
Using Dynamic Pushdown Networks
to Automate a Modular

Information-Flow Analysis

Heiko Mantel1, Markus Müller-Olm2,
Matthias Perner1(B), and Alexander Wenner2

1 Computer Science Department, TU Darmstadt, Darmstadt, Germany
{mantel,perner}@cs.tu-darmstadt.de

2 Institut Für Informatik, Westfälische Wilhelms-Universität Münster,
Münster, Germany

{markus.mueller-olm,alexander.wenner}@wwu.de

Abstract. In this article, we propose a static information-flow analysis
for multi-threaded programs with shared memory communication and
synchronization via locks. In contrast to many prior analyses, our analy-
sis does not only prevent information leaks due to synchronization, but
can also benefit from synchronization for its precision. Our analysis is a
novel combination of type systems and a reachability analysis based on
dynamic pushdown networks. The security type system supports flow-
sensitive tracking of security levels for shared variables in the analysis of
one thread by exploiting assumptions about variable accesses by other
threads. The reachability analysis based on dynamic pushdown networks
verifies that these assumptions are sound using the result of an automatic
guarantee inference. The combined analysis is the first automatic sta-
tic analysis that supports flow-sensitive tracking of security levels while
being sound with respect to termination-sensitive noninterference.

Keywords: Information-flow security · Concurrency · Static analysis

1 Introduction

Before giving a multi-threaded program access to sensitive information, one
might want to know whether the program keeps this information secret. Static
information-flow analyses are a solution for checking whether a program keeps
sensitive information secret before running the program.

Information-flow security for sequential programs received a lot of attention
in research and mature solutions exist, e.g. [2,5,7,12]. Analyzing information-
flow security for concurrent programs is conceptually more difficult. In particular,
analyses for sequential programs are not sufficient for analyzing concurrent pro-
grams [17], because further information leaks can occur. Consider, for instance,
the program o1:=s1; s1:=s2; s2:=o1; o1:=0, which swaps the values stored in
s1 and s2 via the variable o1. Assume the values of s1 and s2 shall be kept
c© Springer International Publishing Switzerland 2015
M. Falaschi (Ed.): LOPSTR 2015, LNCS 9527, pp. 201–217, 2015.
DOI: 10.1007/978-3-319-27436-2 12

202 H. Mantel et al.

Fig. 1. Work flow of the proposed analysis

secret from an attacker who can only observe the variable o1 after the program
run. While the program does not leak the values of s1 and s2 if run in isolation,
it might leak the value of s1 to the attacker if the program o2:=o1; o1:=o2
is run concurrently. Synchronization adds further complexity to this problem,
because it can introduce additional information leaks [14].

For verifying that multi-threaded programs have secure information flow, sev-
eral security type systems were proposed and proven sound wrt. noninterference-
like security properties (e.g., [16,17]). While some of this work addresses the
danger of information leakage via synchronization (e.g., [14,19,20]), the poten-
tial positive effects of synchronization primitives for information-flow security
have been neglected for some time. However, programmers use synchronization
frequently to limit the possible interferences between threads. In particular, syn-
chronization can be employed to prevent information leakage.

Mantel, Sands, and Sudbrock propose a framework for verifying information-
flow security in a modular fashion such that the positive effects of synchroniza-
tion can be exploited [10]. They present a flow-sensitive security type system
that is suitable for rely-guarantee-style reasoning about information-flow security
based on code annotations that capture a programmer’s intentions and expecta-
tions by so called modes. A mode is either an assumption about a given thread’s
environment that the programmer expects to hold when the thread reaches some
program point, or it is a guarantee that the programmer intends to provide to
the thread’s environment. In [10], the security type system is proven sound under
the precondition that all assumptions made by a thread are justified by corre-
sponding guarantees of other threads and that all such guarantees are, indeed,
provided. In [3], this approach is adapted to a hybrid information-flow analysis,
where monitors enforce the soundness of rely-guarantee-style reasoning by forc-
ing threads to provide all guarantees that are needed to justify the assumptions
made by other threads.

In this article, we propose a particular combination of security type systems
with dynamic pushdown networks [9] (brief: DPNs). The purpose of this com-
bination is to obtain a solution for rely-guarantee-style reasoning where DPNs
are used to effectively check that all assumptions are justified. In addition, we
present an inference that soundly computes the guarantees that are provided
at each program point. That is, our solution statically ensures that modes are
used soundly and our soundness result is unconditional, unlike in [10] where a
sound use of modes is assumed. In contrast to [3], we present a solution for a
static analysis, i.e. one only needs to verify the information flow security of a
program once and no run-time overhead is imposed on the program. Another
novelty of this article in comparison to [3,10] is that our security type system
covers dynamic thread creation as well as lock-based synchronization.

Using Dynamic Pushdown Networks to Automate 203

Figure 1 illustrates how the different modules of our analysis interact. The
guarantee inference takes a program annotated with assumptions as input and
adds guarantee annotations. This program is input to the assumption verifier
and the security type system. A program is then accepted as secure if and only
if it is accepted by the assumption verifier as well as the security type system.

Overall, our analysis is the first completely automated, static information-
flow analysis that soundly enforces termination-sensitive noninterference while
permitting flow-sensitive tracking of security levels for shared variables.

2 Basic Notions and Notation

2.1 Model of Computation

We consider multi-threaded programs whose threads synchronize by locks and
communicate via shared memory. We focus on interleaving concurrency (i.e., one
thread performs a step at a time), non-deterministic scheduling (i.e., each thread
could be chosen to perform a step next), and non-re-entrant locks (i.e., a lock can
only be acquired if no thread, including the acquiring thread, holds this lock). To
capture the behavior of multi-threaded programs, we use two transition systems:
a local labeled transition system to capture the behavior of individual threads
and a global transition system to capture the behavior of multiple threads.

We assume as given a finite set of locks Lck and define the set of all memory
configurations by Mem = Var → Val , where Var is a finite set of variables and
Val is a set of values. We leave Var and Val both under-specified.

We refer to the states and labels of local, labeled transition systems as local
configurations and events, respectively. Formally, a local transition system is a
triple (LCnf ,Eve,−→) where LCnf and Eve are sets and −→⊆ LCnf×Eve×LCnf .
We define the set of local configurations by LCnf = CCnf ×Mem, where CCnf is
a set of control configurations that we leave under-specified for now. An event is
a term that captures the non-local effects of a thread’s computation. We define
the set of all events by Eve = {ε,↗ccnf , l ,¬l | ccnf ∈ CCnf , l ∈ Lck}. We
use the events ↗ccnf , l , and ¬l to capture the creation of a new thread with
initial control configuration ccnf , the acquisition of lock l , and the release of l ,
respectively. The term ε signals that no non-local effect occurs. We assume that
termination is captured by a predicate trm on control configurations.

A global transition system is a pair (GCnf ,�), where GCnf is a set of
global configurations and �⊆ GCnf × GCnf . We define GCnf by GCnf =
CCnf + × Mem, i.e., a global configuration is a pair of a non-empty list of
local control configurations and a memory configuration. A global configuration
〈[ccnf 1, . . . , ccnf n],mem〉 models a snapshot of a computation with n threads
where the ith thread’s state is captured by (ccnf i,mem) for 1 ≤ i ≤ n. We say
that a list of control configurations [ccnf 1, . . . , ccnf n] has terminated (denoted
trm([ccnf 1, . . . , ccnf n])) iff trm(ccnf i) holds for all i ∈ {1, . . . , n}.

We assume the control configuration of a thread to capture which locks are
held by this thread. To retrieve the set of acquired locks, we use a function

204 H. Mantel et al.

locks : CCnf → 2Lck and inductively lift it to a function locks : CCnf ∗ → 2Lck

by locks([]) = ∅ and locks(
−−→
ccnf ++[ccnf]) = locks(

−−→
ccnf)∪ locks(ccnf). In a global

configuration 〈[ccnf 1, . . . , ccnf n],mem〉, locks(ccnf i) is the set of locks acquired
by the ith thread and Lck \ locks([ccnf 1, . . . , ccnf n]) is the set of available locks.

We say that a local transition system (LCnf ,Eve,−→) handles locks properly
iff (1) (ccnf ,mem) l−→ (ccnf ′,mem ′) implies locks(ccnf ′) = locks(ccnf) ∪̇ {l},1

(2) (ccnf ,mem) ¬l−→ (ccnf ′,mem ′) implies locks(ccnf) = locks(ccnf ′) ∪̇ {l}, (3)
(ccnf ,mem) α−→ (ccnf ′,mem ′) and α /∈ {l ,¬l | l ∈ Lck} imply locks(ccnf ′) =
locks(ccnf), and (4) (ccnf ,mem) ↗ccnf ∗−−−−→(ccnf ′,mem ′) implies locks(ccnf ∗) = ∅.

Let (LCnf ,Eve,−→) be a local transition system that handles locks properly.
The global transition relation �⊆ GCnf ×GCnf induced by this local transition
system is the smallest relation that satisfies the following conditions:

1. If (ccnf i,mem) l−→ (ccnf ′
i,mem ′) and l /∈ locks(

−−→
ccnf 1++

−−→
ccnf 2)

then
〈−−→ccnf 1++[ccnf i]++

−−→
ccnf 2,mem〉 � 〈−−→ccnf 1++[ccnf ′

i]++
−−→
ccnf 2,mem ′〉.

2. If (ccnf i,mem) ↗ccnf−−−→ (ccnf ′
i,mem ′)

then
〈−−→ccnf 1++[ccnf i]++

−−→
ccnf 2,mem〉 � 〈−−→ccnf 1++[ccnf , ccnf ′

i]++
−−→
ccnf 2,mem ′〉.

3. If (ccnf i,mem) α−→(ccnf ′
i,mem ′) and α /∈{↗ccnf , l | ccnf ∈CCnf , l ∈Lck}

then
〈−−→ccnf 1++[ccnf i]++

−−→
ccnf 2,mem〉 � 〈−−→ccnf 1++[ccnf ′

i]++
−−→
ccnf 2,mem ′〉.

The first item above captures the acquisition of a lock by the thread at position
i = 1 + �(

−−→
ccnf 1). Since the local transition system handles locks properly, a lock

can only be acquired if no thread – including thread i – holds this lock. The
second item captures the creation of a thread by the ith thread. Due to the
proper handling of locks, newly created threads hold no locks. Finally, the third
item handles all other steps of the ith thread, including the release of a lock.

We inductively define a family of relations (�k)k∈N by gcnf �0 gcnf and
if gcnf �k gcnf ′ and gcnf ′ � gcnf ′′ then gcnf �k+1 gcnf ′′. The transitive,
reflexive closure of � is defined by gcnf �∗ gcnf ′ iff ∃k ∈ N. gcnf �k gcnf ′. If
gcnf �∗ gcnf ′ then gcnf ′ is reachable from gcnf . We define the set of all global
configurations reachable from gcnf by gReach(gcnf) = {gcnf ′ | gcnf �∗ gcnf ′}.

In Sect. 2.5, we define a local transition system (LCnf ,Eve,−→) for a simple
programming language and capture multi-threaded computations by the global
transition system (GCnf ,�), where � is induced by (LCnf ,Eve,−→).

2.2 Attacker Model and Definition of Security

We focus on confidentiality in this article. More concretely, we assume that
certain variables store secrets, and we only classify a program as secure if it does
1 We use ∪̇ to denote the disjoint union of two sets, e.g., locks(ccnf ′) = locks(ccnf)∪̇{l}

is equivalent to locks(ccnf ′) = (locks(ccnf) ∪ {l}) ∧ l /∈ locks(ccnf).

Using Dynamic Pushdown Networks to Automate 205

not reveal information about these secrets when it is run. We consider attackers
that might be able to observe the values of all other variables both, before and
after a program run. We refer to variables that initially store secrets as high
and to variables that might be observable to the attacker as low.

We define a set of security levels by Lev = {low,high} and use a function
lev : Var → Lev to associate a security level with each variable. For the attacker,
two memory configurations are indistinguishable if they agree on the values of
all low variables. We say that mem,mem ′ ∈ Mem are low-equal (denoted by
mem =lev

low mem ′) iff ∀x ∈ Var . (lev(x) = low =⇒ mem(x) = mem ′(x)) holds.

Definition 1. A control configuration ccnf is secure for lev : Var → Lev iff

∀mem1,mem ′
1,mem2 ∈ Mem.∀−−→

ccnf 1 ∈ CCnf +.

〈[ccnf],mem1〉 �∗ 〈−−→ccnf 1,mem ′
1〉 ∧ trm(

−−→
ccnf 1) ∧ mem1 =lev

low mem2

=⇒ ∃mem ′
2 ∈ Mem.∃−−→

ccnf 2 ∈ CCnf +.

〈[ccnf],mem2〉 �∗ 〈−−→ccnf 2,mem ′
2〉 ∧ trm(

−−→
ccnf 2) ∧ mem ′

1 =lev
low mem ′

2

Our security definition captures possibilistic, termination-sensitive noninterfer-
ence for a two-level security policy [15]. That is, if a program satisfies our security
definition then the initial values of high variables do not influence the possibility
of a low attacker’s observations. In particular, programs that leak information
via their termination behavior [4] do not satisfy Definition 1.

2.3 Dynamic Pushdown Networks

We briefly recall the result on analysis of dynamic pushdown networks (DPNs)
from [9] exploited in the assumption verifier and describe the connection to
our model of computation. A DPN consists of multiple instances of indepen-
dent pushdown systems running in parallel. Additional instances can be created
dynamically. Synchronisation is supported in the form of locks. Using finite data
abstraction, DPNs can thus model concurrent programs with recursive proce-
dures, dynamic thread creation, and synchronization with locks.

Formally, a DPN is a tuple (P , Γ,A,Δ) where P is a finite set of control states,
Γ is a finite set of stack symbols, A is a finite set of actions, and Δ ⊆ PΓ ×
A × PΓ ∗ is a finite set of transitions. An action from {↗p,γ | p ∈ P , γ ∈ Γ} ⊆ A
indicates creation of a new pushdown instance with a control state p and stack
symbol γ, and an action from {l ,¬l | l ∈ Lck} ⊆ A indicates acquisition and
release of a lock l . The set of acquired locks can be retrieved from a control
state with the function locks : P → 2Lck . The set of acquired locks in a control
state must be consistent with transitions, i.e. for all (pγ, a, p′w′) ∈ Δ we have
locks(p′) = {l} ∪̇ locks(p) if a = l , locks(p) = {l} ∪̇ locks(p′) if a = ¬l and
locks(p) = locks(p′) otherwise; in addition locks(p′′) = ∅ if a =↗p′′,γ′′ . Note
that there is no re-entrant use of locks.

Configurations of a DPN are lists of pushdown instances represented as
words from DCnf = (PΓ ∗)+. Let locks(p1w1 . . . pnwn) =

⋃
i∈{1,...,n} locks(pi).

206 H. Mantel et al.

A step of the semantics of the DPN rewrites the control state and topmost
stack-symbol of one pushdown instance according to a transition rule, if allowed
by the state of locks. On thread creation, a new pushdown instance is added
to the left of the current instance in the configuration. Formally, the transition
relation � is the smallest relation such that s pγw s ′

� s s ′′ p′w′w s ′ holds for
all s, s ′ ∈ DCnf , w ∈ Γ ∗, (pγ, a, p′w′) ∈ Δ provided l /∈ locks(spγws ′) if a = l
and s ′′ = p′′γ′′ if a =↗p′′,γ′′ and s ′′ = ε otherwise.

We say that a thread uses locks in a well-nested fashion if it releases all locks
in opposite order of their acquisition. Given a DPN whose threads use locks in
a well-nested fashion and a regular set B ⊆ (P ∪ Γ)∗, we can check effectively,
whether a configuration in B is reachable from initial configuration s0 or not,
i.e., whether ∃s ∈ B : s0 �

∗ s (see [9]).
In order to analyze a program from an initial configuration 〈[ccnf],mem〉,

we consider a DPN Mccnf = (Pccnf , Γccnf ,Accnf ,Δccnf) with Pccnf ⊆ CCnf ,
ccnf ∈ Pccnf and Γccnf = {#} that satisfies the following condition: if ccnf ′ ∈
Pccnf and (ccnf ′,mem) α−→ (ccnf ′′,mem ′) then ccnf ′′ ∈ Pccnf , α′ ∈ Accnf and
(ccnf ′#, α′, ccnf ′′#) ∈ Δccnf , where α′ = α for α /∈ {↗ccnf | ccnf ∈ CCnf },
and ccnf ′′′ ∈ Pccnf and α′ =↗ccnf ′′′,# for α =↗ccnf ′′′ . Elements of Pccnf

abstract local configurations in the sense that they do not carry information
about memory configurations. Correspondingly, the transitions in Δccnf abstract
steps in the local semantics. However, labelling and hence synchronisation and
thread creation is preserved. We reuse the function locks defined for control
configurations.

The DPN Mccnf can be used to approximate reachability of configurations
starting from 〈[ccnf],mem〉 respecting synchronisation via locks and thread cre-
ation, since 〈[ccnf],mem〉 �∗ 〈[ccnf 1, . . . , ccnf n],mem ′〉 implies that ccnf # �

∗

ccnf 1# . . . ccnf n#. Hence, an unreachable configuration in the DPN translates
to an unreachable configuration in the program. Since we abstract from the
shared global memory, the converse direction does not hold in general.

The above approach is fitted to non-recursive programs but can easily be
extended to recursive programs by using a larger stack alphabet.

2.4 Control Configurations and Modes

We specialize control configurations to triples of the form (c, lkst ,mdst), where
c is a command, lkst is a lock state, and mdst is a mode state. In the control
configuration of a thread, the command specifies how the thread’s computation
will continue, the lock state specifies which locks the thread currently holds, and
the mode state specifies the thread’s current assumptions about its environment
as well as the guarantees that the thread currently provides to its environment.

We use Com, LkSt , and MdSt to denote the set of all commands, the set
of all lock states, and the set of all mode states, respectively, i.e., CCnf =
Com × LkSt × MdSt . We leave Com under-specified and define LkSt and MdSt
below. In Sect. 2.5, we specialize Com for the syntax of a concrete programming
language and formalize the language’s semantics by a local transition system.

Using Dynamic Pushdown Networks to Automate 207

Formally, a lock state is a set of locks, i.e., LkSt = 2Lck . In a control config-
uration (c, lkst ,mdst) of a thread, the lock state lkst specifies which locks this
thread holds. Hence, we define the function locks by locks((c, lkst ,mdst)) = lkst .

We define mode states to be functions from modes to sets of variables, i.e.,
MdSt = Md → 2Var , where Md = {A-NR,A-NW,G-NR,G-NW} is the set of
modes. The modes A-NR (for no-read assumption) and A-NW (for no-write
assumption) represent assumptions, while the modes G-NR (for no-read guaran-
tee) and G-NW (for no-write guarantee) represent guarantees. If x ∈ mdst(A-NW)
then it is assumed that the thread’s environment does not write x . Similarly,
if y ∈ mdst(A-NR) then it is assumed that the thread’s environment does
not read the variable y . If x ∈ mdst(G-NW) and y ∈ mdst(G-NR), then the
thread guarantees to not write x and to not read y , respectively. We say a mode
statemdstis consistent with a mode statemdst ′ iff mdst(A-NW) ⊆ mdst ′(G-NW)
and mdst(A-NR) ⊆ mdst ′(G-NR), i.e., if all assumptions made by mdst are
matched by corresponding guarantees of mdst ′.

We say that a local configuration ((c, lkst ,mdst),mem) provides its no-write
guarantees iff for all x ∈ mdst(G-NW) and (ccnf ′,mem ′) ∈ LCnf the implication

((c, lkst ,mdst),mem) α−→ (ccnf ′,mem ′) =⇒ mem ′(x) = mem(x) (1)

holds. Moreover, we say ((c, lkst ,mdst),mem) provides its no-read guarantees iff
for all y ∈ mdst(G-NR), v ∈ Val , and (ccnf ′,mem ′) ∈ LCnf the implication

((c, lkst ,mdst),mem) α−→ (ccnf ′,mem ′) (2)

=⇒ ((c, lkst ,mdst),mem[y �→ v]) α−→ (ccnf ′,mem ′)
∨ ((c, lkst ,mdst),mem[y �→ v]) α−→ (ccnf ′,mem ′[y �→ v])

holds. The two disjuncts on the right hand side of the implication cover the case
where the variable y is written and not written, respectively, in the step. Finally,
we say that a local configuration provides its guarantees if it provides both, its
no-write guarantees and its no-read guarantees.

We say that a global configuration 〈[ccnf 1, . . . , ccnf n],mem〉 with ccnf i =
(ci, lkst i,mdst i) for each i ∈ {1, . . . , n} justifies its assumptions iff mdstj is
consistent with mdstk for all j, k ∈ {1, . . . , n}, j �= k. Intuitively, this means that
if one thread makes an assumption about a variable then all other threads must
provide the corresponding guarantee.

Modes and mode states were introduced in [10] as a basis for rely-guarantee-
style reasoning about information-flow security. The approach enables one to
verify the security of multi-threaded programs in a modular fashion, based on
security guarantees for each individual thread. More concretely, one statically
verifies that steps of each thread only cause flows of information that comply with
a given security policy. Rely-guarantee-style reasoning frees one from having to
reason about arbitrary environments, one only needs to consider environments
that satisfy the thread’s current assumptions. Such rely-guarantee-style reason-
ing is sound if at each step of a computation the assumptions of all threads are
justified and the guarantees of all threads are provided.

208 H. Mantel et al.

Definition 2. A global configuration gcnf ensures a locally sound use of modes
iff for each gcnf ′ ∈ gReach(gcnf), where gcnf ′ = 〈[ccnf ′

1, . . . , ccnf ′
n],mem ′〉, and

each i ∈ {1, . . . , n}, the local configuration (ccnf ′
i,mem ′) provides its guarantees.

A global configuration gcnf ensures a globally sound use of modes iff each
gcnf ′ ∈ gReach(gcnf) justifies its assumptions.

A global configuration gcnf ensures a sound use of modes iff gcnf ensures
both, a locally sound use of modes and a globally sound use of modes.

Our semantics of modes is similar to the one in [3,10]. One original extension
of rely-guarantee-style reasoning about information-flow security in this article
is that we cover dynamic thread creation and synchronization with locks, which
are two language features not supported by this prior work.

2.5 A Concrete Programming Language with Modes

We define an example programming language with annotations for acquiring
and releasing modes. The set of annotations is Ann = {acq(md , x), rel(md , x) |
md ∈ Md ∧ x ⊆ Var}. An annotation acq(md , x) acquires the mode md for all
variables in x , and an annotation rel(md , x) releases the mode md for all vari-
ables in x . To capture this formally, we define the function updMds : MdSt ×
Ann → MdSt by updMds(mdst , acq(md , x)) = mdst [md �→ mdst(md) ∪ x] and
updMds(mdst , rel(md , x)) = mdst [md �→ mdst(md) \ x], and lift it to lists
of annotations by updMds(mdst , []) = mdst and updMds(mdst , [a]++−→a) =
updMds(updMds(mdst , a),−→a).

We define the special mode state mdst⊥ by mdst⊥(A-NR) = mdst⊥(A-NW) =
∅ and mdst⊥(G-NR) = mdst⊥(G-NW) = Var . It is minimal in the sense that it
imposes no constraints on assumptions and guarantees of its environment.

We assume as given a set Exp of expressions, a function eval : Exp ×Mem →
Val that returns the value to which an expression evaluates in a given memory,
and a function vars : Exp → 2Var that returns the set of all variables that appear
syntactically in an expression.

The set Comp of syntactically correct programs is defined by the grammar:

� := ε | @−→a
cp := skip | x :=e | if e then cp else cp fi | while e do cp od | cp; cp

| spawn(cp) | lock(l)�; cp;unlock(l) � | cp�
where −→a ∈ Ann∗, x ∈ Var , e ∈ Exp, and l ∈ Lck . The syntax ensures a
well-nested use of locks. The set Com of commands is defined by the grammar:

c := stop | lock(l) � | unlock(l) � | c; c | cp

We define that trm((c, lkst ,mdst)) holds iff c = stop. That is, the symbol stop
indicates that the computation of a thread has terminated.

The local transition system for our programming language is defined by the
calculus in Fig. 2. For the rules sk, as, sq1, sq2, ift, iff, wht, and whf, sp, the
lock state as well as the mode state is irrelevant for the premises and both remain

Using Dynamic Pushdown Networks to Automate 209

sk
(skip, lkst ,mdst ,mem)

ε−→ (stop, lkst ,mdst ,mem)

as
eval(e,mem) = v mem ′ = mem[x �→ v]

(x :=e, lkst ,mdst ,mem)
ε−→ (stop, lkst ,mdst ,mem ′)

sq1
(c1, lkst ,mdst ,mem)

α−→ (c′
1, lkst

′,mdst ′,mem ′) c′
1 �= stop

(c1; c2, lkst ,mdst ,mem)
α−→ (c′

1; c2, lkst
′,mdst ′,mem ′)

sq2
(c1, lkst ,mdst ,mem)

α−→ (stop, lkst ′,mdst ′,mem ′)

(c1; c2, lkst ,mdst ,mem)
α−→ (c2, lkst

′,mdst ′,mem ′)

sp
(spawn(c), lkst ,mdst ,mem)

↗(c,∅,mdst⊥)−−−−−−−−→ (stop, lkst ,mdst ,mem)

ift
eval(e,mem) = true

(if e then c else c′ fi, lkst ,mdst ,mem)
ε−→ (c, lkst ,mdst ,mem)

iff
eval(e,mem) = false

(if e then c else c′ fi, lkst ,mdst ,mem)
ε−→ (c′, lkst ,mdst ,mem)

wht
eval(e,mem) = true

(while e do c od, lkst ,mdst ,mem)
ε−→ (c;while e do c od, lkst ,mdst ,mem)

whf
eval(e,mem) = false

(while e do c od, lkst ,mdst ,mem)
ε−→ (stop, lkst ,mdst ,mem)

lk
lkst ∪̇ {l} = lkst ′

(lock(l), lkst ,mdst ,mem)
l−→ (stop, lkst ′,mdst ,mem)

ulk
lkst = lkst ′ ∪̇ {l}

(unlock(l), lkst ,mdst ,mem)
¬l−→ (stop, lkst ′,mdst ,mem)

an1
(c, lkst ,mdst ,mem)

α−→ (stop, lkst ′,mdst ′,mem ′) mdst ′′ = updMds(mdst ′, −→a)

(c@−→a , lkst ,mdst ,mem)
α−→ (stop, lkst ′,mdst ′′,mem ′)

an2
(c, lkst ,mdst ,mem)

α−→ (c′, lkst ′,mdst ′,mem ′) c′ �= stop

(c@−→a , lkst ,mdst ,mem)
α−→ (c′@−→a , lkst ′,mdst ′,mem ′)

Fig. 2. Semantics of the programming language

unchanged. The rules lk and ulk realize acquiring and releasing a lock, respec-
tively. The rule an1 updates the mode state according to an annotation if the
annotated command is reduced to stop. The rule an2 preserves the annotation
if the command is not reduced to stop.

Given a program cp, we say that cp is secure for lev iff (cp, ∅,mdst⊥) is secure
for lev , that cp ensures a locally sound use of modes iff 〈[(cp, ∅,mdst⊥)],mem〉
ensures a locally sound use of modes for all mem ∈ Mem, that cp ensures a
globally sound use of modes iff 〈[(cp, ∅,mdst⊥)],mem〉 ensures a globally sound

210 H. Mantel et al.

use of modes for all mem ∈ Mem, and that cp ensures a sound use of modes iff
〈[(cp, ∅,mdst⊥)],mem〉 ensures a sound use of modes for all mem ∈ Mem.

3 A DPN-based Analysis for Sound Assumptions

We propose a two-step approach for ensuring a globally sound use of modes for
a given program cp. First, we construct a DPN that simulates cp in the sense of
Sect. 2.3. Second, we build an automaton that accepts all DPN configurations
that contain a pair of inconsistent mode states. By the connection between DPN
and program executions, cp uses modes globally sound, if no such configuration
is reachable in the DPN from a particular initial configuration. The techniques
from [9] then enable us to determine whether this is the case.

We construct a DPN Mccnf for the control configuration ccnf =(cp, ∅,mdst⊥)
as follows: Starting with ccnf , we collect all reachable control configurations,
actions, and transitions using the rules from Fig. 2, ignoring the memory config-
urations. The resulting sets Pccnf , Accnf and Δccnf of control states, actions, and
transitions satisfy all requirements from Sect. 2.3. Due to the syntax of programs
locks are used well-nested in the DPN Mccnf and mode states are preserved in
its configurations.

For the second step, we first introduce a function that checks the mutual
consistency of two mode states and returns a summary mode state.

Definition 3. Let MdSt� = MdSt ∪{�}. The function ⊕ : MdSt� ×MdSt� →
MdSt� is defined by mdst ⊕ mdst ′ = mdst ′′ where
– mdst ′′(md) = mdst(md) ∪ mdst ′(md) for md ∈ {A-NR,A-NW} and

mdst ′′(md) = mdst(md) ∩ mdst ′(md) for md ∈ {G-NR,G-NW}
if mdst �= �, mdst ′ �= �, mdst is consistent with mdst ′, and

mdst ′ is consistent with mdst.
– mdst ′′ = � otherwise.

If the two parameter mode states are mutually consistent, the function ⊕ returns
a regular mode state that imposes the same constraints on concurrent threads
as the combination of the original mode states. That is, it makes all assumptions
that at least one of the mode states makes and provides only those guarantees
that both mode states provide. If one of the parameter mode states makes an
assumption that the other mode state does not match with a corresponding
guarantee, the function returns the special symbol �.

We are now ready to define the automaton that characterizes DPN configu-
rations containing inconsistent mode states using the function ⊕.

Definition 4. For a DPN Mccnf = (Pccnf , Γccnf ,Accnf ,Δccnf) as described
above, we define Accnf = (MdSt�,Pccnf ∪ Γccnf , δ,mdst⊥, {�}) as the conflict
automaton, where δ = {(q, (c, lkst ,mdst), q⊕mdst) | q ∈ MdSt�, (c, lkst ,mdst) ∈
Pccnf }∪{(q,#, q) | q ∈ MdSt�}. We denote the language accepted by the automa-
ton by L(Accnf).

Using Dynamic Pushdown Networks to Automate 211

isk
−→a = anno(x , ∅, x r, xw)

x 	 ∅, ∅{skip}x r, xw : skip@−→a ias
−→a = anno(vars(e) ∪ x , {x}, x r, xw)

x 	 vars(e), {x}{x :=e}x r, xw : x :=e@−→a

ilo
−→a = anno(x , ∅, x r, xw)

x 	∅, ∅{lock(l)}x r, xw : lock(l)@−→a iul
−→a = anno(x , ∅, x r, xw)

x 	∅, ∅{unlock(l)}x r, xw : unlock(l)@−→a

iif
x ∪ vars(e) 	 ∅, ∅{skip; ci}x r, xw : c′

i for all i ∈ {1, 2}
x 	 vars(e), ∅{if e then c1 else c2 fi}x r, xw : if e then c′

1 else c′
2 fi

iwh
x ∪ vars(e) 	 ∅, ∅{skip; c}vars(e), ∅ : c′ −→a = anno(x ∪ vars(e), ∅, x r, xw)

x 	 vars(e), ∅{while e do c od}x r, xw : while e do c′ od@−→a

isq

x 	 x ′
r, x

′
w{c1}x ′′

r , x ′′
w : c′

1

x ′ 	 x ′′
r , x ′′

w{c2}x r, xw : c′
2

x 	 x ′
r, x

′
w{c1; c2}x r, xw : c′

1; c
′
2

ian

−→a ′ = −→a �A
x 	 x ′

r, x
′
w{c}x r, xw : c′

x 	 x ′
r, x

′
w{c@−→a }x r, xw : c′@−→a ′

isp
∅ 	 ∅, ∅{skip; c}∅, ∅ : c′ −→a = anno(x , ∅, x r, xw)

x 	 ∅, ∅{spawn(c)}x r, xw : spawn(c′)@−→a
with anno(x1, x2, x3, x4)=[acq(G-NR, x1), acq(G-NW, x2), rel(G-NR, x3), rel(G-NW, x4)]

Fig. 3. Inference of guarantee annotations

The states of the automaton record the summary mode state of the partial
configuration already read. Thus the initial state is the minimal mode state and
transitions accepting a control state add the mode state of the process to the
summary using the ⊕ operation. Since we are interested in the configurations
with inconsistent mode states, � is the only accepting state.

DPN-reachability and globally sound use of modes are connected as follows:

Theorem 1. Let ccnf = (cp, ∅,mdst⊥). If L(Accnf) is not reachable from ccnf #
in DPN Mccnf , then cp ensures a globally sound use of modes.

4 An Inference for Sound Guarantees

We propose an inference to automatically annotate a command with guarantees.
Recall that the initial mode state provides all guarantees, and that mode states
are updated based on annotations after the annotated command terminates.
With this in mind, the intuition of our inference is that a command requests the
release of guarantees that it cannot provide from the preceding command and
vouches to re-acquire said guarantees. Hence, the inference propagates sets of
variables which may be read or written by a command backwards.

A judgment x � x ′
r, x

′
w{c}x r, xw : c′ with x , x r, x ′

r, xw, x ′
w ⊆ Var and c, c′ ∈

Com of the inference is derivable with the rules in Fig. 3. The set x comprises
variables for which a conditional requests that a no-read guarantee shall be re-
acquired in the body of the conditional. The sets x ′

r and x ′
w comprise variables

for which c does not provide a no-read and no-write guarantee, respectively.

212 H. Mantel et al.

The sets x r and xw comprise variables for which a release of the respective
guarantees is requested. The resulting command c′ is annotated with guarantees.

All rules, except iif and ian, annotate a command to re-acquire guarantees
that this command cannot provide before releasing requested guarantees. The
rule iif requests that its branches re-acquire and release all guarantees. The
rule ian removes existing guarantee annotations to avoid conflicts with inferred
guarantees using a projection to assumption annotations The projection �A is
defined by [] �A= [], ([a]++−→a) �A= [a]++(−→a �A) if a ∈ {acq(md , x), rel(md , x) |
md ∈ {A-NR,A-NW} ∧ x ⊆ Var} and ([a]++−→a) �A= −→a �A otherwise.

Theorem 2. If ∅ � ∅, ∅{skip; c′
p}∅, ∅ : cp is derivable, then cp ensures a locally

sound use of modes.

Note that some rules add skip commands. These additional commands do not
influence which final memories are reachable. We do this as a lightweight measure
to support pre-annotations without further complicating our formalism.

5 A Type System for Information-Flow Security

We extend the security type system from [10,18]. To this end, we define a total,
reflexive order � on Lev such that low � high. To support flow-sensitive track-
ing of security levels for shared variables, we use partial level assignments, i.e.
partial functions from Var ⇀ Lev . For a given level assignment lev and a given
partial level assignment Λ, a lookup Λlev 〈x 〉 is defined by Λlev 〈x 〉 = Λ(x) if
x ∈ pre(Λ) and Λlev 〈x 〉 = lev(x) otherwise. Moreover, the partial type environ-
ment Λ′ = Λ ⊕lev a is defined by Λ′(x) = Λlev 〈x 〉 for all x ∈ pre(Λ′) and

pre(Λ′) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pre(Λ) ∪ {x | x ∈ x ∧ lev(x) = low} if a = acq(A-NR, x)
pre(Λ) ∪ {x | x ∈ x ∧ lev(x) = high} if a = acq(A-NW, x)
pre(Λ) \ {x | x ∈ x ∧ lev(x) = low} if a = rel(A-NR, x)
pre(Λ) \ {x | x ∈ x ∧ lev(x) = high} if a = rel(A-NW, x)
pre(Λ) otherwise.

For low-variables, acquiring a no-read assumption enables floating of security
levels. This allows tracking when a low-variable possibly stores sensitive infor-
mation. For high-variables, acquiring a no-write assumption enables floating of
security levels. This allows tracking when a high-variable definitely stores pub-
lic information. Releasing the respective assumptions disables floating of secu-
rity levels again. We lift the definition of ⊕lev to lists of annotations as follows
Λ ⊕lev [] = Λ and Λ ⊕lev ([a]++−→a) = (Λ ⊕lev a) ⊕lev

−→a .
The type system in Fig. 4 allows to derive judgements of the form �lev Λ{c}Λ′ :

c′. If such a judgment is derivable and lev and Λ together approximate where
secrets are stored initially, then lev and Λ′ approximate where secrets are stored
after running c, provided concurrent threads behave according to the assump-
tions. The command c′ is a low-slice of c, i.e. an abstraction of c in which sub-
commands that do not contribute to the behaviour observable via low-variables

Using Dynamic Pushdown Networks to Automate 213

tex 	lev,Λ e :
⊔

x∈vars(e) Λlev 〈x 〉 tah
lev(x) = high x /∈ pre(Λ)

	lev Λ{x :=e}Λ : skip

tsk 	lev Λ{skip}Λ : skip
tal

	lev,Λ e : low lev(x) = low x /∈ pre(Λ)

	lev Λ{x :=e}Λ : x :=e

tlo 	lev Λ{lock(l)}Λ : lock(l)
tfl

	lev,Λ e : low x ∈ pre(Λ)

	lev Λ{x :=e}Λ[x �→ low] : x :=e

tul 	lev Λ{unlock(l)}Λ : unlock(l)
tfh

x ∈ pre(Λ)

	lev Λ{x :=e}Λ[x �→ high] : skip

twl
Λ � Λ′ Λ′′ � Λ′ 	lev,Λ′ e : low 	lev Λ′{c}Λ′′ : c′

	lev Λ{while e do c od}Λ′ : while e do c′ od

til
	lev,Λ e : low 	lev Λ{c1}Λ′′ : c′

1 	lev Λ{c2}Λ′′′ : c′
2 Λ′ = Λ′′
 Λ′′′

	lev Λ{if e then c1 else c2 fi}Λ′ : if e then c′
1 else c′

2 fi

tih
	lev Λ{c1}Λ′′ : c′

1 	lev Λ{c2}Λ′′′ : c′
2 c′

1 = c′
2 Λ′ = Λ′′
 Λ′′′

	lev Λ{if e then c1 else c2 fi}Λ′ : skip; c′
1

tsq

	lev Λ{c}Λ′′ : c′′

	lev Λ′′{c′}Λ′ : c′′′

	lev Λ{c; c′}Λ′ : c′′; c′′′ tan

	lev Λ{c}Λ′ : c′ Λ′′ = (Λ′ ⊕lev
−→a)

∀x .Λ′
lev 〈x 〉 � Λ′′

lev 〈x 〉 −→a ′ = −→a �A-NR,A-NW

	lev Λ{c@−→a }Λ′′ : c′@−→a ′

tsp
	lev c : c′

	lev Λ{spawn(c)}Λ : spawn(c′)
tth

	lev Λ{c}Λ : c′ pre(Λ) = ∅
	lev c : c′

with Λ � Λ′ iff pre(Λ) = pre(Λ′) and Λ(x) � Λ′(x) for all x ∈ pre(Λ)

Fig. 4. Security type system

are replaced by skip. The rule tth with judgment �lev c : c′ ensures that lev
alone approximates where secrets are stored. If no such judgment is derivable for
a command c, then a secret might influence a low-variable in c.

The rule tan enables and disables flow-sensitivity for particular variables by
updating the pre-image of the partial level assignment, and ensures that a secret
written into a variable x with lev(x) = low must be overwritten before disabling
flow-sensitivity for x . The rules tfl and tfh track the floating security level of a
variable x by updating the level of x in the partial level assignment. The rule tih
permits branching on secrets. To avoid implicit information leaks due to such
branchings, tih requires that the low-slices of both branches are syntactically
identical. The rules tah, tfh, and tih perform the low-slicing.

Theorem 3. If cp ensures a sound use of modes and �lev cp : c′ is derivable,
then cp is secure for lev.

Theorems 1, 2, and 3 establish the soundness result for our combined analysis:

214 H. Mantel et al.

Corollary 1. If ∅ � ∅, ∅{skip; c′
p}∅, ∅ : cp, and �lev cp : c′ are derivable and

L(Accnf) is not reachable from ccnf # in DPN Mccnf for ccnf = (cp, ∅,mdst⊥),
then cp is secure for lev.

6 Applying the Analysis

We illustrate how our type system gains precision from assumptions, while the
DPN-based analysis ensures soundness of the combined analysis with the exam-
ple program c1 = spawn(o2:=o1; o1:=o2); o1:=s1; s1:=s2; s2:=o1; o1:=0 and
level assignment lev with lev(o1) = lev(o2) = low and lev(s1) = lev(s2) =
high. The program c1 may leak the value of s1 to an observer of o1 due to
concurrent execution of both threads.

Our security type system indeed rejects c1, because no typing rule is applica-
ble for o1:=s1: The rule tah cannot be applied due to lev(o1) �= high, the
rule tal cannot be applied due to lev(s1) �= low, and the rules tfl as well
as tfh cannot be applied due to o1 /∈ pre(Λ) (as the pre-image of the partial
level assignment is initially empty and there are no annotations in the program).
Using the assumption A-NR to enable flow-sensitivity for variable o1, o1:=s1
can be typed using tfh. To this end the program c1 can be annotated as follows:

spawn(o2 :=o1 ; o1 :=o2)@[acq(A-NR, {o1})];
o1 :=s1 ; s1 :=s2 ; s2 :=o1 ; o1 :=0@[rel(A-NR, {o1})]

However the program still contains the leak and the analysis detects this. The
guarantee inference transforms the command o2:=o1; o1:=o2 of the spawned
thread with the rules isp, isq, isk, and ias into the following command:

skip@[acq(G-NR, ∅), acq(G-NW, ∅), rel(G-NR, {o1}), rel(G-NW, {o2})];
o2 :=o1@[acq(G-NR, {o1}), acq(G-NW, {o2}), rel(G-NR, {o2}), rel(G-NW, {o1})];
o1 :=o2@[acq(G-NR, {o2}), acq(G-NW, {o1}), rel(G-NR, ∅), rel(G-NW, ∅)].

The annotation rel(G-NR, {o1}) in the first line makes explicit that the thread
cannot provide the guarantee to not read o1 during its next step, i.e. during the
step of o2:=o1 in the second line. By spawning the new thread and executing
its annotated first skip step, we reach a configuration with two threads. We
have o1 /∈ mdst2(G-NR) for the mode state of the spawned thread due to the
annotation rel(G-NR, {o1}). Furthermore, we have o1∈ mdst1(A-NR) for the
mode state of the original thread due to the annotation acq(A-NR, {o1}). Hence
we have a reachable configuration that does not justify its assumptions. The
corresponding DPN configuration preserves the mode states and is thus accepted
by our conflict automaton that accepts DPN configurations with inconsistent
mode states. Since the DPN over-approximates reachablitiy of the semantics, the
reachability analysis from [9] detects that this DPN configuration is reachable,
i.e. it detects a possible violation of globally sound use of modes and, hence, the
program is rejected.

Adding synchronization via locks to ensure mutual exclusion of the regions
accessing variable o1 finally makes the program secure and no configuration with

Using Dynamic Pushdown Networks to Automate 215

inconsistent mode states is reachable in the semantics anymore. Since the DPN
models locking precisely, the DPN analysis also no longer detects reachability of
any violation of globally sound use of modes. The following version of c1 with
additional synchronization has no leak and is accepted by our analysis:

c2= spawn(lock(l); o2 :=o1 ; o1 :=o2 ;unlock(l)); lock(l)@[acq(A-NR, {o1})];
o1 :=s1 ; s1 :=s2 ; s2 :=o1 ; o1 :=0;unlock(l)@[rel(A-NR, {o1})]

Theorem 4. Let lev be a domain assignment with lev(o1) = lev(o2) = low and
lev(s1) = lev(s2) = high. Then there are c′

2, c
′′
2 such that ∅ � ∅, ∅{skip; c2}∅, ∅ :

c′
2 and �lev c′

2 : c′′
2 are derivable, and L(Accnf) is not reachable from ccnf # in

DPN Mccnf for ccnf = (c′
2, ∅,mdst⊥). Hence, c′

2 is secure for lev.

7 Related Work

Andrews and Reitman [1] were the first to propose a static information-flow
analysis based on flow rules, yet without a soundness proof wrt. a semantic
security property. In [17], Smith and Volpano proposed the first security type
system with a soundness proof against termination-sensitive noninterference.

The focus for most security type systems with support for synchronization,
e.g. [14,19,20], has been preventing information leaks via synchronization. To the
best of our knowledge, only the analyses in [10,11,18] can exploit synchroniza-
tion for their precision. In [11], barrier synchonization allows combining different
proof techniques in an analysis. In [10], Mantel, Sands, and Sudbrock introduced
the rely-guarantee-style reasoning and the first flow-sensitive security type sys-
tem for concurrent programs. The relationship of this article to [10] has already
been clarified in the introduction.

Beyond security type systems, model-checking, e.g. in [8,13], as well as pro-
gram dependence graphs, e.g. in [6], have been used to verify information-flow
security for concurrent programs. These techniques promise very precise results,
but are not necessarily compositional. A compositional analysis reduces the con-
ceptual complexity of the verification, opens up the possibility to re-use analysis
results of components, and, thus, can contribute to the scalability of an analy-
sis. Our type system and our guarantee inference are compositional, meaning
they can be applied to individual threads. Only our DPN-based analysis, which
verifies the assumptions exploited by the type system for the actual program
composed of multiple threads, is a whole-program analysis.

8 Conclusion

We automated a modular information-flow analysis for multi-threaded programs
with a novel combination of a security type system and a reachability analysis
based on DPNs. The combined analysis is sound wrt. termination-sensitive non-
interference. The security type system supports flow-sensitive tracking of secu-
rity levels for shared variables in the analysis of a given thread by exploiting

216 H. Mantel et al.

assumptions about accesses to said variables by other threads. Using a concep-
tual example, we illustrated how the modules of our analysis interact and how
synchronization with locks can contribute to the precision of our analysis.

Lifting the analysis to a realistic language with recursive procedure calls and
dynamically allocated data structures is an open task for future work. Finally,
we would like to implement our analysis and evaluate it in practice.

Acknowledgments. This work was funded by the DFG under the projects RSCP
(MA 3326/4-1/2/3) and IFC4MC (MU 1508/2-1/2/3) in the priority program RS3

(SPP 1496) and under project OpIAT (MU 1508/1-1/2).

References

1. Andrews, G., Reitman, R.: An axiomatic approach to information flow in programs.
ACM Trans. Program. Lang. Syst. 2(1), 56–76 (1980)

2. Arden, O., Chong, S., Liu, J., Myers, A.C., Nystrom, N., Vikram, K., Zdancewic, S.,
Zhang, D., Zheng, L.: Jif. Software release: http://www.cs.cornell.edu/jif/ (2014)

3. Askarov, A., Chong, S., Mantel, H.: Hybrid monitors for concurrent noninterfer-
ence. In: 28th IEEE Computer Security Foundations Symposium, pp. 137–151
(2015)

4. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: 13th European Symposium on Research in
Computer Security, pp. 333–348 (2008)

5. Broberg, N., van Delft, B., Sands, D.: Paragon for practical programming with
information-flow control. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp.
217–232. Springer, Heidelberg (2013)

6. Giffhorn, D., Snelting, G.: A new algorithm for low-deterministic security. Inter-
national Journal of Information Security pp. 1–25 (2014)

7. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Secur.
8(6), 399–422 (2009)

8. Huisman, M., Blondeel, H.-C.: Model-checking secure information flow for multi-
threaded programs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011.
LNCS, vol. 6993, pp. 148–165. Springer, Heidelberg (2012)

9. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown
networks with tree-regular constraints. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 525–539. Springer, Heidelberg (2009)

10. Mantel, H., Sands, D., Sudbrock, H.: Assumptions and guarantees for composi-
tional noninterference. In: 24th IEEE Computer Security Foundations Symposium,
pp. 218–232 (2011)

11. Mantel, H., Sudbrock, H., Kraußer, T.: Combining different proof techniques for
verifying information flow security. In: Puebla, G. (ed.) LOPSTR 2006. LNCS, vol.
4407, pp. 94–110. Springer, Heidelberg (2007)

12. Myers, A.C.: JFlow: practical mostly-static information flow control. In: 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
228–241 (1999)

13. Ngo, T.M., Stoelinga, M., Huisman, M.: Confidentiality for probabilistic multi-
threaded programs and its verification. In: Jürjens, J., Livshits, B., Scandariato,
R. (eds.) ESSoS 2013. LNCS, vol. 7781, pp. 107–122. Springer, Heidelberg (2013)

http://www.cs.cornell.edu/jif/

Using Dynamic Pushdown Networks to Automate 217

14. Sabelfeld, A.: The impact of synchronisation on secure information flow in concur-
rent programs. In: Bjørner, D., Broy, M., Zamulin, A.V. (eds.) PSI 2001. LNCS,
vol. 2244, pp. 225–239. Springer, Heidelberg (2001)

15. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

16. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs.
In: 13th IEEE Computer Security Foundations Workshop, pp. 200–214 (2000)

17. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 355–364 (1998)

18. Sudbrock, H.: Compositional and Scheduler-Independent Information Flow Secu-
rity. Ph.D. thesis, Technische Universität Darmstadt, Germany (2013)

19. Terauchi, T.: A type system for observational determinism. In: 21st IEEE Com-
puter Security Foundations Symposium, pp. 287–300 (2008)

20. Vaughan, J., Millstein, T.: Secure information flow for concurrent programs under
total store order. In: 25th IEEE Computer Security Foundations Symposium, pp.
19–29 (2012)

	Using Dynamic Pushdown Networks to Automate a Modular Information-Flow Analysis
	1 Introduction
	2 Basic Notions and Notation
	2.1 Model of Computation
	2.2 Attacker Model and Definition of Security
	2.3 Dynamic Pushdown Networks
	2.4 Control Configurations and Modes
	2.5 A Concrete Programming Language with Modes

	3 A DPN-based Analysis for Sound Assumptions
	4 An Inference for Sound Guarantees
	5 A Type System for Information-Flow Security
	6 Applying the Analysis
	7 Related Work
	8 Conclusion
	References

