
Taming Message-passing Communication in
Compositional Reasoning about Confidentiality

Ximeng Li Heiko Mantel Markus Tasch

Department of Computer Science, TU-Darmstadt, Germany
{li, mantel, tasch}@mais.informatik.tu-darmstadt.de

Abstract. We propose a solution for verifying the information-flow se-
curity of distributed programs in a compositional manner. Our focus is
on the treatment of message passing in such a verification, and our goal
is to boost the precision of modular reasoning using rely-guarantee-style
reasoning. Enabling a more precise treatment of message passing required
the identification of novel concepts that capture assumptions about how
a process’s environment interacts. Our technical contributions include a
process-local security condition that allows one to exploit such assump-
tions when analyzing individual processes, a security type system that
is sensitive in the content as well as in the availability of messages, and
a soundness proof for our security type system. Our results complement
existing solutions for rely-guarantee-style reasoning about information-
flow security that focused on multi-threading and shared memory.

1 Introduction

Information-flow security aims at end-to-end security guarantees for IT systems.
Noninterference [9] is a formally defined property that requires a system’s pub-
licly observable output to not depend on secrets. Multiple variants of nonin-
terference exist and can be used to capture that system runs do not reveal
information about secrets [17]. The formal verification of a noninterference-like
property provides a high level of assurance, but can be non-trivial.

Compositional reasoning can be applied to reduce the conceptual complexity
of a formal verification of information-flow security [21]. In compositional reason-
ing, one infers the security of a complex system from the security of its individual
components based on a compositionality theorem. The local security of an indi-
vidual system component can, again, be expressed using a noninterference-like
property. To ensure soundness of compositional reasoning, the locally verified
security properties might be more restrictive than the globally desired security
guarantees. Hence, a key question in compositional reasoning is how to benefit
from the reduction of conceptual complexity without loosing too much precision.

One can increase the precision of modular reasoning by exploiting assump-
tions in the local verification of a component, i.e., by rely-guarantee reasoning
[13]. While being established in other areas, sound solutions for rely-guarantee-
style reasoning about information-flow security appeared relatively late [19].
Moreover, their focus was on systems with shared-memory communication [3,18,

Published in:
Bor-Yuh Evan Chang (Eds.): APLAS 2017, LNCS 10695, pp. 45-66, 2017
c© Springer International Publishing AG 2017
The final authenticated version is available online at
https://doi.org/10.1007/978-3-319-71237-6_3

https://doi.org/10.1007/978-3-319-71237-6_3

19, 22]. This article is complementary in this respect. We develop a solution for
rely-guarantee-style reasoning for systems with message-passing communication.

The problem of verifying information-flow security for systems with message
passing in a modular fashion has been addressed before, e.g., in [7,25]. There are
two main reasons why message passing received special attention. Firstly, the
fact that a message is present or not might communicate information that needs
to be protected. Hence, it does not suffice to protect just the confidentiality of a
message’s content [25]. Secondly, messages are usually buffered until they have
been received. Hence, when a message is received, it is deleted from a buffer [27].
That is, receive commands differ from read commands in that they block if no
message is present and in that they alter a system’s state when a message is
received. Such peculiarities of message passing must be taken into account.

A solution for rely-guarantee-style reasoning about information-flow security
for systems with remote procedure calls was proposed in [10]. This constitutes
a step towards supporting message-passing communication, but it is limited to
systems with unbufferred communication and with a hierarchical communication
structure. In this article, we aim for a general solution that, in particular, ad-
dresses buffered message-passing communication and that is suitable for the flex-
ible interaction patterns commonly used in distributed systems. Ultimately, the
goal is to support both fundamental principles of communication (i.e, message
passing and shared memory [27]). The solution for message passing presented
here is compatible with the solution for shared memory in [19].

The main technical contributions of this article are:

(A) a sound, yet precise solution for modular reasoning about distributed system
security at the semantic level, via a novel process-local security condition

(B) a sound, fine-grained security analysis that provides the basis for automating
the verification of the process-local security condition

More concretely, our process-local security condition, called local security,
captures the intuition that an individual process of a distributed system does
not leak secrets under explicit assumptions about the process’s interface. The
ability to exploit assumptions increases the precision of local reasoning about
security. Local security is compositional in allowing one to conclude the security
of the overall distributed system from the local security of all processes. This
compositionality lifts the precision gain in local reasoning to the global level.

Our analysis for local security is realized as a security type system [28]. This
security type system exploits the assumptions explicitly made in a program
to perform fine-grained type checking of the program. Typing constraints are
relaxed for a receive command when an assumption indicates the non-blockage
of the receive. Furthermore, the type system is content-sensitive and availability-
sensitive: it deals with programs where the confidentiality of the content and
presence of messages may vary over the same communication channel.

We evaluate our approach at examples with communication patterns taken
from real-world distributed systems. All processes in the examples are typable,
and the systems are proven secure using the compositionality of local security.

2 Motivation and Approach at a Glance

We illustrate that without making assumptions about message passing, the local
information-flow analysis of processes is overly restrictive. For three simplistic
example programs, we provide environments in which the programs cause infor-
mation leakage and environments in which the programs behave securely. That
is, these programs must be classified as insecure unless one is able to characterize
the environments in which the respective program behaves securely.

We propose a language for specifying assumptions about a component’s envi-
ronment. We explain how one can apply this language to capture environments in
which our three example programs behave securely. The identification of assump-
tions that are suitable for this purpose was a key step in our research project.
By exploiting the assumptions in a compositional verification of information-flow
security, one can increase the precision of the overall analysis substantially.

Consider the following three example programs:

content = recv(enc, x); send(pub, x)

presence1 = recv(pri , x); send(pub,1)

presence2 = if h > 0 then recv(pri , x) else skip fi; send(pub, 1)

where x is a local variable (i.e., it cannot be accessed by other processes), h is a
high local variable (i.e., it might contain a secret), pri is a private channel (i.e.,
its content cannot be seen by attackers), enc is an encrypted channel (i.e., the ex-
istence of messages might be visible to attackers, but not the messages’ content),
and pub is a public channel (i.e., its content might be visible to attackers).

That is, content awaits a message via an encrypted channel and forwards this
message over a public channel. The program presence1 awaits a message from
a private channel, and then outputs 1 to a public channel. If its then-branch
is taken, presence2 awaits a message from a private channel and subsequently
outputs 1 to a public channel. Otherwise, presence2 just outputs 1 to the public
channel. Note that which branch is chosen depends on potentially secret infor-
mation. There is a danger of information leakage for each of these programs, but
there are also environments in which the programs behave securely.

Example 1. If an environment sends a secret over the encrypted channel enc
then content causes information leakage because it forwards the secret to the
public channel pub, whose content might be visible to attackers. In contrast,
if the environment provides a public message over enc (e.g., a username over
HTTPS) then content forwards a public value to pub, i.e., no secrets are leaked.

If an environment only sends a message over pri if some secret value is positive
then presence1 leaks information: The attacker sees 1 on pub only if the secret is
positive. Otherwise, pri blocks at the receive command and the send command
is never reached. However, if secrets do not influence whether the environment
sends messages on pri then presence1 does not cause information leakage.

If an environment does not send any messages over pri then presence2 causes
information leakage: The attacker sees 1 on pub only if the value of h is negative
or zero. If the value of h is positive, then presence2 blocks at the receive command
and the send command is never reached. In contrast, if the environment definitely

sends some message over pri before the command recv(pri , x) is reached then
the program presence2 does not cause any information leakage. 3

Our Solution at a Glance. The program content does not leak secrets in
environments that provide a public message on enc as explained in Example 1.
We explicate that we expect the next available message to have public content
by annotating the receive command in content with L•, which results in:

{L•}recv(enc, x); send(pub, x)

The annotation L• indicates that the program shall only be run in environments
that guarantee a public message to be received. This assumption can then be
exploited to make the local security analysis more permissive.

For explicating that presence1 and presence2 shall only run in environments
that provide messages on pri before the programs try to receive, we employ NE :

{NE}recv(pri , x); send(pub,1)

if h > 0 then {NE}recv(pri , x) else skip fi; send(pub, 1)

We introduce L◦ to capture that the availability of messages does not depend on
secrets. This assumption is weaker than the one captured by NE . Since presence1
does not leak secrets in environments satisfying L◦, we can use it instead of NE :

{L◦}recv(pri , x); send(pub,1)

In summary, we propose the following language of assumptions:

asm ::= L• | NE | L◦

These assumptions can be used to constrain the environments in which a program
may be run. We will show how to exploit the assumptions in modular reasoning
about information-flow security, both at a semantic level (Sect. 5) and at a
syntactic level (Sect. 6). Note that our annotations are helpful hints for the
security analysis, but they do not alter a program’s behavior in any way.

3 Model of Computation

We consider distributed systems whose processes have a local memory and com-
municate using message passing both with each other and with the environment.
We model the communication lines used for message passing by a set of channels
Ch. We use ECh ⊆ Ch to denote the set of external channels, i.e. the system’s
interface to its environment. We use ICh = Ch\ECh to denote the set of internal
channels, i.e. the channels that cannot be accessed by the system’s environment.

Snapshots. We model each snapshot of a single process by a pair 〈prog ; mem〉
consisting of a control state prog and a memory state mem. The control state
prog equals the program that remains to be executed by the process. We denote
the set of all programs by Prog and leave this set underspecified. The memory
state mem is a function of type Mem = Var → Val , where Var is a set of
program variables and Val is a set of values. We call pairs 〈prog ; mem〉 process
configurations and use PCnf to denote the set of all process configurations.

We model each snapshot of a distributed system by a pair 〈pcnfl ;σ〉 consisting
of a list of process configurations pcnfl ∈ PCnf ∗ and a channel state σ. The list
pcnfl models the local state of each process. The channel state σ is a function of
type Σ = Ch → Val∗ that models, by a FIFO queue, which messages have been
sent, but not yet received on each communication line.

We call pairs 〈pcnfl ;σ〉 global configurations and use GCnf to denote the set
of all global configurations.

We use local configurations to capture the local view of individual processes
during a run. Formally, a local configuration lcnf is a pair 〈pcnf ;σ〉 where pcnf ∈
PCnf and σ ∈ Σ. In a global configuration 〈[pcnf 1, . . ., pcnf i, . . ., pcnf n];σ〉, the
local configuration of process i is 〈pcnf i;σ〉.

Runs. We model runs of distributed systems by traces, i.e. finite lists of global
configurations, and use Tr = GCnf ∗ to denote the set of all traces. Appending a
global configuration to the end of a trace captures either the effect of a compu-
tation step by the distributed system or of an interaction with its environment.

We model system environments by functions of type Ξ = Tr→(ECh→Val∗),
which we call strategies. The function ξ(tr) defines which inputs the environment
modeled by ξ provides and which outputs it consumes on each external commu-
nication line after the run modeled by tr . That is, ξ(tr)(ch) equals the content
of ch ∈ ECh after the environment’s interaction subsequent to tr .

We use the judgment tr →ξ tr ′ to capture that the trace tr ′ might result by
one computation or communication step after the trace tr under the strategy ξ.
The calculus for this judgment consists of the following two rules.

〈pcnfl ;σ〉 = last(tr)
σ′ = ξ(tr)

tr →ξ tr · 〈pcnfl ;σ[ECh 7→ σ′(ECh)]〉

〈[. . ., pcnf i, . . .];σ〉 = last(tr)
〈pcnf i;σ〉 → 〈pcnf ′i;σ

′〉
tr →ξ tr · 〈[. . ., pcnf ′i, . . .];σ

′〉

The first rule captures how the environment interacts with the system using
external communication lines. The expression σ[ECh 7→ σ′(ECh)] in the con-
clusion of this rule denotes the pointwise update of the function σ such that
each ch ∈ ECh is mapped to σ′(ch) and each ch ∈ ICh to σ(ch). Note that one
communication step might update multiple channels.

The second rule captures how the system itself performs a step. The choice
of the acting process is non-deterministic, which reflects a distributed system
without global scheduler. The judgment 〈pcnf i;σ〉 → 〈pcnf ′i;σ

′〉 (second premise
of the rule) captures how the chosen process updates its own configuration and
the channel state. We will introduce a calculus for this judgment later.

We model the possible runs of a distributed system by a set of traces. We
define this set by tracesξ(gcnf) = {tr ′ ∈ Tr | [gcnf] (→ξ)

∗ tr ′}, where gcnf ∈
GCnf is an initial configuration and (→ξ)

∗ the reflexive transitive closure of→ξ.
We view a distributed program as a list of programs, use ‖ to indicate that

the programs in the list are executed by concurrently running processes, and
define the set of all distributed programs by DProg = Prog∗. Given a distributed
program dprog = [prog1 ‖ · · · ‖ progn], we define its possible traces under ξ by

tracesξ(dprog) = tracesξ(〈[〈prog1;meminit〉, . . ., 〈progn;meminit〉];σinit〉)

The initial memory meminit maps all variables to the designated initial value
vinit, and the initial channel state σinit maps all channels to the empty list ε.

Programming Language. We consider a simple while-language extended with
message-passing commands to make things concrete. The syntax is defined by

prog ::= recv(ch, x) | if-recv(ch, x, xb) | send(ch, e) | skip | x := e |
prog1; prog2 | if e then prog1 else prog2 fi | while e do prog od | stop

Derivability of the judgment 〈pcnf ;σ〉 → 〈pcnf ′;σ′〉 is defined by a struc-
tural operational semantics of the programming language, where rules for most
commands are straightforward (and, hence, omitted here to save space).

The command skip terminates without effects. An assignment x := e stores
the value of the expression e in x. Sequential composition prog1; prog2, condi-
tional branching if e then prog1 else prog2 fi, and loops while e do prog od have
the usual semantics. The symbol stop is used to signal that the process has
terminated, and it is not part of the surface syntax used for writing programs.

σ(ch) = v · γ mem ′ = mem[x 7→ v] σ′ = σ[ch 7→ γ]

〈〈recv(ch, x); mem〉;σ〉 → 〈〈stop; mem ′〉;σ′〉
JeKmem = v σ′ = σ[ch 7→ σ(ch) · v]

〈〈send(ch, e); mem〉;σ〉 → 〈〈stop; mem〉;σ′〉

The blocking receive
recv(ch, x) removes the
first message from the
message queue σ(ch)
and stores it in x (first
rule on the right). If no
message is available on ch, then the execution blocks until a message becomes
available. The non-blocking receive if-recv(ch, x, xb) uses the variable xb to
record whether a receive was successful (xb = tt) or not (xb = ff). If no mes-
sage could be received, then the program run continues with x unchanged. The
send command appends the value of e to σ(ch) (second rule above).

Relations between Channel States. If two channel states agree on the avail-
ability of messages on some channel, then executing a receive command on this
channel either succeeds or blocks in both channel states. For each ch ∈Ch, we
introduce an equivalence relation =#

ch ⊆ Σ×Σ to characterize agreement in this
respect. That is, we define =#

ch
by σ1 =#

ch
σ2 iff |σ1(ch)|>0⇔|σ2(ch)|>0.

For each ch ∈ Ch, we define a second equivalence relation =1
ch

on channel
states in which ch is non-empty by σ1 =1

ch
σ2 iff first(σ1(ch))=first(σ2(ch)). We

lift =1
ch

to arbitrary channel states by defining channel states with |σ(ch)| = 0
to be related to all channel states. That is, =1

ch ⊆ Σ×Σ is defined by σ1 =1
ch

σ2

iff (|σ1(ch)|> 0 ∧ |σ2(ch)|> 0)⇒ first(σ1(ch)) = first(σ2(ch)). Note that =1
ch

is
intransitive and, hence, not an equivalence relation (on arbitrary channel states).

We will use =#
ch

and =1
ch

in our definition of local security in Sect. 5.2.

Remark 1. Note that an alternative way of lifting =1
ch

to arbitrary channel states
is to require a channel state σ with |σ(ch)| = 0 to be related to no other channel
state. This alternative would impose the restriction that the lifted =1

ch
is included

in =#
ch

. With our design choice, this restriction is not imposed, and the relations
=#
ch

and =1
ch

are kept more independent of each other.

4 Attacker Model and Baseline Security

In information-flow security, one considers an attacker who has access to parts of
a system’s interface and who knows how the system operates in principle (e.g.,
by knowing a program’s code). The attacker combines the observations that
he makes during a system run with his knowledge of the system logic to infer
additional information. A system has secure information flow if such an attacker
is unable to obtain any secrets (i.e., by his observations and by his inference).

Observation Model. As described in Sect. 3, we consider distributed systems
and use the set of external channels ECh to model a system’s interface. We
assume that an attacker’s observations are limited by access control and en-
cryption. That is, some channels are private (messages on these channels are
inaccessible), some are encrypted (the content of messages on theses channels is
protected), and the remaining ones are public (the messages on these channels
are unprotected). In line with Sect. 2, we model the three kinds of external chan-
nels by partitioning the set ECh into three subsets: the public channels PubCh,
the encrypted channels EncCh, and the private channels PriCh.

If a message is transmitted over a channel, then the attacker observes the
whole message – if the channel is public, its presence – if the channel is encrypted,
and nothing – if the channel is private. Formally, we use a value v ∈ Val to cap-
ture the observation of a message’s content on a public channel, and use the spe-
cial symbol

⊙
to capture the observation of a message’s presence on an encrypted

channel. We use a sequence of values (resp.
⊙

) to capture the observation on a
public (resp. encrypted) channel. Finally, we use the special symbol } to indi-
cate the absence of an observation. That is, the set of possible observations by

ob(ch, σ),

} if ch∈PriCh⊙|σ(ch)| if ch∈EncCh
σ(ch) if ch∈PubCh

the attacker is Obs=Val∗ ∪ {
⊙
}∗ ∪ {}}.

We define the function ob : (ECh×Σ)→Obs
to retrieve the observation on an external
channel from a channel state.

Attacker’s Knowledge. We call two channel states distinguishable if the at-
tacker’s observations of them differ. Complementarily, we define two channel
states to be indistinguishable for the attacker by σ1 'Σ σ2 iff ∀ch ∈ ECh :
ob(ch, σ1) = ob(ch, σ2). We call traces distinguishable if the corresponding chan-
nel states in the traces are distinguishable. Complementarily, we define two traces
to be indistinguishable for the attacker by tr1 'Tr tr2 iff ob(tr1) = ob(tr2) where
ob([〈pcnfl1;σ1〉, ..., 〈pcnfln;σn〉]) , [λch :ECh. ob(ch, σ1), ..., λch :ECh. ob(ch, σn)].

The attacker’s ability to distinguish different traces allows him to infer pos-
sible environments in which the system is run. More concretely, he only deems
environments that are compatible with his observations possible. We capture
which environments the attacker deems possible for his observations by a set
of strategies and call this set the attacker’s knowledge. We define the attacker’s
knowledge for each observation by the function K: (DProg×(ECh→Obs)∗)→2Ξ .

K(dprog , otr) , {ξ ∈ Ξ | ∃tr ∈ tracesξ(dprog) : ob(tr) = otr}

Knowledge-based Security. The attacker tries to infer information about
secrets coming from the environment. That is, he tries to exclude environments
with the same observable interaction but different unobservable interaction. We
capture that two environments differ only in their unobservable interaction by
the indistinguishability relation 'Ξ on strategies.

ξ1 'Ξ ξ2 , ∀tr1, tr2 : tr1 'Tr tr2 ⇒ ∀ch∈ECh : ob(ch, ξ1(tr1))=ob(ch, ξ2(tr2))

Based on this notion of indistinguishability on strategies, we define a dis-
tributed program to be knowledge-based secure (in the spirit of [4]):

Definition 1 (Knowledge-based Security). A distributed program dprog is
knowledge-based secure, denoted by KBSec(dprog), if for all ξ ∈ Ξ and tr ∈
tracesξ(dprog), we have K(dprog , ob(tr)) ⊇ {ξ′ ∈ Ξ | ξ′ 'Ξ ξ}.
That is, a distributed program dprog is secure if the attacker is not able to use
an observation ob(tr) made when dprog is run under a strategy ξ to exclude
any strategy ξ′ indistinguishable to ξ. Hence, the attacker is unable to exclude
environments with the same observable interaction but different unobservable
interaction. Thus, the attacker is unable to obtain secrets coming from the en-
vironment – dprog has secure information flow.

5 Compositional Reasoning about Noninterference

It is non-trivial to monolithically verify noninterference for complex systems. Our
goal is to simplify such a verification by providing better support for modular
reasoning. We define a notion of local security for individual processes that is a
variant of noninterference (i.e., it requires the observable behavior of a process to
not depend on secrets). Local security is compositional in the sense that security
of a system (as defined in Sect. 4) follows from local security of all processes.

Technically, we define local security using a notion of bisimilarity on process
configurations. We define a program to satisfy local security if all pairings of the
program with two low-indistinguishable memories (e.g., [19,25]) are bisimilar. In
the definition of this bisimilarity, we universally quantify over pairs of channel
states that are indistinguishable for the attacker (as in [7, 25]). Unlike in prior
work, we restrict the universal quantification of pairs of channel states further
based on assumptions. This exploitation of assumptions is the key to achieving
substantially better precision in a modular security analysis.

5.1 Annotated Programs

Recall our set Asm = {NE ,L•,L◦} of assumptions from Sect. 2. In order to
exploit these assumptions in local reasoning, they need to be extractable from
programs with annotations. We use the function asm-of : Prog → 2AsmCh to
extract which assumptions are made over which channels, from annotated pro-
grams. Here, AsmCh is the set Asm ×Ch of pairs of assumptions and channels.

For concrete examples, we augment our language from Sect. 3 with annota-
tions over receive commands (abusing prog for programs in this new language):

prog ::= p | as recv(ch, x) | as if-recv(ch, x, xb)

p ∈ Prog \ {recv(ch, x), if-recv(ch, x, xb)}, as ⊆ Asm

For this language, we define the function asm-of by asm-of (as recv(ch, x)) =
asm-of (as if-recv(ch, x, xb)) = as×{ch}, asm-of (prog1; prog2)= asm-of (prog1),
and asm-of (prog)= ∅ otherwise.

5.2 Process-local Security Condition

We use the security lattice ({L,H},v,t,u) with L v H to express security
policies for the variables local to an individual process. For a variable, the security
level H (high) indicates that it may contain (or depend on) secrets, and the
security level L indicates that it must not. We use the environment lev : Var →
Lev to record the security level of each variable.

As usual, we define the low-equivalence relation =L to capture agreement of
memory states on low variables as follows.

Definition 2. mem1 =L mem2 , ∀x ∈ Var : lev(x) = L⇒ mem1(x) = mem2(x)

Hence, low-equivalent memory states can differ only in high variables.
For each acs ∈ 2AsmCh , we define a relation

acs
===⊆ Σ×Σ using the relations

=#
ch

and =1
ch

, which are defined in Sect. 3.

Definition 3. σ1
acs

===σ2 , ∀asm ∈ Asm : ∀ch ∈ ICh : (asm, ch) ∈ acs ⇒
(asm = L◦ ⇒ σ1 =#

ch
σ2) ∧ (asm = L• ⇒ σ1 =1

ch
σ2)

The relation
acs

=== captures a similarity of channel states. If σ1
acs

=== σ2 and
(L◦, ch) ∈ acs, then the two channel states agree wrt. the availability of messages
on the channel ch. If σ1

acs
===σ2, (L•, ch) ∈ acs, and both σ1(ch) and σ2(ch) are

non-empty, then the first message available on ch is the same in σ1 and σ2. Note
that Definition 3 imposes these restrictions only for internal channels.

Recall from Sect. 4 that the relation 'Σ captures an agreement of chan-
nel states wrt. the attacker’s observations on external channels. We use 'Σ in
combination with

acs
=== in our definition of local security.

We say that a channel state σ satisfies an assumption (NE , ch) if |σ(ch)| > 0.
We introduce a relation nNE ⊆ Σ × 2AsmCh to capture that all assumptions of
the form (NE , ch) in a set of assumptions are satisfied.

Definition 4. σ nNE acs , ∀ch ∈ Ch : (NE , ch) ∈ acs ⇒ |σ(ch)| > 0

Our notion of local security builds on a notion of assumption-aware bisimi-
larity, that characterizes process configurations with similar observable data and
behavior, despite potential differences in secrets.

Definition 5. A symmetric relation R on process configurations is an assump-
tion-aware bisimulation, if pcnf 1R pcnf 2, pcnf 1 = 〈prog1; mem1〉, pcnf 2 =
〈prog2; mem2〉, acs1 = asm-of (prog1), and acs2 = asm-of (prog2), imply
mem1 =L mem2, prog1 = stop⇔ prog2 = stop, and〈pcnf1;σ1〉 → 〈pcnf ′1;σ′1〉 ∧

σ1'Σ σ2 ∧ σ1
acs1∪acs2=======σ2 ∧

σ1 nNE acs1 ∧ σ2 nNE acs2

⇒
∃pcnf ′2, σ

′
2 :

〈pcnf2;σ2〉 → 〈pcnf ′2;σ′2〉 ∧
σ′1 'Σ σ′2 ∧ pcnf ′1R pcnf ′2

We call two process configurations assumption-aware bisimilar if there is an
assumption-aware bisimulation in which they are related.

If two process configurations are assumption-aware bisimilar, then differences
between their memories can only exist in high variables. In addition, if one pro-
cess is unable to take a step, then the other process is not able to either. Further-
more, after each lockstep taken by the respective processes under assumptions,
differences in secrets over the channels and in the variables are not propagated
to the low variables or to the observations that can be made by the attacker. It
follows that no observable differences can result from differences in secrets after
an arbitrary number of locksteps taken under assumptions. Note that channel
states in the beginning of each lockstep are limited to ones that differ only in
the channels over which L◦ and L• are not used, and ones where the availability
of messages agrees with the use of NE . By limiting the potential channel states,
the potential environments of the program is more precisely characterized. Also

note that the preservation of σ1
acs1∪acs2=======σ2 by each lockstep is not required. We

explain why compositional reasoning using local security is sound in Sect. 5.5.
We define the relation ≈ to be the union of all assumption-aware bisimula-

tions. It is easy to see that ≈ is again an assumption-aware bisimulation. Based
on ≈, we define an indistinguishability relation on programs, and our notion of
local security by classifying a program as secure if it is indistinguishable to itself.

Definition 6. We say two programs prog1 and prog2 are indistinguishable, de-
noted by prog1 ∼ prog2, if mem1 =L mem2 ⇒ 〈prog1; mem1〉 ≈ 〈prog2; mem2〉.

Definition 7 (Local Security). A program prog is locally secure, denoted by
LSec(prog), if prog ∼ prog.

Local security allows one to reason about a program in a restricted class of
environments meeting explicit assumptions. This fine-grained treatment of en-
vironments provides formal underpinnings for the intuitive security of programs
(e.g., ones in Sect. 2 and Sect. 6.3) that are deemed leaky by existing security
properties (e.g., [5, 24,25]) for message-passing communication or interaction.

Remark 2. Note that the local security of a program is preserved when a private
external channel is turned into an internal channel, or vice versa, in case no
assumption out of L• and L◦ is made over the channel.

Remark 3. Note also that the local security of a program is not affected by using
the assumptions L• and L◦ over external channels. Technically, this is because
of Definition 5, 6, and 7. That is, our definitions reflect a conservative approach
to reasoning about open systems. In fact, we do not expect L• and L◦ to be used
over external channels.

5.3 Compositional Reasoning about Information-Flow Security

Our notion of local security allows one to decompose the verification of knowledge-
based security for distributed programs into the verification of processes.

Theorem 1 (Soundness of Compositional Reasoning). For a distributed
program dprog = ||iprog i, if LSec(prog i) holds for all i, and dprog ensures a
sound use of assumptions, then we have KBSec(dprog).

This theorem requires that a distributed program ensures a sound use of
assumptions. Intuitively, “sound use of assumptions” means that assumptions are
met by the actual environment of the component program inside the distributed
program. We will precisely define this notion in Sect. 5.4.

Since local security needs to be verified for less complex systems (i.e., pro-
cesses), Theorem 1 reduces the conceptual complexity of verifying the security
of distributed programs considerably. Since assumptions can be exploited when
verifying local security, compositional reasoning based on Theorem 1 is also less
restrictive than in existing work on systems with message passing (e.g., [7,8,25]).

5.4 Instrumented Semantics and Sound Use of Assumptions

We define the notion that a distributed program ensures a sound use of assump-
tions through an instrumentation of the semantics of our programming language.

We use instrumentation states to over-approximate the dependency of mes-
sage content and presence on secrets over internal channels. Instrumentation
states are from the set InSt ={µ∈ICh→(Lev∗×Lev) |µ(ch)=(llst ,H)⇒∃n : llst =Hn}.
An instrumentation state maps each internal channel to a pair (llst , `). Here llst
is a list of security levels, each for a message over the channel, while ` is the
security level for the overall presence of messages over the channel. The level H
(confidential) indicates that message content or presence might depend on se-
crets, while the level L (public) indicates that message content or presence must
not depend on secrets. In case ` = H, all levels in llst are H, which reflects that
presence cannot be more confidential than content (e.g., [24, 25]).

We use the relation |= between Σ× InSt and AsmCh to say that an assump-
tion for a channel holds in a channel state and an instrumentation state.

Definition 8. The relation |= is defined by

(σ, µ) |= (NE , ch) iff |σ(ch)| > 0

(σ, µ) |= (L•, ch) iff ch ∈ ICh ∧ µ(ch) = (` · llst , `′)⇒ ` = L
(σ, µ) |= (L◦, ch) iff ch ∈ ICh ∧ µ(ch) = (llst , `′)⇒ `′ = L

That is, the assumption NE on a channel ch holds if some message is available
over ch. The assumption L• on an internal channel ch holds if the next message
over ch is public. The assumption L◦ on an internal channel ch holds if the
presence of messages over ch is public. We lift |= to sets of assumptions by
(σ, µ) |=acs iff ∀ac∈acs : (σ, µ) |= ac.

We use rich traces to explicate the update of instrumentation states in an ex-
ecution of a distributed program. A rich trace rtr is a sequence of configurations
of the form 〈pcnfl ;σ;µ〉, extending a global configuration 〈pcnfl ;σ〉 with the in-
strumentation state µ. We use the expression rtracesξ(dprog) to represent the set
of possible rich traces of dprog under the strategy ξ. We define rtracesξ(dprog)
based on an instrumented semantics (omitted here to save space), analogously to
defining tracesξ(dprog) based on the basic semantics of our language in Sect. 3.

With the help of instrumentation states and rich traces, we precisely define
“sound use of assumptions” as appearing in Theorem 1.

Definition 9. The distributed program dprog ensures a sound use of assump-
tions, if rtr ·〈[〈prog1; mem1〉, . . . , 〈progn; memn〉];σ;µ〉 ∈ rtracesξ(dprog) implies
∀j ∈ {1, . . . , n} : (σ, µ) |= asm-of (progj).

This definition characterizes the sound use of assumptions as a property over
individual rich traces – as a safety property [15] rather than a hyperproperty [6].

Remark 4. How to verify the sound use of assumptions for information-flow se-
curity has been shown in [18]. The adaptation of the techniques in [18] to verify
the sound use of NE and L◦ is straightforward. For verifying the sound use of
L•, communication topology analyses [20] that approximate the correspondences
between inputs and outputs can be built upon. If with each L• at a receive, the
corresponding send comes with a public expression, then the use of L• is sound.

5.5 Soundness of Compositional Reasoning

We sketch our proof of Theorem 1. To begin with, we define a notion of low
projection, on messages and message queues. A low projection reveals message
content and presence without actual dependency on secrets according to the
security levels tracked in the instrumentation states.

Definition 10. We define the function b·c` : Val → Val ∪ {
⊙
} for the low

projection of a message under ` ∈ Lev, by bvcL = v and bvcH =
⊙

.

The low projection of a message reveals the content or the mere existence (
⊙

)
of the message depending on whether the content is public or confidential.

Definition 11. We define the partial function b·c(llst,`) : Val∗ ⇀ (Val∪{
⊙
})∗∪

{}} for the low projection of a message queue under llst ∈ Lev∗ and ` ∈ Lev,
by bεc(ε,L) = ε, bvlst · vc(llst·`,L) = bvlstc(llst,L) · bvc`, and bvlstc(llst,H) = }.

The low projection of a message queue reveals the content or existence of the
individual messages, or the mere existence of the queue (}), depending on
whether the overall message presence is public or confidential.

The following result bridges equality of low projections of message queues
in given channel and instrumentation states, and low-equivalence of the channel
states under assumptions that hold in the channel and instrumentation states.

Proposition 1. If ∀ch ∈ ICh : bσ1(ch)cµ1(ch) = bσ2(ch)cµ2(ch), (σ1, µ1) |= acs1,

and (σ2, µ2) |=acs2, then σ1
acs1∪acs2=======σ2.

The essence of this proposition is: If message content or presence does not actu-
ally depend on secrets over an internal channel, then it is safe to reason under
the assumption that message content or presence is public.

For a given distributed program dprog = ||iprog i, if we could show that for an
arbitrary strategy ξ giving rise to a trace tr , each strategy ξ′ indistinguishable
to ξ gives rise to a trace tr ′ with the same observation to that of tr , then
KBSec(dprog) would follow immediately.

NE 6∈ as ⇒ lev◦(ch, as) = L
lev◦(ch, as) t lev•(ch, as) v lev(x)

lev ` as recv(ch, x)

NE 6∈ as ⇒ lev◦(ch, as) v lev(xb)
lev◦(ch, as) t lev•(ch, as) v lev(x)

lev ` as if-recv(ch, x, xb)

lev〈e〉 v lev•(ch, ∅)
lev ` send(ch, e)

lev〈e〉 v lev(x)

lev ` x := e lev ` skip

lev ` prog1 lev ` prog2

lev ` prog1; prog2

lev ` prog1 lev ` prog2 lev〈e〉=H ⇒ prog1 ∼ prog2

lev ` if e then prog1 else prog2 fi

lev〈e〉 = L lev ` prog

lev ` while e do prog od

lev•(ch, as) =

{
L if ch∈ICh ∧ L•∈as

∨ch∈PubCh
H otherwise

lev◦(ch, as) =

{
L if ch∈ICh ∧ L◦∈as ∨

ch∈PubCh ∨ch∈EncCh

H otherwise

Fig. 1: The Security Type System

Since LSec(prog i) holds for each program prog i by the hypotheses of Theo-
rem 1, and meminit =L meminit holds, there exists an assumption-aware bisim-
ulation relating each process configuration 〈prog i;meminit〉 to itself. We show
the existence of tr ′ by simulating each step in tr taken by the program prog i
in the assumption-aware bisimulation for prog i. As a key part of establishing

this single-step simulation, we establish the condition σ1
acs1∪acs2=======σ2 in the cor-

responding assumption-aware bisimulation using Proposition 1. Among the hy-
potheses of this proposition, we obtain (σ1, µ1) |= acs1 and (σ2, µ2) |= acs2 by
the hypothesis of Theorem 1 that dprog ensures a sound use of assumptions. We
establish ∀ch ∈ ICh : bσ1(ch)cµ1(ch) = bσ2(ch)cµ2(ch) as a property enforced by
our instrumented semantics. For space reasons, we omit the details of the proof.

6 Security Type System and Evaluation

In information-flow security, it is often not straightforward to verify a system
by directly applying the security definition. In our case, it is not straightforward
to verify the local security of a program by constructing an assumption-aware
bisimulation (although this is possible). Security type systems [28] are an effec-
tive technique for the verification of noninterference properties [26]. Local secu-
rity (cf. Sect. 5) not only permits compositional reasoning about global security
(cf. Sect. 4), but also admits sound verification using security type systems. We
devise a sound security type system for local security, and evaluate our type
system using more practical examples than in Sect. 2.

6.1 Judgment and Typing Rules

Our security type system establishes the judgment lev ` prog , which says that
the program prog is well-typed given the environment lev : Var → Lev .

The typing rules are presented in Fig. 1. They are formulated with the auxil-
iary functions lev• and lev◦ of type (Ch×2Asm)→ Lev . The function lev• gives

the content levels of channels according to the protection of external channels,
and to the potential assumption L• for internal channels. The function lev◦ gives
the presence levels of channels according to the protection of external channels,
and to the potential assumption L◦ for internal channels.

The first premise of the rule for as recv(ch, x) says that without the assump-
tion NE , message presence over ch is required to be public. The first premise of
the rule for as if-recv(ch, x, xb) says that without NE , message presence over ch
is required to be no more confidential than the flag variable xb. The intuition for
these two premises is: If the receiving channel is non-empty, the blocking receive
cannot block, and the non-blocking receive always completes with xb set to true;
hence no information leakage occurs via blocking or via xb. The second premise
in each of the receive rules says that the receiving variable x is more confiden-
tial than the presence and content of messages over the receiving channel ch.
This premise reflects that the value of x after the receive could reflect both the
presence and the content of messages over ch at the receive. The premise allows
relaxing the typing constraint on x with the use of L• and L◦ that signals tem-
porarily public message content and presence over an internal receiving channel.
For send(ch, e), the only premise is concerned with message content. This is be-
cause a send never blocks, and hence does not leak information via blockage. For
a conditional, in case the guard is confidential, the branches are required to be
indistinguishable, since which branch is executed might be affected by secrets.
Note that the indistinguishability of the branches is a semantic condition. In an
implementation of the rule for conditionals, one would not directly check this
indistinguishability, but would rather check a syntactic approximation of it. In
an addendum of this paper, we present a type system for local security, where
syntactic approximation is employed via the notion of low slices (e.g., [18]).1 For
a loop, the typing rule requires the looping condition to be public, for ensuring
progress-sensitive security. The remaining rules in Fig. 1 are straightforward.

Our security type system is novel in exploiting assumptions to enable permis-
sive type-checking. The assumption NE makes type-checking permissive by pro-
viding the information that a receive cannot block. In addition, the assumptions
L• and L◦ make type-checking permissive by enabling content-sensitivity (vary-
ing content confidentiality over one single channel) and availability-sensitivity
(varying presence confidentiality over one single channel).

Our security type system is syntax-directed, i.e., the choice of an applicable
typing rule is deterministic for each given program. Hence, the implementation of
our security type system (with the syntactic approximation) is straightforward.

Remark 5. Note that the type system in Fig. 1 is not flow-sensitive [12]. Flow-
sensitivity could be added by allowing separate typing environments for variables
at different program points as in [12]. This extension would, however, unneces-
sarily complicate our technical exposition.

1 The addendum can be found at http://www.mais.informatik.tu-darmstadt.de/

WebBibPHP/papers/2017/LiMantelTasch-addendum-APLAS2017.pdf

http://www.mais.informatik.tu-darmstadt.de/WebBibPHP/papers/2017/LiMantelTasch-addendum-APLAS2017.pdf
http://www.mais.informatik.tu-darmstadt.de/WebBibPHP/papers/2017/LiMantelTasch-addendum-APLAS2017.pdf

send(int1, uid); {L•,L◦}recv(int1, id);
{L•,L◦}recv(int2, x); if find(id , uids) then
if x == “pass” then send(int2, “pass”);

recv(enc, pwd); {L◦}recv(int1, pw);
send(int1, pwd) send(pub, id)

else else
skip send(int2, “id”)

fi fi

Fig. 2: Authentication System auth = [auth-cl ‖ auth-srv]

6.2 Soundness

Our type system is sound: The typability of a given program implies that the
program is secure in the sense of Definition 7.

Theorem 2 (Soundness). If lev ` prog, then LSec(prog).

This theorem permits sound reasoning about local security at a syntactic level,
exploiting assumptions at receive commands as described by our type system.

The following corollary says that the security of a distributed program can
be verified by locally typing its constituent programs under suitable assump-
tions, and globally verifying the sound use of these assumptions. This corollary
immediately follows from Theorem 1 and Theorem 2.

Corollary 1. For a distributed program dprog = ||iprog i, if lev ` prog i for all
i, and dprog ensures a sound use of assumptions, then KBSec(dprog).

This corollary replaces the semantic condition of local security in Theorem 1 with
the syntactic condition of typability. It provides a path to automated security
analysis for distributed programs that enjoys both modularity and precision.

6.3 Examples of Typable Programs

All example programs in Sect. 2 are typable with suitable use of assumptions.
We further evaluate our security type system using two additional examples that
more closely reflect communication patterns identifiable in real-world applica-
tions. In both examples, we preclude the possibility for the attacker to directly
obtain information via wiretapping. Correspondingly, we model some of the com-
munication lines as internal channels represented by int1 and int2.

Example: Authentication. Consider the distributed program auth in Fig. 2.
It captures an authentication scenario where the server process executes the
program on the right, and the client process executes the program on the left.

The server receives the user’s ID over the channel int1. If the ID exists in
the database, it requests the user’s password. If it then receives a password, it
forwards the ID over the channel pub to a logging process that maintains a log in
the environment. The log needs to be analyzable by parties not entitled to know
the passwords, for e.g., detecting and tracing potential brute-force attacks.

The client sends the user’s ID over the channel int1 to the server. If it then
receives a password request, the client receives the user’s secret password over
the channel enc, and forwards it over int1. Otherwise, it terminates.

Annotation. The authentication server receives both the public user ID and the
secret password over the channel int1. The assumption L• at recv(int1, id) in
the server program captures that the user ID provided by the environment (the
client) is expected to be public. On the other hand, the default invisibility of int1

is in line with the password to be received at recv(int1, pw) being confidential.

Typability. Supposing lev(id) = lev(uids) = lev(uid) = lev(x) =L and lev(pw) =
lev(pwd)=H, we explain how the server program auth-srv is type checked. For
{L•,L◦}recv(int1, id), since NE 6∈ {L•,L◦}, the first premise of the receive rule
requires lev◦(int1, {L•,L◦}) = L, which holds. The second premise of the receive
rule is also satisfied since lev◦(int1, {L•,L◦}) t lev•(int1, {L•,L◦}) = L, which
allows id to be public. For {L

◦}recv(int1, pw), since lev◦(int1, {L◦}) = L, the first
premise of the receive rule is satisfied. Since lev(pw) = H, the second premise
is also satisfied. Without going into further details, we claim that both auth-srv
and auth-cl are typable.

Sound Use of Assumptions. Using our instrumented semantics, we can verify
that auth ensures a sound use of assumptions. Intuitively, the use of L◦ is sound
because neither auth-cl nor auth-srv contains high branches or loops that might
cause sending to an internal channel in a secret-dependent fashion. The use of L•
is sound because the only secret message is sent at send(int1, pwd). This message
cannot be received at any receive command annotated with L•.

Knowledge-based Security. Corollary 1 allows us to conclude KBSec(auth).

Remark 6 (An ill-typed variant). Note that if the assumption L• in the receive
command {L

•,L◦}recv(int1, id) had been missing, this command would have been
ill-typed. In this situation, the message to be received over int1 is expected to
be confidential, which conflicts with the receiving variable id being public.

Example: Auction. Consider the distributed program auct in Fig. 3. It cap-
tures a single-bid sealed auction where a bidder is allowed to blindly submit a
sole bid for an auction. The server process handling the auction executes the
program on the right, and the client process executes the program on the left.

The server waits for the bidder’s registration over int1 (for simplicity repre-
sented abstractly by “reg”). Afterwards, it forwards the registration over pub to
a publicly accessible bulletin board. Then it sends the minimal bid (i.e., the price
below which the item cannot be sold) to the bidder over int2. If it receives a bid
over int1, it forwards this bid over pri to the process determining the outcome
of the auction. Otherwise, it terminates.

The client’s behavior depends on a secret threshold for placing a bid. The
client receives this threshold thres over enc. Afterwards, it registers for the auc-
tion over int1. If the minimal bid received over int2 does not exceed the threshold
thres, the client computes and sends a bid over int1. Otherwise, it terminates.

recv(enc, thres); {L•,L◦}recv(int1, bdr);
send(int1, “reg”); send(pub, bdr);
{L•,L◦}recv(int2,min); send(int2,minBid);
if min ≤ thres then if-recv(int1, bid , b);

send(int1, calc if b then
(min, thres)) send(pri , bid)

else else
skip skip

fi fi

Fig. 3: Auction System auct = [auct-cl ‖ auct-srv]

Annotation. Over the channel int1, the auction server receives both a regis-
tration whose presence is public, and a bid whose presence is confidential (to
keep the threshold a secret). The assumption L◦ at {L

•,L◦}recv(int1, bdr) in the
server program captures that the presence of a registration coming from the en-
vironment (the client) is expected to be public. On the other hand, the default
invisibility of int1 is in line with the presence of a bid being confidential.

Typability. Supposing lev(bdr) = lev(minBid) = lev(min) = L and lev(bid) =
lev(b) = lev(thres) = H, we explain how the server program auct-srv is type
checked. The typing derivation of {L

•,L◦}recv(int1, bdr) is analogous to the typ-
ing derivation of {L

•,L◦}recv(int1, id) in the authentication example. For the
command if-recv(int1, bid , b), since NE 6∈ ∅, the first premise of the rule for
non-blocking receive requires lev◦(int1, ∅) v lev(b). This constraint is satisfied
since lev(b) = H. The second premise is also satisfied since lev(bid) = H. Be-
cause lev(b) = H, send(pri , bid) and skip are required to be indistinguishable by
the rule for conditional branching. Their indistinguishability can be established
by constructing a suitable assumption-aware bisimulation. Without going into
further details, we claim that both auct-srv and auct-cl are typable.

Sound Use of Assumptions. Using our instrumented semantics, we can verify
that auct ensures a sound use of assumptions. Below, we provide the intuition
for the sound use of L◦. The only possibility for message presence to become
dependent on secrets over an internal channel is via the send command over int1

in the high branching on min ≤ thres. However, the only receive over int1 with
the assumption L◦ is always executed before this high branching is entered.

Knowledge-based Security. Corollary 1 allows us to conclude KBSec(auct).

Remark 7 (An ill-typed variant). Note that if the assumption L◦ in the receive
command {L

•,L◦}recv(int1, bdr) had been missing, this command would have
been ill-typed. In this situation, the presence of a message over int1 is expected
to be confidential, which conflicts with the receiving variable bdr being public.

7 Related Work

Rely-Guarantee-style Reasoning for Information-Flow Security. The
first development on rely-guarantee-style reasoning for information-flow security
is [19]. It permits exploiting no-read and no-write assumptions on shared vari-
ables to achieve modular yet permissive security verification for shared-memory
concurrent programs. The verification of the sound use of assumptions is ad-
dressed using Dynamic Pushdown Networks in [18].

The exploitation of assumptions for shared-memory concurrent programs has
been developed further. In [3], a hybrid security monitor is proposed, while
in [22], a static verification of value-sensitive security policies is proposed.

In [10], service-based systems with unidirectional invocation of services are
addressed. While components communicate via calls and responses of services,
the services of a component communicate via shared memory. Rely-guarantee-
style reasoning is employed for the inter-component invocation of services.

Securing Communication in Distributed Systems. There are several ap-
proaches to statically securing communication in distributed systems. In [25],
modular reasoning without exploiting assumptions is proposed. In [7], explicit
treatment of cryptography is introduced and a property similar in spirit to
that of [25] is enforced. In [1], “fast simulations” are proposed to guarantee
termination-insensitive security under observational determinism [29], and the
flow constraints needed to secure a system are thereby relaxed. No modular rea-
soning is supported in [1]. The closest development to rely-guarantee-style rea-
soning about message-passing communication (as in this article) might be [10].
In [10], the communication pattern is highly restricted: Communication is only
used to model argument-passing and result-retrieval for remote procedure calls.

Security Type Systems. Security type systems (see, e.g., [26]) are a prominent
class of techniques for the static verification of information-flow security. We only
discuss closely related developments in the literature.

For message content, value-sensitive flow policies (e.g., [2,16]) and first class
information-flow labels (e.g., [30]) in principle enable the treatment of channels
with varying content confidentiality. Value-sensitive policies require the code to
contain variables that regulate the security policies. First-class labels require
built-in language support. Moreover, the actual transmission of the labels could
lead to increased attack surface as well as performance overhead.

For message presence, the type systems of [5, 11, 14] enforce security prop-
erties concerned with the permanent blockage of input caused by secrets. To
relax typing constraints wrt. message presence, linear types are used in [11],
and a deadlock detection mechanism is used in [14]. In comparison, we enforce a
stronger security property sensitive to the extent that public communication can
be delayed, and relax typing constraints wrt. message presence by exploiting as-
sumptions. The type system of [25] rejects all blocking inputs over high presence
channels. A coarse-grained way of adjusting presence levels to make the analysis
succeed is implicitly provided. The type system of [24] allows high presence in-
put to be followed by low assignment, but not low output. Thus, the relaxation

of presence constraints in our type system and that of [24] is incomparable. No
additional precision via availability-sensitivity is provided in [24,25].

8 Conclusion

Our aim has been to resolve the imprecision problem in the modular reason-
ing about information-flow security for distributed systems, in the presence of
message-passing communication. Our solution consists of a process-local secu-
rity condition that soundly modularizes global security for distributed programs,
and a security type system that soundly enforces the process-local condition. By
exploiting assumptions about the interface of each process, our solution enables
the relaxation of information-flow constraints concerned with the blockage of
communication, and allows the treatment of channels that are content-sensitive
and availability-sensitive at both the semantic level and the syntactic level.

Our development is performed for a simplified language. The adaption of our
approach to real-world languages such as C and Java requires the treatment of
features such as procedure calls and heaps. These features have been consid-
ered in existing type-based analyses of information-flow security (e.g., [23]), and
we expect the treatment to be orthogonal to our treatment of communication.
Furthermore, our use of assumptions is non-intrusive, the annotation of assump-
tions does not introduce changes to the underlying programming language. This
non-intrusiveness facilitates the adaption of our approach to a realistic language.

A potential direction for future work is type inference. For our security type
system, the inference of security levels for variables is straightforward – it can
be performed in the same manner as for sequential languages. On the other
hand, the inference of assumption annotations on receive commands is a separate
research problem that we plan to address in the future.

Acknowledgments. The authors thank the anonymous reviewers for their
helpful comments. This work was supported partially by the DFG under project
RSCP (MA 3326/4-2/3) in the priority program RS3 (SPP 1496), and partially
by the German Federal Ministry of Education and Research (BMBF) as well
as by the Hessen State Ministry for Higher Education, Research and the Arts
(HMWK) within CRISP.

References

1. R. Alṕızar and G. Smith. Secure information flow for distributed systems. In
FAST’09, pages 126–140.

2. T. Amtoft, J. Hatcliff, E. Rodŕıguez, Robby, J. Hoag, and D. Greve. Specification
and checking of software contracts for conditional information flow. In FM’08.

3. A. Askarov, S. Chong, and H. Mantel. Hybrid monitors for concurrent noninter-
ference. In CSF’15, pages 137–151.

4. A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification, encryption
and key release policies. In S&P’07, pages 207–221.

5. S. Capecchi, I. Castellani, M. Dezani-Ciancaglini, and T. Rezk. Session types for
access and information flow control. In CONCUR’10, pages 237–252.

6. M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, 2010.

7. R. Focardi and M. Centenaro. Information flow security of multi-threaded dis-
tributed programs. In PLAS’08, pages 113–124.

8. R. Focardi and R. Gorrieri. Classification of security properties (part I: information
flow). In FOSAD’00, pages 331–396.

9. J. A. Goguen and J. Meseguer. Security policies and security models. In S&P’82.
IEEE Computer Society.

10. S. Greiner and D. Grahl. Non-interference with what-declassification in component-
based systems. In CSF’16, pages 253–267.

11. K. Honda, V. T. Vasconcelos, and N. Yoshida. Secure information flow as typed
process behaviour. In ESOP’00, pages 180–199.

12. S. Hunt and D. Sands. On flow-sensitive security types. In POPL’06, pages 79–90.
13. C. B. Jones. Development methods for computer programs including a notion of

interference. Oxford University Computing Laboratory, 1981.
14. N. Kobayashi. Type-based information flow analysis for the pi-calculus. Acta Inf.,

42(4-5):291–347, 2005.
15. L. Lamport. Proving the correctness of multiprocess programs. IEEE Trans.

Software Eng., 3(2):125–143, 1977.
16. X. Li, F. Nielson, H. R. Nielson, and X. Feng. Disjunctive information flow for

communicating processes. In TGC’15, pages 95–111.
17. H. Mantel. Information flow and noninterference. In Encyclopedia of Cryptography

and Security, 2nd Ed., pages 605–607. 2011.
18. H. Mantel, M. Müller-Olm, M. Perner, and A. Wenner. Using dynamic pushdown

networks to automate a modular information-flow analysis. In LOPSTR’15.
19. H. Mantel, D. Sands, and H. Sudbrock. Assumptions and guarantees for composi-

tional noninterference. In CSF’11, pages 218–232.
20. M. Martel and M. Gengler. Communication topology analysis for concurrent pro-

grams. In SPIN’00, pages 265–286.
21. D. McCullough. A hookup theorem for multilevel security. IEEE Trans. Software

Eng., 16(6):563–568, 1990.
22. T. C. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah. Compositional verifica-

tion and refinement of concurrent value-dependent noninterference. In CSF’16.
23. A. C. Myers and B. Liskov. A decentralized model for information flow control. In

SOSP’97, pages 129–142.
24. W. Rafnsson, D. Hedin, and A. Sabelfeld. Securing interactive programs. In

CSF’12, pages 293–307.
25. A. Sabelfeld and H. Mantel. Securing communication in a concurrent language. In

SAS’02, pages 376–394.
26. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 21(1):5–19, 2003.
27. A. S. Tanenbaum and M. van Steen. Distributed systems - principles and

paradigms, 2nd Edition. 2007.
28. D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for secure flow

analysis. Journal of Computer Security, 4(2/3):167–188, 1996.
29. S. Zdancewic and A. C. Myers. Observational determinism for concurrent program

security. In CSFW’03, pages 29–43.
30. L. Zheng and A. C. Myers. Dynamic security labels and static information flow

control. Int. J. Inf. Sec., 6(2-3):67–84, 2007.

	Taming Message-passing Communication in Compositional Reasoning about Confidentiality

