
This work has been funded by the DFG as part of the project Secure Refinement of Crypto-
graphic Algorithms (E3) within the CRC 1119 CROSSING.
This work was supported by the German Federal Ministry of Education and Research (BMBF)
as well as by the Hessen State Ministry for Higher Education, Research and the Arts (HMWK)
within CRISP.

SPASCA: Secure-Programming
Assistant and Side-Channel
Analyzer
Technical Report TUD-CS-2017-0303
November 2017

Ximeng Li, Heiko Mantel, Johannes Schickel, Markus Tasch, Iva Toteva, Alexandra Weber

Technische Universität Darmstadt

Modeling and Analysis
of Information Systems

SPASCA: Secure-Programming Assistant and
Side-Channel Analyzer

Ximeng Li, Heiko Mantel, Johannes Schickel,
Markus Tasch, Iva Toteva, and Alexandra Weber

Department of Computer Science, TU Darmstadt, Germany
lastname@mais.informatik.tu-darmstadt.de

Abstract Information leakage in computer systems can be clustered in
different classes of information leakage. Two examples of such classes
are information leakage through data content and information leakage
through execution time. This report presents the Secure-Programming
Assistant and Side-Channel Analyzer (SPASCA), an information-flow
analysis tool for Java source code programs. SPASCA can be used to
detect information leakage in programs written in a rich sequential Java
subset. It implements two static type-based information-flow analyses:
a timing-insensitive analysis detecting only leakage through data con-
tent, and a timing-sensitive analysis also detecting information leakage
through execution time. The timing-sensitive analysis considers a tran-
script model of time where the transcript contains the program counter
and array accesses. To aid the software engineer in developing secure soft-
ware, SPASCA is seamlessly integrated as plug-in for the Eclipse IDE.

1 Introduction

In today’s computerized society, it is an increasingly pressing concern to avoid
unintended information leakage through IT systems. For instance, when a com-
puter program is used, it is important that the user’s private information is not
leaked by the program to the developer of the program.

Information-flow security [SM03,Man11] aims at providing end-to-end se-
curity guarantees for IT systems. For confidentiality, an end-to-end guarantee
means that after a system is given access to a secret, it is impossible to leak the
secret to a public observer via the execution of the program.

Information leakage in computer systems can be clustered in different classes
of information leakage. Two broad classes of information leakage are information
leakage through data content and information leakage through execution time.
The latter class of information leakage is also called timing side channels. It has
been shown that timing side channels could lead to enough leakage of informa-
tion about cryptographic keys such that an entire key could be revealed to an
attacker, e.g. [Koc96].

For the detection of possible information leakage in software, information-
flow analysis tools have been developed in the research area of information-flow

security, e.g. [GHM13,LMS+14,BLMS15,GKP+15]. The development of these
tools builds on decades of research on the theory of information-flow security.

The static detection of potential information leakage helps to ensure security
during software development. Of the underlying techniques used in the tools for
static information-flow analysis, security type systems [VSI96] are a prominent
one. In a type-based information-flow analysis, the confidentiality of a variable
is modeled by a security type of the variable. A program is deemed secure if
the program is typable with the security type system. Security type systems
are a lightweight technique for information-flow analysis, and often enable the
automatic verification of the security of a program or the automatic identification
of potential information leaks in a program.

In this report, we present our tool Secure-Programming Assistant and Side-
Channel Analyzer (SPASCA), an information-flow analysis tool for Java source
code programs. SPASCA can be used to detect information leakage in programs
written in a rich sequential subset of Java (with classes and sub-classes, methods,
arrays, and expressions with side effects).

SPASCA implements two static type-based information-flow analyses: a timing-
insensitive analysis and a timing-sensitive analysis. The two information-flow
analyses are formalized as security type systems. The timing-sensitive security
type system is an adaptation of the timing-insensitive security type system. It
is based on a transcript model of time [MPSW05] where the transcript con-
tains both the program counter and array accesses. By implementing both a
timing-insensitive analysis and a timing-sensitive analysis, SPASCA can be used
not only to detect regular information leaks via assignments but also to detect
timing side channels in a given program.

SPASCA consists not only of an implementation of the two underlying security
type systems but is also integrated as plug-in for the Eclipse IDE. With this
integration, SPASCA can be used to provide immediate feedback on potential
information leaks during development of secure software.

Structure. In Section 2, we introduce the sub-language of Java considered in
SPASCA. In Section 3, we introduce the notion of security policies underlying
our security type systems. In Section 4, we define the security typing rules of
the timing-insensitive security type system as well as the timing-sensitive se-
curity type-system implemented in SPASCA. In Section 5, we give an overview
of SPASCA’s integration into the Eclipse IDE and briefly discuss selected case
studies. We discuss related work in Section 6 and conclude in Section 7.

2 Programming Language

In SPASCA, we focus on a sequential object-oriented sub-language of Java. The
language is an extension of the language considered in [BLMS15]. For instance, it
is extended by arrays, side-effectual expressions, static fields, and static methods.

We denote the set of all possible class names with C, the set of all possible
method names with M, the set of a possible field names with F , the set of all

3

prim-types ::= boolean | byte | short | int | long | float | double

types ::= prim-types | C | types[]

where C ∈ C
Figure 1. Data Types

possible variable names (including formal method parameters) with X , and the
set of all possible primitive values with V. We assume thatM∩F = ∅ holds. We
also assume that Object ∈ C and this, result ∈ X hold. We use Object to denote
the class Object in Java, use this to denote the this-pointer in Java, and result as
unique variable in a method to identify the return value. Beyond that, we leave
the sets C, M, F , X , and V underspecified.

Data Types. Our language is defined based on the set of data types T that
is defined by the non-terminal types in the BNF shown in Figure 1. That is,
the supported data types are the primitive data types of Java, classes with a
name C ∈ C, and arrays with an arbitrary base type. Note that our definition of
data types supports multi-dimensional arrays because T [] ∈ T for all T ∈ T. As
convention, we write (T [])n for arrays with base type T of dimension n.

Expressions. The expressions of our language are based on the set UNOP of
unary operators, the set BINOP of binary operators, and the set ASSGNOP
of assignment operators. All operators in these three sets correspond to the
syntactically equivalent Java operators.

UNOP -SE = {++, −−}
UNOP -NSE = {+, −, !, ∼}

UNOP = UNOP -SE ∪ UNOP -NSE

BINOP = {==, !=, <, <=, >, >=,&, |,&&, ||, ˆ}
∪ {+,−, ∗, /,%, >>, <<, >>>, <<<}

ASSGNOP = {=,+=,−=, ∗=, /=,%=,&=, |=, ˆ=, <<=, >>>=, >>=}

The unary operators are partitioned into unary operators with potential side-
effects (i.e. operators that might lead to changes on the heap) and unary op-
erators without side-effects. The unary operators with potential side-effects are
the increment ++ and the decrement −−. The unary operators without potential
side-effects are the plus + that indicates a positive value, the negation − that
negates a value, the logical complement !, and the bitwise complement ∼.

The binary operators are the usual comparison operators, the usual logical
connectives (including lazy and eager variants of conjunction and disjunction),
and the usual arithmetic expressions including both signed and unsigned shifts.

4

name-exprs ::=x | exprs.f | C.f | x[exprs] · · · [exprs] |
exprs.f [exprs] · · · [exprs] | C.f [exprs] · · · [exprs]

exprs ::=v | null | name-exprs | (exprs) | (types)exprs |
〈unop-nse〉exprs | 〈unop-se〉name-exprs | name-exprs〈unop-se〉 |
name-exprs〈assgnop〉exprs | exprs〈binop〉exprs |
exprs instanceof types | exprs ? exprs : exprs |
new C() | new types[exprs] | exprs.m(exprs) | C.m(exprs)

where v ∈ V, x ∈ X , f ∈ F , m ∈M, C ∈ C, 〈unop-nse〉 ∈ UNOP -NSE,
〈unop-se〉 ∈ UNOP -SE, 〈unop〉 ∈ UNOP , 〈binop〉 ∈ BINOP , and 〈assgnop〉 ∈ ASSGNOP

Figure 2. Expressions

The assignment operators are the standard assignment = and the compound
assignments that modify the value stored in the referenced variable or field and
then reassign the resulting value to the referenced variable or field. Note that all
assignment operators have side-effects because a variable or field is overwritten.

The set of expressions E in our language is defined by the non-terminal exprs
in the BNF shown in Figure 2. In the BNF x denotes arbitrarily but finitely many
repetitions of a term x. An expression in our language is a literal expression (v
or null), a variable access, a (static) field access, an expression in parentheses, a
cast expression, a composition of expressions using a unary operator or a binary
operator, an instance check, a conditional, an instance creation, or a (static)
method call. Note that unary operators with side-effects are only composed with
the expressions for variable access and field access.

Statements, Methods Definitions, Class Definitions and Programs.
The set of statements S, the set of methods definitions M and the set of class def-
initions C in our language are, respectively, defined by the non-terminals stmt,
mthds, and classes in the BNF shown in Figure 3. In the BNF, x denotes ar-
bitrarily but finitely many repetitions of a term x. The special statement empty
denotes an empty block in Java. Variable declarations (with and without ini-
tialization) in our language must occur at the beginning of a statement. Beyond
these two special cases, the statements of our language are selected side-effectual
expressions, sequential composition, conditional branching (with and without an
else-branch), while-loops, and for-loops.

In a non-void method definition, m denotes the name of the method, types
declares the return type of the method, types x declares the (potentially empty)
list of the method’s formal parameters, and the method body is composed out
of the declaration of the variable result , the body of the method and the return
statement. A void method definition is equivalent to a non-void method definition
except that no return type is declared and the variable result is not declared.

5

decls ::= x | x = exprs | decls,decls
var-decls ::= types decls

stmt ::= empty | var-decls; stmt | 〈unop-se〉name-exprs | name-exprs〈unop-se〉 |
name-exprs〈assgnop〉exprs | exprs.m(exprs) | C.m(exprs)

stmt; stmt | if (exprs) {stmt; } else {stmt; } | if (exprs) {stmt; } |
while (exprs) {stmt; } | for(stmt; exprs; stmt) {stmt; }

mthds ::= types m(types x){ types result = exprs; stmt; return result ; } |
void m(types x){stmt; return; }

classes ::= class C extends C′ {types f ; mthds }

where x ∈ X , 〈unop-se〉 ∈ UNOP -SE, 〈assgnop〉 ∈ ASSGNOP ,
f ∈ F , m ∈M, and C,C′ ∈ C,

Figure 3. Statements, Methods and Classes

In a class definition, C denotes the name of the class, C ′ declares the inter-
mediate superclass of the class, and the body of the class definition declares its
fields and methods.

Based on this syntax of our language, we define programs in our language as
a subset of class definitions, i.e. P ⊆ C.

Class Hierarchy of a Program. The class definitions of a program P ⊆ C
indirectly specify the inheritance hierarchy of classes in P . Given a class defi-
nition class C extends C ′ {T1 f1; . . . Tn fj ; m1 . . .mn } ∈ P , the class C is an
intermediate subclass of C ′ in P , written C≤1

PC
′. We write ≤P for the reflexive,

transitive closure of the immediate subclass relation ≤1
P . That is, the relation

≤P is the subclass relationship for classes defined in P .

A subclass C of a class C ′ inherits all field declarations and methods defini-
tions from its superclass C ′. If a method m defined in C ′ is redefined in C, then
the method is overridden by its new definition in C.

For the remainder of this report, we assume that Object is a superclass of all
classes defined in a program P , i.e. C≤P Object for any class C defined in P .

Well-Formedness. We call a program P ⊆ C in our language well-formed if
and only if the following conditions are satisfied:

(1) Type-correctness: The program satisfies type-safety conditions commonly im-
posed by Java compilers.

(2) Unique names: Each class has a unique name. Within each class, fields and
methods have unique names. Within each method, local variables and formal
parameters have unique names.

6

(3) Well-formed overriding : Field names declared in a class are not redeclared
in subclasses, and methods are only overridden by methods with the same
formal parameters with the same data types.

For the remainder of this report, we only consider well-formed programs.

Semantics. The semantics of programs in our language corresponds to the
semantics of an equivalent Java subset. We do not provide a formal semantics
for our language in this report. We refer the interested reader to the addendum
of [BLMS15] for the formal semantics of a similar Java sublanguage.

Variables, Fields and Methods of a Program. To uniquely identify method
names, field names, and variable names across multiple class definitions, we use
elements of the set MID = C ×M to refer to a method in a specific class,
elements of the set FID = C ×F to refer to a field in a specific class, and
elements of the set V ID = C×M×X to refer to variables in a specific method
of a specific class. That is, intuitively we uniquely identify methods, fields and
variables across multiple class definitions by their fully-qualified name.

For a given program P ⊆ C, we use the partial functions methodsofP : C ⇀
P(M), fieldsofP : C ⇀ P(F), and varsofP : MID ⇀ P(X) to, respectively,
retrieve all method names of methods declared or inherited by the class with
name C of P , all field names of fields declared or inherited by the class with name
C of P , and all variable names of variables declared as local variables or as formal
parameters by a method that is defined in the class with name C of P . More
specifically, methodsofP is defined for C if and only if P contains a definition
of a class with name C. If methodsofP is defined for C then methodsofP (C)
is the set of all method names of methods declared or inherited by the class with
name C. The function fieldsofP is defined for a class with name C if and only
if P contains a definition of a class with name C. If fieldsofP is defined for C,
then fieldsofP (C) is the set of all field names of fields declared or inherited by
the class with name C. The function varsofP is defined for a method identifier
mid = (C,m) if and only if P contains a definition of a class with name C
that defines or inherits a method with name m. If varsofP is defined for mid,
then varsofP (mid) is the set of all variables names of variables declared as local
variables or as formal parameters by the method with name m. Finally, we use
namesP to denote the set of identifiers of P . We define namesP by:

namesP ={(C,m) ∈MID | m ∈methodsofP (C)}
∪ {(C, f) ∈ FID | f ∈ fieldsofP (C)}
∪ {(C,m, x) ∈ V ID | x ∈ varsofP ((C,m))}

For a given program P ⊆ C, we use the partial function parsofP : MID ⇀
X ∗ to retrieve the formal parameters of a method defined in a class of P in their
order of declaration. The function parsofP is defined for a method identifier
mid = (C,m) if and only if P contains a definition of a class with name C

7

typeP ((C,m), v) = primtype(v)

typeP ((C,m), null) = Object

typeP ((C,m), x) = vtypeP ((C,m, x))

typeP ((C,m), E.f) = ftypeP ((typeP ((C,m), E), f))

typeP ((C,m), E.f) = ftypeP ((C′, f))

typeP ((C,m), x[E] . . . [E]) = T if vtypeP ((C,m, x)) = T [] . . . []

typeP ((C,m), E.f [E] . . . [E]) = ftypeP ((C′, f))

typeP ((C,m), C.f [E] . . . [E]) = ftypeP ((C′, f))

typeP ((C,m), (E)) = typeP ((C,m), E)

typeP ((C,m), (T) E) = T

typeP ((C,m), 〈unop〉E) = typeP ((C,m), E)

typeP ((C,m), E〈unop〉) = typeP ((C,m), E)

typeP ((C,m), E〈assgnop〉E′) = typeP ((C,m), E)

typeP ((C,m), E〈binop〉E′) = merge(typeP ((C,m), E),

typeP ((C,m), E′))

typeP ((C,m), E instanceof T) = boolean

typeP ((C,m), E ?E′ :E′′) = merge(typeP ((C,m), E′),

typeP ((C,m), E′′))

typeP ((C,m), new C′) = C′

typeP ((C,m), new T [E]) = T []

typeP ((C,m), E.m(T1 E1, . . . , Tn En)) = vtypeP ((C′,m, result))

typeP ((C,m), C′.m(T1 E1, . . . , Tn En)) = vtypeP ((C′,m, result))

where v ∈ V, x ∈ X , T, T1, . . . , Tn ∈ T, E,E′, E′′, E1, . . . , En ∈ E, 〈unop〉 ∈ UNOP ,
〈assgnop〉 ∈ ASSGNOP , 〈binop〉 ∈ BINOP , f ∈ F , m ∈M, C,C′ ∈ C, primtype(v) is the

primitive type of v, and merge(T, T ′) is the correct merged type of T and T ′.

Figure 4. Types of Expressions in a Method

that defines or inherits a method with name m. If parsofP is defined for mid,
then parsofP (mid) = (x1, ..., xn) if the method with name m is defined in the
class with name C with the list of formal parameters (x1, ..., xn) and, otherwise,
parsofP ((C,m)) = parsofP ((C ′,m)) where C≤1

PC
′.

Concrete Data Types in a Program. For a given program P ⊆ C, we
use the partial functions ftypeP : FID ⇀ T and vtypeP : V ID ⇀ T to,
respectively, retrieve the data types of fields and variables declared in P . More
specifically, the function ftypeP is defined for a field identifier fid = (C, f) if
and only if f ∈ fieldsofP (C). If f is declared with data type T in the definition
of the class with name C, then ftypeP (fid) = T . Otherwise, f is declared in a
superclass of the class with name C and ftypeP (fid) = ftypeP ((C ′, fid)) where

8

C≤1
P C’. The function vtypeP is defined for a variable identifier vid = (C,m, x)

if and only if x ∈ varsofP ((C,m)). If the method with name m is defined
in the class with name C and x is declared (either as local variable or formal
parameter) with date type T in this method, then vtypeP (vid) = T . Otherwise,
the method with name m is defined in a superclass of the class with name C and
vtypeP (vid) = vtypeP ((C ′,m, x)) where C≤1

P C’.
Utilizing these functions, we use the partial function typeP :MID×E⇀T

to retrieve the type of an expression in a method of P (cf. Figure 4).

3 Security Policy and Security Typing

Information-Flow Policy. We capture the permitted flow of information
by information-flow policies. An information-flow policy defines a set of secu-
rity domains D, an interference-relation v⊆ D×D, and a domain assignment
da : FID ∪ V ID ⇀ D. The security domains represent abstract levels of confi-
dentiality. The interference-relation defines between which pairs of security do-
mains information flow is permitted. That is, if dvd′, then information flow from
d to d′ is permitted. Complementary, if d 6vd′, then information flow from d to d′

is forbidden. The domain assignment associates some information containers of
a program (i.e. some variables and fields of a program) with a security domain.
That is, for two information containers a, b ∈ FID ∪ V ID writing information
from a into b is permitted if and only if da(a)vda(b).

For the remainder of this report, we consider two-level information-flow poli-
cies (D,v,da) whereD = {low, high} andv= {(low, high), (low, low), (high, high)}.
We leave the domain assignment for a concrete program P underspecified but
assume that it is consistent for P .

Definition 1. Let D be a set of security domains. Let P ⊆ C be a program. Let
g : namesP ⇀ D. The partial function g is consistent for P if and only if for
all C,C ′∈C such that C≤PC

′ the following conditions are satisfied:
(1) for all field names f ∈ fieldsofP (C′), if g is defined for (C, f) and (C ′, f)

then g(C, f) = g(C ′, f)
(2) for all method names m ∈ methodsofP (C′), if g is defined for (C,m) and

(C ′,m) then g(C,m) = g(C ′,m)
(3) for all method names m ∈methodsofP (C′), and variable names of m’s for-

mal parameters x ∈ {x | (x1, . . . , xn) = parsofP ((C ′,m))∧∃i ∈ {1, ..., n}.x =
xi}, if g is defined for (C,m, x) and (C ′,m, x), then g(C,m, x) = g(C ′,m, x)

That is, a consistent domain assignment for a program P respects the inheritance
hierarchy of P , and the overriding of methods in P .

Security Typing. The domain assignment of an information-flow policy does
not necessarily relate all information containers of a given program to a security
domain. To check the validity of the security requirements using our security
type systems defined in Section 4, a complete security typing of all information
containers, including methods is necessary.

9

Definition 2. Let D be a set of security domains. Let P ⊆C be a program. A
complete security typing of P is a function t : namesP→D consistent for P .

A security typing t is compatible with a given domain assignment da for a
program P if and only if da(a) = t(a) whenever da is defined for a ∈ namesP .

A security typing of P induces what security domains are associated with the
this-pointer of a method, the formal parameters of a method, the return value of a
method, and the heap effect of a method (i.e. a lower bound on the confidentiality
of fields which the method modifies). Given a security typing t of a program P ,
we use method signatures msigt

P to capture this induced association of security
domains. That is, for a method with name m defined in the class with name
C such that msigt

P ((C,m)) = (dthis , d1, . . . , dn, dh, dresult), the security domain
associated with the this-pointer is dthis , the security domains associated with
the formal parameters are d1, . . . , dn, the security domain associated with the
heap effect is dh, and the security domain associated with the return value is

dresult . For a concrete method signature, we write 〈dthis , (d1, . . . , dn),
dh−→ dresult)〉

instead of (dthis , d1, . . . , dn, dh, dresult).
Furthermore, a security typing of P induces what security domains are as-

sociated with the array identifiers of an expression in a specific method. Given
a security typing t of a program P , we use the partial function arrayDomstP :
(MID×E) ⇀ P(D) to denote the set of security domains associated with an
expression in a specific method. That is, arrayDomstP is defined for a method
identifier mid = (C,m) and an expression E if and only if m ∈methodsofP (C).
If arrayDomstP is defined for mid and E, then arrayDomstP (mid,E) is the set
of security domains consisting of all security domains associated with an array
referenced in E in the method with name m defined in the class with name C.

4 Security Type Systems

The two information-flow analyses implemented in SPASCA are formally de-
fined by two security type systems. The first security type system is a timing-
insensitive security type system for the language defined in Section 2. The second
security type system is a timing-sensitive adaptation of the timing-insensitive se-
curity type system that considers timing leaks caused by confidential condition-
als and array accesses on confidential indices. We present the timing-insensitive
security type system in Section 4.1 and present its adaptation to the timing-
sensitive security type system (i.e., the adapted rules) in Section 4.2.

4.1 Timing-Insensitive Security Type System

Security Typing Judgments. The typability of a given program for a given
security typing is defined in terms of the derivability of judgements using the
security typing rules. The security type system is defined modularly based on
separate judgments for expressions, statements, method definitions, class defini-
tions, and programs.

10

The judgment for expressions

m,C, P ; t ` E : (r, ve, he) where m ∈M, C ∈ C, P ⊆ C, t : namesP → D
E ∈ E, and r, ve, he ∈ D

denotes that for the security typing t, the expression E is associated with the
triple of security domains (r, ve, he) in the context of the method with name m
in the class with name C of the program P . Intuitively, this judgment shall only
be derivable if the security domain r is an upper bound on the security domains
of variables and fields read in E, the security domain ve is a lower bound on the
security domains associated with variables written in E, and the security domain
he is a lower bound on the security domains associated with fields written in E.
In the remainder of this report, we refer to r as the read domain, to ve as the
variable effect domain, and to he as the heap effect domain.

The judgement for statements

m,C, P ; t ` S : (ve, he) where m ∈M, C ∈ C, P ⊆ C, t : namesP → D
S ∈ S, and ve, he ∈ D

denotes that for the security typing t, the statement S is associated with the pair
of security domains (ve, he) in the context of the method with name m in the
class with name C of the program P . Like the previous judgement, it shall only
be derivable if the security domains ve and he, respectively, are lower bounds on
the security domains associated with variables and fields written in S.

The judgement for methods

C,P ; t `M where C ∈ C, P ⊆ C, M ∈ M, and t : namesP → D

denotes that for the security typing t, the method M defined in the class with
name C of the program P can be typed. This judgement shall only be derivable
if the method body only writes to fields that are associated with a lower security
domain than the security domain associated with the method M itself.

The judgement for classes

P ; t ` C where P ⊆ C, C ∈ C, and t : namesP → D

denotes that for the security typing t, the class C of the program P can be typed.
This judgement shall only be derivable if all methods defined in C can be typed.

Finally, the judgement for programs

t ` P where P ⊆ C, and t : namesP → D

denotes that for the security typing t, all classes composing P can be typed.
A program P is accepted by one of our security type systems for a complete

security typing t of P if and only if t ` P is derivable in the security type
system. If a program is accepted, (1) each security domain associated with a
variable or field is an upper bound on the security domains of variables and
fields from which information is permitted to be written to this variable or field,
and (2) each security domain associated with a method is a lower bound on

11

[LitExpr]

le ∈ {null} ∪ V
m,C, P ; t ` le : (r′, ve′, he′)

[VarExpr]

dx = t((C,m, x)) dxv r′

m,C, P ; t ` x : (r′, ve′, he′)

[FieldExpr]

m,C, P ; t ` E : (r, ve, he)
df = t(typeP ((C,m,E)), f)

rv r′ df v r′

ve′vve he′vhe

m,C, P ; t ` E.f : (r′, ve′, he′)
[SFieldExpr]

df = t((C′, f)) df v r′

m,C, P ; t ` C′.f : (r′, ve′, he′)

[EnclExpr]

m,C, P ; t ` E : (r, ve, he)
rv r′ ve′vve he′vhe

m,C, P ; t ` (E) : (r′, ve′, he′)

Figure 5. Rules for Literals, Non-Array Named Expressions and Enclosed Expressions

all security domains associated with fields that the method writes. Hence, if
a program P is accepted by our security type system for a complete security
typing t the program intuitively adheres to information-flow policies (D,v,da)
for which the complete security typing t is consistent with da.

Security Typing Rules for Expressions.

Literals, Non-Array Named Expressions, and Enclosed Expressions. The security
typing rules for literal expressions, named expressions referencing no arrays and
enclosed expressions are defined by Figure 5. The rule LitExpr permits that a
literal expression is associated with an arbitrary triple of security domains. Since
a literal expression does not read variables or fields, and does not write variables
or fields, this faithfully captures the intention of our judgement for expressions.

The rule VarExpr permits that a variable reference is associated with any
triple of security domains as long as the read domain r′ is an upper bound
on the security domain dx associated with the referenced variable. This rule
faithfully captures the intention of our judgement for expressions because the
only variable or field read is x and neither variables nor fields are written.

The rule FieldExpr permits that a non-static field reference is associated
with any triple of security domains that is an upper bound on the expression’s
read domain and the field’s security domain, and a lower bound on any potential
side effects of the expression. The bounding of the variable effect domain and
heap effect domain are necessary because the expression E might write variables
and fields, respectively, with security domains ve and he or higher. Since the
associated security domain is an upper bound on all variables or fields referenced,
and a lower bound on variables and fields written by the non-static field reference,
this rule faithfully captures the intention of the judgement.

The rule SFieldExpr permits that a static field reference is associated with
triples of security domains such that the read domain is an upper bound on the

12

[ArrVarExpr]

dx = t((C,m, x))
m,C, P ; t ` E1 : (r1, ve1, he1) . . . m,C, P ; t ` En : (rn, ven, hen)

dxv r′ r1v r′ . . . rnv r′

ve′vve1 . . . ve′vven
he′vhe1 . . . he′vhen

m,C, P ; t ` x[E1] . . . [En] : (r′, ve′, he′)

[ArrFieldExpr]

m,C, P ; t ` E : (r, ve, he)
df = t(typeP ((C,m,E)), f)

m,C, P ; t ` E1 : (r1, ve1, he1) . . . m,C, P ; t ` En : (rn, ven, hen)
rv r′ df v r′ r1v r′ . . . rnv r′

ve′vve1 . . . ve′vven
he′vhe1 . . . he′vhen

m,C, P ; t ` E.f [E1] . . . [En] : (r′, ve′, he′)

[ArrSFieldExpr]

df = t((C′, f))
m,C, P ; t ` E1 : (r1, ve1, he1) . . . m,C, P ; t ` En : (rn, ven, hen)

df v r′ r1v r′ . . . rnv r′

ve′vve1 . . . ve′vven
he′vhe1 . . . he′vhen

m,C, P ; t ` C′.f [E1] . . . [En] : (r′, ve′, he′)

Figure 6. Rules for Array Named Expressions

security domain associated with the static field referenced. This rule faithfully
captures our intention of the judgement because the only variable or field read
is the referenced static field and a static field access has no side effects.

The rule EnclExpr permits to adjust the security domains associated with an
enclosed expression to an upper bound for the read domain, and lower bounds for
the variable effect domain and heap effect domain. The rule is faithful given that
the security domains associated with the subexpression are faithfully derived.

Array Named Expressions. The security typing rules for named expressions ref-
erencing arrays are defined by Figure 6. The rule ArrVarExpr permits that an
access to an array referenced by a variable is associated with a triple of security
domains such that (1) the read domain is an upper bound on the security domain
of the variable and the read domains of the expressions determining the indices
of the array access, and (2) the variable effect domain and heap effect domain,
respectively, are lower bounds on the variable effect domains and heap effect
domains of the expressions determining the indices of the array access. Since the
associated triple of security domains is an upper bound on security domains of
variables and fields read and a lower bound on the security domains of variables
or fields written, the rule faithfully captures the intention of our judgement.

The rule ArrFieldExpr is defined analogously to the rule ArrVarExpr. That
is, the rule permits that an access to an array reference by a field is associated

13

[CastExpr]

m,C, P ; t ` E : (r, ve, he)
rv r′ ve′vve he′vhe

m,C, P ; t ` (T) E : (r′, ve′, he′)

[InstExpr]

m,C, P ; t ` E : (r, ve, he)
rv r′ ve′vve he′vhe

m,C, P ; t ` E instanceof T : (r′, ve′, he′)

Figure 7. Rules for Cast and Instance-Check

with a triple of security domains such that (1) the read domain is an upper
bound on the security domain associated with the field f and all read domains
associated with the expressions composing the array access, and (2) the variable
effect domain and heap effect domain, respectively, are lower bounds on the
variable effect domains and heap effect domains of all expressions composing the
access. The argument of faithfulness is analogous to the one for ArrVarExpr.

The rule ArrSFieldExpr is identical to the rule ArrFieldExpr except that
the expression determining the object referenced is replaced by a static reference
which is not associated with a security domain.

Casts and Instance-Checks. The security typing rules for casts and instance-
checks are defined by Figure 7. The rule CastExpr and the rule InstExpr are
equivalent to the rule EnclExpr for enclosed expressions. That is, the security
domains associated are derived based on the security domains of the respective
sub-expressions. Both rules are faithful if the security domains associated with
the sub-expressions are faithfully derived.

Left-Unary Expressions with Non-Array References The security typing rules for
left-unary expressions using non-array references are defined by Figure 8. The
rule LUnaryExprNSE permits that a left-unary expression without side effects is
associated with triples of security domains such that (1) the read domain is an
upper bound on the sub-expression’s read domain, and (2) the variable effect
domain and the heap effect domain are lower bounds on the domains associated
with the sub-expression. The rule is faithful if the security domains associated
with the sub-expression are faithfully derived.

The rule LUnaryVarExpr permits that a left-unary expression composed out
of a variable reference and a unary operator with side effects is associated with
triples of security domains such that the read domain is a upper bound on the
variable’s security domain, and the variable effect domain is a lower bound of the
variable’s security domain. Since the associated read domain is a upper bound on
the security domains of variables read and the variable effect domain is a lower
bound on the security domains of variables written, the rule faithfully captures
our intention of the judgement for expressions.

The rule LUnaryFieldExpr permits that a left-unary expression composed
out of a field reference and a unary operator with side effects is associated with

14

[LUnaryExprNSE]

m,C, P ; t ` E : (r, ve, he) 〈unop-nse〉 ∈ UNOP -NSE
rv r′ ve′vve he′vhe

m,C, P ; t ` 〈unop-nse〉E : (r′, ve′, he′)

[LUnaryVarExprSE]

dx = t((C,m, x)) 〈unop-se〉 ∈ UNOP -SE
dxv r′ ve′vdx

m,C, P ; t ` 〈unop-se〉x : (r′, ve′, he′)

[LUnaryFieldExpr]

m,C, P ; t ` E : (r, ve, he) 〈unop-se〉 ∈ UNOP -SE
df = t(typeP ((C,m,E)), f)

rv r′ df v r′

ve′vve he′vhe he′vdf

m,C, P ; t ` 〈unop-se〉E.f : (r′, ve′, he′)

[LUnarySFieldExpr]

df = t(typeP ((C,m,E)), f) 〈unop-se〉 ∈ UNOP -SE
df v r′ he′vdf

m,C, P ; t ` 〈unop-se〉C′.f : (r′, ve′, he′)

Figure 8. Rules for Left-Unary Expressions with Non-Array References

triples of security domains such that (1) the read domain is a upper bound on
the read domain associated with the sub-expression E and the security domain
of the referenced field, (2) the variable effect domain is a lower bound on the
variable effect domain associated with the sub-expression E, and (3) the heap
effect domain is a lower bound on the heap effect domain associated with the
sub-expression E and the security domain of the referenced field. This rule faith-
fully captures our intention of the judgement for expressions because the read
domain is an upper bound on all the security domains of variables or fields read,
and the variable effect domain and the heap effect domain, respectively, are lower
bounds on all security domains of variables and fields written.

The rule LUnarySFieldExpr is similar to the rule LUnaryFieldExpr. The
key difference is that no sub-expression needs to be taken into account for the
derivation of the associated triple of security domains. Hence, the premises cor-
responding to this sub-expression are removed.

Left-Unary Expressions with Array References The security typing rules for
left-unary expressions using array references are defined by Figure 9. The rule
LUnaryArrVarExpr permits that a left-unary expression composed out of a vari-
able array reference and a unary operator with side effects is associated with
triples of security domains such that (1) the read domain is an upper bound
on the variable’s security domain and all read domains of the expressions de-
termining the accessed array index, (2) the variable effect domain is a lower
bound on all variable effect domains of the expressions determining the accessed
array index and the variable’s security domain, and (3) the heap effect domain
is a lower bound on all heap effect domains of the expressions determining the
accessed array index. Since a left-unary expression composed out of a variable

15

[LUnaryArrVarExpr]

dx = t((C,m, x)) 〈unop-se〉 ∈ UNOP -SE
m,C, P ; t ` E1 : (r1, ve1, he1) . . . m,C, P ; t ` En : (rn, ven, hen)

dxv r′ r1v r′ . . . rnv r′

ve′vve1 . . . ve′vven ve′vdx

he′vhe1 . . . he′vhen

m,C, P ; t ` 〈unop-se〉x[E1] . . . [En] : (r′, ve′, he′)

[LUnaryArrFieldExpr]

m,C, P ; t ` E : (r, ve, he) 〈unop-se〉 ∈ UNOP -SE
df = t(typeP ((C,m,E)), f)

m,C, P ; t ` E1 : (r1, ve1, he1) . . . m,C, P ; t ` En : (rn, ven, hen)
rv r′ df v r′ r1v r′ . . . rnv r′

ve′vve ve′vve1 . . . ve′vven
he′vhe he′vhe1 . . . he′vhen he′vdf

m,C, P ; t ` 〈unop-se〉E.f [E1] . . . [En] : (r′, ve′, he′)

[LUnaryArrSFieldExpr]

df = t((C′, f)) 〈unop-se〉 ∈ UNOP -SE
m,C, P ; t ` E1 : (r1, ve1, he1) . . . m,C, P ; t ` En : (rn, ven, hen)

df v r′ r1v r′ . . . rnv r′

ve′vve1 . . . ve′vven
he′vhe1 . . . he′vhen he′vdf

m,C, P ; t ` 〈unop-se〉C′.f [E1] . . . [En] : (r′, ve′, he′)

Figure 9. Rules for Left-Unary Expressions with Array References

array reference and a unary operator with side effects reads and writes the vari-
ables and fields read and written by the sub-expressions determining the accessed
index, and it reads and writes the variable itself, the rule faithfully captures the
intention of the judgement for expressions.

The rule LUnaryArrFieldExpr permits that a left-unary expression com-
posed out of a field array reference and a unary operator with side effects is
associated with triples of security domains such that (1) the read domain is an
upper bound on the field’s security domain and all read domains of the expres-
sions determining the accessed field and the accessed array index, (2) the variable
effect domain is a lower bound on all variable effect domains of the expressions
determining the accessed field and the accessed array index, and (3) the heap
effect domain is a lower bound on all heap effect domains of the expressions
determining the accessed array index. The rule faithfully captures the intention
of the judgement for expressions because the read domain associated with the
expression is an upper bound on the security domains of variables and fields
read, and the variable effect domain and the heap effect domain, respectively,
are lower bounds on the security domains of variables and fields written.

The rule LUnaryArrSFieldExpr is similar to the rule LUnaryArrFieldExpr.
The key difference is that no sub-expression determining the referenced field
needs to be taken into account for the derivation of the associated triple of

16

[RUnaryVarExprSE]

dx = t((C,m, x)) 〈unop-se〉 ∈ UNOP -SE
dxv r′ ve′vdx

m,C, P ; t ` x〈unop-se〉 : (r′, ve′, he′)

[RUnaryFieldExpr]

m,C, P ; t ` E : (r, ve, he) 〈unop-se〉 ∈ UNOP -SE
df = t(typeP ((C,m,E)), f)

rv r′ df v r′

ve′vve he′vhe he′vdf

m,C, P ; t ` E.f 〈unop-se〉 : (r′, ve′, he′)

[RUnarySFieldExpr]

df = t(typeP ((C,m,E)), f) 〈unop-se〉 ∈ UNOP -SE
df v r′ he′vdf

m,C, P ; t ` C′.f 〈unop-se〉 : (r′, ve′, he′)

Figure 10. Rules for Right-Unary Expressions with Non-Array References

security domains. Hence, the premises corresponding to the sub-expression de-
termining the referenced field are removed.

Right-Unary Expressions. The security typing rules for right-unary expressions
are defined by Figure 10 and Figure 11. The rules are identical to the rules
for left-unary expressions except that the unary operator is now applied on the
right-hand side of the expressions.

Assignments to Variables and Fields. The security typing rules for assignments
to variables and fields are defined by Figure 12. The rule AssgnVarExpr permits
that an assignment to a variable is associated with triples of security domains
such that (1) the read domain is an upper bound on the variable’s security
domain and the read domain of the assigned expression, (2) the variable effect
domain is a lower bound on the variable’s security domain and the variable
effect domain of the assigned expression, and (3) the heap effect domain is a lower
bound on the assigned expression’s heap effect domain. In addition, it is required
that the variable’s security domain is an upper bound on the read domain of the
assigned expression. In case the variable references an array, it is required that
the security domain associated with the variable is a lower bound on the security
domains associated with the referenced arrays in the expression E. Together
with the premise rv dx, it is ensured that the security domain of the variable
is equal to the security domain associated with all arrays referenced in E. This
additional restriction is necessary to properly deal with aliasing of arrays. The
rule AssgnVarExpr faithfully captures our intention for the judgement because
the read domain associated with the expression is an upper bound on the security
domains of all variables and fields read, and the variable effect domain and the
heap effect domain, respectively, are lower bounds on the security domains of
variables and fields written. Moreover, an object cannot be assigned to a variable
with a lower security domain than the object reference, and arrays can only be
assigned to variable with the same security domain than all arrays referenced.

17

[RUnaryArrVarExpr]

dx = t((C,m, x)) 〈unop-se〉 ∈ UNOP -SE
m,C, P ; t ` E1 : (r1, ve1, he1) . . . m,C, P ; t ` En : (rn, ven, hen)

dxv r′ r1v r′ . . . rnv r′

ve′vve1 . . . ve′vven ve′vdx

he′vhe1 . . . he′vhen

m,C, P ; t ` x[E1] . . . [En]〈unop-se〉 : (r′, ve′, he′)

[RUnaryArrFieldExpr]

m,C, P ; t ` E : (r, ve, he) 〈unop-se〉 ∈ UNOP -SE
df = t(typeP ((C,m,E)), f)

m,C, P ; t ` E1 : (r1, ve1, he1) . . . m,C, P ; t ` En : (rn, ven, hen)
rv r′ df v r′ r1v r′ . . . rnv r′

ve′vve ve′vve1 . . . ve′vven
he′vhe he′vhe1 . . . he′vhen he′vdf

m,C, P ; t ` E.f [E1] . . . [En]〈unop-se〉 : (r′, ve′, he′)

[RUnaryArrSFieldExpr]

df = t((C′, f)) 〈unop-se〉 ∈ UNOP -SE
m,C, P ; t ` E1 : (r1, ve1, he1) . . . m,C, P ; t ` En : (rn, ven, hen)

df v r′ r1v r′ . . . rnv r′

ve′vve1 . . . ve′vven
he′vhe1 . . . he′vhen he′vdf

m,C, P ; t ` C′.f [E1] . . . [En]〈unop-se〉 : (r′, ve′, he′)

Figure 11. Rules for Right-Unary Expressions with Array References

The rule AssgnFieldExpr permits that an assignment to a non-static field
is associated with triples of security domains such that (1) the read domain
is an upper bound on the field’s security domain and the read domain of the
expression determining the accessed field, (2) the variable effect domain is a lower
bound on the variable effect domain of the assigned expression and the expression
determining the accessed field, and (3) the heap effect domain is a lower bound
on the heap effect domain of the assigned expressions, the heap effect domain
of the expression determining the accessed field and the field’s security domain.
Additionally, it is required that the field’s security domain is an upper bound
on the read domain of the assigned expression and the expression determining
the accessed field. In case the field references an array, it is required that the
field’s security domain is a lower bound on the security domains associated with
any arrays referenced in the assigned expression. Likewise to the assignment to
variables, this requirement ensures together with the premise r v df that the
field’s security domain is equal to the security domain of all arrays referenced
by the assigned expression. With these restrictions, the rule AssgnFieldExpr

faithfully captures our intention of the judgement for expressions properly taking
potential aliases of objects and arrays into account.

The rule AssgnSFieldExpr for an assignment to a static field is similar to
the rule AssgnFieldExpr. The key difference is that the referenced field is not
determined by an expression but instead by the name of a class. That is, all

18

[AssgnVarExpr]

m,C, P ; t ` E : (r, ve, he) 〈assgnop〉 ∈ ASSGNOP
dx = t((C,m, x)) rvdx dxv r′

typeP ((C,m, x)) = T [] ⇒ ∀d ∈ arrayDomstP ((C,m), E). rvd
ve′vdx ve′vve he′vhe

m,C, P ; t ` x〈assgnop〉E : (r′, ve′, he′)

[AssgnFieldExpr]

m,C, P ; t ` E : (r, ve, he) m,C, P ; t ` E : (r′, ve′, he′)
〈assgnop〉 ∈ ASSGNOP

df = t(typeP ((C,m,E)), f) rvdf r′vdf df v r′′

typeP ((typeP ((C,m,E)), f)) = T []

⇒ ∀d ∈ arrayDomstP ((C,m), E′). df vd
ve′′vve ve′′vve′ he′′vhe he′′vhe′ he′′vdf

m,C, P ; t ` E.f 〈assgnop〉E′ : (r′′, ve′′, he′′)

[AssgnSFieldExpr]

m,C, P ; t ` E : (r, ve, he) 〈assgnop〉 ∈ ASSGNOP
df = t(C′, f) df v r′

typeP ((C′, f)) = T []⇒ ∀d ∈ arrayDomstP ((C,m), E). df vd
ve′vve he′vhe he′vdf

m,C, P ; t ` C′.f 〈assgnop〉E : (r′, ve′, he′)

Figure 12. Rules for Assignments to Variables and Fields

premises related to the expression determining the accessed field in the non-
static case are removed. Beyond that, the premises of the rule AssgnSFieldExpr
are equivalent to the premises of the rule AssgnFieldExpr.

Assignment to Array Cells. The security typing rules for assignments to array
cells are defined by Figure 13. The rule AssgnArrVarExpr is defined analogous
to the rule AssgnVarExpr. The only notable differences are (1) the read domain
is also an upper bound on the read domain of the expressions determining the
index of the array cell assigned to, and (2) the variable effect domain and heap
effect domain, respectively, are also lower bounds on the variable effect domain
and heap effect domain of the expressions determining the index of the array cell
assigned to. Beyond these differences, the premises of the rule AssgnArrVarExpr
are identical to the premises of the rule AssgnVarExpr.

In the same fashion, the rule AssgnArrFieldExpr is defined analogous to the
rule AssgnFieldExpr. The only notable differences are (1) the read domain is
also an upper bound on the read domain of the expressions determining the index
of the array cell assigned to, and (2) the variable effect domain and heap effect
domain, respectively, are also lower bounds on the variable effect domain and
heap effect domain of the expressions determining the index of the array cell as-
signed to. Beyond these differences, the premises of the rule AssgnArrFieldExpr
are identical to the premises of the rule AssgnFieldExpr.

Finally, the rule AssgnArrSFieldExpr for an assignment to a cell of an ar-
ray referenced by a static field is similar to the rule AssgnArrFieldExpr. The

19

[AssgnArrVarExpr]

dx = t((C,m, x)) 〈assgnop〉 ∈ ASSGNOP
m,C, P ; t ` E : (r, ve, he)

m,C, P ; t ` E1 : (r1, ve1, he1) . . . m,C, P ; t ` En : (rn, ven, hen)
dxv r′ rvdx r1vdx . . . rnvdx

typeP ((C,m, x)) = T []n ⇒ ∀d ∈ arrayDomstP ((C,m), E). dxvd
ve′vve1 . . . ve′vven ve′v r

he′vhe1 . . . he′vhen

m,C, P ; t ` x[E1] . . . [En]〈assgnop〉E : (r′, ve′, he′)

[AssgnArrFieldExpr]

m,C, P ; t ` E : (r, ve, he) m,C, P ; t ` E′ : (r′, ve′, he′)
〈assgnop〉 ∈ ASSGNOP df = t(typeP ((C,m,E)), f)

m,C, P ; t ` E1 : (r1, ve1, he1) . . . m,C, P ; t ` En : (rn, ven, hen)
rvdf r′vdf df v r′′

r1vdf . . . rnvdf

typeP ((typeP ((C,m,E)), f)) = T []n

⇒ ∀d ∈ arrayDomstP ((C,m), E′). dxvd
ve′′vve ve′′vve′ ve′′vve1 . . . ve′′vven

he′′vhe
he′′vhe′ he′′vhe1 . . . he′′vhen he′′vdf

m,C, P ; t ` E.f [E1] . . . [En]〈assgnop〉E′ : (r′′, ve′′, he′′)

[AssgnArrSFieldExpr]

m,C, P ; t ` E : (r, ve, he) m,C, P ; t ` E′ : (r′, ve′, he′)
〈assgnop〉 ∈ ASSGNOP df = t(typeP ((C,m,E)), f)

m,C, P ; t ` E1 : (r1, ve1, he1) . . . m,C, P ; t ` En : (rn, ven, hen)
df v r′ r1vdf . . . rnvdf

typeP ((C′, f)) = T []n ⇒ ∀d ∈ arrayDomstP ((C,m), E). df vd
ve′vve ve′vve1 . . . ve′vven

he′vhe he′vhe1 . . . he′vhen he′vdf

m,C, P ; t ` C′.f [E1] . . . [En]〈assgnop〉E : (r′, ve′, he′)

Figure 13. Rules for Assignments to Array Cells

key difference is that the field referencing the array is not determined by an
expression but instead by the name of a class. That is, all premises related to
the expression determining the field referencing the array in the non-static case
are removed. Beyond that, the premises of the rule AssgnArrSFieldExpr are
equivalent to the premises of the rule AssgnArrFieldExpr.

Binary and Ternary Operators. The security typing rules for binary operators
and ternary operators are defined by Figure 14. The rule BinaryExpr permits
that a binary operation is associated with triples of security domains such that
the read domain is an upper bound on the read domain of both sub-expressions,
and the variable effect domain and heap effect domain, respectively, are lower
bounds on the variable effect domain and heap effect domain of both subexpres-
sions. The rule faithfully captures the intention of the judgement for expressions
if the judgement for the two sub-expressions is faithfully derived.

20

[BinaryExpr]

m,C, P ; t ` E : (r, ve, he) m,C, P ; t ` E′ : (r′, ve′, he′)
〈binop〉 ∈ BINOP
rv r′′ r′v r′′

ve′′vve ve′′vve′

he′′vhe he′′vhe′

m,C, P ; t ` E〈binop〉E′ : (r′′, ve′′, he′′)

[TernaryExpr]

m,C, P ; t ` E : (r, ve, he)
m,C, P ; t ` E′ : (r′, ve′, he′) m,C, P ; t ` E′′ : (r′′, ve′′, he′′)

rvve′ rvve′′ rvhe′ rvhe′′

rv r′′′ r′v r′′′ r′′v r′′′

ve′′′vve ve′′′vve′ ve′′′vve′′

he′′′vhe he′′′vhe′ he′′′vhe′′

m,C, P ; t ` E ?E′ :E′′ : (r′′′, ve′′′, he′′′)

Figure 14. Rules for Expressions with Binary and Ternary Operators

[NewObjExpr]

m,C, P ; t ` new C′ : (r, ve, he)

[NewArrExpr]

m,C, P ; t ` E1 : (low, ve1, he1) . . . m,C, P ; t ` En : (low, ven, hen)
vevve1 . . . vevven
hevhe1 . . . hevhen

m,C, P ; t ` new T [E1] . . . [En] : (r, ve, he)

Figure 15. Rules for Instance-Creation Expressions

The rule TernaryExpr permits that a ternary expression is associated with
triples of security domains such that (1) the read domain is an upper bound on
the read domains associated with all three sub-expressions, and (2) the variable
effect domain and the heap effect domain, respectively, are lower bounds on the
variable effect domain and heap effect domain of all three sub-expressions. The
rule can only be applied if the read domain of the condition permitted to flow
to the variable effect domain and heap effect domain of both branches. This
restriction is necessary to properly take potential implicit flows into account.
The rule TernaryExpr is faithful because the associated read domain is an upper
bound on the security domains of variables and fields read taking implicit flow
into account, and the variable effect domain and heap effect domain, respectively,
are lower bounds on variables and fields written.

Instance Creation. The security typing rules for instance creations are defined
by Figure 15. The rule NewObjExpr permits that an object instance creation is
associated with an arbitrary triple of security domains. This treatment is faithful
because the expression does neither read or write any variables or fields.

21

[MethodCallExpr]

m,C, P ; t ` E : (r, ve, he)
m,C, P ; t ` E1 : (r1, ve1, he1) . . . m,C, P ; t ` En : (rn, ven, hen)

msigt
P ((typeP ((C,m,E)),m′)) = 〈d′

this , (d′
1, . . . , d′

n),
d′h−→ d′

result)〉
parsofP ((typeP ((C,m,E)),m′)) = (p1, . . . pn)

rvd′
this rvd′

h r1vd′
1 . . . rnvd′

n rv r′′ d′
resultv r′′

∀i ∈ {1, ..., n}. typeP ((typeP ((C,m,E)),m′), pi) = Ti[]

⇒ ∀d ∈ arrayDomstP ((C,m), Ei). d′
ivd

typeP ((typeP ((C,m,E)),m′, result)) = T ′
i []

⇒ r′′v t((C′,m′, result))
ve′′vve1 . . . ve′′vven

he′′vhe1 . . . he′′vhen he′′vd′
h

m,C, P ; t ` E.m′(E1, . . . , En) : (r′′, ve′′, he′′)

[SMethodCallExpr]

m,C, P ; t ` E1 : (r1, ve1, he1) . . . m,C, P ; t ` En : (rn, ven, hen)

msigt
P ((C′,m′)) = 〈 , (d′

1, . . . , d′
n),

d′h−→ d′
result)〉

parsofP ((C′,m′)) = (p1, . . . pn)
r1vd′

1 . . . rnvd′
n d′

resultv r′′

∀i ∈ {1, ..., n}. typeP ((C′,m′), pi) = Ti[]

⇒ ∀d ∈ arrayDomstP ((C,m), Ei). d′
ivd

typeP ((C′,m′, result)) = T ′
i []⇒ r′′v t((C ′,m ′, result))

ve′′vve1 . . . ve′′vven
he′′vhe1 . . . he′′vhen he′′vd′

h

m,C, P ; t ` C′.m′(E1, . . . , En) : (r′′, ve′′, he′′)

Figure 16. Rules for Method Calls

The rule NewArrExpr permits that an array instance creation is associated
with triples of security domains such that the variable effect domain and heap
effect domain, respectively, are lower bounds on the variable effect domain and
heap effect domain of the sub-expressions determining the array size. The rule
forbids the creation of arrays with confidential length (read domain low) to avoid
implicit leaks of the secrets involved in computing the array length. This rule is
faithful because the variable effect domain and heap effect domain, respectively,
are lower bounds on the security domains of all variables and fields written.

Method Calls. The security typing rules for method calls are defined by Fig-
ure 16. The rule MethodCallExpr permits that a non-static method call is as-
sociated with triples of security domains such that (1) the read domain is an
upper bound on the read domain of the expression determining on which object
the method is called and the security domain associated with the result vari-
able of the method called, (2) the variable effect domain is a lower bound on
the variable effect domains of all expressions instantiating the formal parame-
ters of the method called, and (3) the heap effect domain is a lower bound on
the heap effect domains of all expressions instantiating the formal parameters of
the method called and the security domain associated to the heap effect of the

22

method called. Additionally, it is required that the read domain of the expres-
sion determining on which object the method is called is permitted to flow to the
security domain associated with the called method’s this-pointer. Furthermore,
the read domains of all expressions must be permitted to flow to the security
domain associated with the corresponding parameters of the method called.

In case any of the formal parameters is of an array type, the security domain
associated with this formal parameter must be permitted to flow to all security
domains of arrays referenced in the expression instantiating this formal param-
eter. Similarly, if the result variable is of an array type, the read domain of the
method call must be permitted to flow to the security domain associated with
the method’s result. These two additional requirements ensure together with
the other premises regarding the read domain of the expressions and the result
variable’s security domain that the security domains of references to arrays are
equal to properly deal with aliasing of arrays.

The rule MethodCallExpr faithfully captures our intention of the judgement
for expressions because it ensures that (1) the method signature induced by the
security typing is respected by the method call, (2) the associated read domain
is an upper bound on all variables and fields read by the expression determin-
ing the object on which the method is called, the expressions instantiating the
formal parameters of the method called, and the result variable’s security do-
main, (3) the associated variable effect domain is a lower bound on all variables
written by the expression determining the object on which the method is called
and the expressions instantiating the formal parameters of the method called,
and (4) the associated heap effect domain is a lower bound on all fields written
by the expression determining the object on which the method is called, the
expressions instantiating the formal parameters of the method called, and the
security domain associated with the heap effect of the method called.

The rule SMethodCallExpr for static method calls is defined analogous to the
rule MethodCallExpr. The key difference is that the method is not called on an
object determined by an expression but on a class. That is, all premises related to
the expression determining the object on which the method is called in the non-
static case are removed. Beyond that, the premises of the rule SMethodCallExpr
are equivalent to the premises of the rule MethodCallExpr.

Security Typing Rules for Statements.

Primitive Statements and Sequential Composition. The security typing rules for
primitive statements and sequential composition are defined by Figure 17. The
rule EmptyStmt permits that the empty statement is associated with an arbitrary
pair of security domains. This association is faithful because the empty statement
writes neither to variables nor to fields.

The rule ExprStmt permits that expressions as statements are associated
with pairs of security domains under-approximating its variable effect domain
and heap effect domain. This rule is faithful assuming that the variable effect
domain and heap effect domain derived using the typing rules are, respectively,
lower bounds on the security domains of variables and fields written.

23

[EmptyStmt]

m,C, P ; t ` empty : (ve′, he′)
[ExprStmt]

m,C, P ; t ` E : (r, ve, he)
ve′vve he′vhe

m,C, P ; t ` E : (ve′, he′)

[VarDeclStmt]

m,C, P ; t ` E : (r, ve, he) m,C, P ; t ` S : (ve′, he′)
dx = t((C,m, x)) rvdx

typeP ((C,m, x) = T []⇒ ∀d ∈ arrayDomstP ((C,m), E). dxvd
ve′′vve ve′′vve′ he′′vhe he′′vhe′

m,C, P ; t ` T x = E;S : (ve′′, he′′)

[SeqStmt]

m,C, P ; t ` S : (ve, he) m,C, P ; t ` S′ : (ve′, he′)
ve′′vve ve′′vve′ he′′vhe he′′vhe′

m,C, P ; t ` S;S′ : (ve′′, he′′)

Figure 17. Rules for Primitive Statements and Sequential Composition

The rule VarDeclStmt permits that variable declarations are associated with
pairs of security domains such that (1) the read domain of the variable ini-
tialization is permitted to flow to the security domain of the declared variable,
(2) the variable effect domain and the heap effect domain, respectively, are lower
bounds on the variable effect domain and heap effect domain of the initialization
expression and the consecutive statement, and (3) if the variable declared is of
an array type, the security domain of the declared variable is permitted to flow
to the security domains associated with arrays referenced in the initialization
expression. The third condition is necessary to properly deal with the potential
aliasing of arrays. Together with the first condition, it ensures that the security
domain of the declared variable is equal to the security domain of any arrays
referenced in the initialization expression.

The rule SeqStmt permits that sequential compositions of statements are
associated with a pair of security domains such that the variable effect domain
and heap effect domain, respectively, are lower bounds on the variable effect
domain and heap effect domain of the composed statements. This rule is faithful
assuming the variable effect domain and heap effect domain derived for the sub-
statements are, respectively, lower bounds on the security domains of variables
and fields written in the sub-statements as intended for the judgement.

Conditional Branching. The security typing rules for conditional branchings are
defined by Figure 18. The rule IfThenElse permits that a conditional branching
is associated to pairs of security domains such that the variable effect domain
and the heap effect domain, respectively, are lower bounds on the variable effect
domain and heap effect domain of the condition and the two sub-statements. The
rule can only be applied if the read domain of the condition is permitted to flow
to the variable effect domain and heap effect domain of the two branches. This
rule is faithful because it properly takes the implicit flow from the condition to
the variable effect and heap effect of the branches into account, and the variable

24

[IfTHenElse]

m,C, P ; t ` E : (r, ve, he)
m,C, P ; t ` S1 : (ve1, he1) m,C, P ; t ` S2 : (ve2, he2)

rvve1 rvve2 rvhe1 rvhe2
ve′vve ve′vve1 ve′vve2
he′vhe he′vhe1 he′vhe2

m,C, P ; t ` ifE {S1} else {S2} : (ve′, he′)

[IfTHen]

m,C, P ; t ` E : (r, ve, he)
m,C, P ; t ` S : (ve′, he′)

rvve′ rvhe′ ve′′vve ve′′vve′ he′′vhe he′′vhe′

m,C, P ; t ` ifE {S} : (ve′′, he′′)

Figure 18. Rules for Conditional Branchings

[While]

m,C, P ; t ` E : (r, ve, he)
m,C, P ; t ` S : (ve′, he′)

rvve′ rvhe′ ve′′vve ve′′vve′ he′′vhe he′′vhe′

m,C, P ; t ` while (E) {S; } : (ve′′, he′′)

[For]

m,C, P ; t ` E : (r, ve, he)
m,C, P ; t ` S1 : (ve1, he1)

m,C, P ; t ` S2 : (ve2, he2) m,C, P ; t ` S3 : (ve3, he3)
rvve2 rvve3 rvhe2 rvhe3

ve′vve ve′vve1 ve′vve2 ve′vve3
he′vhe he′vhe1 he′vhe2 he′vhe3

m,C, P ; t ` for(S1; E; S2) {S3; } : (ve′, he′)

Figure 19. Rules for Loops

effect domain and heap effect domain, respectively, are lower bounds on the
security domains of variables and fields written by the condition and the two
sub-statements of the conditional branching.

The rule IfThen is defined analogously to the rule IfThenElse. The only
difference is that all premises regarding the missing else-branch are removed.

Loops. The security typing rules for loops are defined by Figure 19. The rule
While is equal to the rule IfThen because the dependency between conditional
and body is identical for both statements from an information-flow perspective.

The rule For permits that a for-loop is associated with pairs of security
domains such that the variable effect domain and the heap effect domain, re-
spectively, are lower bounds on the variable effect domain and heap effect domain
of the initialization statement, the condition, the increment statement and the
loop body. In addition, the rule requires that the read domain of the condition
is permitted to flow to the variable effect domain and heap effect domain of the

25

[Method]

m,C, P ; t ` T ′ result = E ;S : (ve, he) t(C,m)vhe

C,P ; t ` T m(T1 x1, . . . , Tn xn){ T ′ result = E ;S ; return result ; }

[VoidMethod]

m,C, P ; t ` S : (ve, he) t(C,m)vhe

C,P ; t ` void m(T1 x1, . . . , Tn xn){S; return; }

[Class]

C,P ; t ` m1 . . . C, P ; t ` mn

P ; t ` class C extends C′ {T1 f1; . . . Tn fj ; m1 . . .mn }

Figure 20. Rules for Method and Class Definitions

increment statement and the loop body. This restriction is necessary to properly
take implicit flows into account. The rule is faithful because implicit flows are
taken into account and the associated variable effect domain and heap effect
domain, respectively, are lower bounds on the security domains of variables and
fields written by the statement.

Security Typing Rules for Method and Class Definitions. The security
typing rules for method definitions and class definitions are defined by Figure 20.

The rule Method permits that non-void methods are typed if the statement
representing the body of the method can be typed and the security domain
associated with the method is permitted to flow to the body’s heap effect domain.
Note that this typing rule only restricts the heap effect domain of the method.
Information flows related to the return value of the method are considered by
the typing rules MethodCallExpr and SMethodCallExpr for method calls.

Likewise to the rule Method, the rule VoidMethod permits void methods to
be typed if the statement representing the body of the method can be typed
and the security domain associated with the method is permitted to flow to the
body’s heap effect domain.

Both rules faithfully capture our intention of the judgement for methods
because the rules are only applicable if the security domain associated with the
method is permitted to flow to the fields written by the body of the method.

The rule class permits that classes are typed if all methods defined inside
the class are typable using the typing rules for methods. This directly matches
our intention of the judgement for classes.

Security Typing Rule for Programs. The security typing rule for programs
is defined below. The rule Prog requires that all classes composing the program
are typable which matches the intention of the judgement for programs.

[Prog]

P = {C1, . . . Cn}
P ; t ` C1 . . . P ; t ` Cn

t ` P

26

[TernaryExpr]

m,C, P ; t ` E : (low, ve, he)
m,C, P ; t ` E′ : (r′, ve′, he′) m,C, P ; t ` E′′ : (r′′, ve′′, he′′)

r′v r′′′ r′′v r′′′

ve′′′vve ve′′′vve′ ve′′′vve′′

he′′′vhe he′′′vhe′ he′′′vhe′′

m,C, P ; t ` E ?E′ :E′′ : (r′′′, ve′′′, he′′′)

[IfTHen]

m,C, P ; t ` E : (low, ve, he)
m,C, P ; t ` S : (ve′, he′)

ve′′vve ve′′vve′ he′′vhe he′′vhe′

m,C, P ; t ` ifE {S} : (ve′′, he′′)

[IfTHenElse]

m,C, P ; t ` E : (low, ve, he)
m,C, P ; t ` S1 : (ve1, he1) m,C, P ; t ` S2 : (ve2, he2)

ve′vve ve′vve1 ve′vve2
he′vhe he′vhe1 he′vhe2

m,C, P ; t ` ifE {S1} else {S2} : (ve′, he′)

[While]

m,C, P ; t ` E : (low, ve, he)
m,C, P ; t ` S : (ve′, he′)

ve′′vve ve′′vve′ he′′vhe he′′vhe′

m,C, P ; t ` while (E) {S; } : (ve′′, he′′)

[For]

m,C, P ; t ` E : (low, ve, he)
m,C, P ; t ` S1 : (ve1, he1)

m,C, P ; t ` S2 : (ve2, he2) m,C, P ; t ` S3 : (ve3, he3)
ve′vve ve′vve1 ve′vve2 ve′vve3
he′vhe he′vhe1 he′vhe2 he′vhe3

m,C, P ; t ` for(S1; E; S2) {S3; } : (ve′, he′)

Figure 21. Adapted Rules for Branchings and Loops

4.2 Timing-Sensitive Security Type System

For the adaptation of the timing-insensitive security type system into a timing-
sensitive security type system, we consider a coarse grained model of time. This
model of time leads to a conservative treatment of potential timing side channels.

Concretely, we consider two causes for timing side-channels: The first cause
is branching or looping depending on a confidential condition. That is, whether
the then-branch or else-branch is taken for a conditional branching, or whether
an iteration of a loop’s body is executed depends on confidential information.
In these cases, the running time of the conditional branching or the loop might
differ. Hence, information about the conditional might be leaked over the state-
ment’s timing behavior to an attacker observing a program’s running time.

The second cause are read and write accesses to arrays where the chosen index
is computed based on confidential information. Depending on prior accesses to

27

[ArrVarExpr]

r = t((C,m, x))
m,C, P ; t ` E1 : (low, ve1, he1) . . . m,C, P ; t ` En : (low, ven, hen)

ve′vve1 . . . ve′vven
he′vhe1 . . . he′vhen

m,C, P ; t ` x[E1] . . . [En] : (r′, ve′, he′)

[ArrFieldExpr]

m,C, P ; t ` E : (r, ve, he)
df = t(typeP ((C,m,E)), f)

m,C, P ; t ` E1 : (low, ve1, he1) . . . m,C, P ; t ` En : (low, ven, hen)
rv r′ df v r′ ve′vve1 . . . ve′vven

he′vhe1 . . . he′vhen

m,C, P ; t ` E.f [E1] . . . [En] : (r′, ve′, he′)

[ArrSFieldExpr]

df = t((C′, f))
m,C, P ; t ` E1 : (low, ve1, he1) . . . m,C, P ; t ` En : (low, ven, hen)

df v r′ ve′vve1 . . . ve′vven
he′vhe1 . . . he′vhen

m,C, P ; t ` C′.f [E1] . . . [En] : (r′, ve′, he′)

Figure 22. Adapted Rules for Array Read Accesses

the same array, the accessed part of the array is currently stored in the cache or
in the main memory only. Hence, information about the confidential information
used to compute the chosen index might be leaked over the timing behavior of
array read and write accesses to an attacker observing a program’s running time.

For both causes of potential timing leaks, attacks on cryptographic imple-
mentations exploiting these causes of timing side-channels have been reported.
An attack exploiting the timing behavior of control flow depending on a confi-
dential condition has been described e.g. in [Koc96]. An attack exploiting the
changed timing behavior caused by caching has been described e.g. in [Ber05].

Intuitively, our consideration of these causes for timing side channels corre-
sponds to a transcript model [MPSW05] of time where the transcript contains
both the program counter and array accesses.

Branching or Looping Depending on Confidential Conditions. Our
timing-sensitive security type system takes a conservative approach for the treat-
ment of confidential conditions in conditional branchings or loops. It forbids any
confidential conditions in these statements.

We show the adapted security typing rules in Figure 21. In comparison to the
timing-insensitive security typing rules, the key adaptation is that the read do-
main of the condition must be low. That is, the condition may only read variables
and fields associated with the security domain low. Based on this adaptation,
we removed any premises requiring that the read domain of the condition is
permitted to flow to another security domain.

28

[AssgnArrVarExpr]

dx = t((C,m, x)) 〈assgnop〉 ∈ ASSGNOP
m,C, P ; t ` E : (r, ve, he)

m,C, P ; t ` E1 : (low, ve1, he1) . . . m,C, P ; t ` En : (low, ven, hen)
dxv r′ rvdx

typeP ((C,m, x)) = T []n ⇒ ∀d ∈ arrayDomstP ((C,m), E). dxvd
ve′vve1 . . . ve′vven ve′v r

he′vhe1 . . . he′vhen

m,C, P ; t ` x[E1] . . . [En]〈assgnop〉E : (r′, ve′, he′)

[AssgnArrFieldExpr]

m,C, P ; t ` E : (r, ve, he) m,C, P ; t ` E′ : (r′, ve′, he′)
〈assgnop〉 ∈ ASSGNOP df = t(typeP ((C,m,E)), f)

m,C, P ; t ` E1 : (low, ve1, he1) . . . m,C, P ; t ` En : (low, ven, hen)
rvdf r′vdf df v r′′

typeP ((typeP ((C,m,E)), f)) = T []n

⇒ ∀d ∈ arrayDomstP ((C,m), E′). dxvd
ve′′vve ve′′vve′ ve′′vve1 . . . ve′′vven

he′′vhe
he′′vhe′ he′′vhe1 . . . he′′vhen he′′vdf

m,C, P ; t ` E.f [E1] . . . [En]〈assgnop〉E′ : (r′′, ve′′, he′′)

[AssgnArrSFieldExpr]

m,C, P ; t ` E : (r, ve, he) m,C, P ; t ` E′ : (r′, ve′, he′)
〈assgnop〉 ∈ ASSGNOP df = t(typeP ((C,m,E)), f)

m,C, P ; t ` E1 : (low, ve1, he1) . . . m,C, P ; t ` En : (low, ven, hen)
df v r′

typeP ((C′, f)) = T []n ⇒ ∀d ∈ arrayDomstP ((C,m), E). df vd
ve′vve ve′vve1 . . . ve′vven

he′vhe he′vhe1 . . . he′vhen he′vdf

m,C, P ; t ` C′.f [E1] . . . [En]〈assgnop〉E : (r′, ve′, he′)

Figure 23. Adapted Rules for Array Assignments

Array Accesses on Confidential Indices. Similar to the treatment of confi-
dential conditions, our timing-sensitive security type system also takes a conser-
vative approach for the treatment of read and write array accesses on indices that
are computed based on confidential information. It forbids any array accesses on
indices that are computed based on confidential information.

We show the adapted security typing rules for array read accesses and array
write accesses (assignments) in Figure 22 and Figure 23. In comparison to the
timing-insensitive security typing rules, the key adaptation is that the read do-
main of all expressions determining the accessed array index must be low. That
is, these expressions may only read variables and fields associated with the secu-
rity domain low. Based on this adaptation, we removed any premises requiring
that a read domain of an expression determining the accessed array index is
permitted to flow to another security domain.

29

Beyond the adaptations explained in this section, the timing-sensitive secu-
rity type system consists of the same rules as the timing-insensitive security type
system presented in Section 4.1.

5 Implementation and Case Studies

SPASCA is implemented as a plug-in for the Eclipse IDE for Java. This plug-in
can be used to analyze the source code of Java programs that are written in the
supported Java sub-language described in Section 2. The analysis is executed
in the background in a fully automated fashion, and reports detected potential
information leaks and potential timing side channels to the user of SPASCA.

5.1 Implementation of the Eclipse Plug-In

The implementation of SPASCA is building on the implementation of the tool
from [BLMS15]. Users of the Eclipse plug-in provide an assignment of security
domains for information containers (such as local variables, fields and method
parameters) as input. The actual analysis is performed in the background based
on these domain assignments. The results of the analysis are presented to the
users of the Eclipse plug-in as output in the user interface (UI). To specify
security domains of information containers, the SPASCA plug-in offers security-
type annotations. Syntactically, these annotations are an instantiation of regular
Java annotations and can be either @High or @Low. Semantically, the security-
type annotations map information containers to the security domains for the
analysis that are described in Section 3. More concretely, the @High annotation
assigns containers to the security domain high, and the @Low annotation assigns
containers to the security domain low. In order to find a complete typing that is
compatible with the domain assignments, the implementation of SPASCA uses
the type-inference algorithm of from [BLMS15], extended to the typing rules
for the SPASCA security type system as presented in Section 4. For targeted
analyses on parts of the source code, SPASCA can be configured to perform the
analysis on a subset of packages that are present in the target program.

After performing the analysis based on the user input, SPASCA reports back
to the UI provided by the Eclipse plug-in. The UI provides detailed informa-
tion on problems that are found during the analysis. In particular, the UI lists
verification errors due to potential information leaks or timing side channels. In
addition, the inferred security types for containers are displayed in the UI.

We show a screenshot of the SPASCA Eclipse plug-in for a toy example im-
plementing modular exponentiation using the square-and-multiply approach in
Figure 24. In this example, the private key d is annotated as @High, assigning
the information container for the method parameter to the security domain high.
Analogously, the ciphertext y is annotated as @Low, assigning the information
container for this method parameter to the security domain low. The lower part
of Figure 24 shows the overview of the analysis results for this program. In
particular, the UI shows a verification error due to branching on a confidential

30

Figure 24. Screenshot of the SPASCA Eclipse plug-in

condition in Line 10. In order to further assist developers, problems are also
highlighted in the source code, providing a tool-tip stating the concrete prob-
lem. The right part of Figure 24 shows the type inference window that assists
developers in making the inferred types of containers explicit.

5.2 Case Studies

We provide case studies evaluating the effectiveness of SPASCA in detecting
potential timing side channels in cryptographic libraries. To this end, we an-
alyze three cryptographic implementations from GNU Classpath [GNU09] and
FlexiProvider [Fle10]. More concretely, we analyze the GNU Classpath imple-
mentation of DES and the FlexiProvider implementations of AES and IDEA.
These case studies have previously been evaluated with the Side Channel Finder
(SCF) [LS11]. We use SCF’s evaluation results as baseline for our evaluation.

SPASCA identified a timing-side-channel vulnerability in each of our case
studies. In addition, SPASCA also successfully inferred type information for all
information containers in the implementation. We briefly describe the discovered
timing-side-channel vulnerabilities in GNU Classpath and FlexiProvider.

The detected vulnerability in GNU Classpath’s DES implementation is shown
in Figure 25. Here, SPASCA shows an error in Line 25 inside DESFunGnu’s
desFunc. More concretely, SPASCA presents the error “High index access is
not allowed”. This error message notifies the developer that the array access
depends on a container assigned the security domain high. Such an access can
lead to differences in the program’s execution time an attacker can exploit in a
timing-side-channel attack to obtain information on the index accessed. Manual
inspection shows that information from the high variable key flows into work in
Line 24. Thus, if an attacker can learn information about work, he can, poten-
tially, also learn information about the cryptographic key used.

31

Figure 25. Screenshot of the DES case study (GNU Classpath implementation)

SPASCA detects timing-side-channel vulnerabilities in FlexiProvider’s AES
and IDEA implementations. In the case of the AES implementation, the detected
vulnerability is, again, a secret dependent array access. This is a common cause
for a side channel in AES implementations, e.g. the cache-based timing-side-
channel attack on AES exploited such an access [Ber05]. In the case of the
IDEA implementation, a branch depending on a secret is detected.

The side-channel vulnerabilities in the three implementations were also de-
tected by SCF. This shows that SPASCA can be used to detect timing-side-
channel vulnerabilities which are a threat to the security of an implementation.
Moreover, the integration into the Eclipse IDE allows developers to easily iden-
tify such vulnerabilities and take action to mitigate them.

6 Related Work

Comparable Type-Based Information-Flow Analysis Tools. A number
of tools have been developed for the static information-flow analysis of pro-
gramming languages in practical use. We briefly discuss existing tools that, like
SPASCA, are based on security type systems.

Jif [ML97] is one of the earliest type-based information-flow analysis tools for
a practical language. It supports a rich Java subset, and a policy language based
on security principals (owners, readers, and writers of data). Several advanced
features of policy specification are supported by Jif. These features include robust
declassification, dynamic information-flow labels, etc. Jif does not support the

32

detection of timing side channels. In [MUN+16], the policy language of Jif is
implemented for the verification of information-flow security in C programs.

Cassandra [LMS+14] is a type-based information-flow security analysis tool
for Android applications (in Dalvik bytecode). The tool is based on a security
type system that is proven sound wrt. a termination-insensitive variant of non-
interference. Cassandra realizes a proof-carrying code [Nec97] architecture: An
application is analyzed on the server hosting it, and the certificate resulting from
the server-side analysis is then validated at the client installing the application.

The tool from [BLMS15] is a type-based information-flow analysis tool for
programs written in a Java subset. The underlying theory of the tool is based
on Banerjee and Naumann’s typed-based enforcement of noninterference in a
class-based object-oriented language [BN05]. The type system used as basis for
the implementation of the tool is proven sound wrt. a termination-insensitive
noninterference property for the supported Java subset.

With respect to the detection of timing side channels, there exist Side-
Channel Finder (SCF) [LS11] and Side Channel Finderavr (SCFavr) [DMW17].
SCF can detect timing side channels in Java source code, while SCFavr can
detect timing side channels in AVR assembly code. Both tools implement a for-
mally defined security type system as information-flow analysis. For SCFavr, the
formally defined security type system is proven sound wrt. a timing-sensitive
variant of noninterference and a formalization of the timing behavior specified
in the original AVR instruction set manual.

SPASCA combines both, an information-flow analysis for the detection of
information leakage through data content and the detection of timing side chan-
nels. It permits a convenient inline specification of security policies unlike, e.g. SCF
where policies are specified separated from the program. SPASCA supports a rich
subset of Java, going beyond the subset supported by the tool from [BLMS15].

Orthogonal to the object-oriented language supported by SPASCA, type-
based information-flow analysis tools have been developed for functional pro-
gramming languages. One of such developments is Flow Caml [Flo03] – an
information-flow analysis tool for the Caml language.

Type-Based Information-Flow Analysis. The theoretical foundation be-
hind type-based information-flow analysis was first developed by Volpano, Smith,
and Irvine [VSI96] for a sequential While language. This type-based approach
has been advanced extensively by the research community to this very day (for
recent developments see, e.g. [CMA17] and [LZ17]). One goal of this subsequent
advancement of the type-based approach is to address richer features of the
programming language. It follows a brief non-exhaustive list of relevant devel-
opments: In [DS04], the treatment of arrays is studied, in [BN05], the treatment
of classes and objects is studied, and in [SM02,MC12,LMT17], concurrency and
communication are addressed. Another major goal of this subsequent advance-
ment of the type-based approach is to support richer security policies, such as
declassification policies and endorsement policies (e.g. [MSZ04,MR07,CMA17]).

33

Alternative theories on which static information-flow security analyses are
based include program dependence graphs and abstract interpretation.

The information-flow analyses tools Joana [GHM13] and JoDroid [MGH15]
are based on program dependence graphs (PDGs). In [MS12], it is shown that
security type systems and program dependence graphs permit the same level of
precision in information-flow analysis.

7 Conclusion

In this report, we have presented the Secure-Programming Assistant and Side-
Channel Analyzer (SPASCA). SPASCA is an information-flow analysis tool imple-
menting two formally defined security type systems: a timing-insensitive security
type system and a timing-sensitive variant. The formalization and informal jus-
tification of the security type systems increase the confidence in the correctness
of the information-flow analyses implemented in SPASCA.

SPASCA is seamlessly integrated in the Eclipse IDE as a plug-in. This plug-in
provides immediate feedback to the developer regarding potential information-
flow problems and potential timing side channels via code highlighting in the
editor and error reporting in separate views. The integration of SPASCA in the
Eclipse IDE as plug-in enables the usage of the two implemented information-
flow analyses by software engineers directly in the software development process.

For the future, we plan to further extend the Java subset supported by
SPASCA, e.g. by adding support for concurrency. Moreover, the consideration
of additional causes for timing leaks beyond branching on confidential condi-
tions and array accesses on confidential indices is an interesting direction.

Acknowledgments. We would like to thank Manuel Cremer, Yuri Gil Dantas,

Richard Gay, Tobias Hamann, Matthias Perner, and Dr. Artem Starostin for help-

ful discussions and feedback. This work has been funded by the DFG as part of the

project Secure Refinement of Cryptographic Algorithms (E3) within the CRC 1119

CROSSING. This work was supported by the German Federal Ministry of Education

and Research (BMBF) as well as by the Hessen State Ministry for Higher Education,

Research and the Arts (HMWK) within CRISP.

References

[Ber05] D. J. Bernstein. Cache-Timing Attacks on AES. Technical report, 2005.
[BLMS15] D. Bollmann, S. Lortz, H. Mantel, and A. Starostin. An Automatic Infer-

ence of Minimal Security Types. In Proceedings of the 11th International
Conference on Information Systems Security, pages 395–415, 2015.

[BN05] A. Banerjee and D. A. Naumann. Stack-based Access Control and Secure
Information Flow. J. Funct. Program., 15(2):131–177, 2005.

[CMA17] E. Cecchetti, A. C. Myers, and O. Arden. Nonmalleable Information Flow
Control. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS, pages 1875–1891, 2017.

34

[DMW17] F. Dewald, H. Mantel, and A. Weber. AVR Processors as a Platform for
Language-Based Security. In Proceedings of the 22nd European Symposium
on Research in Computer Security (ESORICS), pages 427–445, 2017.

[DS04] Z. Deng and G. Smith. Lenient Array Operations for Practical Secure
Information Flow. In Proceedings of the 17th IEEE Computer Security
Foundations Workshop, CSFW, pages 115–124. IEEE, 2004.

[Fle10] FlexiProvider – A Toolkit for the Java Cryptography Architecture
(JCA/JCE). see http://www.flexiprovider.de, 2010.

[Flo03] Flow caml. https://www.normalesup.org/˜simonet/soft/flowcaml/, 2003.
[GHM13] J. Graf, M. Hecker, and M. Mohr. Using JOANA for Information Flow

Control in Java Programs - A Practical Guide. In Proceedings of the 6th
Working Conference on Programming Languages, pages 123–138, 2013.

[GKP+15] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard. Information Flow Analysis of Android Applications in DroidSafe.
In Proceedings of the 22nd Annual Network and Distributed System Security
Symposium, 2015.

[GNU09] GNU Classpath. see http://www.gnu.org/software/classpath/, 2009.
[Koc96] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems. In Proceedings of the 1996 Internation Confer-
ence on Advances in Cryptology (CRYPTO), LNCS 1109, pages 104–113.
Springer, 1996.

[LMS+14] S. Lortz, H. Mantel, A. Starostin, T. Bähr, D. Schneider, and A. Weber.
Cassandra: Towards a Certifying App Store for Android. In Proceedings of
the 4th ACM CCS Workshop on Security and Privacy in Smartphones and
Mobile Devices, pages 93–104, 2014.

[LMT17] X. Li, H. Mantel, and M. Tasch. Taming Message-Passing Communication
in Compositional Reasoning About Confidentiality. In Proceedings of the
15th Asian Symposium on Programming Languages and Systems, APLAS,
pages 45–66, 2017.

[LS11] A. Lux and A. Starostin. A Tool for Static Detection of Timing Channels
in Java. volume 1, pages 303–313, 2011.

[LZ17] P. Li and D. Zhang. Towards a Flow- and Path-Sensitive Information Flow
Analysis. In 30th IEEE Computer Security Foundations Symposium, CSF,
pages 53–67, 2017.

[Man11] H. Mantel. Information Flow and Noninterference. In Encyclopedia of
Cryptography and Security, 2nd Ed., pages 605–607. 2011.

[MC12] S. Muller and S. Chong. Towards a Practical Secure Concurrent Language.
In Proceedings of the 27th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 57–74,
2012.

[MGH15] M. Mohr, J. Graf, and M. Hecker. JoDroid: Adding Android Support to
a Static Information Flow Control Tool. In Gemeinsamer Tagungsband
der Workshops der Tagung Software Engineering 2015, volume 1337, pages
140–145, 2015.

[ML97] A. C. Myers and B. Liskov. A Decentralized Model for Information Flow
Control. In SOSP ’97, pages 129–142, 1997.

[MPSW05] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner. The Program
Counter Security Model: Automatic Detection and Removal of Control-
Flow Side Channel Attacks. In Proceedings of the 8th International Con-
ference on Information Security and Cryptology (ICISC), pages 156–168,
2005.

35

[MR07] H. Mantel and A. Reinhard. Controlling the What and Where of Declas-
sification in Language-Based Security. In Proceedings of the 16th European
Symposium on Programming, Programming Languages and Systems, ESOP,
pages 141–156, 2007.

[MS12] H. Mantel and H. Sudbrock. Types vs. PDGs in Information Flow Analysis.
In Proceedings of the 22nd International Symposium Logic-Based Program
Synthesis and Transformation, LOPSTR, pages 106–121, 2012.

[MSZ04] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing Robust Declassi-
fication. In Proceedings of the 17th IEEE Computer Security Foundations
Workshop, (CSFW, pages 172–186, 2004.

[MUN+16] K. Muller, S. Uhrig, F. Nielson, H. R. Nielson, X. Li, M. Paulitsch, and G.
Sigl. Automatic Information Flow Validation for High Assurance Systems.
International Journal on Advances in Software, 9(3&4):191–206, 2016.

[Nec97] G. C. Necula. Proof-carrying Code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pages 106–119, 1997.

[SM02] A. Sabelfeld and H. Mantel. Securing Communication in a Concurrent
Language. In Proceedings of the 9th International Symposium on Static
Analysis, SAS, pages 376–394, 2002.

[SM03] A. Sabelfeld and A. C. Myers. Language-based Information-flow Security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[VSI96] D. M. Volpano, G. Smith, and C. E. Irvine. A Sound Type System for Secure
Flow Analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

36

