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Abstract—Controlling confidential information in concurrent
systems is difficult, due to covert channels resulting from inter-
action between threads. This problem is exacerbated if threads
share resources at fine granularity.

In this work, we propose a novel monitoring framework to
enforce strong information security in concurrent programs. Our
monitors are hybrid, combining dynamic and static program
analysis to enforce security in a sound and rather precise fashion.
In our framework, each thread is guarded by its own local
monitor, and there is a single global monitor. We instantiate our
monitoring framework to support rely-guarantee style reasoning
about the use of shared resources, at the granularity of individual
memory locations, and then specialize local monitors further to
enforce flow-sensitive progress-sensitive information-flow control.
Our local monitors exploit rely-guarantee-style reasoning about
shared memory to achieve high precision. Soundness of rely-
guarantee-style reasoning is guaranteed by all monitors coop-
eratively. The global monitor is invoked only when threads
synchronize, and so does not needlessly restrict concurrency. We
prove that our hybrid monitoring approach enforces a knowledge-
based progress-sensitive noninterference security condition.

Keywords-Language-based security; information-flow control
for concurrent systems; hybrid information-flow monitor.

I. INTRODUCTION

Computer systems increasingly exhibit concurrency, includ-

ing systems that handle confidential information. Providing

confidentiality in concurrent systems is challenging, as sharing

of resources and synchronization may create covert channels,

thus facilitating inadvertent leakage of sensitive information.

An additional challenge is to enforce confidentiality without

unnecessarily limiting or reducing concurrency.

Most previous mechanisms to control the flow of sensitive

information (and to prevent information leaks) are inadequate in

the presence of modern concurrency features. Operating system

abstractions (e.g., [1, 2]) are too coarse grained to control

information flow between concurrent threads that share fine-

grained resources. Purely static mechanisms (e.g., [3, 4, 5, 6, 7])

are often too restrictive with respect to sharing of resources and

synchronization between threads. Purely dynamic mechanisms

(such as information-flow control monitors [8, 9, 10, 11]) have

not yet been extended to handle fine-grained concurrency, due in

part to the difficulties in dynamically and efficiently preventing

covert channels resulting from thread interactions.

We investigate hybrid information-flow control for enforcing

confidentiality in concurrent programs. Hybrid information-
flow control monitors (or, simply, hybrid monitors) combine

static and dynamic program analysis to secure the flow of

information in a system. We present a general framework for

monitoring concurrent programs, and instantiate this framework

for information-flow security. In our framework, monitoring

occurs at two levels: each thread is guarded by a local monitor,

and there is a single global monitor to provide control across

threads. We enable modular, rely-guarantee-style reasoning

about the behavior of multi-threaded programs by extending the

concepts of modes and mode states [12] to a dynamic setting.

Our global monitor ensures that assumptions made by threads

regarding the exclusive or shared use of memory are justified.

Our local monitors ensure that individual threads provide

the guarantees they promise. Our local monitors additionally

control information flow within the guarded threads. The global

monitor is not concerned with information-flow control; its

sole purpose is to ensure that all assumptions are justified.

Crucially, these assumptions can be exploited by the local

monitors to establish information-flow control, both effectively

and precisely.

Threads’ assumptions about memory resources may change

only at synchronization points. Thus, the global monitor is

accessed only when threads synchronize, and the global monitor

does not needlessly restrict concurrency in the program. Exist-

ing hybrid information-flow control monitors for concurrent

programs (e.g., [13]) use a single monitor shared by all threads,

thus causing unnecessary synchronization between threads.

This article’s contributions can be summarized as follows.

• We provide efficient and precise information-flow control for

concurrent programs using hybrid monitors. Our monitoring

approach is novel: each thread has its own local monitor,

and there is a single global monitor. Efficiency is achieved

because the global monitor is accessed only at thread

synchronization points, and so does not needlessly restrict

concurrency. We prove that our monitors enforce a progress-

sensitive noninterference-like security guarantee.

• The generic framework for monitoring concurrent programs

is itself a novel technical contribution. It enables sound

rely-guarantee-style reasoning in a dynamic setting, where

the global monitor ensures the compatibility of assumptions

made with guarantees provided by threads, and the local

monitors enforce the guarantees promised by threads. Local

monitors can be specialized to impose further constraints

on the guarded thread. By exploiting assumptions, local

monitors are able to effectively enforce also global system

properties. This is the feature from which we benefit in our

hybrid solution for information-flow security.

We consider a simple imperative concurrent calculus, with

input and output operators and barrier synchronization. Our
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local monitors support flow-sensitive security types [14], which

facilitates precise reasoning about information flow via program

variables. A thread may soundly allow the security level of a

variable to change only if the thread has exclusive read-access

or exclusive write-access to the variable.

Our local monitors separately track upper bounds on infor-

mation that may be revealed by the relative order of events

(the timing level of a thread) and information that may be

revealed by learning whether control has reached the current

program point or diverged earlier (the termination level of a

thread). These levels are analogous to the pc level traditionally

used in security-type systems for non-concurrent programs [3].

The termination level enables us to enforce progress sensi-
tive security [15], a generalization of termination sensitive
security [16] to interactive programs. Most existing work on

enforcing information-flow security ignores progress sensitivity

due to the complexity and imprecision of the enforcement

mechanism. Use of the timing level enables us to prevent

internal timing leaks [17]. Although the termination level of a

thread increases monotonically, we provide additional precision

by lowering the timing level of threads at synchronization

points, since synchronization between threads restricts the

relative order of events before and after the synchronization.

Our work leverages the insight that resetting the timing levels of

threads at synchronization points is analogous to lowering the

pc level at post-dominators of control-flow branches [17, 3, 18].

II. INFORMATION FLOW IN CONCURRENT PROGRAMS

In this section, we provide intuition for how concurrency and

progress sensitivity complicate the enforcement of information-

flow security, and for how our monitors enforce security in this

challenging setting. We then present our general framework for

monitoring concurrent programs (Sections III–IV), instantiate it

for rely-guarantee reasoning (Section V), and further instantiate

it to enforce information-flow security (Sections VI–VII).

Due to space restrictions, we provide only proof sketches.

A full version of this article [19] provides detailed proofs and

additional material, such as calculus rules that we omit here.

Information flow through concurrent access: Confiden-

tial information may be inadvertently leaked through thread

interaction. For example, consider the following (insecure) pro-

gram, which consists of two threads that execute concurrently.
Thread 1: input H to foo; output foo× 2 to H
Thread 2: foo := 42; output foo to L

The first thread inputs confidential information from high-

security channel H , stores it in variable foo, and then outputs

2 times foo to channel H . The other thread sets foo to the

constant integer 42, then outputs foo to low-security channel

L, which we assume can be observed by an adversary. Each

of these threads is intuitively secure if it were executed in

isolation. However, when executed concurrently, since they

both access foo, it is possible that Thread 2 will output

confidential information to channel L, violating security by

revealing confidential information to the attacker. Indeed, if an

observer of channel L sees an output of anything other than

42, she can infer the confidential input.

Fine-grained resource sharing: Following the work of

Mantel, Sands, and Sudbrock [12], we support fine-grained

reasoning about threads’ access to shared resources (like the

variable foo in the example above) in order to prevent security

violations via thread interaction through such resources. Each

thread uses rely-guarantee reasoning about what variables it

and other concurrently executing threads might read or write.

Consider, for example, the following (secure) program, where

Thread 1 assumes that no other threads will read variable w
(note that Thread 1 stores confidential information in w), and

Thread 2 assumes that no other threads will write variable

v (note that Thread 2 sends the content of v to channel L).

Provided both assumptions hold, the program is secure, even

in the presence of additional threads.
Thread 1: input H to w; output w + v to H
Thread 2: v := 14; output v × 42 to L

Threads’ assumptions and guarantees originate from protocols

the concurrently running threads comply with, where coordina-

tion among threads is often achieved through synchronization

mechanisms. In the following (secure) example, Thread 1 has

exclusive access to variable y before the barrier, and Thread 2

has exclusive access after the barrier.
Thread 1: input L to y; barrier
Thread 2: barrier; output y to L

Assumptions and guarantees of threads must be compatible

when threads are composed. We assume that a thread’s

assumptions are stated explicitly. We use the global monitor

to impose the corresponding guarantees on all other threads,

and use the local monitors of the threads ensure that these

guarantees are indeed provided. Thus, our approach supports

fine-grained resource sharing while preventing information

leakage through concurrent access.

Information flow through nondeterminism: Information

can also be leaked when the relative order of observable

events (such as outputs to low-security channels) depend on

confidential information. In the following (insecure) example,

the output on channel L is either 0 followed by 1, or vice versa,

where the order likely depends on confidential information.
Thread 1: input h to H; while h > 0 do h := h− 1 od;

output 1 to L
Thread 2: output 0 to L

Our monitors prevent information leakage by this program

as follows: Regardless of the value of the confidential input,

Thread 1’s local monitor notices that the relative ordering

between its own output and output of other threads might be

influenced by the while loop, and, hence, the local monitor

intervenes by blocking the thread’s execution before the

output occurs. The following program is, however, secure and

permitted by our monitors.
Thread 1: input h to H; while h > 0 do h := h− 1 od;

barrier; output 1 to L
Thread 2: barrier; output 0 to L

Even though the relative order of the low outputs is

undetermined, the threads cannot perform the output until

after the barrier. Intuitively, the program is secure because the

synchronization between threads ensures that the order of the

low output does not depend on confidential information, even

though the low output is nondeterministic [20, 21].
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To correctly and precisely track what information might be

revealed by the relative timing of events, each local monitor

tracks the timing level, a security level that is an upper

bound on information that has influenced the timing of the

thread’s execution with respect to other threads. Since after

synchronization, the relative timing of threads is independent of

information that affected the timing before the synchronization,

the timing level of a thread can be lowered immediately

after synchronization. This is similar to information-flow

control in single-threaded programs, where the pc level (a

bound on the information that influences whether the current

statement is executed) can be lowered at post-dominators of

control flow decisions. That is, synchronization points are the

post-dominators of concurrent programs, and allow a similar

improvement in precision.

Precision of hybrid monitors: Our use of monitors

improves the precision of security enforcement, since we

consider the security of a single execution, and do not need

to determine whether all possible program executions are

secure. For example, our monitor permits complete execution

of the following single-threaded program if the low input is

positive. In contrast, a static analysis would have to classify this

program as insecure, because executing it will leak confidential

information if the low input is negative or zero.
input L to low;
if low > 0 then input L to x else input H to x fi;
output x to L

Progress sensitivity: If confidential information influences

whether a program terminates, observing the termination or

non-termination of a program can leak confidential information.

This is exacerbated in interactive settings [15] (i.e., where the

program produces observable events before the end of the

program) and concurrent settings (where many threads may

each reveal a small amount of information). For example, in

the following (insecure) program, the program silently diverges

after outputting a low value that is equal to the secret (i.e.,

it diverges without producing any further output). Thus, an

observer of channel L can learn the secret by noting the last

value output.
input H to high; low := 0;
while 1 do
output low to L;
if low<high then low := low+1 else (while 1 do skip od) fi

od
An additional concern is that an enforcement mechanism

itself might reveal information. In the following (insecure)

program, if the secret is positive, a monitor might intervene

to prevent the insecure output of high to L by blocking the

thread. As a consequence, the output of 42 to channel L would

never occur and, hence, an observer of L could infer that the

secret must be a positive value, once she realizes that 42 will

not be output.
input H to high;
if high > 0 then output high to L else skip fi;
output 42 to L

We prevent information leaks via termination and monitor

interventions by tracking the termination level and blocking
level of each thread within our local monitors. These are upper

bounds on information that might have influenced, respectively,

the termination behavior of loops and the blocking behavior

of the monitor. By tracking these levels, we ensure that the

termination and blocking behavior does not leak information.

III. MONITORED MULTI-THREADED COMPUTATIONS

We propose a formal model for multi-threaded programs

that interact with their environment via channels and whose

concurrent threads communicate with each other using shared

memory. In our model, we reuse the concepts of modes and

of mode states from [12] to facilitate rely-guarantee-style

reasoning about the behavior of such programs.

The novelty of our model is that it supports reasoning about

multi-threaded programs that are monitored. In our model,

programs can be monitored at two levels: local monitors provide

control over individual threads while global monitors provide

control across threads. By lifting the concept of mode states

to threads that are monitored, we enable rely-guarantee-style

reasoning both about monitored programs and within monitors.

We recall the concepts of modes and of mode states in

Section III-A, and also define a formal notation for mode state

changes. In Section III-B, we introduce judgments that capture

the behavior of local and global monitors. This provides the

basis for lifting the concepts of mode states to multi-threaded

programs that are monitored in Section III-C.

Notation: We denote the powerset of a set S by P(S). We

use A→ B and A⇀B to denote the set of all total functions

and all partial functions, respectively, with domain A and range

B. We denote the pre-image of a function f : A⇀B by pre(f),
i.e., pre(f) = {a ∈ A | f(a) ∈ B}. We denote the update

of a function f by f [d �→ v], where f [d �→ v](d) = v and

f [d �→ v](d′) = f(d′) for d′ ∈ pre(f) \ {d}.
We refer to partial functions with domain N0, range A,

and a finite pre-image of consecutive numbers starting at 0
as lists over A, and denote the set of all such lists by A∗.

We use ε to denote the empty list, l·a to denote the list that

results from appending an element a ∈ A to the end of a

list l ∈ A∗, and l1·l2 to denote the concatenation of two lists

l1, l2 ∈ A∗. The function filter removes from a list over A
those elements that do not satisfy a predicate p ⊆ A, i.e.,

filter(p, ε) = ε, filter(p, l·a) = filter(p, l)·a if a ∈ p, and

filter(p, l·a) = filter(p, l) if a /∈ p.

A. Modes, Mode States, and Annotations

We use modes [12] to capture a program developer’s

expectations about the environment in which a program shall

run as well as his intentions. For instance, a program might be

designed to use a particular communication protocol with its

environment and, hence, a thread running such a program will

provide the desired functionality only in an environment that

complies with this protocol. Such a convention incorporates

both an expectation (namely that the environment will follow

the protocol) and an intention (namely that the thread itself is

programmed correctly to follow the protocol).
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In general, modes can be used to express assumptions

and guarantees about arbitrary entities that are relevant for

a program’s behavior. In this article, we restrict ourselves to

modes that express assumptions and guarantees about particular

entities, namely program variables. More concretely, we focus

on assumptions about which variables might be read and written

by a thread’s environment and the dual guarantees. We use

Var to denote the set of all variables.

We use the symbols A-NR and A-NW to express the

assumption that a particular variable will not be read and

will not be written, respectively, by the environment of a

given thread. Moreover, we use the symbols G-NR and G-NW
to express the guarantee that a thread will not read and

will not write, respectively, a particular variable. That is,

the modes A-NR and G-NR are dual to each other, and so

are the modes A-NW and G-NW. We refer to the modes

A-NR and A-NW as the no-read and the no-write assumption.

Moreover, we refer to the modes G-NR and G-NW as the

no-read and the no-write guarantee. Formally, we define the

set of assumptions by Asm = {A-NR,A-NW}, the set of

guarantees by Gua = {G-NR,G-NW}, and the set of all modes
by Mod = Asm ∪Gua .

We use mode states [12] to track which assumptions are

made and which guarantees are provided. Formally, a mode

state is a function mdst : Mod → P(Var) that returns the

set of all variables that are in a given mode. Accordingly, we

define the set of all mode states by MdSt = Mod → P(Var).
We use terms of the form acq(mod,X) and rel(mod,X)

to specify that the mode mod is acquired and released,

respectively, for all variables in the set X ⊆ Var . We call

such terms annotations and define the set of all annotations

by Ann = {acq(mod,X), rel(mod,X) | mod ∈ Mod , X ⊆
Var}. For singleton sets of variables, we use a shorthand

notation and write acq(mod, x) instead of acq(mod, {x}).
Similarly, we write rel(mod, x) instead of rel(mod, {x}).

We introduce the predicate Has-Mode-In ⊆ Ann ×
P(Mod) to identify annotations with particular modes. We

define this predicate by ann Has-Mode-In M iff ann ∈
{acq(mod,X), rel(mod,X) | X ⊆ Var ∧ mod ∈ M} and

the projection of a list of annotations γ to a set of modes M
by γ � M = filter(λann ∈ Ann : ann Has-Mode-In M,γ).

To model the effects of annotations on mode states, we

define the function update : (MdSt × Ann)→ MdSt by

update(mdst, acq(mod,X)) =

mdst[mod �→(mdst(mod)∪X)]

update(mdst, rel(mod,X)) =

mdst[mod �→(mdst(mod)\X)]

Overloading notation, we lift the function update : (MdSt×
Ann) → MdSt to a function update : (MdSt×Ann�) →
MdSt on lists of annotations by update(mdst, ε) = mdst
and update(mdst, γ·ann) = update(update(mdst, γ), ann),
where mdst ∈ MdSt , ann ∈ Ann, and γ ∈ Ann�.

For instance, the annotation acq(A-NW, x) can be used to

specify that a thread from now on runs under the assumption

that variable x is not written by other threads, mdst(A-NW)
equals the set of all variables for which the no-write as-

sumption is made in mode state mdst, and, in particular,

x ∈ (update(mdst, acq(A-NW, x)))(A-NW) holds.

B. Monitors and Events

To control the behavior of individual threads, each thread

is guarded by a local monitor which is invoked each time

the thread performs a computation step. We use local events
to capture information about computation steps needed by a

local monitor. We denote the set of all local events by Ev,

use α ∈ Ev as a meta-variable, use LMon to denote the

set of all possible internal states of local monitors, and use

lmon ∈ LMon as a meta-variable for local monitor states.

We employ the judgment lmon −→δ,α
perm lmon ′ to capture

that a local monitor in state lmon ∈ LMon permits the

combination of α ∈ Ev and δ ∈ Ann�. The local monitor’s

internal state is updated to lmon ′ ∈ LMon .

To control the behavior across threads, a multi-threaded

program is guarded by one global monitor. We use global
events to capture the information about such steps that is needed

by the global monitor. We denote the set of all global events by

GEv , use β ∈ GEv as a meta-variable, use GMonn to denote

the set of all possible internal states of global monitors for pool

states with n threads, and identify the initial global monitor

states in these sets by gmoninit,n ∈ GMonn. We define the

set of all global monitor states by GMon =
⋃

n∈N0
GMonn

and use gmon ∈ GMon as a meta-variable.

In this article, we use the global monitor only to control

mode-state updates. To simplify our exposition, we assume

that threads update their mode state only when synchronizing

with other threads, and we consider only one synchronization

primitive, namely global barrier synchronization. Consequently,

the global monitor needs to be invoked only when the program

passes a barrier and only needs to distinguish between two

global events: sync for barrier synchronization and ε for all

other steps. Throughout this article, the set of all global events

is GEv = {sync, ε}. We use a function χ : Ev → GEv to

extract the corresponding global event from a local event.

When passing a barrier, each alive thread requests changes

to its mode state, and the global monitor decides if a given

combination of requests by the individual threads is permissible.

Moreover, the global monitor may decide to impose mode-state

changes on threads that differ from the requested mode-state

changes. We employ the judgment gmon −→Γ,Δ gmon ′ to

capture that a global monitor in state gmon ∈ GMon accepts

the combination of mode-state-change requests modeled by Γ,

imposes the mode-state changes modeled by Δ in response,

and updates its internal state to gmon ′. Formally, Γ and Δ are

functions of type N → Ann�, where N ⊆ N0 is a finite set.

That is, Γ and Δ return a list of annotations for each number

in their pre-image. As explained later, whenever we use this

judgment, N is the set of identifiers of all threads that are

alive when the global monitor is invoked.

We provide a concrete instantiation of GMonn and

gmoninit,n together with a calculus for global monitor tran-
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sitions (i.e., for deriving gmon −→Γ,Δ gmon ′) in Section V.

In Section VI, we provide instantiations of Ev and of χ.

An instantiation of LMon and a calculus for local monitor

transitions are presented in Section VII.

C. Monitored, Multi-threaded Computations

We capture control states of individual threads by terms

that we call commands, use Com to denote the set of all

commands, and express that a thread has terminated by the

special command term ∈ Com .

We capture local states of individual threads by thread states
and collections of the local states of multiple threads by pool
states. Formally, a thread state is a triple [com, lmon,mdst],
where com ∈ Com , lmon ∈ LMon , and mdst ∈ MdSt .
Accordingly, we define the set of all thread states by ThSt =
Com×LMon×MdSt . Formally, a pool state is a list of thread

states. We define the set of all pool states with n threads by

PStn = {0, . . . , n− 1} → ThSt and define the set of all pool

states with arbitrarily many threads by PSt =
⋃

n∈N0
PStn.

We use thread ∈ ThSt as meta-variable for thread states and

pool ∈ PSt as a meta-variable for pool states.

From a thread state thread = [com, lmon,mdst], we

retrieve its components with selector functions, defined

by thread.com = com, thread.lmon = lmon , and

thread.mdst = mdst. For instance, (pool(i)).mdst equals

the mode state of the ith thread in the pool state pool.

We introduce the predicate Alive ⊆ ThSt to capture

that a thread has not yet terminated by Alive (thread) ≡
thread.com 	= term. To retrieve the identifiers of those threads

in a given pool state pool ∈ PSt that have not yet terminated

and that have terminated, respectively, we define the functions

alive : PSt → P(N0) and terminated : PSt → P(N0)
by alive(pool) = {i ∈ pre(pool) | Alive (pool(i))} and

terminated(pool) = pre(pool) \ alive(pool).
Threads communicate with each other via a globally shared

memory and with their environment via channels. We model

the state of the shared memory by a function from variables

to values and the history of prior communications on a given

channel by a trace. Formally, we use Val to denote the set

of all values, define the set of states of the shared memory

by Mem = Var → Val , and use Ch to denote the set of all

channels. We model that a value v ∈ Val is received from

channel ch ∈ Ch and that v is output on ch by the terms

inp(ch, v) and out(ch, v), respectively. We refer to such terms

as interactions and denote the set of all interactions by IO .

We call lists of interactions traces, define the set of all traces

by Tr = IO�, and use τ ∈ Tr as a meta-variable for traces.

We capture the behavior of a program’s environment by a

communication strategy. A strategy determines which input

the environment supplies to a program on a given channel

after a sequence of prior interactions. Formally, a strategy is

a function σ : (Tr × Ch) → Val such that σ(τ, ch) is the

value supplied next on channel ch if all prior interactions are

captured by the trace τ . We use Σ to denote the set of all

such strategies.

Configurations: For capturing snapshots during program

execution, we employ three layers of configurations: global
configurations, local configurations, and command configura-
tions, where global and local configurations incorporate the

state of a global monitor and of a local monitor, respectively.

We use global configurations to model global snapshots

during a program run. Formally, a global configuration gcnf
is a quadruple 〈〈pool,mem, τ, gmon〉〉, where pool ∈ PSt ,
mem ∈ Mem , τ ∈ Tr , and gmon ∈ GMon . In the global

configuration gcnf , the pool state pool captures the local state

of each thread of the multi-threaded program, the memory state

mem captures the content of all memory locations, the trace

τ captures the inputs and outputs that have occurred so far,

and gmon captures the internal state of the global monitor.

We use local configurations to capture the local view of

individual threads during a run. Formally, a local configuration

lcnf is a triple 〈thread,mem, τ〉 where thread ∈ ThSt ,
mem ∈ Mem , and τ ∈ Tr . While the thread state thread
models a thread’s local state, mem and τ model the content

of the memory and the prior communications, respectively.

In a global configuration 〈〈pool,mem, τ, gmon〉〉, the local

configuration of thread i is 〈pool(i),mem, τ〉.
We use command configurations to define the local effects of

computation steps. Formally, a command configuration ccnf
is a triple (com,mem, τ), where com ∈ Com , mem ∈ Mem ,

and τ ∈ Tr . While com models a thread’s internal state, mem
and τ model the memory content and the prior communications,

respectively. The command configuration of a local configura-

tion 〈[com, lmon,mdst],mem, τ〉 is (com,mem, τ).
We use GCnf , LCnf , and CCnf to denote the set of all

global, local, and command configurations, respectively.

Judgments: For capturing the effects of computation steps

at the level of global, local, and command configurations,

respectively, we employ the following three judgments:

gcnf �σ gcnf ′ lcnf
β,γ,δ−→σ lcnf ′ ccnf

α,γ
�σ ccnf ′

A strategy σ ∈ Σ appears as a subscript of the arrow in all

three judgments. It captures the communication strategy of

the program’s environment. For instance, the first judgment

captures that a transition from a global configuration gcnf to

a global configuration gcnf ′ is possible under the strategy σ.

The arrow in the second judgment carries three additional

annotations: a global event β ∈ GEv and two lists of

annotations γ, δ ∈ Ann� that serve different purposes. While

γ captures which changes to its mode state a thread desires, δ
captures which mode state changes are imposed on the thread in

response. The arrow in the third judgment carries as annotations

a local event α ∈ Ev and a list of annotations γ ∈ Ann� that

captures which changes to its mode state a thread desires.

In the remainder of this section, we provide calculi for

the judgments lcnf
β,γ,δ−→σ lcnf ′ and gcnf �σ gcnf ′. An

exemplary calculus for the judgment ccnf
α,γ
�σ ccnf ′ is

provided in Section VI together with an instantiation of Com .

As usual, these calculi induce transition relations. For

instance, the calculus for local configurations induces a fam-
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ily of transition relations (
β,γ,δ−→σ)β∈GEv ,γ,δ∈Ann�,σ∈Σ , where

β,γ,δ−→σ relates two local configurations lcnf and lcnf ′ iff

lcnf
β,γ,δ−→σ lcnf ′ is derivable. We use the usual notation for the

reflexive, transitive closure of such relations, i.e., for instance,

(
β,γ,δ−→σ)

∗ denotes the reflexive, transitive closure of
β,γ,δ−→σ .

Local Transitions: The judgment lcnf
β,γ,δ−→σ lcnf ′

defines which transitions between local configurations are

possible. The only rule for deriving instances of this judgment

is depicted in Fig. 1.

The judgment for transitions between command configura-

tions in the first premise of the rule in Fig. 1 reflects that

a thread’s behavior is determined by the command that this

thread is executing. In this article, we employ local monitors

to guard the behavior of individual threads. Accordingly, the

judgment for transitions between local monitor states is used

in the second premise to capture that the local monitor must

deem the step acceptable. Note that the transition between

local monitor states is based on δ and not on γ, i.e., it is based

on the mode state changes imposed on the thread, not on the

mode state changes requested by the thread. Also note that

δ is used to update the mode state in the third premise. The

global event β is extracted from the local event α using the

function χ : Ev → GEv in the last premise of the rule.

Global Transitions: Transitions between global config-

urations are captured by the judgment gcnf �σ gcnf ′.
To simplify our presentation, we make three restrictions.

First, we assume that the process structure is static, i.e., if

〈〈pool,mem, τ, gmon〉〉 �σ 〈〈pool′,mem′, τ ′, gmon ′〉〉 then

pre(pool′) = pre(pool). Second, we assume that threads are

scheduled nondeterministically. Third, as stated before, we

assume that barrier synchronization is the only synchronization

primitive and that threads only request changes to their mode

state when they pass a barrier.

The two rules for deriving instances of the judgment

gcnf �σ gcnf ′ are depicted in Fig. 2. The first rule captures

steps by individual threads, and the second rule captures a

barrier synchronization across all threads.

According to the first rule in Fig. 2, an alive thread i
(first premise) may be chosen nondeterministically to perform

a computation step (second premise). This step must not

involve synchronization (third premise), must neither request

nor impose mode state changes (fourth premise), and must

not affect the global monitor state (fifth premise). Such a

step by an individual thread might affect the thread’s control

state, the state of the local monitor supervising this thread, the

shared memory, and the trace. It cannot affect the mode state

of this thread (since δ = ε), the local states of other threads

(conclusion of the rule), and the global monitor state (since

gmon ′ = gmon).

The second rule in Fig. 2 captures synchronization steps.

This rule requires that all alive threads jointly pass a barrier (last

premise of the rule), which faithfully reflects the intuition of a

barrier synchronization. In order to perform a synchronization

step, at least one thread must be alive (first premise). The

function Γ captures which mode state changes are requested by

the individual alive threads (last premise). That is, Γ(i) is the

list of annotations capturing the mode state changes requested

by the ith thread, where i ∈ alive(pool). The function Δ
captures the mode state changes that are imposed on the

individual threads (last premise). Which mode state changes are

imposed on the individual threads in response to their requests

is determined by the global monitor (third premise). Note that

the set of threads cannot change during a synchronization

step (fourth premise) and that the thread states of terminated

threads remain unmodified (fifth premise). Also note that a

synchronization step cannot affect the shared memory or the

trace (conclusion of the rule). Synchronization steps can only

affect the thread state of all alive threads and the state of the

global monitor (conclusion of the rule).

Reachability: We say that a global configuration gcnf ′

is reachable from a global configuration gcnf under a
strategy σ iff gcnf (�σ)

∗ gcnf ′ holds. We assume that

runs of multi-threaded programs start in an initial memory

meminit that assigns a dedicated value vinit ∈ Val to all

variables (i.e., ∀x ∈ Var : meminit(x) = vinit ) and with

an empty initial trace τinit (i.e., τinit = ε). We say that a
global configuration gcnf ′ is reachable from a pool state
pool under a strategy σ iff gcnf ′ is reachable from the

global configuration 〈〈pool,meminit , τinit , gmoninit,n〉〉 under

σ, where n = |pre(pool)|. We use greachσ(gcnf) and

reachσ(pool) to denote the set of all global configurations

reachable from gcnf ∈ GCnf and pool ∈ PSt , respectively,

under σ ∈ Σ.

IV. SEMANTICS OF MODES

We formally define what it means for a thread to provide a

guarantee and what it means for an assumption to be justified.

While we define the semantics of G-NR and G-NW in terms

of transitions between local configurations, we define the

semantics of A-NR and A-NW for a given thread in terms

of guarantees given by other threads in a global configuration.

Based on the formal semantics of modes, we define conditions

that allow one to soundly exploit assumptions when reasoning

about the behavior of multi-threaded programs.

Semantics of G-NW and G-NR: We say that a local
configuration lcnf = 〈thread,mem, τ〉 provides the no-write
guarantee for a variable x iff the value of x will remain

unmodified by each next possible step of the thread. This

requirement is captured by the following formula:

∀σ ∈ Σ : ∀β ∈ GEv : ∀γ, δ ∈ Ann� :
∀〈thread′,mem′, τ ′〉 ∈ LCnf :
〈thread,mem, τ〉 β,γ,δ−→σ 〈thread′,mem′, τ ′〉
=⇒ mem′(x) = mem(x)

142142



(com,mem, τ)
α,γ
�σ (com

′,mem′, τ ′) lmon −→δ,α
perm lmon ′ mdst′ = update(mdst, δ) β = χ(α)

〈[com, lmon,mdst],mem, τ〉 β,γ,δ−→σ 〈[com′, lmon ′,mdst′],mem′, τ ′〉

Fig. 1. Transitions between local configurations

i ∈ alive(pool) 〈pool(i),mem, τ〉 β,γ,δ−→σ 〈thread′,mem′, τ ′〉 β = ε γ = δ = ε gmon ′ = gmon

〈〈pool,mem, τ, gmon〉〉�σ 〈〈pool[i �→ thread′],mem′, τ ′, gmon ′〉〉

alive(pool) �= ∅ Γ,Δ : alive(pool) −→ Ann� gmon −→Γ,Δ gmon ′ pool′ ∈ PSt |pre(pool)|
∀j ∈ terminated(pool) : pool′(j) = pool(j) ∀i ∈ alive(pool) : (〈pool(i),mem, τ〉 sync,Γ(i),Δ(i)−→σ 〈pool′(i),mem, τ〉)

〈〈pool,mem, τ, gmon〉〉�σ〈〈pool′,mem, τ, gmon ′〉〉

Fig. 2. Transitions between global configurations

We say that a local configuration lcnf = 〈thread,mem, τ〉
provides the no-read guarantee for a variable y iff

∀σ ∈ Σ : ∀β ∈ GEv : ∀γ, δ ∈ Ann� :
∀〈thread′,mem′, τ ′〉 ∈ LCnf : ∀v ∈ Val :
〈thread,mem, τ〉 β,γ,δ−→σ 〈thread′,mem′, τ ′〉
=⇒ 〈thread,mem[y �→v],τ〉 β,γ,δ−→σ 〈thread′,mem′,τ ′〉 ∨

〈thread,mem[y �→v],τ〉 β,γ,δ−→σ 〈thread′,mem′[y �→v],τ ′〉
That is, a no-read guarantee for a variable y ensures that

changing the value of y before a computation step does not

alter the effects of this computation step. The two disjuncts on

the right-hand side of the implication correspond respectively to

the cases where y is overwritten and where y is not overwritten

in a computation step.

A local configuration lcnf=〈[com, lmon,mdst],mem, τ〉
provides its guarantees iff it provides the no-write guarantee

for each variable x ∈ mdst(G-NW) and the no-read guarantee

for each y ∈ mdst(G-NR). Consequently, if lcnf provides its

guarantees then the values of all variables in mdst(G-NW)
will remain unchanged by the thread’s next step and the values

of all variables in mdst(G-NR) will not affect the thread’s next

step. We say that a thread state thread provides its guarantees
iff, for all mem ∈ Mem and all τ ∈ Tr , the local configuration

〈thread,mem, τ〉 provides its guarantees. Moreover, we say

that gcnf = 〈〈pool,mem, τ, gmon〉〉 provides its guarantees
iff pool(i) provides its guarantees for all i ∈ pre(pool).
Semantics of A-NW and A-NR: Given a global config-

uration gcnf = 〈〈pool,mem, τ, gmon〉〉, we say that gcnf
justifies the assumption A-NW of a thread i ∈ pre(pool)
about a variable x iff every other alive thread has acquired the

mode G-NW for x. Similarly, we say that gcnf justifies the
assumption A-NR of a thread i∈pre(pool) about a variable y
iff every other alive thread has acquired the mode G-NR for y.

A global configuration gcnf = 〈〈pool,mem, τ, gmon〉〉
justifies its assumptions iff gcnf justifies both the assumption

A-NW about each variable in (pool(i)).mdst(A-NW) and the

assumption A-NR about each variable in (pool(i)).mdst(A-NR)
for all i ∈ pre(pool). Note that assumptions of all threads,

including terminated threads, must be justified. In contrast, only

alive threads need to explicitly provide the dual guarantees

for assumptions of other threads. Terminated threads need not

acquire the modes G-NW and G-NR because, it is clear that

they will not be able to write or read variables in the future.

Sound use of modes: We say that a global configuration
gcnf ensures a sound use of modes iff, for each strategy σ ∈ Σ,

each reachable global configuration gcnf ′ ∈ greachσ(gcnf)
provides its guarantees and justifies its assumptions.

Moreover, we say that a pool state pool ensures a sound
use of modes iff 〈〈pool,meminit , τinit , gmoninit,n〉〉 ensures

a sound use of modes. If a pool state pool ensures a sound

use of modes then, at each intermediate state during each

possible run, each assumption made is justified by guarantees

that are, indeed, provided. Hence, all assumptions made can

be exploited soundly when reasoning about possible behaviors.

V. A MONITORING FRAMEWORK

We propose a framework for monitoring multi-threaded

programs based on our model of computation from Section III.

Our monitoring framework consists of the definition of a global

monitor and of a local monitor. The role of these monitors is

complementary. Our global monitor ensures that assumptions

made by threads are, indeed, justified. Our local monitor ensures

that an individual thread, indeed, provides the guarantees that

it promises to provide. The combination of one global monitor

and a local monitor at each thread jointly ensure a sound use

of modes and, hence, the soundness of modular, rely-guarantee-

style reasoning about the behavior of multi-threaded programs.

Our local monitor can be specialized to enforce additional

properties. By exploiting assumptions, local monitors can not

only establish properties of individual threads, but also global

properties of entire multi-threaded programs. We present a

specialization of local monitors for information-flow control in

Section VII and demonstrate that this specialization soundly

enforces end-to-end information-flow security.

Global Monitoring of Multi-threaded Programs: We

define a global monitor that grants all acquisitions and releases

of assumptions exactly as desired by each thread. In addition,

our global monitor ensures that all assumptions of all threads

are justified. To justify all assumptions, guarantees might be
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needed that differ from the guarantees that the individual

threads desire to provide. Consequently, our global monitor

cannot always grant modifications of guarantees according to

these desires.

Our global monitor keeps track of both the assumptions

that each alive thread currently makes and the assumptions

that each terminated thread had made when it terminated.

Formally, a global monitor state for n threads is a function that

returns a mode state for each thread identifier in {0, . . . , n−1}.
Accordingly, we instantiate the set of all global monitor states
for n threads by GMonn = {0, . . . , n − 1} −→ MdSt and

gmoninit,n ∈ GMonn, the initial global monitor state for n
threads, by gmoninit,n(i) = {} for all i ∈ {0, . . . , n− 1}.

We say that a global monitor state gmon ∈ GMon
(recall GMon =

⋃
n∈N0

GMonn) is compatible with a
pool state pool ∈ PSt iff pre(gmon) = pre(pool) and

if (gmon(i))(mod) = (pool(i)).mdst(mod) for each i ∈
pre(pool) and mod ∈ Asm .

When threads modify their mode state, the global monitor

state is updated accordingly. To capture such updates of the

global monitor state, we define the function gmon-update :
(GMon × (N0⇀Ann�)) −→ GMon by

gmon-update(gmon,Γ) =
λi ∈ pre(gmon) :
if i ∈ pre(Γ) then update(gmon(i), (Γ(i)� Asm))

else gmon(i)

Note that acquisitions and releases of guarantees in Γ(i) are

ignored when updating the global monitor state. Our global

monitor does not keep track of which guarantees threads

provide.

Our global monitor uses its internal state to determine

which guarantees must be imposed on each individual thread.

To determine the list of annotations that our global monitor

imposes on the individual threads, we define the function

gmon-impose : (GMon × (N0⇀Ann�)) −→ (N0⇀Ann�)
by

gmon-impose(gmon ′,Γ) =
let NW =λi ∈ pre(gmon ′) :⋃{(gmon ′(j))(A-NW) | j ∈ pre(gmon ′) \ {i}}

NR = λi ∈ pre(gmon ′) :⋃{(gmon ′(j))(A-NR) | j ∈ pre(gmon ′) \ {i}}
in λi ∈ pre(Γ) :(Γ(i)� Asm)

·acq(G-NW,NW(i))·acq(G-NR,NR(i))
·rel(G-NW, pre(gmon ′) \ NW(i))
·rel(G-NR, pre(gmon ′) \ NR(i))

For each pair (gmon ′,Γ) with pre(Γ) ⊆ pre(gmon ′), the

function gmon-impose is well defined and returns a function

with the same pre-image as Γ.

Fig. 3 presents our global monitor. It is the only rule for

deriving instances of the judgment for transitions between

global monitor states. In the first premise of this rule, the

function gmon-update is used to update the global monitor

state based on the acquisitions and releases of assumptions in

Γ. The second premise ensures that the global monitor is aware

gmon ′ = gmon-update(gmon,Γ)
pre(Γ) ⊆ pre(gmon) Δ = gmon-impose(gmon ′,Γ)

gmon −→Γ,Δ gmon ′

Fig. 3. Transitions between global monitor states

of all threads that request mode state changes. In the third

premise, the function gmon-impose is used to determine Δ,

i.e., the mode state changes to be imposed on all threads that

requested mode state changes. Due to the second premise of

the rule, gmon-impose is well defined for the arguments used.

Note that, for each i ∈ pre(gmon ′) and each assumption

in gmon ′(i), the corresponding guarantee is acquired in

(gmon-impose(gmon ′,Γ))(j) for all j ∈ pre(Γ) \ {i}. That

is, programs do not need to explicitly contain annotations to

acquire guarantees, since guarantees will be imposed on threads

if needed. This means that no program analysis or human effort

is required to determine the guarantees that threads provide.

Annotations for assumptions, however, do need to be provided

explicitly. There are practical analyses that can infer, e.g.,

whether a memory location is thread-local (i.e., exclusively

accessed by a thread). Such analyses might be suitable building

blocks to infer assumption annotations for programs.

Note also that guarantees are acquired in

(gmon-impose(gmon ′,Γ))(i) even if the ith thread is

providing these guarantees already. Analogously, guarantees

are released even if the ith thread is not providing them. Such

unnecessary acquisitions and releases of guarantees could

be avoided by letting the global monitor keep track of the

guarantees that the individual threads provide. We refrain from

elaborating this optimization here in more detail.

Local Monitoring of Individual Threads: Our local

monitor keeps track of assumptions that a monitored thread

makes and of guarantees that a thread provides. In this section,

we assume that the state of a local monitor incorporates a mode

state, but otherwise leave local monitor states under-specified.

We use lmon.mdst to denote the mode state within lmon ∈
LMon , and we say that a thread state [com, lmon,mdst] is
well formed iff lmon.mdst = mdst holds.

We say that a calculus for local monitor transitions properly
tracks modes iff the derivability of lmon −→δ,α

perm lmon ′

implies lmon ′.mdst = update(lmon.mdst, δ). Moreover, we

say that a calculus for local monitor transitions enforces
guarantees iff it ensures that every well-formed thread state

provides its guarantees. We leave the calculus for local monitor

transitions unspecified. Such a calculus and a concrete definition

of LMon are provided in Section VII.

Sound Use of Modes: We say that a global configuration
gcnf = 〈〈pool,mem, τ, gmon〉〉 is well formed iff gmon is

compatible with pool and pool(i) is a well-formed thread state

for each i ∈ pre(pool).
The following theorem states that our framework soundly

enables rely-guarantee-style reasoning. This result is conditional

on two assumptions about the calculus for local monitor

transitions, which we discharge in Section VII (see Theorem 2).
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Theorem 1. Let gcnf be a well-formed global configuration
that justifies its assumptions. If the calculus for local monitor
transitions properly tracks modes and enforces guarantees then
gcnf ensures a sound use of modes.

Proof sketch: Well-formedness is an invariant for global

configurations and justifying all assumptions is an invariant

for well-formed global configurations if the calculus for

local monitor transitions properly tracks modes. From these

invariants, we conclude that every global configuration gcnf ′

that is reachable from gcnf is also well formed and justifies

its assumptions by induction on the number of steps from

gcnf to gcnf ′. From the well-formedness of gcnf ′ and the

assumption that the calculus for local monitor transitions

enforces guarantees, we conclude that gcnf ′ provides its

guarantees. Hence, gcnf ensures a sound use of modes.

VI. EXAMPLE PROGRAMMING LANGUAGE

As an example language, we use a simple concurrent imper-

ative language that supports multi-threading, communication

between threads using shared memory, coordination between

threads using barrier synchronization, and interaction between

a program and its environment using channels.

Expressions: We use Exp to denote the set of expressions

in our language and leave this set under-specified. We assume

that the expressions are free of side effects, and use judgment

e,mem ⇓ v to model that e ∈ Exp evaluates to v ∈ Val in

memory state mem ∈ Mem . Function vars : Exp → P(Var)
retrieves from an expression e ∈ Exp a set of variables that

contains all variables that the value of e might depend on. That

is, for all e ∈ Exp and mem,mem′ ∈ Mem , we have

(∀x ∈ vars(e) : mem(x) = mem′(x))
=⇒ (e,mem ⇓ v) =⇒ (e,mem′ ⇓ v)

Commands: The set of commands Com is defined by:

com ::= x := e | skip | com; com |
if e then com else com fi | while e do com od |
input ch to x | output e to ch | //γ// barrier |
stop | join | more e do com od | term

where x ∈ Var , e ∈ Exp, ch ∈ Ch , and γ ∈ Ann�. Terms

of the form stop, join, more e do com od, and term capture

snapshots of the control state at intermediate computation

points, and are not meant to be part of the surface syntax. The

sub-language without these terms is the programming language

to be used by a programmer.

The behavior of assignments, skip, semicolon, conditionals,

and loops is as usual. A command input ch to x reads the

next input from the channel ch into the variable x, and a

command output e to ch sends the value of the expression

e on the channel ch. The command barrier causes a thread

to block until all non-terminated threads jointly pass the

barrier. Annotations that request a mode state change are

placed as a comment in front of barrier commands as, e.g.,

in //ε·acq(A-NR, x)// barrier; skip. The control state stop
models that the execution of a subprogram has completed. The

control state join models that the join point of a conditional has

been reached. The control state more e do com od models that

a loop with the guard e and the body com has been entered

and that it will be decided next whether to execute the body or

to leave the loop. Finally, the control state term models that

the execution of an entire program has terminated.

Local Events: We define the set of local events Ev for

our example language by the grammar:

α ::= a(x, e) | s | b(e, com1, com2) | join |
enter(e, com) | more(e, com) | leave(e, com) |
input(x, ch, v) | output(ch, e, v) | sync | term

and χ : Ev → GEv , the abstraction function from local events

to global events, as follows:

χ(α) =

{
sync if α = sync
ε otherwise

A local event a(x, e) models that the value of e ∈ Exp is being

assigned to x ∈ Var . The local event s models that a skip

command is being executed. A local event b(e, com1, com2)
models that a conditional with guard e ∈ Exp and the branches

com1 and com2 is being executed, where com1 and com2 are

the “then” and “else” branches respectively. The local event join
models that the join point of a conditional is being passed. The

local event enter(e, com) models that a loop while e do com od
is being entered. A local event more(e, com) models that the

guard e ∈ Exp of a loop with body com has evaluated to

a non-zero value, and the loop body com is being entered.

The local event leave(e, com) models that a loop with guard

e ∈ Exp and with body com is being left. A local event

output(ch, e, v) models that a value v ∈ Val resulting from

the evaluation of expression e ∈ Exp is being output to channel

ch ∈ Ch . A local event input(x, ch, v) models that v ∈ Val
is being received from ch ∈ Ch and stored in x ∈ Var . The

local events sync and term model that a barrier is being passed

and that the thread is about to terminate, respectively.

Note that our language for local events closely resembles

the syntax of our programming language, though there is

no one-to-one correspondence. Note also that some of our

local events capture information that goes beyond the actual

next computation step. For instance, b(e, com1, com2) provides

complete information about both branches of a conditional.

That is, this local event captures information about the next

computation steps, about computation steps that will occur

sometime in the future, and about computation steps that would

have occurred if the control flow were resolved differently.

Formal Semantics: Fig. 4 shows selected inference rules

for the calculus that defines which transitions on command

configurations are possible. The first two rules capture the

execution of assignments and skip. The third rule captures

the passing of a barrier. The fourth rule captures the choice

of a branch in a conditional. It inserts join into the resulting

control state to mark the join point. The fifth rule captures the

passing of a join point. All rules are shown in the full version,

including rules for sequential composition, loops, input and

output, and termination of programs.
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e,mem ⇓ v

(x := e,mem, τ)
a(x,e),ε
�σ (stop,mem[x �→ v], τ) (skip,mem, τ)

s,ε
�σ (stop,mem, τ) (//γ// barrier,mem, τ)

sync,γ
�σ (stop,mem, τ)

e,mem ⇓ v (v �= 0 =⇒ i = 1) (v = 0 =⇒ i = 2)

(if e then com1 else com2 fi,mem, τ)
b(e,com1,com2),ε

�σ (comi; join,mem, τ) (join,mem, τ)
join,ε
�σ (stop,mem, τ)

Fig. 4. Transitions between command configurations: selected rules

The requested mode state change, i.e., the first label on

the arrow, is empty (i.e., γ = ε) in the conclusions of all

rules except for in the rule for barriers and one of the rules

for sequential composition. In the rule for barriers, the list

of annotations is retrieved from the comment that precedes

the barrier command. In the sequential composition rule, the

list of annotations is simply propagated from the premise to

the conclusion. This reflects our simplifying assumption from

Section III-B, that threads request mode state changes only

when synchronizing with other threads.

VII. ENFORCING INFORMATION FLOW SECURITY

THROUGH LOCAL MONITORING

We present our novel hybrid approach to establish

information-flow security for multi-threaded programs, building

on our monitoring framework from Section V. We specialize

our generic local monitor definition to a monitor that tracks

and controls information flow. This specialization satisfies the

requirements of Section V, modes are properly tracked and

guarantees are enforced. Our solution does not require any

modification of the global monitor definition from Section V.

We capture information-flow requirements by multi-level

security policies and prove the soundness of our approach with

respect to a knowledge-based definition of information-flow

security à la [22]. We are able to establish such an end-to-end

security property through thread-local checks by exploiting

the assumptions that a thread makes about its environment.

The ability to perform rely-guarantee-style reasoning about

information-flow security within local monitors of individual

threads is a distinctive technical feature of our approach. The

practical value of this feature is that it substantially improves

precision of local monitoring. Without being able to exploit

assumptions, a local monitor would have to conservatively

secure the guarded thread for all possible environments,

resulting in severe restrictions on the behavior of threads.

The knowledge-based security definition requires that an

attacker cannot distinguish a given program run from certain

other hypothetical runs. To perform such counter-factual

reasoning, information about other possible runs is needed

within local monitors. This information is provided by the

local events that are emitted during steps of a thread. For

instance, the evaluation of the guard of a conditional emits

a local event b(e, com1, com2), which provides information

about the guard and both branches of the conditional. That

is, the approach to information-flow security proposed in this

section is a hybrid approach.

A. Information-Flow Security

A security policy is a tuple SP = (Lev,�,�,⊥) consisting

of a set of security levels Lev, a partial order �⊆ Lev×Lev,

a least-upper-bound operator � : (Lev×Lev) −→ Lev, and a

least security level ⊥ ∈ Lev. A domain assignment is a function

chlev : Ch → Lev that associates a security level with each

channel. Intuitively, the security level chlev(ch) of a channel

ch is the upper bound on the confidentiality of information

that the channel’s endpoint (e.g., a user or another system) is

permitted to learn. Thus, chlev(ch) constitutes an upper bound

on the confidentiality of information that might be received

from ch and of information that may be sent over ch. When it

is clear from context, we conflate channels with their security

levels, and write, e.g., ch �  instead of chlev(ch) � .

Attacker Model: We assume that each attacker is asso-

ciated with a security level, where an attacker at level  can

observe all interactions on channels ch with ch � , but cannot

observe interactions on other channels. To express what an

attacker at level  observes during a program run, we project

the trace emitted during the run to the level . We define the
projection of trace τ to security level  by

τ ↓  =filter(τ, {inp(ch, v), out(ch, v)
| ch ∈ Ch, chlev(ch) � , v ∈ Val}

That is, if τ is the trace produced by some run of a multi-

threaded program then an attacker at level  observes τ ↓ .
Based on his observations, an attacker can try to infer

information about the communication strategy used. To capture

an upper bound on the attacker’s knowledge about which

communication strategy might be in use, we define the function

κ : (Lev × PSt × Tr) −→ P(Σ) by

κ(, pool, τ) ={
σ ∈ Σ

∣∣∣∣ ∃〈〈pool′,mem′, τ ′, gmon ′〉〉 ∈ reachσ(pool) :
τ ′ ↓  = τ ↓ 

}

The set κ(, pool, τ) contains all strategies that are compatible

with the observation τ ↓  and that thus, from the perspective

of an attacker at level , might be in use. The smaller the set

κ(, pool, τ), the more accurate the attacker’s knowledge. The

longer the trace that the attacker observes, the more accurate is

the attacker’s knowledge, i.e., attacker knowledge is monotonic

in the length of the trace the attacker observes.

Note that our definition of κ conservatively allows an attacker

to know the program. That is, κ(, pool, τ) is an upper bound

on the knowledge of an attacker at level  after this attacker

observes trace τ , even if the attacker knows the program that
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is contained in state pool. However, we assume the attacker

has no a-priori knowledge about which strategy is used.

Security Property: We regard strategies as confidential

information. An attacker at level  should not be able to

distinguish two strategies that provide identical inputs at level

 and below when all prior interactions at level  and below

are identical. We capture classes of strategies that should be

indistinguishable by the notion of -equivalence, defined by

σ1 =	 σ2 �
∀ch ∈ Ch : ∀τ1, τ2 ∈ Tr :
(ch �  ∧ τ1 ↓ 1 = τ2 ↓ 2) =⇒ σ1(τ1, ch) = σ2(τ2, ch)

We use a knowledge-based definition of information-flow

security, inspired by [22]. The property that we define is

progress-sensitive and suitable for our model from Section III.

Definition 1. We say that a pool state pool ∈ PSt is secure

for a level  ∈ Lev iff

∀σ ∈ Σ : ∀〈〈pool′,mem′, τ ′, gmon ′〉〉 ∈ reachσ(pool) :

κ(, pool, τ ′) ⊇ {σ′ ∈ Σ | σ =	 σ
′}

Our security property requires that if an attacker at level 
observes an execution starting in pool under strategy σ, then

his knowledge must be bounded by the set of strategies that are

-equivalent to σ. That is, the attacker cannot learn anything

about the behavior of the actual strategy on any channel ch 	� .

B. A Specialized Local Monitor

Our local monitor is parametric in the security policy SP =
(Lev,�,�,⊥) and in the domain assignment chlev : Ch →
Lev. A third parameter is a function L : Var → Lev that

assigns a default security level to each variable. These three

parameters must be chosen identically for the local monitors

of all threads of a multi-threaded program.

Our local monitor maintains a local copy of the mode state

of the guarded thread. As a convention, we use lmdst as a

meta-variable for such copies of a thread’s mode state.

Typing Environment: Information flow into and out of

a variable x is constrained by the local monitor based on the

default security level L(x). However, if the guarded thread has

exclusive write-access to x and the thread previously wrote

information into x that is less confidential than L(x) then the

local monitor can use that. Moreover, if the guarded thread

has exclusive read-access to x then the local monitor may

allow the thread to temporarily store information in x that is

more confidential than L(x). The local monitor uses a typing

environment Γ to track the actual security level of variables

for which the guarded thread has exclusive access in some

sense. Formally, a typing environment is a partial function

Γ : FloatVar⇀Lev, where FloatVar ⊆ Var . The variables

whose security level may float might be limited, for instance,

because the run-time environment accesses some variables

while relying that they store information of a particular security

level (e.g., variables that define thread priorities, accessed by a

priority-based scheduler). The set of variables whose security

level must not float is NonFloatVar = Var \ FloatVar .

We lift a typing environment Γ : FloatVar⇀Lev to a total

function in Var → Lev by

Γ 〈x〉 =
{
Γ (x) if x ∈ pre(Γ )
L(x) otherwise

Mode-State-Says Notation: To improve readability, we

introduce a notation for properties of mode states. We write

mdst � fact (read “mdst says fact”) iff mode state mdst has

the property expressed by a fact from the following language

mayread(x) |maywrite(x) | exclusiveread(x) |
exclusivewrite(x) | othersmightread(x) | othersmightwrite(x)

with x ∈ Var . The semantics of mdst � fact are defined by:

mdst �mayread(x) � x 	∈ mdst(G-NR)

mdst �maywrite(x) � x 	∈ mdst(G-NW)

mdst � exclusiveread(x) � x ∈ mdst(A-NR)

mdst � exclusivewrite(x) � x ∈ mdst(A-NW)

mdst � othersmightread(x) � x 	∈ mdst(A-NR)

mdst � othersmightwrite(x) � x 	∈ mdst(A-NW)

For brevity, we write mdst�[fact1, . . . , factn] instead of mdst�
fact1, . . . , mdst � factn, a list of mode-state-says statements

concerning the same mode state. We write mdst �mayread(e)
instead of mdst � mayread(x1), . . . , mdst � mayread(xn′),
where vars(e) = {x1, . . . , xn′}.

Local Monitor States: A local monitor state is a tuple

〈Γ , lmdst, pc, br , time, term, block〉. Typing environment Γ :
FloatVar⇀Lev tracks the actual security level of variables

to which the guarded thread has exclusive access, as already

described. Mode state lmdst ∈ MdSt is the local monitor’s

copy of the mode state of the guarded thread. The pc stack

pc and branch environment stack br summarize, respectively,

the control flow decisions to reach the current program point,

and the behavior of the local monitor on execution paths not

taken. The pc stack is a stack of security levels, and the branch

environment stack is a stack of tuples, described below. Each

time the thread enters a conditional or loop, a security level

that bounds the control flow decision is pushed on the pc stack,

and a tuple that approximates the monitor’s behavior on the

branch not taken is pushed on the branch environment stack.

When a conditional or loop is exited, the top element of each

stack is popped.

To track information flow via internal timing, progress

channels, and monitor interventions, local monitor states

include timing level time : Lev, termination level term : Lev,

and blocking level block : Lev. Termination level term is

an upper bound on information that influenced termination

of loops prior to this point in the guarded thread’s execution.

The termination level only increases during thread execution.

Blocking level block is an upper bound on information that

influenced whether the monitor blocked or allowed thread

execution prior to this point in the execution. The blocking

level captures information flow via monitor interventions (or

lack of interventions), and only increases during execution.
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Timing level time is an upper bound on information since the

last synchronization that influenced when the guarded thread

reaches its current state. The timing level is lowered after

synchronization barriers, but otherwise only increases during

execution. The timing level describes the information that may

affect the relative timing of this guarded thread with respect

to other threads and is used to prevent internal timing leaks.

When a conditional or loop is exited, the timing, termination,

and blocking levels are updated to account for information

flows due to execution paths that could have been taken, but

weren’t. For example, when a loop is exited, the termination

level is increased to ensure that it is an upper bound of the

information that influenced the loop guard expression, which

determines how many times the loop is executed.

Calculus for Local Monitor Transitions: Selected infer-

ence rules for local monitor transitions are shown in Fig. 5. All

inference rules are presented and explained in the full version.

Rule (M-Assign1) is used for an assignment x := e when

x is readable by other threads, according to the current mode

state lmdst. Level  bounds the information that might be

revealed by evaluating e at this point in the execution: it is

influenced by the level of the variables in e, by the decision to

execute this command (�pc, the join of the pc stack), the fact

that the monitor did not previously block the thread (block ),

the fact that the thread did not previously diverge (term),

and the relative timing of this thread with respect to others

(time).1 Since other threads might read x, we require that  is

bounded above by L(x), the default security level of x. Rule

(M-Assign2) is similar, but applies when x cannot be read by

other threads, which allows us to treat its level flow-sensitively.

In both cases Γ ′ is computed using operator Γ 〈x �→lmdst 〉
(defined in Fig. 5) that returns an updated environment with

the type of variable x updated to  depending on mode state

lmdst. Both rules require x to be writable and all variables in

e to be readable according to lmdst.
Rules (M-Branch) and (M-Join) handle conditionals. Recall

that monitor event b(e, com1, com2) and join are emitted,

respectively, when a thread enters and exits a conditional

if e then com1 else com2 fi. Rule (M-Branch) requires that the

local monitor’s mode state allows the thread to read the condi-

tional expression: lmdst�mayread(e). It uses the static bounds

oracle function SB(com,Γ , lmdst, pc, time, term, block) to

approximate the behavior of the monitor on both branches. This

is an on-the-fly static analysis (thus making the local monitor

hybrid) needed for the soundness of information-flow tracking.

Security level sb returned by the oracle is an upper bound

on the decision about which branch to take, and the monitor

pushes it on pc stack pc. The other elements returned describe,

respectively, upper bounds on the timing level, termination

level, blocking level, and typing environment that the local

1Other threads may modify variables in e concurrently with this thread’s
execution, and thus the relative timing may influence the result of evaluating
e. If the guarded thread has exclusive write access to variables in e, then the
second premise could be replaced by � = Γ 〈e〉�(�pc)�term�block , i.e.,
timing level time does not need to be included in the join. For simplicity, we
do not provide this additional precision.

monitor would have after completing the conditional. The

analysis in essence considers all possible executions of the

conditional, and approximates the behavior of the guarded

thread in these hypothetical executions. Level timesb is an

upper bound on information that affects when the conditional

finishes, termsb is an upper bound on information that affects

whether execution of the conditional will terminate or diverge,

block sb is an upper bound on the information that affects

whether the monitor will block the thread while executing

the conditional, and Γsb describes upper bounds on the typing

environment when the conditional terminates. Note that the

oracle is a partial function: if the result is undefined the monitor

blocks. For example, the result is undefined if a branch contains

a barrier command and the branch condition is not ⊥, since

synchronizations are publicly observable and should not depend

on confidential information. A full description of the static

bounds oracle (including the oracle’s semantic interface and an

implementation) is available in the full version of the paper.

Rule (M-Join) pops the top elements of the pc stack and the

static branching environment stack, and updates the variable

context, timing level, termination level, and blocking level to

account for potential information flows on the branch not taken.

Rule (M-Barrier-Local) regulates when a thread may syn-

chronize. The first premise ((�pc)�term�block = ⊥) ensures

that the decision to reach a barrier is influenced only by

public information. The second premise computes the updated

mode state lmdst′. The remaining premises ensure that the

typing environments before and after the barrier (Γ and Γ ′

respectively) are appropriate based on the access this and other

threads may have to variables before and after the barrier.

The other monitor rules, not presented here, are: (M-Skip)

(for skip commands); (M-Input1), (M-Input2), and (M-Output)

for input and output commands; (M-Enter), (M-More), and

(M-Leave) for loops; and (M-Term) for terminated threads.

Theorem 2. Our calculus for local monitor transitions properly
tracks modes and enforces guarantees.

Proof sketch: Given a derivation of lmon −→δ,α
perm lmon ′,

we show lmon ′.mdst = update(lmon.mdst, δ). This implies

that our calculus properly tracks modes. To prove that our

calculus enforces guarantees, we show that every local con-

figuration 〈[com, lmon,mdst],mem, τ〉 with a well-formed

thread state provides the no-write guarantee for each variable

x ∈ mdst(G-NW) and the no-read guarantee for each variable

y ∈ mdst(G-NR) by a case distinction on the local event

emitted when this local configuration performs a step.

From Theorems 1 and 2, we obtain the following corollary.

Corollary 1. If a global configuration is well formed and
justifies its assumptions then it ensures a sound use of modes.

Soundness of Information-Flow Control: Given a multi-

threaded program com1· . . . ·comn ∈ Com∗, we define the
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M-ASSIGN1

lmdst 	 [maywrite(x),mayread(e), othersmightread(x)]

 = Γ 〈e〉time(pc)termblock 
 � L(x) Γ ′ = Γ 〈x �→lmdst 
〉

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,a(x,e)
perm 〈Γ ′, lmdst, pc, br , time, term, block〉

M-ASSIGN2
lmdst 	 [maywrite(x),mayread(e), exclusiveread(x)] 
 = Γ 〈e〉time(pc)termblock Γ ′ = Γ 〈x �→lmdst 
〉

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,a(x,e)
perm 〈Γ ′, lmdst, pc, br , time, term, block〉

M-BRANCH

lmdst 	mayread(e) (
sb, timesb, termsb, block sb,Γsb) = SB(if e then com1 else com2 fi,Γ , lmdst, pc, time, term, block)

〈Γ , lmdst, pc, br , time, term, block〉 −→ε,b(e,com1,com2)
perm 〈Γ , lmdst, pc·
sb, br ·(timesb, termsb, block sb,Γsb), time, term, block〉

M-JOIN

time ′′ = time  time ′  
 term ′′ = term  term ′

block ′′ = block  block ′ Γ ′′ = λx.

⎧
⎪⎨

⎪⎩

Γ (x)  Γ ′(x) if x ∈ pre(Γ ) ∩ pre(Γ ′)
Γ (x) if x ∈ pre(Γ ) \ pre(Γ ′)
undef otherwise

〈Γ , lmdst, pc·
, br ·(time ′, term ′, block ′,Γ ′), time, term, block〉 −→ε,join
perm 〈Γ ′′, lmdst, pc, br , time ′′, term ′′, block ′′〉

M-BARRIER-LOCAL

(pc)  term  block = ⊥ lmdst′ = update(lmdst, δ)
pre(Γ ′) = {x | x ∈ FloatVar ∧ (lmdst′ 	 exclusiveread(x) ∨ lmdst′ 	 exclusivewrite(x))}

(lmdst 	 exclusiveread(x) ∧ lmdst′ 	 othersmightread(x)) =⇒ Γ (x)�L(x)
lmdst′ 	 exclusivewrite(x) =⇒ Γ ′(x) = Γ 〈x〉 (lmdst 	 othersmightwrite(x) ∧ lmdst′ 	 exclusiveread(x)) =⇒ Γ ′(x) = Γ 〈x〉

(lmdst 	 exclusivewrite(x) ∧ lmdst′ 	 [exclusiveread(x), othersmightwrite(x)]) =⇒ Γ ′(x) = Γ (x)L(x)
〈Γ , lmdst, pc, br , time, term, block〉 −→δ,sync

perm 〈Γ ′, lmdst′, pc, br ,⊥,⊥,⊥〉

Γ 〈x �→lmdst 
〉(y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

undef if y �∈ pre(Γ )
Γ (y) if y ∈ pre(Γ ) ∧ y �= x


 if y ∈ pre(Γ ) ∧ y = x ∧ lmdst 	 exclusivewrite(x) ∧ x ∈ FloatVar

L(x) if y ∈ pre(Γ ) ∧ y = x ∧ lmdst 	 othersmightwrite(x) ∧ x ∈ FloatVar

Fig. 5. Local monitoring: selected rules

initial pool state for this program by

poolcom1·...·comn
� [com1, lmon init ,mdstinit ]
· . . .
·[comn, lmon init ,mdstinit ]

where mdstinit is the inital mode state, defined by

mdstinit(G-NR) = {} mdstinit(G-NW) = {}
mdstinit(A-NR) = {} mdstinit(A-NW) = {}

and lmoninit is the initial local monitor state, defined by

lmoninit � 〈Γinit ,mdstinit , ε, ε,⊥,⊥,⊥〉
where Γinit : FloatVar⇀Lev is defined by pre(Γinit) = {}.
Theorem 3. If com1· . . . ·comn ∈ Com∗ is a multi-threaded
program such that each command comi is in the sub-language
meant to be used by the programmer (as defined in Section VI)
then poolcom1·...·comn

is secure for every level  ∈ Lev.

Proof sketch: Let global configuration gcnf =
〈〈poolcom1·...·comn

,meminit , τinit , gmoninit,n〉〉. Since gcnf is

well-formed and justifies its assumptions, we can soundly use

rely-guarantee reasoning based on Definition 1 and Corollary 1.

The rest of the proof is lengthy, but uses established proof

techniques. It shows that for any security level , given an

execution of gcnf with strategy σ that produces trace τ , and

given an -equivalent strategy σ′, there exists an execution of

gcnf with σ′ that produces trace τ ′ such that τ ↓  = τ ′ ↓ .
Thus, the knowledge of an attacker at level  that observes

trace τ will include both σ and σ′.
When our monitoring framework is instantiated with the

information-flow control local monitors, it accepts all the

secure executions from Section II (with appropriate annotations

to indicate assumptions), and correctly rejects the insecure

executions (by a local monitor blocking at an appropriate point

in the execution). This work presents the first hybrid progress-

sensitive information-flow control monitoring framework for

concurrent programs that uses fine-grained rely-guarantee

reasoning about shared memory. As such, it is the only

sound monitoring framework that accepts all secure execution

examples from Section II. The examples, though simple, exhibit

typical patterns of concurrent programs, and of programs that

manipulate information of differing sensitivity.

VIII. RELATED WORK

Static enforcement: Most existing work on information-

flow security in concurrent programs uses static techniques.

Volpano and Smith [23] provide a type system that enforces

probabilistic noninterference in concurrent programs by pro-

viding an atomic construct, and preventing high-security loop
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guards. Russo and Sabelfeld [24] remove the need for the

atomic construct under cooperative scheduling. Sabelfeld and

Sands [25] provide a type system that ensures probabilistic

noninterference for a wide class of schedulers, that also prevents

high-security loop guards, and uses Agat’s padding technique

to prevent timing leaks [26]. Smith [27] presents a type system

that reasons precisely about what information influences the

timing of executions, prevents timing leaks, and thus enforces

probabilistic noninterference for concurrent programs.

Andrews and Reitman [28] present an axiomatic program

logic to reason about information flow in sequential and

concurrent programs. They use two special “certification

variables” in their logic, local and global , which correspond

to the pc level and the termination level respectively.

Boudol and Castellani [29] analyze the program and sched-

uler, and give a type system such that well-typed schedulers and

threads satisfy noninterference, which Barthe and Nieto [30]

verify. Barthe et al. [31] add mechanisms during compilation

to enable a security-aware scheduler to enforce security.

Sabelfeld [7] considers a concurrent language with

semaphores, and provides a type system that enforces security.

High loops are not allowed, and padding is used to prevent

timing leaks, for both branches and fork commands.

Zdancewic and Myers [17] propose that non-determinism

should not be observable by low-security users (including

non-determinism arising from scheduling, data races, etc.)

and present a type system that enforces low-observational

determinism for single memory locations. Their enforcement

mechanism allows the pc level to be reset at thread synchroniza-

tion points, similar to our lowering of the timing level at barrier

synchronizations. Huisman et al. [32] note that the security

condition may permit more information flow than intended

and strengthen the condition. Terauchi [33] further improves

this condition and enforces it via a fractional-capability type

system, which permits updates of a thread’s capabilities upon

synchronization. This bears similarities to our updates of modes

at synchronization points, but fractional capabilities and modes

are different. For instance, in our framework a thread may

have exclusive write access to a variable without exclusive read

access. In contrast to all three articles, our security condition

does not demand low-observable determinism.

Mantel and Sudbrock [34] present a security condition that

allows nondeterminism in concurrent programs provided secret

information does not influence this nondeterminism. They

present a type system that enforces security for a broad class

of schedulers: once a thread’s timing or termination behavior

is influenced by secret information, it may not interact with

low-security threads. Muller and Chong [21] also permit low-

observable nondeterminism via a type system for an extension

of the X10 programming language.

Mantel, Sands, and Sudbrock [12] use rely-guarantee rea-

soning to support flow-sensitive security types in concurrent

programs, thus allowing more precise enforcement of security.

Our approach is inspired by theirs, but we exploit and justify

rely-guarantee reasoning dynamically rather than statically.

Hybrid and dynamic enforcement: By contrast with

static enforcement techniques, our approach is hybrid, combin-

ing static and dynamic techniques. This enables more precise

enforcement of security, since static techniques must accept or

reject a program in its entirety, whereas dynamic and hybrid

techniques can accept or reject single executions.

Le Guernic [13] presents the first hybrid monitor for

concurrent programs. It is flow sensitive, but uses a single

monitor (and single type environment) for the entire thread

pool, which restricts concurrency. To handle locks, the monitor

uses static analysis to determine when a thread might require a

lock, and acquires it before any high branch in that thread, thus

ensuring lock acquisition does not depend on secret information.

Le Guernic’s monitor suppresses insecure output instead of

blocking the thread. We block threads rather than modify the

semantics of programs by altering or suppressing outputs.

Stefan et al. [35] present a dynamic termination-sensitive

information-flow control mechanism. Their mechanism does

not rely on a single global monitor but rather uses coarse-

grained containers with “floating labels,” where the label of

the container is increased based on information read by the

container, and the label restricts writes and other observable

effects. In addition to preventing internal timing leaks, they

mitigate external timing leaks using predictive mitigation [36].

We do not address external timing leaks, but enforce security

at finer granularity (i.e., per program variable) and with greater

precision (through flow-sensitivity).

IX. CONCLUSION

We have developed a novel framework to monitor concur-

rent programs, and instantiated this framework to enforce a

knowledge-based progress-sensitive noninterference security

condition in concurrent programs where threads share memory

resources at the granularity of individual memory locations.

The framework uses a single global monitor to ensure

that threads can soundly use rely-guarantee reasoning about

shared memory. Each thread has its own local monitor that

both enforces thread guarantees regarding shared memory,

and also tracks and controls information flow within the

thread. The global monitor is accessed only when threads

synchronize, ensuring that the monitoring framework does

not needlessly restrict concurrency. The local monitors are

hybrid: they combine dynamic techniques for information-flow

control with on-the-fly static program analysis to approximate

information flow on untaken execution paths. Local monitor

precision is improved by using rely-guarantee reasoning.
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