Addendum for the Paper
“Taming Message-passing Communication in
Compositional Reasoning about Confidentiality”

Ximeng Li Heiko Mantel = Markus Tasch

Department of Computer Science, TU-Darmstadt, Germany
{1i, mantel, tasch}@mais.informatik.tu-darmstadt.de

In this document, we provide the supplementary material for the paper “Taming Message-passing
Communication for Compositional Reasoning about Confidentiality” 1. In Sect. [1} we provide the
complete structural operational semantics for our programming language, and the complete instru-
mented semantics supporting our definition of “sound use of assumptions”. In Sect. [2| we provide
the proofs for Theorem 1 and Theorem 2 from the paper. In Sect. |3, we present an information-flow
type system for local security that does not contain semantic side conditions. In Sect. 4] we discuss
the typability of the authentication example and the auction example from the paper, outlining the
differences between the type system from the paper and the variant from Sect. [3| of this addendum.

1 Operational Semantics of Message-passing Language

1.1 Basic Semantics
Below we present the rules defining the operational semantics of our message-passing language.

mem’ = mem[z — [e]mem]

({skip; mem); o) — ((stop; mem); o) {({z := e;mem); o) — ((stop; mem'); o)

b € {tt’ﬁ} Heﬂmenl =b

((if e then prog,, else progy fi; mem); o) — ({(prog,; mem); o)

[[e]]mem =1t
({while e do prog od; mem); o) — ({prog; while e do prog od; mem); o)
[[e]]mem = ﬁ

({while e do prog od; mem); o) — {(stop; mem); o)
{{prog,; mem); o) — {(prog; mem'); ') prog’ # stop {{prog,; mem); c) — ((stop; mem'); ")

((progy; progy; mem); o) — ((prog’; progy; mem'); o) ((progy; progy; mem); o) — ((progy; mem'); o)

o(ch) =v-v mem' = mem[z —v] o =o[ch 9]

{{recv(ch, xz); mem); o) — ((stop; mem'); o”)

o(ch) =v-v mem' = mem[z — v][zr, — t] o = o[ch +— 7]

((if-recv(ch, =, z1); mem); o) — ({stop; mem');c’)

o(ch) =€ mem’ = mem[zy, — [f]

({if-recv(ch, z,av); mem); o) — ({stop; mem'); o)

[e]mem =v o' = o[ch — a(ch) - v)]

({send(ch, €); mem); o) — ({stop; mem);o’)

1.2 Instrumented Semantics

Below we present a calculus defining the judgment (penf;o; p) —cns (penf’;o’; u'). This judgment
says: A process with the process configuration penf and the set chs of channels used in the contin-
uation executes one step from the channel state o, resulting in the process configuration pcnf’ and
channel state ¢/, updating the instrumentation state from u to u'.

In the calculus to be presented, we write p® for Ach: ICh.u(ch) 1, and p° for Ach:ICh.u(ch)s. We
use the function ichs-of : Prog — 2/°" to obtain the set of internal channels syntactically occurring
in a program. This function is inductively defined by ichs-of (send(ch, e)) = ichs-of (“*recv(ch,x)) =
ichs-of (**if-recv(ch, z, x1,)) = {ch}, ichs-of (if e then prog, else prog, fi) = chs-of (prog,; prog,) =
ichs-of (prog,) U ichs-of (prog,), ichs-of (while e do prog od) = ichs-of (prog), and ichs-of (prog) = ()
otherwise.

mem’ = mem[z — [e]mem]

((skip; mem); o5) —>cns ((stop; mem);osp) ((x := e;mem); o; p1) —>ens ((stop; mem’); o)

lev(e) =H be {tt,ﬁ} [[d]mem =b
chs' = ichs-of (prog,,) U ichs-of (progy) U chs p' = (u*[chs’ — HI# D)o [chs’ > H])

((if e then prog,, else progy fi; mem); o;) —>ens ((Progy; mem); o; p')

levie) =L be {tt,[f} [elmem =0
((if e then prog,, else progy fi; mem); o;) —cns ((prog,; mem); o; u)

levie) =H [e]mem = tt
chs' = ichs-of (prog) U chs 1’ = (u®[chs’ — H* (D1] 12 [chs’ s H])
{{while e do prog od; mem); o; u) —cns ({prog; while e do prog od; mem); o; u')
levie) =H [e]mem = ff
chs' = ichs-of (prog) U chs p' = (u®[chs’ — H* (D] 112 [chs’ s HI])
{{while e do prog od; mem); o; 1) —chs ({(Stop; mem); o; ')
levie) =L [e]mem = tt
({while e do prog od; mem); o; u) —>cns {{prog;while e do prog od; mem); o;)

levie) =L [e]mem = ff
({while e do prog od; mem); o; u) —cns ((Stop; mem); o;)

{{progy; mem); o5 1) = cner ((progy; mem');o”s 1)
chs' = chs U ichs-of (prog,) progy # stop

1 29) chs /1’ 29 ,7 /’ !
((prog,; progy; mem); o; 1) —ens ({(progh; progy; mem!); o' ')

{{prog,; mem); o5) —>cner {{stop; mem’);o’s ') chs’ = chs U ichs-of (prog,)

((prog,; progy; mem); o5 ju) —chs ((progy; mem'); o' p')

ch € ECh o(ch)=v-v mem' =mem[z—v] o =o[ch— 7]

((“recv(ch,x); mem); o5 p1) —>ens ((stop; mem’); o'; p)

ch € ICh ' = (u®[ch > tail(u®(ch))], pn°)
o(ch) =v-v mem' = mem[z —v] o =o[ch 7]

((“recv(ch, z); mem); o; j1) —>cns ((stop; mem'); 0" ')

ch € ECh o(ch)=v-v mem' =mem[z— v][z,— tt] o =olch 7]

((**if-recv(ch, z,xv); mem); o; 1) —cns ((stop; mem'); 0’;)

ch € ICh ' = (u®[ch — tail(u®(ch))], pn°)
o(ch) =v-v mem' = mem[z — v][zy, — tt] o = o[ch — 7]

{{“*if-recv(ch, z,z1); mem); o; 1) —>ens ((stop; mem'); 0’; 1)

o(ch) =€ mem' = mem|xy — ff]

((*if-recv(ch, z,zv); mem); o; (1) —>cns ({stop; mem'); o5)

ch € ECh [e]mem =v o' = o[ch+ a(ch) -]
((send(ch, €); mem); o;) —rens ((stop; mem); o's)

ch € ICh [e]mem =v o =o[ch > o(ch)-v] u' = (u[ch — p®(ch)- (p°(ch) U lev{e))], u°)

{{send(ch, €); mem); o; 1) —>cns {(stop; mem); o’ ')

We use the judgment (penf;o;) — (penf’; o’ 1) to say that a process with the process configura-
tion penf executes one step from the channel state o, resulting in the process configuration penf’
and channel state o/, updating the instrumentation state from p to p’. We define this judgment by
{penf;o;p) — (penf'so’s 1!y if and only if (penf;o;p) —o (penf’;o’; '), Our semantic instrumen-
tation is transparent wrt. the basic semantics—it neither forbids any local computation steps, nor

enables any additional ones. This result will be formalized in Sect.

We use the judgment rtr —¢ rtr’ to state that the rich trace rtr is extended into the rich trace
rtr’ after one step of a distributed program, or of the environment, under the strategy &. We
define this judgment on the basis of the judgment (penf;o; u) — (penf’;o’; u') for the process-local

instrumented semantics.

last(rtr) = (penfl; o; 1) last(rtr) = ([..., penf,, ..]; 05 1)
&(trace-of (rtr)) = o’ (penf ;o5 m) = (penfi;o’suw')

rir —¢ rir - {penfl; o[ECh — o' (ECh)];) rtr —¢ rtr - {[..., penfl,..J; 05 1)

In the above, we obtain the trace underlying a rich trace using the function trace-of : RTr — T'r,

where trace-of ({(penfly; ox; in), . {penfln; o in) = [(penfly; o1}, - . (penfly; ou).
Given a distributed program dprog = [prog,||.. .|| prog,], we define

rtracese (dprog) = {rtr | [{[{prog,; meminit), - - . , {prog,,; meminis)]; Tinit; tinit) | (—¢) " rtr},

where piinit is Ach:ICh.(¢,L).

2 Proofs

We define a subset of high conditional programs by the following syntax. We denote the set of all
high conditional programs by HCond.

hcond ::= if e then prog, else prog, fi (lev(e) = H) | while e do prog od (lev{e) = H) | hcond; prog

Lemma 1. If ((prog; mem1); 015 1) —rens, ((progi; memy); ot; py), ((prog; mems); oa; pa) = chss
((progh; memb); ob; wh), memy =, mems, and progy # progh, then prog € HCond.

Proof. We proceed with a structural induction on prog € Prog.
Case if e then prog, else prog, fi: From mem; =1, mems and prog) # progh, it is not difficult to
see that lev(e) = H. Thus, prog € HCond.

Case while e do prog, od: Analogous to the previous case.

Case prog,; prog,: Without loss of generality, we first show prog, € HCond by the following case
analysis on prog} and progh in the lemma statement.

Sub-case prog} # progy A progh # progy: There exist prog’ and prog” such that prog’ # prog”,
progy = prog’; progy, progy = prog”; progy, and
((progy; mem1); 013 1) = chsy Uichs-of (progy) {(PTOg’; memy); o; i)

<<P7”0!]1; mem2>; 02; M2> — chsoUichs=of (progs) <<P7”09“; memé); Ué; M/2>
Using the induction hypothesis, we can derive prog; € HCond.

Sub-case prog] = progy A progy # prog,: There exists some prog” # stop such that progh =
prog”; prog,, and L,
<<p7.0g1; mem1>; g1)LL1> Hchsl Uichs=-of (progg) <<St0p; mem1>; 013 1U‘1>

((progy; mema); 025 U2) — chsyUichs-of (progy) ((PT0OG"'s meEmb); oh; p)
Using the induction hypothesis, we can derive prog; € HCond.
Sub-case prog) = prog, A progh, = progy: Contradiction with prog| # progh.
Since prog, € HCond, prog, € Prog, we have prog,; prog, € HCond.

In the remaining cases, the statement of the lemma vacuously holds. a

Lemma 2. If prog € HCond, and {({prog; mem);o;u) —cns {{(prog’;mem’);o’; '), then Vch €
ichs-of (prog) U chs : 3llst € Lev™ : u'(ch) = (llst,H).

Proof. 1t is sufficient to prove
If hcond —* prog, and ({prog; mem);o;u) —cns ({prog’; mem’);o’; '), then Vch €
ichs-of (prog) U chs : 3list € Lev™ : p/(ch) = (llst, H).
We proceed with an induction on the derivation of prog.

— Suppose hcond — if e then prog, else prog, fi, lev(e) = H, and prog = if e then prog, else prog, fi.
It is straightforward to derive the conclusion of the lemma by inspection of the rules of the
instrumented semantics.

— Suppose hcond — while e do prog, od, lev(e) = H, and prog = while e do prog, od.

It is straightforward to derive the conclusion of the lemma by inspection of the rules of the
instrumented semantics.

— Suppose hcond — hcondy; progy, hcond; —* prog,, and prog = progy; progs.
We have ((prog,; mem); o; (1) — chsUichs-of (prog,) ((PT0g1; mem');o’; p'). Thus by the induction
hypothesis, we have Ych € ichs-of (prog,) U (chs U ichs-of (progy)) : Jlist € Lev™ : p/(ch) =
(llst,H). Hence Vch € ichs-of (progy; progy) U chs : llst € Lev™ : p/(ch) = (llst, H).

This completes the proof. a

Lemma 3. If prog € HCond, and {{prog; mem); o; u) — {{prog’; mem'); o’; u'), then we have Vch €
ichs-of (prog) : Alist € Lev™ : p'(ch) = (llst, H).

Proof. The result can be directly obtained by instantiating Lemma [2| with chs = (. a

By writing the low projection Lvlstj(llst,g)7 we assume that the expression is defined. For a list
I =[ag,...,ay-1], and i € {0,...,|l] = 1}, we also write [(i) for the element a;.

Lemma 4. If |visty](ist,,0,) = [VISt2] (11sts,00), then we have

1. 01 = {5,
2. by =L = (llst; = lsta A |vlsty| = |vista]), and
3.4y =LAjeA{0,...,|vist] — 1} ANlist1(j) =L = vlst1(j) = vista(j).

Proof. Straightforward using the facts that [vlsty | (s, e,) and |vista] i, e,) are defined, O & Val
and (© & Val. O

We restate and prove Proposition 1.

Proposition 1. If Vch € ICh: |o1(ch)],, (cny = Lo2(ch) | uycen), (01, 1) = acsy, and (o2, po) = acsa,
acsyUacsg

then 09 ——=o0>.
Proof. Under the hypotheses of the proposition, we show

Vch € ICh : (L®, ch) € acsiUacsz = ((|o1(ch)| > 0 A |o2(ch)| > 0) = first(a1(ch)) = first(oz2(ch)))
Vch € ICh : (L°, ch) € acsiUacsz = (Jo1(ch)| > 0 < |o2(ch)| > 0)

Pick an arbitrary ch € ICh.

Suppose (IL®, ch) € acs1Uacsy. Without loss of generality, we assume (IL°®, ch) € acs;. From (o1, 1) =
acsy, we have |uj(ch)| > 0 = first(u(ch)) = L. Hence |p$(ch)| > 0 = p$(ch) = L. Thus we have
if |o1(ch)| > 0 Aloz(ch)| > 0 then first(o1(ch)) = first(o2(ch)), by Lemma and [o1(ch) |, (cn) =

[o2(¢h)] jua (ch)-
Suppose (LL°, ch) € acs1Uacs2. Without loss of generality, we assume (IL°, ch) € acs;. From (o1, u1) =
acsy, we have p$(ch) = L. Thus it is not difficult to derive |o1(ch)| > 0 &< |oa(ch)| > 0 using

Lo1(ch)] u, (eny = Lo2(ch)] uy(cny and Lemma]

Lemma 5. [f memy =1 memy, Vch € ICh : |01(ch)]y (en) = [02(ch) | ip(cn), ({prog; mem); ou; pu)
— {{prog’; mem)); ol; 1)), and {(prog; mems); oo; pa) — ({progh; memb); ab; ub), then Vch € ICh :
Lo1(ch)]t eny = L5 (ch)]y (eny-

Proof. We proceed with an induction on the derivation of
((prog; mema); 015 pa) — ((progy; memt); o1;) (1)

We only present a few representative cases.

Case Transition is established by a rule for send. Here prog is of the form %*send(ch, e).
If ch € ECh, then the conclusion of the lemma is trivial.
Suppose ch € ICh. We have

((“send(ch, e); mema); o1; 1) — ((stop; mem4); o1; pi1)
((“send(ch, e); mema); o2; pi2) — ((stop; mem); oa; piy)

By Vch € ICh : |a1(ch)]u, (ch) = Lo2(ch)] s (cny, and Lemma we have uf(ch) = p$(ch) for the
output channel ch.

We proceed with a case analysis on u$(ch).

Sub-case p§(ch) = H. In this case we have (u})°(ch) = pj(ch) = H. We obviously have
lo1(ch)], (eny = Lo1(ch) | 4, (cn) for the output channel ch. Analogously we have |o5(ch)], (ch) =
|oa(ch)]uy(eny- On this basis, it is not difficult to obtain Veh € ICh : [o7(ch)|u(cn)y =

_Ué(Ch)J%(ch)

Sub-case p5(ch) = L. We have (p))°(ch) = p(ch) =L, and (uh)°(ch) = p3(ch) = L.
If [e]mem, = [€]mem,, then it is trivial to establish Vch € ICh : [1(ch)] i, (cn) = [o2(ch)] s (en)-
Suppose [e]mem; # [€]mems- Since memy =1, mema, we have lev(e) = H, and the two messages

[elmem; and [€]mem, are associated with the same security level H in (pf)®(ch) and (ub)®(ch).
On this basis, it is not difficult to obtain Ych € ICh : [1(ch)] (cny = [05(ch) |y (ch)-

Case Transition is established by the first rule for sequential composition. We have that prog
= prog,; prog,, for some prog, and prog,, such that ({prog,; mem1);o1; u1) — {{progl; mem});ol; uy)
for some progl, with prog} = progl; prog,, and {({prog,; mema); oa; o) — ({progl; memb); oh; ub)
for some prog? with progh = progl; prog,, or prog’ = stop.

The conclusion of the lemma can now be derived using the induction hypothesis.

Case Transition is established by a rule for if. We have o] = 01, 05 = 02,Vch € ICh : u§(ch) C

ch)
(11)° (Ch)Auz(Ch) C (ph)°(ch), (p4)° = (uy)°, and (u})*(ch’) = pi(ch’) A (5)*(ch') = p3(ch’)
for all channels ch’ such that (,u/l)o(ch') = (uh)°(ch’) = L.

On this basis, it is not difficult to derive the conclusion of the lemma.

The completion of the induction above completes the proof. a
Lemma 6. If ({prog; mem);o; u) — ((prog mem'); o’ 1'), Yeh € ichs-of (prog) : p°(ch) = H, and
(W')° = e, then Ych € ICh : [0’ (ch) | (cny = |o (ch)JM(Ch .

Proof. We proceed with an induction on the derivation
({prog; mem); o i) — ((prog’; mem”); o”; '))

We only show a few representative cases in detail.
Case is by the rule for send, over an external channel. Here prog is send(ch, e), with ch € ECh.
The result of the lemma is straightforward since Vch € ICh : o'(ch) = o(ch), and ' = p.

Case is by the rule for send, over an internal channel. Here prog is send(ch, e) with ch € ICh.
We have ch € ichs-of (prog). Hence u°(ch) = H. By the instrumented semantics, we have Vch' €
ICh\ {ch} : (@')*(ch') = p®(ch'). Thus, we can derive the conclusion of the lemma using the
hypothesis (1')° = p°.

Case (2)) is by a rule for sequential composition. We have prog = prog,; prog, for some prog, and
progs, and {((prog,; mem);o; u) — {{progy; mem'); o’; ') for some prog}. The result of the lemma
can now be derived using the induction hypothesis,

Case is by a rule for if. We have ¢/ = . Thus it is not difficult to derive the conclusion of the
lemma using the hypothesis (u')° = p°.
The remaining cases where a non-composite command is executed are straightforward — the cases
for communication are analogous to the cases for send. The cases for while are analogous to the
cases for if. The induction completes the proof. a

Lemma 7. If prog,, = progyy, for all k < n, (prog,;; memig) =~ (progey; memar), {(progy;
MEm1k); 05 Why) — <<P7”091(k+1);m6m1(k+1)>;01(k+1);M1(k+1)>7 ((progay; memay); 095 o) — (
PTOG(k41)5 MEM2(k+1)); O2(k+1); Ha(kt1)), Veh € ICh oy (ch)], (cny = |0%(ch)] s, (cny, and
Vch € ICh = pSy(ch) T (phy,)°(ch) A psy(ch) E (uhy,)°(ch), then Ych € ICh = |o1,(ch)]uy, (ch) =
LJZn(Ch)Juzn(ch)'

Proof. We make a case analysis on whether the derivatives of prog,, and prog,, become different
prior to progy,, and prog,,, .

— Suppose there exists some kg < n such that prog,,, # progs,. We have some K < kg
such that prog,g. iy = progygs 1y but prog,, # progy.. By meguk'ﬂ)?m@muk/—lﬁ ~
(Proga(ys_1y; mema(k—1)), we have mem;s_1) =L memyp 7). Using Lemma |1} we can ob-
tain prog,(_1y € HCond and progy 1y € HCond. Using Lemma (2, we obtain that Vch €
ichs-of (progy(w—1y) * i (ch) = H, and Vch € ichs-of (progs 1)) + pops(ch) = H. It is not
difficult to see that

ichs-of (prog, 1)) 2 ichs-of (progy(,_y)) A ichs-of (progs_y)) 2 ichs-of (progy(,_))

Using the condition that for all k < n, Vch € ICh : puS,(ch) T (1);,)° (ch) Aps,(ch) T (hy)°(ch),
and the instrumented semantics, we derive Vch € ichs-of (progy(,_1)) : (Nﬁ(n,l))o(d‘) =H, and
Vch € iichs-of (proga(n—1)) = (Hy(,—1))°(ch) = H. It is not difficult to see that p3, = (1}, _1))°
and that p3, = (g, _1))°-
Using Lemma 6], we can derive

Vch € ICh : Lall(n—l)(Ch)Ju/l(n_l)(ch) = I.O—ln(Ch)J,uln(Ch)

Vch € ICh : Lffé(n—n(Ch)Ju;(n_l)(ch,) = lo2n(ch) | uzp (en)

Thus it follows from Vch € ICh : La’i(n—l)(Ch)Jﬂll(n,l)(Ch) = Lglz(n—l)(Ch”u;(n,l)(ch) that Vch €

ICh : [o1n(ch)]y, ey = Lo2n(ch)] s, (cny holds.
— Suppose for all kg < n, prog, = progsy,. We have prog,(,_1y = progs,_1. It follows from

Lemma that Vch € ICh : |01, (ch)|pu,, (ch) = Lo2n(ch)] s, (cn) Dolds.
The case analysis above completes the proof. a

Proposition 2. The following statements hold.
— If {penfsosp) — (penf's 0’5 1), then (penf; o) — (penf'; o).
— If {penf; o) — (penf';0'), then for all , there exists y' such that (penf; oy u) — (penf’;o’; u').

Proof. We prove augmented versions of the statements with universal quantification over sets chs
of internal channels:

1. For all chs € 219" if (penf;o; p) —>ens (penf';o; '), then (penf; o) — (penf’;o’).
2. If (penf;o) — (penf';o’), then for all u, and chs € 279" there exists y’ such that (penf;
o3 1) —rens (penf's oy p').
Each of 1 and 2 can be proved straightforwardly by induction on the appropriate semantic derivation.
We omit the details. It is not difficult to see that the proposition directly follows from 1 and 2. O

We proceed with the proof of Theorem 1 from the paper.

Theorem 1. For a distributed program dprog = ||;prog;, if LSec(prog;) holds for all i, and dprog
ensures a sound use of assumptions, then we have KBSec(dprog).

We construct the following binary relation on traces.

A
derog =

{(trace-of (rtr1), trace-of (rtr2)) |

rtr1 € rtracese, (dprog) A rire € rtracese,(dprog) A |rtri| = |rtra| A

Vk e {0,...,|rtri| — 1} :
AN, Progyy, - - -, PrOG1n, PTOGors - - - s PTOGoy, MEMATL, - . . , MEM1n, MEM21, . . ., MEM2n, 1,02, 41, 42 :
riri(k) = ([(progyy; memas), ..., (progy,; meman)]; o1; i) A
rira(k) = ([(progay; memar), . .., (proga,; meman)|; 025 p2) A
(V5 € {1,...,n} : (prog,;; memy;) ~ (prog,;; mema;)) A
o1 ~x 02 N Vch € ICh : |o1(ch)]u ey = [02(ch)] usieny A
< ((Vj : step from riri(k) is by prog,; < step from rirs(k) is by pmgzj)>>

k<|rtri| —1=
A (step from rtri(k) is by env. < step from rtra(k) is by env.)

}

Theorem 1 immediately follows from the following lemma, which is stated using Rgprog-

Lemma 8. For dprog = [prog,||...||prog,], if ¥i € {1,...,n} : LSec(prog;), and dprog ensures a
sound use of assumptions, then for all &, & satisfying & ~= &2, all tri € tracese, (dprog), there
exists tro € tracese,(dprog), such that (tri,1rs) € Raprog-

Proof. Fix tri € tracese, (dprog). We prove that there exists tro € tracese,(dprog) such that
(tr1, tr2) € Raprog by an induction on |try|.

Base case. We prove the result for the case where |tri| = 1. By try € tracese, (dprog), we have

tr1 = [{[{prog,; meminit), . . ., (prog,;; meminit)|; oinit) |- Pick tro = tri. By Vi € {1,...,n} :
LSec(prog;), we have Vi € {1,...,n} : (prog;; meminit) = (prog;; memin;;). Using rtry = rtrg =
[([(prog; meminis), - . . , (PT0g,,; MeMinit)|; Tinit; Minit)], it is not difficult to obtain (trq, tr2) € Raprog-

Inductive case. We prove the existence of a proper tro in the case where |tri| =n (n > 1).

We know that there exist some trqg and genf; such that |trig] =n —1 and try = trqg - genf,. By
the induction hypothesis, there exists trog € tracese, (dprog) such that (trig, tr20) € Raprog- By

the construction of Rgpreg, there exist ririg and rirqg such that

trio = trace-of (rtrig) A trao = trace-of (rtrao) (3)
rtrio € riracese, (dprog) A rirao € rtracese, (dprog) 4)
|rtrio] = |rtraol (5)
Vk €{0,...,|rtrio| — 1} : (6)
AN, Progyy, -, PTOG 10, PTOGo1s - - « s PTOGom, TMEMAT, - - -y MEM1n, MEM21, - - ., MEM2p, 01,02, [41, 2 :
rtrio(k) = ([{progyis memu), . .., (progu,; memin)]; 015 pa) A
rtrao(k) = ([(progars memai), . .., (progy,; meman); o2; pz) A
(Vi € {1,...,n} : (prog,;; mem;) = (progy;; mema;z)) A
o1 ~x 02 A Veh € ICh : [o1(ch)]u (eny = Lo2(ch)] us(eny A
(((Vj : step from ririg(k) is by prog,; < step from rtrao(k) is by progzj)>>
k <|rtrio] — 1=
A (step from rtrio(k) is by env. < step from rirag(k) is by env.)
By @, there exist prog,q,...,pr091,, ProGaq,- - - ,PT0Goy, MEMIL,. .. ,MEM1p, MEM21,. .., MM,
01, 02, {1, M2, such that
rtrio(n — 2) = ([(progiy; meman), . .., (prog,,; memin)]; 015 pa) (7)
rtrao(n — 2) = ([(progyr; meman), . .., (progsy,; meman)|; o2 p2) (8)
Vi€ {l,...,n}: (prog,;; memi;) = (prog,;; memz;) 9)
o1 ~5 02 (10)
Vech € ICh : |o1(ch)] g (o) = [o2(Ch)] g (on) (11)

We make a case analysis as to whether the step from the last configuration of trig in tr; is by a
process or by the environment.

— Suppose the step from the last configuration of ¢rqig in ¢ry is by the j-the process. That is, we
have ((prog,;; mem1;);01) — ((progy;; mem’;);o1) for some prog};, memy;, and o7. Hence,
there exists u} such that

((prog, ;; mema;); 015 pa) — ((progy;; memy;); ;s ph) (12)

by Proposition 2} Let rtry = rtrig - (..., (progy;; mem};),...J;01; p1). We then have rtry €
rtracese, (dprog). We also have try = trace-of (rtry).
From the hypothesis that dprog ensures a sound use of assumptions, , and , we have

(01, 1) |= asm-of (prog.;) A (02, p2) = asm-of (progs;) (13)

From , , and Proposition 1, we have

asm=of (progy j) Uasm=of (proga;)

J1 g2 (14)

By , we also have

o x"° asm-of (prog,;) A o2 x 7 asm-of (prog.;) (15)

By @D, , , , and , there exist progs;, mems;, 05 and pyj such that

((prog,;; mema;); o2; pa) — ((progh,; mema;); oa; i) (16)
0‘; >~ O'é (17)
(prog'lj; mem/ ;) (prog;j; mems;) (18)

We proceed to show Vch € ICh : [o7(ch)] i (cny = [5(ch)] uy(cny- Without loss of generality,
we assume that the indices k such that the steps from rtrlo(k) and rtrag(k) are taken by the
j-th process are ki, ..., ky, for some m > 0, where k,, = n — 2. For each r, supposing the
instrumentation states right after the steps from rtrio(k,) and rtrog(k,) are py, and g, ,
and the instrumentation states right before the steps from rtrig(ky41) and rtreg(ky41) are
ler+1 and /“L2k7r+1’ we have Vch € ICh : (:ullkr)o(Ch) E /’L(l)kr+1(6h) A (M/ri)o(Ch) E /’Lgkr+1(6h)7
by (4 .). Using the above conditoins together with @, we now have two related executions of
prog; (that might be interrupted in the middle by steps from other programs or from the
overall environment of the distributed program) that satisfy the conditions of Lemmalﬂ Thus
we have

Vch € ICh : Laﬂ(ch)Ju/l(Ch) = Lcr;(ch)J#IQ(ch) (19)
by Lemma
Let rirg = rtrag-([. . ., (progy;; memsy,), . . .J; 055 ps), and try = trace-of (rtra). It is not difficult
to see that try € traces§2(dp7“og) with the help of Proposition [2] We can derive (trq,tra) €
Riprog by using rtry and rtrs.
Suppose the step from the last configuration of triy in ¢r; is by the environment. We have

tr1 = trace-of (rtrio - {[{prog,,; memi1), ..., (progy,; memin)]; o1; p1))
where o] = 01[ECh — &1 (tr10)(ECh)]. Let
b2 = trace-of (virzo - {{{Brogsy; mema), .., (r0gan; memanl; o%; 2))

where o}, = 09[ECh — &3(tra)(ECh)]. From @7 we have trig ~7, trag. Thus we have

o] ~x b from , and the hypothesis £ ~= &.
On this basis, it is not difficult to establish (¢r1, tr2) € Raprog-

The induction on |tri| above completes the proof. O

We define pairings (C[a1, ..., An], (A1, ..., A,)) of secure contexts and conditions, with holes a1, ..., Ay
to be filled in with programs.

(Clat, .., An], 0(A1, ... An)) u=

(skip, true)

(z :=e,levie) C lev(z))

(send(ch,e), lev{e) C lev®(ch, D))

(“recv(ch,z), (NE & as = lev°(ch,as) = L) A lev®(ch, as) U lev®(ch, as) C lev(x))
(“if-recv(ch,z,xp), (NE & as = lev®(ch, as) C lev(xp)) A lev®(ch, as) U lev®(ch, as) C lev(z))
(if e then a1 else as fi, lev(e) = H = a1 ~ a2)
(while e do a1 od, lev(e) = L)
(

A1; A2, true)

We prove the following hook-up property of LSec(-).

10

Proposition 3. For all indices n > 0, pairs (C[a1, ..., An], (A1, ..., An)), Programs progy, ..., prog,,
we have LSec(C[progy, ..., prog,|), if we have p(progy, ..., prog,,) and ¥j € {1,...,n} : LSec(prog;).

Proof. We first consider the non-composite cases (C[progy, ..., prog,], ¢(...)) = (prog, ¢(...)) where
prog is one of skip, x := e, send(ch, e), **recv(ch, z), and **if-recv(ch, x,).
For each of the non-composite cases, we construct the relation

Ryrog ={({prog; mem1), (prog; memz)) | memi =L memsa} U (20)

{({(stop; memy), (stop; mems)) | mem1 =L mems} (21)

It is trivial that for all mem; and mems such that mem; = mems, we have (prog; mem)
Ryrog (pTog; mems).

We proceed to show that Rp.., is an assumption-aware bisimulation. It is not difficult to see
that R,y is symmetric. Pick arbitrary pair ((prog,; mem1), (prog,; mems)) from Rp.oq. We have
memy =1, mems. We also have prog, = stop < prog, = stop.

Pick arbitrary channel states o1 and o9 such that o1 ~5 09.

We show how the remaining proof obligations are discharged for the interesting cases for prog below.

Case send(ch,e). We assume the hypothesis
lev{e) C lev®(ch, () (22)

[}
We also assume o1 =09, o1 X" (), and oy X% ().

Suppose for some oj we have
({send(ch, e); mem); 01) — ({(stop; mem); oy)
It is not difficult to see that there is some o} such that

({send(ch, €); mema); 02) — ({(stop; memaz); o5)

We have (stop; mem1) Rproq (Stop; memsa) by mem; =1 memsa. We proceed to show o] ~x o5 with
a case analysis on whether ch € ECh.

Sub-case ch € ECh. We make a further case analysis on the class of ch.

— Suppose ch € PriCh. We have ob(ch,o’) = ob(ch,ch) = ©. It is not difficult to see
o ~5 o}, since the message queues for the other channels are unchanged in ¢} and oj.

— Suppose ch € EncCh. From o1 >~y 09, we have ob(ch,c1) = ob(ch,02) = (D" for some n.
We then have ob(ch, o) = ob(ch,o}) = ", It is not difficult to see that o} ~x 0.

— Suppose ch € PubCh. From o1 ~5 o9, we have 0b(ch,o1) = ob(ch, 03) = vist for some list
vist of values. We have lev®(ch,() = L. We thus have lev(e) = L by (22)). Thus we have
[elmem, = [e]lmems, by mem; =1 memso. We have ob(ch, o) = ob(ch,c}) = vist - v, where
v = [e]mem; = [€]mems,- It is not difficult to see that o} ~x 0.

Sub-case ch € ICh. Since the message queues of all the external channels are unaffected, we
trivially have o} ~5 od}.

11

Case **recv(ch, z). We assume the following hypotheses

NE ¢ as = lev°(ch,as) =L (23)
lev®(ch, as) U lev®(ch, as) C lev(x) (24)
We also assume
o1 asX {ch} o2 (25)
a1 X (as x {ch}) A o2 x"F (as x {ch}) (26)

Suppose for some mem} and of we have
{{(**recv(ch, x); mem1);01) — ((stop; mem}); a1) (27)
We make a case analysis on whether ch € ECh to discharge the remaining proof obligations.
Sub-case ch € ECh. We make a further case analysis on whether NE € as.

— Suppose NFE € as.
By (26)), we have |o2(ch)| > 0. Hence there exists some o4 and mem}, such that

((**recv(ch, x); mema); o2) — {(stop; memb); o5)

We make a further case analysis on the class of ch.

e Suppose ch € PriCh. By (24)), we have lev(z) = H. Thus we vacuously have lev(z) = L =
mem/ (x) = memb(x). It is not difficult to establish mem/ =1, mem), since the values for
the other variables are unchanged in mem/ and mem$. Hence we have (stop; mem/) Rproq
(stop; mem).

We have ob(ch,c}) = ob(ch,dh) = ©. Thus, it is not difficult to establish o} ~x o,
since the message queues for the other channels are unchanged in o} and o}.

e Suppose ch € EncCh. That (stop; mem)) Rproq (Stop; mems) can be established analo-

gously to the case where ch € PriCh.

From o1 ~5 09, we have ob(ch,o1) = ob(ch,02) = ()" for some n, where n > 0 since
NE € as. Hence, ob(ch,) = ob(ch, o) = (" '. On this basis, it is not difficult to see
that of ~5 o}.

e Suppose ch € PubCh.

From o1 ~5 09, we have ob(ch,o1) = 0b(ch,0c5) = vist, where vist is a non-empty list of
values since NE € as.

Suppose vist = v-vist’ for some v € Val and vist’ € Val*. We have mem/ (z) = mem/y(z) =
v. On this basis, it is not difficult to see that mem) =p, mem} holds. Hence we have
(stop; mem/) Rprog (stop; memb). In addition, we have o/ (ch) = ah(ch) = vist’. On this
basis, it is not difficult to establish o] ~5 5.

— Suppose NE & as. By (23), we have lev°(ch, as) = L. Hence ch € PubCh or ch € EncCh.

By (27), we have |o1(ch)[> 0. Thus we have |o2(ch)| > 0 by 01 ~x o2 and the possible
classes of ch. Hence there exists some o4 and mem/ such that

{{*recv(ch, x); mems); o2) — ((stop; mems); oh)

12

The remaining proof obligations can be discharged by a case analysis on whether ch €
PubCh or ch € EncCh, analogously to the case where NE € as.

Sub-case ch € ICh. We make a further case analysis on whether NE € as.

— Suppose NE € as.
By (26)), we have |o2(ch)| > 0. Hence there exist some 0% and mem/, such that

{{(**recv(ch, x); mema); o2) — ((stop; mems); 5)
Since no message queues for the external channels are affected in o} or o4, we trivially have
/ /
01 Xy 0y.

We make a further case analysis on whether L° and L*® are in as, to show (stop; mem/) Rproq
(stop; memb), which boils down to showing mem/ =1, mem.

e Suppose L® & as or L.° ¢ as.

From (24), we have lev(z) = H. Hence it vacuously holds that lev(z) = L = mem/(z) =
memb(z). Thus we have mem) =1 mem), from mem; =1, mems, and the fact that the
values of the other variables are unchanged in mem/ and mem.

e Suppose L* € as and L° € as.

By and NE € as, we have |o1(ch)| > 0, and |o2(ch)| > 0. Hence we can obtain
first(o1(ch)) = first(oz2(ch)) using (25). Hence we can derive mem/ (x) = memf(x). On
this basis, it is not difficult to derive mem/ =1, memy.

— Suppose NE ¢ as.

Using (23), we derive L° € as. By (27), we have |o1(ch)| > 0. Thus we have |o2(ch)| > 0
by (225). Hence there exist some o}, and mem/), such that

{{**recv(ch, x); mems); 02) — ((stop; mems); oh)
Since no message queues for the external channels are affected in o} or o4, we trivially have
o] ~x ob.

We make a case analysis on whether L® € as to show (stop; mem}) Rpnoq (stop; mems),
which boils down to showing mem/ =y, memy.

e Suppose L*® ¢ as.

By (24), we have lev(z) = H. Hence we have lev(z) = L = mem/(z) = memj(z). On
this basis, mem) =, mem/, can be derived.

e Suppose L® € as.

By ([25), |o1(ch)| > 0, and |o2(ch)| > 0, we have first(o1(ch)) = first(c2(ch)). Hence, we
have mem/ (z) = memb(z). On this basis, mem/ =1 mem/ can be derived.

Case **if-recv(ch, x,). The reasoning can be structured similarly to the case for **recv(ch,).

For each of the composite cases, we construct a specific relation that is shown to be an assumption-
aware bisimulation, which serves to justify the local security of the corresponding program.

13

Case if e then prog, else prog,, fi. We construct the following relation where if is a shorthand for
the program if e then prog, else prog, fi.

Ry = {((if; mem.), (if; memz)) | mem; =1 mema} U ~

For all memy, mems such that mem; =1 memsg, we have (if; mem,) Rj (if; memz). We proceed to
show that Rj is an assumption-aware bisimulation. It is obvious that Rj is symmetric. Pick an
arbitrary pair p = ((prog,; mema), (prog,; mems)) from Rj. We can also derive mem; =1, memsg
and prog, = stop < prog, = stop.

To discharge the remaining proof obligations, we make a case analysis on which part of Ry p
belongs to. We assume the following hypotheses. a

LSec(prog,) (28)
LSec(prog,,) (29)
lev(e) = H = prog, ~ prog,, (30)

Sub-case p € {((if; memq), (if; mema)) | mem; =1, mema}. We have prog, = prog, = if.

. . 0
Pick arbitrary channel states o1 and o5 such that o1 ~5 02, 01 =032, 01 X"), and g5 X" ().

Suppose without loss of generality that
((if; mema); 01) — ((prog,; mem1); 01) (31)

We make a case analysis on whether [e]mem, is equal to [€]mem, -

— Suppose [e]mems 7# [€lmem,- We have
({if; mema); 02) — ((progy; mema); o2)

From memy =y, mems, we have lev(e) = H. Hence we have prog, ~ prog, by . Hence
we have (prog,; mem) = (progy; memsz), which gives (prog,; mem1) Ris (prog; mems). We
also have oy ~x 09, which is preserved from before.

— Suppose [e]mems = [€]mem,. We have
((if; mema); o2) — ({prog,; mema); o2)
By and mem, =1, mema, we have (prog,; mem,) = (prog,; mems), which directly gives
(prog,; mema) Rif (prog,; mems). We also have o1 ~x 09, which is preserved from before.
Sub-case p €~. Straightforward from the fact that ~ is an assumption-aware bisimulation.

Case while e do prog, od. We construct the relation Ryhie = FoU R1 U Ra, where while is a short-
hand for while e do prog, od, and

Ro ={({while; mem1), (while; mem2)) | mem1 =1L mem2}
Ry ={((prog,; while; mem.1), (prog,; while; mems)) | (prog,; mema) ~ (prog,; mema)}

Ry ={((stop; mem1), (stop; memsz)) | mem1 =L memz}

For all mem; and mems such that mem; =1, mems, we have (while; mem1) Rynie (while; mems).
We proceed to show that Rupnje is an assumption-aware bisimulation. We have that Ryhje i

14

symmetric. Pick an arbitrary pair p = ({(progy; memy), (progy; memsa)) from Rynie. We have
memy =1, mems, and prog, # stop < progy # stop.

To discharge the remaining proof obligations, we make a case analysis on which part of Rypje p
belongs to. We assume the following hypotheses.

LSec(prog,) (32)
lev(e) =L (33)

Sub-case p € Ry. Pick arbitrary channel states o1 and o9 such that o ~x5 02, 01 é0'2, o1 XVEQ,
and g4 X7 ().

We make a further case analysis on whether while continues or terminates in one step.

— Suppose {(while; mem1);o1) — ((prog,; while; mem1); o1).

By and mem; =1, mems, we have [e]mem, = [€]mem,. Hence we have
((while; mem2); 02) — ((prog,,; while; mema); o2)

By and mem; =g, mems, we have (prog,; memy) ~ (prog,; mems). Hence, we have
(prog,; while; memy) Ruynile (PT0g,; while; mems). We also have 01 ~x o9, which is trivially
preserved.

— Suppose ((while; memq); 1) — ((stop; mem1);01). This case is straightforward.

Sub-case p € Ry. We have prog, = prog,q; while, and progy = progsq; while for some prog,, and
Progyq such that

(progo; mem1) & (progyg; memsz) (34)
Pick arbitrary channel states o1 and g5 such that

asm=of (progyg)UJasm=of (progap)

o1 >y 02 N\ 01

(35)

A o1 xPasm-of (prog,g) A a2 x Fasm-of (progag)

We make a further case analysis on whether prog;, continues or terminates after one step.

— Suppose ({prog,o; while; mem1); o1) — ((prog}y; while; mem?); o), with ((prog,o; mem1); 1)
— ((progy; mem?); o1), and prog}, # stop. By and (BE)), there exist progh, mems, and
o4 such that ((progey; mema); o2) — ((proghy; mems); o4), o ~x o4, and (prog}y; mem}) ~
(proghy; memb). Hence, we have prog), = stop < progh, = stop, which gives progh, # stop.
Thus, we have ((progyy; while; mema); o2) — ({proghy; while; mem4); ob), of ~x of, and
(prog'o; while; mem/) Runile (proghg; while; mem)).

— Suppose ({prog,o; while; memy);01) — ({while; memy); 01), with ((prog,o; mems);on) —
{{stop; mem/);c}). By and (3F), we know that there exist progh,, memj, and o}
such that ((progyg; mema);o2) — ((proghy; memb);oh), of ~x ob, and (stop; mem}) ~
(proghy; memb). Hence, we have mem/ =1, mem/, and progh, = stop.

Thus, we have ((progsg; while; mema); o2) — ((while; memb); o), of ~x o}, as well as
(while; mem/) Runile (while; memy).

Sub-case p € Ry. Trivial.

15

Case prog,; prog,. We construct the relation R, = RoU =, where

Ro = {({prog,o; prog,; mema), (progyy; progy,; memsz)) | (prog,y; mema) = (progyy; memsa)}

We assume the following hypotheses

LSec(prog,) (36)
LSec(prog,,) (37)

Pick arbitrary mem; and mems such that mem; =1, mems. By , we have (prog,; mem) =
(prog,; mems). Hence we have (prog,; prog,; mem) = (prog,; prog,; mems). We proceed to show
that R, is an assumption-aware bisimulation. It is obvious that R, is symmetric. Pick arbitrary
pair p = ({progy; memy), (prog,; mems)) from R;. We have mem, =1, mems, and prog, = stop <
prog, = stop.

We discharge the remaining proof obligations with a case analysis on which part of R, p belongs.

Sub-case p € Ryg. We have prog, = prog,y; progy,, and prog, = prog,q; progy,, for some prog,,
and progsg such that
(prog,o; mem1) & (progyy; mems) (38)

Pick arbitrary channel states o1 and o9 such that

asm=of (progy o) Uasm=of (progag)
o1 ~x 09 N\ 01 L) (39)

A o1 xPasm-of (prog,o) A o2 x Fasm-of (progag)

We make a case analysis on whether prog, is exhausted in the next step of prog,q; progy,.
— Suppose for some prog,, mem/, and of, we have
({progyo; progy,; mem1); o1) = ((progio; progy; mem’); o1)
with ((prog,y; mem1);01) = ({progiy; mem});c’), and prog}, # stop.
By (38), and (39)), there exist progh,, meml, o such that
({proga; mema); o2) — ((progag; mems); oz)

o} ~x b, and (progiy; mem}) = (proghy; mem}). Hence progy, = stop < progh, = stop.
Hence progh, # stop.

Thus, we have <<p7'0920§p7"09b§mem2>§02> — <<pr09/203p7“09b§mem/2>50/2>a 0/1 =5 Ué, and
(prog’o; progy; mem’) & (proghy; progy; memb).
— Suppose for some mem/, and o}, we have
((prog.o; progy; mem1); a1) — ((progy; memt); o1)
with ((prog,y; mem1);01) — ((stop; mem?);o1).
By , and , there exist progh,, mem}, ob such that
({progag; mema); o2) — ((proghy; memb); o)

o} ~x b, and (stop; mem}) == (proghy; mems). Hence mem) =1, mem), and progh, = stop.
Hence we have ((progsq; progy; mems); o2) — ((prog,,; memb); o). By and mem} =L
mem/b, we also have (progy; mem/) ~ (progy; mem}). Thus (prog,; mem}) R. (progy; memb).

i

16

Sub-case p €~. Trivial.

The above case analysis on the pairs of programs with holes and conditions completes the proof. 0O

We next prove Theorem 2.

Theorem 2. If lev - prog, then LSec(prog).

Proof. The proof is by induction on the derivation of lev F prog. In each case we build on the
hook-up property of LSec(-) (Proposition |3)) to obtain the desired result. We only present one base
case and one inductive case below.

Case **recv(ch, z): By lev F “recv(ch,x), we have
NE ¢ as = lev°(ch,as) =L (40)
lev®(ch, as) U lev®(ch, as) C lev(z) (41)
Instantiating Proposition [3|with n = 0, and the fourth pair of context and condition, we know that
LSec(*recv(ch,x)) holds, if (NE & as = lev®(ch, as) = L) A lev®(ch, as) U lev®(ch, as) C lev(x),
which is ensured by , .

Case if e then prog, else prog, fi: By lev - if e then prog, else prog, fi, we have

lev F prog, (42)
lev F prog, (43)
lev{e) = H = prog, ~ prog, (44)

Instantiating Proposition 3| with n = 2, the sixth pair of context and condition, prog,, and prog,,
we have LSec(if e then prog, else prog, fi) holds if lev(e) = H = prog,; ~ progy, LSec(progy),
and LSec(prog,). Using the induction hypothesis on and ([43)), we can derive LSec(prog;)
and LSec(prog,). Combining this with (44)), it is not difficult to see that all the conditions for
LSec(if e then prog, else prog, fi) to be established are satisfied.

In the remaining cases, the premises of the typing rules give rise to the premises of the corresponding
statements in the hook-up property in an analogous fashion to the cases above. The induction
completes the proof of this theorem. a

17

NE & as = lev°(ch,as) =L NE & as = lev°(ch, as) C lev(xy)
lev®(ch, as) U lev®(ch, as) C lev(xz) lev°®(ch,as) U lev®(ch, as) C lev(x)

lev kg “*recv(ch,) lev Fg “if-recv(ch, z, xp)
lev{e) C lev®(ch, D) lev{e) C lev(x)
lev -5 send(ch, e) levksz:=e€ lev g skip

lev kg prog, lev ts prog, lev(e)=H = low-slice-of (prog,) = low-slice-of (prog,)

lev Fs if e then prog, else prog., fi

lev(e) =L lev kg prog lev ks prog, lev g prog,

lev s while e do prog od lev -5 progy; prog,,

L if ch€ICh AL® € as L if ch€ ICh AL° EasV
lev®(ch, as) = Vch € PubCh lev®(ch, as) = ch € PubCh V ch € EncCh

H otherwise H otherwise

Fig.1: The Fully Syntactic Security Type System

3 Fully Syntactic Security Type System

We present a security type system that is sound wrt. local security, yet has no semantic side condition.
This type system establishes the judgment lev Fg prog, saying that the program prog is (fully
syntactically) typable in the environment lev.

The typing rules are presented in Fig. [I| Except for the if rule, all the rules in Fig. [1| are identical
to the rules of our original type system (in Fig. 1 of [1]) for the same language constructs.

For the if rule, the side condition lev(e) =H = low-slice-of (prog,) = low-slice-of (prog,) is used to
replace the semantic side condition lev{e) =H = prog; ~ prog, in our original type system. Here,
the function low-slice-of : Prog — LS U{L} gives the low slice of each program (defined in Fig. [2)).
The set LS of low slices is the same as the set of programs, except that the set of expressions
is extended with the special element ¢, which represents an expression that is not contained in
a low slice. Intuitively, the low slice of a program is a slice that captures the effects on the low
parts of the memory, and the public content or presence of messages over communication channels,
created by executing the program. Hence, the side condition lev(e) =H = low-slice-of (prog,) =
low-slice-of (prog,) captures the requirement that the execution of the two branches of the if should
have the same effects on the public parts of the memory and channel states.

We have the following theoretical results about the syntactic security type system.

Theorem 3. If lev g prog, then lev F prog.
Corollary 1. If lev g prog, then LSec(prog).

The theorem says that the fully syntactic security type system is sound wrt. the security type
system presented in Fig. 1 of the paper. The corollary says that the fully syntactic security type
system is sound wrt. local security. Hence, the fully syntactic security type system can be used as
a replacement of the security type system presented in the paper to the benefit of fully operational
type checking, and verification of local security.

Theorem [3| can be shown with a straightforward structural induction on prog once the following
lemma is shown. Corollary [I] then follows immediately from Theorem [2] and Theorem [3]

18

send(ch,e) if ch € PubCh
low-slice-of (send(ch, e)) = < skip if ¢ch € PriCh U ICh
send(ch,o) if ch € EncCh

*recv(ch,z) if lev°(ch,as) =L Alev®(ch,as) =L
low-slice-of (“*recv(ch, x)) = { skip if lev®(ch, as) = H A lev®(ch, as) =H
“recv(ch,o) otherwise

*if-recv(ch, z, xp) if lev®(ch, as) =L A lev®(ch,as) =L
skip if lev®(ch, as) = H A lev®(ch, as) = H
Nlev(zy) = H

*if-recv(ch, o, xp) otherwise

{:r =e if lev(z) =L

skip otherwise

low-slice-of (“*if-recv(ch, z, zp)) =

low-slice-of (x :=¢€) =

low-slice-of (skip) = skip

low-slice-of (if e then prog, else prog, fi)

if e then
low-slice-of (prog,)
else if lev(e) =L
— low-slice-of (prog,)
fi
skip; low-slice-of (prog,) if lev(e) = H A low-slice-of (prog,) = low-slice-of (prog,)
€ otherwise

low-slice-of (while ¢ do prog od) — while e do low-slice-of (prog) od if lev(e‘> =L
1 otherwise

low-slice-of (prog,; progy) = low-slice-of (prog,); low-slice-of (progs)

Fig.2: The Definition of the Function low-slice-of

Lemma 9. If lev g prog,, lev Fs prog,, and low-slice-of (prog,) = low-slice-of (prog,), then
prog, ~ progs.

This lemma can be shown with a structural induction on prog,, using the two following lemmas in
the case for if. The proofs of these two lemmas are straightforward and omitted here.

Lemma 10. If lev kg prog, low-slice-of (prog) = skip, o x* asm-of (prog), then for all mem, there
exist mem’ and o', such that {{prog; mem);c) — {(stop; mem’);c’).
Lemma 11. If lev kg prog, low-slice-of (prog) = skip, and ((prog; mem); o) — ((prog’; mem');c’),
then the following statements hold:

1. Yz € Var : mem/'(z) # mem(z) = lev(z) = H,

2. Ych € ECh : 0'(ch) # o(ch) = ch € PriCh.

19

4 Typability of the Auction Example and Authentication Example

Type-Checking Using the Type System from the Paper. As outlined in the paper, the
authentication example and the auction example can successfully be type-checked using the type
system presented in Fig. 1 of the paper.
While for the authentication example the semantic condition in the premise of the if-rule is not
used in the type-checking, the auction example contains two high if-branches where the semantic
condition is used. We provide the bisimulation relations that can be used to established the semantic
condition for the two if-branches, respectively.
Client Program. With the symmetric closure of the following relation the conditional branching in
auct-cl can be type-checked.

{({send(int,, calc(min, thres)); mem1), (skip; memz)) | memi =L mema}

U {((stop; memy), (stop; memz)) | mem1 =r mems}

Server Program. With the symmetric closure of the following relation the conditional branching in
auct-srv can be type-checked.

{({send(pri, bid); mem.), (skip; mema)) | mem1 =1 memz}

U {((stop; memy), (stop; mems)) | memi = memz}

Type-Checking Using the Fully-Syntactic Type System of this Addendum. The fully-
syntactic type system provided in Sect. [3]of this addendum allows one to type-check both the auction
example and the authentication example without constructing bisimulation relations.

For the authentication example, the type-checking can be conducted analogously to the type-
checking using the type system from the paper. This is because neither the client program nor
the server program contains a high conditional branching. Hence, the semantic condition and also
its syntactic replacement are not used in the type-checking.

For the auction example, the type-checking of each high conditional branching can be conducted by
a comparison of the low-slices of the two branches. Since for each high conditional branching these
two low-slices are equal, both the client program and the server program can be successfully typed.
We give the computed low-slices below.

Client Program. For the client program, the relevant low-slices are the following:

low-slice-of (send(int,, calc(min, thres))) = skip

low-slice-of (skip) = skip
Server Program. For the server program, the relevant low-slices are the following;:
low-slice-of (send(pri, bid)) = skip
low-slice-of (skip) = skip

It is worth mentioning that all the example programs from Sect. 2 of our paper [1] are also typable
using the fully syntactic security type system.

References

1. Ximeng Li, Heiko Mantel, and Markus Tasch. Taming message-passing communication in compositional
reasoning about confidentiality. In 15th Asian Symposium on Programming Languages and Systems
(APLAS), 2017. Accepted for publication.

20

	Addendum for the Paper ``Taming Message-passing Communication in Compositional Reasoning about Confidentiality''

