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Abstract. Software-based energy measurement features in contempo-
rary CPUs allow one to track and to limit energy consumption, e.g.,
for realizing green IT. The security implications of software-based en-
ergy measurement, however, are not well understood. In this article, we
study such security implications of green IT. More concretely, we show
that side-channel attacks can be established using software-based en-
ergy measurement at the example of a popular RSA implementation.
Using distinguishing experiments, we identify a side-channel vulnerabil-
ity that enables attackers to distinguish RSA keys by measuring energy
consumption. We demonstrate that a surprisingly low number of sample
measurements suffices to succeed in an attack with high probability. In
contrast to traditional power side-channel attacks, no physical access to
hardware is needed. This makes the vulnerabilities particularly serious.

1 Introduction

Controlling and limiting energy consumption is crucial for datacenters, both, eco-
logically and economically. Minimizing energy consumption is key to achieving
both, green IT and higher datacenter density [17]. To support the achievement
of energy-consumption goals, software-based energy measurement features have
been introduced to CPUs by various vendors, e.g., by Intel [21, Ch. 14. 9].

While the potential benefits of software-based energy measurement are clear
[17], its security implications are not yet well-understood. To clarify such implica-
tions is our goal. More concretely, we focus on side channels that attackers might
establish using software-based energy measurement. In a side-channel attack, an
attacker extracts secrets, like cryptographic keys, from execution characteristics
of a program, like running time [4,11,22], cache behavior [8,32,52], or power con-
sumption [23, 24, 37]. Prior work on power-consumption side channels required
specialized hardware or required the device under attack to use a battery.

In this article, we investigate the danger of side channels introduced by
software-based energy measurement. We also evaluate the effectiveness of two
candidate countermeasures against such side channels. To make things concrete,
we focus on Intel RAPL, an energy measurement feature in Intel CPUs [21].

We perform our experiments on an Intel i5-4590 desktop CPU. In our ex-
periments, we measure the energy consumption of a victim program purely in
software, using Intel RAPL. Based on our measurements, we evaluate qualita-
tively whether an attacker can learn secret information and then quantify this
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threat using statistical methods on a concrete decision procedure. Subsequently,
we evaluate the effectiveness of countermeasures based on information theory.

Our main finding is that an attacker can distinguish between RSA secret
keys purely by using software-based energy measurement. More concretely, the
attacker can distinguish which secret key is used in the RSA implementation from
the popular cryptographic library Bouncy Castle. We show that 7 observations
suffice to guess the key correctly with a probability above 99%. This number of
required observations is surprisingly low and the detected weakness in Bouncy
Castle RSA is, hence, a serious concern. While it is clear that CPU features for
increasing performance are common sources of side channels (see, e.g., caches [43]
or branch prediction [1]), CPU features for controlling energy were not in the
focus of research on side channels so far. Our results show that CPU features for
controlling energy do introduce side channels and that these side channels are
severe. That clarifies the security implications of green IT in this domain.

We investigate two candidate countermeasures against software-based energy
side channels, namely the program transformations cross-copying [2] and condi-
tional assignment [40]. We evaluate their effectiveness by the reduction in side-
channel capacity that they achieve in our experiments. While cross-copying only
reduces capacity by 8%, conditional assignment reduces capacity by 99%. Thus,
conditional assignment could be a suitable basis for hardening security-critical
implementations against software-based energy side channels.

In summary, our main contributions are (1) a qualitative and a quantitative
analysis of software-based energy side channels at the example of Bouncy Castle
RSA and Intel RAPL, and (2) a quantitative evaluation of the effectiveness of
two candidate countermeasures against energy side channels.

2 Preliminaries

Side Channels. In 1996, Kocher showed that a naive square-and-multiply im-
plementation of modular exponentiation is vulnerable to timing-side-channel at-
tacks [22]. Modular exponentiation is, for example, used in RSA decryption to
compute p = cd (mod n), for ciphertext c and secret key d [45].

1: Input: (d, n), c
2: r ← 1
3: for i = 1 to i = bitLength(d) do
4: if d%2 == 1 then
5: r ← (r ∗ y)%n
6: end if
7: y ← (y ∗ y)%n
8: d← d >> 1
9: end for

10: return r%n

Fig. 1. Square&Multiply

A square-and-multiply implemen-
tation of modular exponentiation is
given in Figure 1. Line 5 is only ex-
ecuted when the condition in Line 4
evaluates to true. Execution of Line 5
takes additional time. Since the condi-
tion depends on bits from the expo-
nent, the execution time of the pro-
gram encodes the Hamming weight of
the exponent. An attacker can exploit
this variation in execution times to ex-
tract the secret exponent d [22].
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In the style of Millen [39], a side channel can be modeled as an information-
theoretic channel [15] with random variables X and Y as the input alphabet and
output alphabet. The input alphabet are all secrets a program can process, and
the output alphabet are all possible side-channel observations. The worst-case
side-channel leakage can be measured by the channel capacity C(X;Y ) [15].

Software-Based Energy Measurement. Energy E (measured in J for joule) is
the aggregation of instantaneous power consumption values p(t) (measured in
W for watt) over time, i.e., E =

∫ t1
t0
p(t)dt [19]. Similar to [41], we define the

energy consumption of a program as the energy consumed by the CPU and main
memory during program execution (e.g., for arithmetics and accesses to data).

Running Average Power Limit (Intel RAPL) is a set of energy sensors on
CPUs introduced with Intel’s Sandy Bridge processor architecture [20]. While
Intel RAPL’s primary purpose is to enforce power consumption limits [21, Ch. 14],
it also exposes the energy consumption of the CPU through the model-specific
register (MSR) MSR_PKG_ENERGY_STATUS, which is updated every mil-
lisecond. The measurements provided are accurate [20]. Linux exposes Intel
RAPL to userspace through the msr kernel module [31] and through the Power
Capping framework (powercap) [30]. Both, msr and powercap, provide energy
measurements in pseudo-files. The former can be accessed with root privileges,
e.g., under /dev/cpu/0/msr for the first CPU. The latter can be accessed by
non-privileged users under /sys/class/powercap/intel-rapl/intel-rapl:0/energy_uj.
From powercap, energy measurements in the unit µJ = 10−6J can be obtained.

Distinguishing Experiments. In a distinguishing experiment, two distinct secret
inputs are passed to a program and a side channel output is repeatedly measured
for each input. For instance, Mantel and Starostin use distinguishing experiments
to show that a program exhibits a timing-side-channel vulnerability [36].

Based on the empirical data from a distinguishing experiment, statistical
tools can be used to quantify the side-channel leakage of the program under test.
For a given attacker strategy, the success probability can be computed based on
hypothesis testing. Independent of an attacker strategy, the side-channel capacity
C(X;Y ) of the program can be estimated with a statistical procedure (e.g, [12]).

A test of hypothesis is a tool to investigate conformance of a hypothesis H0

with experimental data [48, p. 64]. We denote the alternative hypothesis by H1.
A test has two error cases: (a) the test wrongly accepts H0 (a false positive), or
(b) the test wrongly refutes H0 (a false negative). The probabilities for a false
positive and a false negative are denoted by P (H0|H1) and P (H1|H0).

The binomial distribution (or Bernoulli distribution) is the probability distri-
bution for the number of successes in n independent experiments [48, p. 112]. The
probability that in n experiments, each featuring success probability p, r suc-
cesses are observed is Pn,p(r) =

(
r
n

)
prpn−r, where

(
r
n

)
= n!

r!(n−r)! is the binomial

coefficient. We write Pn,p(r ≤ X) =
∑X

i=0 Pn,p(i) for the probability that at most
X out of n experiments exhibit a success. Conversely, the probability that more
than X out of n experiments exhibit a success is Pn,p(r > X) = 1−Pn,p(r ≤ X).
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Chothia and Smirnov show in [13] how tests of hypothesis can be used to
attack e-passports. Based on a simple selection criterion, their distinguishing
attack tests the hypothesis that the passport under attack belongs to the vic-
tim. Using P (H0|H1) and P (H1|H0), they calculate the number of observations
needed to distinguish passports with error rates below 1%.

Program Transformations against Side Channels. Multiple source-to-source pro-
gram transformations were proposed for mitigating timing side channels, includ-
ing cross-copying [2], conditional assignment [40], transactional branching [6],
and unification [26]. The technique cross-copying pads branches by adding copies
of the statements in one branch to the respective other branch. In the copies,
dummy statements are used, which do not affect the program’s state, but require
the same execution time as the respective original statements. The technique
conditional assignment removes secret-dependent branching completely and re-
places assignments from the respective branches by assignments that are masked
by the branching condition. Both, cross copying and conditional assignment were
evaluated analytically and experimentally [2, 36, 40]. For instance, they were ef-
fective against the timing side channel in an implementation of Figure 1 [36].

RSA in Bouncy Castle. Bouncy Castle is a cryptographic library for Java [29]. A
provider class allows the use of Bouncy Castle through the Java Cryptography
Extension (JCE). In the form of Spongy Castle [50], Bouncy Castle is widely
used on Android, e.g., in the WhatsApp messenger [32]. Side channels in Bouncy
Castle are, hence, a serious security threat. Recently, it was shown that Bouncy
Castle 1.5’s AES implementation is vulnerable to cache side-channel attacks [32].

Bouncy Castle contains implementations of various variants of the RSA asym-
metric encryption scheme. The RSA encryption and decryption functionality is
implemented in the Java class RSAEngine. RSAEngine can be used either directly
or as backend in cipher modes, such as OAEP [7] and PKCS1 [46]. An RSA key
can be generated using the class RSAKeyPairGenerator.

3 Our Approach
In a side-channel attack, an attacker collects sample execution characteristics of a
victim program. Based on these samples, the attacker distinguishes between the
candidate secrets (e.g., valid crypto keys). The core of many side-channel attacks
is to distinguish between candidate secrets from a restricted set (e.g., varying
only in one bit [22] or byte [3,8]). For instance, AlFardan and Paterson [3] distin-
guish between two secret plaintexts based on the time that an implementation of
TLS takes to decrypt them. Using distinguishing experiments [36], one can de-
tect weaknesses in implementations that allow one to distinguish between secret
inputs, e.g., as a basic step in a side-channel attack.

We define a general procedure for such experiments and use it to assess the
implementation of RSA in Bouncy Castle with respect to two attacker models.

3.1 Procedure for Distinguishing Experiments
An implementation imp is assessed with respect to a particular security concern,
namely the leakage of a secret input s to an attacker under an attacker model

4



Input
Generation

Sample
Collection

Result
Computation

Result
Evaluation

Fig. 2. Procedure for a distinguishing experiment

a. For instance, imp could be an RSA implementation and s could be the secret
RSA key. The assessment consists of four steps, visualized in Figure 2: input
generation, sample collection, result computation, and result evaluation.

In the first step, input generation, two input vectors to the implementation
imp are generated, such that all inputs are within the spectrum of valid input
data. The input vectors differ only in the secret input s. For instance, to assess the
leakage of a secret RSA key, two valid secret RSA keys are generated randomly.

In the sample collection step, the implementation imp is run on the two input
vectors that were generated in the previous step. For both runs, the observation
made under the attacker model a is recorded. This step is repeated multiple
times to obtain a collection of observations for each input vector.

In the result computation step, the arithmetic means of the two collections of
observations are computed. For each collection, the frequency with which each
observation occurs in the collection is computed and visualized in a histogram.

The last step is the result evaluation. Based on the computed results, one can
detect weaknesses in implementations (if the means are clearly distinguishable
and the histograms have little overlap). In addition to such qualitative results,
quantitative results can be obtained through a statistical test (see Section 5).

3.2 Attacker Models

The sample-collection step in a distinguishing experiment depends on the at-
tacker model. We implement this phase for two attacker models that we call
sequential and concurrent . In both models, the attacker can execute an attack
procedure with standard capabilities on the machine running the victim pro-
gram. On Linux, attackers under both models can access powercap’s pseudo-files
on file system /sys. The model sequential captures active attackers who can trig-
ger runs of the victim program. The model concurrent captures passive attackers
who observe existing runs of the victim program. On Linux, unprivileged attack-
ers can access information about running processes through file system /proc.

Implementation for sequential We implemented the measurement procedure for
sequential in Python. Figure 3 shows corresponding pseudocode.

Firstly (Line 2), the attacker reads the energy-consumption counter through
powercap by calling the function readCounter. Secondly, the attacker waits
busily for the first change to the energy-consumption counter (Lines 3 – 5). Once
the counter has been refreshed, the attacker invokes an execution of the victim
program (Line 6) using the invocation command supplied as input to the attack
procedure. After executing the victim program, the attacker queries the energy-
consumption counter again (Line 7). The difference between the values of the
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1: function readCounter
2: val← read /sys/class/powercap/intel-rapl/intel-rapl:0/energy_uj
3: return toInteger(val)
4: end function

1: Parameters: cmdLine
2: Einstant ← readCounter()
3: repeat . Align beginning of measurement with register update
4: Ebegin ← readCounter()
5: until Ebegin 6= Einstant

6: invoke(cmdLine) . Execute victim program
7: Eend ← readCounter()
8: if Eend < Ebegin then
9: discard measurement . A wraparound has occurred
10: else
11: return Eend − Ebegin

12: end if

Fig. 3. Measurement procedure under sequential

1: Parameters: victimComm . the command name of the victim program
2: function waitForVictim
3: while true do
4: lastpid← fifth field of /proc/loadavg
5: repeat
6: newlastpid← fifth field of /proc/loadavg
7: until lastpid 6= newlastpid
8: pid← lastpid
9: while pid ≤ newlastpid do
10: commpid ← contents of /proc/pid/comm
11: if commpid = victimComm then
12: return pid
13: end if
14: pid← pid+ 1
15: end while
16: end while
17: end function
18: pid← waitForVictim()
19: Ebegin ← readCounter()
20: while /proc/pid/ exists do
21: do nothing
22: end while
23: Eend ← readCounter()
24: if Eend < Ebegin then
25: discard measurement . A wraparound has occurred
26: else
27: return Eend − Ebegin

28: end if

Fig. 4. Measurement procedure under concurrent
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counter before and after the victim’s execution is the attacker’s sample. If the
sample is negative, that is, if there was a wraparound of the counter, the sample
is discarded (Lines 8 – 9). Otherwise, the sample is returned (Lines 10 –11).

Implementation for concurrent Since an attacker under concurrent cannot trig-
ger the victim program himself, he needs to identify runs of the victim program
on the system. We use Python to implement the measurement procedure under
concurrent . Pseudocode for the procedure is shown in Figure 4.

The attacker waits until the victim program is executed (Lines 2 – 17). He
detects the invocation of a program by monitoring the /proc filesystem. He recog-
nizes the victim program by the command that was used to invoke it (Line 11).
Once the victim program is executed, the attacker measures the energy con-
sumption as the difference in the energy-consumption counter (Lines 19 – 27).

4 Qualitative Results on Bouncy Castle RSA

We investigate the consequences of software-based energy measurement on soft-
ware security at the example of Intel RAPL and Bouncy Castle RSA. Using a
distinguishing experiment, we identify that running Bouncy Castle RSA on a
system with Intel RAPL gives rise to a weakness. The energy consumption of
the decryption operation allows to distinguish between secret RSA keys. In the
following, we describe the setup and results of our experiment in detail.

4.1 Experimental Setup

Assessed Implementation To assess the vulnerability of Bouncy Castle RSA, we
implement a Java program, called RSA, that decrypts an RSA ciphertext using
Bouncy Castle 1.53. It takes a secret key and a ciphertext as input. It decrypts

1: Input: (d, n), ct
2: rsa← New RSAEngine()
3: rsa.init(false, (d, n))
4: result← rsa.

processBlock(ct, 0, ct.length)
5: return result

Fig. 5. RSA decryption

the ciphertext, using the secret key,
and returns the resulting plaintext.

Figure 5 lists the pseudo-code of
the program. Line 4 decrypts cipher-
text ct using secret key (d,n). pro-
cessBlock is a method from Bouncy
Castle’s RSAEngine class, which imple-
ments the RSA decryption.

Machine Configuration We conduct our experiments on a Lenovo ThinkCentre
M93p featuring one RAPL-capable Intel i5-4590 CPU @ 3.30GHz with 4GB of
RAM. The machine runs Ubuntu 14.10 with a Linux kernel version 3.16.0-44-
generic from Ubuntu’s repository. The programs are executed using an Open-
JDK 7 64-bit server Java Virtual Machine version 7u79-2.5.5-0ubuntu0.14.10.2
from Ubuntu’s repository. To simulate a server machine that is shared between
attacker and victim, we disable the X-server.
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Parameters and Sampling We generate two RSA keys k1 and k2 to supply as
input to our RSA decryption program during our distinguishing experiment.
First, we randomly select two 1536 bit primes p and q to calculate the 3072 bit
modulus n = p ∗ q shared by our keys. To select private exponents for the two
keys k1 and k2, we exploit that d ∗ e ≡ 1 (mod (p − 1) ∗ (q − 1)) must hold
for valid RSA keys [45]. For k1, we randomly generate a public exponent ek1
and calculate the corresponding private exponent dk1. For k2, we fix the public
exponent to ek2 = 65 537 and calculate the corresponding private exponent dk2.
The secret exponents that we obtain for k1 and k2 have Hamming weight 1460
and 1514, respectively. In addition to the keys, we randomly select a ciphertext
c < n to decrypt with both keys.

In our distinguishing experiments, we utilize our measurement procedures to
collect 100 000 samples per secret key under the attacker models sequential and
concurrent . For the attacker model concurrent , under which an attacker cannot
trigger executions of the victim program himself, we invoke the victim program
after random delays between 100ms and 1000ms.

We reject outliers that lie further than six median absolute deviations from
the median. For k1, we reject 1.24% of the samples under sequential , and 10.78%
of the samples under concurrent . For k2, we reject 1.11% of the samples under
sequential , and 11.01% of the samples under concurrent . We plot the collected
samples for each key and attacker model as histograms.

4.2 Results for sequential

The samples collected in our distinguishing experiment under sequential are
depicted in Figure 6. One histogram of energy-consumption samples is given per
input. The histograms are colored based on the input: The blue (left) histogram
corresponds to the samples for k1 with Hamming weight 1460, and the red (right)
histogram corresponds to the samples for k2 with Hamming weight 1514.

The estimated mean energy consumption for k1 is 5.07J , and for k2 the
estimated mean energy consumption is 5.14J . The peaks of the histograms and
the mean energy consumptions for the inputs are clearly distinct.
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Fig. 6. Results for sequential
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Fig. 7. Results for concurrent
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Based on the histograms, an attacker under the model sequential can distin-
guish between the two secret RSA keys. Hence, there is a weakness in Bouncy
Castle RSA in the presence of the Intel RAPL feature.

4.3 Results for concurrent
Figure 7 shows the histograms of the samples per key under concurrent . Again,
the blue (left) histogram corresponds to k1 (Hamming weight 1460) and the red
(right) histogram corresponds to k2 (Hamming weight 1514).

The mean energy consumptions are 7.20J and 7.32J for the keys with Ham-
ming weights 1460 and 1514, respectively. The peaks of the two histograms are
clearly distinct. Interestingly, the overlap of the histograms is even a bit smaller
compared to the overlap of the histograms under sequential . We will get back to
this peculiarity in Section 5.

The mean energy consumptions and the histograms for the two RSA keys
are clearly distinct. This means that the weakness we detected in Bouncy Castle
RSA is even exposed to the weaker attacker model concurrent , under which an
attacker only passively observes an RSA decryption.
Remark 1. Note that, the energy consumption measured under concurrent in-
creased significantly by 2.13J and 2.18J , respectively, compared the observations
under sequential . This increase is due to the attacker actively monitoring the
/proc filesystem to identify termination of the RSA process.

Overall, we identify a weakness in Bouncy Castle RSA that is exposed to
attackers under, both, sequential and concurrent . For both attacker models, the
mean energy consumption of the decryption differs significantly across the two
RSA keys. Based on the histograms from our distinguishing experiments, an
attacker is able to clearly distinguish between the two secret keys if he collects
enough samples. In the following section, we quantify exactly how many samples
an attacker needs in order to be successful.

5 Quantification of the Weakness

The results of our distinguishing experiments show that it is intuitively possible
that an attacker can distinguish RSA keys by exploiting a weakness in Bouncy
Castle RSA via Intel RAPL. We further investigate the likelihood of an attacker to
distinguish keys. To this end, we devise a test procedure that allows an attacker
to guess which of the two RSA key is used during decryption. Based on the false
positive and false negative rates of the test procedure, we compute how many
measurements an attacker requires to correctly guess the key in 99% of all cases.

5.1 A Distinguishing Test

Side-channel attacks, e.g., [8, 13], can be mounted in two phases. In the first
phase, the attacker collects a set of offline observations through the side channel
as reference point, possibly on a different machine with the same software and
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hardware setup as the machine he shares with the victim. During the second
phase, the attacker collects a set of online observations on the machine he shares
with the victim. By relating his online side-channel observations with the offline
observations, the attacker deduces information about the secret being processed.

For our distinguishing experiment setting, the offline observations are the
collected energy-consumption characteristics of the RSA decryption operation
for both, k1 and k2. The online observations would be side-channel observations
collected to identify which key is used during a system run. To guess which
key the system is using, the attacker compares how likely the learned energy-
consumption characteristics allow him to explain the online observations. We
model the guess by a statistical test to distinguish between the keys.
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Fig. 8. Example of a distinguishing test

The attacker’s distinguishing test
works as follows: Given two keys, k1
and k2, with mean energy consump-
tions of mk1 and mk2, where mk1 <
mk2, the attacker determines a distin-
guishing point dp = mk1+mk2

2 . If the
attacker observes an energy consump-
tion less than dp, he guesses k1. Other-
wise, he guesses k2. A false positive is:
k2 was used but the attacker guesses
k1. A false negative is: k1 was used
but the attacker guesses k2.

A visualization of an example for the test is given in Figure 8. In the exam-
ple, the distributions of energy consumptions for k1 and k2 follow the normal
distributions N (4.5J, 0.81) and N (5.5J, 0.49). Thus, the decision point is at 5J .
The area under the curve k2 to the left of dp corresponds to the false positive
probability P (k1|k2) = 23.75%. Conversely, the area under the curve k1 to the
right of dp corresponds to the false negative probability P (k2|k1) = 28.93%.

The attacker can use majority voting to increase his chances of guessing the
correct key. For this, he observes multiple decryption operations and uses his test
on each observation. Based on the individual guesses, he chooses the key on which
the majority of guesses agreed. Let n be the number of observations the attacker
makes. Then the false positive probability is pnP (k1|k2) = Pn,P (k1|k2)(r > bn2 c)
and the false negative probability is pnP (k2|k1) = Pn,P (k2|k1)(r > bn2 c). Based
on P (k1|k2) and P (k2|k1), one can determine the number n of observations
needed for the attacker to distinguish k1 and k2 with 99% success rate, i.e., with
pnP (k1|k2) < 1% and pnP (k2|k1) < 1%. In the example from Figure 8, P (k1|k2) =
23.75%, so that 17 observations lead to a false positive rate p17P (k1|k2) = 0.87% <

1%. Conversely, P (k2|k1) = 28.93%, so that 29 observations lead to a false
negative rate below 1%, namely p29P (k2|k1) = 0.81%. We conclude that the attacker
requires 29 observations to distinguish k1 and k2 successfully in 99% of all cases.
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5.2 Quantitative Results

For a quantitative evaluation of the weakness in Bouncy Castle RSA, we need to
know the false positive and false negative probabilities of the distinguishing test.
We estimate the probabilities based on the energy consumption characteristics
collected offline by the attacker on his reference system. To estimate P (k1|k2),
we count the number of offline observations below dp of decryption samples
with k2 and divide them by the total number of offline observations for k2.
Conversely, to estimate the false negative probability we count the number of
offline observations above dp of decryption samples of k1 and divide them by
the total number of offline observations for k1. Formally, the probabilities can be
estimated as follows. Let Ok1 be the set of all offline observations for decryption
operations with k1 and let Ok2 be the set of all offline observations for k2.

P (k1|k2) = |{x|x ∈ Ok2 ∧ x < dp}|
|Ok2|

P (k2|k1) = |{x|x ∈ Ok1 ∧ x ≥ dp}|
|Ok1|

We evaluate the weakness for the attacker models sequential and concurrent ,
using our distinguishing test. For sequential , the distinguishing point is at dp =
5.10J , due to the means for k1 and k2 being 5.07J and 5.14J , respectively (see
Section 4.2). For concurrent , the distinguishing point is at dp = 7.26J , due to
the means for k1 and k2 being 7.20J and 7.32J , respectively (see Section 4.3).

The table in Figure 9 lists the false positive and false negative probabilities
pnP (k1|k2) and p

n
P (k1|k2) that result from n online observations for a given n under

the two attacker models, respectively. Note that, the following equations hold:
P (k1|k2) = p1P (k1|k2) and P (k2|k1) = p1P (k2|k1). In addition to p1P (k1|k2) and
p1P (k2|k1), we only list the cases in which one of the probabilities falls below
1% for the first time. We highlight the first value below 1% for each of the
probabilities by printing it in bold face.

The false positives for 1 observation range from 13.69% for concurrent to
24.75% for sequential . The false negatives for 1 observation range from 13.39% for
concurrent to 19.77% for sequential . For 7 online observations, the false positive
and false negative probabilities fall below 1% for concurrent . For sequential , the
false negative probability falls below 1% at 13 observations and the false positive
probability falls below 1% at 19 observations.

n 1 observation 7 observations 13 observations 19 observations

sequential pnP (k1|k2) 24.75% 6.83% 2.30% 0.83%

pnP (k2|k1) 19.77% 3.20% 0.66% 0.14%

concurrent pnP (k1|k2) 13.69% 0.87% 0.07% 0.007%

pnP (k2|k1) 13.39% 0.80% 0.06% 0.005%

Fig. 9. False-positive and false-negative rates for attackers
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The distinguishing tests show that, in the worst case, only 19 observations are
required to distinguish key k1 from key k2 in 99% of all cases. In this case of 19
observations, concurrent ’s test exhibits false negative and false positive probabil-
ities below 0.01% each. This means that, given only 19 decryption observations,
concurrent can distinguish both keys in 99.99% of all cases. Moreover, to distin-
guish both keys in 99% of all cases, concurrent requires only 7 observations. The
finding that concurrent , our weakest attacker model, can distinguish both keys
with high likelihood at 7 observations and, even worse, with near certainty at 19
observations, gives us reason to classify the weakness we discovered as severe.

Remark 2. A comparison across the two attacker models yields the surprising
result that concurrent requires fewer observations than sequential to distinguish
both keys in 99% of the cases. The 7 observations required by an attacker under
concurrent are less than half of the 19 observations required by an attacker under
sequential . Intuitively, an attacker under sequential should be able to distinguish
the keys more easily than an attacker under concurrent , due to sequential ’s
ability to trigger victim executions and, hence, to measure more precisely.

After investigating the histograms from Section 4 again, our explanation is
as follows. For both attacker models, sequential and concurrent , the overlap be-
tween both histograms seems to be roughly 0.25J wide. The estimated means
differ by 0.07J , and 0.12J , respectively. While the width of the overlap remains
similar with decreasing attacker capabilities, the means move further apart, de-
creasing the likelihood to observe an energy consumption value that lies in the
overlap. Hence, the likelihood of an error in the distinguishing test decreases
from sequential to concurrent , which is also shown by our quantitative results.

6 A Security Evaluation of Candidate Countermeasures

As we have shown in the previous sections, software-based energy side channels
are a serious threat. Restricting access to software-based energy measurement
features like Intel RAPL would seriously limit green IT. In contrast, software-level
countermeasures would provide more flexibility, allowing energy measurement
while mitigating information leakage through energy side channels.

We investigate two candidate software-level countermeasures, namely cross-
copying [2] and conditional assignment [40]. Both are countermeasures against
timing side channels, which ensure that equal or equivalent statements are exe-
cuted across every pair of secret-dependent branches, independently of the guard.
Intuitively, equal or equivalent statements should consume equivalent amounts
of energy. Thus, we consider both techniques promising candidates for miti-
gating software-based energy side channels. In the following, we evaluate their
effectiveness, using experiments and information theory.

6.1 Case Study

To investigate whether cross-copying or conditional assignment can help to mit-
igate leakage through software-based energy side channels, we quantify their
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1: Input: (d, n), c
2: r ← 1
3: for i = 1 to i = bitLength(d) do
4: if d%2 == 1 then
5: r ← (r ∗ y)%n
6: else rdummy ← (rdummy ∗ y)%n
7: end if
8: y ← (y ∗ y)%n
9: d← d >> 1
10: end for
11: return r%n

Fig. 10. Cross-copied version

1: Input: (d, n), c
2: r ← 1
3: for i = 1 to i = bitLength(d) do
4: mask ← ∼(((d%2 − 1) >> 31) |

((1− d%2) >> 31))
5: r ← (mask & ((r ∗ y)%n)) |

(∼mask & r)
6: y ← (y ∗ y)%n
7: d← d >> 1
8: end for
9: return r%n

Fig. 11. Conditional-assignment version

effectiveness on a benchmark program. Motivated by the weakness that we de-
tected in the Bouncy Castle RSA implementation, we use a benchmark that is
relevant for RSA. More concretely, we focus on an implementation of square-
and-multiply modular exponentiation (Figure 1).

We first check that software-based energy-side-channel leakage is a concern
for this benchmark implementation. To this end, we approximate the channel ca-
pacity for the implementation. In the next step, we check whether the candidate
countermeasures mitigate this threat. To this end, we approximate the channel
capacity of a cross-copied version of the implementation and of a conditional-
assignment version of the implementation. We evaluate the effectiveness of each
countermeasure by the reduction in channel capacity that it causes.

The cross-copied implementation, shown in Figure 10, contains a dummy
assignment (Line 6) in the else-branch that is equivalent to the assignment in
the then-branch. The conditional-assignment version replaces the branching by
assignments masked by the branching condition (Figure 11, Line 4 and 5).

6.2 Experimental Setup
For brevity, we call the unmitigated square-and-multiply implementation Base-
line, the cross-copied implementation CC, and the conditional-assignment ver-
sion CA. For experimental evaluation, we use [36]’s Java implementation of Base-
line, CC, and CA. We adapt the implementations to log the energy consumption
measured through powercap. We disable the network and all but the first CPU
core to reduce noise in the measurements. We disable the just-in-time (JIT) com-
piler of the Java VM to prevent optimizations from interfering with our results.
To avoid zero energy consumption results due to execution times below 1ms,
we repeat the computation 1.31× 105 times. This results in approximately 100
updates of the energy-consumption counter for a single execution of Baseline.
We estimate the channel capacity using an iterative Blahut-Arimoto algorithm
[5,10] based on the samples collected during a distinguishing experiment.

For the distinguishing experiment, we use two input vectors that share n =
4096 and c = 1234 567 890. One secret exponent with Hamming weight 5 (d =
2080 374 784) and one secret exponent with Hamming weight 25 (d = 33 554 431)
are used as the first and second value of the secret input, respectively. We follow
[36] and collect 10 000 samples per input. We reject outliers that lie further
than six median absolute deviations from the median. This results in a rejection
between 1.07% and 2.73% of all samples for each implementation and each input.
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6.3 Experimental Results and Interpretation

The table in Figure 12 shows the results of our experiments. The mean energy
consumptions and channel capacities are given with 95% confidence intervals.

The mean energy consumption for the first input to Baseline is roughly
15 373.73nJ . The mean energy consumption for the second input to Baseline
is roughly 18 934.13nJ . These means are clearly distinguishable. Hence, there is
a clear security concern already in the benchmark.

To quantify the severity of the security threat, we determine the channel
capacity. Since we consider a scenario in which the attacker tries to distinguish
between two inputs, the secret is 1 bit, namely the choice of the input. For Base-
line, C(X;Y ) is 0.9922 bits/symbol. That is, one attacker observation reveals
almost the entire secret under the worst-case prior distribution of inputs.

Next, we investigate the results for CC. Here, the mean energy consumptions
for the two inputs are roughly 20 372.21nJ and 21 040.05nJ , respectively. The
channel capacity is approximately 0.9171 bits/symbol.

Intuitively, the mean energy consumptions of CC are still clearly distinguish-
able. The quantification of the security concern by the channel capacity of CC
confirms that the concern is still substantial. CC can still leak 91% of the se-
cret under the worst-case prior input distribution. This shows that [36]’s cross-
copying implementation does not mitigate the energy side channel significantly.

We can only speculate why cross-copying is not effective against the energy
side channel in our experiments. The difference of data dependencies introduced
by the branches might be responsible. In the else branch (Figure 10, Line 6), the
result is written to rdummy instead of r. This might cause a subtle difference in
energy consumption, for example, due to different patterns of pipeline stalling.

Next, we investigate the results for CA. The mean energy consumptions of
CA for the two inputs are roughly 32 670.41nJ and 32 630.73nJ , respectively.
The channel capacity is approximately 0.0075 bits/symbol.

The mean energy consumptions for the two inputs to CA are almost identical
and, hence, not easy to distinguish. The channel capacity is reduced almost to
zero. That is, in our example, conditional assignment effectively reduces the secu-
rity concern by 99%, almost eliminating the software-based energy side channel.

The successful reduction of channel capacity from Baseline to CA gives us
hope that an effective countermeasure against software-based energy side chan-
nels can be designed. In particular, conditional assignment is a promising starting
point in the design of such countermeasures.

mean(E) for Input 1 mean(E) for Input 2 C(X;Y )

Baseline 15370.07nJ ± 3.18 18925.46nJ ± 4.00 0.9922± 0.00000

CC 20372.21nJ ± 4.48 21040.05nJ ± 3.97 0.9171± 0.00970

CA 32670.41nJ ± 5.63 32630.73nJ ± 5.60 0.0075± 0.00375

Fig. 12. Statistical results for modular exponentiation
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7 Related Work

7.1 Power-Consumption Side Channels
Power-consumption side channels are exploited, e.g., by the techniques Simple
Power Analysis (SPA) and Differential Power Analysis (DPA). These techniques
were introduced by Kocher, Jaffe, and Jun in attacks on smartcards implement-
ing the DES cryptosystem [23]. In both techniques, traces of the power consump-
tion of a circuit are measured and analyzed. SPA is a direct interpretation of
power traces and can yield information about a device’s secret key during crypto
computations [23, 24]. DPA is a statistical method to identify correlations be-
tween data processed and power consumption [23,24]. Variations of power anal-
ysis have been used in attacks on implementations of cryptography, e.g., of DES
[23,28,47], of RSA [23,24,37,42], and of AES [24,34,44]. All these attacks obtain
traces of power consumption from measurements with dedicated hardware.

Recently, power-consumption side channels were exploited without dedicated
hardware on mobile devices using batteries [38,51]. We briefly give an overview
on Michalevsky et al.’s work on tracking Android devices through power anal-
ysis [38]. They measure the power consumption of a device using its battery
monitoring unit. By their measurements, they can, e.g., track users in real-time.

Our work on software-based energy side channels differs from the previously
described work on power analysis in the two following aspects.

(a) We investigate a fundamentally weaker attacker model. Our attacker is
only able to measure the energy consumption, which is the aggregate of instan-
taneous power consumption. As a result, the observations required for an attack
through software-based energy side channels are more coarse-grained.

(b) On the technical side, we use software-based measurement techniques
available on machines without battery, e.g., on desktop and server machines.
Software-based techniques allow an attacker to conduct his attack without dedi-
cated hardware and without physical access to the device under attack. Thus, the
observations required to exploit software-based energy side channels are easier
to obtain than power traces and might be obtainable remotely in the cloud.

Overall, we think that software-based energy side channels are an interesting
target for future security research because they use more coarse-grained obser-
vations that are easier to obtain.

7.2 Quantitative Side-Channel Analysis

Side channels have been the focus of many research projects since their first
appearance in Kocher’s work in 1996 [22]. A multitude of work focuses on ex-
ploiting side channels, e.g., [3, 4, 8, 11, 22, 32, 52]. In addition, analysis of side
channels using information-theoretic methods has become an area of focus. Köpf
and Basin propose a model to analyze adaptive side-channel attacks using in-
formation theory [25]. More concretely, they quantify the attacker’s uncertainty
about a secret based on the number of side-channel measurements the attacker
obtained. CacheAudit [18] by Doychev, Köpf, Mauborgne, and Reineke is a tool
employing program analysis and information theory to give upper bounds on
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information leakage through cache side channels in x86 binaries. Other work on
analysis of side channels using information theory includes [9, 27,33,35,49].

The mentioned works are foremost of analytic nature. On the empirical anal-
ysis of side channels, we are aware of only few works, e.g., [14,16,36]. Mantel and
Starostin evaluate the practical effectiveness of program transformations to miti-
gate timing side channels [36]. For their evaluation, they consider the capacity of
the timing side channel in a program. They introduce the idea of distinguishing
experiments to obtain experimental results on the side-channel capacity.

We apply [36]’s concept of distinguishing experiments to show software-based
energy side channels exist. Following [36]’s approach, we use channel capacity
to evaluate the effectiveness of side-channel countermeasures. In summary, we
build on [36]’s techniques, but apply them to a novel type of side channel.

Our distinguishing test to quantitatively evaluate the weakness in Bouncy
Castle RSA is a variant of [13]’s test to distinguish e-passports. Distinguishing
e-passports is done through sending a random message and a replayed message
to a passport to obtain the difference in response times. Using a normal dis-
tribution as a model of response times and a manually selected distinguishing
point, Chothia and Smirnov calculate the number of observations needed to dis-
tinguish passports in 98% of all cases. We transfer the test to our setting. Unlike
Chothia and Smirnov, we estimate error probabilities based on offline samples
alone, because our observations do not follow a normal distribution.

Like the distinguishing attack in [3] and the distinguishing experiments in
[16, 36] we focus on distinguishing between two secrets in our qualitative and
quantitative evaluation. We take care to use two representative secrets by fol-
lowing standard random key generation procedures (OpenSSL’s default public
exponent, criteria in [45]). A notable work that distinguishes between more than
two secrets is [13], which considers ten different e-passports.

8 Conclusion
Software-based energy measurement features facilitate the optimization of en-
ergy consumption, which is crucial in datacenters. We showed, at the example of
Intel RAPL and Bouncy Castle RSA, that these important features also introduce
a security issue. Based on only 7 energy samples measured with Intel RAPL, an
attacker can distinguish between two RSA secret keys with 99% success proba-
bility. Overall, our results show that software-based energy side channels are a
serious security concern.

To protect against the security issues without excluding a large fraction of
programs from the optimization of energy consumption, fine-grained counter-
measures are needed. We have identified conditional assignment as a promising
starting point for designing such countermeasures. In our quantitative exper-
imental evaluation of candidate countermeasures, conditional assignment was
effective in the protection of our benchmark program.

Interesting directions for future work will be to derive key-recovery attacks
against Bouncy Castle RSA from our results and to investigate the effect of just-
in-time compilation. We hope that our approach using distinguishing experi-
ments will also be helpful for the timely detection of side-channel vulnerabilities
in other security-critical implementations.
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A RSA Parameters
We list the ciphertext c, the modulus n, and, for each of k1 and k2, the private
exponent d. The table in Figure 13 lists the bit length and Hamming weight of
the individual key parameters.

Variable Bit Length Hamming Weight

n 3071 1550
dk1 2880 1460
dk2 3070 1514

Fig. 13. RSA parameter information

c = 21 444 858 737 899 529 054 620 511 370 454 507 092 966 801 560 642 267 256

271 104 479 565 623 317 752

n = 2701 439 070 847 831 436 302 643 023 883 472 860 688 598 232 186 843 078 227

336 630 239 028 012 256 550 437 650 268 769 791 198 665 992 795 439 484 217

556 231 560 025 070 371 698 339 396 459 200 881 954 828 050 340 830 157 513

508 421 214 770 279 402 829 167 697 307 613 566 394 176 659 624 110 756 710

628 073 014 761 357 607 996 466 364 229 898 558 058 073 647 928 107 882 490

406 530 947 890 797 815 573 279 825 845 151 878 854 668 533 049 684 979 849

046 263 217 739 454 991 182 947 451 853 315 650 216 590 304 861 483 322 060

060 830 631 094 083 537 687 041 942 037 690 007 693 207 305 415 195 214 688

380 836 084 216 172 144 792 635 213 107 935 419 683 137 307 723 939 160 685

162 963 798 575 432 937 877 504 919 069 927 206 463 822 812 215 130 775 583

846 864 507 114 293 297 396 044 572 999 463 005 723 946 293 357 342 314 317

073 651 823 518 140 604 749 430 721 177 242 193 915 300 702 995 100 318 209

072 680 035 930 026 760 088 409 999 868 552 738 596 292 995 373 879 363 788

033 672 926 557 820 859 907 396 638 610 163 158 192 481 639 061 519 053 725
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943 865 537 221 937 014 172 943 369 946 317 527 944 500 414 286 628 781 268

545 323 413 089 483 205 130 985 579 709 706 141 004 772 358 028 235 835 383

909 088 091 781

dk1 = 834 165 241 298 999 430 572 239 556 741 255 001 409 654 369 991 231 022 229

220 766 012 080 697 463 656 309 174 093 432 158 675 603 340 216 003 665 704

131 245 121 040 967 995 188 366 594 646 886 723 499 562 164 775 785 136 008

896 297 468 405 676 356 520 936 826 945 820 428 827 348 255 217 929 032 541

402 713 897 358 199 944 878 768 362 082 394 995 264 828 906 821 922 160 081

896 178 733 905 626 880 183 545 477 730 549 240 816 967 899 639 830 638 962

585 672 589 316 902 773 646 421 798 550 172 445 107 122 780 716 202 671 225

380 537 248 843 847 787 001 886 230 297 573 272 017 826 827 441 391 799 971

383 481 609 479 693 434 609 255 364 781 237 298 674 935 211 620 000 100 041

121 931 493 922 732 461 726 369 423 008 396 966 929 501 865 211 495 345 778

306 377 790 415 705 746 828 081 157 687 854 396 051 014 887 511 709 430 472

332 036 102 915 852 198 291 900 816 398 410 487 823 293 583 922 839 328 518

348 451 707 669 403 333 993 535 972 295 702 111 655 470 282 959 323 284 437

483 178 409 938 904 891 941 353 380 152 662 307 486 605 772 459 905 400 151

595 208 101 373 686 515 401 901 692 964 058 539 933 630 431 256 790 357 003

951 566 054 871

dk2 = 849 669 096 348 419 204 365 570 298 477 349 071 171 614 131 865 471 357 729

223 033 692 678 706 938 741 080 172 802 999 095 258 832 447 464 674 826 253

513 078 126 047 832 149 347 969 391 019 019 909 054 959 345 128 332 576 053

617 789 744 725 266 175 298 192 375 980 008 826 221 571 989 636 873 751 134

110 143 415 982 969 381 778 707 618 076 367 532 496 926 501 132 827 071 452

381 857 918 868 318 894 249 233 517 709 784 025 494 473 083 475 794 688 338

318 669 205 292 634 477 215 223 397 852 394 761 705 823 824 009 487 094 582

053 403 448 414 519 187 059 874 506 785 829 441 820 347 012 931 983 749 032

937 029 535 204 674 669 118 349 387 871 614 945 298 028 125 580 430 251 234

668 630 080 219 358 718 245 352 291 415 465 763 013 100 923 209 592 436 665

013 250 115 828 673 733 662 998 810 262 212 481 440 283 643 807 643 936 814

117 781 430 012 258 146 460 658 672 860 115 805 136 484 154 272 106 257 859

724 501 287 380 315 081 559 737 344 179 353 409 746 394 603 117 859 928 408

887 186 955 223 875 953 551 569 984 766 380 086 437 972 232 285 448 676 372

452 773 194 118 503 147 494 678 742 399 709 855 779 414 952 984 145 813 209

160 450 714 556 753 389 051 248 506 613 925 218 229 813 615 602 923 271 485

462 745 822 621
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