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Abstract AVR processors are widely used in embedded devices. Hence,
it is crucial for the security of such devices that cryptography on AVR
processors is implemented securely. Timing-side-channel vulnerabilities
and other possibilities for information leakage pose serious dangers to the
security of cryptographic implementations. In this article, we propose
a framework for verifying that AVR assembly programs are free from
such vulnerabilities. In the construction of our framework, we exploit
specifics of the 8-bit AVR architecture to make the static analysis of
timing behavior reliable. We prove the soundness of our analysis against
a formalization of the official AVR instruction-set specification.

1 Introduction

AVR processors are popular microcontrollers for embedded devices [45]. These
processors are used, for instance, in the Internet of Things [47]. There are also
specialized AVR processors by Atmel for aerospace [8] and automotive [7] appli-
cations. Hence, AVR processors are an attractive target for attacks.

Cryptographic implementations for AVR microcontrollers are available di-
rectly in hardware [4] and also in software. Cryptographic libraries for AVR
include, for instance, µNaCl [29], AVR-Crypto-Lib [19], and TinyECC [35]. The
current versions of these libraries differ in the level of security they provide
against side channels. For instance, the library µNaCl was developed with a fo-
cus on avoiding side-channel vulnerabilities [29] while AVR-Crypto-Lib so far
does not contain protection mechanisms against side-channel attacks [19].

Hardware implementations of cryptography on AVR microcontrollers have
been attacked successfully through side-channel attacks [30, 43]. Recently, Ro-
nen, O’Flynn, Shamir and Weingarten [47] mounted a side-channel attack
based on power consumption on smart light bulbs that contain the Atmel AT-
mega2564RFR2 System on Chip. The attack exploited that the power consump-
tion of an AES encryption on the AVR microcontroller depends on the secret
AES key. Ronen, O’Flynn, Shamir and Weingarten recovered the entire key and
used it to authenticate compromised firmware for the smart light bulbs.

Side-channel attacks can be based on a multitude of execution characteristics
like cache behavior [36,44], power consumption [32,47] or running time [24,31].
Attacks that exploit the running time of an execution are particularly dangerous
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because they can be mounted remotely without physical access to a system [16,
17]. In this article, we focus on such timing side channels.

Language-based techniques for detecting and mitigating timing side channels
exist for multiple programming languages [2,11,33,41,49]. However, the models
of time underlying the soundness proofs for these techniques do not capture
optimizations like caches or branch prediction faithfully. As a consequence, the
soundness proofs for these techniques are less effective in practice than one might
expect, e.g., on x86 processors [40]. On 8-bit AVR microcontrollers, the time
required to execute an instruction can be predicted statically. This is the feature
of AVR processors that we exploit in this article.

Based on the predictability of execution times, we propose a security type
system for AVR assembly. Our type system reliably verifies that there are no pos-
sibilities for information leakage in a timing-sensitive and flow-sensitive fashion.
We base our soundness proof on a formal operational semantics of AVR assembly
that reflects the execution times specified in the AVR instruction set manual [6].
Building on our security type system, we developed the Side-Channel FinderAVR

(SCFAVR), a tool for checking AVR assembly programs against timing-side-
channel vulnerabilities and other possibilities for information leakage.

We show that our type system can be used to check realistic programs by
applying SCFAVR to the implementations of the stream cipher Salsa20 and to
the Message-Authentication Code Poly1305 from the library µNaCl. To prove
the type system’s soundness, we developed a formal semantics for AVR assembly,
because none was available so far. We make our semantics available to others,1

such that they can use it for proving the soundness of program analyses for AVR.

2 Preliminaries

2.1 Timing-Side-Channel Vulnerabilities and Attacker Models

Timing-Side-Channel Vulnerabilities. Consider the following example program
with secret information stored in variable h.

if (h = 1) then sleep (1000) else skip;

If the variable h has value 1, the then-branch will be executed, and the program
will sleep for 1000 milliseconds. If the variable h has a value other than 1, then
the else-branch will be executed, and the overall execution will be faster in this
second case. Such a dependency of a program’s execution time on secret infor-
mation is called a timing-side-channel vulnerability. If an attacker can observe
the execution time of a program, then he can, indeed, exploit such vulnerabilities
to deduce critical secrets (as shown, e.g., in [31]).

Attacker Models. An attacker model defines what an attacker can observe during
a program execution. We consider a passive attacker who has knowledge of the
program’s code and can observe execution time as well as certain inputs and
outputs. There are multiple possibilities to define attacker models. In this article,

1 The addendum to this article and the tool SCFAVR are available under
http://www.mais.informatik.tu-darmstadt.de/scf2017.html.
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we model the visibility of information containers for an attacker by the security
levels L (visible) and H (secret and invisible to the attacker), and we assign
one level to each input (initial state of registers, etc.) and each output (final
state of registers, etc.) of a program. We call such an assignment of security
levels to information containers a domain assignment. We call two given states
indistinguishable to an attacker under a domain assignment if these states assign
identical values to each container labeled with L.

2.2 Static Analysis

Timing-Sensitive Information-Flow Analysis. An information-flow analysis
checks for the absence of undesired information flow in a program. The resulting
security guarantee is usually captured by a variant of noninterference [26], i.e.,
by a formally defined security property that requires secret information to not
influence the observations of an attacker. The choice of an execution model and
an attacker model influences which variant of noninterference is suitable [39].
Research on information-flow analyses goes back to Denning and Denning [20,21]
and Cohen [18]. A comprehensive survey of language-based information-flow
analyses has been provided by Sabelfeld and Myers in [48].

Information-flow analyses usually over-approximate the flow of secret infor-
mation to attacker-observable outputs. There are multiple approaches to analyz-
ing information-flow security. In this article, we focus on security type systems.
A security type system formalizes constraints on the sensitivity of data stored
in containers (e.g., in registers) during the execution of a program. If a program
satisfies these constraints for a domain assignment, then the program is called
typable under the domain assignment. A type system is sound with respect to a
security property if and only if all programs that are typable under some domain
assignment satisfy the security property under this domain assignment.

A timing-sensitive property takes the influence of secrets on the running time
of a program into account. The semantics on which a timing-sensitive security
property is based should, hence, capture the execution time of the program suffi-
ciently precisely. A timing-sensitive information flow analysis tries to anticipate
such dependences between running times and secrets (see, e.g., [2, 49]).

Control Flow Analysis. Assembly languages have unstructured control flow. To
determine the control flow of AVR assembly code, we employ the approach and
notation that was proposed in [10] and has inspired many others (e.g., [37]). In
particular, we define the control-dependence region and junction point of each
program point using Safe Over Approximation Properties (SOAPs).

To distinguish branchings from loops, we base on the concept of natural
loops [3, Chapter 18.1]. Natural loops are defined based on the notions of domi-
nation introduced by Prosser [46] and back edges in control flow graphs. A node
n1 in a control flow graph dominates a node n2, written n1 dom n2, if and only
if all paths from the root to n2 go trough n1. An edge from node n2 to node n1

in the control flow graph of a program is a back edge if and only if n1 dom n2.
The natural loop of a back edge from n2 to n1 contains all execution points that
are dominated by n1 and from which n2 is reachable without passing n1.
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2.3 AVR Assembly Instruction Set

The Atmel AVR 8-bit instruction set consists of 119 distinct instructions. The
instructions operate on memory, registers, and a stack. A dedicated status reg-
ister stores status flags, e.g., the carry flag indicating whether the most recently
executed instruction resulted in a carry.

Although 8-bit AVR microprocessors are widely used, they do not support
caching and branch prediction. Memory accesses take only one clock cycle, which
makes caches dispensable [34]. Most instructions are executed in one fixed num-
ber of clock cycles on 8-bit AVR processors. However, for conditional jumps, two
fixed execution times are possible, depending on the outcome of the branching
condition. If a jump is performed, then the instruction takes an additional clock
cycle. The behavior and execution time of the individual AVR instructions are
defined informally in the instruction set manual [6]. This description constitutes
the basis for our formalization of the semantics in Section 3.

2.4 Notation

We denote the i-th bit of the binary representation of v ∈ Z by v[i]. Given a
function r, we write r[x 7→y] for the function resulting from updating r at x with
y. We use this notation also, if y is one bit too long with respect to rng(r). In this
case, we define the update by r[x 7→y](x) = y′ where y′ results from y by dropping
the most significant bit in the binary representation. For Boolean values, we
define the notation r[x 7→s True] := r[x 7→ 1] and r[x 7→s False] := r[x 7→ 0].

3 Our Formal Semantics of AVR Assembly Programs

We show how to exploit the predictability of execution times on AVR processors
to obtain a faithful reference point for a sound security analysis. To this end, we
define a formal operational semantics for AVR assembly code based on [6].

3.1 Syntax

In AVR assembly, instructions are represented by mnemonics, i.e., keywords
that describe the purpose of the instruction. The mnemonics also determine the
number and types of the arguments in an instruction.

We define the syntax of AVR assembly instructions by the following grammar:

INSTR := Simple | Unary Rd | Binary Rd Rr | Control epa | Immediate Rd k |
out k Rr | ld Rd Rs ∗ | st Rs Rr ∗ | ldd Rd Rs k | std Rs Rr k

where Simple ∈ {clc, cli, ret}, Unary ∈ {dec, inc, lsr, neg, pop, push, ror},
Binary ∈ {adc, add, and, cp, cpc, cpse, eor, mov, movw, mul, or, sbc, sub},
Control ∈ {brcc, brcs, breq, brne, call, jmp, rcall, rjmp}, and Immediate ∈
{adiw, andi, cpi, in, ldi, sbci, sbiw, subi}.

Each instruction consists of a mnemonic followed by at most three argu-
ments. The arguments can be basic execution points (epa in the grammar above),
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registers (Rd,Rr,Rs), immediate values (k) or modifiers refining the behav-
ior of I/O instructions (∗). We define the set of basic execution points by
EPS0 := {(f, a) | f ∈ FUNC ∧ a ∈ N} where FUNC models the set of all func-
tion identifiers (e.g., labels based on source-level function names). We define the
set of 8-bit registers by REG := {rn | n ∈ [0, 31]} ∪ {spl, spu}, where spl and spu
are special registers that store the lower and the upper part of the stack pointer,
respectively. To obtain 16-bit values, two registers can be used as a register pair.
One common use of register pairs is to store memory addresses in the pair r27

and r26, the pair r29 and r28, or the pair r31 and r30. These register pairs are
commonly referred to as X, Y, and Z, respectively. We reflect this in the syntax
by the set {X,Y, Z} of special (16 bit) registers where X captures the register
pair r27 and r26, Y captures the register pair r29 and r28, and Z captures the
register pair r31 and r30. We define the set of immediate values as Z and the set
of modifiers for I/O instructions by {+,−,#}.

We use the meta variable epa to range over EPS0, the meta variables Rd and
Rr to range over REG, the meta variable Rs to range over {X,Y, Z}, the meta
variable k to range over Z, and the meta variable ∗ to range over {+,−,#}.

A program from the set PROG := EPS0 ⇀ INSTR of all AVR assembly programs
is modeled as a mapping from basic execution points to instructions. We only
consider programs that satisfy a well-formedness criterion. We define the well-
formedness of programs as the conjunction of three requirements. Firstly, we
require each function to contain a unique return instruction ret. Secondly, we
require the arguments of all instructions to lie within the ranges specified in [6]
(e.g., register arguments for adiw and sbiw must be from the set {rn | n ∈
{24, 26, 28, 30}}). Thirdly, we require that the immediate arguments to all in
and out instructions are from the set {0x3f, 0x3e, 0x3d}, i.e., the addresses of
the status register, spu, and spl on an ATmega microcontroller [5].

In practice, valid arguments are ensured by correct compilers. All programs
we encountered, e.g., in our case study on µNaCl, had a unique return instruc-
tion. For programs with multiple return instructions, a unique return instruction
can be achieved by simple program rewriting.

3.2 Semantics

Our operational semantics is a small-step semantics at the granularity of AVR
instructions. We include timing information by annotating transitions between
execution states with the required number of clock cycles.

In our semantics, we use a function t : INSTR→ N to capture the fixed amount
of clock cycles that each given instruction takes to execute. The definition of this
function depends on the particular AVR processor. In Table 1, we define t for
ATmega microcontrollers with 16 bit PC based on the timing information in [6].

To model the states during the execution of a program on an 8-bit AVR
microcontroller, we define the set of values that can be represented in 8-bit
two’s complement notation as VAL8 := [−27, 27 − 1]. Furthermore, we define the
set ADDR of all addresses in the memory by ADDR := [0, MAXADDR]. We model the
contents of the registers by REG-VAL := REG → VAL8 and the contents of the
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Table 1. Instructions i grouped by required clock cycles t(i)

t(i) i

1 adc Rd Rr, add Rd Rr, and Rd Rr, andi Rd k, brcc epa, brcs epa,
breq epa, brne epa, clc, cli, cp Rd Rr, cpc Rd Rr, cpse Rd Rr,
cpi Rd k, dec Rd, eor Rd Rr, in Rd k, inc Rd, ld Rd Rs #, ldi Rd k,
lsr Rd, mov Rd Rr, movw Rd Rr, neg Rd, or Rd Rr, out k Rr, ror Rd,
sbc Rd Rr, sbci Rd k, sub Rd Rr, subi Rd k

2 adiw Rd k, ld Rd Rs +, ldd Rd Rs k, mul Rd Rr, pop Rd, push Rr,
rjmp epa, sbiw Rd k, st Rs k −, st Rs k +, st Rs k #, std Rs Rr k

3 jmp epa, ld Rd Rs −, rcall epa
4 call epa, ret

memory by MEM-VAL := ADDR → VAL8. We model the contents of the stack as
a list of 8-bit values from the set STACK-VAL := VAL∗8, where the head of the
list represents the top-most element on the stack. Like x86 processors, AVR
microcontrollers use a dedicated register to store status flags. We model the
state of the carry flag and the zero flag by STAT-VAL := {C,Z} → {0, 1}, where
0 captures that a flag is not set and 1 captures that a flag is set.

We model the program counter and the call stack by EPS := EPS0×EPS∗0. We
call elements of EPS execution points. In an execution point ((f, a), fs), fs models
the call stack, and address a in function f models the program counter. A pro-
gram terminates if ret is executed with an empty call stack. We model termina-
tion by ε. We define the set of possible execution states by STATE := STAT-VAL×
MEM-VAL × REG-VAL × STACK-VAL × (EPS ∪ {ε}). We define the selector epselect :
STATE→ (EPS ∪ {ε}) to return the execution point of a given state. Furthermore,
we define the addition of a number to an execution point by ((f, a), fs) +ep n =
((f, a+ n), fs). We use the meta variables s, s′, t, and t′ to range over STATE.

We model the possible runs of a program P ∈ PROG by the transition relation
⇓P⊆ STATE× STATE× N. We write (s, s′, n) ∈⇓P as s ⇓nP s′ to capture that the
execution of P in state s terminates in state s′ after n clock cycles. Formally, we
define the relation using the derivation rules

s
c−→P s′ s′ ⇓c′P s′′

s ⇓c+c′

P s′′
(Seq) s

c−→P s′ epselect(s′) = ε

s ⇓cP s′
(Ter)

where we define the judgment t
c−→P t′ to capture that one execution step of

program P in state t takes c clock cycles and leads to state t′.
We define a small-step semantics with derivation rules for the judgment

t
c−→P t′. We make the full definition of the small-step semantics available online

(as part of the addendum of this article, see Footnote 1). Below we present the
rules (adc), (breq-t) and (breq-f) as examples:

P (ep) = adc Rd Rr r′ = r[Rd 7→ r(Rd) + r(Rr) + sr(C)]
sr′ = sr[C 7→s cf1 ∨ cf2][Z 7→s r

′(Rd) = 0] cf1 = (r(Rd)[7] ∧ r(Rr)[7])
cf2 = (r(Rr)[7] ∧ ¬r′(Rd)[7]) ∨ (¬r′(Rd)[7] ∧ r(Rd)[7])

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(adc)
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P (ep) = breq epa sr(Z) 6= 1

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r, st, ep+ep 1)

(breq-f)

P (ep) = breq epa sr(Z) = 1 ep = (ep0, fs) ep′ = (epa, fs)

(sr,m, r, st, ep)
t(P (ep))+br−−−−−−−−→P (sr,m, r, st, ep′)

(breq-t)

The AVR instruction adc Rd Rr stores the sum of the operands and the carry
flag in Rd. The instruction takes 1 clock cycle [6]. We capture the semantics of
adc in the semantics rule (adc). We define the resulting contents of register Rd
to be the sum of the original values of Rd, Rr, and C. We define the resulting
status flags by sr′, which maps C to 1 if there was a carry and which maps Z
to 1 if the sum is zero. We define the execution point of the resulting state by
ep+ep1. We capture the execution time of adc by the annotation t(P (ep)). Since
t(adc Rd Rr) = 1, this annotation captures the time faithfully.

The AVR instruction breq epa branches on the zero flag. It takes 2 clock
cycles if a jump to epa is performed (then-case, zero flag set) and 1 clock cycle
otherwise (else-case) [6]. We capture the semantics of breq by two semantics
rules. We capture the else-case by the rule (breq-f). We capture the condition
for the else-case by the premise sr(Z) 6= 1 and the resulting execution point by
ep+ep 1. We capture the execution time by t(P (ep)), which is 1 by definition of
t. We capture the semantics of the then-case by the rule (breq-t). We capture
the condition for the then-case by the premise sr(Z) = 1 and the resulting
execution point by ep′, where ep′ consists of the target execution point epa and
the unmodified call stack. To capture the execution time, we define the constant
br = 1. We define the annotation of the judgment as t(P (ep)) +br to reflect the
additional clock cycle that the instruction breq requires in the then-case.

Overall, the execution times of all non-branching instructions in our seman-
tics are captured completely by the function t. For all branching instructions in
our semantics, we add the constant br to the execution time t in the then-case
to reflect the additional clock cycle required to jump to the then-branch.

Based on our operational semantics, we define the successor-relation P such
that ep1  P ep2 ⇐⇒ ∃s1, s2 ∈ STATE : ∃n ∈ N : s1

n−→P s2∧epselect(s1) = ep1∧
epselect(s2) = ep2. We define the execution points that are reachable from an
execution point ep in program P by reachableP (ep) := {ep′ ∈ EPS | ep +

P ep′}.

4 Timing-Sensitive Noninterference

We capture the security requirements for AVR assembly programs based on a
two-level security lattice. Its elements are security levels L and H with v:=
{(L,L), (L,H), (H,H)} and least upper bound operator t. The security level L
is used for attacker-visible information and H is used for confidential informa-
tion. Each information container is annotated with a security level by a domain
assignment.

Register and status-register domain assignments out of REG-DA := REG →
{L,H} and STAT-DA := {C,Z} → {L,H}, respectively, assign security levels
to each individual register and status register. Registers r, r′ ∈ REG-VAL are
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indistinguishable with respect to rda ∈ REG-DA, written r ≈rda r
′, if and only if

∀x ∈ REG : rda(x) = L ⇒ r(x) = r′(x), (and likewise ≈srda for status registers).
The whole memory is annotated with a single level from {L,H}. For md ∈

{L,H}, memories m,m′ ∈ MEM-VAL are indistinguishable if md = L ⇒ m = m′.
The stack is annotated by a stack domain assignment out of STACK-DA :=

{L,H}∗. Two stacks l, l′ ∈ STACK-VAL are indistinguishable with respect to a
stack domain assignment sda ∈ STACK-DA, written l 'sda l

′, if and only if the
stacks only differ in the contents of H elements until after the bottom-most L
element. They may differ arbitrarily below the bottom-most L element.

Finally, states s, s′ ∈ STATE are indistinguishable, written s ≈sda,md,rda,srda s
′,

if and only if their components (except the execution points) are component-
wise indistinguishable. We use the meta variables da and da′ to range over
STACK-DA × {L,H} × REG-DA × STAT-DA and write da v da′ to abbreviate the
straight-forward notions of partial order on all components of da and da′.

We express timing-sensitive noninterference by the property TSNI.

Definition 1. A program P satisfies TSNI starting from eps ∈ EPS with initial
and finishing domain assignments da and da′ if and only if

∀s0, s
′
0,s1, s

′
1 ∈ STATE : ∀n, n′ ∈ N :

epselect(s0) = eps ∧ epselect(s′0) = eps ∧

s0 ≈da s
′
0 ∧ s0 ⇓nP s1 ∧ s′0 ⇓n

′

P s′1

⇒ s1 ≈da′ s
′
1 ∧ n = n′

The initial and finishing domain assignments should be chosen to reflect which
inputs and outputs are visible to an attacker. If a program then satisfies TSNI,
an attacker cannot distinguish between two secret inputs to the program by
observing the program’s output or execution time. That is, TSNI guarantees
secure information flow and the absence of timing-side-channel vulnerabilities.

5 Timing-Sensitive Type System for AVR Assembly

We provide a security type system for checking AVR assembly programs against
timing-side-channel vulnerabilities. We define the type system such that pro-
grams are only typable if their execution time does not depend on secret in-
formation. Furthermore, our definition of the type system rules out undesired
direct and indirect information flow in typable programs.

5.1 Precomputation of Control-Dependence Regions

To check whether the control flow of a program influences attacker-observable
information or the running time, the control flow must be known. Since AVR
assembly is an unstructured language, the control dependencies of a program
are not structurally encoded in its syntax. To address this, we approximate
the control-dependence regions in a program using Safe Over Approximation
Properties (SOAPs). To be able to define typing rules that compare the execution
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SOAP1 ∀ep1, ep2, ep3 ∈ EPS such that ep1  P ep2, ep1  P ep3 and ep2 6= ep3
exactly one of the following holds
– ep2 ∈ regioniP (ep1) and ep3 ∈ regionjP (ep1) for unique i, j ∈ {1, 2}, i 6= j
– epi ∈ region1P (ep1) and junP (ep1) = epj for unique i, j ∈ {2, 3}, i 6= j

SOAP2 ∀ep ∈ EPS : region1P (ep) ∩ region2P (ep) = ∅.
SOAP3 ∀ep1, ep2, ep3 ∈ EPS and ∀i ∈ {1, 2}, if ep2 ∈ regioniP (ep1) and ep2  P

ep3, then either ep3 ∈ regioniP (ep1) or junP (ep1) = ep3.
SOAP4 ∀ep1, ep2 ∈ EPS and ∀i ∈ {1, 2}, if ep2 ∈ regioniP (ep1) and ¬∃ep3 ∈

EPS : ep2  P ep3, then junP (ep1) is undefined.

Figure 1. Safe Overapproximation Properties

time of then- and else-branches, we distinguish between two control-dependence
regions for each branching.

Formally, we define the functions region1
P , region

2
P : EPS→ P(EPS) and junP :

EPS ⇀ EPS to be a safe over approximation of program P ’s control-dependence
regions if they satisfy the SOAPs in Figure 1. That is, if the branches of each
branching instruction are captured by the two regions of the instruction, if the
regions of each instruction are disjoint, if a step in a region either leads to the
junction point or another point in the region, and if all regions that contain an
instruction without a successor have no junction point. In the following we only
consider functions regionthenP and regionelseP that satisfy the SOAPs.

We define regionP (ep) := region1
P (ep)∪ region2

P (ep). For a branching instruc-
tion at execution point ep we denote the region from {region1

P , region
2
P } that con-

tains the branch target by regionthenP (ep) and the other region by regionelseP (ep).
To distinguish loops from branchings, we define the predicate loopP (ep) :=

∃ep′ ∈ regionP (ep) : ep  +
P ep′ contains a back edge, which captures whether

an execution point is the header of a natural loop. We assume that programs
contain only natural loops.

5.2 Typing Rules

Given a program P with control-dependence regions regionthenP and regionelseP ,
we define the typability of P with respect to an initial domain assignment, a
finishing domain assignment, and a security environment. We define a security
environment to be a function se : EPS → {L,H} that assigns a security level
to every execution point in the program. Moreover, we define the type system
such that se maps all execution points to H whose execution depends on secret
information. Finally, we define a program to be typable if domain assignments
for all intermediate states in the program execution exist such that, for each
execution point epi, a judgment of the form

P, regionthenP , regionelseP , se, epi :

(sdaepi , mdepi , rdaepi , srdaepi) ` (sda′epj , md
′
epj
, rda′epj , srda

′
epj

)

is derivable that relates the domain assignments of epi to domain assignments
that are at most as restrictive as the domain assignments of all successors of epi.
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P (ep) = adc Rd Rr
erg = rda(Rd) t rda(Rr) t se(ep) t srda(C)

rda′ = rda[Rd 7→ erg] srda′ = srda[C 7→ erg][Z 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda′)
(t-adc)

∃instr ∈ {breq, brne} : P (ep) = instr epa
se(ep) t srda(Z) = L

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda, srda)
(t-brZ-l)

∃instr ∈ {breq, brne} : P (ep) = instr epa
¬loopP (ep) se(ep) t srda(Z) = H se(ep) = H
∀ep′ ∈ regionP (ep) : se(ep′) = H sda′ = lift(sda,H)

branchtimethenP (ep) + br = branchtimeelseP (ep)

P, · · · , ep : (sda, md, rda, srda) ` (sda′, md, rda, srda)
(t-brZ-h)

Figure 2. Selected typing rules

Definition 2. A program P with control-dependence regions regionthenP and
regionelseP is typable with starting execution point eps, initial domain assignments
daeps , finishing domain assignments daf , and security environment se, written

P, regionthenP , regionelseP , se, eps : daeps  daf ,
if and only if for every ep ∈ reachableP (eps) there exist domain assignments
daep such that for all epi, epj ∈ reachableP (eps) ∪ {eps}, both,
1. if epi  P epj then ∃da′epj : da′epj v daepj ∧ P, · · · , epi : daepi ` da

′
epj

.

2. if there exists no epk ∈ reachableP (eps) such that epi  P epk then daepi v
daf and P, · · · , epi : daepi ` daepi is derivable.

Note that our definition of typability imposes constraints on domain assignments
of consecutive execution points (see Condition 1 in Definition 2) as well as on
domain assignments upon termination (see Condition 2 in Definition 2).

We define the derivability of the typing judgment P, · · · , epi : daepi ` da′epj
by typing rules for the individual AVR instructions. In this section we present
the rules (t-adc), (t-brZ-l), and (t-brZ-h), defined in Figure 2. We make the full
definition of the type system available online (see Footnote 1).

We define the derivable typing judgments for execution points that point
to adc instructions by the typing rule (t-adc). In this typing rule, we raise the
security levels of the registers and status flags modified by adc to the least upper
bound of the security levels of the summands, the carry flag and the security
environment. By raising the security levels, we ensure the absence of flows from
H summands, carry, or branching conditions to an L sum, carry, or zero flag.

We define the derivable typing judgments for the instructions breq and brne,
which jump conditionally on the zero flag, by two typing rules. By the typing
rule (t-brZ-l) we define the derivable judgments for jumps that only depend on L
information. We capture the condition that the jump only depends on L infor-
mation by a premise that requires the security environment and the zero flag to
have the security level L. That is, the execution of the conditional jump instruc-
tion and the condition for jumping are required to only depend on L information.
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We define the derivable judgments such that they do not modify any security
levels, because a conditional jump instruction does not modify any information.
By the typing rule (t-brZ-h), we define the derivable judgments for jumps that
depend on H information. We forbid loops depending on H information to avoid
leakage to the number of iterations. We allow branchings onH information under
the following conditions. The security environment must reflect the dependence
of the branches on H information. The security levels of the stack must reflect
that the height of the stack could differ across the branches (expressed using the
function lift that lifts all elements of sda to H recursively). Finally, the execution
time required for the else-branch must be equal to the time for jumping to and
executing the then-branch. We capture the time required for the jump by br.
We capture the time required to execute a branch by the function branchtimerP ,
where r ∈ {then, else}.

Definition 3. The function branchtimerP is defined recursively as

branchtimerP (ep) :=
∑

epi∈region
r
P (ep)

epi 6=ep

(
t(P (epi))− branchtimethenP (epi)

)

We define the function branchtimer(ep0) of a non-nested branching ep0, such that
it sums up the execution time of all instructions inside the branching. A recursion
is not required, as for all ep′ ∈ regionr(ep0) it holds that regionthen(ep′) = ∅. Now
assume ep1 and ep2 are branching instructions with ep2 ∈ regionr(ep1). Then
only one branch of ep2 is executed, but the positive part of branchtimer(ep1)
sums up the execution time of both branches of ep2. We take care of this by
subtracting the execution time of the then-branch. By typability, it is ensured
that both branches of ep2 execute in the same time, making the execution time
of ep1 independent of the branch taken at ep2.

Example 1. The following control flow graph is annotated with execution times.

0

1

2

3

4

5

6

7

8

9

10

11

12

13
1

2 1 2 1

1

1 + br
1

1
2

1

1 + br
1

1

1

The then-branches are white, the else-branches are gray. Consider the paths from
Node 4 to 12. They don’t contain nested branches. We get branchtimethenP (4) = 2
and branchtimeelseP (4) = 3. For the paths from Node 0 to Node 13, there is one
nested branching, namely the previously considered branching at Node 4. We
get

branchtimethenP (0) = 1 + 1 + 1 + 2 + 1 + 1 + 1−
∑

epi∈region
then
P (0)

branchtimethenP (epi)

= 1 + 1 + 1 + 2 + 1 + 1 + 1− branchtimethenP (4) = 6

Only branchtimethenP (4) is subtracted because all other points in the region have
0 branchtime. 1 + br is counted as 1 because br is handled in the typing rule. ♦
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Figure 3. Data flow diagram of the analysis process in SCF

5.3 Soundness

We ensure that our security type system provides reliable security guarantees
about AVR programs. To this end, we prove the following soundness theorem.

Theorem 1 (Soundness). If P, regionthenP , regionelseP , se, eps : daeps  daf ,
then P satisfies TSNI starting from eps with the initial and finishing domain
assignments daeps and daf .

Proof Sketch. We apply an unwinding technique and prove local respect and
step consistency for each typable AVR assembly instruction in our semantics. To
prove that no secret information interferes with the execution time, we formulate
and prove a lemma stating that secret-dependent branches are constant-time. �

Theorem 1 states that the type system is sound with respect to the property
TSNI. That is, all typable programs are free of timing-side-channel vulnerabilities
with respect to TSNI. We make the full proof available online (as part of the
addendum of this article, see Footnote 1).

Proving the soundness of a security type system with respect to a security
property is an established technique used, e.g., in [2,9,33,51]. In general, timing-
side-channel vulnerabilities might occur in practice despite soundness proofs [40].
This criticism does not apply to our approach because our semantics is based
on the explicit specification of execution times in [6].

6 Automatically Analyzing AVR Assembly Programs

We create the Side-Channel FinderAVR (SCFAVR) to automatically analyze AVR
programs with respect to timing-side-channel vulnerabilities. From now we omit
the superscript of SCFAVR. We make the tool available online (see Footnote 1).

To demonstrate the capabilities of SCF, we apply it to a self-implemented
primitive and to off-the-shelf implementations from the crypto library µNaCl.

6.1 The Side-Channel FinderAVR

Our analysis of AVR assembly programs consists of three steps that are illus-
trated in Figure 3. The dashed box represents the parts of the analysis that we
automate in SCF. The first step is to parse the analysis inputs. We convert the
inputs, namely an AVR program (1) and a configuration file (2), to an internal
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representation. The configuration file specifies a starting execution point and
initial and finishing domain assignments. The second step is to precompute (3)
the control-dependence regions of the AVR assembly program. The third step is
the timing-sensitive information flow analysis (4) of the program. If the analysis
is successful, we report the success (5). Otherwise, we return a failure report (6).

Implementation. The tool SCF is our implementation of this three-step analysis
procedure in roughly 1,250 lines of Python code. SCF takes as the first input
an object dump file of the program to analyze. The object dump file can be
generated with the AVR compiler toolchain and contains the full program in
assembly form. We implement a simple regex-based parser to transform an object
dump file into a program representation according to our syntax in Section 3.1.
As the second input, SCF takes the analysis configuration in JSON format. Our
parser infers the registers of function arguments from high-level code according
to the AVR calling conventions [23] and the given configuration file.

We implement the precomputation according to the SOAPs for control-
dependence regions from Section 5.1. Our implementations is based on a method
from [25] and uses the graph library NetworkX [27] to compute dominators.

To realize the information-flow analysis in the third step, we implement our
type system from Section 5.2. We represent each instruction as a class that
contains the corresponding typing rule and the corresponding execution time
according to our definition of t for ATmega processors in Table 1. We implement
type checking as a fixed-point iteration.

If there is no error detected during type checking, we report the result
SUCCESS. Otherwise, we report a failure. We provide an error message that spec-
ifies the origin of the failure. The concrete error messages are:
– LOOP_ON_SECRET_DATA, if there is a loop in a high security environment,
– TIMING_LEAK, if there is a violation of a branchtime condition,
– INFORMATION_LEAK, if the inferred domain assignments are more restrictive

than allowed by the given configuration.

6.2 Timing-Side-Channel Analysis of µNaCl

We demonstrate how to analyze real-world cryptographic implementations with
SCF at the example of µNaCl. µNaCl [29] is specifically made for AVR micro-
controllers and was developed with a focus on providing constant-time imple-
mentations of cryptographic primitives. We analyze the constant-time string-
comparison primitive from µNaCl and an alternative implementation of string
comparison that is vulnerable to timing-side-channel attacks. We also analyze
the µNaCl default stream cipher Salsa20 and its variant XSalsa20, and the µNaCl
default Message-Authentication Code Poly1305. We expected these implemen-
tations to be secure because side channels were a focus in the development of
µNaCl [29]. Our analysis with SCF confirms that these implementations are se-
cure with respect to the timing-sensitive property TSNI. The analysis is fully
automatic and does not require any source code modifications2 to µNaCl.
2 All crypto functions in µNaCl satisfy the assumption of a unique return instruction.
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String Comparison. Consider the following two implementations of string com-
parison where n is the length of the strings to be compared.

for(i = n; i != 0; i--)

if(x[i-1] != y[i-1])

break;

return i;

crypto_uint16 d = 0;

for(i = 0; i < n; i++)

d |= x[i]^y[i];

return (1&((d-1)>>8))-1;

The first implementation aborts the comparison at the first mismatch. The sec-
ond implementation always iterates over the entire string. If the implementations
are used, e.g., to verify passwords, the first implementation leaks the amount of
correct characters in the password via a timing channel, while the second imple-
mentation is constant-time.

Using SCF, one can check for such vulnerabilities automatically. We analyzed
the implementations for n = 16. Since either of the source-level inputs could be
the actual password, we run SCF with the security level H for both inputs. In
the parsing phase, this domain assignment is translated according to the calling
conventions, so that registers r22 to r25 are initially H. To check for timing side
channels, we assume that the attacker cannot observe the output directly but
only the timing. Hence, we also set the security level of the result to H. On the
first program, SCF detects a vulnerability. The output of SCF looks as follows.

"result_code ":3,

"execution_point ":{

"address ":"0 x1a", "function ":" verify_leaky_16 "},

"result ":" LOOP_ON_SECRET_DATA"

SCF points to the address at which the vulnerability was detected and also hints
at the reason, namely a loop on secret data. The address “0x1a” points to the
if -statement that leads to early abortion of the string comparison.

On the second implementation of string comparison, SCF reports a successful
analysis. The implementation is typable. By Theorem 1, the implementation is
secure against timing-side-channel vulnerabilities with respect to TSNI.

The second implementation of string comparison is used in µNaCl. We suc-
cessfully analyzed the µNaCl string comparison functions crypto verify16 and
crypto verify32 that both use the second implementation. Both functions are
secure with respect to TSNI.

Salsa20 and Poly1305. SCF is also able to analyze more complex cryptographic
implementations than a password verification. We apply SCF to the implemen-
tations of Salsa20, XSalsa20, and Poly1305 in the library µNaCl.

The cipher Salsa20 [13] is part of the eSTREAM portfolio of stream ciphers.
The specification of Salsa20 avoids S-box lookups and integer multiplications as
sources of potential timing vulnerabilities. We analyze the µNaCl implementa-
tions of Salsa20 and XSalsa20 (a variant with a longer nonce [14]). The param-
eters of both, the Salsa20 and XSalsa20 implementations, are the secret key k,
a nonce n, the location for the cipher output c, and the message length clen.

We consider the key k and the nonce n secret and assign security level H.
Furthermore, we consider an attacker who can only observe the timing of an
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execution, and we assign the level H to the cipher output stored in c and to
the return value (status) of the functions. We consider the message length clen

visible to the attacker and assign level L. The analysis of Salsa20 and XSalsa20
with SCF is successful, i.e., the functions are secure with respect to TSNI.

Poly1305 [15] is a MAC (Message-Authentication Code) based on secret-
key encryption. While the original definition of Poly1305 is based on AES, the
implementation in µNaCl is based on Salsa20. The parameters of the Poly1305
implementation in µNaCl are the secret key k, the message in, the message
length inlen, and the location for the resulting authenticator out.

We analyze the µNaCl implementation of Poly1305 with SCF. Again we
consider only the message length inlen visible to the attacker. SCF reports a
successful analysis. The function is typable and hence satisfies TSNI.

Analysis Setup. From version 20140813 of µNaCl we analyzed crypto verify16,
crypto verify32, crypto stream salsa20, crypto stream xsalsa20, as well
as crypto onetimeauth poly1305. We obtained the object dump using avr-gcc

in version 4.8.1 and avr-objdump. We removed the flag --mcall-prologues

from the µNaCl makefile to obtain the full assembly code.

7 Related Work

Timing Side Channels. Already in 1996, Kocher [31] described how to extract
a secret key from a cryptosystem by measuring the running time. Brumley and
Boneh [17] showed that timing attacks can be carried out remotely, which makes
them particularly dangerous. In general, timing vulnerabilities can be due to dif-
ferent factors, e.g., secret-dependent branches with different execution times [31],
branch prediction units [1], or caches [12]. In this article, we consider a platform
without optimizations like branch prediction units and caches.

Timing vulnerabilities can be avoided by design as, e.g., in µNaCl [29] or
transformed out of existing implementations [2, 11, 33, 41]. The use of program
transformations does not always lead to implementations without timing-side-
channel vulnerabilities in practice [40]. For the secure design of selected imple-
mentations from µNaCl, we certify timing-sensitive noninterference based on the
official specification of execution times in [6].

Side-Channels on AVR Microcontrollers. Hardware cryptographic engines on
AVR microcontrollers have been successfully attacked through side channels by
Kizhvatov [30], O’Flynn and Chen [43], and Ronen et al. [47].

An alternative to hardware-accelerated cryptography are cryptographic im-
plementations in software, e.g., in cryptographic libraries like µNaCl [29]. For an
informed use of software implementations, reliable security guarantees are desir-
able. Our tool SCF can check AVR assembly programs and provide such guar-
antees. It complements existing techniques like the ChipWhisperer toolbox [42]
that supports mounting side-channel attacks on AVR microcontrollers.

Timing-Sensitive Information Flow Analysis. Timing-sensitive security type sys-
tems were developed for an imperative programming language and a while lan-
guage already by Volpano and Smith [49] in 1997 and by Agat [2] in 2000. Agat’s
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type system was extended to a JavaCard-like bytecode language by Hedin and
Sands [28]. For an intermediate language in the CompCert verified C compiler,
timing-sensitive information flow was considered by Barthe et al. [9]. Agat [2]
and Köpf and Mantel [33] propose type systems that transform programs to
remove timing-side-channel vulnerabilities. Our type system for AVR assembly
is not transforming. However, the AVR instruction set contains a nop command
that could be used to realize a transforming type system.

Recently, Zhang, Askarov, and Myers [50] proposed a timing-sensitive type
system that takes into account a contract for the interaction of programs with
the hardware design. To check whether hardware adheres to such a contract,
Zhang, Wang, Suh, and Myers [51] introduce a hardware design language with
type annotations and a corresponding timing-sensitive security type system.

Existing tools for timing-sensitive program analysis include Side Channel
Finder [38] for Java, which checks for secret-dependent loops and branchings
using a type system, and CacheAudit [22] for x86 binaries, which quantifies the
leakage through cache-based timing channels using abstract interpretation.

To our knowledge, we propose the first information flow analysis and analysis
tool for checking AVR assembly programs against timing side channels.

8 Conclusion

In this article, we have shown how an analysis framework for timing side channels
in real-world crypto implementations can be realized. We proposed a security
type system, a timing-sensitive operational semantics, a soundness result for our
type system, and our tool SCF for automatically verifying the absence of infor-
mation leaks (including timing side channels) in AVR programs. We exploited
the predictability of execution times on 8-bit AVR processors and showed how
AVR can be used as a platform for language-based approaches to timing-sensitive
information flow analysis. SCF is an academic prototype, but - as we have shown
- it is suitable for verifying real-world crypto implementations from µNaCl.

Based on this initial step, we plan to increase the coverage of our framework
from currently 36% of the 8-bit AVR instruction set to the entire 8-bit AVR
instruction set. We plan to grow SCF so that it can be broadly applied to off-the-
shelf AVR assembly programs. With the extended SCF, the verification of entire
crypto libraries will be an interesting direction. Another interesting direction
would be to consider attackers who exploit hardware features (e.g., interrupts).
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