
This work has been funded by the DFG as part of the projects P4 (“Quantum Key Hubs”) and
E3 (“Secure Refinement of Cryptographic Algorithms”) within the CRC 1119 CROSSING.

Side-Channel Analysis
of Privacy Amplification
in Postprocessing Software for a
Quantum Key Distribution System
Technical Report TUD-CS-2018-0024
January 2018

Oleg Nikiforov1, Alexander Sauer2, Johannes Schickel3, Alexandra Weber3,
Gernot Alber2, Heiko Mantel3, Thomas Walther1

Technische Universität Darmstadt

Laser and Quantum Optics1,
Theoretical Quantum Physics2,
and Modeling and Analysis
of Information Systems3

Side-Channel Analysis
of Privacy Amplification

in Postprocessing Software for a
Quantum Key Distribution System

Oleg Nikiforov1, Alexander Sauer1, Johannes Schickel2, Alexandra Weber2,
Gernot Alber1, Heiko Mantel2, Thomas Walther1

1 Physics Department, TU Darmstadt, Germany
{gernot.alber, oleg.nikiforov, alexander.sauer,

thomas.walther}@physik.tu-darmstadt.de
2 Computer Science Department, TU Darmstadt, Germany

mantel@cs.tu-darmstadt.de,

{schickel,weber}@mais.informatik.tu-darmstadt.de

Abstract. Quantum key distribution is an alternative to the classical
way of distributing secret cryptographic keys. Due to imperfections of
existing hardware setups for quantum key distribution, postprocessing
in software is needed to correct errors in the exchanged key and to am-
plify its privacy. We analyze an implementation of privacy amplification
for quantum key distribution with respect to cache side channels, us-
ing program analysis. Our main result is that no information about the
secret key is leaked through cache side channels in this implementation.

1 Introduction

The development of quantum computers endangers the security of most modern
asymmetric cryptographic schemes. The reason are quantum algorithms that
provide a huge speed-up of the calculation of classical hard problems. Examples
are prime-number factorization and computation of discrete logarithms (Shor’s
algorithm [26]).

One important application of cryptography is the secure exchange of crypto-
graphic keys. In this scenario, quantum physics provides a possible solution to
the threat of improved computational power. Quantum key distribution (QKD)
constitutes an approach for the distribution of cryptographic keys, requiring spe-
cialized hardware. In contrast to classical key distribution schemes, which base
their security on the computational hardness of mathematical problems, its se-
curity is based on the laws of quantum physics. Specifically, an adversary reveals
himself in the attempt to eavesdrop on a communication session.

By combining QKD with the one-time pad [28], information-theoretically
secure exchange of data can be ensured [25].

When implemented in hardware, QKD systems may suffer from a large num-
ber of weaknesses due to imperfect setup devices, e.g., imperfect detectors and
quantum bit sources or channel noise. In order to guarantee the security of such
QKD systems, researchers actively search for weaknesses in existing experimen-
tal setups, using contemporary hardware, as well as in potential future setups.

The analysis for weaknesses in a setup has to be completed on each part
of the implementation. Not only on the physical level, but also on the software
level responsible for the last part of key distribution - error correction, privacy
amplification and secure key storage and processing.

In the present report, we analyze a simplified version of an existing soft-
ware implementation of privacy amplification for a QKD system using the BB84
protocol [2]. We focus on the security of this implementation with respect to
cache-side-channel attacks. Cache-side-channel attacks allow an attacker to de-
duce secret information, e.g., about cryptographic keys, from the interaction of
a software implementation with the cache.

In Section 2, we briefly recall preliminaries on the BB84 protocol and cache-
side-channel analysis. In Section 3, we describe the original implementation of
privacy amplification on which we base and our simplifications of the implemen-
tation for the analysis. Finally, we present our analysis results in Section 4 and
conclude in Section 5.

2 Preliminaries

QKD relies on the exchange of quantum objects carrying information called
qubits (quantum bits) over a channel that does not disturb the state of the qubit
and therefore the encoded information (quantum channel). The distribution of
qubits requires special hardware allowing for preparation of specific quantum
states, encoding the information within the phase or polarization of those ob-
jects and their noiseless distribution and detection, i.e. the correct extraction
of the encoded information. Security proofs of QKD typically assume that all
signal distortions are accounted to an eventual eavesdropper. The eavesdropper
is assumed to have access to any theoretically possible physical device helping
to compromise the QKD system. The security proofs give certain constraints
for the noise level in the quantum channel of the setup. If the error rate of the
protocol is below a certain threshold, information-theoretic security of the QKD
session can be guaranteed. Then only run-time attacks, which occur during the
key exchange, on the involved devices could be successful.

The first part of a quantum key exchange is the distribution and measure-
ment of quantum objects, the so-called raw key exchange. As a result, both
parties obtain a list of bits, which could contain errors. In the second step, the
postprocessing, pure classical algorithms are applied to the raw key.

Raw Key Exchange. The first protocol using quantum objects as information
carriers (qubits) was proposed by Bennet and Brassard in 1984 (BB84) [2]. The
information is encoded in the polarization or phase of single photons, which

3

Alice

Bit to encode 1 0 1 0 0 0

Chosen basis

Resulting state

Transmission
successful?

✔ ✔ x ✔ x ✔

Bob

Incoming state

Chosen basis

Decoded bit 1 0 1 0 1 0

Transmission
successful?

✔ ✔ x ✔ x ✔

Quantum channel

Classical channel

Fig. 1. Schematic of BB84 protocol. Alice encodes classical bits in single photon states
using polarization encoding within one of two bases

⊕
or

⊗
. Bob tries to guess the

chosen basis and detects the photon. If the chosen bases are not equal, the transmission
is not successful and corresponding bits are discarded.

are sent through a quantum channel to the recipient. Although this protocol is
the oldest one, it remains (with some improvements) one of the protocols most
commonly implemented by experimental researchers.

The scheme of the protocol is shown in Fig. 1. The sender Alice desires to
send a private message to recipient Bob. Alice distributes a cryptographic key to
Bob, using polarization of single photons. She then encodes her message using
the secret key and AES or one-time pad, for example.

To distribute the key, Alice chooses randomly one of two possible polarization
bases: rectilinear

⊕
or diagonal

⊗
and encodes a random bit within the chosen

basis 3. For example, bit 1 is then encoded as polarization ↗ or ↑, with respect
to the used basis and 0 is encoded as ↖ or →. Then, the prepared photon is
sent to Bob over the quantum channel.

Bob selects randomly and independently of Alice one of the two bases and
detects the incoming photon. If Bob chooses the right basis, the obtained bit
of information is identical to the bit Alice encoded. In case of the wrong basis,

3 For more details please see [20].

4

Bob’s result has a probability of 0.5 to be incorrect due to quantum-mechanical
calculation. After a series of qubit exchanges, Alice and Bob obtain a long string
of bits - the raw key.

During the next step, they publicly announce the used bases, corresponding
to each measured photon, over a classical channel. In the case of non-matching
bases, they discard the corresponding bits and obtain finally a sifted key. In the
ideal case of error-free transmission of qubits and absence of eavesdroppers the
sifted key would be error-free.

During a realistic quantum key distribution some distortions are inevitable.
All errors indicate an information loss, which has to be treated as information
gain by an attacker. Therefore, the next step is the quantum bit error rate
(QBER) estimation. Alice and Bob randomly choose a subset of their results,
compare the bits and remove them from the sifted key. If the errors remain
below a certain threshold [27], the parties can generate a secure key with post-
processing algorithms for error correction and privacy amplification. In the other
case, Alice and Bob should restart the raw key exchange.

Post-Processing. After the QBER estimation, an error correction step is per-
formed to remove the errors from the raw key. The three most widely-used
algorithms for this are: low density parity check [10], cascade [5] or polar codes
[14]. During such an error correction, Alice and Bob reveal more information
about their key to a possible adversary, simultaneously getting rid of the errors
in the key. Subsequently, a privacy amplification step is performed to decrease
an attacker’s information about the key and to provide a secure key for Alice
and Bob.

Attacks on BB84. To check the security of the quantum key distribution, several
types of theoretical and experimental attacks have been developed. Even though
the principle of BB84 is proven to be secure, all implementations of this algorithm
suffer from imperfections in real devices, e.g., single photon sources, detectors.
One of the most famous attacks was performed by Lydersen in 2010 [17]. He
could manipulate the data received by Bob using bright light injected into the
quantum channel.

In this report, we focus on side-channel vulnerabilities. Side-channel vulner-
abilities might allow an attacker to deduce the key from characteristics of the
apparatus used for the raw key exchange or from execution characteristics of the
software used for postprocessing. Such attacks compromise the key despite se-
curity proofs. Finding and getting rid of side-channel vulnerabilities is a serious
issue for the security of QKD implementations.

Cache-Side-Channel Vulnerabilities. Multiple types of side-channel attacks on
software exist, e.g., measuring running time [15] or power consumption [16].
In this report, we focus on cache side channels. Caches are small memories in
computers, which are used to store selected entries from the main memory for
performance reasons. The memory entries stored in the cache can be accessed
more quickly by the processor than the memory entries that are not stored in the

5

cache. If the CPU accesses an entry that is stored in the cache, it encounters a
so-called cache hit. If the CPU accesses an entry that is not stored in the cache, it
encounters a so-called cache miss. If the memory entries that a software accesses
depend on secret information (like parts of a secret key), the timing difference
between cache hits and cache misses might give rise to so-called cache-side-
channel vulnerabilities. More concretely, an attacker who observes the execution
time [3], the trace of cache hits and misses [1], or the contents of a shared
cache [22,11] might be able to deduce secret information from his observations.

Program Analysis against Cache Side Channels. Multiple techniques to verify
the security of software against cache side channels exist. One approach is to cre-
ate new, verified software implementations as in [23]. To ensure the security of
existing implementations, program analyses can be used to detect side-channel
vulnerabilities, e.g, [7], and to quantify their seriousness, e.g., [19]. To com-
pute upper bounds on the cache-side-channel vulnerabilities in x86 binaries of
software 4, a static reachability analysis can be used in combination with infor-
mation theory [8,19]. More concretely, reachability analysis can be performed to
determine the possible different observations that an attacker can make about
the cache (e.g., possible traces of cache hits and misses). The amount of se-
cret bits leaked to an attacker through a cache-side-channel vulnerability can
then be bounded by the logarithm of the number of different possible obser-
vations [8]. The tool CacheAudit 0.2c [4], which is based on previous versions
of CacheAudit [8,19], takes as input x86 binaries and outputs bounds on the
cache-side-channel vulnerability of the x86 binary. More concretely, it returns
bounds on the vulnerability of the software to four cache-side-channel attacker
models: a model under which an attacker can observe the amount of entries in
the cache after a run of the binary; a model in which an attacker can observe
the exact entries in the cache after a run of the binary, a model under which an
attacker can observe the trace of cache hits and misses that occurred during a
run of the binary, and a model under which an attacker can observe the overall
time taken for cache hits and misses during a run of the binary. 5 If CacheAudit
0.2c returns bounds of 0 bit on the side-channel vulnerability of a binary, the
binary is secure with respect to these four attacker models. In this report, we use
CacheAudit0.2c to analyze a implementation of the privacy amplification step
in QKD postprocessing.

Privacy Amplification. During the error correction session or measurement pro-
cess of a QKD protocol, Eve could have gained information about the key. The
secure key, that Alice and Bob want to use in the end, should be error free and
completely unknown to the possible attackers. After a privacy amplification ses-
sion, any information the attacker Eve might have about the key should vanish.
To this end, a cryptographic hash function can be used [12].

For two given sets U and V , a function f : U → V is called a hash function,
if |V | is fixed. For cryptographic purposes, it should be a one-way function. The

4 Representations of the software for CPUs with x86 instruction set architecture
5 For formal definitions of the attacker models, please see [8].

6

calculation of a function value should be quick and the results identical, if the
same parameter is used. The inversion of the hash function should be as hard
to calculate as in a brute-force attempt. Also, the probability for collisions of
two hash values should be as low as possible. One can find a family H of hash
functions with a probability for collisions of 1/|V |:

Pr(f(x) = f(y)) ≤ 1

|V |
for all x, y ∈ U with x 6= y for any f ∈ H.

In this case, H is called a family of two-universal hash functions. The name
emphasizes, that this property of H applies to any pair of elements in U [6].
Applying a two-universal hash function to an error corrected key creates a secure
key of length l, which depends on the adversary’s information about the error-
corrected key [24].

Toeplitz Matrices. In the implementation considered in this report, multiplica-
tion with Toeplitz matrices is used as a family of two-universal hash functions
[9,18]. An l ×m matrix M is called Toeplitz matrix, if the values in the main
and each of the secondary diagonals are equal. Thus, Toeplitz matrices can be
described by a sequence of m+ l−1 entries ai, which are arranged as follows [9]:

M =

a0 a−1 a−2 · · · a−m+1

a1 a0 a−1
. . .

a2 a1 a0
. . .

...
...

...
. . .

al−1 · · · al−m

With an l×m Toeplitz matrix containing binary entries only, a secure key of

the length l can be extracted from an partially compromised key of the length m
by simple matrix multiplication. When choosing the parameter l, the estimated
information obtained by Eve during the key distribution and error correction
phases has to be taken into account.

3 Analyzed Implementation of Privacy Amplification

In this report we analyze the C++ implementation of privacy amplification from
[21] with respect to cache side channels.

3.1 Overview of the Implementation from [21]

In the C++ code, privacy amplification is realized in the class PrivAmp. List-
ing 1.1 gives an overview of this class. When generating a PrivAmp object, the
final length lpa = |kpa| of the privacy amplified key kpa has to be specified.

7

Listing 1.1. Overview of PrivAmp

1 // p r i v a t e v a r i a b l e s : Toep l i t z matrix , pr ivacy amp l i f i ed key
and the r e s p e c t i v e l eng th s

2 char ∗ toepMat [toepMatLen] ;
3 i n t toepMatLen ;
4 char ∗ paKey [paLen] ;
5 i n t paLen ;
6 // v a r i a b l e manipulat ion
7 void setPAKeyLength (i n t paKeyLength) ;
8 void setToepl i tzMat (char ∗ toep l i t zMat) ;
9 char ∗ getToepl i tzMat () ;

10 i n t getToeplitzMatLen () ;
11 char ∗ getPAKey () ;
12 i n t getPAKeyLen () ;
13 // gene ra t ing the Toep l i t z matrix
14 void generateToepl i tzMat () ;
15 // c a l c u l a t i n g the f i n a l pr ivacy amp l i f i ed key
16 void calcPAKey (bool ∗ key) ;

On initialization, the Toeplitz matrix and privacy amplified key are created
as empty char arrays toepMat and paKey of length lTM = lpa + lKey − 1 and lpa
respectively. Here, lKey is the global key length of 1000, as the key is divided
into blocks of length 1000 for post-processing. The lpa × lKey Toeplitz matrix
TM can be represented by lTM entries because each entry TMij depends only
on i− j.

The function generateToeplitzMat() fills toepMat with 0 and 1 using
rand()%2 in a for-loop.

The final privacy amplified key is generated by calling calcPAKey(bool*

ECKey) with the error corrected key. In this function, the matrix multiplication
is implemented by multiplying each element (kec)j of the error corrected key kec
with the appropriate element id = i − j + lKey − 1 of toepMat and adding the
results modulo 2 to get (kpa)i of the final key.

In the full program, after finishing error correction, the ThreadMgr calls its
function doPrivacyAmplification. This creates a PrivAmp object and, if it
acts as Alice, calls generateToeplitzMat() and sends this toepMat to Bob.
Afterwards both, Alice and Bob, generate the final key with calcPAKey.

3.2 Simplified Implementation for Analysis

To quantify the vulnerability of the privacy-amplification implementation with
respect to cache side channels, we analyzed the function calcPAKey with the
tool CacheAudit0.2c.

CacheAudit0.2c was not directly applicable to the original implementation of
calcPAKey shown in Listing 1.2. We simplified the implementation accordingly to

8

enable an analysis with CacheAudit0.2c. Our adapted implementation is shown
in Listing 1.3, where adapted lines are highlighted in gray.

Firstly, the object-oriented variant of privacy amplification is currently not
analyzable with CacheAudit0.2c. Thus, we removed the object orientation from
the implementation (from line 3).

Secondly, the removal of object orientation raises the question how to deal
with class attributes. Since global variables are not supported by the analysis
tool, we store the information previously stored in class attributes in local vari-
ables. More concretely, we replaced the class attributes paLen (length of the
privacy-amplified key), toepMat (Toeplitz matrix), and paKey (location to store
the privacy-amplified key). In the modified implementation, we pass the length of
the privacy amplified key to the function calcPAKey as a parameter (see line 3).
We create local variables for both, the Toeplitz matrix and the array that stores
the resulting privacy-amplified key (see lines 4-6). To keep the analysis results
independent of a concrete Toeplitz matrix, we initialize the Toeplitz matrix with
the value *((int *)0x4) & 1 (see line 7). The reason is that the analysis tool
cannot determine the value stored at address 0x4 and will thus overapproximate
the value by considering all possible values. Since the Toeplitz matrix contains
only binary entries, only values of length 1 bit need to be considered. We achieve
this by masking the value at address 0x4 with 1.

Finally, we call the function calcPAKey from a wrapper function shown in
Listing 1.4. As parameters, we pass an uninitialized key and the global key length
10006. Using an uninitialized key causes the analysis tool to treat the key as se-
cret information whose leakage through cache-side-channel vulnerabilities should
be quantified. We compiled the modified implementation using the command

gcc PrivAmp.cpp -m32 -fno-stack-protector -g

and obtained an x86 binary, which we then analyzed.

4 Analysis Against Cache Side Channels

The x86 binary we obtained from the modified implementation of calcPAKey

contains the x86 instructions SAR (shift arithmetic right, opcode 0xC0/111) and
SHR (shift logical right, opcode 0xC0/101). These two instructions were not sup-
ported by CacheAudit0.2c. We extended the analysis tool to also support the
analysis of these instructions.

We applied the extended analysis tool, using the flag --unroll 1000000,
to the binary of the modified implementation of privacy amplification. We con-
figured the tool to assume the popular cache replacement strategy LRU (least
recently used). For the cache configuration, we fixed parameters that are used,
e.g., in the first level cache of the Intel Skylake architecture [13], namely a
32 kByte, 8-way set-associative data cache with a cache-line size of 64 Byte. The
analysis results we obtained are shown in Listing 1.5.

6 1000 is the default length of key blocks in the original implementation.

9

Listing 1.2. Original implementation of privacy amplification

1 #d e f i n e KEYLENGTH 1000
2 [. . .]
3 void qkdtoo l s : : PrivAmp : : calcPAKey (bool ∗ key){
4 // matrix m u l t i p l i c a t i o n
5 f o r (i n t i =0; i<paLen ; i ++){
6 paKey [i]=0;
7 f o r (i n t j =0; j<KEYLENGTH; j ++){
8 // id o f Toep l i t z sequence f o r matrix element i , j
9 i n t id=i−j+KEYLENGTH−1;

10 paKey [i]+=toepMat [id] ∗ key [j] ;
11 // keep i t b inary (mod 2)
12 paKey [i]=paKey [i]%2;
13 }
14 }
15 }

Listing 1.3. Modified implementation of privacy amplification

1 #d e f i n e KEYLENGTH 1000
2 [. . .]

3 void calcPAKey (bool ∗ key , int paKeyLength){
4 int toepMatLen=KEYLENGTH + paKeyLength - 1;

5 char toepMat[toepMatLen];

6 char paKey[paKeyLength];

7 for(int i=0;i<toepMatLen;++i){toepMat[i]=*((int *)0x4) & 1; }
8 // matrix m u l t i p l i c a t i o n
9 f o r (i n t i =0; i<paKeyLength ; i ++){

10 paKey [i]=0;
11 f o r (i n t j =0; j<KEYLENGTH; j ++){
12 // id o f Toep l i t z sequence f o r matrix element i , j
13 i n t id=i−j+KEYLENGTH−1;
14 paKey [i]+=toepMat [id] ∗ key [j] ;
15 // keep i t b inary (mod 2)
16 paKey [i]=paKey [i]%2;
17 }
18 }
19 }

Listing 1.4. Wrapper for privacy amplification

1 i n t main (i n t argc , char ∗argv []) {
2 bool key [KEYLENGTH] ;
3 calcPAKey (key , KEYLENGTH) ;
4 re turn 0 ;
5 }

10

Listing 1.5. Analysis results for modified privacy amplification

1 Number o f v a l i d cache c o n f i g u r a t i o n s : 1 , (0 .000000 b i t s)
2 Number o f v a l i d cache c o n f i g u r a t i o n s (b lur r ed) :
3 1 , (0 .000000 b i t s)
4 # t r a c e s : 1 , 0 .000000 b i t s
5 # times : 1 .000000 , 0 .000000 b i t s
6
7 Ana lys i s took 408143 seconds .

The analysis results are 0 bit of leakage through cache-side-channel vulnera-
bilities with respect to all four cache-side-channel attacker models we consider:

– the attacker model where an attacker can observe the time taken for cache
hits and misses during a run of privacy amplification,

– the attacker model where an attacker can observe the trace of cache hits and
misses during a run of privacy amplification,

– the attacker model where an attacker can observe the amount of memory
entries in the cache after a run of privacy amplification, and

– the attacker model where an attacker can observe the contents of the cache
after a run of privacy amplification.

Hence, no secret information about the secret key is leaked to attackers under
these attacker models when running the simplified implementation of privacy
amplification.

5 Conclusion

In this report, we considered a simplified implementation of privacy amplifica-
tion, the last step in the postprocessing of a quantum key distribution. We used
program analysis to compute upper bounds on the cache-side-channel leakage
with respect to four attacker models. The leakage is bounded by 0 bit for all four
attacker models. That is, a cache-side-channel attacker under any of these models
cannot learn information about the secret key through a cache side channel. The
security of the privacy amplification step in QKD postprocessing is particularly
important because privacy amplification is the final step in the postprocessing
and no subsequent step can make up for leakage in this step.

Acknowledgements. We thank Pascal Notz, who developed the implementation
of privacy amplification that we analyze. This work has been funded by the DFG
as part of the projects P4 (“Quantum Key Hubs”) and E3 (“Secure Refinement
of Cryptographic Algorithms”) within the CRC 1119 CROSSING.

11

References

1. Aciiçmez, O., Koç, Ç.K.: Trace-Driven Cache Attacks on AES (Short Paper). In:
Proceedings of the 8th International Conference on Information and Communica-
tions Security (ICICS). pp. 112–121 (2006)

2. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. In: Proceedings of IEEE International Conference on Computers,
Systems, and Signal Processing. pp. 175–179 (1984)

3. Bernstein, D.J.: Cache-timing attacks on AES. Tech. rep., University of Illinois at
Chicago (2005)

4. Bindel, N., Buchmann, J., Krämer, J., Mantel, H., Schickel, J., Weber, A.: Bound-
ing the cache-side-channel leakage of lattice-based signature schemes using program
semantics. In: Postproceedings of the 10th International Symposium on Founda-
tions & Practice of Security (FPS) (2017), To appear.

5. Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. In: Pro-
ceedings of the 12th Workshop on the Theory and Application of of Cryptographic
Techniques (EUROCRYPT). pp. 410–423 (1993)

6. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Com-
puter and System Sciences 18(2), 143 – 154 (1979)

7. Dewald, F., Mantel, H., Weber, A.: AVR Processors as a Platform for Language-
Based Security. In: Proceedings of the 22nd European Symposium on Research in
Computer Security (ESORICS) - Part I. pp. 427–445 (2017)

8. Doychev, G., Köpf, B., Mauborgne, L., Reineke, J.: Cacheaudit: A tool for the static
analysis of cache side channels. ACM Transactions on Information and System
Security 18(1), 4:1–4:32 (2015)

9. Fung, C.H.F., Ma, X., Chau, H.F.: Practical issues in quantum-key-distribution
postprocessing. Phys. Rev. A 81(1), 012318 (2010)

10. Gallager, R.: Low-density parity-check codes. IRE Transactions on information
theory 8(1), 21–28 (1962)

11. Gullasch, D., Bangerter, E., Krenn, S.: Cache Games - Bringing Access-Based
Cache Attacks on AES to Practice. In: Proceedings of the 32nd IEEE Symposium
on Security and Privacy (S&P). pp. 490–505 (2011)

12. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions. In: Proceedings of the 21st annual ACM symposium on Theory of com-
puting (STOC). pp. 12–24 (1989)

13. Intel Corporation: IntelR© 64 and IA-32 Architectures Optimization Reference Man-
ual. Order Number: 248966-032 (2016)

14. Jouguet, P., Kunz-Jacques, S.: High performance error correction for quantum
key distribution using polar codes. Quantum Information & Computation 14(3-4),
329–338 (2014)

15. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Proceedings of the 16th Annual International Cryptology
Conference (CRYPTO). pp. 104–113 (1996)

16. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Proceedings of the
19th Annual International Cryptology Conference (CRYPTO). pp. 388–397 (1999)

17. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hack-
ing commercial quantum cryptography systems by tailored bright illumination.
Nature Photonics 4(10), 686–689 (2010)

18. Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal
hashing. In: Proceedings of the 22nd Annual ACM Symposium on Theory of Com-
puting (STOC). pp. 235–243 (1990)

12

19. Mantel, H., Weber, A., Köpf, B.: A Systematic Study of Cache Side Channels
across AES Implementations. In: Proceedings of the 9th International Symposium
on Engineering Secure Software and Systems (ESSoS). pp. 213–230 (2017)

20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, New York, NY, USA (2011)

21. Notz, P.: Implementing a Post-Processing Procedure for Quantum Cryptography.
Bachelor’s thesis, Technische Universität Darmstadt (2012)

22. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The
Case of AES. In: Proceedings of the Cryptographer’s Track at the 2006 RSA Con-
ference (CT-RSA). pp. 1–20 (2006)

23. Protzenko, J., Zinzindohoué, J.K., Rastogi, A., Ramananandro, T., Wang, P.,
Zanella-Beguelin, S., Delignat-Lavaud, A., Hriţcu, C., Bhargavan, K., Fournet,
C., Swamy, N.: Verified Low-Level Programming Embedded in F?. Proceedings of
the ACM on Programming Languages 1(ICFP), 17:1–17:29 (2017)

24. Renner, R.: Security of quantum key distribution. International Journal of Quan-
tum Information 6(01), 1–127 (2008)

25. Shannon, C.E.: Communication theory of secrecy systems. Bell Labs Technical
Journal 28(4), 656–715 (1949)

26. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

27. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distri-
bution protocol. Physical review letters 85(2), 441–444 (2000)

28. Vernam, G.S.: Cipher printing telegraph systems: For secret wire and radio tele-
graphic communications. Journal of the A.I.E.E. 45(2), 109–115 (1926)

13

	Technical report

