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Abstract. Timing side-channel attacks remain a major challenge for
software security, in particular for cryptographic implementations. Mul-
tiple countermeasures against such attacks have been proposed over the
last decades, including static and dynamic approaches. Although such
countermeasures have been extensively studied in the literature, pre-
vious evaluations have mostly relied on simplified system settings. In
this article, we provide a comparative evaluation of the effectiveness
of both static and dynamic countermeasures in a realistic setting for
Java programs. Our experimental setup considers the effects of the non-
deterministic timing behavior introduced by the Java VM, in particular
involving just-in-time compilation (JIT). Our empirical results indicate
that such countermeasures vary heavily on how much they can reduce
information leakage, and show that negative effects of non-deterministic
timing behavior on their effectiveness are substantial.

1 Introduction

One particular class of timing side-channel vulnerabilities that is frequently ex-
ploited by adversaries is caused by conditionals that are dependent on secret
data [9]. In this case, a timing side channel is introduced when the if branch of a
secret-dependent conditional takes a different time to be executed then the else
branch. An adversary can exploit this to deduce information about the secret.
For cryptographic implementations, for instance, it has been shown that attacks
can, in the worst case, leak the entire secret key [8].

In order to mitigate timing side channels caused by such conditionals, one can
modify program behavior to reduce information leakage via the channel. For this
article, we consider two classes of such program modifications, which we refer to
as static and dynamic transformations. Conceptually, static transformations, like
cross-copying [1] or conditional assignment [16], aim to completely remove timing
side-channel vulnerabilities by modifying the source code of the target program.
Dynamic transformations, like bucketing [10] or predictive timing mitigation
[19], in contrast, delay program events at runtime up to well-defined points in
time to reduce the amount of information leaked by the target program.

Previous evaluations of both static and dynamic transformations have been
mostly carried out in simplified settings. One of the most prevalent simplifi-
cations is the assumption of deterministic timing behavior (e.g., [10], [2]). In a
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system with deterministic timing behavior, each input always results in the same
timing observation. The impact of non-deterministic timing behavior on bucket-
ing has been investigated in [4]. In that study, two implementations of bucketing
that reside at the application and kernel level were developed for reducing tim-
ing side channels in Java programs. Empirical results indicated that indeed both
implementations performed comparably worse than previous evaluations in set-
tings with deterministic timing behavior. To the best of our knowledge, such an
evaluation has not been carried out for predictive timing mitigation. A previ-
ous study on different static transformations [14] has compared four well-known
static transformations for Java in a simplified setting with just-in-time compila-
tion (JIT) disabled. To date, the impact of non-deterministic timing behavior on
different static transformation techniques has not been investigated as rigorously.

The goal of this article is to provide a comparative study on the effectiveness
of static and dynamic transformations in a more practical setting that considers
the non-deterministic timing behavior introduced by JIT. In particular, we pro-
vide an answer to the following research question: ‘How do static and dynamic
transformations compare to each other in terms of reduction of side-channel leak-
age?’. To this end, we evaluate implementations of two static transformations
(cross-copying and conditional assignment), and two dynamic transformations
(bucketing and predictive timing mitigation). For the static transformations, we
evaluate the implementations presented in [14] in a setting with JIT enabled.
For the dynamic transformations, the results of [4] indicated that application-
level implementations are more effective in reducing information leakage than
kernel-level implementations. In order to better understand the effects of differ-
ent implementation strategies on the application level for such transformations,
we present an implementation that manually modifies the target program to en-
force bucketing. We compare this implementation to the bucketing implementa-
tion presented in [4] that is using a generic enforcement mechanism. In addition,
we present and evaluate two implementations of predictive timing mitigation on
the application-level, using the same implementation strategies as for bucketing.

Our results indicate that the impact of non-deterministic timing behavior
on side-channel countermeasures can be substantial. This impact reduces the ef-
fectiveness of both static and dynamic techniques when compared to simplified
settings, e.g., assuming deterministic timing behavior. The reduction of effec-
tiveness seems to be more severe for static techniques, and cross-copying seems
to be especially affected. While evaluations of cross-copying in simplified settings
indicated a reduction of information leakage by roughly 96% [14], the reduction
is substantially smaller for our experiments – achieving, on average, a reduc-
tion of only 4.48%. The impact on conditional assignment, in contrast, is also
clearly negatively affected, but still ensures an average reduction of roughly 87%
(in contrast to over 99% in simplified settings [14]). Dynamic transformations
seem to be more promising in settings with non-deterministic timing behavior,
achieving an average reduction of over 90% in our experiments1.

1 We provide all implementations and experimental results online:
https://drive.google.com/file/d/1CHfHD6Huo2Wp2y_ZQb7OgsKeNxiuhxB3/view?usp=sharing
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2 Timing Side Channels

In a timing side-channel attack, an adversary exploits the timing behavior of a
program to deduce secret information. Timing side channels have been a long-
standing problem for software security, going back to the work of Kocher [9].
A classical example of a timing-side channel vulnerability can be found in the
square-and-multiply implementation of modular exponentiation. Modular expo-
nentiation (modExp for short) is an operation that can be used to compute p =
cd (mod n). This is especially relevant in RSA implementations, where c is the
ciphertext, d the secret key, and n the modulus. In a nutshell, the running time
of the square-and-multiply implementation of modExp is dependent on the Ham-
ming weight of the secret key, thus leaking private information to an adversary.

1 input: c, d, n;
2 r ← 1;
3 for i = 1 to length(d) do

4 if d % 2 == 1 then

5 r ← (r * c) % n;
6 end
7 c ← (c * c) % n;
8 d ← d � 1;

9 end
10 return r % n;

Fig. 1: Algorithm of modExp

The algorithm of the square-and-
multiply implementation of modExp is
illustrated in Figure 1. The timing be-
havior of modExp depends on the secret
d since Line 5 is executed more often
when more bits of d are set (condition
of Line 4). This enables adversaries to
learn the Hamming weight of d by mea-
suring the running time of modExp. If an
adversary knows the Hamming weight
of the secret key, the brute force search
space is reduced, opening the possibility
of deducing the entire secret key.

Statistical Estimation of Information Leakage. A side channel can be
modeled as an information-theoretical channel with input alphabet X and out-
put alphabet Y , where X and Y are random variables [15]. Intuitively, X models
the possible secret inputs that a program can process, while Y models the pos-
sible (timing) observations an adversary can gather through the side channel.
The leakage that occurs via the side channel can be measured by the notion of
mutual information of X and Y . Mutual information describes the amount of
information that Y contains about X, and is calculated as the difference between
the (Shannon) entropy [17] and the conditional (Shannon) entropy.

The channel capacity C(X;Y ) [17] is defined as the worst-case (i.e., maximal)
mutual information across all prior distributions. We use the notion of channel
capacity to evaluate the effectiveness of the static and dynamic transformations
considered in this article. To this end, we use the leakiEst tool [3] that provides
statistical estimations of the channel capacity based on provided sample runs of
a program for different inputs.

3 Static Transformations

Static transformation techniques for mitigating timing side channels like, e.g.,
cross-copying [1] and conditional assignment [16] aim at mitigating side channel
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vulnerabilities introduced by secret-dependent conditionals. In such settings, a
timing side channel can occur when the if branch of a conditional takes a differ-
ent execution time than the else branch. A special instance of this problem are
secret-dependent conditionals that only consist of an if branch, and an empty else
branch. Static transformation techniques modify the program code of a target
program such that the executions of all branches in secret-dependent condition-
als take the same time. In this section, we discuss two static transformation
techniques, namely cross-copying and conditional assignment.

3.1 Cross-Copying

The approach of the cross-copying [1] technique is to add dummy statements
resembling the complete corresponding other branch at the end of each branch
of secret-dependent conditionals. The goal of this technique is to ensure that each
branch takes the same execution time, because the statements of both branches
will be executed. Cross-copying can be seen as a special case of unification [11],
a similar technique that can add dummy statements at arbitrary points in each
branch, and can thus lead to less dummy statements being added. In this article,
we consider modExp that contains a secret-dependent conditional without an else
branch. Hence, we investigate the simpler cross-copying rather than unification.

Previous work on the evaluation of different static transformation techniques
[14] has shown how it is possible to implement cross-copying in Java programs.
We leverage this implementation for our comparative experiments.

1 input: c, d, n;
2 r ← 1;
3 for i = 1 to i = length(d) do

4 if d % 2 == 1 then

5 r ← (r * c) % n;
6 else

7 rd ← (r * c) % n;
8 end
9 c ← (c * c) % n;

10 d ← d � 1;

11 end
12 return r % n;

Fig. 2: modExp after cross-copying

For the example presented in Fig-
ure 1, cross-copying modifies the con-
ditional starting in Line 4 as depicted
in Figure 2. The cross-copying tech-
nique adds a dummy variable (rd)
to the program, performing the same
computation in both branches of the
conditional. Note that only in the if
branch the result is applied to the local
variable that is used to calculate the
return value. In the else branch, the re-
sult of the computation is assigned to
the dummy variable, which is expected
to take the same execution time, but
will not affect the return value of the
algorithm. Hence, this implementation strategy for cross-copying is transparent.

3.2 Conditional Assignment

Conditional assignment [16] aims to mitigate timing side channels caused by an
assignment to a local variable that affects the program state, and is dependent
on secret information. The conditional assignment technique ensures that all
computations that might occur based on the secret-dependent conditional are
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executed, and assign the desired value of these computed values to the variable
afterwards using a bitmask that chooses the desired value of the computation.
This approach eliminates secret-dependent conditionals, as the conditional is
completely encoded by the masking process.

1 input: c, d, n;
2 r ← 1;
3 for i = 1 to i = length(d) do

4 r′ ← (r * c) % n;

5 m = Mask(d % 2 == 1);

6 r ← (m & r’) | (∼m & r);
7 c ← (c * c) % n;
8 d ← d � 1;

9 end
10 return r % n;

Fig. 3: modExp after conditional assign-
ment

For the example presented in Fig-
ure 1, conditional assignment modi-
fies the conditional starting in Line
4 as depicted in Figure 3. Instead
of adding dummy assignments as for
cross-copying, conditional assignment
ensures that both the updated value r′

(Line 4) from the if branch and the un-
changed r are used for computing the
new value of r (Line 6). The assignment
to r is performed by masking the up-
dated result and the non-updated re-
sult based on the original condition.
The Mask function used in Line 5 is sup-
posed to return 2l − 1 in the case that

d % 2 == 1 holds (the condition for the if branch to be taken), where l is the
bitlength of the variable r. Correspondingly, the Mask function is supposed to
return 0 in the case that d % 2 ! = 1 holds (the condition for the else branch to
be taken). Hence, the computation result that should not affect the return value
of the algorithm is masked out, making conditional assignment transparent.

4 Dynamic Transformations

Dynamic transformation techniques for mitigating timing side channels monitor
program behavior during runtime and react to the monitored behavior dynam-
ically in order to reduce or prevent information leakage via a timing channel.
In this section, we discuss implementations of two such dynamic transformation
techniques, namely bucketing [10] and predictive timing mitigation [19].

4.1 Bucketing and Predictive Timing Mitigation in an Nutshell

The goal of both bucketing and predictive timing mitigation is to reduce the
amount of information leakage via timing side channels at runtime. In contrast
to the static transformations presented in Section 3, the goal of both techniques
is not to completely remove timing side channels. They rather aim at reducing
the amount of information that is leaked via the side channel, thus limiting the
information about the secret that an adversary can learn. From a high-level per-
spective, both approaches delay sensitive program events to well-defined points
in time, thus reducing the amount of possible distinct timing observations. It has
been shown that reducing the number of possible distinct observations directly
reduces the upper bound of possible information leakage via a timing channel
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(see, e.g., [12]). By adjusting this delay, both approaches allow a navigation in
the tradeoff between security and performance.

To achieve the reduction of possible timing observations that an adversary
can get, the two approaches follow different strategies. The bucketing technique
discretizes the timing behavior of a protected program by delaying events to a
set of predefined points in time, the so called bucket boundaries. Each event that
occurs within the interval of a certain bucket is delayed up to the corresponding
bucket boundary of that bucket. The approach of predictive timing mitigation, in
turn, is to provide a certain prediction schedule that observed events shall adhere
to. In case an event is observed before the next point in time that is scheduled
– the so called quantum –, the event is delayed up to that quantum. In case the
program violates the schedule, the schedule is adapted dynamically, penalizing
the program for not adhering to the schedule. The time frame in which a given
schedule is adhered to by the program is called an epoch. Penalizing the target
program by updating the schedule thus starts a new epoch.

4.2 Implementations

Previous work on bucketing has investigated the effects of different implementa-
tion techniques for the bucketing mechanism on the security guarantees provided
by these implementations [4]. That work provided first evidence that the choice
of system layer where the implementation is placed can have a direct effect on
the provided security by the implementation. In this article, we investigate two
implementation strategies at the application layer for both bucketing and pre-
dictive timing mitigation: instantiations of the generic enforcement framework
CliSeAu [6] for the two approaches, and manual implementations that are in-
lined into the protected program. We assume that program operations that cause
a timing leak are located in specific methods. Hence, our implementations mon-
itor invocations to these methods and delay program execution after each such
method invocation. Our goal is to evaluate the effects of these different imple-
mentation strategies on the same system level.

Implementations of dynamic transformations using CliSeAu. CliSeAu
is a generic framework for enforcing security requirements for Java programs on
the application level at runtime. Conceptually, CliSeAu encapsulates a target
program into a so called enforcement capsule that consists of four additional
components responsible for the enforcement: the interceptor, the coordinator,
the local policy, and the enforcer. In this work, we follow the approach of [4],
and focus on the interceptor component and the enforcer component in our
implementation. The interceptor is responsible for intercepting security-relevant
program events from the target program. Based on these intercepted events,
a decision how to handle the events is made. This decision is then enforced
by the enforcer component. For implementing dynamic side-channel mitigation
techniques, the interceptor component is used to determine the start time of
timing-sensitive computations, while the enforcer component is used to delay
events based on the delay strategy by a given mitigation technique.
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Fig. 4: Visualization of implementation strategy using a generic framework (up-
per part), and inlining the mitigation (lower part)

This implementation strategy for dynamic side-channel mitigation has been
used to implement the bucketing mechanism in CliSeAu [4]. As a point of
comparison with predictive timing mitigation and static transformations, we
reuse the CliSeAu implementation of bucketing in this article. In a nutshell, the
implementation provides the CliSeAu components for enforcing bucketing for
Java programs, making it sufficient to declare the method signatures of timing-
sensitive computations and to provide the amount and placement of buckets to
instantiate it for a given target program. For more details, we refer the interested
reader to the original work [4].

We present an implementation of predictive timing mitigation in CliSeAu
that builds on the implementation of bucketing in CliSeAu. The overall work-
flow of any dynamic transformation technique that delays program events at run-
time can be seen in Figure 4. In particular, the upper part of Figure 4 shows the
workflow when using a generic mechanism like CliSeAu. Just before a timing-
sensitive computation is about to start (at time tobs), the mechanism is notified,
and program execution continues with the computation. After the computation,
the mechanism is notified that the computation has been finished. Based on the
delay strategy, the mechanism then delays further program execution to reduce
the amount of distinct possible timing observations (up to time tdelayed). For
predictive timing mitigation, there are two cases how the mechanism can de-
lay program events based on the current schedule. In case the timing-sensitive
computation finished before the next scheduled quantum, the mechanism delays
further program execution up to that quantum and the program continues regu-
larly. In case the computation does not finish before the next scheduled quantum,
the mechanism adapts the schedule based on a predefined penalty function, i.e., a
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new epoch is started. The mechanism delays further program execution until the
newly scheduled quantum, and keeps the new schedule afterwards. In order to
instantiate the predictive timing mitigation implementation, users of the mech-
anism provide the method signatures of the methods containing timing-sensitive
computations, and provide the initial schedule as well as the penalty function.

Manually inlined implementations. Instantiating a generic mechanism for
mitigation techniques offers an increased level of reusability of the security so-
lutions, as the instantiation can be specialized to a variety of target programs
with relatively few implementation overhead. The clear separation of the tar-
get program and the enforcement mechanism also decouples the development of
the mitigation mechanism, making it possible to treat security as an orthogonal
aspect. However, such generic mechanisms inherently introduce a runtime over-
head and might even decrease the precision of the mitigation technique. Our
goal in this article is to evaluate the effects of the two implementation strate-
gies empirically. We therefore provide manually inlined implementations of both
bucketing and predictive timing mitigation. The overall workflow of such inlined
implementations is depicted in the lower part of Figure 4. Conceptually, the
manually inlined versions of the mitigation strategies are the same as described
for the instantations of CliSeAu. In contrast, the inlined implementations con-
tain all code used for the mitigation inside the target program, avoiding splitting
the mitigation into multiple components that need to communicate with each
other. This increases implementation effort, as developers have to ensure that
the mitigation code is located at all occurrences of timing-sensitive computa-
tions manually. On the other hand, the avoidance of component interaction and
close coupling of the target program and the mitigation code might lead to in-
creased security guarantees and program performance. We provide an empirical
evaluation of these effects in the next section.

5 A Comparative Security Evaluation

The goal of this section is to report and discuss the findings of our evaluation
regarding the static and dynamic transformations presented in Sections 3 and 4.

We provide all implementations of the transformation techniques, and all
experimental results online.2

5.1 Experimental Setup, Metric, and Design

Setup. We conduct all experiments on a 3.7GHz Intel Xeon E3-1240 server with
16GB of RAM running Ubuntu 16.04 LTS with kernel 4.4.0, and OpenJDK 8.
Furthermore, all experiments are conducted with JIT enabled using the so-called
tiered optimization mode. We apply the static and dynamic transformations
investigated in this article to an implementation of modExp in Java3.

2
https://drive.google.com/file/d/1CHfHD6Huo2Wp2y_ZQb7OgsKeNxiuhxB3/view?usp=sharing

3 The modExp implementation considered in this article is the same used in [14].
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We consider a passive adversary who locally measures the running time of
modExp using System.nanoTime(). Each measurement consists of a timing observa-
tion value collected by this adversary. We consider an adversary who can observe
the execution time of the target program, but not the program’s internal state.
In particular, he cannot observe internal communication events used in the im-
plementations of bucketing and predictive timing mitigation.

We conduct 100 samples for each mitigation technique to evaluate the prac-
tical impact of our results. For each sample, we start with a warm-up phase
of 219 measurements that is discarded in the results. We chose this number in
order to reach the steady-state of JIT before collecting measurements for our
experiments. This approach follows the best practices proposed in [7] for Java
performance evaluations. Subsequently, we start with an experimental-phase of
219 measurements that is kept in the results as these measurements relate to
the steady-state of modExp. To evaluate the effectiveness of static and dynamic
transformations in reducing timing side channels, we consider the mean and
worst-case values of our sample distributions. From all collected samples, we re-
ject outliers that lie further than 1 absolute standard deviation from the mean.

Metric. Following the methodology used in [14],[4], we consider channel capac-
ity as our metric to determine the effectiveness of static and dynamic transfor-
mations. That is, we measure the correlation between secret inputs and their
timing distributions in order to estimate the amount of information (in bits)
that might be leaked via a timing side channel.

Design. We conduct the so-called distinguishing experiments (as in [14],[13])
for two distinct secret input values, namely key1 and key2. Both keys have 32
bits (with Hamming weights 5 and 25, respectively4). Using distinguishing ex-
periments, we can identify a side-channel vulnerability that enables adversaries
to distinguish whether either key1 or key2 is used by modExp. In our experiments,
we generated such distinct keys and conducted experiments with and without
any transformation. As a result, we can quantify the channel capacity with the
help of an off-the-shelf information leakage estimation tool named leakiEst [3].

5.2 Static Transformations

Static transformations have been evaluated in a simplified setting with JIT dis-
abled in previous work [14]. Our goal in this article is to investigate the impact
of non-deterministic timing behavior on static transformations. To this end, we
quantify the effectiveness of cross-copying and conditional assignment in terms
of channel capacity.

Figures 5 and 6 illustrate our experimental results. Figure 6 shows the his-
togram of the scenario where no transformation (baseline) is applied to modExp.
Figures 5a and 5b show the histograms of the scenarios where modExp is using
cross-copying (CC) and conditional assignment (CA), respectively. The overall

4 We also considered keys with other Hamming weights than 5 and 25, but this is
outside the scope of this article.
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(a) CC (b) CA

Fig. 5: Timing distributions of modExp after applying static transformations

results regarding the effectiveness of cross-copying and conditional assignment
are presented in Figure 7.

Fig. 6: baseline

We observe that when modExp is not using any
transformation (Figure 6) the timing distributions of
key1 and key2 can be clearly distinguished. That is, the
histograms indicate that an adversary can distinguish
whether modExp is using key1 or key2 via a timing side
channel. When modExp is using cross-copying, we can
observe that the distributions are scarcely overlapping
each other. On the other hand, when modExp is using
conditional assignment, the distributions are nearly overlapping. These results
give us a first hint that cross-copying is not as effective as conditional assignment
in a setting with JIT enabled.

Our results are quantified in terms of the channel capacity for the baseline,
and both static transformations. For the transformations, we also consider the
capacity reduction achieved by the techniques. We quantify both the mean chan-
nel capacity across our experimental samples (with 95% confidence intervals),
and the worst-case capacity we have observed in the samples. We can observe
that cross-copying and conditional assignment clearly differ on how much they
can reduce the side-channel vulnerability in modExp. While cross-copying can
only reduce the channel capacity by roughly 4.5% for the mean case, conditional
assignment achieves a reduction of almost 90%. For the worst-case we observed in
our experimental samples, cross-copying can only reduce the capacity by 2.35%,
while conditional assignment achieves roughly 73% of reduction. These results
substantiate those illustrated in Figure 5, where e.g. the timing distributions of
key1 and key2 are scarcely overlapping when cross-copying is applied to modExp.

Our results indicate that the impact of the non-deterministic timing behavior
introduced by JIT is substantial on cross-copying. In a setting with JIT disabled,
as shown in [14], cross-copying is able to reduce the side-channel vulnerability
in modExp by 96%. On the other hand, the impact of non-deterministic timing
behavior on conditional assignment is clearly observable (the results of [14] have
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scenario channel capacity reduction

mean worst-case mean worst-case

baseline 0.9546±0.0042 0.9997 - -

CC 0.9119±0.0042 0.9762 4.48% 2.35%

CA 0.1209±0.0065 0.2698 87.33% 73.01%

Fig. 7: Estimated capacity of timing side channels after static transformations

shown a reduction of 99.88% in a setting without JIT), but conditional assign-
ment still seems to be quite effective in systems with non-deterministic timing
behavior. While some impact of non-deterministic timing behavior on the effec-
tiveness of static transformations are to be expected, we were surprised by the
extent of the impact on cross-copying. Our investigations on the implementation
of cross-copying have shown that indeed the mitigated branches look the same,
also on the bytecode level. Possible explanations for the poor reduction achieved
by cross-copying include factors like branch prediction, garbage collection, or
system load. However, most of these factors apply also to conditional assign-
ment, making it hard to find possible reasons for the difference in the achieved
reductions. The conditional assignment technique completely eliminates condi-
tionals by relying on bitmasks. Cross-copying, on the other hand, still includes
conditionals in the mitigation – but they are designed to take the same execution
time for each branch. We believe that this difference might be a key factor for
the difference between both techniques.

5.3 Dynamic Transformations

With regard to dynamic transformations, our goal is to investigate the impact of
non-deterministic timing behavior on different implementations of bucketing and
predictive timing mitigation at the application level. To this end, we quantify
the effectiveness of such transformations in terms of channel capacity.

Instantiation of Transformations. Following [4], we conduct experiments
using bucketing in isolation. By isolation, we refer to an instantiation of a 1-
bucketing. We set the same bucket size for both keys1 and key2. Note that
this bucket size is greater than the expected worst case running time for either
key. Events with running time greater than this bucket size are classified as
outliers and, thus, they are released directly by the mechanism. The nature of
the implementations of bucketing and predictive timing mitigation is different
(as explained in Section 4.2), but in order to enable a comparison between such
implementations, we instantiated predictive timing mitigation as follows. We set
the initial quantum to the same value as the bucket size. In order to avoid effects
of penalization, we choose the penalty function that directly releases events that
are not arriving on time (classified as outliers), and stay within the same epoch
without adapting the schedule.

We consider scenarios where modExp is using bucketing and predictive timing
mitigation. We use subscripts to refer to when e.g., bucketing is manually in-
lined into modExp (bucketingINL) and implemented using a generic framework
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(a) bucketingINL (b) bucketingGEN

(c) predictiveINL (d) predictiveGEN

Fig. 8: Timing distributions of modExp after applying dynamic transformations

(bucketingGEN). The histograms of such scenarios are depicted in Figure 8.
The histogram of the baseline is the same illustrated in Figure 6. The overall
results regarding the effectiveness of bucketing and predictive timing mitigation
are described in Figure 9.

The histograms of bucketing (Figures 8a and 8b) and predictive timing mit-
igation (Figures 8c and 8d) indicate there are no substantial difference be-
tween the timing distributions of key1 and key2. That is, their distributions
are mostly overlapping. These results suggest successful mitigation of the timing
side-channel vulnerability observed in Figure 6.

Our experimental results are quantified in terms of channel capacity in Fig-
ure 9. We quantify both the mean channel capacity across our experimental
samples (with 95% confidence intervals), and the worst-case capacity we have
observed in the samples. Our results show that both bucketing and predictive
timing mitigation achieve a very high reduction regarding the side-channel vul-
nerability in modExp, regardless of the mean or worst-case results. One important
observation is that there is a slight difference in the effectiveness of bucketing
and predictive timing mitigation when implemented inlined and using a generic
mechanism. For instance, considering the worst-case reduction, bucketingINL

and predictiveINL can, respectively, reduce the channel capacity by roughly
95% and 94%, while bucketingGEN and predictiveGEN can, respectively, re-
duce the channel capacity by 91% and 92%.
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scenario channel capacity reduction

mean worst-case mean worst-case

baseline 0.9546±0.0042 0.9997 - -

bucketingINL 0.0137±0.0010 0.0484 98.56% 95.16%

bucketingGEN 0.0354±0.0022 0.0891 96.29% 91.09%

predictiveINL 0.0117±0.0010 0.0626 98.77% 93.74%

predictiveGEN 0.0260±0.0017 0.0798 97.28% 92.02%

Fig. 9: Estimated capacity of timing side channels after dynamic transformations

Our experimental results reflect the fact that generic mechanisms can (al-
though slightly) reduce the effectiveness of mitigation techniques. However, it is
not clear to us whether bucketingGEN or predictiveGEN leak any additional
information related to the secret key. This difference can happen due to addi-
tional overhead (e.g., communication between internal components) caused by
generic mechanisms. Clarifying whether such information is related to the secret
key appears to be an interesting direction for future work.

Regarding the results achieved by bucketing and predictive timing mitigation,
we are not surprised by their similarities. Both transformations delay sensitive
program events up to well-defined points in time. Furthermore, we instantiated
predictive timing mitigation in a comparable fashion with bucketing.

Overall, our results show that both predictive timing mitigation and bucket-
ing are effective in systems with non-deterministic timing behavior. On the other
hand, our results also show that neither predictive timing mitigation nor buck-
eting (confirming the results from [4]) are able to completely close the timing
side channel. Possible explanations for these results are activities in the CPU,
e.g., system load, that can cause a latency in the response time of programs [4].

5.4 Comparison between Static and Dynamic Transformations

This section summarizes our answer to the following research question: ‘How
do static and dynamic transformations compare to each other in terms of re-
duction of side-channel leakage?’. In this section, we consider the worst-case
reduction observed in our experiments. The summary of our results are given in
Figure 10. The blue bars illustrate cross-copying and conditional assignment as
static transformations, and the green bars illustrate both implementation strate-
gies for bucketing and predictive timing mitigation as dynamic transformations.

The first important observation is that all transformations are affected by our
setting with non-deterministic timing behavior. In a system with deterministic
timing behavior, each given input would always lead to the same timing obser-
vation. In such systems, all transformations investigated in this article are able
to reduce the side-channel capacity by 100%. Our experimental results indicate
that this is not true for systems with non-deterministic timing behavior, since
neither transformation is able to reduce the side-channel capacity by that factor.

The second important observation is that the impact of non-deterministic
timing is much more substantial on static than dynamic transformations. The
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Fig. 10: Overall comparison between static and dynamic transformations

dynamic transformations – bucketing and predictive timing mitigation – per-
formed well in reducing the side-channel vulnerability in modExp. Regardless of
the implementation strategy, both transformations performed well comparably
by achieving reductions higher than 90%. In contrast, the static transformations
– conditional assignment and cross-copying – performed worse in comparison.

Regarding cross-copying, the impact is substantial. Our experiments suggest
that cross-copying can poorly reduce the channel capacity by 2.35%. This result
is a huge drawback in comparison to the other transformations. Furthermore,
in comparison to [14], which investigated cross-copying in a scenario with JIT
disabled, the effectiveness of cross-copying falls from 96% to 2.35%. The impact
is lower on conditional assignment, but still observable. Our experiments suggest
that conditional assignment can reduce the channel capacity by 73%. This result
is, however, a drawback in comparison to the results from [14]. That is, with JIT
enabled, the effectiveness of conditional assignment falls from 99.88% to 73%.

In summary, our experimental results suggest that dynamic transformations
are more effective than static transformations in our setting with JIT enabled.

6 Related Work

Mantel and Starostin [14] have investigated the trade-off between security and
overhead of four well-known static transformations, namely cross-copying, condi-
tional assignment, transactional branching, and unification. Their experimental
results showed that such transformations differ w.r.t how much security and
overhead they add to the program. Our work differs from [14] in how we evalu-
ate static transformations. In [14], all experiments were conducted in a simplified
Java environment (with JIT disabled). In contrast, we evaluate the impact of the
non-deterministic timing behavior introduced by JIT on conditional assignment
and cross-copying, showing that this impact is indeed substantial. Evaluating
other techniques (like e.g., unification) in this setting are left for future work.
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The effectiveness of dynamic transformation techniques has been evaluated
from different perspectives. Bucketing has been originally presented for systems
with deterministic timing behavior [10]. Subsequent studies of bucketing have
established an algorithm for optimal bucket placement strategies in the tradeoff
between security and performance [5]. The original work on bucketing included
an information-theoretical upper bound on the leakage of the mitigation that
is based on the number of distinct timing observations that an adversary can
get, and the number of experiments the adversary obtains. Tighter bounds for
this leakage have been presented (e.g., [12], [18]). All of these bounds, however,
assume that events can be released sharply at the bucketing boundaries.

Dantas et al. [4] have investigated the impact of non-deterministic timing
behavior on bucketing. To this end, they provided two implementations of buck-
eting that reside at the application level and kernel level. Experimental results
indicated that their implementations are not able to release events sharply at
the bucket boundary. This led to a large number of observations that an adver-
sary can gather via a timing side channel, and thus to a very high amount of
information leakage predicted by the theoretical leakage bounds. Their experi-
mental results also provided the first evidence that the choice of system layer
where bucketing is placed can have a direct effect on the provided security by
bucketing. That is, their experimental results indicated that bucketing imple-
mented at the application level provides more security (w.r.t. leakage bounds
and channel capacity) to Java programs than bucketing implemented at the ker-
nel level. Our work builds on top of [4], providing an empirical investigation of
two implementation strategies for bucketing at the application level.

The technique of predictive timing mitigation has been presented in [19] as a
generalization of predictive black-box mitigation [2]. In [19], Zhang et al. leverage
the black-box mitigation model to web applications. More concretely, they devel-
oped a server-side wrapper to mitigate timing leaks from web applications. The
predictive black-box model assumes that it can precisely control when events are
released by the model. As for bucketing, this assumption does not necessarily
hold in systems with non-deterministic timing behavior. Our work empirically
investigates predictive timing mitigation for non-deterministic timing behavior
to enable a empirical evaluation with bucketing and static transformations.

7 Conclusion

We presented a comparative study on the effectiveness of static and dynamic
transformations in a realistic setting with non-deterministic timing behavior.
Our results are particularly interesting in three aspects: (1) We show that such
transformations differ on how much they can reduce the timing side-channel
capacity. (2) We show that the impact of non-deterministic timing behavior is
substantial on static transformations, especially on cross-copying. (3) We show
that dynamic transformations manually inlined into the target program are more
effective (although slightly) than implementations using generic mechanisms.

An interesting direction for future work is a comparative study on the per-
formance overhead caused by static and dynamic transformations. In particular,
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it could be interested to investigate the applicability of such transformations in
resources-constrained settings like e.g., IoT devices.
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