
A Systematic Study of Cache Side Channels
across AES Implementations

Heiko Mantel1, Alexandra Weber1, and Boris Köpf 2

1 Computer Science Department, TU Darmstadt, Darmstadt, Germany
mantel@cs.tu-darmstadt.de, weber@mais.informatik.tu-darmstadt.de

2 IMDEA Software Institute, Madrid, Spain
boris.koepf@imdea.org

Abstract While the AES algorithm is regarded as secure, many imple-
mentations of AES are prone to cache side-channel attacks. The lookup
tables traditionally used in AES implementations for storing precom-
puted results provide speedup for encryption and decryption. How such
lookup tables are used is known to affect the vulnerability to side chan-
nels, but the concrete effects in actual AES implementations are not
yet sufficiently well understood. In this article, we analyze and compare
multiple off-the-shelf AES implementations wrt. their vulnerability to
cache side-channel attacks. By applying quantitative program analysis
techniques in a systematic fashion, we shed light on the influence of im-
plementation techniques for AES on cache-side-channel leakage bounds.

1 Introduction

The Advanced Encryption Standard (AES) is a widely used symmetric cipher
that is approved by the U.S. National Security Agency for security-critical ap-
plications [8]. While traditional attacks against AES are considered infeasible
as of today, software implementations of AES are known to be highly suscepti-
ble to cache side-channel attacks [5, 15, 18, 19, 32]. While such side channels can
be avoided by bitsliced implementations [6,23], lookup-table-based implementa-
tions, which aim at better performance, are often vulnerable and wide spread.

To understand the vulnerability to cache side-channel attacks, recall that
the 128bit version of AES relies on 10 rounds of transformations. The first nine
rounds consist of the steps SubBytes, ShiftRows, MixColumns, and AddRoundkey.
The last transformation round is similar but skips the step MixColumns. Many
cryptographic libraries, such as LibTomCrypt [37], mbed TLS [3], Nettle [28]
and OpenSSL [30], precompute the results of applying SubBytes, ShiftRows, and
MixColumns for all possible inputs. They store the precomputed results in four
1KB lookup tables with entries of 32bit each. With this, the AES rounds can be
implemented by simple table lookups to indices depending on the current state
– which is beneficial for performance but introduces the cache side channel.

While the table organization of the first nine rounds specified by [10] is used
as the default in most implementations, there is a variety of approaches for
implementing the last round of AES:

Published in:
E. Bodden et al. (Eds.): ESSoS 2017, LNCS 10379, pp. 213–230, 2017.
© Springer International Publishing AG 2017
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-62105-0 14

– mbed TLS and Nettle rely on an additional 0.25KB table with 8bit entries
to store the S-Box for SubBytes.

– OpenSSL computes the results of SubBytes and ShiftRows based on the
lookup tables for the main rounds.

– LibTomCrypt uses four additional 1KB lookup tables with 32bit entries for
the last round.
The organization of the lookup tables affects the vulnerability of AES imple-

mentations to cache side-channel attacks. While this effect was observed early
on [32, 34] and studied based on an analytical model [39], it has not yet been
analyzed based on the actual target of the attack, which is the executable code.

In this article, we use program analysis techniques for a systematic, quanti-
tative study of cache-side-channel leakage across AES implementations. We an-
alyze executable code of AES implementations from LibTomCrypt, mbed TLS,
Nettle, and OpenSSL. More concretely, we systematically derive upper bounds
for the leakage of these executables to a number of adversaries that are commonly
considered in the literature. We also describe the effects of table preloading and
of varying the cache configuration (i.e. cache size and replacement strategy)
across implementations. By our study, it becomes clear how the usage of lookup
tables in AES implementations influences the height of leakage bounds within
the same cache size and across cache sizes. For instance, the leakage bounds for
the lookup-table-based implementations stabilize with increasing cache size. The
stabilization occurs once the cache is large enough for the mapping from AES
memory blocks (dominated by the lookup tables) to cache sets to be injective.

We used the CacheAudit static analyzer [12] as a starting point for our study.
Analyzing the AES executables in their original form required us to extend the
tool’s scope in terms of, both supported x86 instructions and CPU flags. This
required significant engineering effort. The extended CacheAudit is available
under www.mais.informatik.tu-darmstadt.de/cacheaudit-essos17.html.

2 Preliminaries

In this section, we review the necessary background on AES, caches, and cache
side-channel attacks.

AES. AES is a widely used symmetric block cipher proposed by Daemen and
Rijmen (originally as “Rijndael”) [10]. The AES algorithm operates in multiple
transformation rounds. It depends on the AES key’s size, how many rounds are
performed. The inputs to each round are the current state of the transformed
message or ciphertext and a round key that is generated from the AES key by
a key expansion. Each round consists of multiple steps, including a substitution
step that can be implemented using a lookup table of size 0.25KB, called S-Box.
Lookup tables of size 1KB are often used to store precomputed results of entire
transformation rounds for all possible inputs to speed up the computation. The
result for a given input is then retrieved using an index to the lookup table [10].

Lookup-table-based implementations are available in many libraries, includ-
ing LibTomCrypt, mbed TLS, Nettle, and OpenSSL. However, AES can also be

2

www.mais.informatik.tu-darmstadt.de/cacheaudit-essos17.html

implemented without using lookup tables. For instance, OpenSSL defaults to
AES-NI, i.e., AES encryption with hardware support using dedicated x86 in-
structions, and the AES implementation in NaCl is based on bitslicing, which
implements the AES transformation rounds on the fly.

In our study, we consider the lookup-table-based AES implementations from
LibTomCrypt, mbed TLS, Nettle, and OpenSSL for a key size of 128bit, which
implies that ten transformation rounds are performed [10]. The AES imple-
mentations in mbed TLS and Nettle AES use an S-Box and four 1KB lookup
tables. OpenSSL AES also uses four 1KB lookup tables but no S-Box, while
LibTomCrypt AES uses eight 1KB lookup tables and no S-Box.

Caches. Caches are small and fast memories that store copies of selected memory
entries to reduce the average memory access time of the Central Processing
Unit (CPU). If the CPU accesses a memory entry that resides in the cache, it
encounters a cache hit, and the entry is quickly read from the cache. Otherwise,
the CPU encounters a cache miss, and the entry needs to be fetched first from
the main memory to the cache, which is significantly slower.

In our study, we consider 4-way set-associative caches with 64Byte line size
and FIFO replacement. The chunks in which memory entries can be loaded into
the cache are called memory blocks. Memory blocks are cached in cache lines
of the same size as memory blocks, namely the line size. The associativity of a
cache defines how many cache lines form one cache set. A given memory block is
mapped to one specific cache set but can be cached in any of the cache lines in
this cache set. A cache with associativity k is called k-way set-associative. If a
memory block shall be cached into a cache set that is full, then another memory
block is evicted from the cache set according to a replacement strategy, e.g., to
evict the least recently cached memory block (FIFO).

Cache side-channel attacks. A side-channel attack recovers information about
inputs to a program from characteristics of program runs. In 2002, Page [33]
showed that the interaction between a program and the cache is such a character-
istics, i.e., one that can be used to mount a side-channel attack. Such attacks are
known as cache side-channel attacks. Since table lookups in lookup-table-based
AES implementations depend on the secret key, they are prone to different kinds
of attacks: Time-based attacks [5] recover the secret key from measurements of
the the overall execution time; access-based attacks [15,32] recover the secret key
from the cache state after termination; and trace-based attacks [1] recover the
key from sequences of cache hits and misses.

3 Our Approach

We analyze AES implementations wrt. potential cache side channel,s based on
information theory and static analysis. The static-analysis tool that we employ is
an extension of CacheAudit [12] that we developed for this research project. Our
extensions increase the tool’s coverage of the x86 machine language and improve
the tool’s precision wrt. its treatment of processor flags. These changes were

3

crucial for analyzing the four AES implementations, without having to modify
their off-the-shelf source code, and they might be beneficial for others.

We describe our approach to side-channel analysis in Section 3.1, illustrate it
using mbed TLS AES as an example in Section 3.2, and sketch our conceptual
and technical extensions of CacheAudit in Section 3.3.

3.1 Static Bounds on Cache Side Channels

A common approach for quantifying the information leaks of a program is to
compute (upper bounds on) the number of observations that an adversary can
make. This number comes with different interpretations in terms of security,
such as lower bounds for the expected number of guesses required for recovering
a secret [26] or upper bounds on the probability for correctly guessing the secret
in one shot [38]. Moreover, this number can be obtained by combining off-the-
shelf static analysis with model counting techniques [4, 29]. The computation
of this number has been implemented based on abstract interpretation [24],
bounded model checking [16], and symbolic execution [36].

The CacheAudit static analyzer [12] leverages this basic idea for quantifying
cache side channels of x86 executables, based on abstract interpretation. Given
an x86 executable, CacheAudit computes bounds wrt. the three adversary mod-
els discussed in Section 2. Namely,

– for access-based attackers (denoted acc), CacheAudit computes a set Oacc

that contains all possible states of the cache after termination. Here, cache
states are represented as tuples of sequences of memory blocks, where each
sequence is of bounded length and represents the content of one cache set.

– for trace-based attackers (denoted tr), CacheAudit computes a set Otr ⊆
{hit ,miss}∗ that contains all possible traces of cache hits and misses that
can occur in an execution.

– for time-based attackers (denoted time), CacheAudit computes a set Otime ⊆
N that contains the possible execution times that can occur.

In addition, CacheAudit computes a set Oaccd that contains a representation of
cache states as tuples of integers, where each integer represents the amount of
blocks loaded in a particular cache set. This corresponds to the possible observa-
tions of a fourth attacker, the blurred access-based attacker (denoted accd). This
attacker is similar to acc, in the sense that it shares the cache with the victim,
but it does not share the memory with the victim.

Bounds on the the information (in bits) leaked to the four adversaries are
given by log2 |Oa| for a ∈ {acc, tr, time, accd}.

3.2 Analysis of AES from mbed TLS

We illustrate our approach using the AES implementation from mbed TLS (pre-
viously known as PolarSSL). This library is used, e.g., in the implementation of
OpenVPN [31] and of Internet-of-Things products [2].

4

Cache [KB] 2 4 8 16 32 64 128

Leakage [bit] ≤ 92.6 114.5 91.8 71.2 69.6 69.6 69.0
Entropy [bit] ≥ 163.4 141.5 164.2 184.8 186.4 186.4 187

Table 1: Bounds for mbed TLS on leakage and entropy under acc

2 4 8 16 32 64 128
0

100

200

300

cache size [KB]

b
o
u
n
d

[b
it

]
acc accd

tr time

Figure 1: Leakage bounds for mbed TLS AES encryption

Computation of bounds for mbed TLS under acc. The leakage bounds computed
by our extension of CacheAudit for mbed TLS under acc for different cache sizes
are listed in Table 1.3 Table 1 also contains lower bounds on the remaining min-
entropy of the 256 secret bits (key and message) after a side-channel observation.
In the remainder of the article, we only explicate leakage bounds because the
entropy can be easily computed. It equals 256bit minus the leakage bounds.

Note that the acc leakage bounds converge to 69bit, starting between the
cache sizes 16KB and 32KB. This could be due to the fact that at least 17KB
of cache are required for an injective mapping from memory blocks (dominated
by 4.25KB lookup tables) to cache sets. Once the cache is so big that each cache
set can contain at most one memory block, an attacker under acc is able to infer
exactly which blocks are accessed by mbed TLS AES. In practice, a convergence
of leakage bounds with growing cache sizes implies that leakage bounds will
remain valid when processors with larger caches become available in the future.

Exploration of other attacker models. The leakage bounds that we obtain for
mbed TLS AES, using all four attacker models, are depicted in Figure 1.4

We observe that the leakage bounds for all attacker models converge with
increasing cache size. This suggests that the leakage bounds for the mbed TLS
AES implementation are robust against future hardware with larger caches, not
only with respect to acc, but also for the attacker models accd, tr, and time.

3 We round all leakage bounds up to one decimal place and truncate them to the
maximum leakage of 256bit (128bit message and 128bit key) throughout the article.

4 To support the reader in reading such diagrams, we connect the leakage bounds
computed for adjacent cache sizes and the same attacker model by dashed lines.

5

The leakage bounds for acc and accd converge to the same value, namely
69bit. This could be due to the fact that an attacker under accd (like under acc)
can infer exactly which memory blocks are cached – given that the mapping
from memory blocks to cache sets is injective. In practice, this means that, for
a system running mbed TLS AES, reducing the attack surface from acc to accd
does not lead to better leakage bounds – given that the system has a cache of
more than 16KB. In contrast, much better leakage bounds can be achieved when
reducing the attack surface to time (e.g., the 7.7bit computed for a cache size of
128KB correspond to 3% of the key and message only).

Before convergence, the leakage bounds computed for tr and time (marked by
and , respectively) decrease with increasing cache size. We will get back

to this point in Section 4. In contrast, the leakage bounds for accd (marked by
) increase with increasing cache size. Interestingly, the evolution of leakage

bounds for acc (marked by) follows a different pattern. These bounds in-
crease, until a peak is reached for 4KB cache size, and then decrease, until they
stabilize. The peak observable in the acc bounds could be due to the exact fit of
memory blocks with mbed TLS AES data (dominated by 4.25KB lookup tables)
into a cache with size around 4.25KB. If the memory blocks fit exactly into the
cache, the most information can be conveyed through the ordering of memory
blocks, so that the potential leakage to an attacker under acc is maximized.

Note that our quantitative analysis of mbed TLS AES not only allows us to
observe the influence of implementation-level design decisions on the interplay
between cache size, attack surface, and leakage bounds. It also enables us to
speculate about the practical consequences in an informed manner and, hence,
to shed more light on the effects of such design choices. In Section 4, we study the
influence of implementation-level design choices on the interplay between cache
size, attack surface, and leakage bounds for three further off-the-shelf AES im-
plementations. Moreover, we compare the effects of implementation-level design
choices across all four AES implementations.

Details on our analysis setup. In our analysis of mbed TLS AES, we consid-
ered the sequential composition of the key expansion function mbedtls aes-

setkey enc with the encryption function mbedtls aes encrypt from the file
aes.c of mbed TLS version 2.2.1, configured to use hard-coded tables (op-
tion MBEDTLS AES ROM TABLES) and to not use hardware support (option
MBEDTLS PADLOCK C). We compiled to a 32bit x86 binary without additional
code for overflow protection (option −fno−stack−protector).

We configured the AES implementation to use a key size of 128bit. Note
that this choice complies with the recommendation of the US National Institute
of Standards and Technology. They recommend a security strength of at least
128bit to protect sensitive data in unclassified applications beyond the year
2031 [13, Section 5.6.2]. For simplicity, we configured the message size in the AES
implementation also to 128bit. We configured CacheAudit to assume a four-way
set-associative cache with 64Byte line size. This cache configuration is used, e.g.,
for the level 2 cache in the current Intel micro-architecture Skylake [17, Table
2-4]. We used FIFO replacement and varied the cache size from 2KB to 128KB.

6

Remark 1. A previous version (1.3.7) of mbed TLS AES was already analyzed
in [11] (with focus on key size 128bit) and in [12] (with focus on key size
256bit). Like our analysis, [12] considered encryption jointly with key genera-
tion, while [11] considered encryption only. In [11] and [12], mbed TLS AES was
transformed before the analysis to meet the x86 sublanguage supported by the
analysis tool. As usual, a code transformation was chosen that preserves the
code’s semantics.

We extended the analysis tool to support the analysis of mbed TLS AES
without code transformations. The reader might wonder how our results for the
off-the-shelf binaries for Version 2.2.1 compare to the ones in [11, 12] for the
transformed code snippets of mbed TLS (Version 1.3.7). In brief, our results are
rather similar (including the convergence of the bounds for acc and accd from a
cache size of 16KB). This similarity shows that both the evolution of mbed TLS
versions and the application of code transformations in [11], [12] did not have
substantial effects (neither positive nor negative) on the leakage bounds.

3.3 Tool Support

From the beginning of our study, we wanted to analyze off-the-shelf AES imple-
mentations in their original form (i.e., without code transformations like the one
discussed at the end of Section 3.2). To make this possible, support for additional
x86 instructions was needed in CacheAudit. We have added such support. We
extended the x86 parser and the abstract x86 semantics in CacheAudit for the
instructions listed in Table 2. Now, CacheAudit supports all instructions that oc-
cur in the relevant code snippets from the off-the-shelf binaries of LibTomCrypt,
mbed TLS, Nettle, and OpenSSL AES.

Some of the binaries contain jump instructions that branch on the sign flag
or the overflow flag, which both were previously not supported by CacheAudit.
For instance, the conditional jump instruction Jnle (opcode 0F8F) occurs in
the binary of mbed TLS AES encryption, and the conditional jump instruction
Jl (opcode 0F8C) occurs in the binary of LibTomCrypt AES decryption. Jnle

branches on the previously supported zero flag and the previously unsupported
sign flag. Jl branches on both previously unsupported flags, i.e., the sign flag and

Type New Instructions

Arithmetic 2D (Sub), 18 (Sbb), 19 (Sbb), 11 (Adc), F7/6 (Div), 3C (Cmp)
Logic 08 (Or), 30 (Xor), 84 (Test), A9 (Test), F6/0 (Test)
Bitstring 0FA4 (Shld), 0FA5 (Shld), 0FAC (Shrd), 0FAD (Shrd)
Stack 07 (Pop)
Jump 7C, 0F8C, 7D, 0F8D, 70, 0F80, 71, 0F81, 78, 0F88, 79, 0F89, 7E,

0F8E, 7F, 0F8F (all Jcc)
Move 0F48 (Cmovs)

Table 2: Extended language coverage in CacheAudit

7

the overflow flag. In abstract interpretation, both branches of a conditional need
to be considered if the abstraction is too imprecise to determine which branch
must be chosen. This can lead to substantial imprecision of analysis results. To
avoid such imprecision, we conceptually revised the abstraction employed by
CacheAudit and modified the implementation of CacheAudit to support this
abstraction. The new abstraction represents the states of the sign and overflow
flag on the abstract level with high precision. To implement this abstraction,
we refined the data structure for representing flags on the abstract level and
adapted the implementation of the abstract semantics of all x86 instructions.

The resulting, extended CacheAudit version enabled us to analyze the off-
the-shelf binaries for mbed TLS AES, with the results described in Section 3.2.
The extended version of CacheAudit is also the basis for our systematic study of
cache side channels across AES implementations reported in Sections 4 and 5.

Remark 2. In our study, we focus on architectures with a single cache. We leave
a thorough analysis of multiple cache levels to future work. In particular, the
effects of different cache inclusion policies deserve to be studied in detail.

While we focus on the FIFO cache replacement strategy throughout this arti-
cle, we also investigated other replacement strategies, namely LRU (least recently
used) and PLRU (Pseudo-LRU). We observed that the replacement strategies in-
fluence the concrete leakage bounds. The cache sizes at which the leakage bounds
stabilize also vary across the replacement strategies. Interestingly, the leakage
bounds for 128KB cache size are identical for all three replacement strategies. We
leave a more extensive investigation of replacement strategies for future work.

4 Leakage across AES Implementations

The technique of lookup tables that store precomputed round transformations is
supported by popular libraries like OpenSSL and mbed TLS. We investigate four
such implementations, namely LibTomCrypt, mbed TLS, Nettle and OpenSSL
AES. All four implementations use four 1KB lookup tables with 32bit entries
to store the precomputed transformations for the first nine AES rounds. The
implementation of the last AES round, which uses a different transformation,
differs across the implementations. OpenSSL AES reuses the existing four lookup
tables for the last AES round, while mbed TLS and Nettle AES use an additional
0.25KB S-Box with 8bit entries, and LibTomCrypt AES uses four additional
1KB lookup tables with 32bit entries. In this section, we study the effects of this
design choice on the cache-side-channel leakage. We investigate how the different
implementations of the last round compare in terms of
– security guarantees against cache side channels and
– the interplay between cache sizes and security guarantees.

To this end, we compute leakage bounds on the AES implementations from
LibTomCrypt, mbed TLS, Nettle, and OpenSSL (see Table 3 for the exact func-
tions that we analyze), with the experimental setup described in Section 3.2.

Our results suggest that using fewer additional lookup tables in the last
round of AES leads to better security guarantees against attackers under acc

8

library configuration analyzed functions

LibTomCrypt
1.17

ENCRYPT ONLY,
LTC NO ASM,ARGTYPE

rijndael enc setup,
rijndael enc ecb encrypt (aes.c)

mbed TLS
2.2.1

MBEDTLS AES ROM-

TABLES, removed
MBEDTLS PADLOCK C

mbedtls aes setkey enc,
mbedtls aes encrypt (aes.c)

Nettle 3.2 default aes128 set encrypt key

(aes128-set-encrypt-key.c),
aes128 encrypt (aes-encrypt.c)

OpenSSL
1.0.1t

default private AES set encrypt key,
AES encrypt (aes core.c)

Table 3: AES implementations for which leakage bounds were computed

and accd. Furthermore, our security guarantees for implementations with fewer
additional tables are more robust against an increase of the cache size. They
stabilize already at a smaller cache size. In the subsequent subsections, we discuss
the influence of the lookup tables in the last AES round in detail.

4.1 Security Guarantees

To study the influence of the lookup tables in the last AES round on the height
of leakage bounds, we focus on a fixed cache size of 128KB.

The lookup tables in AES implementations have been considered with respect
to access-based attackers by Osvik, Shamir, and Tromer [32]. They discuss the
use of smaller lookup tables (e.g., one 1KB lookup table or one 2KB lookup table
in the main rounds of AES) as a countermeasure to access-based attacks. They
state that for certain access-based attackers “smaller tables necessitate more
measurements by the attacker”, i.e., reduce the leakage of one program run.
The leakage bounds that we obtain for the access-based attacker models (listed
in Table 4) confirm this. For both accd and acc, we obtain the lowest leakage
bounds, namely 64bit, for OpenSSL AES, which uses only 4KB of lookup tables.
The implementations from mbed TLS and Nettle AES, which use lookup tables
with a total size of 4.25KB, follow closely with leakage bounds of 69bit. The
leakage bounds for LibTomCrypt AES, which uses lookup tables with twice the
total size, namely 8KB, are roughly twice as high, namely 129bit. Interestingly,
reducing the total size of lookup tables in one transformation round only, already
has a positive effect on the leakage bounds. LibTomCrypt AES and mbed TLS
AES use lookup tables of the same total size in the first nine rounds, but differ
in the total size of lookup tables used in the last round. While mbed TLS AES
uses a single additional S-Box of 0.25KB in the last round, LibTomCrypt AES,
which has significantly higher leakage bounds, uses four additional lookup tables
that each require 1KB.

9

LibTomCrypt mbed TLS Nettle OpenSSL

accd 129bit 69bit 69bit 64bit
acc 129bit 69bit 69bit 64bit

Table 4: acc/accd leakage bounds for 128KB cache

LibTomCrypt mbed TLS Nettle OpenSSL

time 7.7bit 7.7bit 7.7bit 7.7bit
tr 198bit 199bit 199bit 196bit

Table 5: time/trace leakage bounds for 128KB cache

The influence of lookup tables in AES implementations on time- and trace-
based attackers has been studied by Page [34]. He recommends the use of S-Boxes
with 8bit entries, instead of lookup tables with 32bit entries. Page argues that,
the smaller table entries are, the more table entries share the same cache line.
Consequently, for smaller table entries, cache hits and misses reveal less infor-
mation. Tiri, Aciiçmez, Neve, and Andersen [39] confirm this for two time-based
attacks in a practical evaluation of variants of OpenSSL AES. They compare
an attack on OpenSSL AES, which reuses the 1KB lookup tables with 32bit
entries in the last round, to an attack on a variant of OpenSSL AES that uses
an S-Box with 8bit entries in the last round. The latter attack requires more
attacker measurements than the former. Our leakage bounds for the attacker
models time and tr are listed in Table 5. We observe that the leakage bounds
are very similar across the different implementations. In particular, the bounds
for mbed TLS and Nettle, which use S-Boxes with 8bit entries in the last round,
are not lower than the bounds for LibTomCrypt and OpenSSL, which use tables
with 32bit entries in the last round. Note that, in our approach, we approximate
the possible observations about cache hits, but not the value that an individual
observed cache hit has for the attacker. This difference between our approach
and the one in [39] might be the reason for the difference in the findings.

In summary, our study suggests that the use of fewer additional lookup tables
in the last round of AES leads to better leakage guarantees against attackers
under acc and accd. While a more fine-grained approach would be needed to
study the effectiveness of smaller table entries as a countermeasure against trace-
and time-based attackers, the leakage bounds are precise enough to confirm that
smaller lookup tables are effective against access-based attackers.

4.2 Interplay of Cache Size and Security Guarantees

The leakage bounds that we obtain for varying cache sizes for the attacker models
accd and acc are depicted in Figure 2c and Figure 2d.5 For all four AES imple-
mentations the leakage bounds stabilize with increasing cache size. The cache

5 For LibTomCrypt AES and 2KB cache size, the analysis ran out of memory.

10

(a) time

4 8 16 32

8

8.5

9

cache size [KB]

b
o
u
n
d

[b
it

]

4 8 16 32

8

8.5

9

cache size [KB]

b
o
u
n
d

[b
it

]

(b) tr

4 8 16 32

200

220

240

cache size [KB]

b
o
u
n
d

[b
it

]

LibTomCrypt

mbed TLS

Nettle

OpenSSL

(c) accd

2 4 8 16 32 64 128

50

100

cache size [KB]

b
o
u
n
d

[b
it

]

(d) acc

2 4 8 16 32 64 128

100

150

200

cache size [KB]

b
o
u
n
d

[b
it

]

2 4 8 16 32 64 128

100

150

200

cache size [KB]

b
o
u
n
d

[b
it

]

Figure 2: Leakage bounds wrt. the four attacker models

size from which they stabilize differs across the implementations. This could be
due to the minimum amount of cache sets that is needed for an injective map-
ping from memory blocks to cache sets. For LibTomCrypt, which uses 4KB of
additional tables in the last AES round, additional 15KB of 4-way set-associative
cache are needed, compared to mbed TLS AES, which uses only 0.25KB of ad-
ditional tables in the last AES round. Note that, it is of practical relevance that
the leakage bounds for acc and accd stabilize at the observed points. If leakage
bounds are computed for a stabilization point, they are robust against increasing
cache sizes, and cache sizes tend to grow with technological improvements. In
our analysis, the stabilization point is reached, once the mapping from memory
blocks to cache sets is injective.

The leakage bounds that we obtain for the attacker models time and tr are
depicted in Figure 2a and Figure 2b. We observe that the tr leakage bounds
for all four AES implementations decrease and then stabilize to roughly 200bit
with increasing cache size. The bounds for mbed TLS, Nettle, and OpenSSL are
stable starting between cache size 4KB and 8KB. The bounds for LibTomCrypt
are stable starting between cache size 8KB and 16KB. Note that, for all four
implementations, the cache sizes at which the bounds stabilize correspond to the
amount of data used by the implementations (dominated by the lookup tables).
Since the AES implementations perform 200 accesses to lookup tables during
one key expansion and encryption, a leakage of 200bit corresponds to a leakage

11

of 1bit (hit or miss) per access to a lookup table. The additional leakage before
stabilization could be due to secret-dependent eviction of other local variables.
Once all memory blocks fit into the cache, local variables are not evicted any
more. In practice, a smaller total size of additional lookup tables in the last
round of AES leads to more robustness of our tr and time leakage bounds against
changes in the cache size.

Overall, our study suggests that the decision how many additional lookup
tables are used in the last round of AES has an influence on the robustness
of the security guarantees for all four attacker models with respect to future
hardware. A smaller total size of additional tables leads to implementations that
are robust starting from a smaller cache size.

5 Hardening across AES Implementations

Hardening techniques aim to reduce the side-channel leakage of implementations.
The preloading hardening technique is tailored specifically to lookup-table-based
implementations of AES. It preloads all memory blocks that belong to lookup
tables into the cache, before running the actual implementation. Cache lock-
ing [27] locks memory blocks in cache lines. Locked memory blocks cannot be
evicted from the cache. If lookup tables are preloaded and then locked in the
cache, their presence in the cache is independent of secret information6.

Does the implementation of the last AES round in a lookup-table-based im-
plementation influence the effectiveness of preloading as a hardening technique?
To address this question, we compute leakage bounds for preloading in mul-
tiple lookup-table-based AES implementations. These implementations differ
in the techniques used to implement the last round of AES. More concretely,
we analyze the implementations from LibTomCrypt (last round with four 1KB
lookup tables), mbed TLS and Nettle (last round with one 0.25KB S-Box), and
OpenSSL (last round without additional lookup tables), to which we manually
added preloading. Throughout this section, we assume that no other processes
affect the cache content.7

In Table 6, each line corresponds to one AES implementation with preloading.
The symbol X marks the cache sizes for which we obtain the leakage bound 0bit.
The table is the same under all four attacker models acc, accd, tr, and time.

We observe that the leakage bounds for LibTomCrypt stabilize to 0bit for
caches greater than 8KB and the leakage bounds for the other AES implemen-
tations stabilize to 0bit for caches greater than 4KB. This could be due to the
cache size required to hold all lookup table entries and additional variables of
an AES implementation. When no lookup-table entry can be evicted from the
cache, the cache trace and the final cache state are constant for any secret key
and message. To rule out evictions, OpenSSL AES requires at least 4KB cache

6 Without cache locking, the preloaded table entries might be evicted from the cache
by other processes [21,22].

7 This can be realized using static cache locking if the cache size exceeds the total size
of tables. One could consider dynamic cache locking [27] if the cache is too small.

12

Cache Size [KB] 4 8 16 32 64 128

LibTomCrypt X X X X
Nettle X X X X X
OpenSSL X X X X X
mbed TLS X X X X X

Table 6: Preloading effectiveness for acc/accd/tr/time

for its 4KB lookup tables. The AES implementations from mbed TLS and Nettle
require roughly 0.25KB additional cache for the additional S-Box that they use
in the last AES round. LibTomCrypt AES requires at least 4KB of additional
cache for its additional 4KB of lookup tables in the last round. In practice,
this suggests that the use of fewer additional lookup tables in the last round of
AES not only makes preloading more efficient (because fewer blocks need to be
preloaded), but also makes preloading effective on more systems.

Furthermore, for each AES implementation and cache size, we either obtained
the leakage bound 0bit for all attacker models or for none of the attacker models.
This could be because the final cache state and the cache trace can depend on
secret information if and only if preloaded table entries might be evicted from
the cache. In practice this suggests that, if preloading is used, no additional effort
has to be spent to reduce the attack surface of an AES implementation from tr
to a more restricted attacker model.

Overall, our study suggests that preloading is effective against acc, accd, tr
and time for lookup-table-based AES implementations whose data fits into the
cache entirely.

Remark 3. It is also possible to avoid cache-side-channel leakage by implement-
ing AES without lookup tables. Instead of precomputing the round transforma-
tions, they can be computed on the fly, e.g., using bitslicing. We analyze the
bitsliced AES implementation from the library NaCl8 [6]. We obtain the leakage
bound 0bit for all four attacker models and all six cache sizes.

6 Related Work

Cache attacks on AES. AES implementations have been attacked using different
techniques to exploit cache-side-channel vulnerabilities.

Bernstein’s time-based attack on OpenSSL AES [5] exploited that a given
byte of the AES key can be characterized by the running times it induces on
different messages. Information about an unknown key was obtained by compar-
ing the duration of multiple sample AES runs with this key against previously
measured running times for known keys. The attacker model time captures the

8 the sequential composition of the functions crypto stream beforenm (beforenm.c)
and crypto stream xor afternm (xor afternm.c) from NaCl in version 20110221

13

observations from one sample AES run, where the actual running time is approx-
imated based on the numbers of cache hits and cache misses. Acıiçmez and Koç
presented trace-based attacks on OpenSSL AES [1]. The underlying samples of
cache traces were generated by instrumenting OpenSSL AES to store all access
indices. The attacker model tr captures the observations from one such sample.

Osvik, Shamir, and Tromer mounted access-based cache attacks on OpenSSL
AES using two techniques [32]. In Evict+Time, the attacker clears a cache set
after running AES and times a subsequent encryption. In Prime+Probe, the
attacker fills the cache with his data and times his own accesses to his data in
a cache set after an encryption. Both techniques allow an attacker to determine
whether a given cache set was used. This scenario is generalized by the attacker
model accd, under which attackers can observe the fill-degree of all cache sets.

An asynchronous access-based attack on AES was mounted by Gullasch,
Bangerter, and Krenn [15] with a technique later extended to Flush+Reload
[42]. These attacks motivated the attacker model acc, which is weaker because
it captures a synchronous attacker, who can only observe the final cache state.

While cache side-channel attacks [1, 5, 15, 18, 19, 32, 40] have often targeted
OpenSSL, recently the Java library Bouncy Castle was also attacked through
a cache side channel [25]. A detailed survey of microarchitectural side-channel
attacks is provided by Ge, Yarom, Cock, and Heiser [14].

Hardening techniques for AES. Preloading is a code-based technique to counter
cache side channels in lookup-table-based implementations. The cache-locking
technique, mentioned in Section 6, is supported by multiple commercial pro-
cessors [27]. Multiple other code-based, hardware-based, and operating-system-
based countermeasures exist. A survey of countermeasures is provided in [14].

Already in 2003, Page considered a variety of code-based countermeasures
against trace- and time-based cache side channels, including preloading and
lookup tables with smaller entries [34]. As countermeasures against access-based
cache side channels, Osvik, Shamir, and Tromer suggested different possibilities
to avoid memory accesses [32]. As alternatives to avoiding memory accesses,
they discussed, e.g., the use of smaller lookup tables. Brickell et al. suggested
to harden AES implementations against cache side channels by permuting the
lookup tables during the algorithm and by using one compact lookup table that
can be preloaded before each AES round [7]. Crane et al. proposed a random-
ization of the control flow and the execution characteristics of binaries [9].

On the operating system level, Page considered restricting access to precise
timing information, randomizing the duration of memory accesses, and out-of-
order execution of memory accesses [34]. On the hypervisor level, Stealth-
Mem [20] counters cache side-channels by avoiding that different VMs evict
each other’s cache lines. Hardware-based countermeasures include larger cache
lines, physical shielding of devices [34], and special cache architectures [35,41].

Leakage across implementations. To our knowledge, ours is the first systematic
study of cache-side-channel leakage across off-the-shelf AES implementations.

Different variants of one specific AES implementation have been investigated
by Tiri, Acıiçmez, Neve, and Andersen [39]. They propose an analytical model

14

for time-based cache attacks that predicts the number of required running time
samples for key recovery. They validate the model with respect to three variants
of OpenSSL AES (5KB, 4.25KB, and 4KB lookup tables), two specific approx-
imations of the attacker model time, and two different cache line sizes. To this
end, they mount attacks with an attacker who can directly access the number of
cache misses. In their predictions as well as in their attacks, the 4.25KB variant
requires more samples than the 5KB variant. While Tiri, Acıiçmez, Neve, and
Andersen consider only OpenSSL AES, we investigate cache-side-channel leak-
age across multiple AES implementations. Furthermore, while Tiri et al. focus
on time-based attacks, our study also covers access- and trace-based attacks.

Variants of mbed TLS AES 1.3.7 with/without preloading and varying key
sizes (128bit, 192bit, 256bit) have been analyzed by Doychev, Köpf, Mauborgne,
and Reinecke [12]. They observed that, under FIFO replacement, preloading is
effective against acc, accd, tr, and time for the cache sizes large enough to hold
all AES lookup tables. They also observed a positive effect of larger cache sizes
on their leakage bounds for accd, tr, and time as well as a negative effect on
their bounds for acc. They describe that the acc leakage bounds converge to
the same value as the accd leakage bounds because each cache set can contain
at most one lookup table block at the point of convergence. Our study shows
that the observations from [12] carry over to a newer version of mbed TLS.
Moreover, we show that these observations are also valid for three further AES
implementations.

7 Conclusion

We conducted a systematic study of cache side channels in off-the-shelf AES
implementations, namely OpenSSL, LibTomCrypt, mbed TLS, and Nettle AES.
Our goal was to better understand the influence of implementation details on
upper bounds for the cache-side-channel leakage of AES implementations.

Our findings suggest that the total size of lookup tables in an AES implemen-
tation plays an important role for the leakage bounds on cache side channels.
The use of a dedicated S-Box in the last round of AES, for instance, can be
avoided by masking entries of the lookup tables used in the first rounds of AES.

An interesting direction for future work will be to study the influence of
multiple cache levels and of cache inclusion policies. We hope that the approach
used for AES in this article will also be adopted by others to enable the analytic
study of cache side channels in a broad range of cryptographic implementations.

Acknowledgements We thank Clémentine Maurice and the anonymous reviewers
for helpful comments. We also thank Artem Starostin for inspiring discussions
in the initial phase of this project and Xucheng Yin for his contributions to
CacheAudit. This work has been funded by the DFG as part of the project Secure
Refinement of Cryptographic Algorithms (E3) within the CRC 1119 CROSS-
ING and was supported by Ramón y Cajal grant RYC-2014-16766, Spanish
projects TIN2012-39391-C04-01 StrongSoft and TIN2015-70713-R DEDETIS,
and Madrid regional project S2013/ICE-2731 N-GREENS.

15

References

1. Aciiçmez, O., Koç, Ç.K.: Trace-Driven Cache Attacks on AES (Short Paper). In:
ICICS. pp. 112–121 (2006)

2. ARM Ltd.: ARM buys Leading IoT Security Company Offspark as it Expands
its mbed Platform. https://www.arm.com/about/newsroom/arm-buys-leading-

iot-security-company-offspark-as-it-expands-its-mbed-platform.php

(2015), [Online; accessed Feb-11-2017]
3. ARM Ltd.: mbed TLS (Version 2.2.1-gpl). https://tls.mbed.org/download/

mbedtls-2.2.1-gpl.tgz (2016), [Online; accessed Jul-28-2016]
4. Backes, M., Köpf, B., Rybalchenko, A.: Automatic Discovery and Quantification

of Information Leaks. In: S& P. pp. 141–153 (2009)
5. Bernstein, D.J.: Cache-timing attacks on AES. Tech. rep., University of Illinois at

Chicago (2005)
6. Bernstein, D.J., Lange, T., Schwabe, P.: The Security Impact of a New Crypto-

graphic Library. In: LATINCRYPT. pp. 159–176 (2012)
7. Brickell, E., Graunke, G., Neve, M., Seifert, J.: Software mitigations to hedge AES

against cache-based software side channel vulnerabilities. IACR Cryptology ePrint
Archive pp. 1–17 (2006)

8. Committee on National Security Systems: CNSS Policy No. 15: National Infor-
mation Assurance Policy on the Use of Public Standards for the Secure Sharing
of Information Among National Security Systems. https://www.cnss.gov/CNSS/
openDoc.cfm?1858/J1y8IPFvRRvn+ZZBw== (2016), [Online; accessed Dec-29-2016]

9. Crane, S., Homescu, A., Brunthaler, S., Larsen, P., Franz, M.: Thwarting cache
side-channel attacks through dynamic software diversity. In: NDSS (2015)

10. Daemen, J., Rijmen, V.: AES submission document on Rijndael, Version 2. http:
//csrc.nist.gov/archive/aes/rijndael/Rijndael.pdf (1999)

11. Doychev, G., Feld, D., Köpf, B., Mauborgne, L., Reineke, J.: CacheAudit: A Tool
for the Static Analysis of Cache Side Channels. In: USENIX Security. pp. 431–446
(2013)

12. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: Cacheaudit: A tool for the static
analysis of cache side channels. ACM Transactions on Information and System
Security pp. 4:1–4:32 (2015)

13. Elaine Barker: Nist special publication 800-57 part 1, revision 4: Recommenda-
tion for key management - part 1: General. http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-57pt1r4.pdf (2016)

14. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. Journal of Cryptographic
Engineering pp. 1–27 (2016)

15. Gullasch, D., Bangerter, E., Krenn, S.: Cache Games - Bringing Access-Based
Cache Attacks on AES to Practice. In: S&P. pp. 490–505 (2011)

16. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: ACSAC.
pp. 261–269 (2010)

17. Intel Corporation: Intel® 64 and IA-32 Architectures Optimization Reference Man-
ual. Order Number: 248966-032 (2016)

18. Irazoqui, G., Eisenbarth, T., Sunar, B.: S$A: A Shared Cache Attack That Works
across Cores and Defies VM Sandboxing - and Its Application to AES. In: S&P.
pp. 591–604 (2015)

19. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a Minute! A fast, Cross-
VM Attack on AES. In: RAID. pp. 299–319 (2014)

16

https://www.arm.com/about/newsroom/arm-buys-leading-iot-security-company-offspark-as-it-expands-its-mbed-platform.php
https://www.arm.com/about/newsroom/arm-buys-leading-iot-security-company-offspark-as-it-expands-its-mbed-platform.php
https://tls.mbed.org/download/mbedtls-2.2.1-gpl.tgz
https://tls.mbed.org/download/mbedtls-2.2.1-gpl.tgz
https://www.cnss.gov/CNSS/openDoc.cfm?1858/J1y8IPFvRRvn+ZZBw==
https://www.cnss.gov/CNSS/openDoc.cfm?1858/J1y8IPFvRRvn+ZZBw==
http://csrc.nist.gov/archive/aes/rijndael/Rijndael.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

20. Kim, T., Peinado, M., Mainar-Ruiz, G.: STEALTHMEM: System-Level Protection
Against Cache-Based Side Channel Attacks in the Cloud. In: USENIX Security.
pp. 189–204 (2012)

21. Kong, J., Aciiçmez, O., Seifert, J.P., Zhou, H.: Deconstructing new cache designs
for thwarting software cache-based side channel attacks. In: CSAW. pp. 25–34
(2008)

22. Kong, J., Aciiçmez, O., Seifert, J.P., Zhou, H.: Hardware-software integrated ap-
proaches to defend against software cache-based side channel attacks. In: HPCA.
pp. 393–404 (2009)

23. Käsper, E., Schwabe, P.: Faster and Timing-Attack Resistant AES-GCM. In:
CHES. pp. 1–17 (2009)

24. Köpf, B., Rybalchenko, A.: Approximation and Randomization for Quantitative
Information-Flow Analysis. In: CSF. pp. 3–14 (2010)

25. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: Cache
Attacks on Mobile Devices. In: USENIX Security. pp. 549–564 (2016)

26. Massey, J.L.: Guessing and entropy. In: ISIT. p. 204 (1994)
27. Mittal, S.: A Survey of Techniques for Cache Locking. ACM Transactions on Design

Automation of Electronic Systems pp. 49:1–49:24 (2016)
28. Möller, N.: Nettle (Version 3.2). https://ftp.gnu.org/gnu/nettle/nettle-3.2.

tar.gz (2016), [Online; accessed Jul-28-2016]
29. Newsome, J., McCamant, S., Song, D.: Measuring channel capacity to distinguish

undue influence. In: PLAS. pp. 73–85 (2009)
30. OpenSSL Software Foundation: OpenSSL (Version 1.0.1t). https://www.openssl.

org/source/openssl-1.0.1t.tar.gz (2016), [Online; accessed Jul-28-2016]
31. OpenVPN Technologies, I.: HOWTO. https://openvpn.net/index.php/open-

source/documentation/howto.html (2017), [Online; accessed Feb-16-2017]
32. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The

Case of AES. In: CT-RSA. pp. 1–20 (2006)
33. Page, D.: Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel.

IACR Cryptology ePrint Archive pp. 1–23 (2002)
34. Page, D.: Defending Against Cache-Based Side-Channel Attacks. Information Se-

curity Technical Report pp. 30–44 (2003)
35. Page, D.: Partitioned cache architecture as a side-channel defence mechanism.

IACR Cryptology ePrint Archive pp. 1–14 (2005)
36. Pasareanu, C.S., Phan, Q., Malacaria, P.: Multi-run Side-Channel Analysis Using

Symbolic Execution and Max-SMT. In: CSF. pp. 387–400 (2016)
37. libtom projects: LibTomCrypt (Version 1.17). https://github.com/libtom/

libtomcrypt/archive/1.17.tar.gz (2010), [Online; accessed Jul-28-2016]
38. Smith, G.: On the Foundations of Quantitative Information Flow. In: FOSSACS.

pp. 288–302 (2009)
39. Tiri, K., Aciiçmez, O., Neve, M., Andersen, F.: An analytical model for time-driven

cache attacks. In: FSE. pp. 399–413 (2007)
40. Tromer, E., Osvik, D.A., Shamir, A.: Efficient Cache Attacks on AES, and Coun-

termeasures. Journal of Cryptology pp. 37–71 (2010)
41. Wang, Z., Lee, R.B.: A novel cache architecture with enhanced performance and

security. In: MICRO. pp. 83–93 (2008)
42. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A High Resolution, Low Noise, L3

Cache Side-Channel Attack. In: USENIX Security. pp. 719–732 (2014)

17

https://ftp.gnu.org/gnu/nettle/nettle-3.2.tar.gz
https://ftp.gnu.org/gnu/nettle/nettle-3.2.tar.gz
https://www.openssl.org/source/openssl-1.0.1t.tar.gz
https://www.openssl.org/source/openssl-1.0.1t.tar.gz
https://openvpn.net/index.php/open-source/documentation/howto.html
https://openvpn.net/index.php/open-source/documentation/howto.html
https://github.com/libtom/libtomcrypt/archive/1.17.tar.gz
https://github.com/libtom/libtomcrypt/archive/1.17.tar.gz

	A Systematic Study of Cache Side Channels across AES Implementations

