
Noninterference under Weak Memory Models
Heiko Mantel, Matthias Perner, Jens Sauer

TU Darmstadt, Germany, {mantel,perner,sauer}@cs.tu-darmstadt.de

Published in Computer Security Foundations (CSF) Symposium, Vienna, Austria, July 19-22,
2014. IEEE Computer Society.

c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

Abstract—Research on information flow security for concurrent
programs usually assumes sequential consistency although
modern multi-core processors often support weaker consistency
guarantees. In this article, we clarify the impact that relaxations
of sequential consistency have on information flow security.
We consider four memory models and prove for each of them
that information flow security under this model does not imply
information flow security in any of the other models. This result
suggests that research on security needs to pay more attention to
the consistency guarantees provided by contemporary hardware.
The other main technical contribution of this article is a program
transformation that soundly enforces information flow security
under different memory models. This program transformation
is significantly less restrictive than a transformation that first
establishes sequential consistency and then applies a traditional
information flow analysis for concurrent programs.

I. INTRODUCTION

Before granting a program access to private information or
other secrets, one might like to know whether there is any
danger that the program leaks the secrets. Research on infor-
mation flow security aims at answering this question. The fact
that researchers have kept making foundational contributions
on information flow security [1], [2], [3], [4], [5] for more
than 40 years by now, shows that information flow security is
not only of practical relevance, but also a very rich domain of
non-trivial research problems. Concurrency is a rich domain
of foundational research problems itself. Combining it with
information flow security results in intriguing new problems,
such as how to achieve reliable information flow security
without knowing how the scheduler works (see, e.g., [6], [7]),
and further complicates problems that are already non-trivial
in a sequential setting, such as how to control declassification
(see, e.g., [8], [9]). In order to achieve reliable security for
concurrent programs, all of these problems require solutions.

The focus of this article is on information flow security in
the presence of concurrency. More concretely, we study the
effects of relaxed consistency guarantees on noninterference.
Weak memory models provide weaker guarantees than the
sequential consistency property [10] that programmers of
concurrent programs often take for granted. There are multiple
benefits of relaxing sequential consistency. In particular, it
enables more efficient uses of caches in multi-core processors
and of program optimizations during compilation that are not
compatible with sequential consistency. For an introduction to
weak memory models, we refer to [11], [12].

This is not the first study of noninterference under relaxed
consistency guarantees. Vaughan and Millstein studied the
effects of one weak memory model, namely total store order,
on noninterference [13]. They showed that noninterference

under sequential consistency does not imply noninterference
under total store order and that noninterference under total
store order does not imply noninterference under sequential
consistency. This is an insight of great significance, because
it shows how closely security depends on the memory model
provided by the hardware on which a program runs. Vaughan
and Millstein also proposed a security type system, showed
that it is sound under total store order, and demonstrated how
it can be made more precise without loosing soundness.

The three main, novel contributions of this article are:

• We clarify the effects of four memory models on informa-
tion flow security. For each of the models, we show that
noninterference under this memory model does not imply
noninterference under any of the other memory models.
On the one hand, our results lift the observation by
Vaughan and Millstein to further memory models. On the
other hand, our results back that their observations are not
just a peculiarity of one particular weak memory model.
Hence, our results suggest that research on security
should pay more attention to the consistency guarantees
provided by modern hardware and optimizations.

• We propose a security type system and prove that
it soundly verifies noninterference under four different
memory models. This is the first security type system that
is known to be sound for multiple weak memory models.
Our type system not only checks whether programs are
secure, but also transforms some potentially insecure pro-
grams into secure ones. This is the first transforming type
system that is suitable for establishing noninterference
under relaxed consistency guarantees. Our transforma-
tion inserts fence commands into a program such that
it becomes noninterferent under weak memory models.
Although inspired by fence-insertion techniques that es-
tablish sequentially consistent behavior of a program [14],
our transformation does not force sequential consistency
on a program executed under a weak memory model.

• We present a novel model of concurrent computation
that is parametric in a set of consistency guarantees and
that, hence, can be applied to different memory models.
Our model of computation originated as a side product
of our research project on security. Though originally a
side product, we view this model itself also as a valuable
contribution because it was helpful for our research on
information flow security and might be helpful for others,
not only in security. In contrast to the well known
parametric model by Alglave [15], our model features
an explicit representation of intermediate states.

1

We are confident that our results constitute a significant
step towards better foundations for software security under
relaxed consistency guarantees. However, the exploration of
the correlation between noninterference and weak memory
models has just begun. To our knowledge, this is only the
second article on this correlation. Beyond the memory models
that we investigate in this article, there are further memory
models whose impact on information flow security needs to
be clarified. Our novel model of computation under relaxed
consistency guarantees could be helpful for such studies.

In Section II and III, we introduce our model of compu-
tation. We present a concurrent language that features fence
commands and dynamic thread creation in Section IV, where
we use our novel model of computation to define the opera-
tional semantics. In Section V, we show how to specialize our
model of computation for four concrete memory models. We
present our clarification of the correlation between noninter-
ference and relaxed consistency guarantees in Section VI and
our security type system in Section VII. After a discussion of
related work in Section VIII, we conclude in Section IX.

Notational conventions: For a set A, we use An and A∗

to denote the set of all n-tuples and the set of all finite lists,
respectively, over A. Moreover, we use [] to denote the empty
list, [a] to denote the list with one element a, [a]::as to denote
the list with first element a and rest as, and as::as′ to denote
the result of concatenating two lists as and as′.

We denote the length of a list as by |as|. Given a list as
and a number i < |as|, we write as[i] to denote the i’th
element in as. We also write last(as) for the last element in
as, i.e., last(as) = as[|as|−1]. Moreover, we use as[m. . . n]
to denote the list as′ of length n − m + 1 with as′[k] =
as[k+m] for all k ∈ {0, . . . , n−m}. Finally, we use as\ i to
denote the list that results from as by deleting the ith element.

We use A → B and A ⇀ B to denote the set of all total
functions and of all partial functions, respectively, with domain
A and range B. For a total or partial function f with domain
A and range B, we use, both f−1(B) and pre(f) to denote the
pre-image of f , i.e. pre(f) = {a ∈ A | f(a) ∈ B}. Moreover,
we write f [a 7→ b] for the function f ′ with f ′(a) = b and
f ′(a′) = f(a′) for all a′ ∈ (pre(f)\{a}). Note that a function
update might augment the pre-image of a partial function.

We refer to partial functions with domain N, range A, and
a finite pre-image also as vectors over A. That is, a partial
function ~a : N⇀ A is a vector over A if |pre(~a)| ∈ N holds.

II. A BASIC MODEL OF COMPUTATION

We introduce an event-based model of computation for
multi-threaded programs. Our model captures the concurrent
execution of multiple threads, where each thread has access
to a globally shared memory and to its own set of registers,
which cannot be accessed by other threads.

We simplify our presentation by not considering dynamic
thread creation, synchronization, and caching in this section.
We extend our model of computation to a more sophisticated,
generic model that supports caching under different memory
models in Section III. In Section IV, we demonstrate how

this model of computation can be used for a concurrent
programming language with a spawn and a fence command.

States: We assume pair-wise disjoint sets X , R, and V
of variable names, register names, and values, respectively.

We use functions in the set Mem = X → V to model
states of the global memory and functions in Reg = R → V
to model states of the register set, i.e., each thread’s local
memory. We identify threads by identifiers in I = N and use
vectors in the set ~Reg = I ⇀ Reg to model states of the
registers of all threads. For a given thread identifier, a vector
~reg ∈ ~Reg returns a function of type Reg that models the

content of the register set of the thread with this identifier.
We model snapshots during a program run by pairs from

the set Gst = ~Reg ×Mem and refer to such pairs as global
states. We use pairs from Lst = Reg ×Mem to capture the
part of a global state that is relevant for a single thread and
refer to such pairs as local states. We write gst [i] for the local
state of thread i ∈ pre(gst) in a global state gst ∈ Gst , i.e.,
if gst = (~reg ,mem) then gst [i] = (~reg(i),mem) ∈ Lst . We
call a thread i ∈ I active in gst if i ∈ pre(gst), and inactive
otherwise. Note that gst [i] is only defined if i is active.

As a notational convention, we use meta-variables as fol-
lows: k, m, n for natural numbers in N, x for variables in X , r
for registers inR, v for values in V , i , j for thread identifiers in
I, mem for global memories in Mem , reg for local memories
of a single thread in Reg , ~reg for local memories in ~Reg , gst
for global states in Gst , and lst for local states in Lst . We
use each of these meta-variables also with indices and primes.

Events and Traces: We use operators to model operations
that a thread can perform on its registers and events to model
the transfer of data between memory and register sets.

We leave the set of operators Op parametric, assuming that
the arity of each operator in Op is defined by a function arity :
Op → N. We use terms of the form op(rs) to model the
execution of the operation specified by the operator op on
the register tuple rs ∈ Rarity(op). We refer to such terms as
expressions and define the set of all expressions by

E = {op(rs) | op ∈ Op ∧ rs ∈ Rarity(op)} .
For an expression e ∈ E , we use args(e) to denote the set of
all registers that appear as arguments of the operator in e .

We define the set of events Ev by the following grammar:
ev = x ^ v@r | v@x _ r | v@e � r

where e ∈ E . Intuitively, an event x ^ v@r models the
copying of the value v from the register r to the variable
x . Moreover, an event v@x _ r models the copying of the
value v from the variable x to the register r . Finally, an event
v@e � r models the updating of the register r with the value
v , where the expression e captures how v was computed.

We formalize this intuition about the effects of events by a
function effect : Ev → (Lst → Lst) that we define by

effect(x ^ v@r)(reg ,mem) = (reg ,mem[x 7→ v])
effect(v@x _ r)(reg ,mem) = (reg [r 7→ v],mem)
effect(v@e � r)(reg ,mem) = (reg [r 7→ v],mem) .

Note that each event models the update of either a single
variable or a single register. We refer to events that model

2

the transfer of a value from the global memory into a register
(v@x _ r) as read events, to events that model a register up-
date after an operation on registers (v@e � r) as computation
events, and to events that model the transfer of a value from
a register to the global memory (x ^ v@r) as write events.

Steps by a single thread result in changes of the thread’s
local state. For each local state lst = (reg ,mem) ∈ Lst , each
global state gst ′ = (~reg ′,mem ′), and each thread i ∈ I, we
define the update of gst ′ with lst by

gst ′[i 7→ lst] = (~reg ′[i 7→ reg],mem) .

We use finite lists of events to model sequences of compu-
tation steps by one thread. We refer to such lists as traces and
define the set of all traces by Tr = Ev∗.

We use meta-variables as follows: op for operators in Op,
rs for register tuples in Rn, e for expressions in E , ev for
events in Ev , and tr for traces in Tr .

III. SUPPORTING RELAXED CONSISTENCY GUARANTEES

Weak memory models relax sequential consistency, for
instance, in order to support a more efficient use of caches in
multi-core architectures. Weak memory models also provide
consistency guarantees but these are weaker than sequential
consistency. The various weak memory models differ in the
consistency guarantees that they provide (see, e.g., [11]).

This variety of memory models is of conceptual interest and
also relevant in practice. For instance, the processors Alpha,
x86 and POWER support weak memory models that differ
from each other [11], [16], [17].

In this section, we extend our basic model of computation
from Section II to a model that supports weaker consistency
guarantees than sequential consistency. This results in a novel
model of computation that is generic in the sense that it can
be instantiated for different memory models. Conceptually, we
build on the common distinction between program-order re-
laxations and write-atomicity relaxations [11]. This distinction
leads to a modular definition of weak memory models by sets
of permitted primitive relaxations. We exploit this modularity
in the construction of our model of computation.

Two key technical concepts in our model are obligations
and paths. They complement events and traces as follows.

While we use events to capture computation steps and data
transfers that a thread has performed, we use obligations to
capture steps and transfers that have not yet happened, but
for which a thread already made a commitment. For the
purposes of this article, we define events and obligations to
have the same granularity as commands in the considered
programming language. That is, each event and obligation
reflects the execution of a single command.

While we use traces to capture the order in which compu-
tation steps and data transfers have happened, we use paths
to capture the order in which commitments have been made.
We require each thread to commit to obligations in the order
in which the corresponding commands appear in the program
that the thread runs. That is, obligations must be assumed in
program order. Under a weak memory model, the order in

ob x ^ v@r v@x _ r ?@x _ r v@e � r fe
sources(ob) {r} {x} {x} args(e) ∅
sinks(ob) {x} {r} {r} {r} ∅

Table I
SOURCES AND SINKS OF AN OBLIGATION

which a thread performs steps might differ from the order in
which the thread has made commitments or, more figuratively,
different traces might appear on one path.

The preconditions for assuming obligations and the effects
of fulfilling them are not explained here, but in Section IV.

A. Obligations, Paths and Advancing Paths

We define the set of obligations Ob by the grammar:

ob = ?@x _ r | ev | fe

where ev ∈ Ev and fe ∈ Fe . The set Fe of fences may only
contain obligations that do not involve updates of variables and
registers. We leave Fe parametric in this section. In Section IV,
we define a concrete set Fe that contains obligations that
capture the effects of fence commands and spawn commands.

Intuitively, an obligation ?@x _ r models the copying of
the value of variable x into register r . The question mark
indicates that the value of x is not yet known. Once the value
v of x has been determined, the question mark can be replaced
by v , resulting in the obligation v@x _ r . We re-use our
syntax for events to denote the corresponding obligations. That
is, v@x _ r is the obligation to copy v from x to r , v@e � r
is the obligation to update r to v after an operation on registers,
and x ^ v@r is the obligation to copy v from r to x .

Like for events, we distinguish between read obligations,
computation obligations, and write obligations. We capture
this distinction by three predicates, where isRead(ob) holds
if ob has the form ?@x _ r or v@x _ r , isComp(ob) holds
if ob has the form v@e � r , and isWrite(ob) holds if ob
has the form x ^ v@r . Moreover, we define two functions
sinks, sources : ob → 2X∪R in Table I that, as their names
indicate, retrieve the set of all registers and variables appearing
as sources and sinks, respectively, in an obligation.

We record the order in which a program assumes obligations
by finite lists from the set Pa = (I ×Ob)∗ and refer to such
lists as paths. We recursively define the projection of a path
pa to a thread identifier i ∈ I by

pa �i =

 [] , if pa = []
[ob]::(pa ′ �i) , if pa = [(i , ob)]::pa ′

pa ′ �i , if pa = [(j , ob)]::pa ′ and j 6= i

Note that the projection pa �i reflects the order in which
the thread i has assumed obligations. We lift the functions
sources and sinks to lists of obligations by sources([]) = ∅,
sources([ob]::obs) = sources(ob)∪sources(obs), sinks([]) =
∅, and sinks([ob]::obs) = sinks(ob) ∪ sinks(obs).

We use the events v@x _ r , v@e � r , and x ^ v@r to
record the fulfillment of the corresponding obligations. We use
events of the form v@x _ r also to record that an obligation

3

of the form ?@x _ r has been fulfilled. An obligation ?@x _
r can only be fulfilled if the value of x is known. We do
not record the fulfillment of obligations in Fe as they do not
correspond to operations that modify registers or variables.

We use traces to record in which order obligations have
been fulfilled by a single thread. To record the order in which
obligations have been fulfilled by a multi-threaded program,
we use trace vectors in ~Tr = I ⇀ Tr . Note that trace
vectors only capture the order between obligations that have
been fulfilled by the same thread and not the order between
obligations that have been fulfilled by different threads.

We use pairs from the set APa = Pa × ~Tr to model
snapshots during a run of a multi-threaded program and refer
to elements in this set as advancing paths. In an advancing
path (pa, ~tr) ∈ APa , the path pa captures the obligations that
a program has not yet fulfilled, and the trace vector ~tr captures
the obligations that have been fulfilled so far.

As a notational convention, we use meta-variables as fol-
lows: ob for obligations in Ob, obs for lists of obligations in
Ob∗, fe for events in Fe , pa for paths in Pa , ~tr for trace
vectors in ~Tr , and apa for advancing paths in APa .

B. Weak Memory Models

Lamport defined sequential consistency as the requirement
“[. . .] the result of any execution is the same as

if the operations of all the processors were executed
in some sequential order, and the operations of each
individual processor appear in this sequence in the
order specified by its program.” [10]

As elaborated in [11], there are two aspects to sequential
consistency. Firstly, the operations of each individual processor
must take effect in the program order, i.e., the order in which
operations appear in a program and, secondly, that operations
of all processors must take effect in a single sequential order.

Using our concepts from Section III-A, we make these two
aspects precise. Since a thread i ∈ I assumes obligations in
the order in which the corresponding commands appear in the
program that this thread executes, the order of obligations in
the projection pa �i of a path pa reflects the program order.
Hence, if each thread i ∈ I fulfills its obligations in the order
in which they appear in pa �i for a given path pa and if
obligations only cause effects when they are fulfilled, then this
ensures the first aspect of sequential consistency. The second
aspect of sequential consistency requires the existence of a
single sequential order in which commands take effect. If there
is a total order in which obligations are fulfilled by all threads
and if each obligation only causes effects when it is fulfilled,
then this ensures the second aspect of sequential consistency.

We capture the relaxations of these two aspects of sequential
consistency with predicates. As usual, we distinguish between
program-order relaxations, which relax the first aspect of
sequential consistency, and write-atomicity relaxations, which
relax both aspects of sequential consistency. More concretely,
in terms of Section III-A, a program-order relaxation permits
that, in certain cases, obligations of a thread i are fulfilled in a
different order than specified by pa �i , while a write-atomicity

relaxation permits that, in certain cases, obligations may have
an effect already before they are fulfilled.

We capture each program-order relaxation by a predicate φ
that takes a list of obligations obs and a position k < |obs|−1
as arguments. Each predicate φ defines conditions under which
the last obligation in obs may be fulfilled before an obligation
that occurs at position k in obs . Note that one can use φ also
to check whether an obligation at an arbitrary position m in
obs may be fulfilled before the obligation at position k < m,
by applying φ to the arguments obs[0 . . .m] and k.

In order to fulfill an obligation by thread i out of order, it
must be possible to re-order this obligation with all obligations
that the thread has assumed before and not yet fulfilled. For
a given set Φ of program-order relaxations, we formalize
the condition that the last obligation in a non-empty list of
obligations obs may be fulfilled next by

Φ̄(obs) ≡ ∀k < (|obs| − 1).∃φ ∈ Φ.φ(obs, k) .

Now we are ready to define under which conditions an
obligation at position m in a given path pa may be fulfilled
next for a given set Φ of program-order relaxations:

nextΦ(pa,m) ≡∃i ∈ I.ob ∈ Ob.
pa[m] = (i , ob) ∧ Φ̄(pa[0 . . .m]�i)

Note that the thread identifier i of the thread that assumed
the obligation at position m is used to project the path
pa to a list of obligations and that only obligations up to
position m in pa are used in this projection. Also note
that nextΦ(pa ′::(i , ob),m) holds trivially if pa ′ contains no
obligations of thread i . That is, a thread is always permitted
to fulfill its first obligation in a path.

We capture each write-atomicity relaxation by a predicate
ψ that defines conditions under which a write obligation at
position k in a path pa may impact an obligation at a later
position m > k. This constitutes a relaxation of sequential
consistency if the obligation at position k is not the obligation
that is fulfilled next. Again, we assume that the last obligation
in pa is the one that shall be influenced. Nevertheless, one can
use ψ to check whether an obligation at an arbitrary position
m in a path pa may be influenced by the write obligation at
position k, by applying ψ to the arguments pa[0 . . .m] and k.

Now we are ready to define how the unknown value in an
obligation ?@x _ r in a path may be specialized for a given
set Ψ of write-atomicity relaxations. We define a function
specializeΨ that returns the set of all events to which one may
specialize an obligation ob of thread i that occurs at the end of
a path pa::(i , ob) in a global state (~reg ,mem). We first define
the case where the obligation ob has the form ?@x _ r :

specializeΨ(pa, i , ?@x _ r , (~reg ,mem)) ={
v@x ′ _ r ′∈Ob

∣∣∣∣ x ′ = x ∧ r ′ = r ∧ x ′ /∈ sinks(pa �i)
∧v = mem(x)

}

∪

v@x ′ _ r ′∈Ob

∣∣∣∣∣∣∣∣
x ′ = x ∧ r ′ = r∧
∃j ∈ I.∃r ′′ ∈ R.∃k ∈ N.∃ψ ∈ Ψ.(

pa[k] = (j, x ^ v@r ′′)
∧ψ(pa::[(i , ?@x _ r)], k)

)


4

φWR(obs, k) ≡ isWrite(obs[k]) ∧ isRead(last(obs))
∧sinks(obs[k]) ∩ sources(last(obs)) = ∅

φWW(obs, k) ≡ isWrite(obs[k]) ∧ isWrite(last(obs))
∧sinks(obs[k]) ∩ sinks(last(obs)) = ∅

φRW(obs, k) ≡ isRead(obs[k]) ∧ isWrite(last(obs))
∧sources(obs[k]) ∩ sinks(last(obs)) = ∅

φRR(obs, k) ≡ isRead(obs[k]) ∧ isRead(last(obs))
∧sinks(obs[k]) ∩ sinks(last(obs)) = ∅

Figure 1. Program-order relaxations for read and write

ψROwn(pa, k) ≡ ∃i ∈ I.∃x ∈ X .∃r , r ′ ∈ R.∃v ∈ V.
last(pa) = (i , ?@x _ r)
∧pa[k] = (i , x ^ v@r ′) ∧ r ′ 6= r
∧x /∈ sinks(pa[k + 1 . . . |pa| − 2]�i)

φROwn(obs, k) ≡ isWrite(obs[k]) ∧ isRead(last(obs))
∧sinks(obs[k]) = sources(last(obs))

Figure 2. Program-order relaxations for read-own write early

The first set in the above definition captures that a thread
i may retrieve the value of x from the global memory mem
if there are no obligations of this thread in the path pa that
involve writing the variable x (i.e., if x /∈ sinks(pa �i) holds).
The second set in the above definition captures the condition
under which the thread i may retrieve the value of x from
some write obligation that is pending in the path pa .

If ob ∈ Ev or ob ∈ Fe holds, then specializeΨ returns the
singleton set containing ob or the empty set, respectively:

specializeΨ(pa, i , ob, (~reg ,mem)) = {ob′ ∈ Ev | ob′=ob}

Definition 1. A memory model is a pair (Φ,Ψ) where Φ and
Ψ are sets of predicates on Ob∗×I and Pa×I, respectively.

Note that predicates in Φ and Ψ constitute relaxations of
sequential consistency and, hence, the bigger the two sets are,
the weaker is the consistency guarantee that is provided.

In Figures 1, 2, and 3, we present formal definitions of
prominent program-order and write-atomicity relaxations.

In Figure 1, we define four predicates φWR, φWW, φRW,
and φRR to capture conditions for re-ordering read and write
operations. These predicates correspond to the program-order
relaxations Write-to-Read, Write-to-Write, Read-to-Write, and
Read-to-Read (see, e.g., [11]), respectively. Note that each of
the four predicates requires that the obligation at the end of
the list obs and the obligation at position k are of a particular
type (read or write). Moreover, each of the predicates re-
quires that modifications and observations caused by fulfilling

ψearly
ROth(pa, k) ≡ ∃i , j ∈ I.∃x ∈ X .∃r , r ′ ∈ R.∃v ∈ V.

last(pa) = (i , ?@x _ r)
∧pa[k] = (j , x ^ v@r ′) ∧ j ∈ early(i)
∧x /∈ sinks(pa[k + 1 . . . |pa| − 2]�j)

Figure 3. Program-order relaxations for read-others write early

φCR(obs, k) ≡ isComp(obs[k]) ∧ isRead(last(obs))
∧sinks(obs[k]) ∩ sinks(last(obs)) = ∅

φCW(obs, k) ≡ isComp(obs[k]) ∧ isWrite(last(obs))

Figure 4. Program-order relaxations for computation obligations

these obligations do not interfere with each other. The latter
condition ensures that these program-order relaxations do not
affect the result of purely sequential computations. Program-
order relaxations may only enable additional outcomes of a
computation in case of a concurrent computation.

For instance, φWR requires that the obligation at posi-
tion k in the list obs is a write obligation, and that the
last obligation in obs is a read obligation. The condition
sinks(obs[k])∩sources(last(obs)) = ∅ prevents a re-ordering
if the read obligation depends on a variable that is influenced
by the write obligation. This condition ensures that a write-to-
read re-ordering cannot affect purely sequential computations.

In Figure 2, we define two predicates ψROwn and φROwn

that together express the precondition for a read-own-write-
early relaxation (see, e.g., [11]). The predicate ψROwn cap-
tures for a path pa ending with a pair (i , ?@x _ r) under
which conditions the value of x in the obligation ?@x _ r of
thread i may be influenced by a write obligation at position
k. Namely, the write obligation at position k must be an
obligation of the same thread i , the sink of this write obligation
must be the same variable x , and the thread i must not
have assumed further write obligations for x after position
k. By permitting the earlier write obligation to influence the
value of x in the later read obligation without making the
update of x visible to other threads, the write becomes a
non-atomic operation. The predicate φROwn defines conditions
under which a re-ordering of a read obligation and an earlier
write obligation is permissible, if these two obligations involve
the same variable. Note that φWR does not permit the re-
ordering of two obligations that access the same variable.

In Figure 3, we define the predicate ψearly
ROth that is parametric

in the function early : I ⇀ 2I . This predicate expresses a
read-others-write-early relaxation, where early(i) specifies the
set of threads whose writes a thread i may read early. The
condition ψearly

ROth(pa, k) captures for a path that ends with a
pair (i , ?@x _ r) that the value of the variable x may be
influenced by a write obligation of some thread j ∈ early(i)
at position k in pa if this is the most recently assumed write
obligation of thread j for x . By permitting the write obligation
to influence the read obligation without making the update of
x visible to all threads, the write becomes non-atomic.

Remark 1. Our model of computation allows one to capture
computation obligations explicitly. None of the program-order
and write-atomicity relaxations presented so far permit a
re-ordering of computation obligations with read or write
obligations. The role of computation operations in the con-
text of weak memory models has received little attention so
far. As examples, we present two speculative program-order
relaxations for computation obligations in Figure 4.

5

IV. A MULTI-THREADED LANGUAGE

We introduce a concrete, multi-threaded language. Our
example language comprises commands for transferring data
between the shared memory and the local memory of a thread,
computation commands, conditionals, and loops. Our language
also provides a spawn command, which dynamically creates
new threads, and a fence command, which can be used in a
program to limit the effects of program-order relaxations.

The syntax of our language is defined by the grammar:

c = skipι | loadι r v | loadι r x | storeι x r
| eqι r r r | andι r r r | fenceι | spawnιc
| if ι r then c else c fi | whileι r do c od | c; c

where v ∈ V , r ∈ R, x ∈ X , and ι ∈ N. Note that each
command carries a number ι ∈ N as subscript. We assume
that each subscript appears only once in a given program, such
that each subscript uniquely identifies a particular occurrence
of a command in the program. For instance, one could use the
line number in which a command appears as subscript, given
that each line contains at most one command. We use C to
denote the set of all programs in our language.

To simplify our technical exposition in the rest of this
article, we only support two commands for performing com-
putations: the equality test “eqι r1 r2 r3” and the conjunction
“andι r1 r2 r3”. Adding further commands for computations
to our language would cause no fundamental difficulties, but it
would increase the length of calculi, explanations, and proofs.

Like the MEMBAR #sync instructions of SPARC [18], the
fence commands in our language correspond to full fences.
That is, the execution of a fence command is only possible if
all commands that appear before the fence in program order
have been executed already. Moreover, commands that appear
after the fence in program order cannot be executed before
the fence. Hence, fences can be used to rule out unwanted
behavior by limiting the effects of program-order relaxations.

We define the operational semantics in terms of our model
of computation from Sections II and III. To this end, we instan-
tiate the set of operations by Op = {const, eq, and} and the
set of synchronization obligations by Fe = {‖,↗c | c ∈ C},
where ‖ and ↗c are the obligations that correspond to the
commands fenceι and spawnιc, respectively.

The execution of a command is split into two steps: the
assumption of an obligation and the fulfillment of this obliga-
tion. As explained in Section III-A, we use advancing paths
to model snapshots during a program run. Given an advancing
path (pa, ~tr) ∈ APa , the assumption of an obligation ob by
thread i results in the advancing path (pa::[(i , ob)], ~tr). If
nextΦ(pa,m) and pa[m] = (j, obm) hold then the obligation
obm may be fulfilled next by thread j. The fulfillment of this
obligation obm causes the pair (j, obm) to be removed from
pa , the obligation obm to be specialized to an obligation ob′ by
applying specializeΨ, and the effects of ob′ to be propagated
to the global state. If ob′ ∈ Ev holds then the fulfillment of
ob′ is, in addition, recorded at the end of the trace ~tr(j).

We use triples of the form 〈~cs, (pa, ~tr), (~reg ,mem)〉 to
model intermediate stages of a run of a multi-threaded program

i ∈ pre(~cs) gst = (~reg ,mem)
〈~cs(i), pa, ~reg(i)〉 →i 〈c′, pa ′〉

∀n ∈ {0, . . . , |pa| − 1}.∀ob ∈ Fe.pa[n] 6= (i , ob)

〈~cs, (pa, ~tr), gst〉 =⇒Φ,Ψ 〈~cs[i 7→ c′], (pa ′, ~tr), gst〉

nextΦ(pa,m) pa[m] = (i , ob) ob /∈ Fe
ob′ ∈ specializeΨ(pa[0 . . .m− 1], i , ob, gst)

pa ′ = pa \m ~tr
′

= ~tr [i 7→ (~tr(i)::[ob′])]
gst ′ = gst [i 7→ (effect(ob′, gst [i]))]

〈~cs, (pa, ~tr), gst〉 =⇒Φ,Ψ 〈~cs, (pa ′, ~tr
′
), gst ′〉

nextΦ(pa,m) pa[m] = (i , ‖) pa ′ = pa \m
〈~cs, (pa, ~tr), gst〉 =⇒Φ,Ψ 〈~cs, (pa ′, ~tr), gst〉

nextΦ(pa,m) pa[m] = (i ,↗c) pa ′ = pa \m
i ′ = max(pre(~cs)) + 1 ~reg ′ = ~reg [i ′ 7→ reg]

~cs ′ = ~cs[i ′ 7→ c] ~tr(i ′) = [] ∀r ∈ R.reg(r) = 0

〈~cs, (pa, ~tr), (~reg ,mem)〉
=⇒Φ,Ψ 〈~cs ′, (pa ′, ~tr), (~reg ′,mem)〉

Figure 5. Small steps on global configurations under (Φ,Ψ)

and refer to such triples as global configurations. A global con-
figuration consists of a vector ~cs : N⇀ (C ∪ ε), an advancing
path (pa, ~tr) ∈ APa , and a global state (~reg ,mem) ∈ Gst ,
where we use the symbol ε in the range of ~cs to model that
a thread has terminated. We call a global configuration well
formed if ~cs , ~tr , and ~reg have the same pre-image, i.e., if
pre(~cs) = pre(~tr) = pre(~reg) holds. In the remainder of this
article, all relevant global configurations will be well formed.

To capture small steps on global configurations under a
memory model (Φ,Ψ), we introduce the judgment

〈~cs, apa, gst〉 =⇒Φ,Ψ 〈~cs ′, apa ′, gst ′〉

The calculus for deriving this judgment is depicted in Figure 5.
The first rule in Figure 5 captures how commands are

processed and how obligations are assumed. The first premise
ensures that i is an active thread. In the third premise, the
judgment 〈~cs(i), pa, reg〉 →i 〈c′, pa ′〉 is used to capture the
processing of the next command in ~cs(i) by thread i , where
c′ is the command that remains to be executed by thread i
and pa ′ is the resulting path. This judgment will be defined
later in this section such that the path pa ′ either equals pa or
equals pa::[(i , ob)] for some obligation ob. The fourth premise
ensures that a thread cannot assume new obligations if a fence
obligation of this thread is pending.

The second rule in Figure 5 captures how threads fulfill
obligations other than ‖ and↗c . The first two premises of the
rule ensure that the obligation ob of thread i at position m
may be fulfilled next. In the fourth premise, ob is specialized
to ob′. Recall from Section III-B, that specializeΨ returns for
an obligation ?@x _ r the set of all instantiations that are
possible under the write-atomicity relaxations in Ψ. Otherwise,
specializeΨ returns the singleton set containing the given

6

obligation. The last three premises remove the obligation ob
from the path, append the event ob′ to the trace of thread i ,
and update the global state according to the effect of ob′.

The third rule captures how a thread fulfills an obligation ‖,
which the thread assumed due to a fence command. A fence
command prevents re-orderings across this command, hence,
its name. In our operational semantics, this is realized by the
combination of the fourth premise of the first rule in Figure 5,
the premise ob /∈ Fe of the second rule in Figure 5, and the
fact that if pa(m) = (i , ‖) and nextΦ(pa,m) hold, then pa
does not contain an obligations of thread i before position m.

The last rule in Figure 5 captures how a thread fulfills an
obligation ↗c , which the thread assumed due to a spawn
command. This rule models the creation of a new thread with
a new identifier i ′ by enlarging the pre-image of ~cs , ~tr , and
~reg by i ′. Like the obligation ‖, the obligation↗c also cannot

be re-ordered with other obligations, for the same reasons.
We formalize how a thread processes a command in terms

of the command’s immediate effects on the local memory,
i.e. the registers of this thread, and in terms of an obligation
that the thread assumes. We use the judgment 〈c, pa, reg〉 →i

〈c′, pa ′〉 to capture that if thread i processes the command c
in the context of a path pa , and the current local memory reg ,
then, afterwards, the path is pa ′ and either a command c′ ∈ C
remains to be executed or the thread has terminated (indicated
by c′ = ε). The calculus for this judgment is depicted in
Figure 6. The rules for skipι, conditionals and loops, leave
the path unchanged. All other rules add a pair (i , ob) to the
path to indicate that thread i has assumed the obligation ob.
The particular obligation differs in the rules. Moreover, the
rules for all commands that use values from registers, require
that the path pa does not contain any unfulfilled obligations
of thread i that might influence these registers. The reason
for these premises in the rules is that values of registers are
inserted into an obligation when the obligation is assumed, and
this would be incorrect if updates to these registers were still
pending. Otherwise, the rules in Figure 6 are straightforward.

We use the judgment 〈c,mem〉 ⇓(Φ,Ψ) mem ′ to model
that a run of program c starting in an initial memory mem
terminates with final memory mem ′. The only rule for this
judgment is depicted in Figure 7, where we use =⇒∗(Φ,Ψ)

to denote the transitive closure of the relation induced by
the judgment for small steps on global configurations. The
premises of the rule ensure that all registers are initialized with
value 0 and that the program run starts in a well-formed global
configuration. That the program, indeed, terminated is captured
by the two premises pa ′ = [] and ∀i ∈ pre(~cs ′). ~cs ′(i) = ε.

V. EXAMPLE MEMORY MODELS

We are now ready to formalize four examples of concrete
memory models. The example memory models SC, IBM370,
TSO, and PSO that we present correspond to sequential con-
sistency, IBM 370, total store order, and partial store order,
respectively. Each of these memory models had relevance in
processor design: partial store order, total store order, and

〈skipι, pa, reg〉 →i 〈ε, pa〉

〈fenceι, pa, reg〉 →i 〈ε, pa::[(i , ‖)]〉

ob = v@const � r

〈loadι r v , pa, reg〉 →i 〈ε, pa::[(i , ob)]〉

ob =?@x _ r
〈loadι r x , pa, reg〉 →i 〈ε, pa::[(i , ob)]〉

ob = x ^ v@r v = reg(r) r /∈ sinks(pa �i)

〈storeι x r , pa, reg〉 →i 〈ε, pa::[(i , ob)]〉

ob = 1@eq(r2, r3) � r1

reg(r2) = reg(r3) r2, r3 /∈ sinks(pa �i)

〈eqι r1 r2 r3, pa, reg〉 →i 〈ε, pa::[(i , ob)]〉

ob = 0@eq(r2, r3) � r1

reg(r2) 6= reg(r3) r2, r3 /∈ sinks(pa �i)

〈eqι r1 r2 r3, pa, reg〉 →i 〈ε, pa::[(i , ob)]〉

ob = 1@and(r2, r3) � r1

reg(r2) 6= 0 reg(r3) 6= 0 r2, r3 /∈ sinks(pa �i)

〈andι r1 r2 r3, pa, reg〉 →i 〈ε, pa::[(i , ob)]〉

ob = 0@and(r2, r3) � r1

reg(r2) = 0 ∨ reg(r3) = 0 r2, r3 /∈ sinks(pa �i)

〈andι r1 r2 r3, pa, reg〉 →i 〈ε, pa::[(i , ob)]〉

reg(r) 6= 0 r /∈ sinks(pa �i)

〈if ι r then c else c′ fi, pa, reg〉 →i 〈c, pa〉

reg(r) = 0 r /∈ sinks(pa �i)

〈if ι r then c else c′ fi, pa, reg〉 →i 〈c′, pa〉

reg(r) 6= 0 r /∈ sinks(pa �i)

〈whileι r do c od, pa, reg〉
→i 〈c; whileι r do c od, pa〉
reg(r) = 0 r /∈ sinks(pa �i)

〈whileι r do c od, pa, reg〉 →i 〈ε, pa〉

〈spawnιc, pa, reg〉 →i 〈ε, pa::[(i ,↗c)]〉
〈c, pa, reg〉 →i 〈ε, pa ′〉
〈c; c′, pa, reg〉 →i 〈c′, pa ′〉

〈c, pa, reg〉 →i 〈c′′, pa ′〉 c′′ ∈ C
〈c; c′, pa, reg〉 →i 〈c′′; c′, pa ′〉

Figure 6. Processing a command and augmenting a path

pre(~cs) = pre(~tr) = pre(~reg) = {0}
~cs(0) = c ~tr(0) = pa = [] = pa ′

∀r ∈ R. ~reg(0)(r) = 0 ∀i ∈ pre(~cs ′). ~cs ′(i) = ε
〈~cs, (pa, ~tr), (~reg ,mem)〉

=⇒∗(Φ,Ψ) 〈~cs ′, (pa ′, ~tr
′
), (~reg ′,mem ′)〉

〈c,mem〉 ⇓(Φ,Ψ) mem ′

Figure 7. Big-step semantics for commands

7

IBM 370 are supported by SPARC, modern x86 processors,
and in the processor IBM 370, respectively [11], [16].

Following Definition 1, we define each memory model as a
pair (Φ,Ψ) of two sets of predicates that capture the permitted
program-order relaxations and write-atomicity relaxations.

Definition 2. For each MM ∈ {SC, IBM370,TSO,PSO},
we define MM = (ΦMM ,ΨMM) by the following table:

MM ΦMM ΨMM

SC ∅ ∅
IBM370 {φWR} ∅

TSO {φWR, φROwn} {ψROwn}
PSO {φWR, φROwn, φWW} {ψROwn}

LetMM = {SC, IBM370,TSO,PSO} for the rest of this
article. For each of the four models in MM, our choice
of relaxations of sequential consistency in Definition 2 is
equivalent to the one in [11]. In the following, we argue for
the adequacy of Definition 2 further by relating our definitions
to the original definitions of these memory models.

Proposition 1. The memory model SC = (ΦSC,ΨSC) imposes
the same constraints as sequential consistency [10].

Proof sketch: As explained in Section III-B, sequential
consistency is equivalent to the conjunction of two require-
ments: firstly, the commands of each thread must take effect
in program order and, secondly, the commands of all threads
must take effect in a single sequential order. These two require-
ments are satisfied by our memory model SC = (ΦSC,ΨSC),
where ΦSC = ∅ and ΨSC = ∅ according to Definition 2.

The first rule in Figure 5 and the rules for sequential compo-
sition in Figure 6 together ensure that obligations are assumed
in program order. If nextΦ(pa,m), pa[m] = (i , ob), and
Φ = ΦSC hold then pa[0 . . .m− 1] �i= [] holds according to
the definition of next because ΦSC = ∅. Since nextΦ(pa,m)
is a premise in the second, third, and fourth rule in Figure 5,
obligations are fulfilled by a thread in the order in which they
have been assumed by this thread. That is, commands of each
thread take effect in program order.

Moreover, if ob′ ∈ specializeΨ(pa[0 . . .m− 1], i , ob, gst)
and Ψ = ΨSC then, according to the definition of specialize,
either ob′ = ob holds or ob′ results from instantiating ob
with a value retrieved directly from global memory. That is,
obligations can only have an effect on variables, registers, and
other obligations when they are fulfilled. Hence, obligations
of all threads take effect in one single order.

Proposition 2. The memory model IBM370 = (ΦIBM370,
ΨIBM370) imposes the same constraints as the memory model
IBM 370 defined in [19].

Proof sketch: As described in [11] the memory model
IBM 370 [19] relaxes the requirement that commands of each
thread must take effect in program order. More concretely,
a read command of a thread may take effect before a write
command of the same thread against program order if the two
commands are not conflicting, i.e., the source in the read must

differ from the sink in the write. This is the only relaxation
of sequential consistency that the memory model IBM 370

permits. These requirements are also satisfied by our memory
model IBM370 (recall ΦIBM370 = {φWR} and ΨIBM370 = ∅).

The first rule in Figure 5 and the rules for sequential
composition in Figure 6 ensure that obligations are assumed
in program order. If nextΦ(pa,m), pa[m] = (i , ob), Φ =
ΦIBM370, and pa[0, . . . ,m−1] �i= obs with obs 6=[] then,
according to the definitions of next and φWR, this implies that
isRead(ob), isWrite(obs[k]) for each k ∈ {0 . . . |obs| − 1},
and sources(ob) ∩ sinks(obs) = ∅ hold. That is, read obliga-
tions of a thread can be fulfilled against program order before
write obligations of the same thread if the sinks in these write
obligations are disjoint from the source in the read obligation.
All other obligations must be fulfilled in program order.

Since ΨIBM370 = ∅, obligations can have an effect on
variables, registers, and other obligations only when they are
fulfilled. The argument is identical to the one for SC. Hence,
obligations of all threads take effect in one single order.

In [20], the memory models total store order and partial
store order are defined by lists of axioms. These axioms
impose constraints on the order of load and store operations
wrt. a memory order ≤ and a program order ;i for each
processor i . The concepts underlying our parametric model
of execution correspond to the ones in [20] as follows: our
commands correspond to the operations in [20], our thread
identifiers correspond to the processor identifiers in [20], a
pair (i , v@x _ r) in our model corresponds to a load
operation Li

x in [20], and a pair (i , x ^ v@r) in our model
corresponds to a store operation Si

x in [20], where v equals the
value of the memory location accessed by the load and store
operations, i.e., Val [Si

x] and Val [Li
x] in [20]. For arguing that

our definitions of TSO and PSO satisfy the respective axioms
in [20], we need to define the orders ≤ and ;i . For a given
derivation of the judgment 〈c,mem〉 ⇓(Φ,Ψ) mem ′, we define
;i as the order in which thread i assumes obligations in the
derivation (by application of the 1st rule in Figure 5) and ≤ as
the order in which obligations are fulfilled in the derivations
(by applications of the 2nd, 3rd, and 4th rule in Figure 5).

Proposition 3. The memory model TSO = (ΦTSO,ΨTSO)
imposes the same constraints as total store order in [20].

Proof sketch: The memory model total store order is
defined in [20] by six axioms: Order, Atomicity, Termination,
Value, LoadOp, and StoreStore.

We first argue that TSO is no more restrictive than total
store order. Total store order, as defined in [20], permits load
operations to appear in the memory order ≤ before store op-
erations against the program order ;i . If pa[m] = (i , ob), Φ =
ΦTSO, pa[0, . . . ,m− 1] �i= obs with obs 6= [], isRead(ob),
and isWrite(obs[k]) for each k ∈ {0 . . . |obs| − 1} then this
implies nextΦ(pa,m) according to the definitions of next ,
φWR, and φROwn. Since only the premise nextΦ(pa,m) could
forbid a read obligation to be fulfilled using the second rule
in Figure 5, TSO allows read obligations of a thread to be

8

fulfilled before write obligations of the same thread against
the program order like total store order in [20].

We now argue that TSO is no more permissive than total
store order. The axioms Atomicity and Termination in [20]
impose constraints on atomic load-store operations and on
diverging runs. These two axioms are trivially fulfilled in the
context of this article because our example language does
not incorporate atomic load-store operations and the judgment
〈c,mem〉 ⇓(Φ,Ψ) mem ′ captures only terminating runs. The
other four axioms are also fulfilled by our memory model TSO
(recall ΦTSO = {φWR, φROwn} and ΨTSO = {ψROwn}). The
axiom Order in [20] requires all store and flush operations
to be totally ordered by ≤. Our example language does not
incorporate flush operations, but fence commands instead. The
order ≤ induced by a derivation of 〈c,mem〉 ⇓(Φ,Ψ) mem ′ is
a total order on write and fence obligations. The axiom Value
requires that the value of a load from a location x is the value
written by a most recent store to this location:

Val[Li
x] =

Val[Sj
x | Sj

x = Max≤[{Sj ′

x | Sj ′

x ≤ Li
x} ∪ {Si

x | Si
x ;Li

x}]] .
The two possible cases for determining the value of the load
in this equation correspond to the two cases in our definition
of specialize. In the first case, the value of the variable is
directly retrieved from the global memory (and, hence, this
value equals the value stored by the write obligation that
was fulfilled last for this location) and, in the second case,
the value is retrieved from the most recently assumed write
obligation of the same thread that has not yet been fulfilled.
The axiom LoadOp requires for each operation after a given
load operation in the program order of a processor i , that
this operation takes effect after the load operation. Since
ΦTSO = {φWR, φROwn}, TSO does not allow an obligation to
be fulfilled before a given read obligation against the program
order according to the definitions of φWR and φROwn. The
axiom StoreStore requires that store and flush operations take
effect in the relative order in which they occur in the program
order. Again, our definition of TSO does not allow that write
or fence obligations are fulfilled against the program order
according to the definitions of φWR and φROwn.

Proposition 4. The memory model PSO = (ΦPSO,ΨPSO)
imposes the same constraints as partial store order in [20].

Proof sketch: The memory model partial store order is
defined in [20] by seven axioms: Order, Atomicity, Termina-
tion, Value, LoadOp, StoreStore, and StoreEq.

We first argue that PSO is no more restrictive than partial
store order. Partial store order, as defined in [20], permits
load operations to appear in the memory order ≤ before store
operations against the program order ;i . Moreover, two store
operations may appear in the memory order ≤ against the
program order ;i if these store operations have different sinks.
If pa[m] = (i , ob), Φ = ΦPSO, pa[0, . . . ,m− 1]�i= obs with
obs 6= [], isWrite(obs[k]) for each k ∈ {0 . . . |obs| − 1} and
• either isRead(ob)
• or isWrite(ob) and sinks(ob) ∩ sinks(obs) = ∅

then this implies nextΦ(pa,m) according to the definitions of
next and of ΦPSO, i.e. {φWR, φROwn, φWW}. Since only the
premise nextΦ(pa,m) could forbid a read or write obligation
to be fulfilled using the second rule in Figure 5, PSO allows
read as well as write obligations of a thread to be fulfilled
before write obligations of the same thread against the program
order like partial store order in [20].

We now argue that PSO is no more permissive than partial
store order. Again, the axioms Atomicity and Termination
in [20] are trivially fulfilled. The axioms Order, Value, and
LoadOp are the same ones as for total store order. These
three axioms are fulfilled by the memory model PSO (recall
ΦPSO = {φWR, φROwn, φWW} and ΨPSO = {ψROwn}). The
argument for the fulfillment of these three axioms is analogous
to the one for TSO. The additional program order relaxation
φWW might affect the order in which write obligations are
fulfilled, but there still exists a total order in which write
obligations are fulfilled. Due to the relaxation φWW, two write
obligations of the same thread might be fulfilled against the
program order. However, this is only permitted if the sinks
of these write obligations differ, and, hence, the fulfillment of
axiom Value is not affected. Finally, φWW does not permit any
re-ordering wrt. the fulfillment of read obligations and, hence,
the axiom LoadOp is fulfilled. The axiom StoreStore in the
partial store order model is different from the axiom with this
name in the total store order model. For partial store order,
the axiom StoreStore requires that store operations that are
separated by a STBAR operation take effect in program order.
In our language, fence commands take the role of STBAR
operations. Since ΦPSO does not permit to re-order fence
obligations, this variant of the axiom StoreStore is fulfilled.
The axiom StoreStoreEq requires that store operations with
the same sink take effect in program order. The condition
sinks(obs[k])∩sinks(last(obs)) = ∅ in the definition of φWW

ensures that write obligations can, indeed, only be re-ordered
if they have disjoint sinks.

VI. INFORMATION FLOW SECURITY

The novel model of computation and its instantiation with
a concrete language, which we described in Sections II–V,
originated as a side-product of studying the impact of different
memory models on information flow security. Two crucial
features of our model of computation are its operational flavor
and that it can be instantiated with different memory models.
These features provide the basis for comparing the effects of
different memory models on noninterference.

The main result in this section is Theorem 1. This theorem
clarifies the effects of the four memory models from Defini-
tion 2 (i.e., PSO, TSO, IBM370, and SC) on noninterference.
The formulation of the theorem is crisp, but proving it, was not
an easy exercise. We describe the three-step proof technique
that we employed as it might be interesting itself.

A. Noninterference under Weak Memory Models

We consider a termination-sensitive definition for a two-
level security lattice, where the intuitive requirement is that

9

information must not flow from the level High to Low.
We use a function lev : X → {Low,High} to associate

each variable in a program with one of these security levels.
As usual, we assume the initial values of each variable x ∈ X
with lev(x) = High to be secret, and the initial and final
values of each x ′ ∈ X with lev(x ′) = Low to be public.

We define two global memories mem,mem ′ ∈ Mem to
be Low-equal if lev(x) = Low =⇒ mem(x) = mem ′(x)
holds for each x ∈ X and denote this fact by mem =L mem ′.
This means, if mem =L mem ′ holds then two global memo-
ries mem,mem ′ ∈ Mem differ only in secrets.

Definition 3. A program c ∈ C is MM -noninterfering (de-
noted by c ∈ NIMM), if the following condition holds:

∀mem0,mem1,mem ′0 ∈ Mem. (mem0 =L mem ′0 ∧ 〈c,mem0〉 ⇓MM mem1)
=⇒ ∃mem ′1 ∈ Mem.

(mem1 =L mem ′1 ∧ 〈c,mem ′0〉 ⇓MM mem ′1)


Note that, if c ∈ NIMM holds and c is run under the mem-

ory model MM in two initial memories that are Low-equal,
then, after the runs of c terminate, the resulting memories
are also Low-equal. This means that the final value of each
variable x ′ ∈ X with lev(x ′) = Low is independent of the
initial values of all variables x ∈ X with lev(x) = High. In
other words, running c cannot leak secret information.

Theorem 1. Noninterference under MM does not imply
noninterference under MM ′, for each pair of distinct memory
models MM ,MM ′ ∈ {SC, IBM370,TSO,PSO}.

In total, Theorem 1 expresses twelve non-implications for
noninterference under different memory models, including
the two non-implications that were proven by Vaughan and
Millstein in [13]. Vaughan and Millstein showed that nonin-
terference under sequential consistency does not imply nonin-
terference under total store order and vice versa. Our theorem
demonstrates that this observation is not just a peculiarity of
one specific memory model. Beyond this, our theorem clarifies
the relationship between different weak memory models.

B. Proof Sketch

For the proof of Theorem 1, we developed a three-step proof
technique that we find interesting in itself.

In the first step, we define three pairs of conditions on
memory models, namely (γ1, δ1), (γ2, δ2), and (γ3, δ3) such
that the two conditions within each pair are contradictory. That
is (¬γl) ∨ (¬δl) holds for each l ∈ {1, 2, 3}.

In the second step, we show that the three pairs of conditions
can be used to discriminate between any two memory models
in MM. We show for all MM ,MM ′ ∈ MM that there
exists l ∈ {1, 2, 3} such that either γl(MM) ∧ δl(MM ′) or
γl(MM ′) ∧ δl(MM) holds. Note that at most one of the two
conditions can be true because γl and δl are contradictory.
Hence, (γl, δl) discriminates between MM and MM ′.

In the third step, we specify for each index l ∈ {1, 2, 3}
two programs c+

l , c
−
l ∈ C and show that the following four

implications hold for each MM ∈MM:

γl(MM) =⇒ c+
l ∈ NIMM δl(MM) =⇒ c+

l /∈ NIMM (1)
γl(MM) =⇒ c−l /∈ NIMM δl(MM) =⇒ c−l ∈ NIMM

The combination of these three steps allows one to con-
clude that, for each pair of two distinct memory models
(MM ,MM ′) ∈ MM×MM, there exists a program c ∈ C
such that c ∈ NI MM holds and c ∈ NI MM ′ does not hold.
This proposition is equivalent to the one in Theorem 1.

Before developing this proof technique, we started to prove
Theorem 1 by providing two programs c, c′ for each pair of
memory models MM ,MM ′ and by showing that the programs
are discriminating for these memory models, i.e., that

c ∈ NIMM ∧ c /∈ NIMM ′ and c′ ∈ NIMM ′ ∧ c′ /∈ NIMM

hold. This led to proofs that shared many similarities. Our
proof technique can be viewed as a systematic solution to
factor out these similarities, thus reducing both, the size of
proofs and the effort to construct them. Our proof technique
can also be viewed as a systematic solutions to uniformly
structure proofs that pairs of programs are discriminating.
Finally, we found the conditions (γl, δl) helpful for finding
pairs of discriminating programs. However, creativity is also
needed with our proof technique, namely to determine suitable
pairs of discriminating conditions (γl, δl) and to determine, for
each of these pairs, a suitable pair of programs c+

l , c
−
l .

In the remainder of this section, we elaborate the three steps
in more detail. In particular, we provide formal definitions
of the three pairs of conditions, show that they discriminate
the memory models in MM, and present, for each pair of
conditions, two programs that fulfill the implications in (1).

We define the conditions γ1, γ2, and γ3:

γ1(Φ,Ψ) ≡ φWR ∈ Φ
γ2(Φ,Ψ) ≡ φWR ∈ Φ ∧ φROwn ∈ Φ
γ3(Φ,Ψ) ≡ φWW ∈ Φ

We define the conditions δ1, δ2, and δ3 in Figure 8. With our
definitions of (γ1, δ1), (γ2, δ2), and (γ3, δ3), the disjunction
(¬γl) ∨ (¬δl) holds for each l ∈ {1, 2, 3}. That is, the two
conditions within each pair are contradictory.

Here, we show this for l = 1 only, the other two cases
are similar: We assume that both γ1(Φ,Ψ) and δ1(Φ,Ψ)
hold, and derive a contradiction. We consider the path pa =
[(0, x ^ 0@r1)]::[(0, 0@y _ r2)]. For this path, φWR(pa, 1)
holds, because isWrite(x ^ 0@r1), isRead(0@y _ r2),
and sinks(x ^ 0@r1) ∩ sources(0@y _ r2) = ∅ hold
(see Figure 1). From our assumption γ1(Φ,Ψ), we obtain
φWR ∈ Φ. Together, this implies that nextΦ(pa, 1) holds.
From nextΦ(pa, 1), pa[1] = (0, 0@y _ r2), pa[0] = (0, x ^
0@r1), isRead(0@y _ r2) and our assumption δ1(Φ,Ψ), we
can conclude that isWrite(x ^ 0@r1) does not hold. This is
a contradiction, as x ^ 0@r1 is a write obligation.

Table II shows which of our conditions γ1, γ2, γ3, δ1, δ2,
and δ3 are satisfied by which of the memory models inMM.
The argument for each entry in this table is straightforward.

10

δ1(Φ,Ψ) ≡
∀pa ∈ Pa.∀i ∈ I.∀ob ∈ Ob.∀m < (|pa| − 1).
(nextΦ(pa,m) ∧ pa[m] = (i , ob))

⇒


∀j ∈ I.∀ob′ ∈ Ob.∀k < m.
pa[k] = (j , ob′)

⇒
(

(isRead(ob) ∧ j = i)
⇒ ¬isWrite(ob′)

)


δ2(Φ,Ψ) ≡
∀pa ∈ Pa.∀i ∈ I.∀ob ∈ Ob.∀m < (|pa| − 1).
(nextΦ(pa,m) ∧ pa[m] = (i , ob))

⇒



∀j ∈ I.∀ob′ ∈ Ob.∀k < m.
pa[k] = (j , ob′)

⇒



(
(ob ∈ Fe ∧ j = i))
⇒ ¬isWrite(ob′)

)
∧

 ∀x ∈ X .∀v ∈ V.∀r , r ′ ∈ R.(ob =?@x _ r ∧ j = i)
⇒ ob′ 6= x ^ v@r ′


∧
(

(isRead(ob) ∧ j = i)
⇒ ¬isRead(ob′)

)
∧
(

(isWrite(ob) ∧ j = i)
⇒ ¬isWrite(ob′)

)




δ3(Φ,Ψ) ≡
∀pa ∈ Pa.∀i ∈ I.∀ob ∈ Ob.∀m < (|pa| − 1).
(nextΦ(pa,m) ∧ pa[m] = (i , ob))

⇒


∀j ∈ I.∀ob′ ∈ Ob.∀k < m.
pa[k] = (j , ob′)

⇒


(

(isRead(ob) ∧ j = i)
⇒ ¬isRead(ob′)

)
∧
(

(isWrite(ob) ∧ j = i)
⇒ ¬isWrite(ob′)

)



Figure 8. Definitions of δ1, δ2, and δ3

MM γ1(MM) γ2(MM) γ3(MM) δ1(MM) δ2(MM) δ3(MM)
SC X X X

IBM370 X X X
TSO X X X
PSO X X X

Table II
SATISFACTION OF THE DISCRIMINATING CONDITIONS

For γ1, γ2, and γ3 the entries are an immediate consequence
of the definitions of the conditions and of Definition 2.

From Table II, one can see that for all MM ,MM ′ ∈MM
with MM 6= MM ′, there is a l ∈ {1, 2, 3} such that either
γl(MM)∧δl(MM ′) or γl(MM ′)∧δl(MM) holds. This means
that our choice of (γ1, δ1), (γ2, δ2), and (γ3, δ3) is suitable for
discriminating the memory models in MM.

The following three lemmas refer to the programs c+
1 ,

c−1 , c+
2 , c−2 , c+

3 , and c−3 , in Figures 9, 10, and 11. Each
thread in these programs starts with an initialization phase,
which is omitted in the figures for brevity. In this initial-
ization phase, each constant value used in the program is

c+
1 :=

store1 x 1; store2 y 1; store3 z 0; store4 l 0;
spawn5(
store6 x 0; load7 r2 y; load8 r3 z;
and9 r4 r2 r3; load10 r5 h;
if11 r4

then if12 r5 then store13 l 5 else skip14 fi
else if15 r5 then skip16 else store17 l 5 fi fi);

store18 y 0; load19 r1 x; store20 z r1; store21 z 0

c−1 :=
store1 x 1; store2 y 1; store3 z 0;
spawn4(
store5 x 0; load6 r2 y; load7 r3 z; and8 r4 r2 r3;
if9 r4 then load10 r5 h; store11 l r5 else skip12 fi);

store13 y 0; load14 r1 x; store15 z r1

Figure 9. Programs for Lemma 1

read into a dedicated register, which is not overwritten by
the program afterwards. This allows us to use these registers
in store operations for writing constant values into variables.
Instead of referring to the dedicated registers, we directly use
the corresponding constant values in store operations, i.e.,
storeι x v denotes storeι x rv where rv is the dedicated
register for value v .

Lemma 1. For the domain assignment lev with lev(h) =
High and lev(x) = Low for all x ∈ X \ {h}, the following
four propositions hold for each MM ∈MM:

γ1(MM) =⇒ c+
1 ∈ NIMM δ1(MM) =⇒ c+

1 /∈ NIMM

γ1(MM) =⇒ c−1 /∈ NIMM δ1(MM) =⇒ c−1 ∈ NIMM

Lemma 2. For the domain assignment lev with lev(h) =
High and lev(x) = Low for all x ∈ X \ {h}, the following
four propositions hold for each MM ∈MM:

γ2(MM) =⇒ c+
2 ∈ NIMM δ2(MM) =⇒ c+

2 /∈ NIMM

γ2(MM) =⇒ c−2 /∈ NIMM δ2(MM) =⇒ c−2 ∈ NIMM

Lemma 3. For the domain assignment lev with lev(h) =
High and lev(x) = Low for all x ∈ X \ {h}, the following
four propositions hold for each MM ∈MM:

γ3(MM) =⇒ c+
3 ∈ NIMM δ3(MM) =⇒ c+

3 /∈ NIMM

γ3(MM) =⇒ c−3 /∈ NIMM δ3(MM) =⇒ c−3 ∈ NIMM

This concludes our proof sketch. The theorem follows
from the three lemmas, as explained in the outline of
our proof technique at the beginning of this subsection. A
more detailed proof of Theorem 1 is made available under
http://www.mais.informatik.tu-darmstadt.de
/assets/publications/CSF2014-mps.pdf .

11

c+
2 :=

store1 x 1; store2 y 1; store3 z 0; store4 l 0;
spawn5(
store6 x 0; fence7; load8 r2 y; load9 r3 z;
and10 r4 r2 r3; load11 r5 h;
if12 r4

then if13 r5 then store14 l 5 else skip15 fi
else if16 r5 then skip17 else store18 l 5 fi
fi);

store19 y 0; load20 r2 y;
load21 r1 x; store22 z r1; store23 z 0

c−2 :=
store1 x 1; store2 y 1; store3 z 0;
spawn4(
store5 x 0; fence6;
load7 r2 y; load8 r3 z; and9 r4 r2 r3

if10 r4 then load11 r5 h; store12 l r5 else skip13 fi);
store14 y 0; load15 r2 y; load16 r1 x; store17 z r1

Figure 10. Programs for Lemma 2

c+
3 :=

store1 x 1; store2 y 0; store3 l 0;
spawn4(
load5 r2 y; load6 r1 x; and7 r3 r1 r2; load8 r4 h;
if9 r3

then if10 r4 then store11 l 5 else skip12 fi
else if13 r4 then skip14 else store15 l 5 fi
fi);

store16 x 0; store17 y 1

c−3 :=
store1 x 1; store2 y 0;
spawn3(
load4 r2 y; load5 r1 x; and6 r3 r1 r2;
if7 r3 then load8 r4 h; store9 l r4 else skip10 fi);

store11 x 0; store12 y 1

Figure 11. Programs for Lemma 3

VII. A SOUND ANALYSIS FOR WEAK MEMORY MODELS

In this section we present our transforming security type
system. This type system inserts fences to ensure security
under the four memory models SC, IBM370, TSO, and PSO.

To capture that a command c ∈ C is transformed to c′ ∈ C,
we introduce the judgment pc, pt `lev c�(pt ′, c′), where lev :
(X ∪ R) → {Low,High} and pc, pt , pt ′ ∈ {Low,High}.
Note that we use lev to assign security levels to both, variables
and registers in this section. The domain assignment lev
defines the policy that the transformation shall establish. The
program counter pc is an upper bound on the security level
on which it depends whether the command c is executed. The
path-types pt and pt ′ are lower bounds on the security levels

of variables and registers for which updates might be pending.
Figure 12 defines the rules of our transforming type system.

The rules [LC], [LX], [OP] and [ST] prevent direct and in-
direct information leaks by checking that the security domains
of the sources of the command and the program counter are
lower than the security domain of the targets of the update.

The rule [IH] prevents indirect leaks by checking that each
of the branches of the if command is type-able with a High
program counter. Being the only rule for while, [WL] ensures
that termination behavior does not depend on information from
the security domain High. The rules [IL] and [SQ] propagate
the analysis into the branches of if commands and into the
components of a sequential composition, respectively.

We use the path-types pt and pt ′ to track the lower bound of
the security levels for which obligations might be pending. All
rules, except for the rule [IT] and [FN], might lower the path-
type, but cannot raise it. The rule [FN] may raise the path-type,
because a fence ensures that the path is empty before assuming
the next obligation. The rule [IT] inserts a fence before the if
and, hence, may raise the path-type. This ensures that the path
does not contain any updates of Low variables or registers
when entering a branching that depends on a High register.

The transformation results in a program that is noninterfer-
ing under the memory models SC, IBM370, TSO and PSO:

Theorem 2. If pc,High `lev c�(pt , c′) is derivable for some
pc, pt ∈ {Low,High}, then c′ ∈ NI MM for each MM ∈
{SC, IBM370,TSO,PSO}.

Due to space restrictions, the proofs of Theorems 2, 3,
and 4 are not presented in this article. They are available under
http://www.mais.informatik.tu-darmstadt.de
/assets/publications/CSF2014-mps.pdf .

The soundness of the transformation does not come at the
price of always establishing sequentially consistent behavior:

Theorem 3. There are c, c′, pc, pt , lev ,mem and mem ′ such
that pc,High `lev c�(pt , c′) and 〈c′,mem〉 ⇓PSO mem ′ are
derivable although 〈c′,mem〉 ⇓SC mem ′ is not derivable.

Proof sketch: Consider the programs c and c′ and
the domain assignment lev in Figure 13. The judgment
Low,High `lev c � (Low, c′) is derivable with the rules
[SQ], [LX], [LC], [SP], [ST], [OP], [IT], [FN], and [SK].

For the program c′ final memories are reachable under PSO
that are not reachable under SC. Running c′ under SC with an
initial memory mem where mem(x) = 1 and mem(y) = 0
can never result in a final memory mem ′ with mem ′(l2) = 1.
To reach such a final memory, the obligations of load6 r5 y

and load7 r6 x must both update their target registers to a non-
zero value such that the obligation of and9 r8 r5 r6 updates r8
to 1 and the obligation of store11 l2 r8 updates l2 to 1. Since
the initial value of y is 0, the variable y must be updated before
fulfilling the obligation of load6 r5 y. The only obligation
that updates y is the obligation of store13 y r3. Since SC
does not permit any reordering, this implies that store12 x r2
must also be fulfilled before the obligation of load6 r5 y

12

[SK]
pc, pt `lev skipι � (pt , skipι)

[FN]
pc, pt `lev fenceι � (High, fenceι)

[LC]
v ∈ V pc v lev(r)

pc, pt `lev loadι r v � (pt u lev(r), loadι r v)
[LX]

x ∈ X lev(x) t pc v lev(r)

pc, pt `lev loadι r x � (pt u lev(r), loadι r x)

[OP]
op ∈ {and, eq} lev(r2) t lev(r3) t pc v lev(r1)

pc, pt `lev opι r1 r2 r3 � (pt u lev(r1), opι r1 r2 r3)
[ST]

lev(r) t pc v lev(x)

pc, pt `lev storeι x r � (pt u lev(x), storeι x r)

[SP]
pc, pt ′ `lev c � (pt ′′, c′)

Low, pt `lev spawnιc � (Low, spawnιc
′)

[SQ]
pc, pt `lev c1 � (pt ′, c′1) pc, pt ′ `lev c2 � (pt ′′, c′2)

pc, pt `lev c1; c2 � (pt ′′, c′1; c′2)

[IL]
lev(r) = Low pc, pt `lev c1 � (pt ′, c′1) pc, pt `lev c2 � (pt ′′, c′2)

pc, pt `lev if ι r then c1 else c2 fi � (pt ′ u pt ′′, if ι r then c′1 else c′2 fi)

[IH]
lev(r) = pt = High High, pt `lev c1 � (pt , c′1) High, pt `lev c2 � (pt , c′2)

pc, pt `lev if ι r then c1 else c2 fi � (High, if ι r then c′1 else c′2 fi)

[IT]
lev(r) = High pt = Low ι′ is fresh High,High `lev c1 � (High, c′1) High,High `lev c2 � (High, c′2)

pc, pt `lev if ι r then c1 else c2 fi � (High, fenceι′ ; if ι r then c′1 else c′2 fi)

[WL]
pc = lev(r) = Low pc,Low `lev c � (pt ′, c′)

pc, pt `lev whileι r do c od � (pt u pt ′,whileι r do c′ od)

Figure 12. Transforming security type system for SC, IBM370, TSO, and PSO

and, consequently, also before the obligation of load7 r6 x.
This means that the obligation of load7 r6 x will update its
register to 0 in this case and, consequently, the final value of
l2 is 0. However, the program-order relaxation write-to-write
of PSO allows fulfilling the obligation of store13 y r3 before
the obligation store12 x r2. Consequently, it is possible that
the obligation of load6 r5 y and load7 r6 x both update
their target register to 1. Thus a final memory mem ′ with
mem ′(l2) = 1 is reachable. This shows that the transformed
program c′ does not have sequentially consistent behavior.

c :=c1; if14 r1 then fence15 else skip16 fi; c2

c′ :=c1; fence18; if14 r1 then fence15 else skip16 fi; c2

where
c1 :=
load1 r1 h; load2 r2 0; load3 r3 1;

spawn4(
load5 r4 z; load6 r5 y; load7 r6 x; and8 r7 r4 r6;
and9 r8 r5 r6; store10 l1 r7; store11 l2 r8);

store12 x r2; store13 y r3

c2 := store17 z r3

lev(h) = lev(r1) = High,
lev(x) = Low for all x ∈ X \ {h}
lev(r) = Low for all r ∈ R \ {r1}.

Figure 13. Transformed program without sequentially consistent behavior

Figure 12 defines a transformation that is idempotent.

Theorem 4. Let c, c′ ∈ C and pc, pt ∈ {Low,High}. If
pc,High `lev c � (pt , c′) is derivable, then pc,High `lev

c′ � (pt , c′) is also derivable.

Theorems 2 and 3 show that it is possible to enforce non-
interference under multiple memory models without having
to establish sequential consistency. This means that programs
resulting from the application of our type system may still
gain performance from relaxed consistency guarantees.

Theorem 4 shows that our transforming security type system
accepts all programs that resulted from an application of this
type system. Moreover, a repeated application of our trans-
forming security type system does not result in an additional
increase of the size of a program.

VIII. RELATED WORK

Work on information flow analysis for concurrent programs
was pioneered by Reitman and Andrews [21]. To present
information flow analyses in the form of type systems together
with a soundness proof against a declarative noninterference-
like condition has become popular since the seminal work by
Volpano, Smith, and Irvine [22]. Volpano and Smith also pro-
posed security type systems for concurrent programs together
with soundness proofs [23], [24]. Many further information
flow analysis for concurrent programs have been proposed
since, e.g., [6], [25], [26], [27], [28].

To our knowledge, the only prior publication on infor-
mation flow security that considers weak memory models
is [13]. Vaughan and Millstein investigated noninterference
for the memory model total store order. They showed that
noninterference under sequential consistency does not imply
noninterference under total store order and vice versa. Our
work generalizes their result to further memory models.

13

Vaughan and Millstein proposed a security type system that
is sound for total store order and showed how to make this
security type system more precise by adding a flow-sensitive
tracking of a security type for their write buffer. In our security
type system, we perform a flow sensitive tracking of the
security type of the path. However, we track this security type
for a different purpose, namely to establish portable security
guarantees, i.e. security guarantees that are valid for all four
memory models sequential consistency, IBM 370, total store
order, and partial store order.

The body of related work on memory consistency outside
security is rich. Lamport defined sequential consistency as
a consistency criterion for computations on multi-processor
systems in [10]. While sequential consistency is very intuitive,
it reduces the possibilities for effective use of hardware and
compiler optimizations. To overcome this, memory models
with relaxed consistency guarantees were developed. Adve
and Gharachorloo gave in [11], [12] an informal overview on
memory models with relaxed security guarantees and proposed
a taxonomy based on three program-order relaxations (write-
to-read, write-to-write, and write-to-read/write), the write-
atomicity relaxation read-others-write early, and the relax-
ation read-own-writes-early. Their work inspired the modular
representation of relaxations of sequential consistency in our
model of computation. This modularity enables us to clearly
distinguish between the various program-order relaxations and
write-atomicity relaxations.

To investigate and compare which program runs are possible
under different memory models, generic execution models
have been proposed. One prominent framework is the one by
Alglave et al [29], [30], [15]. Like the original definition of
total store order and partial store order in [20], this framework
is defined in an axiomatic style. Program runs are captured
by read and write events, and by relations on these events.
Event structures and execution witnesses are constructed from
such events and relations. A given pair of an event structure
and an execution witness describes one or more terminated
program runs. That is, two different program runs might have
the same representation. However, two given program runs
might also have different representations in terms of event
structures and execution witnesses. Not being able to distin-
guish program runs based on their representation, complicates
the definition of noninterference and makes it difficult to prove
noninterference in a compositional fashion. In contrast, our
model of computation provides a unique representation of each
program run and an explicit representation of intermediate
states. The latter facilitates reasoning about noninterference
compositionally in terms of individual computation steps.

An operational approach as it is taken for instance in [31]
provides easier access to intermediate states. Boudol and
Petri’s execution model in [31] is tied to a particular memory
model, which is defined by a combination of the relaxations
write-to-read, write-to-write, read-own-writes-early, and read-
others-writes-early. In [32], Boudol, Petri and Serpette pro-
pose a generic execution model with a similar flavor. This
execution model provides a small-step semantics for different

memory models. The programming language considered is a
λ-calculus with concurrency features including thread creation,
but without recursion or loops. To describe weak memory
models a temporary store is introduced in [32] that, similar to
our concept of paths, buffers reads and writes until they take
effect. The key concepts for describing permitted relaxations
of sequential consistency, a commutability predicate and a
write grain, build on the intuition of program-order and write-
atomicity relaxations from [11], [12], similar to our predicates
for program-order and write-atomicity relaxations. However,
in contrast to our modular approach that allows one to com-
pose pre-defined predicates to define a memory model, there
is no support for defining the commutability predicate in [32].
Another important difference is that our states assign values
to both memory locations and registers, while states in [32]
assign values to memory locations only. Instead of referring
to registers, a write event in [32] refers to the read event on
which the value to be written depends until this value can be
retrieved. As also pointed out in [32] for reasoning about low-
level models an explicit representation of registers is desirable.

Program transformations that establish information flow
security have been proposed before, e.g., in [33], [6], [34],
[35]. Many of these transformations aim at the elimination
of internal timing leaks in concurrent programs. To the best
of our knowledge, fence insertion techniques have not been
applied in the area of information flow security before.

Fence insertion techniques themselves, however, have been
studied in depth, e.g., in [36], [37], [38], [39], [40], [41].
Many fence insertion techniques aim at establishing sequential
consistency. In our transformation, we avoid to establish
sequential consistency as this would reduce the benefits of
weak memory models. One motivation for relaxing sequential
consistency is to gain performance, but this gain is lost, if
sequentially consistent behavior is established, despite the
weak memory model. To minimize the insertion of fences,
we guide our transformation by the rules of our type system.

IX. CONCLUSION

The aim of our research was to better clarify the impact
of weak memory models on information flow security. In this
article, we showed that one cannot rely on the preservation of
noninterference if one gives up sequential consistency. This
was already known for total store order [13], but it was not
clear for the memory models partial store order and IBM 370

before. In addition, we showed that one cannot rely on the
preservation of noninterference when migrating between weak
memory models. While it might not be surprising that this
can happen if one migrates from one weak memory model
to another, we found it surprising that noninterference is not
preserved no matter which two memory models one considers
and no matter in which direction one migrates. In this article,
we studied information flow security under four memory
models. There are further relaxations of sequential consistency,
whose impact on noninterference remains to be clarified.

The transforming type system that we presented is, to
our knowledge, the first solution for soundly establishing

14

noninterference under multiple weak memory models. At this
point, we just employ a simple fence-insertion technique. To
eliminate further insecurities, it would be desirable to integrate
more sophisticated program modifications, however, without
endangering sound enforcement of noninterference.

Altogether the study of information flow security under
relaxed consistency guarantees has just begun.

ACKNOWLEDGMENTS.
We thank Andrei Sabelfeld, Barbara Sprick, and the review-

ers for valuable criticism and constructive comments. This
work was funded by the DFG under the project RSCP (MA
3326/4-2) in the priority program RS3 (SPP 1496).

REFERENCES

[1] B. W. Lampson, “A Note on the Confinement Problem,” Communica-
tions of the ACM, vol. 16, no. 10, pp. 613–615, 1973.

[2] D. E. Denning, “A Lattice Model of Secure Information Flow,” Com-
munications of the ACM, vol. 19, no. 5, pp. 236–243, 1976.

[3] E. S. Cohen, “Information Transmission in Sequential Programs,” Foun-
dations of Secure Computation, pp. 297–335, 1978.

[4] J. M. Rushby, “Design and Verification of Secure Systems,” in Proceed-
ings of the Eighth ACM Symposium on Operating System Principles,
pp. 12–21, 1981.

[5] J. A. Goguen and J. Meseguer, “Security Policies and Security Models,”
in Proceedings of the 3rd IEEE Symposium on Security and Privacy,
pp. 11–20, 1982.

[6] A. Sabelfeld and D. Sands, “Probabilistic Noninterference for Multi-
threaded Programs,” in Proceedings of the 13th IEEE Computer Security
Foundations Workshop, pp. 200–215, 2000.

[7] H. Mantel and H. Sudbrock, “Flexible Scheduler-Independent Security,”
in Proceedings of the 15th European Symposium on Research in Com-
puter Security, pp. 116–133, 2010.

[8] A. Sabelfeld and D. Sands, “Dimensions and Principles of Declassifica-
tion,” in Proceedings of the 18th IEEE Computer Security Foundations
Workshop, pp. 255–269, 2005.

[9] A. Lux, H. Mantel, and M. Perner, “Scheduler-Independent Declas-
sification,” in Proceedings of the 11th International Conference on
Mathematics of Program Construction, pp. 25–47, 2012.

[10] L. Lamport, “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs,” IEEE Transactions on Computers,
pp. 690–691, 1979.

[11] S. V. Adve and K. Gharachorloo, “Shared Memory Consistency Models:
A Tutorial. Western Research Laboratory,” tech. rep., Research Report
95/7, 1995.

[12] S. V. Adve and K. Gharachorloo, “Shared Memory Consistency Models:
A Tutorial,” IEEE Computer, vol. 29, no. 12, pp. 66 – 76, 1996.

[13] J. A. Vaughan and T. Millstein, “Secure Information Flow for Concurrent
Programs under Total Store Order,” in Proceedings of the 25th IEEE
Computer Security Foundations Symposium, pp. 19–29, 2012.

[14] J. Alglave and L. Maranget, “Stability in weak memory models,” in
Proceedings of the 23rd International Conference on Computer Aided
Verification, pp. 50–66, 2011.

[15] J. Alglave, “A formal hierarchy of weak memory models,” Formal
Methods in System Design, vol. 41, no. 2, pp. 178–210, 2012.

[16] S. Owens, S. Sarkar, and P. Sewell, “A Better x86 Memory Model: x86-
TSO,” in Proceedings of the 22nd International Conference on Theorem
Proving in Higher Order Logics, pp. 391–407, 2009.

[17] S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams, “Under-
standing POWER multiprocessors,” in Proceedings of the 32nd ACM
Conference on Programming Language Design and Implementation,
pp. 175–186, 2011.

[18] “The SPARC Architecture Manual, Version 9,” 1994.

[19] “IBM System/370 Principles of Operation,” 1983.
[20] “The SPARC Architecture Manual, Version 8,” 1991.
[21] R. P. Reitman and G. R. Andrews, “Certifying Information Flow

Properties of Programs: An Axiomatic Approach,” in Proceedings of
the 6th ACM Symposium on Principles of Programming Languages,
pp. 283–290, 1979.

[22] D. Volpano, G. Smith, and C. Irvine, “A Sound Type System for Secure
Flow Analysis,” Journal of Computer Security, vol. 4(3), pp. 1–21, 1996.

[23] D. Volpano and G. Smith, “Probabilistic Noninterference in a Concur-
rent Language,” in Proceedings of the 11th IEEE Computer Security
Foundations Workshop, pp. 34–43, 1998.

[24] D. Volpano and G. Smith, “Probabilistic Noninterference in a Concurrent
Language,” Journal of Computer Security, vol. 7, no. 2,3, pp. 231–253,
1999.

[25] G. Smith, “A New Type System for Secure Information Flow,” in
Proceedings of the 14th IEEE Computer Security Foundations Workshop,
pp. 115–125, 2001.

[26] G. Boudol and I. Castellani, “Noninterference for Concurrent Programs
and Thread Systems,” Theoretical Computer Science, vol. 281, no. 1-2,
pp. 109–130, 2002.

[27] A. Russo and A. Sabelfeld, “Securing Interaction between Threads and
the Scheduler,” in Proceedings of the 19th IEEE Computer Security
Foundations Workshop, pp. 177–189, 2006.

[28] H. Mantel, D. Sands, and H. Sudbrock, “Assumptions and Guarantees
for Compositional Noninterference,” in Proceedings of the 24th IEEE
Computer Security Foundations Symposium, pp. 218–232, 2011.

[29] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell, “Fences in weak
memory models,” in Proceedings of the 22nd International Conference
on Computer Aided Verification, pp. 258–272, 2010.

[30] J. Alglave, A Shared Memory Poetics. PhD thesis, Paris Diderot
University, 2010.

[31] G. Boudol and G. Petri, “Relaxed memory models: an operational
approach,” in Proceedings of the 36th ACM Symposium on Principles
of Programming Languages, pp. 392–403, 2009.

[32] G. Boudol, G. Petri, and B. Serpette, “Relaxed Operational Semantics
of Concurrent Programming Languages,” in Proceedings of Combined
19th International Workshop on Expressiveness in Concurrency and 9th
Workshop on Structured Operational Semantics, pp. 19–33, 2012.

[33] J. Agat, “Transforming out Timing Leaks,” in Proceedings of the 27th
ACM Symposium on Principles of Programming Languages, pp. 40–53,
2000.

[34] I. Siveroni, “Filling Out the Gaps: A Padding Algorithm for Trans-
forming Out Timing Leaks,” in Proceedings of the 3rd Workshop on
Quantitative Aspects of Programming Languages, no. 2 in ENTCS 153,
pp. 241–257, 2006.

[35] B. Köpf and H. Mantel, “Transformational Typing and Unification for
Automatically Correcting Insecure Programs,” International Journal of
Information Security, vol. 6, no. 2–3, pp. 107–131, 2007.

[36] D. Shasha and M. Snir, “Efficient and Correct Execution of Parallel
Programs that Share Memory,” ACM Transactions on Programming
Languages and Systems, vol. 10, no. 2, pp. 282–312, 1988.

[37] X. Fang, J. Lee, and S. P. Midkiff, “Automatic fence insertion for
shared memory multiprocessing,” in Proceedings of the 17th Annual
International Conference on Supercomputing, pp. 285–294, 2003.

[38] S. Burckhardt, R. Alur, and M. M. K. Martin, “CheckFence: Checking
Consistency of Concurrent Data Types on Relaxed Memory Models,” in
Proceedings of the ACM Conference on Programming Language Design
and Implementation, pp. 12–21, 2007.

[39] A. Linden and P. Wolper, “A Verification-Based Approach to Memory
Fence Insertion in Relaxed Memory Systems,” in SPIN, pp. 144–160,
2011.

[40] M. Kuperstein, M. T. Vechev, and E. Yahav, “Automatic Inference of
Memory Fences,” SIGACT News, vol. 43, no. 2, pp. 108–123, 2012.

[41] A. Linden and P. Wolper, “A Verification-Based Approach to Memory
Fence Insertion in PSO Memory Systems,” in Proceedings of the 19th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pp. 339–353, 2013.

15

