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Abstract—Research on information flow security for concur-
rent programs usually assumes sequential consistency although
modern multi-core processors often support weaker consistency
guarantees. In this article, we clarify the impact that relaxations
of sequential consistency have on information flow security. We
consider four memory models and prove for each of them
that information flow security under this model does not imply
information flow security in any of the other models. This result
suggests that research on security needs to pay more attention to
the consistency guarantees provided by contemporary hardware.
The other main technical contribution of this article is a program
transformation that soundly enforces information flow security
under different memory models. This program transformation
is significantly less restrictive than a transformation that first
establishes sequential consistency and then applies a traditional
information flow analysis for concurrent programs.

I. INTRODUCTION

Before granting a program access to private information
or other secrets, one might like to know whether there is
any danger that the program leaks the secrets. Research on
information flow security aims at answering this question. The
fact that researchers have kept making foundational contribu-
tions on information flow security [Lam73], [Den76], [Coh78],
[Rus81], [GM82] for more than 40 years by now, shows that
information flow security is not only of practical relevance,
but also a very rich domain of non-trivial research problems.

In this article, we study information flow security in the
presence of concurrency. Prior research in this area led, e.g., to
noninterference-like security properties, which are suitable for
expressing information flow security for concurrent programs,
and analysis techniques, which are suitable for certifying that
concurrent programs have secure information flow.

Concurrency is a rich domain of foundational research
problems itself and combining it with information flow security
results in intriguing problems that, in order to achieve reliable
security for concurrent programs, require solutions. The com-
bination of information flow security with concurrency leads
to new problems, such as how to achieve reliable information
flow security without knowing how the scheduler works (see,
e.g., [SS00], [MS10]), and further complicates problems that
are already non-trivial in a sequential setting, such as how to
control declassification (see, e.g., [SS05], [LMP12]).

The focus of this article is on the effects of relaxed
consistency guarantees on information flow security. Weak
memory models provide weaker consistency guarantees than
the sequential consistency property [Lam79] that programmers
of concurrent programs often take for granted. There are multi-
ple benefits of relaxing sequential consistency. In particular, it
enables more efficient uses of caches in multi-core processors

and program optimizations during compilation that are not
compatible with sequential consistency. For an introduction to
weak memory models, we refer to [AG95], [AG96].

This is not the first study of noninterference under relaxed
consistency guarantees. Vaughan and Millstein studied the
effects of one weak memory model, namely total-store order
(brief: TSO), on noninterference [VM12]. They showed that
noninterference under sequential consistency (brief: SC) does
not imply noninterference under TSO and, vice versa, that
noninterference under TSO does not imply noninterference
under SC. This is an insight of great significance, because
it shows how closely security depends on the memory model
provided by the hardware on which a program runs. Vaughan
and Millstein also proposed a security type system, showed
that it is sound under TSO, and demonstrated how this type
system can be refined to a more precise one without loosing
soundness for TSO. We started our research on the effects of
weak memory models on noninterference independently from
Vaughan and Millstein (see [Sau12] for preliminary results).

The three main, novel contributions of this article are:

• We clarify the effects of four memory models on
information flow security. For each of these models,
we show that noninterference under this memory
model does not imply noninterference under any of
the other three memory models. On the one hand, our
results lift the observation by Vaughan and Millstein to
further memory models. On the other hand, our results
back that their observations are not just a peculiarity
of one weak memory model, i.e., TSO. Hence, our
results suggest that research on security should pay
more attention to the consistency guarantees provided
by modern hardware and optimizations.

• We propose a security type system for verifying non-
interference under weak memory models. This is the
first security type system that is known to be sound
for multiple memory models. We prove soundness for
IBM370, PSO, TSO, and also for SC. This means,
a program verified by our type system remains secure
if it is ported to any environment that supports one
of the four memory models. Our type system is also
the first transforming type system that is suitable for
relaxed consistency guarantees. Our transformation
inserts fence commands into a program such that it
becomes secure under relaxed consistency guarantees.
Although inspired by fence-insertion techniques that
establish sequentially consistent behavior of a program
[AM11], our transformation does not force sequential
consistency on a program that is executed under a
weak memory model.



• We present a novel model of concurrent computation
that is parametric in a set of consistency guarantees
and that, hence, can be applied to different memory
models. Our model of computation originated as a
side product of our research project on security. We
developed this model because we did not succeed
in basing our study on any of the existing models
of computation for relaxed consistency guarantees.
Though originally a side product, we view this model
also as a valuable contribution as it was helpful for
our research on information flow security and might
be helpful for others, not only in security.

We are confident that our results constitute a significant step
towards better foundations for software security under relaxed
consistency guarantees. However, the exploration of the cor-
relation between noninterference and weak memory models
has just begun. To the best of our knowledge, this is just the
second article on this correlation. Beyond the memory models
that we investigate in this article, there are further memory
models whose impact on information flow security needs to
be clarified. Our novel model of computation under relaxed
consistency guarantees could be helpful for such studies.

In Section II and III, we introduce our model of compu-
tation. We present a concurrent language that features fence
commands and dynamic thread creation in Section IV, where
we use our novel model of computation to define the opera-
tional semantics. We present our clarification of the correlation
between noninterference and our security type system in
Section V and VI, respectively. After a discussion of related
work in Section VII, we conclude in Section VIII.

Notational conventions: For a set A, we use An and
A∗ to denote the set of all n-tuples and the set of all finite
lists, respectively, over A. Moreover, we use [] to denote the
empty list, [a] to denote the list with one element a, [a]::as to
denote the list with first element a and rest as, and as::as′ to
denote the result of concatenating two lists as and as′.

We denote the length of a list as by |as|. Given a list
as and a number i < |as|, we write as[i] to denote the i’th
element in as. We also write last(as) for the last element in as,
i.e., last(as) = as[|as| − 1]. Moreover, we use as[m. . . n] to
denote the list as′ of length n−m+1 with as′[k] = as[k+m]
for all k ∈ {0, . . . , n −m}. Finally, we use as \ i to denote
the list that results from as by deleting the ith element.

We use A → B and A ⇀ B to denote the set of all total
functions and of all partial functions, respectively, with domain
A and range B. For a total or partial function f with domain
A and range B, we use, both f−1(B) and pre(f) to denote the
pre-image of f , i.e. pre(f) = {a ∈ A | f(a) ∈ B}. Moreover,
we write f [a 7→ b] for the function f ′ with f ′(a) = b and
f ′(a′) = f(a′) for all a′ ∈ (pre(f)\{a}). Note that a function
update might augment the pre-image of a partial function.

We refer to partial functions with domain N, range A, and
a finite pre-image also as vectors over A. That is, a partial
function ~a : N⇀ A is a vector over A if |pre(~a)| ∈ N holds.

II. A BASIC MODEL OF COMPUTATION

We introduce an event-based model of computation for
multi-threaded programs. Our model captures the concurrent

execution of multiple threads, where each thread has access
to a globally shared memory and to its own set of registers,
which cannot be accessed by other threads.

We simplify our presentation by not considering dynamic
thread creation, synchronization, and caching in this section.
We extend our model of computation to a more sophisticated,
generic model that supports caching under different memory
models in Section III. In Section IV, we demonstrate how
this model of computation can be used for a concurrent
programming language with a spawn and a fence command.

States: We assume pair-wise disjoint sets X , R, and V
of variable names, register names, and values, respectively.

We use functions in the set Mem = X → V to model
states of the global memory and functions in Reg = R → V
to model states of the register set, i.e., each thread’s local
memory. We identify threads by identifiers in I = N and use
vectors in the set ~Reg = I ⇀ Reg to model states of the
registers of all threads. For a given thread identifier, a vector
~reg ∈ ~Reg returns a function of type Reg that models the

content of the register set of the thread with this identifier.

We model snapshots during a program run by pairs from
the set Gst = ~Reg ×Mem and refer to such pairs as global
states. We use pairs from Lst = Reg ×Mem to capture the
part of a global state that is relevant for a single thread and
refer to such pairs as local states. We write gst [i ] for the local
state of thread i ∈ pre(gst) in a global state gst ∈ Gst , i.e., if
gst = ( ~reg ,mem) then gst [i ] = ( ~reg(i),mem) ∈ Lst . We call
a thread i ∈ I active in gst if i ∈ pre(gst) holds, and inactive
otherwise. Note that gst [i ] is only defined if i is active.

As a notational convention, we use meta-variables as fol-
lows: k, m, n for natural numbers in N, x for variables in X , r
for registers inR, v for values in V , i , j for thread identifiers in
I, mem for global memories in Mem , reg for local memories
of a single thread in Reg , ~reg for local memories in ~Reg , gst
for global states in Gst , and lst for local states in Lst . We use
each of these meta-variables also with indices and primes.

Events and Traces: We use operators to model opera-
tions that a thread can perform on its registers and events to
model the transfer of data between memory and registers sets.

We leave the set of operators Op parametric, assuming
that the arity of each operator in Op is defined by a function
arity : Op → N. We use terms of the form op(rs) to model
the execution of the operation specified by the operator op on
the register tuple rs ∈ Rarity(op). We refer to such terms as
expressions and define the set of all expressions by

E = {op(rs) | op ∈ Op ∧ rs ∈ Rarity(op)} .
For an expression e ∈ E , we use args(e) to denote the set of
all registers that appear as arguments of the operator in e .

We define the set of events Ev by the following grammar:

ev := x ^ v@r | v@x _ r | v@e � r

where e ∈ E . Intuitively, an event x ^ v@r models the
copying of the value v from the register r to the variable
x . Moreover, an event v@x _ r models the copying of the
value v from the variable x to the register r . Finally, an event
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v@e � r models the updating of the register r with the value
v , where the expression e captures how v was computed.

We formalize this intuition about the effects of events by
a function effect : Ev → (Lst → Lst) that we define by

effect(x ^ v@r)(reg ,mem) = (reg ,mem[x 7→ v ])
effect(v@x _ r)(reg ,mem) = (reg [r 7→ v ],mem)
effect(v@e � r)(reg ,mem) = (reg [r 7→ v ],mem) .

Note that each event models the update of either a single
variable or a single register. We refer to events that model
the transfer of a value from the global memory into a register
(v@x _ r ) as read events, to events that model a register up-
date after an operation on registers (v@e � r ) as computation
events, and to events that model the transfer of a value from
a register to the global memory (x ^ v@r ) as write events.

Steps by a single thread result in changes of the thread’s
local state. For each local state lst = (reg ,mem) ∈ Lst , each
global state gst ′ = ( ~reg ′,mem ′), and each thread i ∈ I, we
define the update of gst ′ with lst by

gst ′[i 7→ lst ] = ( ~reg ′[i 7→ reg ],mem) .

We use finite lists of events to model sequences of com-
putation steps by one thread. We refer to such lists as traces
and define the set of all traces by Tr = Ev∗.

We use meta-variables as follows: op for operators in Op,
rs for register tuples in Rn, e for expressions in E , ev for
events in Ev , and tr for traces in Tr .

III. SUPPORTING RELAXED CONSISTENCY GUARANTEES

Weak memory models relax sequential consistency, for
instance, in order to support a more efficient use of caches in
multi-core architectures. Weak memory models also provide
consistency guarantees but these are weaker than sequential
consistency. The various weak memory models differ in the
consistency guarantees that they provide (see, e.g., [AG95]).

This variety of memory models is of conceptual interest
and also relevant in practice. For instance, the processors
Alpha, x86 and POWER support weak memory models that
differ from each other [AG95], [OSS09], [SSA+11].

In this section, we extend our basic model of computation
from Section II to a model that supports weaker consistency
guarantees than sequential consistency. This results in a novel
model of computation that is generic in the sense that it can
be instantiated for different memory models. Conceptually, we
build on the common distinction between program-order relax-
ations and write-atomicity relaxations [AG95]. This distinction
leads to a modular definition of weak memory models by sets
of permitted primitive relaxations. We exploit this modularity
in the construction of our model of computation.

Two key technical concepts in our model are obligations
and paths. They complement events and traces as follows.

While we use events to capture computation steps and data
transfers that a thread has performed, we use obligations to
capture steps and transfers that have not yet happened, but for
which a thread already made a commitment. For the purposes
of this article, we require events and obligations to have the

ob x ^ v@r v@x _ r ?@x _ r v@e � r fe
sources(ob) {r} {x} {x} args(e) ∅
sinks(ob) {x} {r} {r} {r} ∅

Table I. SOURCES AND SINKS OF AN OBLIGATION

same granularity as commands in the considered programming,
byte-code, or machine language. That is, each event and
obligation reflects the execution of a single command.

While we use traces to capture the order in which com-
putation steps and data transfers have happened, we use paths
to capture the order in which commitments have been made.
We require each thread to commit to obligations in the order
in which the corresponding commands appear in the program
that the thread runs. That is, obligations must be assumed in
program order. Under a weak memory model, the order in
which a thread performs steps might differ from the order in
which the thread has made commitments or, more figuratively,
different traces might appear on one path.

The preconditions for assuming obligations and the effects
of fulfilling them are not explained here, but in Section IV.

A. Obligations, Paths and Advancing Paths

We define the set of obligations Ob by the grammar:

ob =?@x _ r | ev | fe

where ev ∈ Ev and fe ∈ Fe . The set Fe of fences may only
contain obligations that do not involve updates of variables and
registers. We leave Fe parametric in this section. In Section IV,
we define a concrete set Fe that contains obligations that
capture the effects of fence commands and spawn commands.

Intuitively, an obligation ?@x _ r models the copying
of the value of variable x into register r . The question mark
indicates that the value of x is not yet known. Once the value v
of x has been determined, the question mark can be replaced by
v , resulting in the obligation v@x _ r . We re-use our syntax
for events to denote the corresponding obligations. That is,
v@x _ r is the obligation to copy v from x to r , v@e � r is
the obligation to update r to v after an operation on registers,
and x ^ v@r is the obligation to copy v from r to x .

Like for events, we distinguish between read obligations,
computation obligations, and write obligations. We capture
this distinction by three predicates, where isRead(ob) holds
if ob has the form ?@x _ r or v@x _ r , isComp(ob) holds
if ob has the form v@e � r , and isWrite(ob) holds if ob
has the form x ^ v@r . Moreover, we define two functions
sinks, sources : ob → 2X∪R in Table I that, as their names
indicate, retrieve the set of all registers and variables appearing
as sources and sinks, respectively, in an obligation.

We record the order in which a program assumes obliga-
tions by finite lists from the set Pa = (I ×Ob)∗ and refer to
such lists as paths. We recursively define the projection of a
path pa to a thread identifier i ∈ I by

pa �i =

{
[] , if pa = []
[ob]::(pa ′ �i) , if pa = [(i , ob)]::pa ′

pa ′ �i , if pa = [(j , ob)]::pa ′ and j 6= i

Note that the projection pa �i reflects the order in which
the thread i has assumed obligations. We lift the functions
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sources and sinks to lists of obligations by sources([]) = [],
sources([ob]::obs) = sources(ob)∪sources(obs), sinks([]) =
[], and sinks([ob]::obs) = sinks(ob) ∪ sinks(obs).

We use the events v@x _ r , v@e � r , and x ^ v@r to
record the fulfillment of the corresponding obligations. We use
events of the form v@x _ r also to record that an obligation
of the form ?@x _ r has been fulfilled. An obligation ?@x _
r can only be fulfilled if the value of x is known. We do
not record the fulfillment of obligations in Fe as they do not
correspond to operations that modify registers or variables.

We use traces to record in which order obligations have
been fulfilled by a single thread. To record the order in which
obligations have been fulfilled by a multi-threaded program,
we use trace vectors in ~Tr = I ⇀ Tr . Note that trace
vectors only capture the order between obligations that have
been fulfilled by the same thread and not the order between
obligations that have been fulfilled by different threads.

We use pairs from the set APa = Pa × ~Tr to model
snapshots during a run of a multi-threaded program and refer
to elements in this set as advancing paths. In an advancing
path (pa, ~tr) ∈ APa , the path pa captures the obligations that
a program has not yet fulfilled, and the trace vector ~tr captures
the obligations that have been fulfilled so far.

As a notational convention, we use meta-variables as
follows: ob for obligations in Ob, obs for lists of obligations
in Ob∗, fe for events in Fe , pa for paths in Pa , ~tr for trace
vectors in ~Tr , and apa for advancing paths in APa .

B. Weak Memory Models

Lamport defined sequential consistency as the requirement

“[. . . ] the result of any execution is the same as
if the operations of all the processors were executed
in some sequential order, and the operations of each
individual processor appear in this sequence in the
order specified by its program.” [Lam79]

As elaborated in [AG95], there are two aspects to sequential
consistency. Firstly, the operations of each individual processor
must take effect in the program order, i.e., the order in which
operations appear in a program and, secondly, that operations
of all processors must take effect in a single sequential order.

Using our concepts from Section III-A, we make these two
aspects precise. Since a thread i ∈ I assumes obligations in
the order in which the corresponding commands appear in the
program that this thread executes, the order of obligations in
the projection pa �i of a path pa obeys the program order.
Hence, if each thread i ∈ I fulfills its obligations in the
order in which they appear in pa �i for a given path pa and if
obligations only cause effects when they are fulfilled, then this
ensures the first aspect of sequential consistency. The second
aspect of sequential consistency requires the existence of a
single sequential order in which commands take effect. If there
is a total order in which obligations are fulfilled by all threads
and if each obligation only causes effects when it is fulfilled,
then this ensures the second aspect of sequential consistency.

We capture the relaxations of these two aspects of se-
quential consistency with predicates. As usual, we distinguish

between program-order relaxations, which relax the first as-
pect of sequential consistency, and write-atomicity relaxations,
which relax both aspects of sequential consistency. More con-
cretely, in terms of Section III-A, a program-order relaxation
permits that, in certain cases, obligations of a thread i are
fulfilled in a different order than specified by pa �i , while
a write-atomicity relaxation permits that, in certain cases,
obligations may have an effect already before they are fulfilled.

We capture each program-order relaxation by a predicate
φ that defines conditions under which an obligation in a given
path may be fulfilled before an obligation of the same thread
that occurs at an earlier position in this path. A predicate φ
takes a list of obligations obs and a position k as arguments.
We assume that the last obligation in obs is the one that shall
be fulfilled out of order. Nevertheless, one can use φ to check
whether an obligation at an arbitrary position m in obs may be
fulfilled before the obligation at position k < m, by applying
φ to the arguments obs[0 . . .m] and k.

In order to fulfill an obligation by thread i out of order, it
must be possible to re-order this obligation with all obligations
that the thread has assumed before and not yet fulfilled. For
a given set Φ of program-order relaxations, we formalize
the condition that the last obligation in a non-empty list of
obligations obs may be fulfilled by

Φ̄(obs) ≡ ∀k < (|obs| − 1).∃φ ∈ Φ.φ(obs, k) .

Now we are ready to define under which conditions an
obligation at position m in a given path pa may be fulfilled
next for a given set Φ of program-order relaxations:

nextΦ(pa,m) ≡∃i ∈ I.ob ∈ Ob.
pa[m] = (i , ob) ∧ Φ̄(pa[0 . . .m]�i)

Note that the thread identifier i of the thread that assumed
the obligation at position m is used to project the path
pa to a list of obligations and that only obligations up to
position m in pa are used in this projection. Also note
that nextΦ(pa ′::(i , ob),m) holds trivially if pa ′ contains no
obligations of thread i . That is, a thread is always permitted
to fulfill its first obligation in a path.

We capture each write-atomicity relaxation by a predicate
ψ that defines conditions under which a write obligation at
position k in a given path pa may impact an obligation at a
later position m > k. This constitutes a relaxation of sequential
consistency if the obligation at position k is not the obligation
that is fulfilled next. Again, we assume that the last obligation
in pa is the one that shall be influenced. Nevertheless, one can
use ψ to check whether an obligation at an arbitrary position
m in a path pa may be influenced by the write obligation at
position k, by applying ψ to the arguments pa[0 . . .m] and k.

Now we are ready to define how the unknown value in an
obligation ?@x _ r in a path may be specialized for a given
set Ψ of write-atomicity relaxations. We define a function
specializeΨ that returns the set of all events to which one may
specialize an obligation ob of thread i that occurs at the end of
a path pa::(i , ob) in a global state ( ~reg ,mem). We first define
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φWR(obs, k) ≡ isWrite(obs[k]) ∧ isRead(last(obs))
∧sinks(obs[k]) ∩ sources(last(obs)) = ∅
∧sources(obs[k]) ∩ sinks(last(obs)) = ∅

φWW(obs, k) ≡ isWrite(obs[k]) ∧ isWrite(last(obs))
∧sinks(obs[k]) ∩ sinks(last(obs)) = ∅

φRW(obs, k) ≡ isRead(obs[k]) ∧ isWrite(last(obs))
∧sources(obs[k]) ∩ sinks(last(obs)) = ∅
∧sinks(obs[k]) ∩ sources(last(obs)) = ∅

φRR(obs, k) ≡ isRead(obs[k]) ∧ isRead(last(obs))
∧sinks(obs[k]) ∩ sinks(last(obs)) = ∅

Figure 1. Program-order relaxations for read and write

ψROwn(pa, k) ≡ ∃i ∈ I.∃x ∈ X .∃r , r ′ ∈ R.∃v ∈ V.
last(pa) = (i , ?@x _ r)
∧pa[k] = (i , x ^ v@r ′) ∧ r ′ 6= r
∧x /∈ sinks(pa[k + 1 . . . |pa| − 2]�i)

φROwn(obs, k) ≡ isWrite(obs[k]) ∧ isRead(last(obs))
∧sinks(obs[k]) = sources(last(obs))
∧sources(obs[k]) ∩ sinks(last(obs)) = ∅

Figure 2. Program-order relaxations for read-own write early

the case where the obligation ob has the form ?@x _ r :

specializeΨ(pa, i , ?@x _ r , ( ~reg ,mem)) ≡
{

v@x ′ _ r ′∈Ob

∣∣∣∣
x ′ = x ∧ r ′ = r ∧ x ′ /∈ sinks(pa �i)
∧v = mem(x )

}

∪





v@x ′ _ r ′∈Ob

∣∣∣∣∣∣∣

x ′ = x ∧ r ′ = r∧
∃j ∈ I.∃r ′′ ∈ R.∃k ∈ N.
pa[k] = (j, x ^ v@r ′′)
∧∃ψ ∈ Ψ.ψ(pa::[(i , ?@x _ r)], k)





The first set in the above definition captures that a thread
i may retrieve the value of x from the global memory mem
if there are no obligations of this thread in the path pa that
involve writing the variable x (i.e., if x /∈ sinks(pa �i) holds).
The second set in the above definition captures the condition
under which the thread i may retrieve the value of x from
some write obligation that is pending in the path pa .

If ob ∈ Ev or ob ∈ Fe holds, then specializeΨ returns the
singleton set containing ob or the empty set, respectively:

specializeΨ(pa, i , ob, ( ~reg ,mem)) ≡ {ob′ ∈ Ev | ob′ = ob}
Definition 1. A memory model is a pair (Φ,Ψ) where Φ and
Ψ are sets of predicates on Ob∗×I and Pa×I, respectively.

Note that predicates in Φ and Ψ constitute relaxations of
sequential consistency and, hence, the bigger the two sets are,
the weaker is the consistency guarantee that is provided.

In Figures 1, 2, and 3, we present formal definitions of
prominent program-order and write-atomicity relaxations.

ψearly
ROth(pa, k) ≡ ∃i , j ∈ I.∃x ∈ X .∃r , r ′ ∈ R.∃v ∈ V.

last(pa) = (i , ?@x _ r)
∧pa[k] = (j , x ^ v@r ′) ∧ j ∈ early(i)
∧x /∈ sinks(pa[k + 1 . . . |pa| − 2]�j )

Figure 3. Program-order relaxations for read-others write early

In Figure 1, we define four predicates φWR, φWW, φRW,
and φRR to capture conditions for re-ordering read and write
operations. These predicates correspond to the program-order
relaxations Write-to-Read, Write-to-Write, Read-to-Write, and
Read-to-Read (see, e.g., [AG95]), respectively. Note that each
of the four predicates requires that the obligation at the end of
the list obs and the obligation at position k are of a particular
type (read or write). Moreover, each of the predicates re-
quires that modifications and observations caused by fulfilling
these obligations do not interfere with each other. The latter
condition ensures that these program-order relaxations do not
affect the result of purely sequential computations. Program-
order relaxations may only enable additional outcomes of a
computation in case of a concurrent computation.

For instance, φWR requires that the obligation at position k
in the list obs is a write obligation, and that the last obligation
in obs is a read obligation. The condition sinks(obs[k]) ∩
sources(last(obs)) = ∅ prevents a re-ordering if the read
obligation depends on a variable that is influenced by the
write obligation. Similarly, the condition sources(obs[k]) ∩
sinks(last(obs)) = ∅ prevents a re-ordering if the read
obligation modifies a register on which the write obligation
depends. Together, these two conditions ensure that a write-to-
read re-ordering cannot affect purely sequential computations.

In Figure 2, we define two predicates ψROwn and φROwn

that together express the precondition for a read-own-write-
early relaxation (see, e.g., [AG95]). The predicate ψROwn

captures for a path pa ending with a pair (i , ?@x _ r) under
which conditions the value of x in the obligation ?@x _ r of
thread i may be influenced by a write obligation at position
k. Namely, the write obligation at position k must be an
obligation of the same thread i , the source of this obligation
must differ from r , the sink of this write obligation must be
the same variable x , and the thread i must not have assumed
further write obligations for x after position k. By permitting
the earlier write obligation to influence the value of x in the
later read obligation without making the update of x visible
to other threads, the write becomes a non-atomic operation.
The predicate φROwn defines conditions under which a re-
ordering of a read obligation and an earlier write obligation is
permissible, if these two obligations involve the same variable.
Note that φWR does not permit the re-ordering of these
obligations because they access the same variable.

In Figure 3, we define the predicate ψearly
ROth that is paramet-

ric in the function early : I ⇀ 2I . This predicate expresses
a read-others-write-early relaxation, where early(i) specifies
the set of threads whose writes a thread i may read early. The
condition ψearly

ROth(pa, k) captures for a path that ends with a
pair (i , ?@x _ r) that the value of the variable x may be
influenced by a write obligation of some thread j ∈ early(i)
at position k in pa if this is the most recently assumed write
obligation of thread j for x . By permitting the write obligation
to influence the read obligation without making the update of
x visible to all threads, the write becomes non-atomic.

We are now ready to formalize examples of concrete mem-
ory models. In Table II we specify the consistency guarantees
provided by the memory models: sequential consistency (brief:
SC), IBM370, total store order (brief: TSO), and partial store
order (brief: PSO). Our specification of consistency guarantees
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Memory Model Φ Ψ
SC ∅ ∅

IBM370 {φWR} ∅
TSO {φWR, φROwn} {ψROwn}
PSO {φWR, φROwn, φWW} {ψROwn}

Table II. EXAMPLE MEMORY MODELS

φCR(obs, k) ≡ isComp(obs[k]) ∧ isRead(last(obs))
∧sinks(obs[k]) ∩ sinks(last(obs)) = ∅
∧sources(obs[k]) ∩ sinks(last(obs)) = ∅

φCW(obs, k) ≡ isComp(obs[k]) ∧ isWrite(last(obs))
∧sinks(obs[k]) ∩ sources(last(obs)) = ∅

Figure 4. Program-order relaxations for computation obligations

for these models is equivalent to the one presented in [AG95].
Each of these memory models already had relevance in pro-
cessor design PSO, TSO, and IBM370 are supported by
SPARC, modern x86 processors, and in the processor IBM370,
respectively [AG95], [OSS09].

Remark 1. In our formal definitions of program-order relax-
ations and of write-atomicity relaxations in Figures 1, 2, and 3,
we made some design decisions that resolve ambiguities in
existing informal definitions. For instance, the definitions of
our predicates φWW and φRR do not rule out source/source
conflicts on registers and variables, respectively. Instead, one
might prefer to re-order obligations only if they involve dis-
tinct registers and variables, which is a stronger restriction.
Moreover, our formal definition of ψearly

ROth in Figure 3 permits
a thread i to read a write to a variable x by some thread
j ∈ early(i) even even if the path contains write obligations
for x by the thread i , itself. Again, one might want to rule this
out by strengthening the condition with the additional conjunct
x /∈ sinks(pa[0 . . . |pa|−2]�i). Our observations in Section V
remain valid if one requires these stronger conditions.

Remark 2. Our model of computation allows one to capture
computation obligations explicitly. None of the program-order
and write-atomicity relaxations presented so far permit a
re-ordering of computation obligations with read or write
obligations. The role of computation operations in the con-
text of weak memory models has received little attention so
far. As examples, we present two speculative program-order
relaxations for computation obligations in Figure 4.

IV. A MULTI-THREADED LANGUAGE

We introduce a concrete, multi-threaded language. Our
example language comprises commands for transferring data
between the shared memory and the local memory of a thread,
computation commands, conditionals, and loops. Our language
also provides a spawn command, which dynamically creates
new threads, and a fence command, which can be used in a
program to limit the effects of program-order relaxations.

The syntax of our language is defined by the grammar:

c := skipι | loadι r v | loadι r x | storeι x r
| eqι r r r | andι r r r | fenceι | spawnιc
| if ι r then c else c fi | whileι r do c od | c; c

where v ∈ V , r ∈ R, x ∈ X , and ι ∈ N. Note that each
command carries a number ι ∈ N as subscript. We assume that

each subscript appears only once in a given program, such that
each subscript uniquely identifies a particular occurrence of a
command in the program. For instance, one could use the line
number in which a command appears as subscript, given that
each line contains at most one command. We use C to denote
the set of all programs in our language.

To simplify our technical exposition in the rest of this
article, we only support two commands for performing com-
putations: the equality test “eqι r1 r2 r3” and the conjunction
“andι r1 r2 r3”. Adding further commands for computations
to our language would cause no fundamental difficulties.
In particular, it is straightforward to adapt the results in
Sections V and VI to a language with more commands
for computations. However, adding further commands to our
language, would increase length of calculi, explanations, and
proofs. To avoid such an increase and to ensure readability,
we refrain from considering a richer language in this article.

The fence command in our language corresponds to a full
fence. The execution of a full fence is only possible if all
commands that appear before the fence in program order have
been executed. Moreover, a full fence prevents commands that
appear after the fence in program order to be executed before
the fence. Fences can be used to rule out unwanted behavior
by limiting the effects of program-order relaxations.

We define the operational semantics in terms of our model
of computation from Sections II and III. To this end, we instan-
tiate the set of operations by Op = {const, eq, and} and the
set of synchronization obligations by Fe = {‖,↗c | c ∈ C}.

The execution of a command is split into two steps: the
assumption of an obligation and the fulfillment of this obliga-
tion. As explained in Section III-A, we use advancing paths to
model snapshots during a program run. Given an advancing
path (pa, ~tr) ∈ APa , the assumption of an obligation ob
by thread i results in the advancing path (pa::[(i , ob)], ~tr). If
nextΦ(pa,m) and pa[m] = (j, obm) hold then the obligation
obm may be fulfilled next by thread j. The fulfillment of this
obligation obm causes the pair (j, obm) to be removed from
pa , the obligation obm to be specialized to an obligation ob′ by
applying specializeΨ, and the effects of ob′ to be propagated
to the global state. If ob′ ∈ Ev holds then the fulfillment of
ob′ is, in addition, recorded at the end of the trace ~tr(j).

We use triples of the form 〈~cs, (pa, ~tr), ( ~reg ,mem)〉 to
model intermediate stages of a run of a multi-threaded program
and refer to such triples as global configurations. A global con-
figuration consists of a vector ~cs : N⇀ (C ∪ ε), an advancing
path (pa, ~tr) ∈ APa , and a global state ( ~reg ,mem) ∈ Gst ,
where we use the symbol ε in ~cs to model that a thread
has terminated. We call a global configuration well formed
if ~cs , ~tr , and ~reg have the same pre-image, i.e., if pre(~cs) =
pre(~tr) = pre( ~reg) holds. In the remainder of this article, we
only consider global configurations that are well formed.

To capture small steps on global configurations under a
memory model (Φ,Ψ), we introduce the judgment

〈~cs, apa, gst〉 =⇒Φ,Ψ 〈~cs ′, apa ′, gst ′〉
The calculus for deriving this judgment is depicted in Figure 5.

The first rule in Figure 5 captures how obligations are
assumed. The judgment 〈~cs(i), pa, reg〉 →i 〈c′, pa ′〉 in the
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i ∈ pre(~cs) gst = ( ~reg ,mem)
〈~cs(i), pa, ~reg(i)〉 →i 〈c′, pa ′〉

∀n ∈ {0, . . . , |pa| − 1}.∀ob ∈ Fe.pa[n] 6= (i , ob)

〈~cs, (pa, ~tr), gst〉 =⇒Φ,Ψ 〈~cs[i 7→ c′], (pa ′, ~tr), gst〉

nextΦ(pa,m) pa[m] = (i , ob) ob /∈ Fe
ob′ ∈ specializeΨ(pa[0 . . .m− 1], i , ob, gst)

pa ′ = pa \m ~tr
′

= ~tr [i 7→ (~tr(i)::[ob′])]
gst ′ = gst [i 7→ (effect(ob′, gst [i ]))]

〈~cs, (pa, ~tr), gst〉 =⇒Φ,Ψ 〈~cs, (pa ′, ~tr
′
), gst ′〉

nextΦ(pa,m) pa[m] = (i , ‖) pa ′ = pa \m
〈~cs, (pa, ~tr), gst〉 =⇒Φ,Ψ 〈~cs, (pa ′, ~tr), gst〉

nextΦ(pa,m) pa[m] = (i ,↗c) pa ′ = pa \m
i ′ = max(pre(~cs)) + 1 ~reg ′ = ~reg [i ′ 7→ reg ]

~cs ′ = ~cs[i ′ 7→ c] ~tr(i ′) = [] ∀r ∈ R.reg(r) = 0

〈~cs, (pa, ~tr), ( ~reg ,mem)〉
=⇒Φ,Ψ 〈~cs ′, (pa ′, ~tr), ( ~reg ′,mem)〉

Figure 5. Small steps on global configurations under (Φ,Ψ)

third premise captures the processing of the next command
in ~cs(i). This judgment is explained later in this section.
The fourth premise ensures that a thread cannot assume new
obligations if a fence obligation of this given thread is pending.

The second rule in Figure 5 captures how threads fulfill
obligations other than ‖ and ↗c . The first two premises of
the rule ensure that the obligation ob of thread i at position m
may be fulfilled next. In the fourth premise, ob is specialized to
ob′. Recall from Section III-B, that specializeΨ returns for an
obligation ?@x _ r the set of all instantiations with a value v
of x that is possible under the write-atomicity relaxations in Ψ.
Otherwise, specializeΨ returns the singleton set containing the
given obligation. The last three premises remove the obligation
ob from the path, append the event ob′ to the trace of thread
i , and update the global state according to the effect of ob′.

The third rule captures how a thread fulfills an obligation
‖, which the thread assumed due to a fence command. A fence
command prevents re-orderings across this command, hence,
its name. In our operational semantics, this is realized by the
combination of the fourth premise of the first rule in Figure 5,
the premise ob /∈ Fe of the second rule in Figure 5, and the
fact that if pa(m) = (i , ‖) and nextΦ(pa,m) hold, then pa
does not contain an obligations of thread i before position m.

The last rule in Figure 5 captures how a thread fulfills
an obligation ↗c , which the thread assumed due to a spawn
command. This rule models the creation of a new thread with
a new identifier i ′ by enlarging the pre-image of ~cs , ~tr , and
~reg by i ′. Like the obligation ‖, the obligation↗c also cannot

be re-ordered with other obligations, for the same reasons.

We formalize how a thread processes a command in terms
of the command’s immediate effects on the local memory,
i.e. the registers of this thread, and in terms of an obligation
that the thread assumes. We use the judgment 〈c, pa, reg〉 →i

〈c′, pa ′〉 to capture that if thread i processes the command c

〈skipι, pa, reg〉 →i 〈ε, pa〉
ob =‖

〈fenceι, pa, reg〉 →i 〈ε, pa::[(i , ob)]〉
ob = v@const � r

〈loadι r v , pa, reg〉 →i 〈ε, pa::[(i , ob)]〉
ob =?@x _ r

〈loadι r x , pa, reg〉 →i 〈ε, pa::[(i , ob)]〉
ob = x ^ v@r

v = reg(r) r /∈ sinks(pa �i)
〈storeι x r , pa, reg〉 →i 〈ε, pa::[(i , ob)]〉

ob = 1@eq(r2, r3) � r1

reg(r2) = reg(r3) r2, r3 /∈ sinks(pa �i)
〈eqι r1 r2 r3, pa, reg〉 →i 〈ε, pa::[(i , ob)]〉

ob = 0@eq(r2, r3) � r1

reg(r2) 6= reg(r3) r2, r3 /∈ sinks(pa �i)
〈eqι r1 r2 r3, pa, reg〉 →i 〈ε, pa::[(i , ob)]〉

ob = 1@and(r2, r3) � r1

reg(r2) 6= 0 reg(r3) 6= 0 r2, r3 /∈ sinks(pa �i)
〈andι r1 r2 r3, pa, reg〉 →i 〈ε, pa::[(i , ob)]〉

ob = 0@and(r2, r3) � r1

reg(r2) = 0 ∨ reg(r3) = 0 r2, r3 /∈ sinks(pa �i)
〈andι r1 r2 r3, pa, reg〉 →i 〈ε, pa::[(i , ob)]〉

reg(r) 6= 0 r /∈ sinks(pa �i)
〈if ι r then c else c′ fi, pa, reg〉 →i 〈c, pa〉

reg(r) = 0 r /∈ sinks(pa �i)
〈if ι r then c else c′ fi, pa, reg〉 →i 〈c′, pa〉

reg(r) 6= 0 r /∈ sinks(pa �i)
〈whileι r do c od, pa, reg〉
→i 〈c; whileι r do c od, pa〉
reg(r) = 0 r /∈ sinks(pa �i)

〈whileι r do c od, pa, reg〉 →i 〈ε, pa〉

〈spawnιc, pa, reg〉 →i 〈ε, pa::[(i ,↗c)]〉
〈c, pa, reg〉 →i 〈ε, pa ′〉
〈c; c′, pa, reg〉 →i 〈c′, pa ′〉

〈c, pa, reg〉 →i 〈c′′, pa ′〉 c′′ ∈ C
〈c; c′, pa, reg〉 →i 〈c′′; c′, pa ′〉

Figure 6. Processing a command and augmentating a path

pre(~cs) = pre(trs) = pre( ~reg) = {0}
~cs(0) = c trs(0) = pa = [] = pa ′

∀r ∈ R. ~reg(0)(r) = 0 ∀i ∈ pre(~cs ′). ~cs ′(i) = ε
〈~cs, (trs, pa), ( ~reg ,mem)〉

=⇒∗(Φ,Ψ) 〈~cs ′, (trs ′, pa ′), ( ~reg ′,mem ′)〉
〈c,mem〉 ⇓(Φ,Ψ) mem ′

Figure 7. Big-step semantics for commands
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in the context of a path pa , and the current local memory reg ,
then, afterwards, the path is pa ′ and either a command c′ ∈ C
remains to be executed or the thread has terminated (indicated
by c′ = ε). The calculus for this judgment is depicted in
Figure 6. The rules for skipι, conditionals and loops, leave
the path unchanged. All other rules add a pair (i , ob) to the
path to indicate that thread i has assumed the obligation ob.
The particular obligation differs in the rules. Moreover, the
rules for all commands that use values from registers, require
that the path pa does not contain any unfulfilled obligations
of thread i that might influence these registers. The reason
for these premises in the rules is that values of registers are
inserted into an obligation when the obligation is assumed, and
this would be incorrect if updates of these registers are still
pending. Otherwise, the rules in Figure 6 are straightforward.

We use the judgment 〈c,mem〉 ⇓(Φ,Ψ) mem ′ to model
that a run of program c starting in an initial memory mem
terminates with final memory mem ′. The only rule for this
judgment is depicted in Figure 7, where we use =⇒∗(Φ,Ψ)
to denote the transitive closure of the relation induced by
the judgment for small steps on global configurations. The
premises of the rule ensure that all registers are initialized
with with value 0 and that the program run starts in a
well-formed global configuration. That the program, indeed,
terminated is captured by the two premises pa ′ = [] and
∀i ∈ pre(~cs ′). ~cs ′(i) = ε.

V. INFORMATION FLOW SECURITY

The novel model of computation and its instantiation with
a concrete language, which we described in Sections II–IV,
originated as a side-product of studying the impact of different
memory models on information flow security. Two crucial
features of our model of computation are its operational flavor
and that it can be instantiated with different memory models.
These features provide the basis for comparing the effects of
different memory models on noninterference.

The main result in this section is Theorem 1. This theorem
clarifies the effects of the four memory models from Table II
(i.e., PSO, TSO, IBM370, and SC) on noninterference. The
formulation of the theorem is crisp, but proving it, was not an
easy exercise. We describe the three-step proof technique that
we employed as it might be interesting itself.

A. Noninterference under Weak Memory Models

We consider a termination-sensitive definition for a two-
level security lattice, where the intuitive requirement is that
information must not flow from the level High to Low.

We use a function lev : X → {Low,High} to associate
each variable in a program with one of these security levels.
We define two global memories mem,mem ′ ∈ Mem to be
Low-equal if lev(x ) = Low =⇒ mem(x ) = mem ′(x )
holds for each x ∈ X and denote this fact by mem =L mem ′.

As usual, we assume the initial values of each variable x ∈
X with lev(x ) = High to be secret, and the initial and final
values of each x ′ ∈ X with lev(x ′) = Low to be public. This
means, if mem =L mem ′ holds then two global memories
mem,mem ′ ∈ Mem differ only in secrets.

Definition 2. A program c ∈ C is MM -noninterfering (denoted
by c ∈ NIMM ), if the following condition holds:

∀mem0,mem1,mem ′0 ∈ Mem.
mem0 =L mem ′0 ∧ 〈c,mem0〉 ⇓MM mem1

=⇒ ∃mem ′1 ∈ Mem.
mem1 =L mem ′1 ∧ 〈c,mem ′0〉 ⇓MM mem ′1

Theorem 1. Noninterference under MM does not imply
noninterference under MM ′, for each pair of distinct memory
models MM ,MM ′ ∈ {SC, IBM370,TSO,PSO}.

In total, Theorem 1 expresses twelve non-implications
for noninterference under different memory models, including
the two non-implications that were proven by Vaughan and
Millstein in [VM12]. Vaughan and Millstein showed that non-
interference under SC does not imply noninterference under
TSO and that noninterference under TSO does not imply
noninterference under SC. Our theorem demonstrates that this
observation is not just a peculiarity of one specific memory
model, because it can also be made for SC and IBM370 as
well as for SC and PSO. Moreover, our theorem also clarifies
the relationship between different weak memory models.

B. Proof Sketch

For the proof of Theorem 1, we developed a three-step
proof technique that we find interesting in itself. For the rest
of this section, let MM = {SC, IBM370,TSO,PSO}.

In the first step, we define three pairs of conditions on
memory models, namely (γ1, δ1), (γ2, δ2), and (γ3, δ3) such
that the two conditions within each pair are contradictory. That
is (¬γl) ∨ (¬δl) holds for each l ∈ {1, 2, 3}.

In the second step, we show that the three pairs of con-
ditions can be used to discriminate between any two memory
models in MM. We show for all MM ,MM ′ ∈ MM that
there exists l ∈ {1, 2, 3} such that either γl(MM ) ∧ δl(MM ′)
or γl(MM ′) ∧ δl(MM ) holds. Note that at most one of the
two conditions can be true because γl and δl are contradictory.
Hence, (γl, δl) discriminates between MM and MM ′.

In the third step, we specify for each index l ∈ {1, 2, 3}
two programs c+

l , c
−
l ∈ C and show that the following four

implications hold for each MM ∈MM:

γl(MM ) =⇒ c+
l ∈ NIMM δl(MM ) =⇒ c+

l /∈ NIMM (1)
γl(MM ) =⇒ c−l /∈ NIMM δl(MM ) =⇒ c−l ∈ NIMM

The combination of these three steps allows one to con-
clude that, for each pair of two distinct memory models
(MM ,MM ′) ∈ MM×MM, there exists a program c ∈ C
such that c ∈ NI MM holds and c ∈ NI MM ′ does not hold.
This proposition is equivalent to the one in Theorem 1.

When applying this proof technique, still some creativity is
needed to determine suitable pairs of discriminating conditions
(γl, δl) and to determine, for each of these pairs of conditions,
a suitable pair of programs c+

l , c
−
l .

In the remainder of this section, we elaborate the three steps
in more detail. In particular, we provide formal definitions
of the three pairs of conditions, show that they discriminate
the memory models in MM, and present, for each pair of
conditions, two programs that fulfill the implications in (1).
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δ1(Φ,Ψ) ≡
∀pa ∈ Pa.∀i ∈ I.∀ob ∈ Ob.∀m < (|pa| − 1).
(nextΦ(pa,m) ∧ pa[m] = (i , ob))

⇒




∀j ∈ I.∀ob′ ∈ Ob.∀k < m.
pa[k] = (j , ob′)

⇒
(

(isRead(ob) ∧ j = i)
⇒ ¬isWrite(ob′)

)




δ2(Φ,Ψ) ≡
∀pa ∈ Pa.∀i ∈ I.∀ob ∈ Ob.∀m < (|pa| − 1).
(nextΦ(pa,m) ∧ pa[m] = (i , ob))

⇒




∀j ∈ I.∀ob′ ∈ Ob.∀k < m.
pa[k] = (j , ob′)

⇒




(
(ob ∈ Fe ∧ j = i))
⇒ ¬isWrite(ob′)

)

∧
( ∀x ∈ X .∀v ∈ V.∀r , r ′ ∈ R.

(ob =?@x _ r ∧ j = i)
⇒ ob /∈ {x ^ v@r ′}

)

∧
(

(isRead(ob) ∧ j = i)
⇒ ¬isRead(ob′)

)

∧
(

(isWrite(ob) ∧ j = i)
⇒ ¬isWrite(ob′)

)







δ3(Φ,Ψ) ≡
∀pa ∈ Pa.∀i ∈ I.∀ob ∈ Ob.∀m < (|pa| − 1).
(nextΦ(pa,m) ∧ pa[m] = (i , ob))

⇒




∀j ∈ I.∀ob′ ∈ Ob.∀k < m.
pa[k] = (j , ob′)

⇒




(
(isRead(ob) ∧ j = i)
⇒ ¬isRead(ob′)

)

∧
(

(isWrite(ob) ∧ j = i)
⇒ ¬isWrite(ob′)

)







Figure 8. Definitions of δ1, δ2, and δ3

We define the conditions γ1, γ2, and γ3:

γ1(Φ,Ψ) ≡ φWR ∈ Φ
γ2(Φ,Ψ) ≡ φWR ∈ Φ ∧ φROwn ∈ Φ
γ3(Φ,Ψ) ≡ φWW ∈ Φ

We define the conditions δ1, δ2, and δ3 in Figure 8.
With our definitions of (γ1, δ1), (γ2, δ2), and (γ3, δ3), the
disjunction (¬γl) ∨ (¬δl) holds for each l ∈ {1, 2, 3}. That
is, the two conditions within each pair are contradictory.

Here, we show this for l = 1 only, the other two cases
are similar: We assume that both γ1(Φ,Ψ) and δ1(Φ,Ψ)
hold, and derive a contradiction. We consider the path pa =
[(0, x ^ 0@r1)]::[(0, 0@y _ r2)]. For this path, φWR(pa, 1)
holds, because isWrite(x ^ 0@r1), isRead(0@y _ r2),
sources(x ^ 0@r1) ∩ sinks(0@y _ r2) = ∅ and sinks(x ^
0@r1) ∩ sources(0@y _ r2) = ∅ hold (see Figure 1). From
our assumption γ1(Φ,Ψ), we obtain φWR ∈ Φ. Together, this
implies that nextΦ(pa, 1) holds. From nextΦ(pa, 1), pa[1] =
(0, 0@y _ r2), pa[0] = (0, x ^ 0@r1), isRead(0@y _
r2) and our assumption δ1(Φ,Ψ), we can conclude that
isWrite(x ^ 0@r1) does not hold. This is a contradiction,
as x ^ 0@r1 is a write obligation.

Table III shows which of our conditions γ1, γ2, γ3, δ1, δ2,

MM γ1(MM ) γ2(MM ) γ3(MM ) δ1(MM ) δ2(MM ) δ3(MM )
SC X X X

IBM370 X X X
TSO X X X
PSO X X X

Table III. SATISFACTION OF THE DISCRIMINATING CONDITIONS

c+
1 :=

store1 x 1; store2 y 1; store3 z 0; store4 l 0;
spawn5(
store6 x 0; load7 r2 y; load8 r3 z;
and9 r4 r2 r3; load10 r5 h;
if11 r4

then if12 r5 then store13 l 5 else skip14 fi
else if15 r5 then skip16 else store17 l 5 fi fi);

store18 y 0; load19 r1 x; store20 z r1; store21 z 0

c−1 :=
store1 x 1; store2 y 1; store3 z 0;
spawn4(
store5 x 0; load6 r2 y; load7 r3 z; and8 r4 r2 r3;
if9 r4 then load10 r5 h; store11 l r5 else skip12 fi);

store13 y 0; load14 r1 x; store15 z r1

Figure 9. Programs for Lemma 1

and δ3 are satisfied by which of the memory models inMM.
The argument for each entry in this table is straightforward.
For γ1, γ2, and γ3 the entries are an immediate consequence
of the definitions of the conditions and of Table II.

From Table III, one can see that for all MM ,MM ′ ∈MM
with MM 6= MM ′, there is a l ∈ {1, 2, 3} such that either
γl(MM )∧δl(MM ′) or γl(MM ′)∧δl(MM ) holds. This means
that our choice of (γ1, δ1), (γ2, δ2), and (γ3, δ3) is suitable for
discriminating the memory models in MM.

The following three lemmas refer to the programs c+
1 , c−1 ,

c+
2 , c−2 , c+

3 , and c−3 , in Figures 9, 10, and 11.

Lemma 1. For the domain assignment lev with lev(h) =
High and lev(x ) = Low for all x ∈ X \ {h}, the following
four propositions hold for each MM ∈MM:

γ1(MM ) =⇒ c+
1 ∈ NIMM δ1(MM ) =⇒ c+

1 /∈ NIMM

γ1(MM ) =⇒ c−1 /∈ NIMM δ1(MM ) =⇒ c−1 ∈ NIMM

Lemma 2. For the domain assignment lev with lev(h) =
High and lev(x ) = Low for all x ∈ X \ {h}, the following
four propositions hold for each MM ∈MM:

γ2(MM ) =⇒ c+
2 ∈ NIMM δ2(MM ) =⇒ c+

2 /∈ NIMM

γ2(MM ) =⇒ c−2 /∈ NIMM δ2(MM ) =⇒ c−2 ∈ NIMM

Lemma 3. For the domain assignment lev with lev(h) =
High and lev(x ) = Low for all x ∈ X \ {h}, the following
four propositions hold for each MM ∈MM:

γ3(MM ) =⇒ c+
3 ∈ NIMM δ3(MM ) =⇒ c+

3 /∈ NIMM

γ3(MM ) =⇒ c−3 /∈ NIMM δ3(MM ) =⇒ c−3 ∈ NIMM
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c+
2 :=

store1 x 1; store2 y 1; store3 z 0; store4 l 0;
spawn5(
store6 x 0; fence7; load8 r2 y; load9 r3 z;
and10 r4 r2 r3; load11 r5 h;
if12 r4

then if13 r5 then store14 l 5 else skip15 fi
else if16 r5 then skip17 else store18 l 5 fi
fi);

store19 y 0; load20 r2 y;
load21 r1 x; store22 z r1; store23 z 0

c−2 :=
store1 x 1; store2 y 1; store3 z 0;
spawn4(
store5 x 0; fence6;
load7 r2 y; load8 r3 z; and9 r4 r2 r3

if10 r4 then load11 r5 h; store12 l r5 else skip13 fi);
store14 y 0; load15 r2 y; load16 r1 x; store17 z r1

Figure 10. Programs for Lemma 2

c+
3 :=

store1 x 1; store2 y 0; store3 l 0;
spawn4(
load5 r2 y; load6 r1 x; and7 r3 r1 r2; load8 r4 h;
if9 r3

then if10 r4 then store11 l 5 else skip12 fi
else if13 r4 then skip14 else store15 l 5 fi
fi);

store16 x 0; store17 y 1

c−3 :=
store1 x 1; store2 y 0;
spawn3(
load4 r2 y; load5 r1 x; and6 r3 r1 r2;
if7 r3 then load8 r4 h; store9 l r4 else skip10 fi);

store11 x 0; store12 y 1

Figure 11. Programs for Lemma 3

This concludes our proof sketch, the theorem follows from
the lemmas, as explained in the outline of our proof technique
at the beginning of this subsection. A more detailed proof of
Theorem 1 can be found in the appendix.

VI. A SOUND ANALYSIS FOR WEAK MEMORY MODELS

In this section we propose a transforming type system. The
type system inserts fences to ensure security under the four
memory models SC, IBM370, TSO and PSO. The trans-
formation does not enforce sequentially consistent behavior
of the transformed program. Hence, the transformed program
can still benefit from relaxed consistency guarantees to gain
performance.

For the analysis we extend the domain assignment to
registers. The extended domain assignment is a function lev :
(X ∪R)→ {High,Low}.

The security type system is defined in Figure 12. The

judgments derived using the type system have the form
pc, pt `lev c �(pt ′, c′) where lev : (X ∪R)→ {Low,High},
pc, pt , pt ′ ∈ {Low,High} and c, c′ ∈ C. The domain assign-
ment lev defines the policy that the transformation enforces.
The program counter pc is an upper bound on the security level
on which it depends whether the command is executed. The
command c is transformed into the command c′. The path-
types pt and pt ′ are a lower bound on the security levels of
variables and registers for which updates might not be fulfilled
yet.

The rules [LC], [LX], [OP] and [ST] prevent direct and in-
direct information leaks by checking that the security domains
of the sources of the command and the program counter are
lower than the security domain of the targets of the update.
The rule [IH] prevents indirect leaks by checking that each of
the branches of the if command is type-able with a High
program counter. The rule [WH] prevents that termination
behavior depends on information from the security domain
High by requiring that the condition is from the security
domain Low. The rules [IL] and [SQ] propagate the analysis
into the branches of if commands and into the components of
a sequential composition, respectively.

We use the path-types pt and pt ′ to track the lower bound
of the security levels for which obligations might not be
fulfilled yet. Except for the rule [IT] and [FN] all rules might
lower the path-type, but not raise it. The rule [FN] raises the
path-type, because a fence ensures that the path is empty before
assuming the next obligation. The rule [IT] inserts a fence
before the if and raises the path-type. This ensures that the
path does not contain any updates of Low variables or registers
when entering a branching that depends on a High register.

The transformation results in a program that is noninterfer-
ing under the memory models SC, IBM370, TSO and PSO
as the following Theorem shows.

Theorem 2. If pc,High `lev c�(pt , c′) is derivable for some
pc, pt ∈ {Low,High}, then c′ ∈ NI MM for all MM ∈
{SC, IBM370,TSO,PSO}.

Due to space restrictions, we refrain from presenting proofs
in this submission. The proofs for Theorems 2, 3, and 4 can
be found in the appendix.

The sound transformation does not come at the price of
establishing sequential consistency as the following theorem
shows.

Theorem 3. The fact that pc,High `lev c � (pt , c′) for
some pc, pt ∈ {Low,High} is derivable does not imply that
〈c′,mem〉 ⇓MM mem ′ ⇐⇒ 〈c′,mem〉 ⇓SC mem ′ for all
MM ∈ {IBM370,TSO,PSO} holds.

We briefly sketch the arguments with the programs
and the domain assignment from Figure 13. The judgment
Low,High `lev c � (Low, c′) is derivable with the rules
[SQ], [LX], [LC], [SP], [ST], [OP], [IT], [FN], and [SK].

For the program c′ final memories are reachable under
PSO that are not reachable under SC. Running c′ under
SC with an initial memory mem where mem(x) = 1 and
mem(y) = 0 can never result in a final memory mem ′

with mem ′(l2) = 1. To reach such a final memory, the
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[SK]
pc, pt `lev skipι � (pt , skipι)

[FN]
pc, pt `lev fenceι � (High, fenceι)

[LC]
v ∈ V pc v lev(r)

pc, pt `lev loadι r v � (pt u lev(r), loadι r v)
[LX]

x ∈ X lev(x ) t pc v lev(r)

pc, pt `lev loadι r x � (pt u lev(r), loadι r x )

[OP]
op ∈ {and, eq} lev(r2) t lev(r3) t pc v lev(r1)

pc, pt `lev opι r1 r2 r3 � (pt u lev(r1), opι r1 r2 r3)
[ST]

lev(r) t pc v lev(x )

pc, pt `lev storeι x r � (pt u lev(x ), storeι x r)

[SP]
pc, pt ′ `lev c � (pt ′′, c′)

Low, pt `lev spawnιc � (Low, spawnιc
′)

[SQ]
pc, pt `lev c1 � (pt ′, c′1) pc, pt ′ `lev c2 � (pt ′′, c′2)

pc, pt `lev c1; c2 � (pt ′′, c′1; c′2)

[IL]
lev(r) = Low pc, pt `lev c1 � (pt ′, c′1) pc, pt `lev c2 � (pt ′′, c′2)

pc, pt `lev if ι r then c1 else c2 fi � (pt ′ u pt ′′, if ι r then c′1 else c′2 fi)

[IH]
lev(r) = pt = High High, pt `lev c1 � (pt , c′1) High, pt `lev c2 � (pt , c′2)

pc, pt `lev if ι r then c1 else c2 fi � (High, if ι r then c′1 else c′2 fi)

[IT]
lev(r) = High pt = Low ι′ is fresh High,High `lev c1 � (High, c′1) High,High `lev c2 � (High, c′2)

pc, pt `lev if ι r then c1 else c2 fi � (High, fenceι′ ; if ι r then c′1 else c′2 fi)

[WH]
pc = lev(r) = Low pc,Low `lev c � (pt ′, c′)

pc, pt `lev whileι r do c od � (pt u pt ′,whileι r do c′ od)

Figure 12. Transforming security type system for SC, IBM370, TSO, and PSO

obligations of load6 r5 y and load7 r6 x must both update
their target registers to a non-zero value such that the obligation
of and9 r8 r5 r6 updates r8 to 1 and the obligation of
store11 l2 r8 updates l2 to 1. Since the initial value of y
is 0, the variable y must be updated before fulfilling the
obligation of load6 r5 y. The only obligation that updates
y is the obligation of store13 y r3. Since SC does not permit
any reordering, this implies that store12 x r2 must also be
fulfilled before the obligation of load6 r5 y and, consequently,
also before the obligation of load7 r6 x. This means that the
obligation of load7 r6 x will update its register to 0 in this
case and, consequently, the final value of l2 is 0. However,
the program-order relaxation write-to-write of PSO allows
fulfilling the obligation of store13 y r3 before the obligation
store12 x r2. Consequently, it is possible that the obligation
of load6 r5 y and load7 r6 x both update their target register
to 1. Thus a final memory mem ′ with mem ′(l2) = 1 is
reachable. This shows that the transformed program does not
have sequentially consistent behavior.

The proposed transformation is idempotent. This means
that the type system can also be used for type checking a
program after its transformation. The following theorem shows
that the transformation is idempotent.

Theorem 4. If pc,High `lev c�(pt , c′) is derivable for some
pc, pt ∈ {Low,High}, then
pc,High `lev c′ � (pt , c′) is also derivable.

The analysis shows that it is possible to enforce noninterfer-
ence without establishing sequential consistency. In addition,
it shows that a program can be made secure under multiple
memory models and therefore is a step towards security
guarantees that are portable between memory models. At the
same time the relaxed consistency guarantees can still lead to
performance gains.

c = c1; if14 r1 then fence15 else skip16 fi; c2

c′ = c1; fence18; if14 r1 then fence15 else skip16 fi; c2

where
c1 =
load1 r1 h; load2 r2 0; load3 r3 1;
spawn4(
load5 r4 z; load6 r5 y; load7 r6 x; and8 r7 r4 r6;
and9 r8 r5 r6; store10 l1 r7; store11 l2 r8);

store12 x r2; store13 y r3

c2 = store17 z r3

lev(h) = lev(r1) = High,
lev(x ) = Low for all x ∈ X \ {h}
lev(r) = Low for all r ∈ R \ {r1}.

Figure 13. Transformed program without sequentially consistent behavior

VII. RELATED WORK

Information flow analysis for concurrent programs was
pioneered by Reitman and Andrews [RA79]. To present in-
formation flow analysis in the form of type systems together
with a soundness proof against a declarative noninterference-
like condition has become popular since the seminal work
by Volpano, Smith, and Irvine [VSI96]. Volpano and Smith
also proposed security type systems for concurrent programs
together with soundness proofs [VS98], [VS99]. Many fur-
ther information flow analysis for concurrent programs have
been proposed since, e.g., [SS00], [Smi01], [BC02], [RS06],
[MSS11]. However, the only publication that considers weak
memory models so far is [VM12]. Vaughan and Millstein in-
vestigated noninterference for a weak memory model, namely
TSO, for the first time and showed that noninterference under
SC does not imply noninterference under TSO and vice versa.
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They proposed a security type system for TSO and showed
how to make this security type system more precise by adding
a flow-sensitive tracking of a security type for the write buffer.
Our work generalizes the result that SC and TSO cannot
be ordered by implication with respect to noninterference
to the memory models SC, IBM370, TSO and PSO. Like
Vaughan and Millstein, we exploit the benefits of a flow-
sensitive tracking of a security type for the path. In contrast
to their intention of tracking the security type of the write
buffer to achieve a higher precision, we use the tracking of the
security type of the path to establish portable security results,
i.e. security results that are sound under SC, IBM370, TSO
and PSO at the same time.

The body of related work on memory consistency outside
security is rich. Leslie Lamport defines in [Lam79] sequential
consistency as a consistency criterion for computations on
multi-processor systems. While sequential consistency is very
intuitive, it reduces the possibilities for effective use of hard-
ware and compiler optimizations. To overcome this memory
models with relaxed consistency guarantees were developed.
Adve and Gharachorloo give in [AG95], [AG96] an overview
of different memory models with relaxed security guarantees
and categorize the based on three program-order relaxations,
namely write-to-read, write-to-write and write-to-read/write,
a write-atomicity relaxation, namely read-others-write early,
and a relaxations of both aspects, namely read-own-writes-
early. Their systematic approach inspired our modular execu-
tion framework with the program-order relaxations and write-
atomicity relaxations.

To understand and investigate the impact of different mem-
ory models generic frameworks have been proposed that can be
instantiated for different memory models. These frameworks
are defined either axiomatically, e.g. [AMSS10], [Alg10],
[Alg12] or operationally, e.g. [BPS12]. For our purposes an
operational model is very suitable. The operational semantics
from [BPS12] for a λ-calculus with concurrency builds on the
same intuition from [AG95], [AG96] of program-order and
write-atomicity relaxations like our model. They introduce a
temporary store that is similar to our path to collect interactions
with the memory that are not fulfilled yet. To determine
which interaction with the memory may be fulfilled next,
they have a commutability predicate and to determine from
which other threads a thread may read they have a write
grain. The intention behind these concepts is similar to the
intention behind our predicate next and the function early.
In contrast to our modular approach that provides predicates
that can be combined to build up a concrete memory model,
the commutability predicate must be instantiated with rela-
tions that capture permitted relaxations. Furthermore, their
framework supports only references as a form of state. They
recognize that for reasoning about low-level models registers
should be distinguished from memory locations and mention
that this can be emulated by special references that are treated
differently. Nevertheless, these references might be accessed
from different threads running on different processors. In our
model, we introduced a clear distinction between variable that
can be accessed by every thread and registers that can only
be accessed by one thread. This clear distinction allows us to
investigate the differences between local and shared memory
more clearly.

Program transformations that establish information flow
security have been proposed before, e.g., in [Aga00], [SS00],
[Siv06], [KM07]. Many of such transformations aim at the
elimination of internal timing leaks in concurrent programs.
To the best of our knowledge, fence insertion techniques have
not been applied in the area of information flow security
so far. More generally, fence insertion has been studied in
depth, e.g., in [SS88], [FLM03], [BAM07], [LW11], [KVY12],
[LW13]. Many fence insertion techniques aim at establishing
sequential consistency. In our transformation, we avoid to es-
tablish sequential consistency. The key motivation for relaxing
sequential consistency is to gain performance. This gain is
lost, if one establishes sequential consistency, despite the weak
memory model, by adding fences. To minimize the insertion
of fence commands, we guide our transformation by the rules
of our security type system.

VIII. CONCLUSION

The aim of our research was to better clarify the impact
of weak memory models on information flow security. In this
article, we showed that one cannot rely on the preservation
of noninterference if one gives up sequential consistency. This
was already known for the case where one migrates to TSO
[VM12], but it was not clear for PSO and IBM370 before.
In addition, we showed that one also cannot rely on the
preservation of noninterference when one migrates between
weak memory models. While it might not be surprising that
this can happen if one moves from one weak memory model
to another, we found it surprising that noninterference is not
preserved no matter which two memory models one considers
and no matter in which direction one migrates.

In this article, we studied information flow security un-
der four memory models. There are further relaxations of
sequential consistency, whose impact on noninterference is not
yet clear. It would very desirable to impose a taxonomy on
memory models with respect to noninterference. All attempts
to order these models by the preservation of noninterference
so far, have not brought us closer to such a taxonomy.

The transforming type system that we presented is, to
our knowledge, the first solution for soundly establishing
noninterference under multiple weak memory models. At this
point, we just employ a simple fence-insertion technique. To
eliminate further insecurities, it would be desirable to integrate
more sophisticated program modifications, however, without
endangering sound enforcement of noninterference.
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APPENDIX

This appendix provides proofs for the main body of this report. We refer to the main body as “the article”. We will
recall the lemmas and theorems from the article with possibly different numbering scheme. To avoid confusions we will
connect the new numbering scheme from the appendix to the numbering scheme of the article when we recall a lemma
or theorem.

A. Proofs for Definitions of γl and δl

In this section we prove properties of the four memory models MM = {SC, IBM370,TSO,PSO} including the conditions
γl and δl that are defined in Section V of the article.

For easier reference we recall the definitions of δl and γl for all l ∈ {1, 2, 3}:
Definition of δl Definition of γl

δ1(Φ,Ψ) ≡
∀pa ∈ Pa.∀i ∈ I.∀ob ∈ Ob.∀m < (|pa| − 1).
(nextΦ(pa,m) ∧ pa[m] = (i , ob))

⇒




∀j ∈ I.∀ob′ ∈ Ob.∀k < m.
pa[k] = (j , ob′)

⇒




(
(isRead(ob) ∧ j = i)
⇒ ¬isWrite(ob′)

)

∧
(

(isWrite(ob) ∧ j = i)
⇒ ¬isWrite(ob′)

)







γ1(Φ,Ψ) ≡ φWR ∈ Φ

δ2(Φ,Ψ) ≡
∀pa ∈ Pa.∀i ∈ I.∀ob ∈ Ob.∀m < (|pa| − 1).
(nextΦ(pa,m) ∧ pa[m] = (i , ob))

⇒




∀j ∈ I.∀ob′ ∈ Ob.∀k < m.
pa[k] = (j , ob′)

⇒




(
(ob ∈ Fe ∧ j = i))
⇒ ¬isWrite(ob′)

)

∧



∀x ∈ X .∀v ∈ V.∀r , r ′ ∈ R.
(ob =?@x _ r ∧ j = i)
⇒ ob′ 6= x ^ v@r ′




∧
(

(isRead(ob) ∧ j = i)
⇒ ¬isRead(ob′)

)

∧
(

(isWrite(ob) ∧ j = i)
⇒ ¬isWrite(ob′)

)







γ2(Φ,Ψ) ≡ φWR ∈ Φ ∧ φROwn ∈ Φ

δ3(Φ,Ψ) ≡
∀pa ∈ Pa.∀i ∈ I.∀ob ∈ Ob.∀m < (|pa| − 1).
(nextΦ(pa,m) ∧ pa[m] = (i , ob))

⇒




∀j ∈ I.∀ob′ ∈ Ob.∀k < m.
pa[k] = (j , ob′)

⇒




(
(isRead(ob) ∧ j = i)
⇒ ¬isRead(ob′)

)

∧
(

(isWrite(ob) ∧ j = i)
⇒ ¬isWrite(ob′)

)







γ3(Φ,Ψ) ≡ φWW ∈ Φ

Lemma 1. The two predicates γ1 and δ1 are contradictory, i.e. (¬γ1(Φ,Ψ)) ∨ (¬δ1(Φ,Ψ)) holds.

Proof: We assume that both γ1(Φ,Ψ) and δ1(Φ,Ψ) hold, and derive a contradiction. We consider the path pa = [(0, x ^
0@r1)]::[(0, 0@y _ r2)]. For this path, φWR(pa, 1) holds, because isWrite(x ^ 0@r1), isRead(0@y _ r2), sources(x ^
0@r1) ∩ sinks(0@y _ r2) = ∅ and sinks(x ^ 0@r1) ∩ sources(0@y _ r2) = ∅ hold (see Figure 1 in the article). From our
assumption γ1(Φ,Ψ), we obtain φWR ∈ Φ. Together, this implies that nextΦ(pa, 1) holds. From nextΦ(pa, 1), pa[1] = (0, 0@y _
r2), pa[0] = (0, x ^ 0@r1), isRead(0@y _ r2) and our assumption δ1(Φ,Ψ), we can conclude that isWrite(x ^ 0@r1) does
not hold. This is a contradiction, as x ^ 0@r1 is a write obligation.

Lemma 2. The two predicates γ2 and δ2 are contradictory, i.e. (¬γ2(Φ,Ψ)) ∨ (¬δ2(Φ,Ψ)) holds.

14



Proof: We assume that both γ2(Φ,Ψ) and δ2(Φ,Ψ) hold, and derive a contradiction. We consider the path pa = [(0, x ^
0@r1)]::[(0, ?@x _ r2)]. For this path, φROwn(pa, 1) holds, because isWrite(x ^ 0@r1), isRead(?@x _ r2), r1 6= r2

hold and both obligations access the same variable x (see Figure 2 in the article). From our assumption γ2(Φ,Ψ), we obtain
φROwn ∈ Φ. Together, this implies that nextΦ(pa, 1) holds. From nextΦ(pa, 1), pa[1] = (0, 0@? _ r2), pa[0] = (0, x ^ 0@r1),
isRead(0@y _ r2) and our assumption δ2(Φ,Ψ), we can conclude that (x ^ 0@r1) 6= (x ^ v@r) holds for all v ∈ V and
r ∈ R. This is a contradiction, as 0 ∈ V and r1 ∈ R.

Lemma 3. The two predicates γ3 and δ3 are contradictory, i.e. (¬γ3(Φ,Ψ)) ∨ (¬δ3(Φ,Ψ)) holds.

Proof: We assume that both γ1(Φ,Ψ) and δ1(Φ,Ψ) hold, and derive a contradiction. We consider the path pa = [(0, x ^
0@r1)]::[(0, y ^ 0@r2)]. For this path, φWW(pa, 1) holds, because isWrite(x ^ 0@r1), isWrite(y ^ 0@r2) and sinks(x ^
0@r1)∩ sinks(y ^ 0@r2) = ∅ hold (see Figure 1 in the article). From our assumption γ3(Φ,Ψ), we obtain φWW ∈ Φ. Together,
this implies that nextΦ(pa, 1) holds. From nextΦ(pa, 1), pa[1] = (0, y ^ 0@r2), pa[0] = (0, x ^ 0@r1), isWrite(y ^ 0@r2

and our assumption δ3(Φ,Ψ), we can conclude that isWrite(x ^ 0@r1) does not hold. This is a contradiction, as x ^ 0@r1 is
a write obligation.

Lemma 4. The memory model SC satisfies δ1(SC), δ2(SC) and δ3(SC).

Proof: From Table II in the article we get Φ = ∅. From Φ = ∅ we obtain by Figures 1 and 2 in the article and the definition
of nextΦ that nextΦ(pa, k) for pa[k] = (i , ob) can only evaluate to true, if i 6= j holds for pa[m] = (j , ob′). From this we
conclude that

• nextΦ(pa, k) ∧ isRead(ob) ∧ j = i =⇒ ¬isWrite(ob′) holds for pa[k] = (i , ob) and pa[m] = (j , ob′) for all m < k,
and

• nextΦ(pa, k)∧ ob ∈ Fe ∧ j = i =⇒ ¬isWrite(ob′) holds for pa[k] = (i , ob) and pa[m] = (j , ob′) for all m < k, and

• nextΦ(pa, k)∧pa[k] = (i , ?@x _ r) =⇒ pa[m] 6= (i , x ^ v@r ′) holds for all x ∈ X , v ∈ V , , r , r ′ ∈ R and m < k,
and

• nextΦ(pa, k)∧ isWrite(ob)∧ j = i =⇒ ¬isWrite(ob′) holds for pa[k] = (j , ob) and pa[m] = (j , ob′) for all m < k,
and

• nextΦ(pa, k) ∧ isRead(ob) ∧ j = i =⇒ ¬isRead(ob′) holds for pa[k] = (j , ob) and pa[m] = (j , ob′) for all m < k.

Hence, δ1(SC), δ2(SC) and δ3(SC) holds.

Lemma 5. The memory model IBM370 satisfies γ1(IBM370), δ2(IBM370) and δ3(IBM370).

Proof: From Table II in the article follows directly that φWR ∈ Φ holds for IBM370.

From Table II in the article we get Φ = {φWR}. From Φ = {φWR} we obtain by Figures 1 and 2 in the article and the
definition of nextΦ that nextΦ(pa, k) can only evaluate to true, if one of two conditions holds for each position m with m < k:
Either pa[k] = (i , ob) and pa[m] = (j , ob′) with i 6= j holds, or pa[k] = (i , ob) and pa[m] = (j , ob′) with isRead(ob),
isWrite(ob′) and sources(ob) ∩ sinks(ob′) = ∅ and sinks(ob) ∩ sources(ob′) = ∅ holds. From this we conclude that

• nextΦ(pa, k)∧ ob ∈ Fe ∧ j = i =⇒ ¬isWrite(ob′) holds for pa[k] = (i , ob) and pa[m] = (j , ob′) for all m < k, and

• nextΦ(pa, k) ∧ pa[k] = (i , ?@x _ r) =⇒ pa[m] 6= (i , x ^ v@r ′) holds for all x ∈ X , v ∈ V , r , r ′ ∈ R and m < k,
and

• nextΦ(pa, k)∧ isWrite(ob)∧ j = i =⇒ ¬isWrite(ob′) holds for pa[k] = (j , ob) and pa[m] = (j , ob′) for all m < k,
and

• nextΦ(pa, k) ∧ isRead(ob) ∧ j = i =⇒ ¬isRead(ob′) holds for pa[k] = (j , ob) and pa[m] = (j , ob′) for all m < k.

Hence, δ2(IBM370) and δ3(IBM370) holds.

Lemma 6. The memory model TSO satisfies γ1(TSO), γ2(TSO) and δ3(TSO).

Proof: From Table II in the article follows directly that φWR ∈ Φ and φROwn ∈ Φ hold for TSO. Hence, γ1(TSO) and
γ2(TSO).

From Table II in the article we get Φ = {φWR, φROwn}. From Φ = {φWR, φROwn} we obtain by Figures 1 and 2 in the
article and the definition of nextΦ that nextΦ(pa, k) can only evaluate to true, if one of two conditions holds for each position
m with m < k: Either pa[k] = (i , ob) and pa[m] = (j , ob′) with i 6= j holds, or pa[k] = (i , ob) and pa[m] = (j , ob′) with
isRead(ob) and isWrite(ob′) holds. From this we conclude that

• nextΦ(pa, k)∧ isWrite(ob)∧ j = i =⇒ ¬isWrite(ob′) holds for pa[k] = (j , ob) and pa[m] = (j , ob′) for all m < k,
and
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• nextΦ(pa, k) ∧ isRead(ob) ∧ j = i =⇒ ¬isRead(ob′) holds for pa[k] = (j , ob) and pa[m] = (j , ob′) for all m < k.

Hence, δ3(TSO) holds.

Lemma 7. The memory model PSO satisfies γ1(PSO), γ2(PSO) and γ3(PSO).

Proof: From Table II in the article follows directly that φWR ∈ Φ, φROwn ∈ Φ and φWW ∈ Φ hold for PSO. Hence,
γ1(PSO), γ2(PSO) and γ3(PSO) hold.

Corollary 1. The properties discriminate the memory models SC, IBM370, TSO and PSO, i.e. the following three propositions
hold:

• δ1(SC) and ¬γ1(SC) while ¬δ1(MM ) and γ1(MM ) for all MM ∈ {IBM370,TSO,PSO},
• δ2(MM ) and ¬γ2(MM ) for MM ∈ {SC, IBM370} while ¬δ2(MM ) and γ2(MM ) for all MM ∈ {TSO,PSO},
• δ3(MM ) and ¬γ3(MM ) for MM ∈ {SC, IBM370,TSO} while ¬δ3(PSO) and γ3(PSO).

Proof: This follows immediately from Lemmas 4, 5, 6 and 7 that show which memory model satisfies which condition and
Lemma 1, 2 and 3 that show that γl and δl for each l ∈ {1, 2, 3} are contradictory.

Lemma 8. For each MM ∈MM the following proposition holds:
nextΦ(pa, k) ∧ pa[k] = (i , ob) ∧ pa[m] = (i , ob′) ∧ isWrite(ob) ∧ isWrite(ob′) =⇒ sinks(ob) ∩ sinks(ob′) = ∅ for all
pa ∈ Pa , i ∈ I, ob, obs ′ ∈ Ob, k < (|pa| − 1) and m < k.

Proof: For MM ∈ {SC, IBM370,TSO}, the proposition follows directly from δ3(MM ) (Corollary 1), because the left side
of the implication cannot be fulfilled.

For MM = PSO we get from Table II in the article that Φ = {φWR, φWW, φROwn}. The only possibility to fulfill the
left side of the implication is with φWW, because φWR and φROwn both require that isRead(ob) and isWrite(ob′) holds for
pa[k] = (i , ob) and pa[m] = (i , ob′) according to Figure 2 in the article. From Figure 2 in the article we know that φWW only
evaluates to true if sinks(ob)∩ sinks(ob′) = ∅ holds for pa[k] = (i , ob) and pa[m] = (i , ob′). Hence, the proposition holds for
MM = PSO.

B. Proofs for Comparing Weak Memory Models wrt. Noninterference

In this section we prove that the programs programs in Section V of the article discriminate the memory models with respect
to noninterference.

We split each of the three Lemmas 1-3 from the article into 4 Lemmas, one Lemma for each implication. The correspondence
between the Lemmas is as follows:

Lemma in the article Lemmas in this Document
Lemma 1 Lemma 9, 10, 11, 12
Lemma 2 Lemma 13, 14, 15, 16
Lemma 3 Lemma 17, 18, 19, 20

For easier reference we recall the definitions of c+
1 and c−1 in Figure 1.

c+
1 :=

store1 x 1; store2 y 1; store3 z 0; store4 l 0;
spawn5(
store6 x 0; load7 r2 y; load8 r3 z;
and9 r4 r2 r3; load10 r5 h;
if11 r4

then if12 r5 then store13 l 5 else skip14 fi
else if15 r5 then skip16 else store17 l 5 fi fi);

store18 y 0; load19 r1 x; store20 z r1; store21 z 0

c−1 :=
store1 x 1; store2 y 1; store3 z 0;
spawn4(
store5 x 0; load6 r2 y; load7 r3 z; and8 r4 r2 r3;
if9 r4 then load10 r5 h; store11 l r5 else skip12 fi);

store13 y 0; load14 r1 x; store15 z r1

Figure 1. Programs for Lemmas 9, 10, 11, 12 (Lemma 1 in the article)

Lemma 9. The following proposition holds for the domain assignment lev with lev(h) and lev(x ) = Low for all x ∈ X \ {h}:
γ1(MM ) =⇒ c+

1 ∈ NI MM .

Proof: Only the final value of the Low-variable l can depend on the initial value of a High-variable, because the only
other variables that are updated are the variables x, y and z, and the final value of x, y and z is definitely 0. Independent of the
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initial memory, and in particular independent of the initial value of h, the final value of l can be either 0 or 5. Consequently,
the program c+

1 satisfies MM -Noninterference. In the following we present the arguments in detail.

The final value of x and y is definitely 0, because the obligations of store6 x 0 and store18 y 0 respectively cause the last
updates of x, and y, and both updates set their respective variable to 0. The obligations of store6 x 0 and store18 y 0 cause
the last updates of x and y, because only the obligations of store1 x 1 and store2 y 1 cause further updates of x and y, and
these two obligations must be fulfilled before the obligation of spawn5 while the obligations of store6 x 0 and store18 y 0
must be fulfilled after the obligation of spawn5. The final value of z is definitely 0, because the obligation of store21 z 0
causes the last update of z, because only the obligations of store3 z 0 and store20 z r1 cause further updates of z, and these
two obligations must be fulfilled before the obligation of store21 z 0. The obligations of store3 z 0 and store20 z r1 must be
fulfilled before the obligation of store21 z 1, because the obligations of store3 z 0 and store20 z r1 are caused by the same
thread and access the same variable as store21 z 1 (Lemma 8).

The final value of h is in {0, 5}, because the obligation of store4 l 0 is definitely processed in every program run and the
only other updates of l are store13 l 5 and store17 l 5.

We show that the final value of l can always be 0. Let mem1 be arbitrary. We distinguish two cases based on the initial
value of h.

Case (Initial value of h equals 0):
Let t = 1, 2, 3, 4, 5,19, 6, 7,18, 20, 8, 9, 10, 21 be a sequence of natural numbers. It is possible to fulfill the
obligations of instructions with these numbers as identifiers in the order given by the sequence, because of four
reasons. First, all obligations, except the obligations of load19 r1 x and store18 y 0, are fulfilled in the order in
which their instructions are executed. Second, γ1(MM ) holds and therefore φWR ∈ Φ for MM . The obligation ob
of store18 y 0 may be fulfilled after the obligation ob′ of load19 r1 x due to φWR, because isWrite(ob) evaluates
to true, isRead(ob′) evaluates to true, sources(ob)∩ sinks(ob′) = ∅ and sinks(ob)∩ sources(ob′) = ∅ holds. Third,
the then-branch of if11 is taken, and, fourth, the else-branch of if12 is taken.
The then-branch of if11 r4 is taken, because r4 is 1 when executing if11. The value of r4 is 1, because obligation
of and9 r4 r2 r3 causes the most recent update of r4 and the value of r2 and r3 is 1 when executing and9 r4 r2 r3.
The value of r2 is 1, because the obligation of load7 r2 y causes the most recent update of r2 and the update sets
r2 to the value of y. The value of y is 1, because the obligation of store2 y 1 causes the most recent update of y
and the update sets y to 1. The value of r3 is 1, because the obligation of load8 r3 z causes the most recent update
of r3 and the update sets r3 to the value of z. The value of z is 1, because the obligation of store20 z r1 causes
the most recent update of z and the update sets z to the value of r1. The value of r1 is 1, because the obligation
of load19 r1 x causes the most recent update of r1 and the update sets r1 to the value of x. The value of x is 1,
because the obligation of store1 x 1 causes the most recent update of x and the update sets x to 1.
The else-branch of if12 r5 is taken, because r5 is 0 when executing if12. The value of r5 is 0, because the obligation
of load10 r5 h causes the most recent update of r5 and the update sets r5 to the value of h. The value of h is 0,
because there is no update of h in the program and the initial value of h is 0 by assumption of this case.
Since the else-branch of if12 is taken the only obligation that causes an update of l is the obligation of store4 l 0.
Thus the final value of l is 0.

Case (Initial value of h does not equal 0):
Let t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 19, 20, 21 be a sequence of natural numbers. It is possible to fulfill the obligations
of instructions with these numbers as identifiers in the order given by the sequence, because of three reasons. First,
all obligations are fulfilled in the order in which their instructions are executed. Second, the else-branch of if11 is
taken and, third, the then-branch of if15 is taken.
The else-branch of if11 r4 is taken, because r4 is 0 when executing if11. The value of r4 is 0, because the obligation
of and9 r4 r2 r3 causes the most recent update of r4 and the value of r3 is 0 when executing and9 r4 r2 r3. The
value of r3 is 0, because the obligation of load8 r3 z causes the most recent update of r3 and the update sets r3 to
the value of z. The value of z is 0, because the obligation of store3 z 0 causes the most recent update of z and the
update sets z to 0.
The then-branch of if15 r5 is taken, because the value of r5 is not 0 when executing if15. The value of r5 is not
0, because the obligation of load10 r5 h causes the most recent update of r5 and the update sets r5 to the value of
h. The value of h is not 0, because there is no update of h in the program and the initial value of h is different
from 0 by assumption of this case.
Since the then-branch of if15 is taken, the only update of l is the event of store4 l 0. Thus the final value of l is
0.

We show that the final value of l can always be 5. Let mem1 be arbitrary. We distinguish two cases based on the initial
value of h.

Case (Initial value of h equals 0):
Let t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 17, 18, 19, 20, 21 be a sequence of natural numbers. It is possible to fulfill the
obligations of instructions with these numbers as identifiers in the order given by the sequence, because of three
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reasons. First, all obligations are fulfilled in the order in which their instructions are executed. Second, the else-
branch of if11 is taken and, third, the else-branch of if15 is taken.
The else-branch of if11 r4 is taken, because r4 is 0 when executing if11. The value of r4 is 0, because the obligation
of and9 r4 r2 r3 causes the most recent update of r4 and the value of r3 is 0 when executing and9 r4 r2 r3. The
value of r3 is 0, because the obligation of load8 r3 z causes the most recent update of r3 and the update sets r3 to
the value of z. The value of z is 0, because the obligation of store3 z 0 causes the most recent update of z and the
update sets z to 0.
The else-branch of if15 r5 is taken, because r5 is 0 when executing if15. The value of r5 is 0, because the obligation
of load10 r5 h causes the most recent update of r5 and the update sets r5 to the value of h. The value of h is 0,
because there is no update of h in the program and the initial value of h is 0 by assumption of this case.
Since the else-branch of if15 is taken, the obligation of store17 l 5 is fulfilled as the last update of l. Thus the
final value of l is 5.

Case (Initial value of h does not equal 0):
Let t = 1, 2, 3, 4, 5,19, 6, 7,18, 20, 8, 9, 10, 13, 21 be a sequence of natural numbers. It is possible to fulfill the
obligations of instructions with these numbers as identifiers in the order given by the sequence, because of four
reasons. First, all obligations, except the obligations of load19 r1 x and store18 y 0, are fulfilled in the order in
which their instructions are executed. Second, γ1(MM ) holds and therefore φWR ∈ Φ for MM . The obligation ob
of store18 y 0 may be fulfilled after the obligation ob′ of load19 r1 x due to φWR, because isWrite(ob) evaluates
to true, isRead(ob′) evaluates to true, sources(ob)∩ sinks(ob′) = ∅ and sinks(ob)∩ sources(ob′) = ∅ holds. Third,
the then-branch of if11 is taken, and, fourth, the then-branch of if12 is taken.
The then-branch of if11 r4 is taken, because r4 is 1 when executing if11. The value of r4 is 1, because obligation
of and9 r4 r2 r3 causes the most recent update of r4 and the value of r2 and r3 is 1 when executing and9 r4 r2 r3.
The value of r2 is 1, because the obligation of load7 r2 y causes the most recent update of r2 and the update sets
r2 to the value of y. The value of y is 1, because the obligation of store2 y 1 causes the most recent update of y
and the update sets y to 1. The value of r3 is 1, because the obligation of load8 r3 z causes the most recent update
of r3 and the update sets r3 to the value of z. The value of z is 1, because the obligation of store20 z r1 causes
the most recent update of z and the update sets z to the value of r1. The value of r1 is 1, because the obligation
of load19 r1 x causes the most recent update of r1 and the update sets r1 to the value of x. The value of x is 1,
because the obligation of store1 x 1 causes the most recent update of x and the update sets x to 1.
The then-branch of if12 r5 is taken, because the value of r5 is not 0 when executing if12. The value of r5 is not
0, because the obligation of load10 r5 h causes the most recent update of r5 and the update sets r5 to the value of
h. The value of h is not 0, because there is no update of h in the program and the initial value of h is different
from 0 by assumption of this case.
Since the then-branch of if12 is taken, the obligation of store13 l 5 is fulfilled as the last update of l. Thus the
final value of l is 5.

That means independent of the initial value of the High-variable h, the final values of x, y and z are 0, the final value of l
can be either 0 or 5, and the values of all other variables remain unchanged. Hence, for all pairs of Low-equal initial memories
Low-equal final memories are reachable. Consequently, the program c+

1 satisfies MM -Noninterference, if γ1(MM ) holds.

Lemma 10. The following proposition holds for the domain assignment lev with lev(h) and lev(x ) = Low for all x ∈ X \{h}:
δ1(MM ) =⇒ c+

1 /∈ NI MM .

Proof: The final value of the Low-variable l can only be 5 if the initial value of the High-variable h is 0, because store4 l 0
definitely updates l to 0 and there are only two instructions that can update l to 5. The two instructions are store13 l 5 and
store17 l 5. The instruction store13 l 5 is in the then-branch of if11. The then-branch of if11 is dead code. The instruction
store17 l 5 is in the else-branch of if15. The else-branch of if15 is only reachable if the initial value of h is 0. Thus the
program does not satisfy MM -Noninterference. In the following we present the arguments in detail.

The else-branch of if15 r5 is only reachable if the initial value of h is 0, because the obligation of load10 r5 h is fulfilled
before if15 is executed, the obligation of load10 r5 h causes an update of r5 to the initial value of h, and there is no other
update of r5. The obligation of load10 r5 h causes an update of r5 to the initial value of h, because there is no update of h in
the program.

The then-branch of if11 is dead code, because the value of r4 is always 0. The value of r4 is always 0, because it is initialized
with 0 and only the obligation of and9 r4 r2 r3 causes an update of r4. The obligation of and9 r4 r2 r3 causes an update of
r4 to 0, because either r2 or r3 is always 0. This is due to the fact that r2 and r3 are initialized with 0 and only the obligations
of load7 r2 y and load8 r3 z respectively cause an update of r2 and r3. At least one of the obligations causes an update of its
respective register to 0. Which of the two instructions updates its register to 0 depends on the obligation that is fulfilled directly
after the obligation of spawn5. Either the obligation of store6 x 0 or the obligation of store18 y 0 must be fulfilled directly
after the obligation of spawn5. This is due to the fact that these two instructions belong to different threads and the obligations
of their subsequent instructions cannot be fulfilled before the obligations of these two instructions. The subsequent instruction of
store6 x 0 is load7 r2 y and isRead holds for the obligation of load7 r2 y. Since δ1(MM ) holds, nextΦ cannot hold for the
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obligation of load7 r2 y, because isWrite holds for the obligation of store6 x 0. The subsequent instruction of store18 y 0
is load19 r1 x and isRead holds for the obligation of load19 r1 x. Since δ1(MM ) holds, nextΦ cannot hold for the obligation
of load19 r1 x, because isWrite holds for the obligation of store18 y 0.

We distinguish two cases based on the obligation that is fulfilled after the obligation of spawn5 and show that either r2 or
r3 is 0.

Case (store6 x 0):
In this case, the value of r3 is always 0, because r3 is initialized with 0, only the obligation of load8 r3 z causes
an update of r3 and the update caused by the obligation sets r3 to the value of z. The value of z is 0, because
the obligation of either store3 z 0 or store21 z 0 or store20 z r1 causes the most recent update of z. All three
obligations update z to 0. The obligation of store20 z r1 causes an update of z to 0, because the obligation of
load19 r1 x causes the most recent update of r1 and the update sets r1 to the value of x. The value of x is 0,
because the obligation of store6 x 0 causes the most recent update of x and the update sets x to 0. The obligation
of store6 x 0 causes the most recent update of x for load19 r1 x, because both obligations must be fulfilled after
the obligation of spawn5, the obligation of store6 x 0 is fulfilled directly after the obligation of spawn5 due to
the assumption of this case, and there is no other obligation that causes an update of x that can be fulfilled after
the obligation of spawn5.

Case (store18 y 0):
In this case, the value of r2 is always 0, because r2 is initialized with 0, only the obligation of load7 r2 y causes
an update of r2, and the update caused by the obligation sets r2 to the value of y. The value of y is 0, because
the obligation of store18 y 0 causes the most recent update of y and the update sets y to 0. The obligation of
store18 y 0 causes the most recent update for the obligation of load7 r2 y, because both obligations are fulfilled
after the obligation of spawn5, the obligation of store18 y 0 is fulfilled directly after spawn5 due to the assumption
of this case, and there is no other obligation that causes an update of y that can be fulfilled after the obligation of
spawn5.

Based on these observations we construct a concrete counter example: We choose initial memories mem1 and mem ′1 such
that mem1(x ) = 0 for all x ∈ X , mem ′1(x ) = 0 for all x ∈ X \ {h} and mem ′1(h) = 23. The memories mem1 and mem ′1
satisfy mem1 =L mem ′1, because mem1(x ) = 0 = mem ′1(x ) for all x ∈ X \ {h} and lev(h) = High. From mem1, a final
memory mem2 is reachable with mem2(l) = 5, because the initial value of h is 0. All final memories mem ′2 that are reachable
from mem ′1 satisfy mem ′2(l) 6= 5, because the initial value of h is 23 and not 0. Thus, for all final memories mem ′2 that are
reachable from mem ′1, we have mem2 6=L mem ′2, because mem2(l) = 5 6= mem ′2(l) and lev(l) = Low.

Consequently, the program c+
1 does not satisfy MM -Noninterference, if δ1(MM ).

Lemma 11. The following proposition holds for the domain assignment lev with lev(h) and lev(x ) = Low for all x ∈ X \{h}:
γ1(MM ) =⇒ c−1 /∈ NI MM .

Proof: The two instructions load10 and store11 in the then-branch of if9 form a direct leak, because load10 reads the
value of the High-variable h into r5 and store11 subsequently writes the value of r5 into the Low-variable l. Due to this direct
leak and the fact that this then-branch is reachable, the program c−1 does not satisfy MM -noninterference. In the following we
present the arguments in detail.

Let t = 1, 2, 3, 4,14, 5, 6,13, 15, 7, 8 be a sequence of natural numbers. It is possible to fulfill the obligations of instructions
with these numbers as identifiers up to reaching if9 in the order given by t, because all obligations, except the obligations of
store13 y 0 and load14 x r1 are fulfilled in the order in which their instructions are executed. Since γ1(MM ) holds, φWR ∈ Φ
for MM . Thus, the obligation ob of store13 y 0 may be fulfilled after the obligation ob′ of load14 x r1 due to φWR, because
isWrite(ob) evaluates to true, isRead(ob′) evaluates to true, sources(ob) ∩ sinks(ob′) = ∅ and sinks(ob) ∩ sources(ob′) = ∅
holds. We will now argue why the instructions load10 and store11 will be executed and their obligations will get fulfilled after
t.

The sequence t always leads to a register state reg9 with reg9(r2) = 1, reg9(r3) = 1 and reg9(r4) = 1, because of three
reasons. First, the obligation of load6 r2 y causes the last update of r2 and the update sets r2 to the value of y. The value of y
is 1, because the obligation of store2 y 1 causes the most recent update of y and the update sets y to 1. Second, the obligation
of load7 r3 z causes the last update of r3 and the update sets r3 to the value of z. The value of z is 1, because the obligation
of store15 z r1 causes the most recent update of z and the update sets z to the value of r1. The value of r1 is 1, because the
obligation of load14 r1 x causes the most recent update of r1 and the update sets r1 to the value of x. The value of x is 1,
because the obligation of store1 x 1 causes the most recent update of x and the update sets x to 1. Thus the obligation of
load7 r3 z causes an update of r3 to 1. Third, the obligation of and8 r4 r2 r3 causes the last update of r4. The obligation of
and8 r4 r2 r3 causes an update of r4 to 1, because the obligations of load6 r2 y and load7 r3 z respectively cause the most
recent updates of r2 and r3, and the updates caused by these two obligations set their respective registers to 1 (as we have argued
before). Consequently, the then-branch of if9 r4 is taken after the sequence t. This means that the instructions load10 r5 h
and store11 l r5 are executed and their obligations are fulfilled after t.
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We choose an initial memory mem1 with mem1(x ) = 0 for all x ∈ X \ {h} and mem1(h) = 5. The final value of l is 5,
because the obligation of store11 l r5 causes an update of l to the value of r5. The value of r5 is 5, because the obligation of
load10 r5 h causes an update of r5 to the value of h. The value of h is 5, because there is no update to h in the program and the
initial value of h is 5, i.e. mem1(h) = 5, according to the initial memory that we have chosen. The obligation of load10 r5 h
must be fulfilled before the obligation of store11 l r5, because both obligations are caused by the same thread and access r5.

We now show that there is an initial memory mem ′1 with mem1 =L mem ′1 for which 5 is not a possible final value for
l. We choose an initial value mem ′1 with mem ′1(x ) = 0 for all x ∈ X . From the definition of Low-equality we know that
mem1 =L mem ′1, because mem1(x ) = mem ′1(x ) for all x ∈ X \ {h} and lev(h) = High. For the initial memory mem ′1 the
final value of l must be in {0, 1}, because the initial value of all variables is 0, all constants that appear in the program are either
0 or 1, and the only computation, i.e. and has {0, 1} as range of values. Consequently, the final value of l cannot be 5. Hence,
mem ′2(l) 6= 5 = mem2(l) holds for all final memories mem ′2 that are reachable from mem ′1.

This means that there is no final memory reachable from mem ′1 that is Low-equal to mem2. Consequently, the program c−1
does not satisfy MM -Noninterference, if γ1(MM ) holds.

Lemma 12. The following proposition holds for the domain assignment lev with lev(h) and lev(x ) = Low for all x ∈ X \{h}:
δ1(MM ) =⇒ c−1 ∈ NI MM .

Proof: Only load10 in the then-branch of if9 reads a High-variable. The then-branch of if9 is dead code. Since the
only instruction that reads a High-variable is dead code, the program c−1 satisfies MM -noninterference. In the following we
present the arguments in detail.

The instruction load10 is dead code, because it is in the then-branch of if9 r4 and the value of r4 of the spawned thread
is always 0. The value of r4 is always 0, because it is initialized with 0, only the obligation of and8 r4 r2 r3 updates r4 and
the update sets r4 to 0. The update caused by the obligation of and8 r4 r2 r3 sets r4 to 0, because the value of either r2 or r3

is 0 in all possible sequences for fulfilling obligations when executing and8.

We now show that the value of either r2 or r3 is always 0 in all possible sequences for fulfilling obligations. All possible
sequences for fulfilling obligations up to (inclusively) the obligation of spawn4 have the same effect on the global state, because
each of the obligations of store1 x 1, store2 y 1 and store3 z 0 causes an update of a different variable, and all of these three
obligations must be fulfilled before the obligation of spawn4 is fulfilled. Only two obligations can be fulfilled directly after
the obligation of spawn4: Either the obligation of store5 x 0 or the obligation of store13 y 0 must be fulfilled directly after
the obligation of spawn4. This is due to the fact that these two instructions belong to different threads and the obligations of
their subsequent instructions cannot be fulfilled before the obligations of these two instructions. The subsequent instruction of
store5 x 0 is load6 r2 y and isRead holds for the obligation of load6 r2 y. Since δ1(MM ) holds, nextΦ cannot hold for the
obligation of load6 r2 y, because isWrite holds for the obligation of store5 x 0. The subsequent instruction of store13 y 0
is load14 r1 x and isRead holds for the obligation of load14 r1 x. Since δ1(MM ) holds, nextΦ cannot hold for the obligation
of load14 r1 x, because isWrite holds for the obligation of store13 y 0.

We distinguish two cases. In the first case, the obligation of store5 x 0 is fulfilled directly after the obligation of spawn4.
In the second case, the obligation of store13 y 0 is fulfilled directly after the obligation of spawn4.

Case (store5 x 0):
In this case, the value of r3 is always 0, because r3 is initialized with 0 and the only update of r3 is load7 r3 z.
The obligation of load7 r3 z always causes an update of r3 to 0. We now show why this holds: The only remaining
update of z after fulfilling the obligation of spawn4 is store15 z r1. We distinguish two cases based on the order
in which the obligations of store15 z r1 and load7 r3 z are fulfilled.

Case (load7 r3 z before store15 z r1):
In this case, the obligation load7 r3 z is specialized with the value of z from the obligation of store3 z 0,
because the obligation of store3 z 0 must be fulfilled before the obligation of spawn4 while the
obligation of load7 r3 z must be fulfilled after spawn4, and the only other obligation that causes an
update of z, i.e. the obligation of store15 z r1, is fulfilled after the obligation of load7 r3 z due to the
assumption of this case. Thus the obligation of load7 r3 z causes an update of r3 to 0 in this case.

Case (load7 r3 z after store15 z r1):
In this case, the obligation of load7 r3 z is specialized with the value of z from the obligation of
store15 z r1, because the only other obligation that causes an update of z, i.e. the obligation of store3 z 0,
must be fulfilled before the obligation of spawn4 while the obligation of store15 z r1 must be fulfilled
after the obligation of spawn4 and the obligation of store15 z r1 is fulfilled before the obligation of
load7 r3 z due to the assumption of this case.
The obligation of store15 z r1 causes an update of z to the value of r1. The value of r1 is 0, because the
obligation of load14 r1 x causes the most recent update of r1 and the update sets r1 to the value of x.
The obligation of load14 r1 x causes the most recent update of r1, because there is no other update of r1

in the program and the obligation must be fulfilled before the obligation of store15 z r1. The obligation
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of load14 r1 x must be fulfilled before the obligation of store15 z r1, because both obligations are
caused by the same thread and access r1.
The obligation of load14 r1 x causes an update of r1 to the value of x. The value of x is 0, because the
obligation of store5 x 0 causes the most recent update of x and the update sets x to 0. The obligation of
store5 x 0 causes the most recent update of x for the obligation of load14 r1 x, because both obligations
must be fulfilled after the obligation of spawn4 and the obligation of store5 x 0 is fulfilled directly
after the obligation of spawn4 due to the assumption of this case. Thus the obligation of load7 r3 z
causes an update of r3 to 0 in this case.

Case (store13 y 0):
In this case, the value of r2 is always 0, because r2 is initialized with 0 and the only update of r2 is load6 r2 y.
The obligation of load6 r2 y causes an update of r2 to the value of y. The value of y is 0, because the obligation of
store13 y 0 causes the most recent update of y and the update sets y to 0. The obligation of store13 y 0 causes the
most recent update of y, because only the obligation of store2 y 1 causes a further update of y, the obligation of
store2 y 1 must be fulfilled before the obligation of spawn4 while the obligation of store13 y 0 and load6 r2 y
must be fulfilled after the obligation of spawn4, and the obligation of store13 y 0 is fulfilled directly after the
obligation of spawn4 due to the assumption of this case. Thus the obligation of load6 r2 y causes an update of
r2 to 0 in this case.

Since load10 r5 h is dead code and no other instruction reads a High-variable the program c−1 does not read information
from High-variables in any program run. Consequently, the program c−1 satisfies MM -Noninterference, if δ1(MM ) holds.

For easier reference we recall the definitions of c+
2 and c−2 in Figure 2.

c+
2 :=

store1 x 1; store2 y 1; store3 z 0; store4 l 0;
spawn5(
store6 x 0; fence7; load8 r2 y; load9 r3 z;
and10 r4 r2 r3; load11 r5 h;
if12 r4

then if13 r5 then store14 l 5 else skip15 fi
else if16 r5 then skip17 else store18 l 5 fi
fi);

store19 y 0; load20 r2 y;
load21 r1 x; store22 z r1; store23 z 0

c−2 :=
store1 x 1; store2 y 1; store3 z 0;
spawn4(
store5 x 0; fence6;
load7 r2 y; load8 r3 z; and9 r4 r2 r3

if10 r4 then load11 r5 h; store12 l r5 else skip13 fi);
store14 y 0; load15 r2 y; load16 r1 x; store17 z r1

Figure 2. Programs for Lemmas 13, 14, 15, 16 (Lemma 2 in the article)

Lemma 13. The following proposition holds for the domain assignment lev with lev(h) and lev(x ) = Low for all x ∈ X \{h}:
γ2(MM ) =⇒ c+

2 ∈ NI MM .

Proof: Only the final value of the Low-variable l can depend on the initial value of a High-variable, because the only
other variables that are updated are the variables x, y and z, and the final value of x, y and z is definitely 0. Independent of the
initial memory, and in particular independent of the initial value of h, the final value of l can be either 0 or 5. Consequently,
the program c+

2 satisfies MM -Noninterference. In the following we present the arguments in detail.

The final value of x, y and z is definitely 0, because the obligations of store6 x 0, store19 y 0 and store23 z 0 respectively
cause the last updates of x, y and z and all three updates set their respective variable to 0. The obligations of store6 x 0 and
store19 y 0 cause the last updates of x and y, because only the obligations of store1 x 1 and store2 y 1 cause further updates
of x and y and these two obligations must be fulfilled before the obligation of spawn5 while the obligations of store6 x 0
and store19 y 0 must be fulfilled after the obligation of spawn5. The obligation of store23 z 0 causes the last update of z,
because only the obligation of store3 z 0 and store22 z r1 cause further updates of z and these two obligations must be fulfilled
before the obligation of store23 z 0. The obligations of store3 z 0 and store22 z r1 must be fulfilled before the obligation of
store23 z 0, because the obligations of store3 z 0 and store22 z r1 are caused by the same thread and access the variable as
the obligation of store23 z 0 (Lemma 8).

The final value of h is in {0, 5}, because the obligation of store4 l 0 is definitely fulfilled in every program run and the
only other updates of l are store15 l 5 and store18 l 5.

We show that the final value of l can always be 0. Let mem1 be arbitrary. We distinguish two cases based on the initial
value of h.

Case (Initial value of h equals 0):
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Let t = 1, 2, 3, 4, 5,20,21, 6, 7, 8,19, 22, 9, 10, 11, 23 be a sequence of natural numbers. It is possible to fulfill the
obligations of instructions with these numbers as identifiers in the order given by t, because of four reasons. First, all
obligations, except the obligations of load20 r2 y, load21 r1 x and store19 y 0 are fulfilled in the order in which
their instructions are executed. Second, γ2(MM ) holds and therefore φWR ∈ Φ and φROwn ∈ Φ for MM . The
obligation ob of store19 y 0 may be fulfilled after the obligation ob′ of load20 r2 y due to φROwn ∈ Φ, because
isWrite(ob) evaluates to true, isRead(ob′) evaluates to true and both access the same variable. The obligation ob
of store19 y 0 may also be fulfilled after the obligation ob′′ of load21 r1 x due to φWR, because isWrite(ob)
evaluates to true, isRead(ob′′) evaluates to true sources(ob) ∩ sinks(ob′′) = ∅ and sinks(ob) ∩ sources(ob′′) = ∅
hold. Third, the then-branch of if12 is taken, and, fourth, the else-branch of if13 is taken.
The then-branch of if12 r4 is taken, because r4 is 1 when executing if12. The value of r4 is 1, because the
obligation of and10 r4 r2 r3 causes the most recent update of r4 and the the value of r2 and r3 is 1 when executing
and10 r4 r2 r3. The value of r2 is 1, because the obligation of load8 r2 y causes the most recent update of r2 to
the value of y. The value of y is 1, because the obligation of store2 y 1 causes the most recent update of y to 1.
The value of r3 is 1, because the obligation of load9 r3 z causes the most recent update of r3 to the value of z.
The value of z is 1, because the obligation of store22 z r1 causes the most recent update of z to the value of r1.
The value of r1 is 1, because the obligation of load21 r1 x causes the most recent update of r1 to the value of x.
The value of x is 1, because the obligation of store1 x 1 causes the most recent update of x to 1.
The else-branch of if13 r5 is taken, because r5 is 0 when executing if13. The value of r5 is 0, because the obligation
of load11 r5 h causes the most recent update of r5 to the value of h. The value of h is 0, because there is no update
of h in the program and the initial value of h is 0 by assumption of this case.
Since the else-branch of if13 is taken the only obligation that causes an update of l is the obligation of store3 l 0.
Thus the final value of l is 0.

Case (Initial value of h does not equal 0):
Let t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19, 20, 21, 22, 23 be a sequence of natural numbers. It is possible to fulfill the
obligations of instructions with these numbers as identifiers in the order given by t, because of three reasons. First,
all obligation are processed in the order in which their instructions are executed. Second, the else-branch of if12 is
taken and, third, the then-branch of if16 is taken.
The else-branch of if12 r4 is taken, because r4 is 0 when executing if12. The value of r4 is 0, because the obligation
of and10 r4 r2 r3 causes the most recent update of r4 and the value of r3 is 0 when executing and10 r4 r2 r3. The
value of r3 is 0, because the obligation of load9 r3 z causes the most recent update of r3 and the update sets r3 to
the value of z. The value of z is 0, because the obligation of store3 z 0 causes the most recent update of z and the
update set z to 0.
The then-branch of if16 r5 is taken, because r5 is not 0 when executing if16. The value of r5 is not 0, because
the obligation of load11 r5 h causes the most recent update of r5 and the update sets r5 to the value of h. The
value of h is not 0, because there is no update to h in the program and the initial value of h is different from 0 by
assumption of this case.
Since the then-branch of if16 is taken the only obligation that causes an update of l is the obligation of store4 l 0.
Thus the final value of l is 0.

We show that the final value of l can always be 5. Let mem1 be arbitrary. We distinguish two cases based on the initial
value of h.

Case (Initial value of h equals 0):
Let t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 22, 23 be a sequence of natural numbers. It is possible to fulfill
the obligations of instructions with these numbers as identifiers in the order given by t, because of three reasons.
First, all obligation are processed in the order in which their instructions are executed. Second, the else-branch of
if12 is taken and, third, the else-branch of if16 is taken.
The else-branch of if12 r4 is taken, because r4 is 0 when executing if12. The value of r4 is 0, because the obligation
of and10 r4 r2 r3 causes the most recent update of r4 and the value of r3 is 0 when executing and10 r4 r2 r3. The
value of r3 is 0, because the obligation of load9 r3 z causes the most recent update of r3 and the update sets r3 to
the value of z. The value of z is 0, because the obligation of store3 z 0 causes the most recent update of z and the
update set z to 0.
The else-branch of if16 r5 is taken, because r5 is 0 when executing if16. The value of r5 is 0, because the obligation
of load11 r5 h causes the most recent update of r5 to the value of h. The value of h is 0, because there is no update
of h in the program and the initial value of h is 0 by assumption of this case.
Since the else-branch of if16 is taken, the obligation of store18 l 5 is fulfilled as the last update of l. Thus the
final value of l is 5.

Case (Initial value of h does not equal 0):
Let t = 1, 2, 3, 4, 5,20,21, 6, 7, 8,19, 22, 9, 10, 11, 14, 23 be a sequence of natural numbers. It is possible to fulfill
the obligations of instructions with these numbers as identifiers in the order given by the t, because of four reasons.
First, all obligations, except the obligations of load20 r2 y, load21 r1 x and store19 y 0 are fulfilled in the order in
which their instructions are executed. Second, γ2(MM ) holds and therefore φWR ∈ Φ and φROwn ∈ Φ for MM . The
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obligation ob of store19 y 0 may be fulfilled after the obligation ob′ of load20 r2 y due to φROwn ∈ Φ, because
isWrite(ob) evaluates to true, isRead(ob′) evaluates to true and both access the same variable. The obligation ob
of store19 y 0 may also be fulfilled after the obligation ob′′ of load21 r1 x due to φWR, because isWrite(ob)
evaluates to true, isRead(ob′′) evaluates to true sources(ob) ∩ sinks(ob′′) = ∅ and sinks(ob) ∩ sources(ob′′) = ∅
hold. Third, the then-branch of if12 is taken, and, fourth, the then-branch of if13 is taken.
The then-branch of if12 r4 is taken, because r4 is 1 when executing if12. The value of r4 is 1, because the obligation
of and10 r4 r2 r3 causes the most recent update of r4 and the value of r2 and r3 is 1 when executing and10 r4 r2 r3.
The value of r2 is 1, because the obligation of load8 r2 y causes the most recent update of r2 and the update sets
r2 to the value of y. The value of y is 1, because the obligation of store2 y 1 causes the most recent update of y
and the update sets y to 1. The value of r3 is 1, because the obligation of load9 r3 z causes the most recent update
of r3 and the update sets r3 to the value of z. The value of z is 1, because the obligation of store22 z r1 causes
the most recent update of z and the update sets z to the value of r1. The value of r1 is 1, because the obligation
of load21 r1 x causes the most recent update of r1 and the update sets r1 to the value of x. The value of x is 1,
because the obligation of store1 x 1 causes the most recent update of x and the update sets x to 1.
The then-branch of if13 r5 is taken, because r5 is not 0 when executing if13. The value of r5 is not 0, because
the obligation of load11 r5 h causes the most recent update of r5 and the update sets r5 to the value of h. The
value of h is not 0, because there is no update to h in the program and the initial value of h is different from 0 by
assumption of this case.
Since the then-branch of if13 is taken, the obligation of store14 l 5 is fulfilled as the last update of l. Thus the
final value of l is 5.

That means independent of the initial value of the High-variable h, the final value of x, y and z is 0, the final value of l
can be either 0 or 5, and the values of all other variables remain unchanged. Hence, for all pairs of Low-equal initial memories
Low-equal final memories are reachable. Consequently, the program c+

2 satisfies MM -Noninterference, if γ2(MM ) holds.

Lemma 14. The following proposition holds for the domain assignment lev with lev(h) and lev(x ) = Low for all x ∈ X \{h}:
δ2(MM ) =⇒ c+

2 /∈ NI MM .

Proof: The final value of the Low-variable l can only be 5 if the initial value of the High-variable h is 0, because store4 l 0
definitely updates l to 0 and there are only two instructions that can update l to 5. The two instructions are store14 l 5 and
store18 l 5. The instruction store14 l 5 is in the then-branch of if12. The then-branch of if12 is dead code. The instruction
store18 l 5 is in the else-branch of if16. The else-branch of if16 is only reachable if the initial value of h is 0. Thus the
program does not satisfy MM -Noninterference. In the following we present the arguments in detail.

The else-branch of if16 r5 is only reachable if the initial value of h is 0, because the obligation of load11 r5 h is fulfilled
before if16 is executed, the obligation of load11 r5 h causes an update of r5 to the initial value of h. The obligation of load11 r5 h
causes an update of r5 to the initial value of h, because there is no update of h in the program.

The then-branch of if12 r4 is dead code, because the value of r4 is always 0. The value of r4 is always 0, because it is
initialized with 0 and only the obligation of and10 r4 r2 r3 causes an update of r4. The obligation of and10 r4 r2 r3 causes
an update of r4 to 0, because either r2 or r3 is always 0 when executing and10. This is due to the fact that both r2 and r3 are
initialized with 0 and only the obligations of load8 r2 y and load9 r3 z respectively cause an update of r2 and r3. At least one
of the obligations causes an update of its respective register to 0. Which of the two obligations causes an update to 0 depends on
the obligation that is fulfilled directly after the obligation of spawn5: Either the obligation of store6 x 0 or the obligation of
store19 y 0 must be fulfilled directly after the obligation of spawn5 This is due to the fact that these two instructions belong
to different threads and the obligations of their subsequent instructions cannot be fulfilled before the obligations of these two
instructions. The subsequent instruction of store6 x 0 is fence7 and ob ∈ Fe holds for the obligation ob of fence7. Since
δ2(MM ) holds, nextΦ cannot hold for the obligation of fence7, because isWrite holds for the obligation of store6 x 0. The
subsequent instruction of store19 y 0 is load20 r2 y and isRead holds for the obligation of load20 r2 y. Since δ2(MM )
holds, nextΦ cannot hold for the obligation of load20 r2 y, because isWrite holds for the obligation of store19 y 0 and both
obligations access the same variable, i.e. y. We distinguish these two cases based on the obligation that is fulfilled after the
obligation of spawn5 and show that either r2 or r3 is 0.

Case (store6 x 0):
In this case, the value of r3 is always 0, because r3 is initialized with 0, only the obligation of load9 r3 z causes
an update of r3 and the update caused by the obligation sets r3 to the value of z. The value of z is 0, because the
obligation of either store3 z 0 or store23 z 0 or store22 z r1 causes the most recent update of z. All three events
update z to 0. The obligation of store22 z r1 sets z to the value of r1. The value of r1 is 0, because the obligation
of load21 r1 x causes the most recent update of r1 and the update sets r1 to the value of x. The value of x is 0,
because the obligation of store6 x 0 causes the most recent update of x and the update sets x to 0. The obligation
of store6 x 0 causes the most recent update of x for load21 r1 x, because both obligations must be fulfilled after
the obligation of spawn5, the obligation of store6 x 0 is fulfilled directly after the obligation of spawn5 due to
the assumption of this case, and there is no other obligation that causes an update of x that can be fulfilled after
spawn5. Thus the obligation of store22 z r1 causes an update of r1 to 0.
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Case (store19 y 0):
In this case, the value of r2 is always 0, because r2 is initialized with 0, only the obligation of load8 r2 y causes
an update of r2, and the update caused by the obligation sets r2 to the value of y. The value of y is 0, because
the obligation of store19 y 0 causes the most recent update of y and the update sets y to 0. The obligation of
store19 y 0 causes the most recent update of y for the obligation of load8 r2 y, because both obligations are
fulfilled after the obligation of spawn5, the obligation of store19 y 0 is fulfilled directly after the obligation of
spawn5 due to the assumption of this case, and there is no other obligation that causes an update of y that can be
fulfilled after the obligation of spawn5.

Based on these observations we construct a concrete counter example: We choose initial memories mem1 and mem ′1 such
that mem1(x ) = 0 for all x ∈ X , mem ′1(x ) = 0 for all x ∈ X \ {h} and mem ′1(h) = 23. The global memories mem1 and
mem ′1 satisfy mem1 =L mem ′1, because mem1(x ) = 0 = mem ′1(x ) for all x ∈ X \ {h} and lev(h) = High. From mem1,
a final memory mem2 is reachable with mem2(l) = 5, because the initial value of h is 0. All final memories mem ′2 that are
reachable from mem ′1 satisfy mem ′2(l) 6= 5, because the initial value of h is 23 and not 0. Thus, for all final memories mem ′2
that are reachable from mem ′1, we have mem2 6=L mem ′2, because mem2(l) = 5 6= mem ′2(l) and lev(l) = Low.

Consequently, the program c+
2 does not satisfy MM -Noninterference, if δ2(MM ) holds.

Lemma 15. The following proposition holds for the domain assignment lev with lev(h) and lev(x ) = Low for all x ∈ X \{h}:
γ2(MM ) =⇒ c−2 /∈ NI MM .

Proof: The two instructions load11 and store12 in the then-branch of if10 form a direct leak, because load11 reads the
value of the High-variable h into r5, and store12 subsequently writes the value of r5 into the Low-variable l. Due to this direct
leak and the fact that this then-branch is reachable, the program c−2 does not satisfy MM -noninterference. In the following we
present the arguments in detail.

Let t = 1, 2, 3, 4,15,16, 5, 6, 7,14, 17, 8, 9 be a sequence of natural numbers. It is possible to fulfill the obligations of
instructions with these numbers as identifiers up to reaching if10 in the order given by t, because all obligations except the
obligations of store14 y 0, load15 r2 y and load16 r1 x, are fulfilled in the order in which their instructions are executed. Since
γ2(MM ) holds, φWR ∈ Φ and φROwn ∈ Φ for MM . Thus, the obligation ob of store14 y 0 may be fulfilled after the obligation
ob′ of load15 r2 y due to φROwn, because isWrite(ob) evaluates to true, isRead(ob′) evaluates to true and both access the same
variable. The obligation ob of store14 y 0 may also be fulfilled after the obligation ob′′ of load16 r1 x due to φWR, because
isWrite(ob) evaluates to true, isRead(ob′′) evaluates to true sources(ob) ∩ sinks(ob′′) = ∅ and sinks(ob) ∩ sources(ob′′) = ∅
hold. We will now argue why the instructions load11 and store12 will be executed and their obligations will get fulfilled after
t.

The sequence t always leads to a register state reg10 with reg10(r2) = 1, reg10(r3) = 1 and reg10(r4) = 1, because of three
reasons. First, the obligation of load7 r2 y causes the last update of r2 and the update sets r2 to the value of y. The value of y
is 1, because the obligation of store2 y 1 causes the most recent update of y and the update sets y to 1. Second, the obligation
of load8 r3 z causes the last update of r3 and the update sets r3 to the value of z. The value of z is 1, because the obligation
of store17 z r1 causes the most recent update of z and the update sets z to the value of r1. The value of r1 is 1, because the
obligation of load16 r1 x causes the most recent update of r1 and the update sets r1 to the value of x. The value of x is 1,
because the the obligation of store1 x 1 causes the most recent update of x and the update sets x to 1. Thus the obligation of
load8 r3 z reads 1 into r3. Third, the obligation of and9 r4 r2 r3 causes the last update of r4. The obligation of and9 r4 r2 r3

causes an update of r4 to 1, because the obligations of load7 r2 y and load8 r3 z respectively cause the most recent updates of
r2 and r3, and the updates caused by these two obligations cause an update of their respective registers to 1 (as we have argued
before). Consequently, the then-branch of if10 r4 is taken after t. This means that the instructions load11 r5 h and store12 l r5

are executed and their obligations fulfilled after t.

We choose an initial memory mem1 with mem1(x ) = 0 for all x ∈ X \ {h} and mem1(h) = 5. The final value of l is 5,
because the obligation of store12 l r5 causes an update of l to the value of r5. The value of r5 is 5, because the obligation of
load11 r5 h causes an update of r5 to the value of h. The value of h is 5, there is no update of h in the program and the initial
value of h is 5, i.e. mem1(h) = 5, according to the initial memory that we have chosen. The obligation of load11 r5 h must
be fulfilled before the obligation of store12 l r5, because both obligations are caused by the same thread and access r5.

We now show that there is an initial memory mem ′1 with mem1 =L mem ′1 for which 5 is not a possible final value for
l. We choose an initial value mem ′1 with mem ′1(x ) = 0 for all x ∈ X . From the definition of Low-equality we know that
mem1 =L mem ′1, because mem1(x ) = mem ′1(x ) for all x ∈ X \ {h} and lev(h) = High. For the initial memory mem ′1 the
final value of l must be in {0, 1}, because the initial value of all variables is 0, all constants that appear in the program are either
0 or 1, and the only computation, i.e. and has {0, 1} as range of values. Consequently, the final value of l cannot be 5. Hence,
mem ′2(l) 6= 5 = mem2(l) holds for all final memories mem ′2 that are reachable from mem ′1.

This means that there is no final memory reachable from mem ′1 that is Low-equal to mem2. Consequently, the program c−2
does not satisfy MM -Noninterference, if γ2(MM ) holds.
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Lemma 16. The following proposition holds for the domain assignment lev with lev(h) and lev(x ) = Low for all x ∈ X \{h}:
δ2(MM ) =⇒ c−2 ∈ NI MM .

Proof: Only load11 in the then-branch of if9 reads a High-variable. The then-branch of if9 is dead code. Since the
only instruction that reads a High-variable is dead code, the program c−2 satisfies MM -noninterference. In the following we
present the arguments in detail.

The instruction load11 is dead code, because it is in the then-branch of if10 r4 and the value of r4 of the spawned thread
is always 0. The value of r4 is always 0, because it is initialized with 0, only the obligation of and9 r4 r2 r3 causes an update
of r4 and the update sets r4 to 0. The update caused by the obligation of and9 r4 r2 r3 sets r4 to 0, because the value of either
r2 or r3 is 0 in all possible sequences for fulfilling obligations when executing and9.

We now show that the value of either r2 or r3 is always 0 in all possible sequences for fulfilling obligations. All possible
sequences for fulfilling obligations up to (inclusively) the obligation of spawn4 have the same effect on the global state, because
each of the obligations of store1 x 1, store2 y 1 and store3 z 0 causes an update of a different variable, and the obligations
of all three instructions must be fulfilled before the obligation of spawn4. Only two events can be fulfilled directly after the
event of spawn4: The obligation of either store5 x 0 or store14 y 0 must be fulfilled directly after the obligation of spawn4.
This is due to the fact that these two instructions belong to different threads and the obligations of their subsequent instructions
cannot be fulfilled before the obligations of these two instructions. The subsequent instruction of store5 x 0 is fence6 and
ob ∈ Fe holds for the obligation ob of fence6. Since δ2(MM ) holds, nextΦ cannot hold for the obligation of fence6, because
isWrite holds for the obligation of store5 x 0. The subsequent instruction of store14 y 0 is load15 r2 y and isRead holds
for the obligation of load15 r2 y. Since δ2(MM ) holds, nextΦ cannot hold for the obligation of load15 r2 y, because isWrite
holds for the obligation of store14 y 0 and both obligations access the same variable, i.e. y. We distinguish two cases. In the
first case, the obligation of store5 x 0 is fulfilled directly after the obligation of spawn4. In the second case, the obligation of
store14 y 0 is fulfilled directly after the obligation of spawn4.

Case (store5 x 0):
In this case, the value of register r3 is always 0, because the register r3 is initialized with 0 and the only update of
r3 is load8 r3 z. The obligation of load8 r3 z always causes an update of r4 to 0. We now show why this holds:
The only remaining updates of z after fulfilling the obligation of spawn4 is store17 z r1. We distinguish two cases
based on the order in which the obligations of load8 r3 z and store17 z r1 are fulfilled.

Case (load8 r3 z before store17 z r1):
In this case, the obligation of load8 r3 z is specialized with the value of z from the obligation of
store3 z 0, because the obligation of store3 z 0 must be fulfilled before the obligation of spawn4
while the obligation of load8 r3 z must be fulfilled after the obligation of spawn4, and the only other
obligation that causes an update of z, i.e. the obligation of store17 z r1, is fulfilled after the obligation
of load8 r3 z due to the assumption of this case. Thus the obligation of load8 r3 z causes an update
of r3 to 0 in this case.

Case (load8 r3 z after store17 z r1):
In this case, the obligation of load8 r3 z is specialized with the value of z from the obligation of
store17 z r1, because the only other obligation that causes an update of z, i.e. the obligation of store3 z 0,
must be fulfilled before the obligation of spawn4 while the obligation of store17 z r1 must be fulfilled
after the obligation of spawn4 and the obligation of store17 z r1 is fulfilled before the obligation of
load8 r3 z due to the assumption of this case.
The obligation of store17 z r1 causes an update of z to the value of r1. The value of r1 is 0, because the
obligation of load16 r1 x causes the most recent update of r1 and the update sets r1 to the value of x.
The obligation of load16 r1 x causes the most recent update of r1, because there is no other update of r1

and the obligation of load16 r1 x must be fulfilled before the obligation of store17 z r1. The obligation
of load16 r1 x must be fulfilled before the obligation of store17 z r1, because both obligations are
caused by the same thread and access r1.
The obligation of load16 r1 x causes an update of r1 to the value of x. The value of x is 0, because the
obligation of store5 x 0 causes the most recent update of x and the update sets x to 0. The obligation of
store5 x 0 causes the most recent update of x for the obligation of load16 r1 x, because both obligations
must be fulfilled after the obligation of spawn4 and the obligation of store5 x 0 is fulfilled directly
after the obligation of spawn4 due to the assumption of this case. Thus the obligation of load8 r3 z
causes an update of r3 to 0 in this case.

Case (store14 y 0):
In this case, the value of register r2 is always 0, because the register r2 is initialized with 0 and the only update
of r2 is load7 r2 y. The obligation of load7 r2 y causes an update of r2 to the value of y. The value of y is 0,
because the obligation of store14 y 0 causes the most recent update of y and the update sets y to 0. The obligation
of store14 y 0 causes the most recent update of y for the obligation of load7 r2 y, because only the obligation
of store2 y 1 causes a further update of y, the obligation of store2 y 1 must be fulfilled before the obligation of
spawn4 while the obligations of store14 y 0 and load7 r2 y must be fulfilled after the obligation of spawn4,
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and the obligation of store14 y 0 is fulfilled before the obligation of load7 r2 y due to the assumption of this case.
Thus the obligation of load7 r2 y causes an update of r2 to 0 in this case.

Since load11 r5 h is dead code and no other instruction reads a High-variable the program c−2 does not read information
from High-variables in any program run. Consequently, the program c−2 satisfies MM -Noninterference, if δ2(MM ).

For easier reference we recall the definitions of c+
3 and c−3 in Figure 3.

c+
3 :=

store1 x 1; store2 y 0; store3 l 0;
spawn4(
load5 r2 y; load6 r1 x; and7 r3 r1 r2; load8 r4 h;
if9 r3

then if10 r4 then store11 l 5 else skip12 fi
else if13 r4 then skip14 else store15 l 5 fi
fi);

store16 x 0; store17 y 1

c−3 :=
store1 x 1; store2 y 0;
spawn3(
load4 r2 y; load5 r1 x; and6 r3 r1 r2;
if7 r3 then load8 r4 h; store9 l r4 else skip10 fi);

store11 x 0; store12 y 1

Figure 3. Programs for Lemmas 17, 18, 19, 20 (Lemma 3 in the article)

Lemma 17. The following proposition holds for the domain assignment lev with lev(h) and lev(x ) = Low for all x ∈ X \{h}:
γ3(MM ) =⇒ c+

3 ∈ NI MM .

Proof: Only the final value of Low-variable l can depend on the initial value of a High-variable, because the only other
variables that are updated are the variables x and y, and the final values of x and y are definitely 0 and 1, respectively. Independent
of the initial memory, and in particular independent of the initial value of h, the final value of l can be either 0 or 5. Consequently,
the program c+

3 satisfies MM -Noninterference. In the following we present the arguments in detail.

The final values of x and y are definitely 0 and 1, respectively, because the obligations of store16 x 0 and store17 y 1
cause the last updates of x and y, and these updates set x and y to 0 and 1, respectively. The obligations of store16 x 0 and
store17 y 1 cause the last updates of x and y, because only the obligations of store1 x 1 and store2 y 0 cause further updates
of x and y, and the obligations of store1 x 1 and store2 y 0 must be fulfilled before the obligation of spawn4 while the
obligations of store16 x 0 and store17 y 1 must be fulfilled after the event of spawn4.

The final value of h is in {0, 5}, because the obligation of store3 l 0 is definitely fulfilled in every program run and the
only other updates of l are store11 l 5 and store15 l 5.

We show that the final value of l can always be 0. Let mem1 be arbitrary. We distinguish two cases based on the initial
value of h.

Case (Initial value of h equals 0):
Let t = 1, 2, 3, 4,17, 5, 6, 7, 8,16 be a sequence of natural numbers. It is possible to fulfill the obligations of
instructions with these numbers as identifiers in the order given by t, because of four reasons. First, all obligations,
except the obligations of store17 y 1 and store16 x 0 are fulfilled in the order in which their instructions are
executed. Second, γ3(MM ) holds and therefore φWW ∈ Φ for MM . The obligation ob of store16 x 0 may be
fulfilled after the obligation ob′ of store17 y 1 due to φWW, because isWrite(ob) evaluates to true, isWrite(ob′)
evaluates to true, sinks(ob) ∩ sinks(ob′) = ∅ holds. Third, the then-branch of if9 is taken, and, fourth, the else-
branch of if10 is taken.
The then-branch of if9 r3 is taken, because r3 is 1 when executing if9. The value of r3 is 1, because the obligation
of and7 r3 r1 r2 causes the most recent update of r3 and the value of r1 and r2 is 1 when executing and7 r3 r1 r2.
The value of r1 is 1, because the obligation of load6 r1 x causes the most recent update of r1, and the update sets
r1 to the value of x. The value of x is 1, because the obligation of store1 x 1 causes the most recent update of
x and the update sets x to 1. The value of r2 is 1, because the obligation of load5 r2 y causes the most recent
update, and the update sets r2 to the value of y. The value of y is 1, because the obligation of store17 y 1 causes
the most recent update of y and the update sets y to 1.
The else-branch of if10 r4 is taken, because r4 is 0 when executing if10. The value of r4 is 0, because the obligation
of load8 r4 h causes the most recent update of r4, and the udpate sets r4 to the value of h. The value of h is 0,
because there is no update of h in the program and the initial value of h is 0 by assumption of this case.
Since the else-branch of if10 is taken, the only obligation causing an update of l is the obligation of store3 l 0.
Thus the final value of l is 0.

Case (Initial value of h does not equal 0):
Let t = 1, 2, 3, 4, 5, 6, 7, 8, 16, 17 be a sequence of natural numbers. It is possible to fulfill the obligations of
instructions with these numbers as identifiers in the order given by t, because of three reasons. First, all obligations
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are processed in the order in which their instructions are executed. Second, the else-branch of if9 is taken and,
third, the then-branch of if13 is taken.
The else-branch of if9 r3 is taken, because r3 is 0 when executing if9. The value of r3 is 0, because the obligation
of and7 r3 r1 r2 causes the most recent update of r3, and the value of r2 is 0 when executing and7 r3 r1 r2. The
value of r2 is 0, because the obligation of load5 r2 y causes the most recent update of r2, and the update sets r2

to the value of y. The value of y is 0, because the obligation of store2 y 0 causes the most recent update of y,
and the update sets y to 0.
The then-branch of if13 r4 is taken, because r4 is not 0 when executing if13. The value of r4 is not 0, because
the obligation of load8 r4 h causes the most recent update of r4, and the udpate sets r4 to the value of h. The
value of h is not 0, because there is no update of h in the program and the initial value of h is different from 0 by
assumption of this case.
Since the then-branch of if13 is taken the only obligation causing and update of l is the obligation of store3 l 0.
Thus the final value of l is 0.

We show that the final value of l can always be 5. Let mem1 be arbitrary. We distinguish two cases based on the initial
value of h.

Case (Initial value of h equals 0):
Let t = 1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 17 be a sequence of natural numbers. It is possible to fulfill the obligations of
instructions with these numbers as identifiers in the order given by t, because of three reasons. First, all obligations
are fulfilled in the order in which their instructions are executed. Second, the else-branch of if9 is taken and, third,
the else-branch of if13 is taken.
The else-branch of if9 r3 is taken, because r3 is 0 when executing if9. The value of r3 is 0, because the obligation
of and7 r3 r1 r2 causes the most recent update of r3, and the value of r2 is 0 when executing and7 r3 r1 r2. The
value of r2 is 0, because the obligation of load5 r2 y causes the most recent update of r2, and the update sets r2

to the value of y. The value of y is 0, because the obligation of store2 y 0 causes the most recent update of y,
and the update sets y to 0.
The else-branch of if13 r4 is taken, because r4 is 0 when executing if13. The value of r4 is 0, because the obligation
of load8 r4 h causes the most recent update of r4, and the udpate sets r4 to the value of h. The value of h is 0,
because there is no update of h in the program and the initial value of h is 0 by assumption of this case.
Since the else-branch of if13 is taken, the obligation of store15 l 5 is fulfilled as the last update of l. Thus the
final value of l is 5.

Case (Initial value of h does not equal 0):
Let t = 1, 2, 3, 4,17, 5, 6, 7, 8, 11,16 be a sequence of natural numbers. It is possible to fulfill the obligations
of instructions with with these numbers as identifiers in the order given by t, because of four reasons. First, all
obligations, except the obligations of store17 y 1 and store16 x 0, are fulfilled in the order in which their instructions
are executed. Second, γ3(MM ) holds and therefore φWW ∈ Φ for MM . The obligation ob of store16 x 0 may be
fulfilled after the obligation ob′ of store17 y 1 due to φWW, because isWrite(ob) evaluates to true, isWrite(ob′)
evaluates to true, sinks(ob)∩ sinks(ob′) = ∅ holds. Third, the then-branch of if9 is taken, and, fourth, the then-
branch of if10 is taken.
The then-branch of if9 r3 is taken, because r3 is 1 when executing if9. The value of r3 is 1, because the obligation
of and7 r3 r1 r2 causes the most recent update of r3 and the value of r1 and r2 is 1 when executing and7 r3 r1 r2.
The value of r1 is 1, because the obligation of load6 r1 x causes the most recent update of r1, and the update sets
r1 to the value of x. The value of x is 1, because the obligation of store1 x 1 causes the most recent update of x
and the update sets x to 1. The value of r2 is 1, because the obligation of load5 r2 y causes the most recent update
of r2, and the update sets r2 to the value of y. The value of y is 1, because the obligation of store17 y 1 causes
the most recent update of y and the update sets y to 1.
The then-branch of if10 r4 is taken, because r4 is not 0 when executing if10. The value of r4 is not 0, because
the obligation of load8 r4 h causes the most recent update of r4, and the udpate sets r4 to the value of h. The
value of h is not 0, because there is no update of h in the program and the initial value of h is different from 0 by
assumption of this case.
Since the then-branch of if10 is taken, the obligation of store11 l 5 is fulfilled as the last update of l. Thus the
final value of l is 5.

That means independent of the initial value of the High-variable h, the final values of x and y respectively are 0 and 1,
the final value of l can be either 0 or 5, and the values of all other variables remain unchanged. Hence, for all pairs of Low-
equal initial memories Low-equal final memories are reachable. Consequently, the program c+

3 satisfies MM -Noninterference,
if γ3(MM ).

Lemma 18. The following proposition holds for the domain assignment lev with lev(h) and lev(x ) = Low for all x ∈ X \{h}:
δ3(MM ) =⇒ c+

3 /∈ NI MM .

Proof: The final value of the Low-variable l can only be 5 if the initial value of the High-variable h is 0, because store3 l 0
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definitely updates l to 0 and there are only two instructions that can update l to 5. The two instructions are store11 l 5 and
store15 l 5. The instruction store11 l 5 is in the then-branch of if9. The then-branch of if9 is dead code. The instruction
store15 l 5 is in the else-branch of if13. The else-branch of if13 is only reachable if the initial value of h is 0. Thus the
program does not satisfy MM -Noninterference. In the following we present the arguments in detail.

The else-branch of if13 r4 is only reachable if the initial value of h is 0, because the obligation of load8 r4 h is fulfilled
before if13 is executed, the obligation of load8 r4 h causes an update of r4 to the initial value of h, and there is no other
update of r5. The obligation of load8 r4 h causes an update of r4 to the initial value of h, because there is no update of h in
the program.

The then-branch of if9 is dead code, because the value of r3 is always 0. The value of r3 is always 0, because r3 is
initialized with 0 and only the obligation of and7 r3 r1 r2 causes an update of r3. The obligation of and7 r3 r1 r2 always
causes an update of r3 to 0, because either r1 or r2 is alsways 0 when executing and7. This is due to the fact that both registers
are initialized with 0 and only the obligations of load6 r1 x and load5 r2 y respectively cause an update of x and y. At least
one of the obligations causes an update of its respective register to 0. Which of the two obligations causes an udpate of its
respective register to 0 depends on the obligation that is fulfilled directly after the obligation of spawn4. Either the obligation
of load5 r2 y or the obligation of store16 x 0 must be fulfilled directly after the obligation of spawn4. This is due to the
fact that these two instructions belong to different threads and the obligations of their subsequent instructions cannot be fulfilled
before the obligations of these two instructions. The subsequent instruction of load5 r2 y is load6 r1 x and isRead holds for
the obligation of load6 r1 x. Since δ3(MM ) holds, nextΦ cannot hold for the obligation of load6 r1 x, because isRead also
holds for the obligation of load5 r2 y. The subsequent instruction of store16 x 0 is store17 y 1 and isWrite holds for the
obligation of store17 y 1. Since δ3(MM ) holds, nextΦ cannot hold for the obligation of store17 y 1, because isWrite also
holds for the obligation of store16 x 0.

We distinguish two cases based on the obligation that is fulfilled after the obligation of spawn4 and show that either r1 or
r2 is always 0.

Case (load5 r2 y):
In this case, the value of r2 is always 0, because r2 is initialized with 0, only the obligation of load5 r2 y causes
an update of r2 and the update sets r2 to the value of y. The value of y is 0, because the obligation of store2 y 0
causes the most recent update of y and the update sets y to 0. The obligation of store2 y 0 causes the most recent
update of y, because only the obligation of store17 y 1 causes a further update of y, the obligation of store2 y 0
must be fulfilled before the obligation of spawn4 while the obligations of load5 r2 y and store17 y 1 must be
fulfilled after the obligation of spawn4, and the obligation of load5 r2 y is fulfilled directly after the obligation of
spawn4 according to the assumption of this case.

Case (store16 x 0):
In this case, the value of r1 is always 0, because r1 is initialized with 0, only the obligation of load6 r1 x causes
an update of r1, and the update sets r1 to the value of x. The value of x is 0, because the obligation of store16 x 0
causes the most recent udpate of x and the update sets x to 0. The obligation of store16 x 0 causes the most recent
udpate of x, because only the obligation of store1 x 1 causes a further update of x, the obligation of store1 x 1
must be fulfilled before the obligation of spawn4 while the obligations of load6 r1 x and store16 x 0 must be
fulfilled after the obligation of spawn4, and the obligation of store16 x 0 is fulfilled directly after the obligation
of spawn4 according to the assumption of this case.

Based on these observations we construct a concrete counter example: We choose initial memories mem1 and mem ′1 such
that mem1(x ) = 0 for all x ∈ X , mem ′1(x ) = 0 for all x ∈ X \ {h} and mem ′1(h) = 23. The memories mem1 and mem ′1
satisfy mem1 =L mem ′1, because mem1(x ) = 0 = mem ′1(x ) for all x ∈ X \ {h} and lev(h) = High. From mem1 a final
memory mem2 is reachable with mem2(l) = 5, because the initial value of h is 0. All final memories mem ′2 that are reachable
from mem ′1 satisfy mem ′2(l) 6= 5, because the initial value of h is 23 and not 0. Thus, for all final memories mem ′2 that are
reachable from mem ′1, we have mem2 6=L mem ′2, because mem2(l) = 5 6= mem ′2(l) and lev(l) = Low.

Consequently, the program c+
3 does not satisfy MM -Noninterference, if δ3(MM ) holds.

Lemma 19. The following proposition holds for the domain assignment lev with lev(h) and lev(x ) = Low for all x ∈ X \{h}:
γ3(MM ) =⇒ c−3 /∈ NI MM .

Proof: The two instructions load8 and store9 in the then-branch of if7 form a direct leak, because load8 reads the value
of the High-variable h into r4, and store9 subsequently writes the value of r4 into the Low-variable l. Due to this direct
leak and the fact that this then-branch is reachable, the program c−3 does not satisfy MM -noninterference. In the following we
present the arguments in detail.

Let t = 1, 2, 3,12, 4, 5, 6,11 be a sequence of natural numbers. It is possible to fulfill the obligations of instructions with
these natural numbers as identifiers up to reaching if7 in the order given by t, because all obligations, except the obligations of
store11 y 1 and store12 y 1, are fulfilled in the order in which their instructions are executed. Since γ3(MM ) holds, φWW ∈ Φ
for MM . Thus, the obligation ob of store11 x 0 may be fulfilled after the obligation ob′ of store12 y 1 due to φWW, because
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isWrite(ob) evaluates to true, isWrite(ob′) evaluates to true and sinks(ob) ∩ sinks(ob′) = ∅ holds. We will now argue why
the instructions load8 and store9 will be executed and their obligations fulfilled after t.

The sequence t always leads to a register state reg7 with reg7(r1) = 1, reg7(r2) = 1 and reg7(r3) = 1, because of three
reasons. First, the obligation of load4 r2 y causes the last update of r2 and the update sets r2 to the value of y. The value of y
is 1, because the obligation of store12 y 1 causes the most recent update of y and the update sets y to 1. Second, the obligation
of load5 r1 x causes the last update of r1 and the update sets r1 to the value of x. The value of x is 1, because the obligation
of store1 x 1 causes the most recent update of r1 and the update sets x to 1. Third, the obligation of and6 r3 r1 r2 causes
the last update of r3 and the update sets r3 to 1, because the obligations of load5 r1 x and load4 r2 y respectively cause the
most recent updates of r1 and r2 and both updates set their respective registers to 1 (as we have argued before). Consequently,
the then-branch of if7 r3 is taken after t. This means that the instructions load8 r4 h and store9 l r4 are executed and their
obligations fulfilled after t.

We choose an initial memory mem1 with mem1(x ) = 0 for all x ∈ X \ {h} and mem1(h) = 5. The final value of l is 5,
because only the obligation of store9 l r4 causes an update of l and the update sets l to the value of r4. The value of r4 is 5,
because the obligation of load8 r4 h causes an update of r4 and the update sets r4 to the initial value of h. The update sets r4 to
the initial value of h, because no instruction in the program updates h. The initial value of h is 5, i.e. mem1(h) = 5, according
to the initial memory we have chosen. The obligation of load8 r4 h must be fulfilled before the obligation of store9 l r4,
because both obligations are caused by the same thread and access r4.

We now show that there is an initial memory mem ′1 with mem1 =L mem ′1 for which 5 is not a possible final value for
l. We choose an initial value mem ′1 with mem ′1(x ) = 0 for all x ∈ X . From the definition of Low-equality we know that
mem1 =L mem ′1, because mem1(x ) = mem ′1(x ) for all x ∈ X \ {h} and lev(h) = High. For the initial memory mem ′1 the
final value of l must be in {0, 1}, because the initial value of all variables is 0, all constants that appear in the program are either
0 or 1, and the only computation, i.e. and has {0, 1} as range of values. Consequently, the final value of l cannot be 5. Hence,
mem ′2(l) 6= 5 = mem2(l) holds for all final memories mem ′2 that are reachable from mem ′1.

This means that there is no final memory reachable from mem ′1 that is Low-equal to mem2. Consequently, the program c−3
does not satisfy MM -Noninterference, if γ3(MM ) holds.

Lemma 20. The following proposition holds for the domain assignment lev with lev(h) and lev(x ) = Low for all x ∈ X \{h}:
δ3(MM ) =⇒ c−3 ∈ NI MM .

Proof: Only load8 in the then-branch of if7 reads a High-variable. The then-branch of if7 is dead code. Since the only
instruction that reads a High-variable is dead code, the program c−3 satisfies MM -noninterference. In the following we present
the arguments in detail.

The instruction load8 is dead code, because it is in the then-branch of if7 r3 and the value of r3 of the spawned thread
is always 0. The value of r3 is always 0, because it is initialized with 0 and only the obligation of and6 r3 r1 r2 causes an
update of r3. The obligation of and6 r3 r1 r2 causes an update of r3 to 0, because the value of either r1 or r2 is always 0 in
all possible sequences for fulfilling obligations.

We now show that the value of either r1 or r2 is always 0 in all possible sequences for fulfilling obligations. All possible
sequences for fulfilling obligations up to (inclusively) the obligation of spawn3 have the same effect on the global state, because
each of the obligations of store1 x 1 and store2 y 0 causes an update of a different variable and both obligations must be
fulfilled before the obligation of spawn3. Only two obligations can be fulfilled directly after the obligation of spawn3: The
obligation of either load4 r2 y or store11 x 0 must be fulfilled directly after the obligation of spawn3. This is due to the
fact that these two instructions belong to different threads and the obligations of their subsequent instructions cannot be fulfilled
before the obligations of these two instructions. The subsequent instruction of load4 r2 y is load5 r1 x and isRead holds for
the obligation of load5 r1 x. Since δ3(MM ) holds, nextΦ cannot hold for the obligation of load5 r1 x, because isRead also
holds for the obligation of load4 r2 y. The subsequent instruction of store11 x 0 is store12 y 1 and isWrite holds for the
obligation of store12 y 1. Since δ3(MM ) holds, nextΦ cannot hold for the obligation of store12 y 1, because isWrite also
holds for the obligation of store11 x 0.

We distinguish two cases. In the first case, the obligation of load4 r2 y is fulfilled directly after the obligation of spawn3.
In the second case, the obligation of store11 x 0 is fulfilled directly after the obligation of spawn4.

Case (load4 r2 y):
In this case, the value of r2 is always 0, because r2 is initialized with 0, only the obligation of load4 r2 y causes
an update of r2, and the update sets r2 to the value of y. The value of y is 0, because the obligation of store2 y 0
causes the most recent update of y and the update sets y to 0. The obligation of store2 y 0 causes the most recent
update of y, because the obligation of store2 y 0 must be fulfilled before the obligation of spawn4 while the
obligation of load4 r2 y and store12 y 1 must be fulfilled after the obligation of spawn4, and the obligation of
load4 r2 y is fulfilled directly after the obligation of spawn4 according to the assumption of this case.

Case (store11 x 0):
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In this case, the the value of r1 is always 0, because r1 is initialized with 0, only the obligation of load5 r1 x causes
an update of r1, and the update sets r1 to the value of x. The value of x is 0, because the obligation of store11 x 0
causes the most recent update of x, and the update sets x to 0. The obligation of store11 x 0 causes the most
recent update of x, because the obligation of store1 x 0 must be fulfilled before the obligation of spawn4 while
the obligations of load5 r1 x and store11 x 0 must be fulfilled after the obligation of spawn4, and the obligation
of store11 x 0 is fulfilled directly after the obligation of spawn4 according to the assumption of this case.

Since load8 h r4 is dead code and no other instruction reads a High-variable the program does not read information from
High-variables in any program run. Consequently, the program c−3 satisfies MM -Noninterference, if δ3(MM ) holds.

For easier reference we recall Theorem 1 from the article:

Theorem 1. Noninterference under MM does not imply noninterference under MM ′, for each pair of distinct memory models
MM ,MM ′ ∈ {SC, IBM370,TSO,PSO}.

Proof: This follows from Lemmas 4, 5, 6 and 7 that show which of the discrimnating conditions from δl and γl with
l ∈ {1, 2, 3} each of the memory models satisfy and Lemmas 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 that provide
concrete counter examples against each implication.

C. Proofs for Program Typing

In this section we recall the transforming type system from the article and introduce a type-check system that we use to
back the soundness proof of our transformation. We show that a program that is transformed with our transforming type system
results in a program that is typeable with the type-check system. The transforming type system from the article is recalled in
Figure 4. The type-check system is defined in Figure 5. Note that the rules [CSK], [CFN], [CLC], [CLX], [COP], [CST], [CSP],

[SK]
pc, pt `lev skipι � (pt , skipι)

[FN]
pc, pt `lev fenceι � (High, fenceι)

[LC]
v ∈ V pc v lev(r)

pc, pt `lev loadι r v � (pt u lev(r), loadι r v)
[LX]

x ∈ X lev(x ) t pc v lev(r)

pc, pt `lev loadι r x � (pt u lev(r), loadι r x )

[OP]
op ∈ {and, eq} lev(r2) t lev(r3) t pc v lev(r1)

pc, pt `lev opι r1 r2 r3 � (pt u lev(r1), opι r1 r2 r3)
[ST]

lev(r) t pc v lev(x )

pc, pt `lev storeι x r � (pt u lev(x ), storeι x r)

[SP]
pc, pt ′ `lev c � (pt ′′, c′)

Low, pt `lev spawnιc � (Low, spawnιc
′)

[SQ]
pc, pt `lev c1 � (pt ′, c′1) pc, pt ′ `lev c2 � (pt ′′, c′2)

pc, pt `lev c1; c2 � (pt ′′, c′1; c′2)

[IL]
lev(r) = Low pc, pt `lev c1 � (pt ′, c′1) pc, pt `lev c2 � (pt ′′, c′2)

pc, pt `lev if ι r then c1 else c2 fi � (pt ′ u pt ′′, if ι r then c′1 else c′2 fi)

[IH]
lev(r) = pt = High High, pt `lev c1 � (pt , c′1) High, pt `lev c2 � (pt , c′2)

pc, pt `lev if ι r then c1 else c2 fi � (High, if ι r then c′1 else c′2 fi)

[IT]
lev(r) = High pt = Low ι′ is fresh High,High `lev c1 � (High, c′1) High,High `lev c2 � (High, c′2)

pc, pt `lev if ι r then c1 else c2 fi � (High, fenceι′ ; if ι r then c′1 else c′2 fi)

[WH]
pc = lev(r) = Low pc,Low `lev c � (pt ′, c′)

pc, pt `lev whileι r do c od � (pt u pt ′,whileι r do c′ od)

Figure 4. Transforming security type system for SC, IBM370, TSO, and PSO

[CSQ], [CIL], [CIH] and [CWH] for type-checking have the same preconditions like the transformation rules [SK], [FN], [LC],
[LX], [OP], [ST], [SP], [SQ], [IL], [IH] and [WH]. There is no corresponding rule for the transformation rule [IT], because this
is the rule that inserts the fences in our transformation. There are additional rules for type-checking the terminated instruction ε
without any constraints, for typing an instruction with a lower final path-type if it is type-checkable with a higher final path-type,
for type-checking a list of obligations to check that all obligations adhere to the information-flow policy and to check whether
the path-type constitues a lower bound on the security level of variables and registers that will be updated due to obligations in
the path.

The following lemma shows that a program that is obtained with the transformation (Figure 4) is typeable with the type-check
system (Figure 5).

Lemma 21 (Transformed Programs can be Typechecked). If pc, pt `lev c � (pt ′, c′) is derivable, then pc, pt `lev c′ � (pt ′) is
derivable.
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[CSK]
pc, pt `lev skipι � (pt)

[CFN]
pc, pt `lev fenceι � (High)

[CLC]
v ∈ V pc v lev(r)

pc, pt `lev loadι r v � (pt u lev(r))
[CLX]

x ∈ X lev(x ) t pc v lev(r)

pc, pt `lev loadι r x � (pt u lev(r))

[COP]
op ∈ {and, eq} lev(r2) t lev(r3) t pc v lev(r1)

pc, pt `lev opι r1 r2 r3 � (pt u lev(r1))
[CST]

lev(r) t pc v lev(x )

pc, pt `lev storeι x r � (pt u lev(x ))

[CSP]
pc, pt ′ `lev c � (pt ′′)

Low, pt `lev spawnιc � (Low)
[CSQ]

pc, pt `lev c1 � (pt ′) pc, pt ′ `lev c2 � (pt ′′)

pc, pt `lev c1; c2 � (pt ′′)

[CIL]
lev(r) = Low pc, pt `lev c1 � (pt ′) pc, pt `lev c2 � (pt ′′)

pc, pt `lev if ι r then c1 else c2 fi � (pt ′ u pt ′′)

[CIH]
lev(r) = pt = High High, pt `lev c1 � (High) High, pt `lev c2 � (High)

pc, pt `lev if ι r then c1 else c2 fi � (High)

[CWH]
pc = Low lev(r) = Low pc,Low `lev c � (pt ′)

pc, pt `lev whileι r do c od � (pt u pt ′)

[SB]
pc, pt `lev c � (pt ′′) pt ′ v pt ′′

pc, pt `lev c � (pt ′)
[EM]

pc, pt `lev ε � (pt)

[PE]
pt `lev []

[PF]
∃pt ′ ∈ {Low,High}.pt ′ `lev obs

pt `lev obs::[‖] [PS]
pt t lev(r) v lev(x ) pt `lev obs

pt `lev obs::[x ^ v@r ]

[PL]
pt t lev(x ) v lev(r) pt `lev obs

pt `lev obs::[x@v _ r ]
[PC]

pt v lev(r) pt `lev obs

pt `lev obs::[v@const � r ]

[PV]

pt t lev(r1) t lev(r2) v lev(r)
op ∈ {eq, and} pt `lev obs

pt `lev pa::[v@op(r1, r2) � r ]
[PT]

pt v Low pt `lev obs
∃pc, pt ′, pt ′′ ∈ {Low,High}.pc, pt ′ `lev c � (pt ′′)

pt `lev obs::[↗c ]

[CS]

pre(~cs) = pre( ~pc) = pre(~pt)
∀i ∈ pre(~cs).∃pt ′ ∈ {Low,High}. ~pc(i), ~pt(i) `lev ~cs(i) � (pt ′) ∧ ~pt(i) `lev pa �i

~pc, ~pt `lev 〈~cs, (pa, ~tr), gst〉

Figure 5. Type-check System

Proof: The gist of this proof is that the transforming type system inserts a fence, if lev(r) = High and pt = Low holds
for if ι r . When performing the type check pt = High holds when the same if ι r is checked, because the rule for fence raises
pt to High and the rule for sequential composition propagates this into the type check for the subsequent if ι r . The detailed
argument works as follows.

Let lev , pc, pt , c, c′ and pt ′ be arbitrary such that pc, pt `lev c � (pt ′, c′) is derivable. We show by an induction on the
derivation length of pc, pt `lev c � (pt ′, c′) that pc, pt `lev c′ � (pt ′) is derivable.

For the induction base let the derivation length of pc, pt `lev c � (pt ′, c′) be 1. Only with the rules [SK], [FN], [LC], [LX],
[OP] and [ST] a derivation length of 1 is possible. We distinguish these cases.

Case ([SK]):
From the assumption of this case we get by the rule [SK] that c = c′ = skipι and pt ′ = pt . From c′ = skip we
get by the rule [CSK] that pc, pt `lev c′ � (pt) is derivable.

Case ([FN]):
From the assumption of this case we get by the rule [FN] that c = c′ = fenceι and pt ′ = High. From c′ = fenceι
we get by the rule [CFN] that pc, pt `lev c′ � (High) is derivable.

Case ([LC]):
From the assumption of this case we get by the rule [LC] that c = c′ = loadι r v , v ∈ V , pc v lev(r) and pt ′ =
ptu lev(r). From c′ = loadι r v , v ∈ V and pc v lev(r) we get by the rule [CLC] that pc, pt `lev c′�(ptu lev(r))
is derivable.

Case ([LX]):
From the assumption of this case we get by the rule [LX] that c = c′ = loadι r x , x ∈ X , lev(x ) t pc v lev(r)
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and pt ′ = pt u lev(r). From c′ = loadι r x , x ∈ X and lev(x ) t pc v lev(r) we get by the rule [CLX] that
pc, pt `lev c′ � (pt u lev(r)) is derivable.

Case ([OP]):
From the assumption of this case we get by the rule [OP] that c = c′ = opι r1 r2 r3, op ∈ {and, eq}, lev(r2) t
lev(r3)tpc v lev(r1) and pt ′ = pt u lev(r1). From c = c′ = opι r1 r2 r3, op ∈ {and, eq} and lev(r2)t lev(r3)t
pc v lev(r1) we get by the rule [COP] that pc, pt `lev c′ � (pt u lev(r1)) is derivable.

Case ([ST]):
From the assumption of this case we get by the rule [ST] that c = c′ = storeι x r , lev(r) t pc v lev(x ) and
pt ′ = pt u lev(x ). From c′ = storeι x r and lev(r) t pc v lev(x ) we get by the rule [CST] that pc, pt `lev
c′ � (pt u lev(x )) is derivable.

As induction hypothesis we assume that pc, pt `lev c � (pt ′, c′) implies that pc, pt `lev c � (pt ′, c′) is derivable for all
pc, pt `lev c � (pt ′, c′) with an arbitrary derivation length n ≥ 1.

For the induction step let lev , pc, pt , c, c′ and pt ′ be arbitrary such that pc, pt `lev c � (pt ′, c′) is derivable in n′ = n+ 1
steps. From n ≥ 1 and n′ = n+ 1 we get n′ ≥ 2. Only with the rules [SP], [IL], [IH], [IT], [WH] and [SQ] a derivation length
of n′ ≥ 2 is possible. We distinguish these cases.

Case ([SP]):
From the assumption of this case we get by the rule [SP] that c = spawnιc

′′, c′ = spawnιc
′′′, pc = Low,

pt ′ = Low, and pc, pt ′′ `lev c′′ � (pt ′′′, c′′′).
From pc, pt ′′ `lev c′′ � (pt ′′′, c′′′) and the fact that the derivation length of pc, pt ′′ `lev c′′ � (pt ′′′, c′′′) is n′−1 = n
we get by the induction hypothesis that pc, pt ′′ `lev c′′′ � (pt ′′′) is derivable.
From c′ = spawnιc

′′′, pc = Low, pt ′ = Low and pc, pt ′ `lev c′′′ � (pt ′′) we get by the rule [CSP] that
Low, pt `lev c′ � (Low) is derivable.

Case ([IL]):
From the assumption of this case we get by the rule [IL] that lev(r) = Low, c = if ι r then c1 else c2 fi,
c′ = if ι r then c′1 else c′2 fi, pt ′ = pt ′′ u pt ′′′, pc, pt `lev c1 � (pt ′′, c′1) and pc, pt `lev c2 � (pt ′′′, c′2).
From pc, pt `lev c1�(pt ′′, c′1), pc, pt `lev c2�(pt ′′′, c′2) and the fact that the derivation length of these two judgments
is at most n′ − 1 = n we get by the induction hypothesis that pc, pt `lev c′1 � (pt ′′) and pc, pt `lev c′2 � (pt ′′′) is
derivable.
From c′ = if ι r then c′1 else c′2 fi, lev(r) = Low, pt ′ = pt ′′upt ′′′, pc, pt `lev c′1�(pt ′′) and pc, pt `lev c′2�(pt ′′′)
we get by the rule [CIL] that pc, pt `lev c′ � (pt ′′ u pt ′′′) is derivable.

Case ([IH]):
From the assumption of this case we get by the rule [IH] that lev(r) = pt = High, c = if ι r then c1 else c2 fi,
c′ = if ι r then c′1 else c′2 fi, pt ′ = High, High,High `lev c1�(High, c′1) and High,High `lev c2�(High, c′2).
From High,High `lev c1 � (High, c′1), High,High `lev c2 � (High, c′2) and the fact that the derivation length of
these two judgments is at most n′ − 1 = n we get by the induction hypothesis that High,High `lev c′1 � (High)
and High,High `lev c′2 � (High) is derivable.
From c′ = if ι r then c′1 else c′2 fi, lev(r) = pt = High, pt ′ = High, High,High `lev c′1 � (High) and
High,High `lev c′2 � (High) we get by the rule [CIH] that pc,High `lev c′ � (High) is derivable.

Case ([IT]):
From the assumption of this case we get by the rule [IT] that lev(r) = High, pt = Low, c = if ι r then c1 else c2 fi,
c′ = fenceι′ ; if ι r then c′1 else c′2 fi, ι′ is fresh, pt ′ = High, High,High `lev c1 � (High, c′1) and
High,High `lev c2 � (High, c′2).
From High,High `lev c1 � (High, c′1), High,High `lev c2 � (High, c′2) and the fact that the derivation length of
these two judgments is at most n′ − 1 = n we get by the induction hypothesis that High,High `lev c′1 � (High)
and High,High `lev c′2 � (High) is derivable.
From fenceι′ we get by the rule [CFN] that pc, pt `lev fenceι′ � (High) is derivable.
From lev(r) = High, High,High `lev c′1 � (High) and High,High `lev c′2 � (High) we get by the rule [CIH]
that pc,High `lev if ι r then c′1 else c′2 fi � (High) is derivable.
From c′ = fenceι′ ; if ι r then c′1 else c′2 fi, pt ′ = High, pc, pt `lev fenceι′ � (High) and pc,High `lev
if ι r then c′1 else c′2 fi � (High) we get by the rule [CSQ] that pc, pt `lev c′ � (High) is derivable.

Case ([WH]):
From the assumption of this case we get by the rule [WH] that c = whileι r do c′′ od, c′ = whileι r do c′′′ od,
lev(r) = Low, pt ′ = pt u pt ′′ and pc,Low `lev c′′ � (pt ′′, c′′′).
From pc,Low `lev c′′ � (pt ′′, c′′′) and the fact that the derivation length of this judgments is n′− 1 = n we get by
the induction hypothesis that pc,Low `lev c′′′ � (pt ′′) is derivable.
From c′ = whileι r do c′′′ od, lev(r) = Low, pt ′ = pt u pt ′′ and pc,Low `lev c′′′ � (pt ′′) we get by the rule
[CWH] that pc, pt `lev c′ � (pt ′) is derivable.

Case ([SQ]):
From the assumption of this case we get by the rule [SQ] that c = c1; c2, c′ = c′1; c′2, pc, pt `lev c1 � (pt ′′, c′1)
and pc, pt ′′ `lev c2 � (pt ′, c′2).
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From pc, pt `lev c1 � (pt ′′, c′1) and pc, pt ′′ `lev c2 � (pt ′, c′2) and the fact that the derivation length of these two
judgments is at most n′−1 = n we get by the induction hypothesis that pc, pt `lev c′1�(pt ′′) and pc, pt ′′ `lev c′2�(pt ′)
is derivable.
From c′ = c′1; c′2, pc, pt `lev c′1�(pt ′′) and pc, pt ′′ `lev c′2�(pt ′) we get by the rule [CSQ] that pc, pt `lev c′�(pt ′)
is derivable.

The following lemma shows admissable subtypings for the programcounter and the path-type.

Lemma 22 (Subtyping). The following propositions hold:

1) pc, pt `lev c � (pt ′) =⇒ pc′, pt `lev c � (pt ′) for pc, pc′, pt , pt ′ ∈ {Low,High} with pc′ v pc holds for all c ∈ C.
2) pt `lev obs =⇒ pt ′ `lev obs for pt , pt ′ ∈ {Low,High} with pt ′ v pt holds for all obs ∈ Ob∗.

Proof:

1) This follows from the fact that all requirements that compare pc and pc′ to another security domain require that pc and
pc′, respectivley, are smaller or equal than the security domain to which it is compared.

2) This follows from the fact that all requirements that compare pt and pt ′ to another security domain require that pt and
pt ′, respectively, are smaller or equal than the security domain to which it is compared.

The following lemma shows properties that hold for decomposing and composing lists of obligations.

Lemma 23. If pt1 `lev obs1 and pt2 `lev obs2 are derivable, then the following two propositions hold:

• pt ′1 `lev obs1 \ k for some k < |obs1| − 1 and some pt ′1 ∈ {Low,High}, and

• pt1 u pt2 `lev obs1::obs2.

Proof:

• This follows from the fact that the typing of an obligation list iterates over the complete list and for each element in the
list the same rule remains applicable after removing another element from the list.

• This follows from the fact that the typing of an obligation list iterates over the complete list and condition 2 in Lemma 22.

The following lemma shows that an execution step of a High-typed instruction results in a High-typeable instruction again.

Lemma 24. If 〈c1, pa1, reg〉 →i 〈c2, pa2〉 and High,High `lev c1 � (pt), then pt = High and High,High `lev c2 � (High).

Proof: We prove this by an induction on the derivation length of 〈c1, pa1, reg〉 →i 〈c2, pa2〉.
Let c1 ∈ C, pa1, pa2 ∈ Pa , reg ∈ Reg and c2 ∈ (C ∪ {ε}) be arbitrary such that 〈c1, pa1, reg〉 →i 〈c2, pa2〉 and

High,High `lev c1 � (pt).

By inspection of the calculus we see immediately that all rules that update the pathtype can only reduce the pathtype to Low
if pc = Low, but from the assumption of this lemma we have pc = High. Hence, pt = High.

The induction base are derivations with a length of 1. Derivations with length 1 are possible for all instructions that are not
sequentially composed.

We distinguish two cases based on whether c2 = ε or c2 ∈ C.

Case (c2 = ε):
In this case we get from c2 = ε by rule [EM] that High,High `lev c2 � (High).

Case (c2 ∈ C):
In this case we get from c2 ∈ C that c2 is either an if or a while. From High,High `lev c1 � (High) we know
that c1 cannot be a while. Hence, c1 = if ι r then ct else ce fi.
From the rule [CIL] (in combination with typing rules that update the path using the same argument about pc as
before) and [CIH] we get High,High `lev c � (High) for c ∈ {ct, ce}.

As induction hypothesis we assume that High,High `lev cC�(pt) and pt = High holds for all derivations of 〈cA, pa1, reg〉 →i

〈cC , pa2〉 with an arbitrary length n.

For the induction step let the derivation length of 〈c1, pa1, reg〉 →i 〈c2, pa2〉 be n′ = n + 1. From the semantics we know
that derivations with a length greater than 1 are only possible with sequential composition.

33



From semantics of sequential composition we get that c1 = cA; cB and 〈cA, pa1, reg〉 →i 〈cC , pa2〉 is derivable with
n′ − 1 = n steps. From c1 = cA; cB we get by [SQ] that High,High `lev cA � (pt) and High, pt `lev cB � (High). From
this we get by the induction hypothesis that High,High `lev cC � (pt) and pt = High.

From semantics of sequential composition we also get c2 = cB or c2 = cC ; cB . From High,High `lev cB � (High) and
High,High `lev cC � (High) we get either directly or by rule [SQ] that High,High `lev c2 � (High).

The following lemma shows that executions steps of a typeable instruction with a typeable list of obligations result in typable
instructions and lists of obligations again.

Lemma 25. If pc, pt `lev c � (pt ′) and pt `lev pa �i and 〈c, pa, reg〉 →i 〈c′, pa ′〉 are derivable for some pc, pt , pt ′ ∈
{Low,High}, then pc, pt ′′ `lev c′ � (pt ′′′) and pt ′′ `lev pa ′ �i are derivable for some pt ′′, pt ′′′ ∈ {Low,High}.

Proof: Let i ∈ I, pc, pt , pt ′ ∈ {Low,High}, c ∈ C, c′ ∈ C ∪ {ε} and pa, pa ′ ∈ Pa be arbitrary with pc, pt `lev c � (pt ′)
and pt `lev pa �i and 〈c, pa, reg〉 →i 〈c′, pa ′〉 for some pc, pt , pt ′ ∈ {Low,High}.

We prove that there is pt ′′, pt ′′′ ∈ {Low,High} such that pc, pt ′′ `lev c′ � (pt ′′′) and pt ′′ `lev pa ′ �i by an induction over
the length of the derivation of pc, pt `lev c � (pt ′). The induction base are derivations with a length of 1.

We make a case distinction on the rules for which the judgment pc, pt `lev c � (pt ′). can be derived in one step, i.e. [CSK],
[CFN], [CLC], [CLX], [COP], [CST].

Case ([EM]):
In this case 〈ε, pa, reg〉 →i 〈c′, pa ′〉 cannot be derived and therefore this case cannot apply.

Case ([SK]):
In this case we know that c = skipι and from semantics of skip that c′ = ε and pa ′ = pa .
From rule [CSK] we get pt ′ = pt . From pa ′ = pa and pt ′ = pt and pt `lev pa �i we get pt ′ `lev pa ′ �i .
From rule [EM] we get that pc, pt ′ `lev ε � (pt ′) is derivable.

Case ([FN]):
In this case we know that c = fenceι and from semantics of fence that c′ = ε and pa ′ = pa::[(i , ‖)].
From rule [CFN] we get pt ′ = High. From pa ′ = pa::[(i , ‖)] and pt `lev pa �i we get by rule [PF] that High `lev
pa::[(i , ‖)]�i is derivable.
From rule [EM] we get that pc, pt ′ `lev ε � (pt ′) is derivable.

Case ([CLC]):
In this case we know that c = loadι r v and from semantics of load that c′ = ε and pa ′ = pa::[(i , v@const � r)].
From rule [CLC] we get pt ′ = pt u lev(r). From pt ′ = pt u lev(r) we get pt ′ v lev(r). From pt ′ v lev(r) and
pa ′ = pa::[(i , v@const � r)] and pt `lev pa �i we get by rule [PC] and Lemma 22 that pt ′ `lev pa::[(i , v@const �
r)]�i . Hence, pt ′ `lev pa ′ �i .
From rule [EM] we get that pc, pt ′ `lev ε � (pt ′) is derivable.

Case ([CLX]):
In this case we know that c = loadι v x and from semantics of load that c′ = ε and pa ′ = pa::[(i , ?@x _ r)].
From rule [CLX] we get pt ′ = pt u lev(r) and lev(x ) v lev(r). From pt ′ = pt u lev(r) and lev(x ) v lev(r) we
get pt ′ t lev(x ) v lev(r). From pt ′ = pt u lev(r) and pt ′ t lev(x ) v lev(r) and pa ′ = pa::[(i , ?@x _ r)] and
pt `lev pa �i we get by rule [PL] and Lemma 22 that pt ′ `lev pa::[(i , ?@x _ r)]. Hence, pt ′ `lev pa ′.
From rule [EM] we get that pc, pt ′ `lev ε � (pt ′) is derivable.

Case ([CST]):
In this case we know that c = storeι x r and from semantics of store that c′ = ε and pa ′ = pa::[(i , x ^ v@r)].
From rule [CST] we get pt ′ = pt u lev(x ) and lev(r) v lev(x ). From pt ′ = pt u lev(x ) and lev(r) v lev(x ) we
get pt ′ t lev(r) v lev(x ). From pt ′ = pt u lev(x ) and pt ′ t lev(r) v lev(x ) and pa ′ = pa::[(i , x ^ v@r)] and
pt `lev pa we get by rule [PS] and Lemma 22 that pt ′ `lev pa::[(i , x ^ v@r)]. Hence, pt ′ `lev pa ′.
From rule [EM] we get that pc, pt ′ `lev ε � (pt ′) is derivable.

Case ([OP]):
In this case we know that c = opcι r1 r2 r3 for some opc ∈ {and, eq}, c′ = ε and pa ′ = pa::[(i , v@opo(r2, r3) �
r1)] for some opo ∈ {eq, and}.
From rule [COP] we get pt ′ = pt u lev(r1) and lev(r2) t lev(r3) v lev(r1). From pt ′ = pt u lev(r) we get
pt ′ v lev(r). From pt ′ = ptu lev(r), pt ′ v lev(r), lev(r2)t lev(r3) v lev(r1), pa ′ = pa::[(i , v@opo(r2, r3) � r1)]
and pt `lev pa �i we get by rule [PV] and Lemma 22 that pt ′ `lev pa::[(i , v@opo(r2, r3) � r1)] �i . Hence,
pt ′ `lev pa ′ �i .
From rule [EM] we get that pc, pt ′ `lev ε � (pt ′) is derivable.

As induction hypothesis we assume that the proposition from the Lemma holds for derivations of the judgment with an
arbitrary length n′ ≥ 1. For the induction step let the induction length be n = n′ + 1. From n′ ≥ 1 and n = n′ + 1 we get
n ≥ 1. We make a case distinction over the rules for which the judgment pc, pt `lev c � (pt ′) can be derived in n ≥ 2 steps,
i.e. [CSP], [CSQ], [CIL], [CIH], [CWH].
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Case ([CSP]):
In this case we know that c = spawnιcS for some cS ∈ C and from semantics of spawn that c′ = ε and
pa ′ = pa::[(i ,↗cS )].
From rule [CSP] we know that pc′, pt ′′ `lev cS � (pt ′′′) is derivable for some pc′, pt ′′, pt ′′′ ∈ {Low,High} and
pt ′ = Low. From pt ′ = Low we get pt ′ v pt . From pt `lev pa �i we get by Lemma 22 that pt ′ `lev pa �i . From
pc′, pt ′′ `lev cS � (pt ′′′), pt ′ `lev pa �i and pt ′ = Low we get by rule [PT] that pt ′ `lev pa::[(i ,↗cS )] �i . Thus,
from pa ′ = pa::[(i ,↗cS )] we get pt ′ `lev pa ′ �i .
From rule [EM] we get that pc, pt ′ `lev ε � (pt ′).

Case ([CSQ]):
In this case we know that c = cA; cB .
From rule [CSQ] we get that pc, pt `lev cA � (ptA) and pc, ptA `lev cB � (pt ′).
We now distinguish two cases based on the semantics rule to derive 〈c, pa, reg〉 →i 〈c′, pa ′〉. The two possible rule
differ in shape of c′. In the first case c′ = cB . In the second case, c′ = c′A; cB .

Case (c′ = cB):
In this case we get from semantics of sequential composition that 〈cA, pa, reg〉 →i 〈ε, paA〉 is derivable.
From the induction hypothesis we get that ptA `lev pa ′ is derivable.
Since pc, ptA `lev cB � (pt ′) we are done in this case.

Case (c′ = c′A; cB):
In this case we get from semantics of sequential composition that 〈cA, pa, reg〉 →i 〈c′A, pa ′〉 is derivable.
From the induction hypothesis we get that pt ′A `lev pa ′ and pc, pt ′A `lev c′A � (pt ′′A) are derivable. From
the typing rules we know that either pt ′′A = ptA or ptA v pt ′′A, because on the resulting path type is
always a lower bound of the possible resulting path types for the instruction resulting after one step. If
ptA v pt ′′A we get from rule [SB] that pc, pt ′A `lev c′A � (ptA).
From pc, pt ′A `lev cA � (ptA) and pc, ptA `lev cB � (pt ′) we get by rule [CSQ] that pc, pt ′A `lev
c′A; cB � (pt ′).

Case ([CIL]):
In this case we know that c = if ι r then c1 else c2 fi and from the semantics of if that c′ = ca for some
a ∈ {1, 2} and pa ′ = pa .
From rules [CIL] we get that pc, pt `lev ca � (pt ′′) with pt ′ v pt ′′ for a ∈ {1, 2}. From pt ′ v pt ′′ we get from rule
[SB] that pc, pt ′A `lev ca � (pt ′A).
Since pa = pa ′ and pt `lev pa we are done in this case.

Case ([CIH]):
In this case we know that c = if ι r then c1 else c2 fi and from the semantics of if that c′ = ca for some
a ∈ {1, 2}, pa ′ = pa and pt ′ = High.
From rules [CIH] we get that pt = High and High,High `lev ca � (High) with pt ′ = High for a ∈ {1, 2}.
Since pa = pa ′ and pt = High, pt `lev pa we are done in this case.

Case ([CWH]):
In this case we know that c = whileι r do cA od and pa = pa ′.
We now distinguish two cases based on the semantics rule to derive 〈c, pa, reg〉 →i 〈c′, pa ′〉. The two possible rules
differ in the shape of c′. In the first case c′ = ε. In the second case, c′ = cA; c.

Case (c′ = ε):
From [EM] we get pc, pt `lev ε � (pt).
Since pa ′ = pa and pt `lev pa �i we are done in this case.

Case (c′ = cA; c):
From rule [CWH] we get that lev(r) = Low and pc,Low `lev cA � (pt ′′) is derivable for some pt ′′.
Since c′ = cA; c and pc,Low `lev cA�(pt ′′) we must show that pc, pt ′′ `lev whileι r do cA od�(pt ′′′)
is derivable to satisfy the requirements of rule [CSQ].
From lev(r) = Low and pc,Low `lev cA � (pt ′′) we get that pc, pt ′′ `lev whileι r do cA od � (pt ′′′)
is derivable for pt ′′′ = pt ′′.
Since pa ′ = pa and pt `lev pa �i we are done in this case.

The following lemma shows that execution steps from typeable global configurations result in typeable configurations again.

Lemma 26. If ~pc, ~pt `lev 〈~cs, (pa, ~tr), gst〉 and 〈~cs, (pa, ~tr), gst〉 =⇒MM 〈~cs ′, (pa ′, ~tr
′
), gst ′〉 are derivable, then ~pc′, ~pt

′ `lev
〈~cs ′, (pa ′, ~tr

′
), gst ′〉 is derivable for some ~pc′, ~pt

′
: I ⇀ with pre( ~pc′) = pre(~pt

′
) = pre(~cs ′).

Proof: Let ~pc, ~pt : I ⇀ {Low,High}, ~cs, ~cs ′ : I ⇀ (C ∪ {ε}), pa, pa ′ ∈ Pa , ~tr , ~tr
′ ∈ ~Tr and gst , gst ′ ∈ Gst be arbitrary

such that ~pc, ~pt `lev 〈~cs, (pa, ~tr), gst〉 and 〈~cs, (pa, ~tr), gst〉 =⇒MM 〈~cs ′, (pa ′, ~tr
′
), gst ′〉 are derivable.

From ~pc, ~pt `lev 〈~cs, (pa, ~tr), gst〉 we get by the rule [CS] that for all i ∈ pre(~cs) the judgments ~pc(i), ~pt(i) `lev ~cs(i)�(pt ′)
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and ~pt(i) `lev pa �i are derivable for some pt ′ ∈ {Low,High}. We fix the thread identifier i ∈ pre(~cs) that causes the execution
step 〈~cs, (pa, ~tr), gst〉 =⇒MM 〈~cs ′, (pa ′, ~tr

′
), gst ′〉.

We make a case distinction over the 4 semantics rules in Figure 5 of the article.

Case (thread progress):
In this case ~cs ′(j ) = ~cs(j ) for all j ∈ pre(~cs) with j 6= i and pa ′ �j= pa �j for all j ∈ pre(~cs) with j 6= i .
From semantics of thread progress we get that 〈~cs(i), pa, ~reg(i)〉 →i 〈~cs ′(i), pa ′〉 where gst = ( ~reg ,mem) is
derivable. From ~pc(i), ~pt(i) `lev ~cs(i)�(pt ′) and ~pt(i) `lev pa �i and 〈~cs(i), pa, ~reg(i)〉 →i 〈~cs ′(i), pa ′〉 we get by
Lemma 25 that ~pc(i), pt ′′ `lev ~cs ′(i) � (pt ′′′) and pt ′′ `lev pa ′ �i are derivable for some pt ′′, pt ′′′ ∈ {Low,High}.
From ~cs ′(j ) = ~cs(j ) and pa ′ �j= pa �j and ~pc(j ), ~pt(j ) `lev ~cs(j ) � (pt ′) and ~pt(j ) `lev pa �j for some ~pt for
all j ∈ pre(~cs) with j 6= i and ~pc(i), pt ′′ `lev ~cs ′(i) � (pt ′′′) and pt ′′ `lev pa ′ �i for some pt ′′, pt ′′′ we get
~pc′, ~pt

′ `lev 〈~cs ′, (pa ′, ~tr
′
), gst ′〉 for some ~pc′ and ~pt

′
.

Case (fulfill memory update):
In this case ~cs ′ = ~cs and pa ′ = pa \ k, where pa[k] = (i , ob), for some k < |pa| − 1.
From pa ′ = pa \ k and pa[k] = (i , ob) we get pa ′ �i= pa �i \k′ for some k′ < |pa �i | − 1 and pa ′ �j= pa �j for
all j ∈ pre(~cs) and j 6= i . Thus we get from ~pt(i) `lev pa �i by Lemma 23 that pt ′′ `lev pa ′ �i for some pt ′′ is
derivable.
From ~cs = ~cs ′, ~pc(j ), ~pt(j ) `lev ~cs(j ) � (pt ′) for all j ∈ pre(~cs), ~pt(j ) `lev pa �j for all j ∈ pre(~cs) and
pt ′′ `lev pa ′ �i for some pt ′′ we get ~pc′, ~pt

′ `lev 〈~cs ′, (pa ′, ~tr
′
), gst ′〉 for some ~pc′ and ~pt

′
.

Case (fulfill fence):
This case is analogous to the case “fulfill memory update”.

Case (fulfill thread creation):
In this case the following propositions hold:
~cs ′(j ) = ~cs(j ) for all j ∈ pre(~cs), pre(~cs ′) = pre(~cs) ∪ {j | j = max(pre(~cs)) + 1}, ~cs ′(max(pre(~cs)) + 1) = c
and pa ′ = pa \ k, where pa[k] = (i ,↗c), for some k < |pa| − 1.
From the typing rule of spawn we get pc, pt ′′ `lev c�(pt ′′′) for some pt ′′, pt ′′′ ∈ {Low,High}. From semantics we
get that pa ′ �(max(pre( ~cs))+1)= []. From pa ′ �(max(pre( ~cs))+1)= [] we get by rule [PE] that pt `lev pa ′ �(max(pre( ~cs))+1)

for some pt is derivable.
From pa ′ = pa \ k and pa[k] = (i , ob) we get pa ′ �i= pa �i \k′ for some k′ < |pa �i | − 1 and pa ′ �j= pa �j for all
j ∈ pre(~cs) with j 6= i .
From ~cs(j ) = ~cs ′(j ) for all j ∈ pre(~cs), ~pc(j ), ~pt(j ) `lev ~cs(j )�(pt ′) for some pt ′ for all j ∈ pre(~cs), pc, pt ′′ `lev
c � (pt ′′′) for some pt ′′, pt ′′′ ∈ {Low,High}, ~pt(j ) `lev pa �j for all j ∈ pre(~cs) with j 6= i , pt ′′ `lev pa ′ �i for
some pt ′′, pt `lev pa ′ �(max(pre( ~cs))+1) for some pt we get ~pc′, ~pt

′ `lev 〈~cs ′, (pa ′, ~tr
′
), gst ′〉 for some ~pc′ and ~pt

′
.

D. Definitions and Proofs for Equivalences based on Typing

In this section, we introduce some auxiliary definitions for establishing noninterference that relate global states, lists of
obligations, paths and commands. We use these definitions to reason about individual steps of related programs. We use
superscripts in the symbols to indicate the domains of a relation, i.e. the universe on which binary relations are defined, to
distinguish between different relations with the same symbol.

The next two definitions relate local memories and global states that agree on their Low parts.

Definition 1. Two register states reg , reg ′ ∈ Reg are Low-equal, denoted by reg =RL reg , if reg(r) = reg ′(r) holds for all
r ∈ R with lev(r).

Definition 2. Two global states ( ~reg ,mem), ( ~reg ′,mem ′) ∈ Gst are Low-equal, denoted by ( ~reg ,mem) =Gst
L ( ~reg ′,mem ′) if

they satisfy the following three conditions:

1) pre( ~reg) = pre( ~reg ′), and
2) ~reg(i) =RL ~reg ′(i) holds for all i ∈ pre( ~reg), and
3) mem =L mem ′.

Lemma 27. The relations =L, =RL and =Gst
L are equivalence relations.

Proof: That the relations =L, =RL and =Gst
L are equivalence relations follows from the fact that each of the definitions is

defined with the identity relation = on subsets of the respective domains and that pre( ~reg) = pre( ~reg ′) is required for =Gst
L .

Hence, reflexivity, symmetry and transitivity follow from reflexivity, symmetry and transitivity of =.

We consider two obligations as Low-equal, if they agree on all sources and sinks and in addition on the value, if the sink
of the obligation is Low.
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Definition 3. Two obligations ob, ob′ ∈ Ob are Low-equal, denoted by ob =obs
L ob′, if they satisfy the following conditions:

• (ob ∈ Fe ∨ ob′ ∈ Fe) =⇒ ob = ob′, and

• ∃xr ∈ (sinks(ob) ∪ sinks(ob′)).lev(xr) = Low =⇒ ob = ob′, and

• ∀xr ∈ (sinks(ob) ∪ sinks(ob′)).lev(xr) = High =⇒ sources(ob) = sources(ob′) ∧ sinks(ob) = sinks(ob′).

Lemma 28. The relation =obs
L is an equivalence relation.

Proof: That the relation =obs
L is an equivalence relation follows from the fact that each condition is defined only using

identity. Hence, each condition is reflexive, transitive and symmetric due to reflexivity, transitivity and symmetry of identity.

Definition 4. The predicate fencefree on Ob∗ is defined by fencefree(obs) ≡ ∀k < (|obs| − 1).obs /∈ Fe .

The predicate evaluates to true if the list of obligations does not contain any obligation that works as a fence.

We consider two typeable lists of obligations as Low similar, if they have a (possibly empty) prefix that causes only updates
High variables and High registers and agree on the suffix with respect to what register and variables are read, and which values
are written to Low variables and Low registers.

Definition 5. Two lists of obligations obs, obs ′ ∈ Ob∗ are Low-similar, denoted by obs ≈Ob∗
L obs ′, if there are obsA, obs ′A, obsB ,

obs ′B ∈ Ob∗ such that the following conditions are satisfied:

1) obs = obsA::obsB ∧ obs ′ = obs ′A::obs ′B , and
2) fencefree(obsA) ∧ fencefree(obs ′A), and
3) High `lev obsA ∧High `lev obs ′A, and
4) pt `lev obsB ∧ pt `lev obs ′B for some pt ∈ {Low,High}, and
5) (obsB = [‖] ∧ obs ′B = []) ∨ (obsB = [] ∧ obs ′B = [‖]) ∨ (|obsB | = |obsB | ∧ ∀k < (|obsB |).obsB [k] =obs

L obs ′B [k]).

Lemma 29. The relation ≈Ob∗
L is symmetric and transitive.

Proof: The definition of ≈Ob∗
L is a conjunction of 5 conditions. The first four conditions are conditions on how to split the

obligation lists for the last conditions. These conditions are conditions on obligation lists that can be related by this relation (i.e.
restricting the domain of the relation to a subset of the set of all obligations). Each of the conditions is symmetric and transitive
since it puts identical requirements on the obligation list on each side of the relation.

The last condition is a disjunction of three conditions. The first two are symmetric counterparts. The third condition requires
identical length of both sublists of obligations (which is symmetric) and point-wise Low-equality of the elements at each position
in the sublists (which is symmetric, because =obs

L is an equivalence relation). Hence, the condition is symmetric. The condition
is also transitive, because of two reasons. First, the third condition is transitive, due to =obs

L being an equivalence relation.
Second, if the pair (obsB , obs ′B) satisfy one of the first two conditions, then the pair (obs ′B , obs ′′B) can only satisfy the other
of the two first conditions or the third condition. If the pair (obs ′B , obs ′′B) satisfies the other of the first two conditions, then the
pair (obsB , obs ′′B) satisfies the third condition. If the pair (obs ′B , obs ′′B) satisfies the third condition, then the pair (obB , ob′′B)
satisfies the same condition as the pair (obB , ob′B). This chain of arguments can be repeated arbitrarily often to show that the
condition is transitive.

Definition 6. Two pairs of an instruction and a list of obligations (c, obs), (c′, obs ′) ∈ (C ∪ {ε}) × (Ob∗) are Low-similar,
denoted by (c, obs) ≈(C∪{ε})×Ob∗

L (c′, obs ′), if for some pc, pt , pt ′ ∈ {Low,High} it holds that pc, pt `lev c � (pt ′) and
pc, pt `lev c′ � (pt ′) and pt `lev obs and pt `lev obs ′ and obs ≈Ob∗

L obs ′ and one of the following conditions is satisfied:

• c = c′, or

• pc = pt = pt ′ = High,

• c = cA; cB ∧ c′ = c′A; c′B ∧ cB = c′B ∧ (cA, obs) ≈(C∪{ε})×Ob∗

L (c′A, obs ′) for some cA, c
′
A, cB , c

′
B ∈ C.

Lemma 30. The relation ≈(C∪{ε})×Ob∗

L is transitive and symmetric.

Proof:

Symmetry:
We show that ≈(C∪{ε})×Ob∗

L is symmetric by an induction on the shape of c.
Let c, c′, c′′ ∈ C and obs, obs ′, obs ′′ ∈ Ob∗ be arbitrary with (c, obs) ≈(C∪{ε})×Ob∗

L (c′, obs ′) and
(c′, obs ′) ≈(C∪{ε})×Ob∗

L (c′′, obs ′′).
For the induction base let c be an instruction that is not a sequential composition, i.e. c is not of the shape cA; cB .
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From (c, obs) ≈(C∪{ε})×Ob∗

L (c′, obs ′) we get pc, pt `lev c � (pt ′), pc, pt `lev c′ � (pt ′), pt `lev obs , pt `lev obs ′,
obs ≈Ob∗

L obs ′ and c = c′ or pc = pt = pt ′ = High. From this combined with symmetry of ≈Ob∗
L and = we get

by definition of ≈(C∪{ε})×Ob∗

L that (c′, obs ′) ≈(C∪{ε})×Ob∗

L (c, obs).
For the induction step let c = cA; cB . We distinguish three cases based on whether c = c′ or pc = pt = pt ′ = High

or c = cA; cB ∧ c′ = c′A; c′B ∧ cB = c′B ∧ (cA, obs) ≈(C∪{ε})×Ob∗

L (c′A, obs ′) for some cA, c
′
A, cB , c

′
B ∈ C. The

first two cases are analogous to the induction base. The argument for the third case follows.
From (c, obs) ≈(C∪{ε})×Ob∗

L (c′, obs ′) we get pc, pt `lev c � (pt ′), pc, pt `lev c′ � (pt ′), pt `lev obs , pt `lev obs ′

and obs ≈Ob∗
L obs ′. From this combined with symmetry of ≈Ob∗

L and = we get by definition of ≈(C∪{ε})×Ob∗

L that
obs ′ ≈Ob∗

L obs .
From cB = c′B we get by symmetry of = that c′B = cB .
From (cA, obs) ≈(C∪{ε})×Ob∗

L (c′A, obs ′) we get by the induction hypothesis that (c′A, obs ′) ≈(C∪{ε})×Ob∗

L (cA, obs).
Combining all these facts we get by definition of ≈(C∪{ε})×Ob∗

L that (c′, obs ′) ≈(C∪{ε})×Ob∗

L (c, obs).
Transitivity:

Let c, c′, c′′ ∈ C and obs, obs ′, obs ′′ ∈ Ob∗ be arbitrary with (c, obs) ≈(C∪{ε})×Ob∗

L (c′, obs ′) and
(c′, obs ′) ≈(C∪{ε})×Ob∗

L (c′′, obs ′′).
From (c, obs) ≈(C∪{ε})×Ob∗

L (c′, obs ′) we get pc, pt `lev c � (pt ′), pc, pt `lev c′ � (pt ′), pt `lev obs , pt `lev obs ′,
obs ≈Ob∗

L obs ′ and c = c′ or pc = pt = pt ′ = High or
From (c′, obs ′) ≈(C∪{ε})×Ob∗

L (c′′, obs ′′) we get pc′, pt ′′ `lev c′ � (pt ′′′), pc′, pt ′′ `lev c′′ � (pt ′′′), pt ′′ `lev obs ′,
pt ′′ `lev obs ′′, obs ′ ≈Ob∗

L obs ′′ and c′ = c′′ or pc′ = pt ′′ = pt ′′′ = High or c′ = c′A; c′B ∧ c′′ = c′′A; c′′B ∧ c′B =

c′′B ∧ (c′A, obs ′) ≈(C∪{ε})×Ob∗

L (c′′A, obs ′′) for some c′A, c
′′
A, c

′
B , c

′′
B ∈ C.

From obs ≈Ob∗
L obs ′ and obs ′ ≈Ob∗

L obs ′′ we get by transitivity of ≈Ob∗
L that obs ≈Ob∗

L obs ′′.
We distinguish three cases based on whether c = c′ or pc = pt = pt ′ = High.

Case (c = c′):
In this case we get from c = c′ and obs ≈Ob∗

L obs ′ that the pair ((c, obs), (c′′, obs ′′)) satisfies the same
condition as ((c′, obs ′), (c′′, obs ′′)) from c′ = c′′ or pc′ = pt ′′ = pt ′′′ = High or c′ = c′A; c′B ∧ c′′ =

c′′A; c′′B ∧ c′B = c′′B ∧ (c′A, obs ′) ≈(C∪{ε})×Ob∗

L (c′′A, obs ′′) for some c′A, c
′′
A, c

′
B , c

′′
B ∈ C.

Case (pc = pt = pt ′ = High):
In this case we distinguish three cases based on the condition from c′ = c′′ or pc′ = pt ′′ = pt ′′′ =

High or c′ = c′A; c′B ∧ c′′ = c′′A; c′′B ∧ c′B = c′′B ∧ (c′A, obs ′) ≈(C∪{ε})×Ob∗

L (c′′A, obs ′′) for some
c′A, c

′′
A, c

′
B , c

′′
B ∈ C that is satisfied.

Case (c′ = c′′):
In this case (c, obs) ≈(C∪{ε})×Ob∗

L (c′′, obs ′′) follows from the transitivity of = and ≈Ob∗
L and

the fact that identical commands and Low-similar obligation list can be typed with identical
types for the programcounter and obligations list.

Case (pc′ = pt ′′ = pt ′′′ = High):
In this case we have pc = pc′ = pt = pt ′ = pt ′′ = pt ′′′ = High. Hence, pc, pt `lev c � (pt ′),
pc, pt `lev c′′ � (pt ′), pt `lev obs , pt `lev obs ′′ and pc = pt = pt ′ = High.
From this combined with ob ≈(C∪{ε})×Ob∗

L obs ′′ we get by definition of ≈(C∪{ε})×Ob∗

L that
(c, obs) ≈(C∪{ε})×Ob∗

L (c′′, obs ′′).
Case (c′ = c′A; c′B ∧ c′′ = c′′A; c′′B ∧ c′B = c′′B ∧ (c′A, obs ′) ≈(C∪{ε})×Ob∗

L (c′′A, obs ′′) for some
c′A, c

′′
A, c

′
B , c

′′
B ∈ C):

In this case we know from the definition of ≈(C∪{ε})×Ob∗

L that either c′A = c′′A or there
is a shortest prefix c′C of c′A and c′′C of c′′A such that High,High `lev c′C � (High) and
High,High `lev c′′C �(High), and either there are no corresponding suffixes or the correspond-
ing suffixes c′D and c′′D satisfy c′D = c′′D. If the suffix is not empty we have c′D; c′B = c′′D = c′′B .
Without loss of generality we assume that the suffixes are empty and hence c′A = c′C and
c′′A = c′′C . Hence, High,High `lev c′A � (High) and High,High `lev c′′A � (High).
From pc, pt `lev c′ � (pt ′′), pc = pt = pt ′ = High and c′ = cA; cB we get by rule [CSQ]
that High,High `lev c′A � (pt ′A) and High, pt ′A `lev c′B � (High). From High,High `lev
c′A � (High) we get pt ′A = High and, hence, High,High `lev c′B � (High). From this
combined with c′B = c′′B we get High,High `lev c′′B � (High).
From c′′ = c′′A; c′′B , High,High `lev c′′A � (High) and High,High `lev c′′B � (High) we get
by rule [CSQ] that High,High `lev c′′ � (High).
From High,High `lev c′′ � (High) and pc = pt = pt ′ = High we get pc, pt `lev c′′ � (pt ′).
From pc = pt = pt ′ = High, pc, pt `lev c � (pt ′), pc, pt `lev c′′ � (pt ′), pt `lev obs and
obs ≈(C∪{ε})×Ob∗

L obs ′ we get by definition of ≈(C∪{ε})×Ob∗

L that we get by definition of
≈(C∪{ε})×Ob∗

L that (c, obs) ≈(C∪{ε})×Ob∗

L (c′′, obs ′′).
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Case (c = cA; cB ∧ c′ = c′A; c′B ∧ cB = c′B ∧ (cA, obs) ≈(C∪{ε})×Ob∗

L (c′A, obs ′) for some cA, c
′
A, cB , c

′
B ∈ C):

From the definition of ≈(C∪{ε})×Ob∗

L that either cA = c′A or there is a shortest prefix cC of cA and c′C
of c′A such that High,High `lev cC � (High) and High,High `lev c′C � (High), and either there
are no corresponding suffixes or the corresponding suffixes cD and c′D satisfy cD = c′D. If the suffix
is not empty we have cD; cB = c′D = c′B . Without loss of generality we assume that the suffixes are
empty and hence cA = cC and c′A = c′C (because otherwise we can deconstruct the instruction until it
has this form using the recursive definition of ≈(C∪{ε})×Ob∗

L ). Hence, High,High `lev cA � (High)
and High,High `lev c′A � (High).
From (c, obs) ≈(C∪{ε})×Ob∗

L (c′, obs ′) we get pc, pt `lev c � (pt ′), pc, pt `lev c′ � (pt ′), pt `lev obs ,
pt `lev obs ′ and obs ≈Ob∗

L obs ′.
From (c′, obs ′) ≈(C∪{ε})×Ob∗

L (c′′, obs ′′) we get pc′, pt ′′ `lev c′ � (pt ′′′), pc′, pt ′′ `lev c′′ � (pt ′′′),
pt ′′ `lev obs ′, pt ′′ `lev obs ′′, obs ′ ≈Ob∗

L obs ′′ and c′ = c′′ or pc′ = pt ′′ = pt ′′′ = High or
c′ = c′A; c′B∧c′′ = c′′A; c′′B∧c′B = c′′B∧(c′A, obs ′) ≈(C∪{ε})×Ob∗

L (c′′A, obs ′′) for some c′A, c
′′
A, c

′
B , c

′′
B ∈ C.

From obs ≈Ob∗
L obs ′ and obs ′ ≈Ob∗

L obs ′′ we get by transitivity of ≈Ob∗
L that obs ≈Ob∗

L obs ′′.
We distinguish three cases based on the condition from c′ = c′′ or pc′ = pt ′′ = pt ′′′ = High or
c′ = c′C ; c′D∧c′′ = c′′C ; c′′D∧c′D = c′′D∧(c′C , obs ′) ≈(C∪{ε})×Ob∗

L (c′′C , obs ′′) for some c′A, c
′′
A, c

′
B , c

′′
B ∈ C

that is satisfied.
Case (c′ = c′′):

In this case (c, obs) ≈(C∪{ε})×Ob∗

L (c′′, obs ′′) follows from the fact that c′′ = c′A; c′B (due to
c′ = c′′) and obs ≈Ob∗

L obs ′′.
Case (pc′ = pt ′′ = pt ′′′ = High):

In this case we get from High,High `lev c′ � (High), c′ = c′A; c′B , High,High `lev
c′A � (High) by rule [CSQ] that High,High `lev c′B � (High). From this combined with
cB = c′B we get High,High `lev cB � (High). From this combined with High,High `lev
cA � (High) and c = cA; cB we get by rule [CSQ] that High,High `lev c � (High). Hence,
pc′, pt ′′ `lev c � (pt ′′′).
From pc′, pt ′′ `lev c � (pt ′′′), pc′, pt ′′ `lev c′′ � (pt ′′′), pc′ = pt ′′ = pt ′′′ = High, pt ′′ `lev
obs ′′ and obs ≈Ob∗

L obs ′′ we get by definition of ≈(C∪{ε})×Ob∗

L that (c, obs) ≈(C∪{ε})×Ob∗

L
(c′′, obs ′′).

Case (c′ = c′C ; c′D ∧ c′′ = c′′C ; c′′D ∧ c′D = c′′D ∧ (c′C , obs ′) ≈(C∪{ε})×Ob∗

L (c′′C , obs ′′) for some
c′C , c

′′
C , c

′
D, c

′′
D ∈ C):

In this case we know from the definition of ≈(C∪{ε})×Ob∗

L that either c′C = c′′C or there
is a shortest prefix c′E of c′C and c′′E of c′′C such that High,High `lev c′E � (High) and
High,High `lev c′′E � (High), and either there are no corresponding suffixes or the corre-
sponding suffixes c′F and c′′F satisfy c′F = c′′F . Without loss of generality we assume that the
suffixes are empty and hence c′C = c′′E and c′′C = c′′E . Hence, High,High `lev c′C � (High)
and High,High `lev c′′C � (High).
From c′ = c′A; c′B and c′ = c′C ; c′D we get that one of the instructions c′B and c′D is a
suffix of the other. Without loss of generality we assume that c′B is a suffix of c′D (the other
case is analogous). Hence, c′D = c′E ; c′B for some c′E . From this combined c′D = c′′D we get
c′′D = c′E ; c′B . From this combined with c′′ = c′′C ; c′′D we get c′′ = c′′ = c′′C ; c′E ; c′B .
From c′ = c′A; c′B , c′ = c′C ; c′D and c′D = c′E ; c′B we get c′A = c′C ; c′E .
From c′A = c′C ; c′E , High,High `lev c′A � (High) and High,High `lev c′C � (High) we
get by rule [CSQ] that High,High `lev c′E � (High).
From High,High `lev c′′C � (High) and High,High `lev c′E � (High) we get by rule [CSQ]
that High,High `lev c′′C ; c′E � (High).
From this combined with High,High `lev cA � (High), High,High `lev c′′C ; c′E � (High),
High `lev obs and obs ≈Ob∗

L obs ′′ we get by definition of ≈(C∪{ε})×Ob∗

L that
(cA, obs) ≈(C∪{ε})×Ob∗

L (c′′C ; c′E , obs ′′).
From this combined with cB = c′B we get (cA; cB , obs) ≈(C∪{ε})×Ob∗

L (c′′C ; c′E ; c′B , obs ′′).
From this combined with c = cA; cB and c′′ = c′′C ; c′E ; c′B we get (c, obs) ≈(C∪{ε})×Ob∗

L
(c′′, obs ′′).

We capture the definition of well formed global configurations with the following predicate:

Definition 7. The predicate wellformed on (I ⇀ (C ∪{ε}))×De×Gst is defined by wellformed(〈~cs, (pa, ~tr), ( ~reg ,mem)〉) ≡
((pre(~cs) = pre(~tr) = pre( ~reg)) ∧ {i | pa �i 6= []} ⊆ pre(~cs)).
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Definition 8. Two well formed global configurations cnf = 〈~cs, (pa, ~tr), gst〉, cnf ′ = 〈~cs ′, (pa ′, ~tr
′
), gst ′〉 ∈ (I ⇀ (C ∪{ε}))×

De ×Gst are Low-similar, denoted by cnf ≈Conf
L cnf ′, if the following conditions are satisfied:

1) pre(~cs) = pre(~cs ′), and
2) (~cs(i), pa �i) ≈(C∪{ε})×Ob∗

L (~cs ′(i), pa ′ �i) for all i ∈ pre(~cs), and
3) gst =Gst

L gst ′.

Lemma 31. The relation ≈Conf
L is transitive and symmetric.

Proof: That the relation ≈Conf
L is transitive and symmetric follows from the fact that it is defined with a conjunction

of three transitive and symmetric conditions. That the first condition is transitive and symmetric follows form transitivity and
symmetry of =. That the second condition is transitive and symmetric follows from the point-wise comparison with the relation
≈(C∪{ε})×Ob∗

L which is transitive and symmetric. That the third condition is transitive and symmetric follows from the fact that
=Gst
L is transitive and symmetric.

E. Proofs for Soundness

When we argue about ≈(C∪{ε})×Ob∗

L or ≈Conf
L after an execution step in this section we omit the argument that the resulting

instruction and list of obligations is typeable with identical path type, because this always follows from Lemma 26.

The following lemma shows that identical instructions that perform execution steps starting in two configurations with Low-
similar lists of obligations and Low-equal local memories result in Low-similar pairs of instructions and lists of obligations.

Lemma 32 (Same Instruction in Low-similar Configurations). If c1 = c′1, (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c′1, pa ′1 �i), reg1 =RL
reg ′1, 〈c1, pa1, reg1〉 →i 〈c2, pa2〉, 〈c′1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉, fencefree(pa1 �i) and fencefree(pa ′1 �i), then (c2, pa2 �i
) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i), pa1 �j= pa2 �j and pa ′1 �j= pa ′2 �j for all j 6= i .

Proof: We prove this lemma by an induction on the derivation length of the judgment 〈c1, pa1, reg1〉 →i 〈c2, pa2〉. The
induction base are derivations with a length of 1. Derivations with length 1 are possible for all instructions that are not sequentially
composed.

Let reg1, reg ′1 ∈ Reg , pa1, pa ′1, pa2, pa ′2 ∈ Pa , c1, c
′
1, c2 ∈ C be arbitrary with reg1 =RL reg ′1, (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L
(c′1, pa ′1 �i), 〈c1, pa1, reg1〉 →i 〈c2, pa2〉, 〈c′1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉, fencefree(pa1 �i) and fencefree(pa ′1 �i).

We make a case distinction on the shapes of c1 for which a derivation in one step is possible, i.e. all instructions except
sequential composition.

Case (c1 = skipι):
In this case c′1 = skipι follows from c1 = c′1.
From 〈c1, pa1, reg1〉 →i 〈c2, pa2〉 and 〈c′1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉 we get by the semantics of skip that c2 = ε,
pa2 = pa1, c′2 = ε and pa ′2 = pa ′1. From c2 = ε, pa2 = pa1, c′2 = ε, pa ′2 = pa ′1 and (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L

(c′1, pa ′1 �i) we get by definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i).
From pa2 = pa1 and pa ′2 = pa ′1 we get pa2 �j= pa1 �j and pa ′2 �j= pa ′1 �j for all j 6= i .

Case (c1 = whileι r do c′ od):
In this case, c′1 = whileι r do c′ od follows from c1 = c′1.
From pc, pt `lev c1 � (pt ′1) we get by the typing rule for while that lev(r) = Low. From reg1 =RL reg ′1 and
lev(r) = Low we get reg1(r) = reg ′1(r).
We distinguish two cases based on whether reg1(r) = 0 or reg1(r) 6= 0.

Case (reg1(r) = 0):
Since reg1(r) = reg ′1(r) we know that only the rule for while where the register is 0 can be applied to
derive 〈c1, pa1, reg1〉 →i 〈c2, pa2〉 and 〈c′1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉. From this rule we obtain c2 = ε,
c′2 = ε, pa2 = pa1 and pa ′2 = pa ′1.
From c2 = ε, pa2 = pa1, c′2 = ε, pa ′2 = pa ′1 and (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c′1, pa ′1 �i) we get by
definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i).
From pa2 = pa1 and pa ′2 = pa ′1 we get pa2 �j= pa1 �j and pa ′2 �j= pa ′1 �j for all j 6= i .

Case (reg1(r) 6= 0):
Since reg1(r) = reg ′1(r) we know that only the rule for while where the register is not 0 can be
applied to derive 〈c1, pa1, reg1〉 →i 〈c2, pa2〉 and 〈c′1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉. From this rule we obtain
c2 = c′; c1, c′2 = c′; c′1, pa2 = pa1 and pa ′2 = pa ′1.
From c1 = c′1, c2 = c′; c1, pa2 = pa1, c′2 = c′; c′1, pa ′2 = pa ′1 and (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c′1, pa ′1 �i
) we get by definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i).
From pa2 = pa1 and pa ′2 = pa ′1 we get pa2 �j= pa1 �j and pa ′2 �j= pa ′1 �j for all j 6= i .
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Case (c1 = if ι r then ct else ce fi):
In this case, c′1 = if ι r then ct else ce fi follows from c1 = c′1.
We distinguish two cases based on the security domain of register r .

Case (lev(r) = Low):
From reg1 =RL reg ′1 and lev(r) = Low we get reg1(r) = reg ′(r)1.
We distinguish two cases based on whether reg1(r) 6= 0 or reg1(r) = 0.
Case (reg1(r) 6= 0):

Since reg1(r) = reg ′1(r) we know that only the rule for if where the register is not 0 can be
applied to derive 〈c1, pa1, reg1〉 →i 〈c2, pa2〉 and 〈c′1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉. From this rule
we obtain c2 = ct, c′2 = ct, pa2 = pa1 and pa ′2 = pa ′1.
From c2 = ct, pa2 = pa1, c′2 = ct, pa ′2 = pa ′1 and (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c′1, pa ′1 �i) we
get by definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i).
From pa2 = pa1 and pa ′2 = pa ′1 we get pa2 �j= pa1 �j and pa ′2 �j= pa ′1 �j for all j 6= i .

Case (reg1(r) = 0):
Since reg1(r) = reg ′1(r) we know that only the rule for if where the register is 0 can be
applied to derive 〈c1, pa1, reg1〉 →i 〈c2, pa2〉 and 〈c′1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉. From this rule
we obtain c2 = ce, c′2 = ce, pa2 = pa1 and pa ′2 = pa ′1.
From c2 = ce, pa2 = pa1, c′2 = ce, pa ′2 = pa ′1 and (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c′1, pa ′1 �i) we
get by definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i).
From pa2 = pa1 and pa ′2 = pa ′1 we get pa2 �j= pa1 �j and pa ′2 �j= pa ′1 �j for all j 6= i .

Case (lev(r) = High):
From the two rules for if in Figure 7 of the article we get c2 = cA and c′2 = cB for some A,B ∈ {t, e},
pa2 = pa1 and pa ′2 = pa ′1.
From (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c′1, pa ′1 �i) we get by definition of ≈(C∪{ε})×Ob∗

L that pc, pt `lev
c1 � (pt ′), pc, pt `lev c′1 � (pt ′′), pt `lev pa1 �i and pt `lev pa ′1 �i . From lev(r) = High we get that
pc, pt `lev c1 � (pt ′) and pc, pt `lev c1 � (pt ′′) are derived with rule [CIH]. Hence, from rule [CIH] we
get pt = High.
From [CIH] we also get High,High `lev ct � (High) and High,High `lev cf � (High).
From c2 = cA and c′2 = cB for some A,B ∈ {t, e}, pa2 = pa1 and pa ′2 = pa ′1, High,High `lev
ct � (High), High,High `lev cf � (High), pt `lev pa1 �i and pt `lev pa ′1 �i we get by definition of
≈(C∪{ε})×Ob∗

L that (c2, pa2 �i) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i).
From pa2 = pa1 and pa ′2 = pa ′1 we get pa2 �j= pa1 �j and pa ′2 �j= pa ′1 �j for all j 6= i .

Case (c1 = loadι r v ):
In this case, c′1 = loadι r v follows from c1 = c′1.
From 〈c1, pa1, reg1〉 →i 〈c2, pa2〉 and 〈c1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉 we get by the semantics rules of load with
a constant from Figure 7 in the article that c2 = ε, c′2 = ε, pa2 = pa1::[(i , v@const � r)] and pa ′2 =
pa ′1::[(i , v@const � r)]. Hence, pa2 �j= pa1 �j and pa ′2 �j= pa ′1 �j for all j 6= i .
From (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c′1, pa ′1 �i) we get pa1 �i≈Ob∗
L pa ′1 �i . From this combined with fencefree(pa1 �i)

and fencefree(pa ′1 �i) we get by definition of ≈Ob∗
L that pa1::[(i , v@const � r)]�i≈Ob∗

L pa ′1::[(i , v@const � r)]�i .
Hence, pa2 �i≈Ob∗

L pa ′2 �i .
From pa2 �i≈Ob∗

L pa ′2 �i , c2 = ε and c′2 = ε we get by definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i) ≈(C∪{ε})×Ob∗

L
(c′2, pa ′2 �i).

Case (c1 = loadι r x ):
In this case, c′1 = loadι r x follows from c1 = c′1.
From 〈c1, pa1, reg1〉 →i 〈c2, pa2〉 and 〈c′1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉 we get by the semantics rules of load with a
constant from Figure 7 in the article that c2 = ε, c′2 = ε, pa2 = pa1::[(i , ?@x _ r)] and pa ′2 = pa ′1::[(i , ?@x _ r)].
Hence, pa2 �j= pa1 �j and pa ′2 �j= pa ′1 �j for all j 6= i .
From (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c′1, pa ′1 �i) we get pa1 �i≈Ob∗
L pa ′1 �i . From this combined with fencefree(pa1 �i)

and fencefree(pa ′1 �i) we get by definition of ≈Ob∗
L that pa1::[(i , ?@x _ r)]�i≈Ob∗

L pa ′1::[(i , ?@x _ r)]�i . Hence,
pa2 �i≈Ob∗

L pa ′2 �i .
From pa2 �i≈Ob∗

L pa ′2 �i , c2 = ε and c′2 = ε we get by definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i) ≈(C∪{ε})×Ob∗

L
(c′2, pa ′2 �i).

Case (c1 = storeι x r ):
In this case, c′1 = storeι x r follows from c1 = c′1.
From 〈c1, pa1, reg1〉 →i 〈c2, pa2〉 and 〈c′1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉 we get by the semantics rules of store from
Figure 7 in the article that c2 = ε, c′2 = ε, pa2 = pa1::[(i , x ^ reg1(r)@r)] and pa ′2 = pa ′1::[(i , x ^ reg ′1(r)@r)].
Hence, pa2 �j= pa1 �j and pa ′2 �j= pa ′1 �j for all j 6= i .
We distinguish two cases based on the security domain of the variable.

Case (lev(x ) = High):
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From lev(x ) = High we get by definition of =obs
L that x ^ reg1(r)@r =obs

L x ^ reg ′1(r)@r .
From this combined with pa1 �i≈Ob∗

L pa ′1 �i , fencefree(pa1 �i), fencefree(pa ′1 �i), pa2 = pa1::[(i , x ^
reg1(r)@r)] and pa ′2 = pa ′1::[(i , x ^ reg ′1(r)@r)] we get pa2 �i≈Ob∗

L pa ′2 �i .
From pa2 �i≈Ob∗

L pa ′2 �i , c2 = ε and c′2 = ε we get by definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i
) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i).
Case (lev(x ) = Low):

From (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c′1, pa ′1 �i) we get by definition of ≈(C∪{ε})×Ob∗

L that pc, pt `lev
c1 � (pt ′), pc, pt `lev c′1 � (pt ′′), pt `lev pa1 �i and pt `lev pa ′1 �i . From lev(x ) = Low we get by
rule [CST] that lev(r) = Low. From this combined with reg1 =RL reg ′1 we get reg1(r) = reg ′1(r).
Hence, x ^ reg1(r)@r = x ^ reg ′1(r)@r and by definition of =obs

L we get x ^ reg1(r)@r =obs
L

x ^ reg ′1(r)@r . From this combined with pa1 �i≈Ob∗
L pa ′1 �i , fencefree(pa1 �i), fencefree(pa ′1 �i),

pa2 = pa1::[(i , x ^ reg1(r)@r)] and pa ′2 = pa ′1::[(i , x ^ reg ′1(r)@r)] we get pa2 �i≈Ob∗
L pa ′2 �i .

From pa2 �i≈Ob∗
L pa ′2 �i , c2 = ε and c′2 = ε we get by definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i
) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i).
Case (c1 = eqι r1 r2 r3):

In this case, c′1 = eqι r1 r2 r3 follows from c1 = c′1.
From 〈c1, pa1, reg1〉 →i 〈c2, pa2〉 and 〈c′1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉 we get by the semantics rules of eq from Figure
7 in the article that c2 = ε, c′2 = ε, pa2 = pa1::[(i , v@eq(r2, r3) � r1)] and pa ′2 = pa ′1::[(i , v ′@eq(r2, r3) � r1)].
Hence, pa2 �j= pa1 �j and pa ′2 �j= pa ′1 �j for all j 6= i .
We distinguish two cases based on the security domain of the register r1.

Case (lev(r1) = High):
From lev(r1) = High we get by definition of =obs

L that v@eq(r2, r3) � r1 =obs
L v ′@eq(r2, r3) � r1.

From this combined with pa1 �i≈Ob∗
L pa ′1 �i , fencefree(pa1 �i), fencefree(pa ′1 �i),

pa2 = pa1::[(i , v@eq(r2, r3) � r1)] and pa ′2 = pa ′1::[(i , v ′@eq(r2, r3) � r1)] we get pa2 �i≈Ob∗
L pa ′2 �i .

From pa2 �i≈Ob∗
L pa ′2 �i , c2 = ε and c′2 = ε we get by definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i
) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i).
Case (lev(r1) = Low):

From (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c′1, pa ′1 �i) we get by definition of ≈(C∪{ε})×Ob∗

L that pc, pt `lev c1 �
(pt ′), pc, pt `lev c′1�(pt ′′), pt `lev pa1 �i and pt `lev pa ′1 �i . From lev(r1) = Low we get by rule [COP]
that lev(r2) = lev(r3) = Low. From this combined with reg1 =RL reg ′1 we get reg1(r2) = reg ′1(r2) and
reg1(r3) = reg ′1(r3) and, thus, 〈c1, pa1, reg1〉 →i 〈c2, pa2〉 and 〈c′1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉 are derived
with the same rule from Figure 7 in the article. Hence, v = v ′. From this we get v@eq(r2, r3) � r1 =
v ′@eq(r2, r3) � r1 and by definition of =obs

L we get v@eq(r2, r3) � r1 =obs
L v ′@eq(r2, r3) � r1. From

this combined with pa1 �i≈Ob∗
L pa ′1 �i , fencefree(pa1 �i), fencefree(pa ′1 �i), pa2 = pa1::[(i , v@eq(r2, r3) �

r1)] and pa ′2 = pa ′1::[(i , v ′@eq(r2, r3) � r1)] we get pa2 �i≈Ob∗
L pa ′2 �i .

From pa2 �i≈Ob∗
L pa ′2 �i , c2 = ε and c′2 = ε we get by definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i
) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i).
Case (c1 = andι r1 r2 r3):

In this case, c′1 = andι r1 r2 r3 follows from c1 = c′1.
From 〈c1, pa1, reg1〉 →i 〈c2, pa2〉 and 〈c′1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉 we get by the semantics rules of and from Figure
7 in the article that c2 = ε, c′2 = ε, pa2 = pa1::[(i , v@and(r2, r3) � r1)] and pa ′2 = pa ′1::[(i , v ′@and(r2, r3) � r1)].
Hence, pa2 �j= pa1 �j and pa ′2 �j= pa ′1 �j for all j 6= i .
We distinguish two cases based on the security domain of the register r1.

Case (lev(r1) = High):
From lev(r1) = High we get by definition of =obs

L that v@and(r2, r3) � r1 =obs
L v ′@and(r2, r3) � r1.

From this combined with pa1 �i≈Ob∗
L pa ′1 �i , fencefree(pa1 �i), fencefree(pa ′1 �i),

pa2 = pa1::[(i , v@and(r2, r3) � r1)] and pa ′2 = pa ′1::[(i , v ′@and(r2, r3) � r1)] we get pa2 �i≈Ob∗
L

pa ′2 �i .
From pa2 �i≈Ob∗

L pa ′2 �i , c2 = ε and c′2 = ε we get by definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i
) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i).
Case (lev(r1) = Low):

From (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c′1, pa ′1 �i) we get by definition of ≈(C∪{ε})×Ob∗

L that pc, pt `lev c1 �
(pt ′), pc, pt `lev c′1�(pt ′′), pt `lev pa1 �i and pt `lev pa ′1 �i . From lev(r1) = Low we get by rule [COP]
that lev(r2) = lev(r3) = Low. From this combined with reg1 =RL reg ′1 we get reg1(r2) = reg ′1(r2) and
reg1(r3) = reg ′1(r3) and, thus, 〈c1, pa1, reg1〉 →i 〈c2, pa2〉 and 〈c′1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉 are derived
with the same rule from Figure 7 in the article. Hence, v = v ′. From this we get v@and(r2, r3) � r1 =
v ′@and(r2, r3) � r1 and by definition of =obs

L we get v@and(r2, r3) � r1 =obs
L v ′@and(r2, r3) � r1.

From this combined with pa1 �i≈Ob∗
L pa ′1 �i , fencefree(pa1 �i), fencefree(pa ′1 �i),
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pa2 = pa1::[(i , v@and(r2, r3) � r1)] and pa ′2 = pa ′1::[(i , v ′@and(r2, r3) � r1)] we get pa2 �i≈Ob∗
L

pa ′2 �i .
From pa2 �i≈Ob∗

L pa ′2 �i , c2 = ε and c′2 = ε we get by definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i
) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i).
Case (c1 = spawnιc):

In this case, c′1 = spawnιc follows from c1 = c′1.
From 〈c1, pa1, reg1〉 →i 〈c2, pa2〉 and 〈c′1, pa ′1, reg ′1〉 →i 〈c′2, pa ′2〉 we get by the semantics rules of spawn that
c2 = ε, c′2 = ε, pa2 = pa1::[(i ,↗c)] and pa ′2 = pa ′1::[(i ,↗c)]. Hence, pa2 �j= pa1 �j and pa ′2 �j= pa ′1 �j for all
j 6= i .
From [CSP] we get pc, pt ′′ `lev c � (pt ′′′) for some pt ′′, pt ′′′ ∈ {Low,High}. From the definition of =obs

L we get
↗c=obs

L ↗c . From the two previous facts combined with pa1 �i≈Ob∗
L pa ′1 �i , fencefree(pa1 �i), fencefree(pa ′1 �i),

pa2 = pa1::[(i ,↗c)] and pa ′2 = pa ′1::[(i ,↗c)] we get pa2 �i≈Ob∗
L pa ′2 �i .

From pa2 �i≈Ob∗
L pa ′2 �i , c2 = ε and c′2 = ε we get by definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i) ≈(C∪{ε})×Ob∗

L
(c′2, pa ′2 �i).

As induction hypothesis we assume that (c2, pa2 �i) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i), pa2 �i≈Ob∗
L pa ′2 �i , pa2 �j= pa1 �j and

pa ′2 �j= pa ′1 �j for all j 6= i holds for derivations with arbitrary length n.

For the induction step let the derivation length be n′ = n+ 1. From the calculus for deriving 〈c1, pa1, reg1〉 →i 〈c2, pa2〉 we
know that only the rules for sequential composition can have a derivation length larger than 1. We distinguish two cases based
on the semantics rule for sequential composition used for deriving 〈c1, pa1, reg1〉 →i 〈c2, pa2〉.

Case (Sequential Composition with 〈cA, pa1, reg1〉 →i 〈ε, pa3〉):
In this case, c1 = cA; cB and c1 = cA; cB due to c1 = c′1. From the assumption of this case we get
〈cA, pa1, reg1〉 →i 〈ε, pa3〉. From this we get that cA is an instruction that terminates in one step. The only
instruction that may terminate in one or more steps is while. However, since while is only typeable with a Low-
register and reg1 =RL reg ′1 we know that while terminates in one step starting in reg1 if and only if while terminates
in one step starting in reg ′1. Hence, from 〈cA, pa1, reg1〉 →i 〈ε, pa3〉 we obtain 〈cA, pa ′1, reg ′1〉 →i 〈ε, pa ′3〉.
Since 〈cA, pa1, reg1〉 →i 〈ε, pa3〉 is derived in n′ − 1 = n steps we can apply the induction hypothesis to obtain
pa3 �i≈Ob∗

L pa ′3 �i , pa3 �j= pa1 �j and pa ′3 �j= pa ′1 �j for all j 6= i .
From semantics rule of sequential composition we get c2 = cB , c′2 = cB , pa2 = pa3 and pa ′2 = pa ′3. From this
combined with pa3 �i≈Ob∗

L pa ′3 �i we get by definition of ≈(C∪{ε})×Ob∗

L that (c2, pa2 �i) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i).
Case (Sequential Composition with 〈cA, pa1, reg1〉 →i 〈cC , pa3〉):

In this case, c1 = cA; cB and c1 = cA; cB due to c1 = c′1. From the assumption of this case we get
〈cA, pa1, reg1〉 →i 〈cC , pa3〉. From this we get that cA is an instruction that does not terminate in one step.
The only instruction that may terminate in one or more steps is while. However, since while is only typeable
with a Low-register and reg1 =RL reg ′1 we know that while terminates in more thatn one step starting in reg1
if and only if while terminates in one step starting in reg ′1. Hence, from 〈cA, pa1, reg1〉 →i 〈cC , pa3〉 we obtain
〈cA, pa ′1, reg ′1〉 →i 〈c′C , pa ′3〉.
Since 〈cA, pa1, reg1〉 →i 〈ε, pa3〉 is derived in n′ − 1 = n steps we can apply the induction hypothesis to obtain
(cC , pa3) ≈(C∪{ε})×Ob∗

L (c′C , pa3), pa3 �i≈Ob∗
L pa ′3 �i , pa3 �j= pa1 �j and pa ′3 �j= pa ′1 �j for all j 6= i .

From (cC , pa3) ≈(C∪{ε})×Ob∗

L (c′C , pa3) we get by the third condition of the definition of ≈(C∪{ε})×Ob∗

L that
(cC ; cB , pa3) ≈(C∪{ε})×Ob∗

L (c′C ; cB , pa3).
From semantics rule of sequential composition we get c2 = cC ; cB , c′2 = c′C ; cB , pa2 = pa3 and pa ′2 = pa ′3.
From this combined with (cC ; cB , pa3) ≈(C∪{ε})×Ob∗

L (c′C ; cB , pa3) we get by definition of ≈(C∪{ε})×Ob∗

L that
(c2, pa2 �i) ≈(C∪{ε})×Ob∗

L (c′2, pa ′2 �i).

The following lemma shows that an execution step of a High-typable instruction results in a High-typed obligation list, i.e.
such an execution step does not add an obligation that causes the obligation list to become Low.

Lemma 33. If 〈cA; cB , pa1, reg〉 →i 〈cC , pa2〉, High, pt `lev cA � (pt ′), fencefree(pa1 �i) and High `lev pa1 �i with cC ∈ C,
then High `lev pa2 �i .

Proof: From 〈cA; cB , pa1, reg〉 →i 〈cC , pa2〉 we know by the rules for sequential composition that 〈cA, pa1, reg〉 →i

〈c′A, pa2〉 is derivable for some c′A ∈ (C ∪ {ε}).

We prove this lemma by an induction on the derivation length of the judgment 〈cA, pa1, reg〉 →i 〈c′A, pa2〉. The induction
base are derivations with a length of 1. Derivations with length 1 are possible for all instructions that are not sequentially
composed.
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Let reg1 ∈ Reg , pa1, pa2 ∈ Pa , cA, cB , cC ∈ C be arbitrary with 〈cA; cB , pa1, reg〉 →i 〈cC , pa2〉 with cC ∈ C, High, pt `lev
cA � (pt ′), fencefree(pa1 �i) and High `lev pa1 �i .

We make a case distinction on the shapes of cA for which a derivation in one step is possible, i.e. all instructions except
sequential composition.

Case (cA = skipι):
In this case we get from rule of skip that pa2 = pa1. Hence, High `lev pa2 �i follows directly from High `lev
pa1 �i .

Case (cA = whileι r do c′ od):
This case is not applicable, because rule [CWH] requires that pt = Low, i.e. Low, pt `lev cA � (Low).

Case (cA = if ι r then ct else ce fi):
In this case we get from the rules of if that pa2 = pa1. Hence, High `lev pa2 �i follows directly from High `lev
pa1 �i .

Case (cA = loadι r v ):
In this case we get from the rule of load with a constant that pa2 = pa1::[(i , v@const � r)].
From High, pt `lev cA � (pt ′) we get by rule [CLC] that lev(r) = High. Hence, from rule [PC] we get High `lev
pa2 �i .

Case (c1 = loadι r x ):
In this case we get from the rule of load with a variable that pa2 = pa1::[(i , ?@x _ r)].
From High, pt `lev cA � (pt ′) we get by rule [CLX] that lev(r) = High. Hence, from rule [PL] we get High `lev
pa2 �i .

Case (c1 = storeι x r ):
In this case we get from the rule of store that pa2 = pa1::[(i , x ^ reg1(r)@r)].
From High, pt `lev cA � (pt ′) we get by rule [CST] that lev(x ) = High. Hence, from rule [PS] we get High `lev
pa2 �i .

Case (c1 = eqι r1 r2 r3):
In this case we get from the rules of eq that pa2 = pa1::[(i , v@eq(r2, r3) � r1)].
From High, pt `lev cA �(pt ′) we get by rule [COP] that lev(r1) = High. Hence, from rule [PV] we get High `lev
pa2 �i .

Case (c1 = andι r1 r2 r3):
In this case we get from the rule of and that pa2 = pa1::[(i , v@and(r2, r3) � r1)].
From High, pt `lev cA �(pt ′) we get by rule [COP] that lev(r1) = High. Hence, from rule [PV] we get High `lev
pa2 �i .

Case (c1 = spawnιc):
This case is not applicable, because rule [CSP] requires that pt = Low, i.e. Low, pt `lev cA � (Low).

As induction hypothesis we assume that High `lev pa2 �i holds for derivations with arbitrary length n.

For the induction step let the derivation length be n′ = n + 1. From the calculus for deriving 〈cA, pa1, 〉 →i 〈c′A, pa2〉 we
know that only the rules for sequential composition can have a derivation length larger than 1.

From the semantics rules of sequential composition we know that 〈cD, pa1, reg〉 →i 〈c′D, pa2〉 is derivable for some cD ∈ C
and c′D ∈ (C ∪ {ε}) with cA = cD; cE for some cE . From this combined with High, pt `lev cA � (pt ′) we get by rule [CSQ]
that High, pt `lev cD � (pt ′′). Hence, we can apply the induction hypothesis to obtain High `lev pa2 �i , because the derivation
length of 〈cD, pa1, reg〉 →i 〈c′D, pa2〉 is n′ − 1 = n.

The following lemma shows that a step of a High-typeable instruction with a High-typeable list of obligations results in
an instruction and obligation list that is Low-similar to the original instruction and obligation list.

Lemma 34 (Confinement of Thread Step). If 〈c1, pa1, reg〉 →i 〈c2, pa2〉, High,High `lev c1 � (High) and High `lev pa1 �i ,
then (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c2, pa2 �i).

Proof: Let c1 ∈ C, pa1, pa2 ∈ Pa , reg ∈ Reg and c2 ∈ (C ∪ {ε}) be arbitrary such that 〈c1, pa1, reg〉 →i 〈c2, pa2〉,
High,High `lev c1 � (High) and High `lev pa1 �i .

We prove this lemma by an induction on the derivation length of 〈c1, pa1, reg〉 →i 〈c2, pa2〉. The induction base are derivations
with a length of 1. Derivations with a length of 1 are possible with all instructions that are not sequentially composed. We
distinguish cases based on the shape of c1 for which the derivation length is 1.

Case (c1 = skipι):
In this case we get from rule of skip that pa2 = pa1 and c2 = ε. Hence, High `lev pa2 �i follows directly from
High `lev pa1 �i .
From c2 = ε we get by rule [EM] that High,High `lev c2 � (High).
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From High,High `lev c1 � (High), High,High `lev c2 � (High), High `lev pa1 �i and High `lev pa2 �i we
get by definition of ≈(C∪{ε})×Ob∗

L that (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c2, pa2 �i).
Case (cA = whileι r do c′ od):

This case is not applicable, because rule [CWH] requires that pt = Low, i.e. Low, pt `lev cA � (Low).
Case (cA = if ι r then ct else ce fi):

In this case we get from the rules of if that pa2 = pa1 and c2 = c for some c ∈ {ct, ce}. Hence, High `lev pa2 �i
follows directly from High `lev pa1 �i .
From the rule [CIL] and [CIH] we get High,High `lev c � (High) for all c ∈ {ct, ce}. From c2 = c for some
c ∈ {ct, ce} we get High,High `lev c2 � (High)
From High,High `lev c1 � (High), High,High `lev c2 � (High), High `lev pa1 �i and High `lev pa2 �i we
get by definition of ≈(C∪{ε})×Ob∗

L that (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c2, pa2 �i).
Case (cA = loadι r v ):

In this case we get from the rule of load with a constant that pa2 = pa1::[(i , v@const � r)] and c2 = ε.
From High, pt `lev cA � (pt ′) we get by rule [CLC] that lev(r) = High. Hence, from rule [PC] we get High `lev
pa2 �i .
From c2 = ε we get by rule [EM] that High,High `lev c2 � (High).
From High,High `lev c1 � (High), High,High `lev c2 � (High), High `lev pa1 �i and High `lev pa2 �i we
get by definition of ≈(C∪{ε})×Ob∗

L that (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c2, pa2 �i).
Case (c1 = loadι r x ):

In this case we get from the rule of load with a variable that pa2 = pa1::[(i , ?@x _ r)] and c2 = ε.
From High, pt `lev cA � (pt ′) we get by rule [CLX] that lev(r) = High. Hence, from rule [PL] we get High `lev
pa2 �i .
From c2 = ε we get by rule [EM] that High,High `lev c2 � (High).
From High,High `lev c1 � (High), High,High `lev c2 � (High), High `lev pa1 �i and High `lev pa2 �i we
get by definition of ≈(C∪{ε})×Ob∗

L that (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c2, pa2 �i).
Case (c1 = storeι x r ):

In this case we get from the rule of store that pa2 = pa1::[(i , x ^ reg1(r)@r)] and c2 = ε.
From High, pt `lev cA � (pt ′) we get by rule [CST] that lev(x ) = High. Hence, from rule [PS] we get High `lev
pa2 �i .
From c2 = ε we get by rule [EM] that High,High `lev c2 � (High).
From High,High `lev c1 � (High), High,High `lev c2 � (High), High `lev pa1 �i and High `lev pa2 �i we
get by definition of ≈(C∪{ε})×Ob∗

L that (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c2, pa2 �i).
Case (c1 = eqι r1 r2 r3):

In this case we get from the rules of eq that pa2 = pa1::[(i , v@eq(r2, r3) � r1)] and c2 = ε.
From High, pt `lev cA �(pt ′) we get by rule [COP] that lev(r1) = High. Hence, from rule [PV] we get High `lev
pa2 �i .
From c2 = ε we get by rule [EM] that High,High `lev c2 � (High).
From High,High `lev c1 � (High), High,High `lev c2 � (High), High `lev pa1 �i and High `lev pa2 �i we
get by definition of ≈(C∪{ε})×Ob∗

L that (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c2, pa2 �i).
Case (c1 = andι r1 r2 r3):

In this case we get from the rule of and that pa2 = pa1::[(i , v@and(r2, r3) � r1)] and c2 = ε.
From High, pt `lev cA �(pt ′) we get by rule [COP] that lev(r1) = High. Hence, from rule [PV] we get High `lev
pa2 �i .
From c2 = ε we get by rule [EM] that High,High `lev c2 � (High).
From High,High `lev c1 � (High), High,High `lev c2 � (High), High `lev pa1 �i and High `lev pa2 �i we
get by definition of ≈(C∪{ε})×Ob∗

L that (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c2, pa2 �i).
Case (c1 = spawnιc):

This case is not applicable, because rule [CSP] requires that pt = Low, i.e. Low, pt `lev cA � (Low).

As induction hypothesis we assume that (cA, pa1 �i) ≈(C∪{ε})×Ob∗

L (cC , pa2 �i) holds for derivations with arbitrary length n.

For the induction step let the derivation length be n′ = n + 1. From the calculus for deriving 〈c1, pa1, 〉 →i 〈c2, pa2〉 we
know that only the rules for sequential composition can have a derivation length larger than 1.

From the semantics rules we get pa2 = pa1::pa3 for some pa3 with |pa3| ≤ 1 and |pa3| = |pa3 �i |.
Hence, c1 = cA; cB . From this combined with High,High `lev c1 � (High) we get by rule [CSQ] that High,High `lev

cA � (pt) and High, pt `lev cB � (High). From the calculus for typing we obtain that pt = High.

From c1 = cA; cB and 〈c1, pa1, 〉 →i 〈c2, pa2〉 we get by semantics of sequential composistion we that (cA, pa1 �i) →i

(cC , pa2 �i) is derivable for some cC ∈ (C ∪ {ε}).

From High,High `lev cA � (High) we get by Lemma 24 that High,High `lev cC � (High). If cc 6= ε we get from
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High,High `lev cC � (High) and High,High `lev cB � (High) by rule [CSQ] that High,High `lev cC ; cB � (High).

From semantics of sequential composition we get c2 = cB or c2 = cC ; cB . Hence, we get either from High,High `lev
cB � (High) or High,High `lev cC ; cB � (High) that High,High `lev c2 � (High).

From High,High `lev c1 � (High), High `lev pa1 �i , and fencefree(pa1 �i) we get by Lemma 33 that High `lev pa2 �i .
From pa2 = pa1::pa3 for some pa3 with |pa3| ≤ 1 and |pa3| = |pa3 �i |, fencefree(pa1) and High `lev pa2 �i we get by
definition of ≈Ob∗

L that pa1 �i≈Ob∗
L pa2 �i .

From High,High `lev c1 � (High), High,High `lev c2 � (High), High `lev pa1 �i and High `lev pa2 �i we get by
definition of ≈(C∪{ε})×Ob∗

L that (c1, pa1 �i) ≈(C∪{ε})×Ob∗

L (c2, pa2 �i).

The following lemma shows that a step in a High-typeable prefix of an instruction with a High-typeable obligation list
results in a Low-similar configuration.

Lemma 35 (Confinement of Next Step of a Thread). If 〈~cs1, (pa1, ~tr1), gst1〉 =⇒MM 〈~cs2, (pa2, ~tr2), gst2〉, ~cs1(i) = cA; cB ,
~cs2(i) = cC ; cB with cC ∈ C, 〈cA; cB , pa1, ~reg(i)〉 →i 〈cC ; cB , pa2〉, ~pc, ~pt `lev 〈~cs1, (pa1, ~tr1), gst1〉, High `lev pa1 �i
and High,High `lev cA � (High), then 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs2, (pa2, ~tr2), gst2〉 and High `lev pa2 �i hold.

Proof: Let ~cs1, ~cs2 : I ⇀ (C ∪{ε}), pa1, pa2 ∈ Pa , ~tr1, ~tr2 ∈ ~Tr , gst1, gst2 ∈ Gst , cA, cB , cC ∈ C and i ∈ I be arbitrary
with 〈~cs1, (pa1, ~tr1), gst1)〉 =⇒MM 〈~cs2, (pa2, ~tr2), gst2〉, ~cs1(i) = cA; cB , ~cs2(i) = cC ; cB , 〈cA; cB , pa1, ~reg(i)〉 →i

〈cC ; cB , pa2〉, High `lev pa1 �i and High,High `lev cA � (High).

From the rule for thread progress we get gst2 = gst1, pre(~cs2) = pre(~cs1), ~cs2(j ) = ~cs1(j ), pa2 �j= pa1 �j for all j 6= i
and fencefree(pa1 �i).

From 〈cA; cB , pa1, ~reg(i)〉 →i 〈cC ; cB , pa2〉 we know by the rules for sequential composition that 〈cA, pa1, reg〉 →i

〈cC , pa2〉.
From 〈cA, pa1, reg〉 →i 〈cC , pa2〉, fencefree(pa1 �i), High `lev pa1 �i and High,High `lev cA � (High) we get by

Lemma 24 that High,High `lev cC � (High) and by Lemma 33 that High `lev pa2 �i and by Lemma 34 that (cA, pa1 �i
) ≈(C∪{ε})×Ob∗

L (cC , pa2 �i) and, hence, pa1 �i≈Ob∗
L pa2 �i .

From ~cs1(i) = cA; cB , ~cs2(i) = cC ; cB , High,High `lev cA�(High), High,High `lev cC �(High), High `lev pa1 �i ,
High `lev pa2 �i and pa1 �i≈Ob∗

L pa2 �i we get by definition of≈(C∪{ε})×Ob∗

L that (~cs1(i), pa1 �i) ≈(C∪{ε})×Ob∗

L (~cs2(i), pa2 �i).
From this combined with gst2 = gst1, pre(~cs2) = pre(~cs1), ~cs2(j ) = ~cs1(j ), pa2 �j= pa1 �j for all j 6= i we get by definition
of ≈Conf

L that 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf
L 〈~cs2, (pa2, ~tr2), gst2〉.

The following lemma shows that an execution step of an instruction that is typeable as High results in an instruction and
list of obligations that are Low-similar to the original instruction and list of obligations.

Lemma 36 (Confinement of Threads). If 〈~cs1, (pa1, ~tr1), gst1)〉 =⇒MM 〈~cs2, (pa2, ~tr2), gst2〉 and 〈~cs1(i), pa1, ~reg(i)〉 →i

〈~cs2(i), pa2〉 and High `lev pa1 �i and High,High `lev ~cs1(i) � (High),
then 〈~cs1, (pa1, ~tr1), gst1)〉 ≈Conf

L 〈~cs2, (pa2, ~tr2), gst2〉.

Proof: Let ~cs1, ~cs2 : I ⇀ (C ∪ {ε}), pa1, pa2 ∈ Pa , ~tr1, ~tr2 ∈ ~Tr , gst1, gst2 ∈ Gst and i ∈ I be arbitrary with
〈~cs1, (pa1, ~tr1), gst1)〉 =⇒MM 〈~cs2, (pa2, ~tr2), gst2〉, 〈~cs1(i), pa1, ~reg(i)〉 →i 〈~cs2(i), pa2〉, High `lev pa1 �i and
High,High `lev ~cs1(i) � (High).

From the rule for thread progress we get gst2 = gst1, pre(~cs2) = pre(~cs1), ~cs2(j ) = ~cs1(j ), pa2 �j= pa1 �j for all j 6= i
and fencefree(pa1 �i).

From High,High `lev ~cs1(i) � (High), High `lev pa1 �i , fencefree(pa1 �i) and 〈~cs1(i), pa1, ~reg(i)〉 →i 〈~cs2(i), pa2〉 we
get by Lemma 34 that (~cs1(i), pa1 �i) ≈(C∪{ε})×Ob∗

L (~cs2(i), pa2 �i).

From this combined with gst2 = gst1, pre(~cs2) = pre(~cs1), ~cs2(j ) = ~cs1(j ) and pa2 �j= pa1 �j for all j 6= i we get by
definition of ≈Conf

L that 〈~cs1, (pa1, ~tr1), gst1)〉 ≈Conf
L 〈~cs2, (pa2, ~tr2), gst2〉.

The following lemma shows that fulfilling an obligation of a thread with a list of obligations that is typeable as High results
in configuration that is Low-similar to the original configuration.

Lemma 37 (Confinement of Obligation Fulfilling). If 〈~cs1, (pa1, ~tr1), gst1〉 =⇒MM 〈~cs2, (pa2, ~tr2), gst2〉 and pa2 = pa1 \m
and pa1[m] = (i , ob) and High `lev pa1[0 . . . k]�i for all k < m, then 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs2, (pa2, ~tr2), gst2〉 and
~cs2 = ~cs1.

Proof: Let ~cs1, ~cs2 : I ⇀ (C ∪ {ε}), pa1, pa2 ∈ Pa , ~tr1, ~tr2 ∈ ~Tr , gst1, gst2 ∈ Gst and i ∈ I be arbitrary with
〈~cs1, (pa1, ~tr1), gst1〉 =⇒MM 〈~cs2, (pa2, ~tr2), gst2〉 and pa2 = pa1 \m and pa[m] = (i , ob) and High `lev pa1[0 . . . k]�i for
all k < m.
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From 〈~cs1, (pa1, ~tr1), gst1〉 =⇒MM 〈~cs2, (pa2, ~tr2), gst2〉 and pa2 = pa1 \ m we get that 〈~cs1, (pa1, ~tr1), gst1〉 =⇒MM

〈~cs2, (pa2, ~tr2), gst2〉 must be derived with the second, third or fourth rule of Figure 5 in the article. Hence, nextΦ(pa1,m) must
hold. Since the program-order relaxations in Figure 1, 2 and 3 of the article do not allow reordering of an obligation ob′ ∈ Fe
we get fencefree(pa1[0 . . .m]�i).

From High `lev pa1[0 . . . k] �i for all k < m and fencefree(pa1[0 . . .m− 1] �i [)] we get by definition of ≈Ob∗
L that

pa1 �i≈Ob∗
L pa1 \m�i . From this combined with pa2 = pa1 \m we get pa1 �i≈Ob∗

L pa2 �i .
From High `lev pa1[0 . . . k] �i for all k < m we get that ob /∈ {↗c | c ∈ C}, because the only typing rule for these

obligations is [PT] and this rule is only applicable if pt = Low. Hence, only the second and third rule of Figure 5 in the article
are applicable.

From the second and third rule in Figure 5 of the article we get ~cs1 = ~cs2 and either gst1 = gst2 or gst2 = gst1[i 7→
(effect(ob′, gst1[i ]))]. From the definition of effect we get that the only cases where gst1 6= gst2 holds are the cases where ob
is of one of the following shapes v ′@x _ r or x ^ v@r or e � r . In these cases we get from High `lev pa1[0 . . . k]�i for all
k < m by the rules [PS], [PL], [PC] and [PV] that the domain assignment assigns High to the target variable or register. Hence,
gst1 =Gst

L gst2.

From ~cs1 = ~cs2, pa1 �i≈Ob∗
L pa2 �i , gst1 =Gst

L gst2 we get by definition of ≈Conf
L that 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L

〈~cs2, (pa2, ~tr2), gst2〉.
The following lemma shows that an execution step from a configuration can be matched by a (possibly empty) sequence of

execution steps from a Low-similar configuration such that the resulting configurations are Low-similar again.

Lemma 38 (One Step Security). If 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf
L 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 holds and 〈~cs1, (pa1, ~tr1), gst1〉 =⇒MM

〈~cs2, (pa2, ~tr2), gst2〉 is derivable, then there are ~cs ′2 : I ⇀ (C ∪ {ε}), pa ′2 ∈ Pa , ~tr
′
2 ∈ ~Tr , gst ′2 ∈ Gst such that

〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉 =⇒∗MM 〈~cs ′2, (pa ′2, ~tr

′
2), gst ′2〉 and 〈~cs2, (pa2, ~tr2), gst2〉 ≈L 〈~cs ′2, (pa ′2, ~tr

′
2), gst ′2〉.

Proof: Let MM ∈ {SC, IBM370,TSO,PSO} ~cs1, ~cs ′1, ~cs2 : I ⇀ (I ∪ {ε}), pa1, pa ′1, pa2 ∈ Pa , ~tr1, ~tr
′
1, ~tr2 ∈ ~Tr ,

gst1, gst ′1, gst2 ∈ Gst be arbitrary such that 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf
L 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 holds and the judgment

〈~cs1, (pa1, ~tr1), gst1〉 =⇒MM 〈~cs2, (pa2, ~tr2), gst2〉 is derivable.

The execution step 〈~cs1, (pa1, ~tr1), gst1〉 =⇒MM 〈~cs2, (pa2, ~tr2), gst2〉 is either caused by progress of a thread i or by
fulfilling an obligation of a thread i with i ∈ pre(~cs1) for some i ∈ pre(~cs1). We fix i ∈ pre(~cs1) and distinguish two cases
based on whether the thread i progresses or an obligation of the thread i is fulfilled.

Case (obligation fulfilled):
In this case we know that the judgment was derived with either the second or the third or the fourth rule from
Figure 5 depending on the obligation that was fulfilled.
From 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉 we get by definition of ≈Conf

L and of ≈(C∪{ε})×Ob∗

L that
pa1 �i≈Ob∗

L pa ′1 �i holds.
From pa1 �i≈Ob∗

L pa ′1 �i we get by definition of ≈Ob∗
L that there is obsA, obs ′A, obsB , obs ′B ∈ Ob∗ with pa1 �i=

obsA::obsB , pa ′1 �i= obs ′A::obs ′B , High `lev obsA, fencefree(obsA), High `lev obs ′A, fencefree(obs ′A), pt `lev
obsB , pt `lev obs ′B for some pt ∈ {Low,High}.
We distinguish two cases based on whether the obligation that gets fulfilled is an obligation from obsA or obsB .

Case (obligation from obsA gets fulfilled):
In this case there is a m < |pa1| such that pa2 = pa1 \m and a m′ < |obsA| such that obsA[m′] is the
obligation of pa1[m].
From High `lev obsA and fencefree(obsA) we get that High `lev obsA[0 . . . k] for all k < |obsA|.
Since m′ < |obsA| we also get High `lev obsA[0 . . . k] for all k < m′.
From High `lev obsA[0 . . . k] for all k < m′ we get by Lemma 37 that 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L

〈~cs2, (pa2, ~tr2), gst2〉. Hence, by symmetry and transitivity of≈Conf
L we get 〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L

〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉.

Case (obligation from obsB gets fulfilled):
In this case there is a m < |pa1| such that pa2 = pa1 \m and a m′ < |obsB | such that obsB [m′] is the
obligation of pa1[m].
We distinguish three cases based on the disjunct of the fifth condition in Definition 5 that is satisfied.
Case (obsB = [] ∧ obs ′B = [‖]):

This case is not applicable, because according to the assumption of this case an obligation from
obsB gets fulfilled.

Case (obsB = [‖] ∧ obs ′B = []):
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In this case, the third rule of Figure 5 from the article is the only applicable rule to derive the
judgment 〈~cs1, (pa1, ~tr1), gst1〉 =⇒MM 〈~cs2, (pa2, ~tr2), gst2〉. From this rule we get ~cs2 = ~cs1

and gst2 = gst1 and pa2 = pa1 \m with pa2 �i= obsA::[].
From pa1 �i= obsA::obsB , pa ′1 �i= obs ′A::obs ′B , pa2 �i= obsA::[], obs ′B = [] and pa1 �i≈Ob∗

L

pa ′1 �i we get by definition of ≈Ob∗
L that pa2 �i≈Ob∗

L pa ′1 �i .
Since pa2 �i≈Ob∗

L pa ′1 �i , pa2 = pa1 \ m with pa1[m] = (i , ob), ~cs1 = ~cs2, gst1 = gst2

and 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf
L 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 we get 〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L

〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉.

Case (|obsB | = |obs ′B | ∧ ∀k < (|obsB |).obsB [k] =obs
L obs ′B [k]):

In this case, each of the last three rules in Figure 5 of the article is applicable to derive the
judgment 〈~cs1, (pa1, ~tr1), gst1〉 =⇒MM 〈~cs2, (pa2, ~tr2), gst2〉.
In a first step, we reduce the second configuration to a configuration where the High-typed
prefix ob′A of the obligation list of thread i is empty.
From High `lev obs ′A and fencefree(obs ′A) we get that High `lev obs ′A[0 . . . k] for all
k < |obs ′A|. Thus we can apply Lemma 37 and transitivity of ≈Conf

L |obs ′A| times to reach a
configuration 〈~cs ′3, (pa ′3, ~tr

′
3), gst ′3〉 with 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 =⇒∗MM 〈~cs ′3, (pa ′3, ~tr

′
3), gst ′3〉,

〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉 ≈Conf

L 〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉 and path′3 �i= obs ′B .

In the second step, we show that nextΦ(pa ′3,m
′′) holds where m′ is the index of obs ′B [m′] in

path pa ′3.
From the three rules for fulfilling obligations from Figure 5 in the article we know that
nextΦ(pa1,m) holds. Hence, we get by definition of next and Φ̄ that there is φ ∈ Φ such
that φ(obsA::obsB [0 . . . (|obsA| − 1 +m′)], k) holds for each k < |obsA::obsB [0 . . . (|obsA| −
1 +m′)]|, because pa1 �i= obsA::obsB . Thus, there is φ ∈ Φ such that φ(obsB [0 . . . (m′)], k).
From the assumption of this case we get by the definition of ≈Ob∗

L that sources(obsB [k]) =
sources(obs ′B [k]), sinks(obB [k]) = sinks(obs ′B [k]) and the obligations at index k agree on their
type for all k < |obsB |. Hence, from the existence of φ ∈ Φ such that φ(obsB [0 . . . (m′)], k)
we get that φ(obs ′B [0 . . . (m′)], k).
Since pa ′3 �i= obs ′B we get by definition of Φ̄ and next that nextΦ(pa ′3,m

′′) holds where m′′
is the index of the obligation obs ′B [m′] in path pa ′3 and the obligations in the pairs pa1[m]
and pa ′3[m′′] are Low-equal due to the assumption of this case. Since nextΦ(pa ′3,m

′′) holds
we also get that 〈~cs ′3, (pa ′3, ~tr

′
3), gst ′3〉 =⇒MM 〈~cs ′2, (pa ′2, ~tr

′
2), gst ′2〉 is derivable for some

〈~cs ′2, (pa ′2, ~tr
′
2), gst ′2〉 with pa ′2 = pa ′3 \m′′.

In a third step we show that after fulfilling the obligations pa1[m] and pa ′3[m′′] the resulting
configurations are Low-similar again, i.e. 〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L 〈~cs ′2, (pa ′2, ~tr
′
2), gst ′2〉.

Since obsB [k] =obs
L obs ′B [k] for all k < |obsB | we get obsB \m′[k] =obs

L obs ′B \m′[k] for all
k < |obsB \m′|. Hence, obsA::(obsB \m′) ≈Ob∗

L ::(obs ′B \m′) where m′ is the index of the
obligations pa1[m] and pa ′3[m′′] in the paths. Thus, from pa2 = pa1 \m, pa ′2 = pa ′3 \m′′ and
pa1 �j≈Ob∗

L pa ′3 �j for all j ∈ pre(~cs1) we get that pa2 �j≈Ob∗
L pa ′2 �j for all j ∈ pre(~cs1).

Let ob1 and ob′3 be the obligations with pa1[m] = (i , ob1) and pa ′3[m′′] = (i , ob′3). We
distinguish seven cases based on the shape of the obligation ob1.
Case (ob1 =‖):

In this case we get from ob1 =obs
L ob′3 that ob′3 =‖. Hence, the only applicable rule

for fulfilling ob1 and ob′3 is the third rule in Figure 5 of the article.
From this rule we get ~cs2 = ~cs1, ~cs ′2 = ~cs ′3, gst2 = gst1, gst ′2 = gst ′3, pa2 = pa1 \m
and pa ′2 = pa ′3 \m′′.
Since 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉 and pa2 �j≈Ob∗

L pa ′2 �j for
all j ∈ pre(~cs1) we get 〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L 〈~cs ′2, (pa ′2, ~tr
′
2), gst ′2〉.

Case (ob1 = v@x _ r for some v ∈ V):
In this case we get from ob1 =obs

L ob′3 that ob′3 = v ′@x _ r for some v ′ ∈ V ∪ {?}.
Hence, the only applicable rule for fulfilling ob1 and ob′3 is the second rule in Figure
5 of the article.
From definition of specializeΨ we get specializeΨ(pa1[0 . . . (m − 1)], i , ob1, gst1) =
ob1 and specializeΨ(pa ′3[0 . . . (m′′ − 1)], i , ob′3, gst ′3) = ob′′3 .
From the second rule in Figure 5 in the article we get ~cs2 = ~cs1, ~cs ′2 = ~cs ′3, gst2 =
gst1[i 7→ (effect(ob1, gst1[i ]))] and gst ′2 = gst ′3[i 7→ (effect(ob′′3 , gst ′3[i ]))]. Hence,
from definition of effect we get gst2 = gst1[i 7→ (reg1[r 7→ v ],mem1)] where gst1 =
( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′2 = gst ′3[i 7→ (reg ′3[r 7→ v ′′],mem ′3)] for
some v ′′ ∈ V where gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i) = reg ′3.
We distinguish two cases based on whether lev(r) = High or lev(r) = Low.

48



Case (lev(r) = High):
In this case gst1[i 7→ (reg1[r 7→ v ],mem1)] =Gst

L gst1 where gst1 =
( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′3[i 7→ (reg ′3[r 7→ v ′′],mem ′3)] =Gst

L
gst ′3 where gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i) = reg ′3 holds, according to the
definition of =Gst

L . Hence, gst2 =Gst
L gst1 and gst ′2 =Gst

L gst ′3. From this we
get by transitivity and symmetry of =Gst

L that gst2 =Gst
L gst ′2.

Since 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf
L 〈~cs ′3, (pa ′3, ~tr

′
3), gst ′3〉, ~cs2 = ~cs1, ~cs ′2 =

~cs ′3, pa2 �j≈Ob∗
L pa ′2 �j for all j ∈ pre(~cs1) and gst2 =Gst

L gst ′2 we get
〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L 〈~cs ′2, (pa ′2, ~tr
′
2), gst ′2〉.

Case (lev(r) = Low):
In this case we get from ob1 =obs

L ob′3 that ob1 = ob′3 and, hence, ob′′3 = ob′3.
Thus we get v = v ′′ and in consequence gst2 = gst1[i 7→ (reg1[r 7→
v ],mem1)] where gst1 = ( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′2 =
gst ′3[i 7→ (reg ′3[r 7→ v ],mem ′3)] where gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i).
From this combined with gst1 =Gst

L gst ′3 we get by transitivity and symm-
metry of =Gst

L gst1[i 7→ (reg1[r 7→ v ],mem1)] =Gst
L gst ′3[i 7→ (reg ′3[r 7→

v ],mem ′3)]. Hence, gst2 =Gst
L gst ′2.

Since 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf
L 〈~cs ′3, (pa ′3, ~tr

′
3), gst ′3〉, ~cs2 = ~cs1, ~cs ′2 =

~cs ′3, pa2 �j≈Ob∗
L pa ′2 �j for all j ∈ pre(~cs1) and gst2 =Gst

L gst ′2 we get
〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L 〈~cs ′2, (pa ′2, ~tr
′
2), gst ′2〉.

Case (ob1 =?@x _ r ):
In this case we get from ob1 =obs

L ob′3 that ob′3 = v ′@x _ r for some v ′ ∈ V ∪ {?}.
Hence, the only applicable rule for fulfilling ob1 and ob′3 is the second rule in Figure
5 of the article.
From definition of specializeΨ we get specializeΨ(pa1[0 . . . (m − 1)], i , ob1, gst1) =
ob′1 = v@x _ r for some v ∈ V and specializeΨ(pa ′3[0 . . . (m′′ − 1)], i , ob′3, gst ′3) =
ob′′3 = v ′′@x _ r for some v ′′ ∈ V .
From the second rule in Figure 5 in the article we get ~cs2 = ~cs1, ~cs ′2 = ~cs ′3, gst2 =
gst1[i 7→ (effect(ob′1, gst1[i ]))] and gst ′2 = gst ′3[i 7→ (effect(ob′′3 , gst ′3[i ]))]. Hence,
from definition of effect we get gst2 = gst1[i 7→ (reg1[r 7→ v ],mem1)] where gst1 =
( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′2 = gst ′3[i 7→ (reg ′3[r 7→ v ′′],mem ′3)] where
gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i) = reg ′3.
We distinguish two cases based on whether lev(r) = High or lev(r) = Low.
Case (lev(r) = High):

In this case gst1[i 7→ (reg1[r 7→ v ],mem1)] =Gst
L gst1 where gst1 =

( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′3[i 7→ (reg ′3[r 7→ v ′′],mem ′3)] =Gst
L

gst ′3 where gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i) = reg ′3 holds, according to the
definition of =Gst

L . Hence, gst2 =Gst
L gst1 and gst ′2 =Gst

L gst ′3. From this we
get by transitivity and symmetry of =Gst

L that gst2 =Gst
L gst ′2.

Since 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf
L 〈~cs ′3, (pa ′3, ~tr

′
3), gst ′3〉, ~cs2 = ~cs1, ~cs ′2 =

~cs ′3, pa2 �j≈Ob∗
L pa ′2 �j for all j ∈ pre(~cs1) and gst2 =Gst

L gst ′2 we get
〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L 〈~cs ′2, (pa ′2, ~tr
′
2), gst ′2〉.

Case (lev(r) = Low):
In this case we get from ob1 =obs

L ob′3 that ob1 = ob′3 and, hence, ob′3 =
?@x _ r .
From lev(r) = Low we get by rule [PL] that lev(x ) v lev(r) and, hence,
lev(x ) = Low.
From lev(x ) = Low we get by rule [PS] that any obligation ob with x ∈
sinks(ob) is not High-typeable. Thus any obligation with x ∈ sinks(ob)
must be in obsB . From this and obsB [k] =obs

L obs ′B [k] we get that x ∈
sinks(obsB [k]) if and only if x ∈ sinks(obs ′B [k]) and if this is the case in
addition obsB [k] = obs ′B [k]. From this combined with gst1 =Gst

L gst ′3 we
get by definition of specialize that ob′1 = ob′′3 and, in particular, v = v ′′.
In consequence we have gst2 = gst1[i 7→ (reg1[r 7→ v ],mem1)] where
gst1 = ( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′2 = gst ′3[i 7→ (reg ′3[r 7→
v ],mem ′3)] where gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i). From this combined
with gst1 =Gst

L gst ′3 we get by transitivity and symmmetry of =Gst
L gst1[i 7→

(reg1[r 7→ v ],mem1)] =Gst
L gst ′3[i 7→ (reg ′3[r 7→ v ],mem ′3)]. Hence, gst2 =Gst

L
gst ′2.
Since 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉, ~cs2 = ~cs1, ~cs ′2 =
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~cs ′3, pa2 �j≈Ob∗
L pa ′2 �j for all j ∈ pre(~cs1) and gst2 =Gst

L gst ′2 we get
〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L 〈~cs ′2, (pa ′2, ~tr
′
2), gst ′2〉.

Case (ob1 = x ^ v@r ):
In this case we get from ob1 =obs

L ob′3 that ob′3 = x ^ v ′@r . Hence, the only
applicable rule for fulfilling obs1 and ob′3 is the second rule in Figure 5 of the article.
From definition of specializeΨ we get specializeΨ(pa1[0 . . . (m − 1)], i , ob1, gst1) =
ob1 and specializeΨ(pa ′3[0 . . . (m′′ − 1)], i , ob′3, gst ′3) = ob′3.
From the second rule in Figure 5 in the article we get ~cs2 = ~cs1, ~cs ′2 = ~cs ′3, gst2 =
gst1[i 7→ (effect(ob1, gst1[i ]))] and gst ′2 = gst ′3[i 7→ (effect(ob′3, gst ′3[i ]))]. Hence,
from definition of effect we get gst2 = gst1[i 7→ (reg1,mem1[x 7→ v ])] where gst1 =
( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′2 = gst ′3[i 7→ (reg ′3,mem ′3[x 7→ v ])] where
gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i) = reg ′3.
We distinguish two cases based on whether lev(x ) = High or lev(x ) = Low.
Case (lev(x ) = High):

In this case gst1[i 7→ (reg1,mem1[x 7→ v ])] =Gst
L gst1 where gst1 =

( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′3[i 7→ (reg ′3,mem ′3[x 7→ v ′])] =Gst
L

gst ′3 where gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i) = reg ′3 holds, according to the
definition of =Gst

L . Hence, gst2 =Gst
L gst1 and gst ′2 =Gst

L gst ′3. From this we
get by transitivity and symmetry of =Gst

L that gst2 =Gst
L gst ′2.

Since 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf
L 〈~cs ′3, (pa ′3, ~tr

′
3), gst ′3〉, ~cs2 = ~cs1, ~cs ′2 =

~cs ′3, pa2 �j≈Ob∗
L pa ′2 �j for all j ∈ pre(~cs1) and gst2 =Gst

L gst ′2 we get
〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L 〈~cs ′2, (pa ′2, ~tr
′
2), gst ′2〉.

Case (lev(r) = Low):
In this case we get from ob1 =obs

L ob′3 that ob1 = ob′3. Thus we get v = v ′

and in consequence gst2 = gst1[i 7→ (reg1,mem1[x 7→ v ])] where gst1 =
( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′2 = gst ′3[i 7→ (reg ′3,mem ′3[x 7→
v ])] where gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i). From this combined with
gst1 =Gst

L gst ′3 we get by transitivity and symmmetry of =Gst
L gst1[i 7→

(reg1,mem1[x 7→ v ])] =Gst
L gst ′3[i 7→ (reg ′3,mem ′3[x 7→ v ])]. Hence, gst2 =Gst

L
gst ′2.
Since 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉, ~cs2 = ~cs1, ~cs ′2 =

~cs ′3, pa2 �j≈Ob∗
L pa ′2 �j for all j ∈ pre(~cs1) and gst2 =Gst

L gst ′2 we get
〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L 〈~cs ′2, (pa ′2, ~tr
′
2), gst ′2〉.

Case (ob1 = v@const � r ):
In this case we get from ob1 =obs

L ob′3 that ob′3 = v ′@const � r . Hence, the only
applicable rule for fulfilling obs1 and ob′3 is the second rule in Figure 5 of the article.
From definition of specializeΨ we get specializeΨ(pa1[0 . . . (m − 1)], i , ob1, gst1) =
ob1 and specializeΨ(pa ′3[0 . . . (m′′ − 1)], i , ob′3, gst ′3) = ob′3.
From the second rule in Figure 5 in the article we get ~cs2 = ~cs1, ~cs ′2 = ~cs ′3, gst2 =
gst1[i 7→ (effect(ob1, gst1[i ]))] and gst ′2 = gst ′3[i 7→ (effect(ob′3, gst ′3[i ]))]. Hence,
from definition of effect we get gst2 = gst1[i 7→ (reg1[r 7→ v ],mem1)] where gst1 =
( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′2 = gst ′3[i 7→ (reg ′3[r 7→ v ′],mem ′3)] where
gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i) = reg ′3.
We distinguish two cases based on whether lev(r) = High or lev(r) = Low.
Case (lev(r) = High):

In this case gst1[i 7→ (reg1[r 7→ v ],mem1)] =Gst
L gst1 where gst1 =

( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′3[i 7→ (reg ′3[r 7→ v ′],mem ′3)] =Gst
L

gst ′3 where gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i) = reg ′3 holds, according to the
definition of =Gst

L . Hence, gst2 =Gst
L gst1 and gst ′2 =Gst

L gst ′3. From this we
get by transitivity and symmetry of =Gst

L that gst2 =Gst
L gst ′2.

Since 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf
L 〈~cs ′3, (pa ′3, ~tr

′
3), gst ′3〉, ~cs2 = ~cs1, ~cs ′2 =

~cs ′3, pa2 �j≈Ob∗
L pa ′2 �j for all j ∈ pre(~cs1) and gst2 =Gst

L gst ′2 we get
〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L 〈~cs ′2, (pa ′2, ~tr
′
2), gst ′2〉.

Case (lev(r) = Low):
In this case we get from ob1 =obs

L ob′3 that ob1 = ob′3. Thus we get
v = v ′ and in consequence gst2 = gst1[i 7→ (reg1[r 7→ v ],mem1)] where
gst1 = ( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′2 = gst ′3[i 7→ (reg ′3[r 7→
v ],mem ′3)] where gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i). From this combined
with gst1 =Gst

L gst ′3 we get by transitivity and symmmetry of =Gst
L gst1[i 7→
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(reg1[r 7→ v ],mem1)] =Gst
L gst ′3[i 7→ (reg ′3[r 7→ v ],mem ′3)]. Hence, gst2 =Gst

L
gst ′2.
Since 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉, ~cs2 = ~cs1, ~cs ′2 =

~cs ′3, pa2 �j≈Ob∗
L pa ′2 �j for all j ∈ pre(~cs1) and gst2 =Gst

L gst ′2 we get
〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L 〈~cs ′2, (pa ′2, ~tr
′
2), gst ′2〉.

Case (ob1 = v@binop(r2, r3) � r1):
In this case we get from ob1 =obs

L ob′3 that ob′3 = v ′@binop(r2, r3) � r1. Hence, the
only applicable rule for fulfilling obs1 and ob′3 is the second rule in Figure 5 of the
article.
From definition of specializeΨ we get specializeΨ(pa1[0 . . . (m − 1)], i , ob1, gst1) =
ob1 and specializeΨ(pa ′3[0 . . . (m′′ − 1)], i , ob′3, gst ′3) = ob′3.
From the second rule in Figure 5 in the article we get ~cs2 = ~cs1, ~cs ′2 = ~cs ′3, gst2 =
gst1[i 7→ (effect(ob1, gst1[i ]))] and gst ′2 = gst ′3[i 7→ (effect(ob′3, gst ′3[i ]))]. Hence,
from definition of effect we get gst2 = gst1[i 7→ (reg1[r 7→ v ],mem1)] where gst1 =
( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′2 = gst ′3[i 7→ (reg ′3[r 7→ v ′],mem ′3)] where
gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i) = reg ′3.
We distinguish two cases based on whether lev(r) = High or lev(r) = Low.
Case (lev(r) = High):

In this case gst1[i 7→ (reg1[r 7→ v ],mem1)] =Gst
L gst1 where gst1 =

( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′3[i 7→ (reg ′3[r 7→ v ′],mem ′3)] =Gst
L

gst ′3 where gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i) = reg ′3 holds, according to the
definition of =Gst

L . Hence, gst2 =Gst
L gst1 and gst ′2 =Gst

L gst ′3. From this we
get by transitivity and symmetry of =Gst

L that gst2 =Gst
L gst ′2.

Since 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf
L 〈~cs ′3, (pa ′3, ~tr

′
3), gst ′3〉, ~cs2 = ~cs1, ~cs ′2 =

~cs ′3, pa2 �j≈Ob∗
L pa ′2 �j for all j ∈ pre(~cs1) and gst2 =Gst

L gst ′2 we get
〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L 〈~cs ′2, (pa ′2, ~tr
′
2), gst ′2〉.

Case (lev(r) = Low):
In this case we get from ob1 =obs

L ob′3 that ob1 = ob′3. Thus we get
v = v ′ and in consequence gst2 = gst1[i 7→ (reg1[r 7→ v ],mem1)] where
gst1 = ( ~reg1,mem1) and ~reg1(i) = reg1, and gst ′2 = gst ′3[i 7→ (reg ′3[r 7→
v ],mem ′3)] where gst ′3 = ( ~reg ′3,mem ′3) and ~reg ′3(i). From this combined
with gst1 =Gst

L gst ′3 we get by transitivity and symmmetry of =Gst
L gst1[i 7→

(reg1[r 7→ v ],mem1)] =Gst
L gst ′3[i 7→ (reg ′3[r 7→ v ],mem ′3)]. Hence, gst2 =Gst

L
gst ′2.
Since 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉, ~cs2 = ~cs1, ~cs ′2 =

~cs ′3, pa2 �j≈Ob∗
L pa ′2 �j for all j ∈ pre(~cs1) and gst2 =Gst

L gst ′2 we get
〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L 〈~cs ′2, (pa ′2, ~tr
′
2), gst ′2〉.

Case (ob1 =↗c):
In this case we get from ob1 =obs

L ob′3 that ob′3 =↗c . Hence, the only applicable rule
for fulfilling ob1 and ob′3 is the fourth rule in Figure 5 of the article.
From this rule we get ~cs2(j ) = ~cs1(j ), ~cs ′2(j ) = ~cs ′3(j ) for all j ∈ pre(~cs1),
~cs2(max (pre(~cs1)) + 1) = c, ~cs ′2(max (pre(~cs1)) + 1) = c, pa2 = pa1 \m, pa ′2 =
pa ′3 \m′′, mem2 = mem1, mem ′2 = mem ′3, ~reg2(j ) = ~reg1(j ), ~reg ′2(j ) = ~reg ′3(j ) for
all j ∈ pre(~cs1), ~reg2(max (pre(~cs1)) + 1) = reg0 and ~reg ′2(max (pre(~cs1)) + 1) =
reg0 where gst1 = ( ~reg1,mem1), gst2 = ( ~reg2,mem2), gst ′3 = ( ~reg ′3,mem ′3),
gst ′2 = ( ~reg ′2,mem ′2) and ∀r ∈ R.reg0(r) = 0.
Since ~reg2(max (pre(~cs1)) + 1) = reg0 and ~reg ′2(max (pre(~cs1)) + 1) = reg0 we
get ~reg2(max (pre(~cs1)) + 1) = ~reg ′2(max (pre(~cs1)) + 1). From rule [PT] we get
that pc, pt `lev c � (pt ′) is derivable for some pc, pt , pt ′ ∈ {Low,High}. From
this combined with ~cs2(max (pre(~cs1)) + 1) = c, ~cs ′2(max (pre(~cs1)) + 1) = c,
pa2 �max(pre( ~cs1))+1= [] and pa ′2 �max(pre( ~cs1))+1= [] we get (~cs2(max (pre(~cs1)) +

1), pa2 �max(pre( ~cs1))+1) ≈(C∪{ε})×Ob∗

L (~cs ′2(max (pre(~cs1))+1), pa ′2 �max(pre( ~cs1))+1

).
Since 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉 and (~cs2(max (pre(~cs1)) +

1), pa2 �max(pre( ~cs1))+1) ≈(C∪{ε})×Ob∗

L (~cs ′2(max (pre(~cs1))+1), pa ′2 �max(pre( ~cs1))+1

) and pa2 �j≈Ob∗
L pa ′2 �j for all j ∈ pre(~cs1) we get 〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L

〈~cs ′2, (pa ′2, ~tr
′
2), gst ′2〉.

Case (thread progress):
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In this case we know that the judgment was derived with the first rule from Figure 5 and from this rule we know
that gst2 = gst1, ∀n ∈ {0, . . . , (|pa1| − 1)}.∀obs ∈ Fe.pa1[n] 6= (i , ob), 〈~cs1(i), pa1, ~reg(i)〉 →i 〈~cs2(i), pa2〉,
pre(~cs2) = pre(~cs1) and ~cs2(j ) = ~cs1(j ) for all j ∈ pre(~cs1) with j 6= i .
We distinguish three cases based on the condition of ≈(C∪{ε})×Ob∗

L that is satisfied for (~cs1(i), pa1 �i) ≈(C∪{ε})×Ob∗

L
(~cs ′1(i), pa ′1 �i).

Case (~cs1(i) = ~cs ′1(i)):
In a first step, we ensure that the next step of ~cs ′1(i) is not blocked, i.e. there is no ob ∈ Fe in the path
and no update of a source register of the next instruction is pending.
From 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉 we get by definition of≈Conf

L and of≈(C∪{ε})×Ob∗

L

that pa1 �i≈Ob∗
L pa ′1 �i holds.

From pa1 �i≈Ob∗
L pa ′1 �i we get by definition of ≈Ob∗

L that there is obsA, obs ′A, obsB , obs ′B ∈ Ob∗

with pa1 �i= obsA::obsB , pa ′1 �i= obs ′A::obs ′B , High `lev obsA, fencefree(obsA), High `lev obs ′A,
fencefree(obs ′A), pt `lev obsB , pt `lev obs ′B , for some pt ∈ {Low,High} and (obsB = [‖]∧ obs ′B =
[]) ∨ (obsB = [] ∧ obs ′B = [‖]) ∨ (|obsB | = |obs ′B | ∧ ∀k < (|obsB |).obsB [k] =obs

L obs ′B [k]).
Since ∀n ∈ {0, . . . , (|pa1|− 1)}.∀obs ∈ Fe.pa1[n] 6= (i , ob) holds, obsB = [‖]∧ obs ′B = [] cannot hold.
Hence, (obsB = [] ∧ obs ′B = [‖]) ∨ (|obsB | = |obs ′B | ∧ ∀k < (|obsB |).obsB [k] =obs

L obs ′B [k]) holds.
From High `lev obs ′A and fencefree(obs ′A) we get that High `lev obs ′A[0 . . . k] for all k < |obs ′A|.
Combining the two facts from the two previous paragraphs, we can apply Lemma 37 and transitivity
of ≈Conf

L |obs ′A| times (and one additional time if obsB = [] ∧ obs ′B = [‖]) to reach a configuration
〈~cs ′3, (pa ′3, ~tr

′
3), gst ′3〉 with 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 =⇒∗MM 〈~cs ′3, (pa ′3, ~tr

′
3), gst ′3〉, 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 ≈Conf

L

〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉 and path′3 �i= obs ′′B with ~cs ′3 = ~cs ′1 and ∀k < (|obsB |).obsB [k] =obs

L obs ′′B [k]).
Hence, in combination with 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉 we get by transitivity of

≈Conf
L that 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉.

From pa ′3 �i= obs ′′B , ∀k < (|obsB |).obsB [k] =obs
L obs ′′B [k]) and ∀n ∈ {0, . . . , (|pa1| − 1)}.∀obs ∈

Fe.pa1[n] 6= (i , ob) we get by definition of =obs
L that ∀n ∈ {0, . . . , (|pa ′3| − 1)}.∀obs ∈ Fe.pa ′3[n] 6=

(i , ob).
It remains to show that 〈~cs ′3, pa ′3, ~reg ′3(i)〉 →i 〈c, pa ′2〉 is derivable and 〈~cs ′2, (pa ′2, ~tr

′
2), gst ′2〉 ≈Conf

L

〈~cs ′3[i 7→ c], (pa ′2, ~tr
′
3), gst ′3〉 for some c and pa ′2.

To show that 〈~cs ′3, pa ′3, ~reg ′3(i)〉 →i 〈c, pa ′2〉 is derivable, we observe that the only conditions that could
prohibit deriving 〈~cs ′3, pa ′3, ~reg ′3(i)〉 →i 〈c, pa ′2〉 for a not fixed c and pa ′2 are the requirements that
check whether some source registers of instructions are updated in the list of obligations of thread i .
From ~cs1(i) = ~cs ′3(i) we get that ~cs ′3(i) reads from register r if and only if ~cs1(i) reads from register
r . Since 〈~cs1, pa1, ~reg (i)〉 →i 〈~cs2, pa2〉 is derivable we know that r /∈ sinks(pa1 �i) for all r ∈ R that
~cs1(i) reads in this step. From this combined with ~cs ′3(i) reads from register r if and only if ~cs1(i)
reads from register r , pa1 �i= obsA::obsB , pa ′3 �i= obs ′′B and ∀k < (|obsB |).obsB [k] =obs

L obs ′′B [k])
we obtain by definition of =obs

L that r /∈ sinks(pa ′3 �i) for all r ∈ R that ~cs ′3(i) reads in this step. Thus
〈~cs ′3, pa ′3, ~reg ′3(i)〉 →i 〈c, pa ′2〉 for some c and pa ′2.
From ~cs1(i) = ~cs ′3(i), (~cs1(i), pa1 �i) ≈(C∪{ε})×Ob∗

L (~cs ′3(i), pa ′3 �i), ~reg1(i) =RL ~reg ′3(i),
〈~cs1, pa1, ~reg1(i)〉 →i 〈~cs2(i), pa2〉, 〈~cs ′3, pa ′3, ~reg ′3(i)〉 →i 〈c, pa ′2〉, fencefree(pa1 �i) and fencefree(pa ′3 �i
) we get by Lemma 32 that (~cs2(i), pa2 �i) ≈(C∪{ε})×Ob∗

L (c, pa ′2 �i), pa2 �j= pa1 �j , pa ′2 �j= pa ′2 �j
for all j 6= i .
From this combined with 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉 we get definition of ≈Conf

L

that 〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf
L 〈~cs ′1[i 7→ c], (pa ′2, ~tr

′
3), gst ′3〉.

From 〈~cs ′3, pa ′3, ~reg ′3(i)〉 →i 〈c, pa ′2〉 and ∀n ∈ {0, . . . , (|pa ′3| − 1)}.∀obs ∈ Fe.pa ′3[n] 6= (i , ob) we get
by the first rule of Figure 5 in the article that 〈~cs ′3, (pa ′3, ~tr

′
3), gst ′3〉 =⇒MM 〈~cs ′1[i 7→ c], (pa ′2, ~tr

′
3), gst ′3〉

is derivable.
Case (pc = pt = pt ′ = High):

In this case High `lev pa1 �i and High,High `lev ~cs1(i) � (High) holds. Thus we can apply
Lemma 36 to obtain 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs2, (pa2, ~tr2), gst2〉. From this combined with
〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉 we get by transitivity and symmetry of ≈Conf

L that
〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L 〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉. Thus, we are done in this case.

Case (~cs1(i) = cA; cB ∧ ~cs ′1(i) = c′A; c′B ∧ cB = c′B ∧ (cA, pa1 �i) ≈(C∪{ε})×Ob∗

L (c′A, pa ′1 �i)):
In this case each of the three conditions of ≈(C∪{ε})×Ob∗

L can be satisfied for (cA, pa1 �i) ≈(C∪{ε})×Ob∗

L

(c′A, pa ′1 �i). If the first condition of ≈(C∪{ε})×Ob∗

L is satisfied, then this case is analogous the case
~cs1(i) = ~cs ′1(i). If the third condition of ≈(C∪{ε})×Ob∗

L is satisfied, we can again distinguish these three
cases. The only distinct case is the case in which the second condition of ≈(C∪{ε})×Ob∗

L is satisfied. We
provide the arguments for this case in detail in the following.
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In this case High `lev pa1 �i , High `lev pa ′1 �i , High,High `lev cA � (High) and High,High `lev
c′A � (High) are derivable.
From the semantics of sequential composition we get that 〈cA, pa1, ~reg1(i)〉 →i 〈cC , pa2〉 is derivable
for some cC ∈ C ∪ {ε}. We distinguish two cases based on whether cC ∈ C or cC = ε.
Case (cC ∈ C):

In this case we can apply Lemma 35 to obtain 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf
L 〈~cs2, (pa2, ~tr2), gst2〉.

From this combined with 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf
L 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 we get by transi-

tivity and symmetry of ≈Conf
L that 〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf

L 〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉. Thus,

we are done in this case.
Case (cC = ε):

In this case we first reduce the configuration 〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉 to a configuration where the

High prefix of ~cs ′1(i) terminates in one step.
From 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉 we get by definition of ≈Conf

L and of
≈(C∪{ε})×Ob∗

L that pa1 �i≈Ob∗
L pa ′1 �i holds.

From pa1 �i≈Ob∗
L pa ′1 �i we get by definition of ≈Ob∗

L that there is obsA, obs ′A, obsB , obs ′B ∈
Ob∗ with pa1 �i= obsA::obsB , pa ′1 �i= obs ′A::obs ′B , High `lev obsA, fencefree(obsA),
High `lev obs ′A, fencefree(obs ′A), pt `lev obsB , pt `lev obs ′B , for some pt ∈ {Low,High}
and (obsB = [‖] ∧ obs ′B = []) ∨ (obsB = [] ∧ obs ′B = [‖])
∨(|obsB | = |obs ′B | ∧ ∀k < (|obsB |).obsB [k] =obs

L obs ′B [k]).
Since the first rule of Figure 5 in the article is applicable to derive 〈~cs1, (pa1, ~tr1), gst1〉 =⇒MM

〈~cs2, (pa2, ~tr2), gst2〉 for thread i we know that ∀n ∈ {0, . . . , |pa1| − 1}.∀ob ∈ Fe.pa1[n] 6=
(i , ob).
From 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉 we get by definition of ≈Conf

L and of
≈(C∪{ε})×Ob∗

L that pa1 �i≈Ob∗
L pa ′1 �i holds.

From pa1 �i≈Ob∗
L pa ′1 �i we get by definition of ≈Ob∗

L that there is obsA, obs ′A, obsB , obs ′B ∈
Ob∗ with pa1 �i= obsA::obsB , pa ′1 �i= obs ′A::obs ′B , High `lev obsA, fencefree(obsA),
High `lev obs ′A, fencefree(obs ′A), pt `lev obsB , pt `lev obs ′B , for some pt ∈ {Low,High}
and (obsB = [‖] ∧ obs ′B = []) ∨ (obsB = [] ∧ obs ′B = [‖])
∨(|obsB | = |obs ′B | ∧ ∀k < (|obsB |).obsB [k] =obs

L obs ′B [k]). From this combined with ∀n ∈
{0, . . . , |pa1| − 1}.∀ob ∈ Fe.pa1[n] 6= (i , ob) we get that obsB = [] ∧ obs ′B = [‖] is the
only case in which an obligation ob ∈ Fe appears in pa ′1 �i . Thus from High `lev pa1 �i ,
High `lev obs ′A and fencefree(obs ′A) we get that High `lev pa ′1 �i [0 . . . n] holds for all
n < |pa ′1 �i |.
Since High `lev pa ′1 �i [0 . . . n] holds for all n < |pa ′1 �i |, ~cs ′1(i) = c′A; c′B and High,High `lev
c′A�(High) we can apply Lemma 37 and Lemma 35 multiple times to obtain 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉

=⇒∗MM 〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉 with 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 ≈Conf

L 〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉, pa ′3 �i=

[], ~cs ′3(i) = c′′A; c′B and 〈c′′A, pa ′3, reg ′3〉 →i 〈ε, pa ′2〉 is derivable. From 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf
L

〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉 and 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 ≈Conf

L 〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉 we get by tran-

sitivity of ≈Conf
L that 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉.

In a second step we perform one execution step of each thread such that ~cs2(i) = cB and
~cs ′2(i) = c′B and show that the resulting configurations are Low-similar.
Since 〈c′′A, pa ′3, reg ′3〉 →i 〈ε, pa ′2〉 is derivable, pa ′3 �i= [] and ~cs ′3(i) = ~cs ′′A; ~csB we ob-
tain by the first rule of Figure 5 in the article and the rule for sequential composition that
〈~cs ′3, (pa ′3, ~tr

′
3), gst ′3〉 =⇒MM 〈~cs ′2, (pa ′2, ~tr

′
2), gst ′2〉 is derivable with ~cs ′2 = ~cs ′3[i 7→ c′B ].

Since High,High `lev c′′A � (High), pa ′3 �i= [] and High `lev [] we obtain by Lemma 33
that High `lev pa ′2 �i .
From the assumption of this case we get that 〈cA; cB , pa1, reg1〉 →i 〈cB , pa2〉 is derivable
with High,High `lev cA � (High) and High `lev pa1 �i . Hence, we obtaing by Lemma 33
that High `lev pa2 �i .
From the semantics we get pa2 �i= pa1 �i ::obs for some obs with |obs| ≤ 1 and pa ′2 �i=
pa ′3 �i ::obs for some obs with |obs| ≤ 1. From this combined with fencefree(pa1 �) and
fencefree(pa ′3 �) we get High `lev pa ′2 �i and High `lev pa2 �i [0 . . . n] for all n < pa2 �i and
High `lev pa ′2 �i [0 . . . n] for all n < pa ′2 �i . From this combined with pa2 �= pa1 �:: obs for
some obs |obs| ≤ 1 and pa ′2 �= pa ′3 �:: obs for some obs |obs| ≤ 1. From this combined with
fencefree(pa1 �) and fencefree(pa ′3 �) we get by definition of ≈Ob∗

L that pa2 �i≈Ob∗
L pa ′2 �i .

Since cB = c′B due to assumption of this case, ~cs2(i) = cB , ~cs ′2(i) = c′B and pa2 �i≈Ob∗
L pa ′2 �i

we get by definition of ≈(C∪{ε})×Ob∗

L that (~cs2(i), pa2 �i) ≈(C∪{ε})×Ob∗

L (~cs2(i), pa ′2 �i).
From this combined with 〈~cs1, (pa1, ~tr1), gst1〉 ≈Conf

L 〈~cs ′3, (pa ′3, ~tr
′
3), gst ′3〉 we get that
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〈~cs2, (pa2, ~tr2), gst2〉 ≈Conf
L 〈~cs ′2, (pa ′2, ~tr

′
2), gst ′2〉.

The following lemma shows that a configuration that is Low-similar to a configuration of a terminated program run can
perform a sequence of execution steps such that the resulting configuration is Low-similar to the configurations of the terminated
run and the resulting configurations is a terminated configuration itself.

Lemma 39 (Termination). If two well-formed configurations satisfy 〈~cs1, ([], ~tr1), gst1〉 ≈Conf
L 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 and

~cs1(i) = ε for all i ∈ pre(~cs1), then there is ~cs ′2, ~tr
′
2, gst ′2 such that 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 =⇒∗MM 〈~cs ′2, ([], ~tr

′
2), gst ′2〉

with 〈~cs1, ([], ~tr1), gst1〉 ≈Conf
L 〈~cs ′2, ([], ~tr

′
2), gst ′2〉 and ~cs ′2(i) = ε for all i ∈ pre(~cs ′2).

Proof: Let MM ∈ {SC, IBM370,TSO,PSO}, ~cs1, ~cs ′1 : I ⇀ C ∪ {ε}, pa ′1 ∈ Pa , ~tr1, ~tr
′
1 ∈ ~Tr , gst1, gst ′1 be arbitrary

such that 〈~cs1, ([], ~tr1), gst1〉 ≈Conf
L 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 and ~cs1(i) = ε for all i ∈ pre(~cs1).

From 〈~cs1, ([], ~tr1), gst1〉 ≈Conf
L 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 and ~cs1(i) = ε for all i ∈ pre(~cs1) we get by definition of ≈Conf

L

that pre(~cs1) = pre(~cs ′1), (~cs1(i), []) ≈(C∪{ε})×Ob∗

L (~cs ′1(i), pa ′1 �i) holds for all i ∈ pre(~cs1) and gst1 =Gst
L gst ′1.

From (~cs1(i), []) ≈(C∪{ε})×Ob∗

L (~cs ′1(i), pa ′1 �i) we get by definition of ≈(C∪{ε})×Ob∗

L that [] ≈Ob∗
L pa ′1 �i . From this we get

by definition of ≈Ob∗
L that High `lev pa ′1[0 . . .m]�i for all m < |pa ′1|.

Since ~cs1(i) = ε for all i ∈ pre(~cs1) we get by definition of ≈(C∪{ε})×Ob∗

L that the third condition in the definition of
≈(C∪{ε})×Ob∗

L cannot hold and thus one of the following conditions holds for all i ∈ pre(~cs1):

• ~cs ′1(i) = ε and pa ′1 �i= [], or

• High, pt `lev ~cs ′1(i) � (pt ′) and High `lev pa ′1[0 . . .m]�i for all m < |pa ′1|.
We need to show that for all i ∈ pre(~cs ′1) the thread i can proceed into a configuration such that nothing remains to be

executed and the thread has no obligations assumed. To this end, we fix an arbitrary i ∈ I.

Note that the first condition implies the second condition due to the rule [EM]. Hence, we consider only the case that the
second rule is satisfied.

From High, pt `lev ~cs ′1(i) � (pt ′) and High `lev pa ′1[0 . . .m] �i for all m < |pa ′1| we get by applying Lemma 36 and
Lemma 37 multiple times that 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 =⇒∗MM 〈~cs ′2, ([], ~tr

′
2), gst ′2〉 is derivable with

〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉 ≈(C∪{ε})×Ob∗

L 〈~cs ′2, ([], ~tr
′
2), gst ′2〉, ~cs ′2(i) = ε and ~cs ′2(j ) = ~cs ′1(j ) for all j ∈ pre(~cs ′2) where j 6= i .

From 〈~cs1, ([], ~tr1), gst1〉 ≈(C∪{ε})×Ob∗

L 〈~cs ′1, (pa ′1, ~tr
′
1), gst ′1〉 and 〈~cs ′1, (pa ′1, ~tr

′
1), gst ′1〉 ≈(C∪{ε})×Ob∗

L 〈~cs ′2, ([], ~tr
′
2), gst ′2〉

we get by transitivity of ≈(C∪{ε})×Ob∗

L that 〈~cs1, ([], ~tr1), gst1〉 ≈(C∪{ε})×Ob∗

L 〈~cs ′2, ([], ~tr
′
2), gst ′2〉.

Theorem 2 (Soundness of Typecheck). If pc,High `lev c � (pt) is derivable for some pc, pt ∈ {Low,High}, then c ∈ NI MM

for all MM ∈ {SC, IBM370,TSO,PSO}.

Proof: Let c ∈ C be arbitrary such that pc,High `lev c � (pt).

According to definition of NI MM we must show that for all MM ∈ {SC, IBM370,TSO,PSO} and mem1,mem2,mem ′1 ∈
Mem with 〈c,mem1〉 ⇓MM mem2 and mem1 =Gst

L mem ′1 there is mem ′2 such that 〈c,mem ′1〉 ⇓MM mem ′2 and mem2 =Gst
L

mem ′2.

Let MM ∈ {SC, IBM370,TSO,PSO} and mem1,mem2,mem ′1 ∈ Mem be arbitrary such that the previous conditions are
fulfilled.

From 〈c,mem1〉 ⇓MM mem2 we get by the rule for deriving this judgment that there is ~cs1, ~cs2 : I → C, ~tr1, ~tr2 ∈ ~Tr
and ~reg1, ~reg2 : I → Reg such that pre(~cs1) = pre(~tr1) = pre( ~reg1) = {0}, ~cs1(0) = c, ~tr1(0) = [], ∀r ∈ R. ~reg1(0)(r) = 0,
∀i ∈ pre(~cs2). ~cs2(i) = ε and 〈~cs1, ([], ~tr1), ( ~reg1,mem1)〉 =⇒∗MM 〈~cs2, ([], ~tr2), ( ~reg2,mem2)〉 and that we must show that
〈~cs1, ([], ~tr1), ( ~reg1,mem ′1)〉 =⇒∗MM 〈~cs2, ([], ~tr2), ( ~reg2,mem2)′〉 is derivable.

From ~cs1(0) = c, pre(~cs1) = 0 and pc,High `lev c � (pt) we get that pc,High `lev ~cs1(i) � (pt) is derivable for all
i ∈ pre(~cs1).

By the rule [PE] we get that pt `lev []�i is derivable for all i ∈ pre(~cs1).

From pc,High `lev ~cs1(i) � (pt) is derivable for all i ∈ pre(~cs1) and pt `lev [] �i is derivable for all i ∈ pre(~cs1) we
get by the rule [CS] that ~pc, ~pt `lev 〈~cs1, ([], ~tr1), ( ~reg1,mem1)〉 and ~pc, ~pt `lev 〈~cs1, ([], ~tr1), ( ~reg1,mem ′1)〉 are derivable for
some ~pc : I ⇀ {Low,High} and ~pt : I ⇀ {Low,High}.
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From ~pc, ~pt `lev 〈~cs1, ([], ~tr1), ( ~reg1,mem1)〉, ~pc, ~pt `lev 〈~cs1, ([], ~tr1), ( ~reg1,mem ′1)〉, (~cs1(i), [] �i) = (~cs1(i), [] �i)
for all i ∈ pre(~cs1), ~reg1 = ~reg1 and mem1 =L mem ′1 we get by definition of ≈Conf

L , ≈(C∪{ε})×Ob∗

L and =Gst
L that

〈~cs1, ([], ~tr1), ( ~reg1,mem1)〉 ≈Conf
L 〈~cs1, ([], ~tr1), ( ~reg1,mem ′1)〉.

From 〈~cs1, ([], ~tr1), ( ~reg1,mem1)〉 ≈Conf
L 〈~cs1, ([], ~tr1), ( ~reg1,mem ′1)〉 and

〈~cs1, ([], ~tr1), ( ~reg1,mem1)〉 =⇒∗MM 〈~cs2, ([], ~tr2), ( ~reg2,mem2)〉 in n steps we get by applying Lemma 38 n times that
〈~cs1, ([], ~tr1), ( ~reg1,mem1)〉 =⇒∗MM 〈~cs ′3, (pa ′3, ~tr

′
3), ( ~reg ′3,mem ′3)〉 is derivable with

〈~cs2, ([], ~tr2), ( ~reg2,mem2)〉 ≈Conf
L 〈~cs ′3, (pa ′3, ~tr

′
3), ( ~reg ′3,mem ′3)〉.

From 〈~cs2, ([], ~tr2), ( ~reg2,mem2)〉 ≈Conf
L 〈~cs ′3, (pa ′3, ~tr

′
3), ( ~reg ′3,mem ′3)〉 and ~cs2(i) = ε for all i ∈ pre(~cs2) we get by

Lemma 39 that 〈~cs ′3, (pa ′3, ~tr
′
3), ( ~reg ′3,mem ′3)〉 =⇒∗MM 〈~cs ′2, (pa ′2, ~tr

′
2), ( ~reg ′2,mem ′2)〉 with 〈~cs ′3, (pa ′3, ~tr

′
3), ( ~reg ′3,mem ′3)〉 ≈Conf

L

〈~cs ′2, (pa ′2, ~tr
′
2), ( ~reg ′2,mem ′2)〉 and ~cs ′2(i) = ε for all i ∈ pre(~cs ′2).

From 〈~cs2, ([], ~tr2), ( ~reg2,mem2)〉 ≈Conf
L 〈~cs ′3, (pa ′3, ~tr

′
3), ( ~reg ′3,mem ′3)〉 and

〈~cs ′3, (pa ′3, ~tr
′
3), ( ~reg ′3,mem ′3)〉 ≈Conf

L 〈~cs ′2, (pa ′2, ~tr
′
2), ( ~reg ′2,mem ′2)〉 we get by transitivity of ≈Conf

L that
〈~cs2, ([], ~tr2), ( ~reg2,mem2)〉 ≈Conf

L 〈~cs ′2, (pa ′2, ~tr
′
2), ( ~reg ′2,mem ′2)〉.

From 〈~cs2, ([], ~tr2), ( ~reg2,mem2)〉 ≈Conf
L 〈~cs ′2, (pa ′2, ~tr

′
2), ( ~reg ′2,mem ′2)〉 we get by definition of ≈Conf

L on configuraitons
and =Gst

L on global states that mem2 =L mem ′2.

Theorem 3 (Soundness of Transformation). If pc,High `lev c � (pt , c′) is derivable for some pc, pt ∈ {Low,High}, then
c′ ∈ NI MM for all MM ∈ {SC, IBM370,TSO,PSO}.

Proof: From pc,High `lev c � (pt , c′) we get by Lemma 21 that pc,High `lev c′ � (pt) and from pc,High `lev c′ � (pt)
we get by Theorem 2 that c′ ∈ NI MM for all MM ∈ {SC, IBM370,TSO,PSO}.

F. Proofs for showing that transformation does not enforce sequential consistency

In this section we prove that the transformation does not enforce sequentialy consistent behavior for the transformed programs
(Theorem 3 from the article). For this purpose we recall in Figure 6 the example programs from Figure 13 in the article.

c = c1; if14 r1 then fence15 else skip16 fi; c2

c′ = c1; fence18; if14 r1 then fence15 else skip16 fi; c2

where

c1 = load1 r1 h; load2 r2 0; load3 r3 1; spawn4(cS); store12 x r2; store13 y r3

cS = load5 r4 z; load6 r5 y; load7 r6 x; and8 r7 r4 r6; and9 r8 r5 r6; store10 l1 r7; store11 l2 r8

c2 = store17 z r3

lev(h) = lev(r1) = High,
lev(x ) = Low for all x ∈ X \ {h}
lev(r) = Low for all r ∈ R \ {r1}.

Figure 6. Transformed program without sequentially consistent behavior

The following program shows that the program c from Figure 6 is transformed to the program c′ from Figure 6 by our
transformation, given the domain assignment is lev from Figure 6.

Lemma 40. The judgment Low,High `lev c � (Low, c′) is derivable for c, c′ and lev from Figure 6.

Proof: Using the rule [SQ] multiple times together [LX], [OP] and [ST], the judgment Low,High `lev cS � (Low, cS) is
derivable, because pc = Low and lev(xr) = Low holds for all xr ∈ {r4, r5, r6, r7, r8, l1, l2}, i.e. all variables that are accessed
in cS , and hence pc t lev(xr) v lev(xr′) for all xr, xr′ ∈ {r4, r5, r6, r7, r8, l1, l2}.

Using the rule [SQ] multiple times together [LX], [LC], [SP], [ST] and [OP] the judgment Low,High `lev c1 � (Low, c1)
is derivable, because pc = Low and the following three reasons:

First, lev(xr) = Low for all xr ∈ {r2, r3, r3, x, y}, and hence pc t lev(xr) v lev(xr′), i.e. all variables that are accessed in
all commands except load1, and hence pc t lev(xr) v lev(xr′) for all xr, xr′ ∈ {r2, r3, r3, x, y}.

Second, lev(r1) = High, i.e. that register that is written in command load1, and hence pc t lev(h) v lev(r1).

55



Third, pc, pt `lev cS � (pt ′, cS) is derivable for pc = Low, pt = High and pt ′ = Low is derivable.

Using the rule [ST], the judgment Low,High `lev c2 � (Low, cS) is derivable, because lev(r3) v lev(z).

Using the rules [IT], the judgment
Low,Low `lev if14 r1 then fence15 else skip16 fi � (High, fence18; if14 r1 then fence15 else skip16 fi) is derivable,
because lev(r1) = High, High,High `lev fence15 � (High, fence15) is derivable with rule [FN] and High,High `lev
skip16 � (High, skip16) is derivable with rule [SK].

From the derived fact in the last paragraph combined with Low,High `lev c1 � (Low, c1), and Low,High `lev c2 �
(Low, cS) we get by multiple applications of [SQ] that Low,High `lev c � (Low, c′) is derivable.

Lemma 41. The judgment 〈c′,mem〉 ⇓PSO mem ′ with mem(x) = 1 and mem(x ) = 0 for all x ∈ X \ {x} and mem ′(l2) = 1
is derivable for c′ from Figure 6.

Proof: Let 1, 2, 3, 4, 5,13, 6, 7, 8, 9, 10, 11,12, 18, 17 be a sequence for fulfilling obligations of commands with the corre-
sponding identifiers in a program run of c′ from Figure 6.

This sequence is possible, because all obligations of commands except of store12 x r2 and store13 y r3 are fulfilled in the
order in which they were assumed, the obligations store12 x r2 and store13 y r3 may be fulfilled out-of-order due to φWW ∈ Φ
for PSO, and r1 is 0 when if14 r1 is fetched (because r1 is updated to the initial value of h by load1 r1 h).

This sequence results in a final memory mem ′ with mem ′(l2) = 1, because

1) store11 l2 r8 updates l2 to the value of r8 obtained by and9 r8 r5 r6,
2) and9 r8 r5 r6 updates r8 to the conjunction of the values of r5 and r6 obtained by load6 r5 y and load7 r6 x,
3) load7 r6 x updates r6 to the initial value of x and this value is 1
4) load6 r5 y updates r5 to the value of y obtained by store13 y r3

5) store13 y r3 updates y to the value of r3 obtained by load7 r3 1 and this value is 1.

Lemma 42. The judgment 〈c′,mem〉 ⇓SC mem ′ with mem(x) = 1 and mem(x ) = 0 for all x ∈ X \ {x} and mem ′(l2) = 1
is not derivable for c′ from Figure 6.

Proof: Since the initial value of l2 is 0, i.e. mem(l2) = 0, the variable l2 must be updated to reach a final memory mem ′

for which mem ′(l2) = 1 holds. The only update of l2 is store11 l2 r8 and, consequently, store11 l2 r8 must update l2 to 1 to
reach a final memory mem ′ for which mem ′(l2) = 1 holds.

Since the initial value of r8 is 0, r8 must be updated. The only update of r8 is and9 r8 r5 r6. According to the semantics of
and, and9 r8 r5 r6 updates r8 only to 1 if the values of r5 and r6 are both unequal to 0 when assuming the obligation. Since
r5 is initially 0, r5 must be updated before assuming the obligation. The only update of r5 is load6 r5 y. Since y is initially 0,
y must be updated before fulfilling the obligation.

The only update of y is store13 y r3. Since sequential consistency requires that all obligations are fulfilled in the order in
which they were assumed, this means that store12 x r2 must also be fulfilled before the obligation of load6 r5 y and that
store12 x r2 must also be fulfilled before the obligation of load7 r6 x. Since r2 is initially is initially 0 and the only update
of r2, i.e. load2 r2 0, updates r2 to 0, this means that x is updated to 0 before load7 r6 x is fulfilled in all program runs
in which r5 is updated to 1. Consequently, it is not possible that both registers r5 and r6 are 1 when assuming the obligation
of and9 r8 r5 r6 and, hence, it is not possible that store11 l2 r8 updates l2 to 1. Hence, no final memory mem ′ for which
mem ′(l2) = 1.

This finally shows that 〈c′,mem〉 ⇓SC mem ′ with mem(x) = 1 and mem(x ) = 0 for all x ∈ X \ {x} and mem ′(l2) = 1 is
not derivable for c′ from Figure 6.

We recall Theorem 3 from the article:

Theorem 4. The fact that pc,High `lev c � (pt , c′) for some pc, pt ∈ {Low,High} is derivable does not imply that
〈c′,mem〉 ⇓MM mem ′ ⇐⇒ 〈c′,mem〉 ⇓SC mem ′ for all MM ∈ {IBM370,TSO,PSO} holds.

Proof: The programs c and c′ with the domain assignment lev from Figure 6 are a concrete counter example according to
Lemmas 40, 41 and 42.

G. Proofs for Idempotency of the Transformation

In this section we prove that the transforming type system is idempotent. We recall Theorem 4 from the article:

Theorem 5. If pc,High `lev c � (pt , c′) is derivable for some pc, pt ∈ {Low,High}, then
pc,High `lev c′ � (pt ′, c′) is also derivable.
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Proof: We prove the more general proposition:

If pc, pt `lev c � (pt ′, c′) is derivable for some pc, pt , pt ′ ∈ {Low,High}, then
pc, pt `lev c′ � (pt ′, c′) is also derivable.

We prove this by an induction on the length of the derivation for the judgment pc, pt `lev c � (pt ′, c′).

The induction base are derivations with a length of 1. These derivations are only possible with the rules [SK], [FN], [LC],
[LX], [OP], [OP], [ST]. These rule do not perform any transformation. Thus the proposition holds for these cases.

As induction step we assume that the theorem holds for derivations with arbitrary length n′ ≥ 1. For the induction step let
the derivation length n be n′ + 1. These derivations are possible with the rules [SP], [SQ], [IL], [IH], [IT] and [WH]. Note that
among these rules there is only one rule, namely [IT], that actually performs a transformation directly. In all other cases we can
apply the induction hypothesis to obtain that the proposition holds. Thus we focus on the rule [IT].

Only the rule [IT] performs a transformation. From the typing rule [IT] we know that the original instruction is
if ι r then c1 else c2 fi with High,High `lev cn � (High, c′n) for n ∈ {1, 2} for some ι ∈ N, c1, c

′
1, c2, c

′
2 ∈ C and r ∈ R

with High,High `lev cn � (High, c′n) for n ∈ {1, 2} and lev(r) = High and that pt ′ = High. From the typing rule, we also
know that the transformed instruction is fenceι′ ; if ι r then c′1 else c′2 fi for some ι′ ∈ N, c′1, c

′
2 ∈ C.

From fenceι′ ; if ι r then c′1 else c′2 fi we get by rule [SQ] that in the second application of the transformation pc, pt `lev
fenceι′ � (pt ′′, cF ) and pc, pt ′′ `lev if ι r then c′1 else c′2 fi � (High, cI) must be derivable and the transformed program is
cF ; cI .

From the rule [FN] we get that pc, pt `lev fenceι′ � (High, fenceι′) is derivable and thus cF = fenceι′ and pt ′ = High.

From pt = High and lev(r) = High we get that the only applicable rule is [IH]. From High,High `lev cn � (High, c′n)
we get by the induction hypothesis that High,High `lev c′n � (High, c′n) for n ∈ {1, 2} and lev(r) = High. From
High,High `lev c′n � (High, c′n) for n ∈ {1, 2} and lev(r) = High we get by rule [IH] that cI = if ι r then c′1 else c′2 fi.

From pc, pt `lev fenceι′ � (High, cF ), pc, pt ′′ `lev if ι r then c′1 else c′2 fi � (High, cI), cF = fenceι′ and cI =
if ι r then c′1 else c′2 fi we get that pc, pt `lev fenceι′ ; if ι r then c′1 else c′2 fi � (High, fenceι′ ; if ι r then c′1 else c′2 fi)
is derivable.
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