicing set S ⊆ D that is valid for (D̄, τ̄)
and φ, every i ∈ N, and every valuations v with v(x) 6∈ S, let (P̄, τ̄) be the
(S, x, ζ)-slice of (D̄, τ̄). Trivially, (P̄, τ̄ , v, i) |= true and hence true is in DTx.

It also trivially holds that (D̄, τ̄ , v, i) |= true and hence (P̄, τ̄ , v, i) |= true iff
(D̄, τ̄ , v, i) |= true. Therefore, true is also in DEx.

– ¬ψ. For every formula ζ where x does not overlap with another variable in ζ
and φ is a subformula of ζ, every slicing set S ⊆ D that is valid for (D̄, τ̄)
and φ, every i ∈ N, and every valuations v with v(x) 6∈ S, let (P̄, τ̄) be the
(S, x, ζ)-slice of (D̄, τ̄).

We first show how the label DFx is propagated. Suppose that ψ is labeled
DFx. From the induction hypothesis it follows that ψ is in DFx so that
(P̄, τ̄ , v, i) 6|= ψ and hence (P̄, τ̄ , v, i) |= ¬ψ. Therefore, ¬ψ is in DTx.

Next, we show how the label DTx is propagated. Suppose that ψ is labeled
DTx. From the induction hypothesis it follows that ψ is in DTx so that
(P̄, τ̄ , v, i) |= ψ and hence (P̄, τ̄ , v, i) 6|= ¬ψ. Therefore, ¬ψ is in DFx.

Finally, we show how the label DEx is propagated. Suppose that ψ is labeled
DEx. From the induction hypothesis it follows that ψ is in DEx so that
(P̄, τ̄ , v, i) |= ψ iff (D̄, τ̄ , v, i) |= ψ. Therefore (P̄, τ̄ , v, i) |= ¬ψ iff (D̄, τ̄ , v, i) |=
¬ψ and ¬ψ is in DEx.

– ψ ∨ χ. For every formula ζ where x does not overlap with another variable in
ζ and φ is a subformula of ζ, every slicing set S ⊆ D that is valid for (D̄, τ̄)
and φ, every i ∈ N, and every valuations v with v(x) 6∈ S, let (P̄, τ̄) be the
(S, x, ζ)-slice of (D̄, τ̄).

Suppose that ψ is labeled DTx. It follows from the induction hypothesis that
ψ is in DTx so that (P̄, τ̄ , v, i) |= ψ and hence (P̄, τ̄ , v, i) |= ψ ∨ χ. Therefore,
ψ ∨ χ is in DTx.

Suppose that χ is labeled DTx. It follows from the induction hypothesis that
χ is in DTx so that (P̄, τ̄ , v, i) |= χ and hence (P̄, τ̄ , v, i) |= ψ ∨ χ. Therefore,
ψ ∨ χ is in DTx.

Suppose that ψ and χ are labeled DFx. It follows from the induction hypothesis
that ψ and χ are in DFx so that (P̄, τ̄ , v, i) 6|= ψ and (P̄, τ̄ , v, i) 6|= χ. Therefore,
(P̄, τ̄ , v, i) 6|= ψ ∨ χ and ψ ∨ χ is in DFx.

Suppose that ψ and χ are labeled DEx. It follows from the induction hy-
pothesis that ψ and χ are in DEx, so that (P̄, τ̄ , v, i) |= ψ iff (D̄, τ̄ , v, i) |= ψ
and that (P̄, τ̄ , v, i) |= χ iff (D̄, τ̄ , v, i) |= χ. Therefore, (P̄, τ̄ , v, i) |= ψ ∨ χ iff
(D̄, τ̄ , v, i) |= ψ ∨ χ and ψ ∨ χ is in DEx.

– ∃y. ψ where x 6= y. For every formula ζ where x does not overlap with another
variable in ζ and φ is a subformula of ζ, every slicing set S ⊆ D that is valid
for (D̄, τ̄) and φ, every i ∈ N, and every valuations v with v(x) 6∈ S, let (P̄, τ̄)
be the (S, x, ζ)-slice of (D̄, τ̄).
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Suppose that ψ is labeled DTx. It follows from the induction hypothesis that
ψ is in DTx and hence (P̄, τ̄ , v′, i) |= ψ for all valuations v′ with v′(x) 6∈ S.
Therefore, (P̄, τ̄ , v[y ←[ e], i) |= ψ, for all e ∈ D. Because D is non-empty, it
follows that (P̄, τ̄ , v, i) |= ∃y. ψ and ∃y. ψ is in DTx.

Suppose that ψ is labeled DFx. It follows from the induction hypothesis that
ψ is in DFx and hence (P̄, τ̄ , v′, i) 6|= ψ for all valuations v′. Therefore, there
is no e ∈ D with (P̄, τ̄ , v[y ← [ e], i) |= ψ. It follows that (P̄, τ̄ , v, i) 6|= ∃y. ψ
and ∃y. ψ is in DFx.

Finally, suppose that ψ is labeled DEx. It follows from the induction hypothesis
that ψ is in DEx and hence (P̄, τ̄ , v′, i) |= ψ iff (D̄, τ̄ , v′, i) |= ψ for all
valuations v′. Therefore, (P̄, τ̄ , v[y ← [ e], i) |= ψ for some e ∈ D iff (D̄, τ̄ , v[y ←[
e], i) |= ψ for some e ∈ D. It follows that (P̄, τ̄ , v, i) |= ∃y. ψ iff (D̄, τ̄ , v, i) |=
∃y. ψ and ∃y. ψ is in DEx.

–  I ψ For every formula ζ where x does not overlap with another variable in
ζ and φ is a subformula of ζ, every slicing set S ⊆ D that is valid for (D̄, τ̄)
and φ, every i ∈ N, and every valuations v with v(x) 6∈ S, let (P̄, τ̄) be the
(S, x, ζ)-slice of (D̄, τ̄).

Suppose that ψ is labeled DFx. For i ∈ N with i > 0 and τi−τi−1 ∈ I it follows
from the induction hypothesis that ψ is in DFx, so that (P̄, τ̄ , v, i− 1) 6|= ψ
and thus (P̄, τ̄ , v, i) 6|=  I ψ. For i > 0 with τi − τi−1 6∈ I and for i = 0
it follows from the definition of the operator  I that (P̄, τ̄ , v, i) 6|=  I ψ.
Therefore,  I ψ is in DFx.

Suppose that ψ is labeled DEx. For i ∈ N with i > 0 and τi−τi−1 ∈ I it follows
from the induction hypothesis that ψ is in DEx, so that (P̄, τ̄ , v, i− 1) |= ψ
iff (D̄, τ̄ , v, i − 1) |= ψ and hence (P̄, τ̄ , v, i) |=  I ψ iff (D̄, τ̄ , v, i) |=  I ψ.
For i > 0 with τi − τi−1 6∈ I and for i = 0 it follows from the definition of
the operator  I that (P̄, τ̄ , v, i) 6|=  I ψ and (D̄, τ̄ , v, i) 6|=  I ψ. It follows
trivially that (P̄, τ̄ , v, i) 6|=  I ψ iff (D̄, τ̄ , v, i) 6|=  I ψ. Therefore,  I ψ is in
DEx.

– #I ψ. This case is analogous to the previous one.

– ψ SI χ. For every formula ζ where x does not overlap with another variable in
ζ and φ is a subformula of ζ, every slicing set S ⊆ D that is valid for (D̄, τ̄)
and φ, every i ∈ N, and every valuations v with v(x) 6∈ S, let (P̄, τ̄) be the
(S, x, ζ)-slice of (D̄, τ̄).

Suppose that χ is labeled DTx. It follows from the induction hypothesis that
χ is in DTx, so that (P̄, τ̄ , v, i) |= χ and thus (P̄, τ̄ , v, i) |= ψ SI χ. Therefore,
ψ SI χ is in DTx.

Suppose that χ is labeled DFx. It follows from the induction hypothesis that
χ is in DFx, so that (P̄, τ̄ , v, j) 6|= χ for all j ∈ N and thus (P̄, τ̄ , v, i) 6|= ψSI χ.
Therefore, ψ SI χ is in DFx.

Suppose that ψ and χ are labeled DEx. We show that (P̄, τ̄ , v, i) |= ψ SI χ
iff (D̄, τ̄ , v, i) |= ψ SI χ. (P̄, τ̄ , v, i) |= ψ SI χ iff for some j ≤ i, τi − τj ∈ I,
(P̄, τ̄ , v, j) |= χ, and (P̄, τ̄ , v, k) |= ψ for all k with j < k ≤ i. It follows
from the induction hypothesis and from ψ and χ being labeled DEx that ψ
and χ are in DEx. Therefore, (P̄, τ̄ , v, j) |= χ iff (D̄, τ̄ , v, j) |= χ and thus
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(P̄, τ̄ , v, k) |= ψ iff (D̄, τ̄ , v, k) |= ψ. It follows that (P̄, τ̄ , v, i) |= ψ SI χ iff
(D̄, τ̄ , v, i) |= ψ SI χ. Therefore, the formula ψ SI χ is in DEx.

– ψ UI χ. This case is analogous to the previous one. ut

B Additional Proof Details for Slicing Time

In this appendix, we provide additional proof details for the assertions made in
Section 4.

B.1 Theorem 4.1

We first state a definition about overlapping temporal structures and several
lemmas that we use in the proof of Theorem 4.1.

Definition B.1. Let I ⊆ Z be an interval, c ∈ N, i ∈ N, and (D̄, τ̄) and (D̄′, τ̄ ′)
be temporal structures. (D̄, τ̄) and (D̄′, τ̄ ′) are (I, c, i)-overlapping if the following
conditions hold:

1. j ≥ c, Dj = D′j−c, and τj = τ ′j−c, for all j ∈ N with τj − τi ∈ I.
2. Dj′+c = D′j′ and τj′+c = τ ′j′ , for all j′ ∈ N with τ ′j′ − τi ∈ I.

Intuitively, two temporal structures are (I, c, i)-overlapping if their time points
(timestamps and structures) are “the same” on an interval of timestamps. This
is the case for time slices. The value c here corresponds to the c in Definition 4.2.
It specifies by how many time points are the two temporal structures “shifted”
relatively to each other. The interval I specifies the timestamps for which time
points must be “the same”. These are those timestamps whose difference to the
timestamp τi lies within I.

Lemma B.1 establishes that time slices overlap and Lemma B.2 shows that if
temporal structures overlap for an interval I, then they also overlap for other
time points in I and for sub-intervals of I.

Lemma B.1. Let T ⊆ N and I ⊆ Z be intervals, (D̄, τ̄) a temporal structure,
and (D̄′, τ̄ ′) a (T ⊕ I)-slice of (D̄, τ̄), where c ∈ N is the value used by the
s-function in Definition 4.2. (D̄′, τ̄ ′) and (D̄, τ̄) are (I, c, i)-overlapping, for all
i ∈ N with τi ∈ T .

Proof. We first show that Condition 1 in Definition B.1 is satisfied. For all
i ∈ N with τi ∈ T and all j ∈ N with τj − τi ∈ I, it holds that τj ∈ T ⊕ I. From
c = min{k ∈ N|τk ∈ T⊕I} in Definition 4.2 it follows that j ≥ c. Let j′ := j−c. It
also follows from τj ∈ T ⊕I that j′ ∈ [0, `). Therefore, Dj = Ds(j′) = D′j′ = D′j−c
and τj = τs(j′) = τ ′j′ = τ ′j−c.

Next, we show that Condition 2 is satisfied. For all i ∈ N with τi ∈ T and all
j′ ∈ N with τ ′j′ − τi ∈ I, it holds that τ ′j′ ∈ T ⊕ I. Since τ ′` 6∈ T ⊕ I, it follows
that j′ ∈ [0, `). Therefore, Dj′+c = Ds(j′) = D′j′ and τj′+c = τs(j′) = τ ′j′ . ut
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Lemma B.2. Let (D̄, τ̄) and (D̄′, τ̄ ′) be temporal structures that are (I, c, i)-
overlapping, for some I ⊆ Z, c ∈ N, and i ∈ Z. Then (D̄, τ̄) and (D̄′, τ̄ ′) are
(K, c, k)-overlapping, for each k ∈ N with τk − τi ∈ I and K ⊆ {τi − τk} ⊕ I.

Proof. For all j ∈ N with τj − τk ∈ K, it follows from τj − τk ∈ K that τj − τk +
τk − τi ∈ {τk − τi} ⊕K and hence τj − τi ∈ {τk − τi} ⊕K. From the assumption
K ⊆ {τi−τk}⊕I, it follows that {τk−τi}⊕K ⊆ {τk−τi}⊕{τi−τk}⊕I = I and
hence τj − τi ∈ I. Since (D̄, τ̄) and (D̄′, τ̄ ′) are (I, c, i)-overlapping, Condition 1
in Definition B.1 holds for them to be (K, c, k)-overlapping.

Similarly, for all j′ ∈ N with τ ′j′ − τk ∈ K, it follows that τ ′j′ − τi ∈ I and
hence Condition 2 in Definition B.1 holds. ut

Lemma B.3 establishes that 0 is included in the relative interval of every
formula. This guarantees that the satisfaction relation in Lemma B.4 is defined.

Lemma B.3. For every formula φ, it holds that 0 ∈ RI(φ).

Proof. We proceed by structural induction on the form of the formula φ. We
have the following cases:

– t ≺ t′, t ≈ t, and r(t1, . . . , tι(r)), where t, t′, and t1, . . . , tι(r) are variables or
constants. It follows trivially from Definition 4.1 that 0 ∈ RI(φ).

– ¬ψ and ∃x. ψ. It follows from the inductive hypothesis that 0 ∈ RI(ψ) and
hence 0 ∈ RI(φ).

– ψ ∨χ. It follows from the inductive hypothesis that 0 ∈ RI(ψ) and 0 ∈ RI(χ).
Therefore, 0 ∈ RI(ψ) d RI(χ) and hence 0 ∈ RI(φ).

–  I ψ, #I ψ, ψ SI χ, and ψ UI χ. It follows trivially from Definition 4.1 that
0 ∈ RI(φ). ut

Lemma B.4. Let φ be a formula and (D̄, τ̄) and (D̄′, τ̄ ′) temporal structures.
If (D̄, τ̄) and (D̄′, τ̄ ′) are (RI(φ), c, i)-overlapping, for some c and i, then for all
valuations v it holds that (D̄, τ̄ , v, i) |= φ iff (D̄′, τ̄ ′, v, i− c) |= φ.

Proof. We prove Lemma B.4 by structural induction on the form of the formula φ.
Note that for all cases, (D̄′, τ̄ ′, v, i− c) |= φ is defined: it follows from Lemma B.3
that 0 ∈ RI(φ) and from Condition 1 in Definition B.1 that i ≥ c and hence
i− c ∈ N. We have the following cases:

– t ≈ t′, where t and t′ are variables or constants. Since the satisfaction of the
formula t ≈ t′ depends only on the valuation v, it follows that (D̄, τ̄ , v, i) |=
t ≈ t′ iff v(t) = v(t′) iff (D̄′, τ̄ ′, v, i− c) |= t ≈ t′, for all valuations v.

– t ≺ t′, where t and t′ are variables or constants. This case is similar to the
previous one.

– r(t1, . . . , tι(r)) , where t1, . . . , tι(r) are variables or constants. Since (D̄, τ̄) and
(D̄′, τ̄ ′) are (RI(r(t1, . . . , tι(r)), c, i)-overlapping and 0 ∈ RI(r(t1, . . . , tι(r))),
it also follows from Condition 1 in Definition B.1 that Di = D′i−c and
hence (D̄, τ̄ , v, i) |= r(t1, . . . , tι(r)) iff (D̄′, τ̄ ′, v, i− c) |= r(t1, . . . , tι(r)), for all
valuations v.
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– ¬ψ. (D̄, τ̄) and (D̄′, τ̄ ′) are (RI(¬ψ), c, i)-overlapping and RI(¬ψ) = RI(ψ),
so by the inductive hypothesis we have that (D̄, τ̄ , v, i) |= ψ iff (D̄′, τ̄ ′, v, i−
c) |= ψ, for all valuations v. It follows that (D̄, τ̄ , v, i) |= ¬ψ iff (D̄′, τ̄ ′, v, i−
c) |= ¬ψ.

– ψ∨χ. (D̄, τ̄) and (D̄′, τ̄ ′) are (RI(ψ)dRI(χ), c, i)-overlapping. From RI(ψ) ⊆
RI(ψ)dRI(χ), RI(χ) ⊆ RI(ψ)dRI(χ), and Lemma B.2 it follows that (D̄, τ̄)
and (D̄′, τ̄ ′) are (RI(ψ), c, i)-overlapping and (RI(ψ), c, i)-overlapping. Then
by the inductive hypothesis we know that (D̄, τ̄ , v, i) |= ψ iff (D̄′, τ̄ ′, v, i−c) |=
ψ and (D̄, τ̄ , v, i) |= χ iff (D̄′, τ̄ ′, v, i− c) |= χ, for all valuations v. It follows
that (D̄, τ̄ , v, i) |= ψ ∨ χ iff (D̄′, τ̄ ′, v, i− c) |= ψ ∨ χ.

– ∃x. ψ. From RI(∃x. ψ) = RI(ψ) it follows that (D̄, τ̄) and (D̄′, τ̄ ′) are
(RI(ψ), c, i)-overlapping. Then by the inductive hypothesis we know that
(D̄, τ̄ , v, i) |= ψ iff (D̄′, τ̄ ′, v, i − c) |= ψ, for all valuations v. Hence, for all
d ∈ D we have that (D̄, τ̄ , v[x← [ d], i) |= ψ iff (D̄′, τ̄ ′, v[x←[ d], i− c) |= ψ. It
follows that (D̄, τ̄ , v, i) |= ∃x. ψ iff (D̄′, τ̄ ′, v, i−c) |= ∃x. ψ, for all valuations v.

–  [a,b) ψ. (D̄, τ̄) and (D̄′, τ̄ ′) are (RI( [a,b) ψ), c, i)-overlapping, where

RI( [a,b) ψ) = (−b, 0] d
(
(−b,−a]⊕ RI(ψ)

)
.

From 0 ∈ RI( [a,b) ψ) and from Condition 1 in Definition B.1 it follows that
i− c ∈ N and hence τi = τ ′i−c.
We make a case split on the value of i. If i = 0, then trivially (D̄, τ̄ , v, i) 6|=
 [a,b) ψ, for all valuations v. From Definition B.1 it follows that c = 0 and
hence i − c = 0. Trivially, (D̄′, τ̄ ′, v, i − c) 6|=  [a,b) ψ, for all valuations v.
Next, we consider the case that i > 0 and make a case split on whether
τi − τi−1 is included in the interval [a, b).

1. If τi − τi−1 ∈ [a, b), then τi−1 − τi ∈ RI( [a,b) ψ) and from Condition 1
in Definition B.1 it follows that i − 1 ≥ c, τi−1 = τ ′i−c−1, and hence
τ ′i−c − τ ′i−c−1 ∈ [a, b). From τi − τi−1 ∈ [a, b) it also follows that RI(ψ) ⊆
{τi − τi−1} ⊕ {τi−1 − τi} ⊕ RI(ψ) ⊆ {τi − τi−1} ⊕ (−b,−a] ⊕ RI(ψ) ⊆
{τi − τi−1} ⊕ RI( [a,b) ψ) and hence by Lemma B.2 (D̄, τ̄) and (D̄′, τ̄ ′)
are (RI(ψ), c, i − 1)-overlapping. By the inductive hypothesis we have
that (D̄, τ̄ , v, i− 1) |= ψ iff (D̄′, τ̄ ′, v, i− c− 1) |= ψ, for all valuations v.
Because τi = τ ′i−c and τi−1 = τ ′i−c−1, it follows that (D̄, τ̄ , v, i) |=  [a,b) ψ
iff (D̄′, τ̄ ′, v, i− c) |=  [a,b) ψ, for all valuations v.

2. If τi−τi−1 6∈ [a, b) then trivially (D̄, τ̄ , v, i) 6|=  [a,b) ψ, for all valuations v.
From Definition B.1 we know that i ≥ c. We make a case split on whether
i = c or i > c.
(a) If i = c then i− c 6> 0 and hence (D̄′, τ̄ ′, v, i− c) 6|=  [a,b) ψ, for all

valuations v.
(b) Consider the case i > c.

To achieve a contradiction, suppose that τ ′i−c − τ ′i−c−1 ∈ [a, b). From
Condition 2 in Definition B.1 it follows that τi−1 = τ ′i−c−1 and hence
τi − τi−1 = τ ′i−c − τ ′i−c−1 ∈ [a, b). This contradicts τi − τi−1 6∈ [a, b),
so it must be the case that τ ′i−c − τ ′i−c−1 6∈ [a, b). It trivially follows
that (D̄′, τ̄ ′, v, i− c) 6|=  [a,b) ψ, for all valuations v.

– #[a,b) ψ. This case is similar to the previous one. In fact, it is simpler because
we do not have to consider i = 0 and i− c = 0 as a special case.
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(D̄, τ̄) and (D̄′, τ̄ ′) are (RI(#[a,b) ψ), c, i)-overlapping, where RI(#[a,b) ψ) =

[0, b) d
(
[a, b)⊕ RI(ψ)

)
.

From 0 ∈ RI(#[a,b) ψ) and from Condition 1 in Definition B.1 it follows that
i− c ∈ N and hence τi = τ ′i−c. We make a case split on whether τi+1 − τi is
included in the interval [a, b).

1. If τi+1 − τi ∈ [a, b) then τi+1 − τi ∈ RI(#[a,b) ψ) and from Condition 1 in
Definition B.1 it follows that τi+1 = τ ′i−c+1 and hence τ ′i−c+1−τ ′i−c ∈ [a, b).
It also follows from τi+1−τi ∈ [a, b) that RI(ψ) ⊆ {τi−τi+1}⊕{τi+1−τi}⊕
RI(ψ) ⊆ {τi−τi+1}⊕ [a, b)⊕RI(ψ) ⊆ {τi−τi+1}⊕RI(#[a,b) ψ) and hence
by Lemma B.2 (D̄, τ̄) and (D̄′, τ̄ ′) are (RI(ψ), c, i+1)-overlapping. By the
inductive hypothesis we have that (D̄, τ̄ , v, i+ 1) |= ψ iff (D̄′, τ̄ ′, v, i− c+
1) |= ψ, for all valuations v. From τi+1−τi ∈ [a, b) iff τ ′i−c+1−τ ′i−c ∈ [a, b)
it follows that (D̄, τ̄ , v, i) |= #[a,b) ψ iff (D̄′, τ̄ ′, v, i− c) |= #[a,b) ψ. for all
valuations v.

2. If τi+1−τi 6∈ [a, b) then trivially (D̄, τ̄ , v, i) 6|= #[a,b) ψ, for all valuations v.
To achieve a contradiction, suppose that τ ′i−c+1 − τ ′i−c ∈ [a, b). From
Condition 2 in Definition B.1 it follows that τi+1 = τ ′i−c+1 and hence
τi+1 − τi = τ ′i−c+1 − τ ′i−c ∈ [a, b). This contradicts τi+1 − τi 6∈ [a, b), so
it must be the case that τ ′i−c+1 − τ ′i−c 6∈ [a, b). It trivially follows that
(D̄′, τ̄ ′, v, i− c) 6|= #[a,b) ψ, for all valuations v.

– ψ S[a,b) χ. (D̄, τ̄) and (D̄′, τ̄ ′) are (RI(ψ S[a,b) χ), c, i)-overlapping, where

RI(ψ S[a,b) χ) = (−b, 0] d
(
(−b, 0]⊕ RI(ψ)

)
d
(
(−b,−a]⊕ RI(χ)

)
.

Note that 0 ∈ RI(ψ S[a,b) χ), so from Condition 1 in Definition B.1 it follows
that i− c ∈ N and hence τi = τ ′i−c. We show the following two claims, which
we use later:

1. For all j ∈ N with j ≤ i and τi − τj ∈ [a, b), it holds that RI(χ) ⊆
{τi − τj} ⊕ {τj − τi} ⊕ RI(χ) ⊆ {τi − τj} ⊕ (−b,−a] ⊕ RI(χ) ⊆ {τi −
τj} ⊕ RI(ψ S[a,b) χ) and j ≥ c. By Lemma B.2, (D̄, τ̄) and (D̄′, τ̄ ′) are
(RI(χ), c, j)-overlapping. It follows from the inductive hypothesis that
(D̄, τ̄ , v, j) |= χ iff (D̄′, τ̄ ′, v, j − c) |= χ, for all valuations v.

2. For all k ∈ N with k ≤ i and τi − τk ∈ [0, b), it holds that RI(ψ) ⊆
{τi − τk} ⊕ {τk − τi} ⊕ RI(ψ) ⊆ {τi − τk} ⊕ (−b, 0] ⊕ RI(ψ) ⊆ {τi −
τk} ⊕ RI(ψ S[a,b) χ) and k ≥ c. By Lemma B.2 (D̄, τ̄) and (D̄′, τ̄ ′) are
(RI(ψ), c, k)-overlapping. It follows from the inductive hypothesis that
(D̄, τ̄ , v, k) |= ψ iff (D̄′, τ̄ ′, v, k − c) |= ψ, for all valuations v.

We show that for all valuations v, 1. (D̄, τ̄ , v, i) |= ψ S[a,b) χ implies
(D̄′, τ̄ ′, v, i − c) |= ψ S[a,b) χ and 2. (D̄, τ̄ , v, i) 6|= ψ S[a,b) χ implies
(D̄′, τ̄ ′, v, i− c) 6|= ψ S[a,b) χ:

1. If (D̄, τ̄ , v, i) |= ψ S[a,b) χ then there is some j ≤ i with τi − τj ∈ [a, b)
such that (D̄, τ̄ , v, j) |= χ and (D̄, τ̄ , v, k) |= ψ, for all k ∈ [j + 1, i+ 1).
From τi − τj ∈ [a, b) it follows that τj − τi ∈ RI(ψ S[a,b) χ) and from
Condition 1 in Definition B.1 we see that j ≥ c and τj = τ ′j−c. From claim

1 above and from (D̄, τ̄ , v, j) |= χ it follows that (D̄′, τ̄ ′, v, j − c) |= χ.
For all k′ ∈ [j+1−c, i+1−c), it holds that τ ′k′−τ ′i−c = τ ′k′−τi ∈ (−b, 0]
and hence τ ′k′ − τi ∈ RI(ψ S[a,b)χ). From Condition 2 in Definition B.1 we
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see that τk′+c = τ ′k′ . From claim 2 above and from (D̄, τ̄ , v, k′ + c) |= ψ
it follows that (D̄′, τ̄ ′, v, k′) |= ψ. Therefore, (D̄′, τ̄ ′, v, i− c) |= ψ S[a,b) χ.

2. If (D̄, τ̄ , v, i) 6|= ψ S[a,b) χ then there are two possibilities:
(a) For all j ≤ i with τi − τj ∈ [a, b) it holds that (D̄, τ̄ , v, j) 6|= χ.

Then for all j′ ≤ i − c with τ ′i−c − τ ′j′ = τi − τ ′j′ ∈ [a, b), it holds
that τ ′j′ − τi ∈ RI(ψ S[a,b) χ). From Condition 2 in Definition B.1 it
follows that τ ′j′ = τj′+c. That is, there are no additional time points

with a timestamp within the interval [a, b) in (D̄′, τ̄ ′) that would not
be present in (D̄, τ̄). Since τi − τj′+c ∈ [a, b), it follows from claim 1
above and from (D̄, τ̄ , v, j′+c) 6|= χ that (D̄′, τ̄ ′, v, j′) 6|= χ. Therefore,
(D̄′, τ̄ ′, v, i− c) 6|= ψ S[a,b) χ.

(b) For all j ≤ i with τi − τj ∈ [a, b) and (D̄, τ̄ , v, j) |= χ, there is some
k ∈ N with k ∈ [j + 1, i+ 1) and (D̄, τ̄ , v, k) 6|= ψ.
Then for every j′ ∈ N with j′ ≤ i − c, τ ′i−c − τ ′j′ ∈ [a, b), and

(D̄, τ̄ , v, j′) |= χ, there is a j with j = j′ + c. We show that τ ′j′ = τj
and j ≤ i. From τ ′i−c − τ ′j′ ∈ [a, b) and from τ ′i−c = τi it follows
that τ ′j′ − τi ∈ (−b,−a] and hence τ ′j′ − τi ∈ RI(ψ S[a,b) χ). From
Condition 2 in Definition B.1 it follows that τ ′j′ = τj′+c = τj . From
j = j′ + c and j′ ≤ i− c it follows that j ≤ i.
Since τ ′j′ = τj and j ≤ i, we can use claim 1 above for j. From claim 1

and from (D̄′, τ̄ ′, v, j − c) |= χ it follows that (D̄, τ̄ , v, j) |= χ. As a
consequence, there is a k ∈ N with k ∈ [j+1, i+1) and (D̄, τ̄ , v, k) 6|= ψ.
If follows from k ∈ [j + 1, i + 1) that k ≤ i. Furthermore, from
τ ′i−c − τ ′j′ ∈ [a, b) it follows that τi − τj ∈ [a, b) and hence τi − τk ∈
[0, b). Therefore, we can use claim 2 above for k. From claim 2 and
from (D̄, τ̄ , v, k) 6|= ψ it follows that (D̄′, τ̄ ′, v, k − c) 6|= ψ. From
k ∈ [j + 1, i+ 1) it follows that k − c ∈ [j′ + 1, i− c+ 1) and hence
(D̄′, τ̄ ′, v, i− c) 6|= ψ S[a,b) χ.

From 1. and 2. it follows that (D̄, τ̄ , v, i) |= ψ S[a,b) χ iff (D̄′, τ̄ ′, v, i − c) |=
ψ S[a,b) χ, for all valuations v.

– ψ U[a,b) χ. This case is analogous to the previous one. ut

We prove Theorem 4.1 by showing that a time slicer tφ,(Ik)k∈K
satisfies the

criteria (S1)-(S3) in Definition 2.5 if
⋃
k∈K I

k = N and therefore is a slicer for
the formula φ.

For (S1), we show that the family (Dk, T k)k∈K fulfills the conditions (R1)–
(R3) in Definition 2.4: (R1) follows from Dk = D, for each k ∈ K. (R2) follows
from

⋃
k∈K T

k =
⋃
k∈K(Ik∩T ) ⊆

⋃
k∈K T = T . (R3) follows from the assumption⋃

k∈K I
k = N and the equalities Dk = D and T k = Ik ∩ T , for each k ∈ K.

(S2) and (S3) follow from Lemma B.1 and from Lemma B.4. ut

B.2 Theorem 4.2

We first prove Theorem 4.2 for the labels FT and FF. We proceed by induction
on the size of the derivation tree assigning label ` to formula φ. We make a case
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distinction based on the rules applied to label the formula, that is, the rule at the
tree’s root. However, for clarity, we generally group cases by the formula’s form.

For readability, and without loss of generality, we already fix the temporal
structure (D̄, τ̄), a time point i ∈ N, and a valuation v.

A formula r(t1, . . . , tr(l)) is labeled FF. If i is an empty time point in D then
clearly (D̄, τ̄ , v, i) 6|= r(t1, . . . , tr(l)).

The formula true is labeled FT. Trivially, (D̄, τ̄ , v, i) |= true.
The other rules propagate the assigned label through the non-temporal

operators. The correctness of these rules can be seen by plugging the true and
false values into the semantic definitions of these operators.

Next, we prove Theorem 4.2 for the label FE. Again, we proceed by induction
on the size of the derivation tree assigning label FE to formula φ. We make a
case distinction based on the rules applied to label the formula, that is, the rule
at the tree’s root. However, for clarity, we generally group cases by the formula’s
form.

For every valuation v and i′ ∈ N, the evaluation of the formulas r(t1, . . . , tr(l)),
t ≈ t′, and t ≺ t′ only depends on the current time point and hence they are in
FE. The other rules not involving temporal operators depend only on the value
of their subformulas at the current time point. If the subformulas are labeled
with FE, then by the induction hypothesis the subformulas are in FE, so the
formula is also in FE.

For readability, and without loss of generality, we already fix the temporal
structure (D̄, τ̄) and its empty-time-point-filtered slice (D̄′, τ̄ ′). The proof is
trivial for the case where s is the identity function. In the rest of the proof, we
assume that (D̄, τ̄) has infinitely many non-empty time points and hence s is not
the identity function.

For the remaining rules we show separately that, for every valuation v and
i′ ∈ N,

1. (D̄′, τ̄ ′, v, i′) |= φ implies (D̄, τ̄ , v, s(i′)) |= φ, and
2. (D̄, τ̄ , v, s(i′)) |= φ implies (D̄′, τ̄ ′, v, i′) |= φ

– φ SI ψ:
1. (D̄′, τ̄ ′, v, i′) |= φ SI ψ implies (D̄, τ̄ , v, s(i′)) |= φ SI ψ

From (D̄′, τ̄ ′, v, i′) |= φ SI ψ we know that there is a j′ ≤ i′ such that
τ ′i′ − τ ′j′ ∈ I and (D̄′, τ̄ ′, v, j′) |= ψ and, for every k′ with j′ < k′ ≤ i′, we

have that (D̄′, τ̄ ′, v, k′) |= φ.
Since ψ is labeled FE, it follows from the induction hypothesis that ψ is
in FE and hence (D̄, τ̄ , v, s(j′)) |= ψ. For each k with s(j′) < k ≤ s(i′)
either k is an empty or a non-empty time point in (D̄, τ̄). If it is an empty
time point then from φ being labeled FT and hence in FT we know that
(D̄, τ̄ , v, k) |= φ. If it is a non-empty time point then we know that there
is a time point k′ in (D̄′, τ̄ ′) with j′ < k′ ≤ i′ and k = s(k′). From φ
being labeled FE and hence in FE we know that (D̄, τ̄ , v, k) |= φ. In both
cases (D̄, τ̄ , v, k) |= φ and therefore (D̄, τ̄ , v, s(i′)) |= φ SI ψ.
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2. (D̄, τ̄ , v, s(i′)) |= φ SI ψ implies (D̄′, τ̄ ′, v, i′) |= φ SI ψ
From (D̄, τ̄ , v, s(i′)) |= φ SI ψ it follows that there is a j ≤ s(i′) with
τs(i′)−τj ∈ I and (D̄, τ̄ , v, j) |= ψ, and that, for every k with j < k ≤ s(i′),
we have that (D̄, τ̄ , v, k) |= φ.
Since (D̄, τ̄ , v, j) |= ψ and ψ is labeled FF, so that ψ is in FF, we know
that j cannot be an empty time point in (D̄, τ̄). Therefore, there is a
j′ such that j = s(j′). We have that j′ ≤ i′ because s is monotonically
increasing. From ψ being labeled FE it follows that ψ is in FE and hence
(D̄, τ̄ , v, j) |= ψ implies (D̄′, τ̄ ′, v, j′) |= ψ.
Furthermore, for every k′ with j′ < k′ ≤ i′ there is a corresponding time
point k in (D̄, τ̄) such that k = s(k′). As s is a monotonously increasing
function we have that s(j′) < k ≤ s(i′). From (D̄, τ̄ , v, s(i′)) |= φ SI ψ it
follows that (D̄, τ̄ , v, k) |= φ. From φ being labeled FE it follows that φ is
in FE and hence (D̄′, τ̄ ′, v, k′) |= φ. Therefore, (D̄, τ̄ , v, s(i′)) |= φ SI ψ.

– φ UI ψ: This case is similar to φ SI ψ.
– �I �J φ and �I �J φ with 0 ∈ I ∩ J :

Note that this formula can be rewritten to �I φ∨ �J φ, which can be labeled
with the rules proven above.

– �I �J φ and �J �I φ with 0 ∈ I ∩ J :
Note that this formula can be rewritten to �J φ∧�I φ, which can be labeled
with the rules proven above. ut

B.3 Theorem 4.3

We first state a lemma that we use in the proof of Theorem 4.3.

Lemma B.5. Let φ be a formula in the intersection of FE and FT, (D̄, τ̄) a
temporal structure, and (D̄′, τ̄ ′) the empty-time-point-filtered slice of (D̄, τ̄)).
(D̄′, τ̄ ′) is (D,T )-sound and -complete for (D̄, τ̄ , v, 0) and φ, where (D,T ) is a
non-restrictive restriction.

Proof. We first show soundness. That is, for all valuations v and timestamps t ∈ N,
it holds that (D̄, τ̄ , v, i) |= φ, for all i ∈ N with τi = t, implies (D̄′, τ̄ ′, v, i′) |= φ,
for all i′ ∈ N with τ ′i′ = t. We first show that (D̄, τ̄ , v, 0) |= �φ ⇒ (D̄′, τ̄ ′, v, 0) |=
�φ. From (D̄, τ̄ , v, i) |= φ it follows that for all i it holds that (D̄, τ̄ , v, i) |= φ.

As s is a function we know that for all time points i′ in (D̄′, τ̄ ′) there is a
time point i in (D̄, τ̄) such that i = s(i′) and τi = τ ′i′ . From φ being in FE and
from (D̄, τ̄ , v, i) |= φ it follows that (D̄′, τ̄ ′, v, i′) |= φ.

We continue by showing completeness. That is, for all valuations v and
timestamps t ∈ N, it holds that (D̄, τ̄ , v, i) 6|= φ, for some i ∈ N with τi = t,
implies (D̄′, τ̄ ′, v, i′) 6|= φ, for some i′ ∈ N with τ ′i′ = t.

Each time point i in (D̄, τ̄) is either empty or non-empty. If it is empty, then
from φ being in FT we know that (D̄, τ̄ , v, i) |= φ. If it is non-empty then there
exists a time point i′ in (D̄′, τ̄ ′) such that i = s(i′) and τi = τ ′i′ . From φ being in
FE and from (D̄, τ̄ , v, i) 6|= φ it follows that (D̄′, τ̄ ′, v, i′) 6|= φ. ut
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We prove Theorem 4.3 by showing that the empty-time-point filter satisfies
the criteria (S1)-(S3) in Definition 2.5 and therefore is a slicer. (S1) follows
trivially because the filter does not modify the restriction (D,T ). (S2) and (S3)
follow directly from Lemma B.5. ut


