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Abstract. Quantum cryptography allows one to transmit secret informa-
tion securely, based on the laws of quantum physics. It consists of (1) the
transmission of physical particles like photons and (2) the software-based
processing of measurements during the transmission. Quantum key dis-
tribution (QKD), e.g., transmits material for establishing a shared crypto
key in this way. The key material is encoded into the particles in a way that
leakage can be detected and mitigated via so-called privacy amplification.

In this article, we investigate the role of the software implementation
for the security of quantum cryptography. More concretely, we quantify
the security of QKD software against cache side channels and show how
to integrate cache-side-channel mitigation with the privacy amplification
in QKD. We evaluate our approach at one variant of a QKD software that
is in practical use. During our evaluation, we detect a cache-side-channel
vulnerability, for which we develop a parametric mitigation that combines
privacy amplification and program rewriting. We propose a cost model
for the combined mitigation, which allows one to optimize the interaction
between privacy amplification and program rewriting for the mitigation.

1 Introduction

Quantum cryptography [31,56] is a promising approach to protect secret com-
munication. It is based on the laws of quantum physics, which ensure that an
attacker will be detected if he intercepts the communication. Quantum crypto
is fundamentally different from post-quantum crypto, which is based on math-
ematical problems that are hard to solve even with quantum computers.

A prominent example of quantum crypto is Quantum Key Distribution
(QKD). QKD is a promising candidate for post-quantum key exchange [30].
The German government, e.g., is investing 165Me in a QKD network among
governmental agencies [25] and Quapital [36] aims at a QKD network across
Europe. In China, a QKD network between Beijing, Shanghai and other cities
was established in 2018 and is in a trial period for applications like banking [78].

QKD consists of a physical part and a software part. In the physical part,
the key material on Alice’s side is encoded into quantum properties of particles,
usually photons. The particles are transmitted to Bob via a so-called quantum
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channel, and Bob measures their properties to recover the key material. In the
software part, the key material on both sides is converted into a shared key.

Information leakage during the physical part can be quantified based on
traces that an attacker inevitably leaves in intercepted particles. It is mitigated by
privacy amplification, which increases the number of particles and compresses
the resulting key in the software part. Information leakage during the software
part can be quantified using Quantitative Information Flow (QIF) [3,70] and
mitigated by privacy amplification or, more traditionally, by program rewriting.

When the physical and software parts are combined, new threats arise. For
instance, an attacker might combine attacks on the physical part with cache-
side-channel attacks, which exploit that a software unintentionally uses a shared
cache in a secret-dependent way [1,7,33,43,59,69,77]. In QKD setups like [67] (for
secure video conferencing at Mitsubishi) or [68], it is common to use regular PCs
for postprocessing. PCs, especially those that process measurements, are often
multi-purpose. That is, when setups like [67,68] go into production, commu-
nication, e.g., of corporate secrets, might be at risk because the postprocessing
software for the encryption key might share a cache with other software. Given
efforts to move QKD to the cloud [11,53] and to end-user devices like smart-
phones [72], cache side channels will be even more dangerous for future QKD.

In this article, we focus on two research questions: (1) How can cache-
side-channel mitigation by program rewriting be integrated with privacy am-
plification? (2) What is a good split between program rewriting and privacy
amplification from a performance perspective? Being able to integrate both mit-
igation techniques in a reliable and cost-efficient fashion is crucial for achieving
end-to-end security for QKD across quantum physics and software in practice.

Our first step is to quantify the cache side channels in QKD software. To this
end, we develop a program analysis that computes upper leakage bounds. The
main novelty of our analysis is that it supports x86 binaries with floating-point
instructions. Prior analyses that compute reliable cache-side-channel leakage
bounds for x86 binaries (including [8,19,20,51]) did not support floating-point
instructions. As QKD software inherently deals with probabilities, e.g., to pro-
cess imperfect measurements, floating-point support is crucial in this domain.

We evaluate our analysis at the example of the BB84 protocol for QKD [6].
More concretely, we analyze the BB84 implementation from [42,57], which is
one of the few publicly available QKD implementations. It uses the low-density
parity check (LDPC) technique, which is very popular in QKD [29,34,38,52].

In our evaluation, we discovered a vulnerability in a part of the implemen-
tation that optimizes the LDPC. An attacker might recover the entire secret key
from one cache trace. We show how to harden the implementation by program
rewriting and use our analysis to confirm that the hardening is, indeed, effective.

Naturally, the program rewriting induces performance overhead. To increase
flexibility in trading performance against security, we develop a mitigation tech-
nique that combines selective program rewriting with privacy amplification.
Given a set of key bits that might be leaked by the software, we cannot simply
identify the corresponding particles and drop them from the transmission. The
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reasons are (1) that the postprocessing relies on relations across multiple bits,
e.g., that a certain percentages of bits survives the first postprocessing phase
(key-sifting phase) and (2) that privacy amplification relies on hash-functions,
i.e., there is no one-to-one mapping between the original bits and the final
key bits. Therefore, we use our program analysis to show how much privacy
amplification is needed to mitigate potential leakage that remains after selec-
tive rewriting. Finally, we develop a cost model for the combined mitigation
technique and evaluate it for realistic QKD-setup parameters.

In summary, our main technical contributions are (1) a static program anal-
ysis that computes reliable upper bounds on the cache-side-channel leakage of
programs that use floating-point operations, 3 (2) an evaluation on real-world
QKD software, (3) the detection and mitigation of a vulnerability in the QKD
software that might leak the entire key, (4) a mitigation technique that integrates
program rewriting with privacy amplification, and (5) an evaluation how to op-
timize performance across program rewriting and privacy amplification.

2 Basic Notions and Notation

2.1 Cache-Side-Channel Quantification

To quantify the leakage of an implementation, we model the secret as a random
variable X with prior #»π , the potential attacker observations as a random variable
Obs, and the implementation as a deterministic discrete memoryless channel C :
X→ Obs. Let p(xi) and p(obs j) be the probabilities for xi ∈ X and obs j ∈ Obs. Let
p(obs j|xi) be the conditional probability for obs j given xi. Min-entropy H∞(X) =

− log2 maxi p(xi) and conditional min-entropy H∞(X|Obs) = − log2 Σ
|Obs|
j=1 p(obs j) ·

maxi
p(obs j |xi)·p(xi)

p(obs j)
[70] capture the uncertainty of a one-try attacker about the secret

before, resp., after his observation. The leakage L( #»π,C) = H∞(X)−H∞(X|Obs) is
maximized for a uniform #»π [41] and then amounts to L( #»π,C) = log2 |Obs| [70].

We capture Obs for a given implementation using an execution model of the
target platform. We call a model that captures the exact values on which the
implementation computes (e.g., values of registers) a concrete execution model.
It consists of a concrete domainD, which is the set of all possible execution states,
and a concrete semantics upd

D
: D× I → D, which models how executing an

instruction from the set I changes the execution state. Since computing Obs on
such a concrete execution model is usually not computationally feasible, we
use abstract interpretation [15] to make the computation tractable. We represent
concrete execution states by abstract execution states from an abstract domain
D and overapproximate the concrete semantics by an abstract semantics upd

D
:

D×I → D. We perform a reachability analysis on upd
D

to obtain the set ObsD

of observations an attacker might make in any concrete execution modeled by
the possible abstract executions. This set overapproximates the actual set Obs,

3 available at https://www.mais.informatik.tu-darmstadt.de/qkd-esorics21.html.
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i.e., log2 |ObsD| ≥ log2 |Obs| ≥ L( #»π,C). Overall, we compute upper bounds on
the cache-side-channel leakage of an implementation as log2 |ObsD|.

This combination of abstract interpretation and information theory was pio-
neered in [40] and then broadened (e.g., [8,19,20,51]), but the particular analysis
that we present is a novel contribution of this article.

2.2 Quantum Key Distribution

Quantum Key Distribution (QKD) [56] aims at establishing a shared secret key
between two parties, Alice and Bob, in the presence of an attacker, Eve, who has
access to a quantum computer. A QKD implementation consists of a physical
part and a software part. Overall, there are five stages in a QKD implementation:
one stage in the physical part and four stages in the software part.

In the first stage, the raw-key exchange, Alice generates a random bitstring,
her so-called raw key bA

r . She transmits bA
r to Bob using qbits (quantum bits).

BB84 [6] implements qbits using the polarization of photons. A polarization is a
linear combination of two orthogonal base vectors. In BB84, two bases are used:
⊕ (↑ and→) and ⊗ (↗ and↖). For each bit in bA

r , Alice randomly chooses base
⊕ or ⊗ and polarizes a photon along the base vectors to encode the bit.

Alice sends the photons to Bob, who measures their polarization and obtains
his raw key, bB

r . Bob picks the bases for his measurements independently. This
is introducing errors, but crucial for security. If Eve intercepts photons without
knowing the bases, she will use the wrong base with a 50% chance. Based on
the laws of quantum physics, a wrong measurement will disturb the actual
polarization. When resending photons to Bob, Eve can only guess the original
polarization of the photons that she measured wrongly. Overall, she will, hence,
introduce errors in 25% of the intercepted photons, which can be detected later.

Overall, bA
r and bB

r might differ due to (i) mismatching bases, (ii) attacks, or
(iii) measurement errors. We refer to the error rate from (ii) and (iii) by errtrue.

Starting from the second stage, the remaining QKD stages happen in soft-
ware. The second stage of QKD is the key sifting. Bob sends his polarization
bases to Alice, who checks which of these bases are wrong. Alice and Bob dis-
card all bits from bA

r and bB
r for which Bob used a wrong base, and they obtain

the shorter bitstrings bA
si and bB

si. Note that, Bob sends the polarization bases
via a conventional electromagnetic channel. Eve might intercept and modify
messages on this channel but cannot impersonate other parties and cannot use
information she obtains to hide an attack, because the raw-key exchange is over.

The third stage of QKD, parameter estimation, has two purposes: (1) to detect
attacks and (2) to determine an estimated error rate errest to be used in the
fourth step of QKD. Alice and Bob compare randomly selected bits of bA

si and
bB

si to obtain errest. All bits used to compute errest are discarded, resulting in the
shorter bitstrings bA

s and bB
s , called sifted keys. Alice and Bob restart the QKD if

errest exceeds a predefined threshold, which indicates an attack.
The fourth stage, called error correction eliminates any remaining differences

between bA
s and bB

s so that Alice and Bob obtain the bitstrings xA
ec and xB

ec, respec-

4



tively, the so-called error-corrected keys. There are multiple coding techniques
that can be used for error correction, including Cascade [9] and LDPC [28]. We
focus on LDPC, which optimizes the required amount of communication [18].
Alice and Bob first agree on a length n = k + m (for k message bits and m parity
bits) and on a public k × n parity matrix H. The error correction then consists of
an encoding by Alice and a decoding by Bob. Alice splits bA

s into blocks of length k.
For each block, she computes m parity bits using H and sends them to Bob. For
herself, Alice sets xA

ec = bA
s . Bob computes the most likely guess for each sifted-

key block based on bB
s and the parity bits. He concatenates the resulting blocks

to obtain xB
ec. If m is sufficiently large based on errest (see [61]), then xB

ec = xA
ec.

The final step, privacy amplification, compresses xB
ec and xA

ec using hash func-
tions to compensate for leakage to Eve. One example of suitable hash functions
are Toeplitz matrices (matrices in which each descending diagonal consists of
equal values). Alice and Bob agree on a length l and on a public l × k Toeplitz
matrix T. They multiply T with each k-bit block of the error-corrected key and
concatenate the results to obtain the final key xA

pa = xB
pa. Naturally, the more the

key is compressed in the end, the more qbits need to be transmitted during the
first stage of the QKD in order to achieve the same key length.

3 Analysis for Cache-Side-Channel Quantification
In the error-correction step of QKD, Bob computes the most likely values of
the sifted-key bits based on his measurements and on additional information
received from Alice. That is, software implementations for QKD need to handle
probabilities, which are most naturally represented using floating-point values.

To enable cache-side-channel quantification for x86 binaries with floating-
point instructions, we define an execution model that captures both, the regu-
lar x86 architecture and the components specific to floating-point instructions.
Based on this model, we define an abstract reachability analysis that handles
floating-point values reliably. We provide tool support to automate the analysis.

Attacker Model. We consider an attacker who observes a victim’s interaction
with a cache. More concretely, we consider an attacker who has access to a trace
of the cache hits and misses encountered, e.g., based on CPU performance coun-
ters. Such trace-based attacks have been mounted, e.g., on OpenSSL AES [1], and
on reference implementations of the CAMELLIA and CLEFIA ciphers [62,64].

We capture such an attacker by the attacker model csc-att. An attacker under
csc-att observes a trace of the victim binary’s execution that we call cache trace.
This trace contains the entry “Hit” for each cache hit, the entry “Miss” for each
cache miss, and the entry “None” for each instruction without memory access.

3.1 Execution Model
In our execution model, we model a 32-bit architecture, which is supported by
older lab machines, as well as newer machines in compatibility mode. That is,
we focus on the execution of 32-bit x86 instructions in combination with x87
floating-point instructions. While regular x86 instructions are executed by the
CPU, x87 instructions are executed by the floating-point unit (FPU).
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CPU (x86). The CPU operates on 32-bit memory entries and CPU registers.
It maintains six 1-bit status flags that store information on the results of compar-
isons and arithmetic operations [37]: Carry Flag (CF), Parity Flag (PF), Auxiliary
Carry Flag (AF), Zero Flag (ZF), Sign Flag (SF), and Overflow Flag (OF).

In our model, X32 is the set of all CPU registers and memory locations. By
FCPU = {CF,PF,AF,ZF,SF,OF} we model the set of all CPU flags and byV32 we
model the set of all 32-bit values. We capture a CPU state by two functions of
types FCPU → B andX32 →V32 that map each CPU flag to a boolean value and
each CPU register and memory entry to a 32-bit value, respectively.

FPU (x87). The FPU operates on the same memory entries as the CPU. In
addition, it operates on a stack that consists of 8 dedicated 80-bit FPU registers
(consisting of 1 bit sign, 15 bits exponent and 64 bit mantissa) [37]. For each
stack entry, the FPU stores a tag: “valid” for a valid number, “zero” for entry
0, “special” for entries with a special value (e.g., not-a-number) or “empty” if
the entry is empty. Like the CPU, the FPU maintains status flags, the so-called
condition-code flags, to realize conditional control flow: C0, C1, C2, C3.

We model the set of all FPU registers by S64 and the set of all possible
floating-point values by V64. Let FFPU = {C0,C1,C2,C3} be the set of all FPU
condition-code flags and T = {valid, empty} be the set of FPU-stack tags, where
empty models the tag “empty” and valid models all other tags. We capture an
FPU state by two functions of types FFPU → B and S64 → T ×V64, which map
FPU flags to booleans and FPU registers to tagged floating-point values.

Cache. Frequently-used memory entries are stored in caches for quick access.
Most contemporary architectures incorporate a multi-level hierarchy of caches.

We model the memory hierarchy by distinguishing between the main mem-
ory and one level of cache. We focus on a 32KB 8-way set-associative data cache
with line size 64B (like the L1 cache of the Skylake architecture [37]) and LRU
replacement. By Cpos, we model the set of all possible positions in the cache,
including the position “uncached”. We capture a cache state by a function of
type X32 → Cpos, which maps each memory entry to its position in the cache.

Combined State and Executions. We model the possible execution states by
D = (FCPU→ B) × (FFPU→ B)×

(X32→V32) × (S64→T×V64) × (X32→ Cpos) .

That is, a state in the concrete domain D is a combination of a CPU state, FPU
state, and cache state. Let I be the set of x86 and x87 instructions. We model
their concrete semantics by a function upd

D
: D× I → D.

Note that, overall we made two key simplifications in our model of execu-
tion: We focus on 32-bit binaries and on a single level of cache. Both simplifica-
tions are sensible ones and also common in existing analyses [8,19,20,51].

3.2 Abstract Reachability Analysis

We define the abstract domain for our abstract reachability analysis by
D = ((FCPU → B) × (FFPU → B))→

((X32 → 2V32 ) × (S64 → 2T × 2V64 ) × (X32 → 2Cpos )).
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The values of CPU flags and FPU flags are captured by functions of types
FCPU → B and FFPU → B like in the concrete domain. The values of CPU
registers and memory entries with concrete typeX32 →V32 are abstracted from
by a function of typeX32 → 2V32 , i.e., by a set abstraction. Analogously, the tags
and values of FPU registers with concrete type S64 → T ×V64 are abstracted
from by a function of type S64 → 2T × 2V64 , and the cache positions with the
concrete type X32 → Cpos are abstracted from by a function of type X32 → 2Cpos .

Unlike in the concrete domain, the state of the flags and the state of memory,
registers and cache are not combined using the Cartesian product × in the
abstract domain. Instead, the abstract domain is defined as a mapping→ from
the state of the flags to the state of memory, registers and cache. That is, the
domain allows to distinguish between the states of memory, registers and cache
that are possible across different states of the flags. Since the flags determine
the control flow of binaries, this means that the abstract domain allows to
distinguish between the execution states across different control-flow branches.

Abstract Semantics. We define the abstract semantics of x86 and x87 instruc-
tions by upd

D
: D× I → D, which overapproximates the effect of instructions

on operands that are sets. In the definition, we faced two main challenges.
Firstly, the pointer for the FPU stack is stored in a register and, hence, has

an abstract value of type 2V32 . That is, instructions operate on a set of candi-
date stack pointers. To treat such situations sufficiently precisely, our abstract
semantics takes into account the tag of the stack entries pointed to by the can-
didate pointers. For instance, on a stack entry tagged {valid}, a pop instruction
will yield the tag {valid, empty} and an unmodified stack value, while a push
instruction will yield the tag {valid} and a stack value that is the union of the
previous value and the singleton set containing the loaded value.

Secondly, values in memory are Byte-aligned but not necessarily aligned
to the borders of memory blocks (chunks of memory that are cached together
in one cache line) [37]. Large values like floating-point values might cross the
border between two memory blocks. Instructions that retrieve such values from
the memory might affect multiple cache lines. To reliably overapproximate the
effect of such accesses, our abstract semantics splits such values into individual
Bytes and updates all cache lines in which at least one of the Bytes is cached.

Computation of Leakage Bounds. Based on an abstract initial configuration
d, we compute all possible abstract executions using upd

D
. These executions

overapproximate the possible concrete executions and corresponding attacker
observations. Based on the abstract executions, we determine the set ObsD of
attacker observations that an attacker under csc-att might make in any concrete
execution modeled by the possible abstract executions and compute log2 |ObsD|
as the leakage bound (see Sec. 2.1) with respect to an attacker under csc-att.

3.3 Automation through Tool Support

To create tool support for our analysis, we implemented the model and seman-
tics for the FPU from scratch, because no such implementation for the FPU was
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available. Our implementation covers a large set of x87 instructions, including
load, store, arithmetic and compare instructions. For the models of the CPU and
cache, as well as the semantics of CPU instructions, we aimed at maximum code
reuse from existing tools. While no previously existing tool provides support for
all required CPU features and instructions, CacheAudit [20] provides a model
of the cache and a model of the CPU for selected status flags and instructions.
We reused the code from CacheAudit and augmented it with support for 34
additional CPU instructions and the parity flag, which occurs in jumps that are
conditional on whether a floating-point value is NaN (not-a-number).

When building on CacheAudit, we noticed that CacheAudit’s abstract se-
mantics cannot handle memory entries that map to multiple cache lines. We
implemented a solution based on our semantics, splitting values into Bytes.

Overall, the resulting analysis tool takes an x86/x87 binary as input and
returns the upper bound log2 |ObsD| on the leakage to attackers under csc-att.

4 Practical Evaluation

For the evaluation of our program analysis, we consider an implementation of
the BB84 protocol. More concretely, we consider the implementation from [42,57],
which is both, in practical use and publicly available.

The implementation covers all stages of QKD that happen in software: key
sifting, parameter estimation, error correction and privacy amplification. For
our evaluation, we selected the two last stages: error correction and privacy am-
plification, because they involve non-trivial computations on secret bitstrings.
More concretely, we selected functions for the encoding part of error correction,
for the decoding part of error correction, and for privacy amplification from [42].

Before we apply our program analysis, we perform well-defined simplifica-
tions to the functions. We then lift the analysis results to the original functions
in a separate step. That is, our results are independent of the simplifications.

For the explanation of our simplified functions, we focus on their high-level
C code. For the evaluation of our program analysis, we considered binaries
obtained with gcc 7.4.0 with the flags -m32 -fno-stack-protector.

Encoding. We created the simplified version of the function dense_encode
shown in Figure 1. The parameter sblk with size k = 4 is the sifted-key block
to be encoded. It is copied into the vector u (Line 9) and passed to function
mod2dense_multiply (Line 10), which multiplies the sifted-key block with a
generator matrix G that is derived from the parity matrix H. The resulting code
block (the sifted-key block and m = 3 parity bits) is stored in cblk.

Figure 1 simplifies the original code in two aspects: (1) it stores matrices and
vectors in fixed-size arrays instead of dynamically allocated pointer structures
and (2) it stores the variables G and cols locally instead of globally. We tested
with a Hamming(7,4) code that the simplifications do not alter the functionality.

Decoding. We created simplified versions of the functions initprp and
iterprp (Figure 2). They perform LDPC decoding with a parity matrix stored
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1 #define M 3 #define K 4 #define N M+K [...]
2 void mod2dense_multiply(char m1[M][K], char m2[K][1], char r[M][1]){
3 for (int i=0;i<M;i++){ r[i][0]=0; }
4 for(int k=0;k<K;k++){ if (m2[k][0]==1){
5 for(int m=0;m<M;m++){ r[m][0]ˆ=m1[m][k]; }}}}
6 void dense_encode(char sblk[K],char cblk[N],char u[K][1],char v[M][1]){
7 int cols[N]={4,5,6,0,1,2,3}; char G[M][K]; int j;
8 for(j=M;j<N;j++){ cblk[cols[j]] = sblk[j-M]; }
9 for(j=M;j<N;j++){ mod2dense_set(u,j-M,0,sblk[j-M]);}

10 mod2dense_multiply(G,u,v);
11 for(j=0;j<M;j++){cblk[cols[j]]=mod2dense_get(v,j,0);}}
12 void main(){ char sblk[K]; char cblk[N]; char u[N][1]; char v[M][1];
13 dense_encode(sblk,cblk,u,v);}

Fig. 1. Target Encoding Implementation

1 #include "math.h" #define M 3 #define K 4 #define N M+K
2 void initprp (char H_val[M][N], double H_lr[M][N], double H_pr[M][N], double

lratio[N], char dblk[N], double bprb[N]){ int e; int j;
3 for (j = 0; j<N; j++){ for (e = 0; e < M; e++){
4 if (H_val[e][j] == 1){ H_pr[e][j] = lratio[j]; H_lr[e][j] = 1.0;}}
5 if (bprb) bprb[j] = 1 - 1/(1+lratio[j]); dblk[j] = lratio[j]>=1;}}
6 void iterprp(char H_val[M][N], double H_lr[M][N], double H_pr[M][N], double

lratio[N], char dblk[N], double bprb[N]){
7 double pr, dl, t; int e, i, j; double temp; double temp2; double dummy;
8 for (i = 0; i<M; i++){ dl = 1; for (e = 0; e < N; e++){
9 if (H_val[i][e] == 1){ H_lr[i][e] = dl; dl *= 2/(1+H_pr[i][e])-1;}}

10 dl = 1; for (e = N-1; e >= 0; e--){
11 if (H_val[i][e] == 1){ t = H_lr[i][e]*dl;
12 H_lr[i][e] = (1-t)/(1+t); dl *= 2/(1+H_pr[i][e]) - 1;}}}
13 for (j = 0; j<N; j++){ pr = lratio[j]; for (e = 0; e < M; e++){
14 if (H_val[e][j] == 1){ H_pr[e][j] = pr; pr *= H_lr[e][j];}}
15 if (isnan(pr)){ pr = 1;} else{dummy=1;__asm__("nop":::);}
16 if (bprb) bprb[j] = 1 - 1/(1+pr); dblk[j] = pr>=1; pr = 1;
17 for (e = M-1; e >= 0; e--){
18 if (H_val[e][j] == 1){ H_pr[e][j] *= pr; temp = H_pr[e][j];
19 if (isnan(temp)){temp = 1;} else{temp2=1;__asm__("nop":::);}
20 H_pr[e][j] = temp; pr *= H_lr[e][j];}}}}
21 void main(){char H_val[M][N]={{1,1,0,1,1,0,0},{1,0,1,1,0,1,0},{0,1,1,1,0,0,1}};
22 double H_lr[M][N]; double H_pr[M][N]; double lratio[N]; char dblk[N];
23 double bprb[N]; initprp(H_val, H_lr, H_pr, lratio, dblk, bprb);
24 iterprp(H_val, H_lr, H_pr, lratio, dblk, bprb);}

Fig. 2. Target Decoding Implementation

in an array H_val. They compute the correct values of the bits in the sifted-
key block based on probabilities stored in the auxiliary arrays H_lr and H_pr.
Function initprp initializes the probabilities using a vector lratio of likelihood
ratios based on Bob’s measurements. Function iterprp then iteratively updates
the probabilities. The resulting error-corrected-key block is stored in dblk.

Our simplified implementation (1) uses fixed-size arrays instead of pointer
structures, (2) performs only one iteration of iterprp, (3) uses a fixed instead
of a variable parity matrix, and (4) performs overflow handling on dummy
variables if no overflow occurred instead of skipping the step. Again, we tested
the functionality of the simplified implementation on a Hamming(7,4) code.

Note that the variables H_lr, H_pr and lratio are of type double, i.e.,
floating-point values. Our simplification preserves these datatypes, because
the corresponding values represent probabilities and likelihood ratios. Repre-
senting them as integers would loose precision and cause a great deviation from
the original code due to the additional encoding needed to represent probabili-
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ties as integers. Therefore, the binary of our simplified implementation contains
floating-point instructions that need to be handled by our program analysis.

Privacy Amplification. We created the simplified version of the function
calcPA shown in Figure 3. It takes an error-corrected key block key and the
target length paLen for the privacy-amplified key block as inputs. It hashes the
error-corrected key block by multiplying it with the Toeplitz matrix in Line 8.

The simplified calcPA differs from the original calcPA by (1) using fixed-
size instead of variable-size arrays, (2) using local variables and parameters
instead of class members and (3) initializing each entry of the Toeplitz matrix
to the least-significant bit (lsb) of the value stored at the uninitialized address
0x4 (to make explicit that the Toeplitz matrix is binary). Again, we tested the
functionality of the simplified implementation on a Hamming(7,4) code.

5 Vulnerability in the QKD Implementation

With our analysis tool, we detected a vulnerability in the QKD implementation
from [42], which might leak the entire secret key. In this section, we describe the
detection, assessment, and mitigation of this vulnerability.

Note that, the vulnerability is located in the encoding part of the error-
correction step. We also analyzed the decoding part of the error-correction step
and the privacy-amplification step, but we did not detect vulnerabilities in these
implementations. We will describe the security analysis for the hardened QKD
software, including decoding and privacy amplification, in Section 6.

Detection and Assessment. For dense_encode from Figure 1, our analysis
computes the leakage bound 4 bit with respect to csc-att. Recall that the sifted-
key-block here has 4 bit, i.e., leaking 4 bit might reveal the entire sifted key.

Recall from Section 4 that the differences between the original and the sim-
plified implementation of dense_encode are only the datatypes and scope of
the variables that store matrices and vectors. These differences do not impact
the control flow and the locations of memory accesses in the encoding imple-
mentation. Thus, they do not impact the leakage with respect to csc-att. That is,
our leakage bound indicates a potential leakage also in the original encoding
implementation from [42]. We investigate this potential leakage in the following.

Figure 4 shows excerpts of two functions from the original encoding imple-
mentation. The function dense_encode encodes the sifted-key block sblk using
the generator matrix G. To this end, the sifted-key block is passed to the function

1 #include "string.h" #include "stdbool.h"
2 #define KEYLENGTH 4 #define PAKEYLENGTH 2
3 void calcPAKey(bool* key, int paLen){
4 int toepMatLen=KEYLENGTH+paLen -1; char paKey[paLen]; char toepMat[toepMatLen];
5 for(int i=0;i<toepMatLen;++i){ toepMat[i]= *((int*)0x4)&1;}
6 for(int i=0;i<paLen;i++){ paKey[i]=0;
7 for(int j=0;j<KEYLENGTH;j++){ int id=i-j+KEYLENGTH -1;
8 paKey[i]+=toepMat[id]*key[j]; paKey[i]=paKey[i]%2;}}}
9 void main(){bool key[KEYLENGTH];calcPAKey(key,PAKEYLENGTH);}

Fig. 3. Target Privacy-Amplification Implementation
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mod2dense_multiply in Line 10 via vector u. The function mod2dense_multiply
multiplies the sifted-key block (m2) by the generator matrix (m1).

For each column of the generator matrix and result matrix (Line 2), the
function mod2dense_multiply iterates over the sifted-key block (Line 3). If a bit
in the sifted-key block is set (Line 4), the function adds the corresponding row
of the generator matrix m1 to the intermediate result r of the multiplication in
Line 5 and Line 6. That is, the function mod2dense_multiply only accesses those
rows of m1 that correspond to set bits of the sifted-key block.

Consider an attacker under csc-att. He observes the cache trace while Alice
executes the encoding. He recognizes which parts of the trace correspond to
iterations of the loop in Line 3 in which the branch in Line 4 is taken because
in these iterations cache accesses occur between the non-memory-access steps
corresponding to the loop guard. As the branch in Line 4 is taken exactly for each
set bit in the sifted-key block m2, the attacker learns which bits in the sifted-key
block are 1 and which are 0. That is, he learns the entire sifted-key block.

The attacker can obtain all blocks of Alice’s sifted key by observing all
executions of the encoding function. By concatenating the blocks, he obtains
Alice’s entire sifted key. Recall that Alice’s sifted key is identical to the error-
corrected key (Section 2.2). That is, once the attacker knows Alice’s sifted key, he
can emulate the privacy-amplification step by applying the public hash function
to the error-corrected key. As a result, he obtains the privacy-amplified key and
can use it to decrypt the subsequent communication between Alice and Bob.

This vulnerability is not only a concern for the QKD software from [42]. It
is caused by the optimization to skip multiplications with zero, which is a very
natural optimization in a matrix multiplication. Furthermore, the encoding im-
plementation in [42] reuses the original implementation of LDPC encoding by
Radford Neal [55], who rediscovered LDPC codes together with MacKay in the
1990s [46]. The vulnerability we detected is also contained in Neal’s implemen-
tation [55], which has been forked by many others [32]. Overall, a solution for
hardening implementations against the vulnerability is highly desirable.

Hardening of the QKD Software. We provide a hardened implementation of
mod2dense_multiply in Figure 5. The implementation iterates through all rows
of the generator matrix, independently of the value of the respective sifted-key
bit. That is, control flow and memory accesses are independent of the sifted key.

To preserve the functionality of the multiplication, the term to be added to
the intermediate result is masked by the value of the sifted-key bit in Line 3. This

1 void mod2dense_multiply(mod2dense *m1,mod2dense *m2, mod2dense *r){ [...]
2 for(j=0;j<mod2dense_cols(r);j++){
3 for(i=0;i<mod2dense_rows(m2);i++){
4 if(mod2dense_get(m2,i,j)){
5 for(k=0;k<r->n_words;k++){
6 r->col[j][k]ˆ=m1->col[i][k];}}}}}
7 void dense_encode(char *sblk,char *cblk, mod2dense *u,mod2dense *v){ int j;
8 for(j=M;j<N;j++){cblk[cols[j]]=sblk[j-M];}
9 for(j=M;j<N;j++){ mod2dense_set(u,j-M,0,sblk[j-M]);}

10 mod2dense_multiply(G,u,v);
11 for(j=0;j<M;j++){ cblk[cols[j]]=mod2dense_get(v,j,0);}}

Fig. 4. Excerpt from [42]: Encoding
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technique is inspired by conditional assignment [54]. We tested the functionality
of the hardened implementation with a Hamming(7,4) code.

As the modified function mod2dense_multiply preserves the functionality
of the multiplication function from Figure 1, it can be plugged into the simplified
encoding implementation from Figure 1. To apply the hardening to [42] and [55],
the data types of m1, m2 and r in the function mod2dense_multiply need to be
changed back to pointer structures before integrating the function.

6 Security of the Hardened Implementation

By applying our program analysis to the hardened QKD software, consisting
of the mitigated encoding implementation, the decoding implementation, and
the privacy-amplification implementation, we obtain security guarantees with
respect to attackers under csc-att. In the following, we describe the security
guarantees for each of the analyzed QKD steps.

Hardened Encoding. For the hardened encoding implementation from Sec-
tion 5, our analysis computes the leakage bound 0 bit. That is, the implementa-
tion does not leak any information to attackers under csc-att. If the hardening is
deployed in the encoding implementation from [42] as described in Section 5,
the resulting implementation will also be secure with respect to csc-att, because
the data type and scope of the variables do not influence the possible traces.

Decoding. For the implementation from Figure 2, our analysis also returns
the leakage bound 0 bit, i.e., there is no leakage to attackers under csc-att.

The implementation simplifies [42] in four aspects (see Sec. 4). We lift the
leakage bound to the original implementation by discussing each simplification:
1. While [42] iterates through a pointer structure storing only the set bits of the

parity matrix, the simplified version iterates over the complete matrix. This
eliminates a dependence of the cache trace on the parity matrix. Since the
parity matrix is public, this simplification does not influence the leakage.

2. The parity matrix is fixed to a random matrix in the simplified implemen-
tation. This eliminates another dependence of the cache trace on the parity
matrix. Again, the leakage is not affected because the parity matrix is public.

3. The simplified implementation calls iterprp, which would usually be iter-
ated, only once. Since the leakage bound for decoding is 0 bit, no leakage
might accumulate, i.e., the simplification does not influence the leakage.

4. Overflows of probabilities are handled in [42] by resetting the probabilities
to 50%. The cache trace reveals the number of overflows encountered. This

1 void mod2dense_multiply(char m1[M][K], char m2[K][1], char r[M][1]){
2 for (int m=0; m<M; m++){r[m][0] = ’0’;
3 for (int k=0; k<K; k++){r[m][0]ˆ= m1[m][k] & m2[k][0];}
4 r[m][0] = r[m][0] % 2;}}

Fig. 5. Hardening of the Encoding Function
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is hidden by the simplified version. This simplification does not influence
the leakage since overflowing probabilities are reset to 50%. Nothing about
the final probabilities is revealed by the occurrence of an overflow.
Overall, the zero leakage bounds can be translated to the original decoding

implementation, which is, hence, also secure against attackers under csc-att.
Privacy Amplification. For Figure 3, our analysis yields the leakage bound

0 bit. That is, the implementation does not leak to attackers under csc-att.
Recall from Section 4 that the only differences between Figure 3 and the

original implementation are the fixed size of variables, the scope of variables
and the explicit marking of the Toeplitz matrix as uninitialized binary matrix.
None of these has an influence on the control flow or memory accesses during
the privacy amplification. That is, the zero leakage bound also applies to the
original implementation. No need for additional hardening arises.

Together with the bounds for the encoding and decoding implementations,
we now have a set of security guarantees for the hardened QKD software.

7 Combining Rewriting and Privacy Amplification

While our hardening by program rewriting in Section 5 is effective, it also
removes an optimization and thereby increases the running time of the encoding
step (by about 50% on average for a uniformly distributed sifted key). In this
section, we present a more flexible mitigation strategy, which allows to optimize
performance cost across the physical and software-based part of QKD.

Parametric Mitigation of the Vulnerability. Figure 6 shows a parametric
program rewriting of the encoding implementation. Instead of iterating through
all of the block m2 as in the hardening from Figure 5, the function iterates through
the first SEC_PARAM bits of m2 and only iterates through the remaining bits if
they are set. That is, the optimization is disabled selectively. While Figure 6 still
leaks a consecutive key portion, additionally randomizing the indices where
the optimization is disabled would even hide where the leaked bits belong.

We use our program analysis to verify whether the security guarantees are,
indeed, improved incrementally by incrementally disabling the optimization.
We obtain the following leakage bounds: 3 bit for SEC PARAM= 1, 2 bit for
SEC PARAM= 2, and 1 bit for SEC PARAM= 3. That is, our mitigation allows
us to trade performance against security locally within the encoding function.

Integration with Privacy Amplification. Traditional security analyses of
QKD solutions [65] aim at guarantees for the secret key resulting after pri-

5 void mod2dense_multiply(char m1[M][K], char m2[K][1], char r[M][1]){
6 for (int i=0; i<M; i++){r[i][0] = 0;}
7 for (int k=0; k<K; k++){
8 if (k < SEC_PARAM || m2[k][0] == 1){
9 for (int m = 0; m < M; m++){r[m][0] ˆ= m1[m][k] & m2[k][0];}}}}

Fig. 6. Parametric Mitigation in the Encoding Function
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vacy amplification. They take into account leakage to Eve during the raw-key
exchange and through the electromagnetic channel.

Privacy amplification requires the transmission of more particles during the
raw-key exchange, which lead to more remaining key material after error cor-
rection. This key material of length lblock is then compressed with a hash function
to a key of target length ltarget. To compensate for potential leaks across the dif-
ferent stages of QKD, privacy amplification relies on upper leakage bounds braw
for the raw-key exchange and bparity for the electromagnetic channel. The length
ltarget of the privacy-amplified key should be ltarget < lblock − braw − bparity bit. The
smaller ltarget is compared to lblock − braw − bparity, the more secure is the final key.

We integrate our leakage bounds as follows. Let bcache be the leakage bound
derived with our analysis. To compensate the potential cache-side-channel leak-
age in addition to the leakage from the raw-key exchange and the electromag-
netic channel, the target length should be ltarget < lblock − braw − bparity − bcache bit.
The reason is that the information leaked during a traditional attack on QKD
and the information leaked through the side channel might be distinct.

Consider the parametric cache-side-channel mitigation from Figure 6 for
SEC_PARAM = 3. In this case, only one bit of cache-side-channel leakage remains
to be mitigated, i.e., ltarget < 4− braw − bparity − 1 = 3− braw − bparity bit. That is, only
a slightly stronger privacy amplification than usual will be required.

But how should one choose how much leakage to mitigate by program
rewriting and how much to mitigate by privacy amplification?

Optimizing the Combined Mitigation. The combination of program rewrit-
ing and privacy amplification allows one to split the mitigation overhead across
the physical and software parts of QKD. In the following, we present a cost
model that allows one to choose an optimal split based on a given QKD setup.

Let craw be the cost for the raw-key exchange, sifting and parameter estima-
tion for one sifted-key block. Let cec and cpa be the costs of the encoding and pri-
vacy amplification, respectively, for one sifted-key block without any software-
based cache-side-channel mitigation. Given a bound bcache on cache-side-channel
leakage, the cost for obtaining a key of the length ltarget is (craw+cec+cpa)·ltarget

lblock−braw−bparity−bcache

That is, the cost for the same level of security in the privacy-amplified key in-
creases linearly with bcache. If bcache is too high compared to lblock, the key exchange
becomes impossible, as the cost would become infinite.

With our mitigation that decreases bcache to b′cache, the cost becomes

(craw + cec ·
lblock−0.5b′cache

0.5·lblock
+ cpa) · ltarget

lblock − braw − bparity − b′cache

The encoding becomes more expensive because instead of performing ac-
tions for 50% of the bits in the block (on average given a uniform distribution
of the sifted key), it needs to perform actions for 50% of the b′cache bits which are
not protected and for all of the lblock − b′cache bits, which are protected.

If we know the cost of the individual phases, we can find the leakage bound
b′cache which minimizes the cost. Given the desired b′cache, we can then set the
mitigation strength SEC_PARAM to lblock − b′cache in the code.

14



We evaluate this technique for a set of realistic parameters for cost and
leakage bounds. Consider a QKD setup that implements LDPC following IEEE
standard 802.11n-2009 [35] like, e.g., the implementation in [73]. Let the block
length be lblock = 1458 bit with corresponding parity-bit length bparity = 486 bit.

The leakage per bit during the raw-key exchange is −errtrue · log2(errtrue) −
(1 − errtrue) · log2(1 − errtrue) [22]. Assuming an error rate errtrue = 5%, we arrive
at a leakage of about 0.2864, i.e., braw ≈ 0.2864 · lblock ≈ 418 bit.

The bit-rates that can be achieved for the raw-key exchange vary across
different experimental setups between 10−3 and 13 Mbit/s [76]. Consider a setup
with a bit-rate of 10Mbit of sifted key per second, i.e., where the transmission
of one block takes craw = 145.8 · 10−6 seconds. Let the cost of encoding and
privacy amplification be cec = 0.001 and cpa = 0.01 seconds per sifted-key block.
The latter two numbers are rounded based on performance measurements we
performed on the code from Figure 1 and 3 across random inputs on a Lenovo
ThinkPad X250 M93p with an i7-5600U CPU at 2.60GHz.

If we now aim to minimize the cost for the exchange of, e.g., ltarget = 5, 000
bit of symmetric key, we arrive at (60.729 − 0.003429355 · b′cache)/(554 − b′cache).

Hence, in this scenario, b′cache = 0bit minimizes the overhead. That is, the
complete hardening from Section 5 would be the most beneficial here, because
the cost of privacy amplification outweighs the software overhead.

For different QKD setups or implementations, the result might differ. In par-
ticular, as research in physics is pushing the limits of photon detectors to achieve
higher bit-rates [17], the effect of software performance might become more rel-
evant. We hope that our program analysis and flexible mitigation technique will
also be beneficial for future QKD setups and implementations.

8 Related Work

We are not aware of any prior work in the intersection of cache side channels
and the security of QKD software. The closest are works on cache-side-channel
assessment in general, on cache-side-channel attacks on other software, on the
security of the quantum-channel transmission in QKD, and on the combination
of QIF with concepts from quantum theory. We discuss these areas briefly below.

Assessment of Cache-Side-Channel Security. Side channels are tradition-
ally detected manually as in [24,43]. Recently, complementary approaches have
become popular, ranging from systematic testing [75] to empirical methods [14]
like distinguishing experiments [49,50] to program analysis [16,20,48]. In the
following, we describe the most related tools for cache-side-channel analysis.

The tool CacheAudit [20] quantifies the cache-side-channel leakage of x86
binaries through upper bounds on Shannon-entropy leakage and min-entropy
leakage. To this end, CacheAudit performs an abstract reachability analysis for
x86. Different versions of CacheAudit have been used in multiple side-channel
analyses, e.g., of AES implementations [51], lattice-based cryptography [8] and
modular exponentiation [19]. While CacheAudit provides reliable upper bounds
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on cache-side-channel leakage, it covers only parts of the x86 instruction set
architecture. None of the existing versions supports floating-point instructions.

CaSym [10] uses symbolic execution and SMT solving to explore the possible
program executions and deduce the existence of a leaking pair of executions.
CaSym does not provide upper bounds on cache-side-channel leakage. It only
provides security guarantees for software that is free from cache side channels.

The tools LeakiEst [12] and LeakWatch [13] quantify side-channel leakage
using statistical methods based on samples of side-channel observations. Both
tools provide an estimation of leakage within a confidence interval. That is, they
do not provide sound upper bounds on the leakage.

The tools DATA [75] and CacheD [74] detect potential cache-side-channel
leakage in software based on execution traces. DATA is based on statistical
methods and CacheD is based on symbolic execution and constraint solving.
Both, DATA and CacheD are intended to support developers in debugging
against cache side channels. They do not provide any security guarantees.

Cache-Side-Channel Attacks. Cache-side-channel attacks were first dis-
cussed by Page [60] in 2002. Since then, multiple variants have been devel-
oped, including access-based attacks like Prime+Probe, Evict+Time [59] or
Flush+Reload [77], trace-based attacks [1] and time-based attacks [7]. Cache-
side-channel attacks have also been mounted in the cloud [66] and on mobile
devices [43,71]. Recently, cache-side-channel attacks became an even more seri-
ous concern based on their role in the Spectre [39] and Meltdown [44] attacks.

Security of Quantum-Channel Transmissions. The key idea of QKD is to
create a setup where eavesdropping can be detected. To this end, information
is encoded into photons [6,21], e.g., using equipment like beam splitters and
photodiodes as in [23]. Atoms have been considerd as an alternative to photons,
e.g., in [26]. An eavesdropper will likely destroy the correlation (measured, e.g.,
using quantum discord, classical correlation or quantum entanglement [2,58])
between the particles on the sender and receiver side. Thus, there will be a higher
error rate in the transmission, by which the eavesdropper can be detected.

Existing research about attacks on QKD focuses primarily on attacking the
quantum channel. Existing attacks include, e.g., the injection of bright light [45],
the manipulation of the data received by Bob through adversarially constructed
light pulses [47], tricking Alice’s hardware into producing an erroneous encod-
ing in the photons [27], or time-shifting the transmitted qbits [63].

Quantum Quantitative Information Theory. While we apply classical infor-
mation theory in the context of quantum cryptography, Américo and Malacaria [4]
apply concepts from the context of quantum systems to information theory. The
applications presented in [4] are based on classical systems. They use a notion of
quantum quantitative information flow (QQIF) to model the choice between dif-
ferent attacks and to model probabilistic program behavior. But the aim of QQIF
is to also quantify the security of quantum systems. In the future, a combination
of QQIF and our analysis might be an interesting direction for generalizing the
integration between security guarantees in quantum cryptography.

16



9 Conclusion

We presented a solution for quantitative security of QKD, which takes Physics
and Computer Science into consideration, at the example of cache side channels.

Our program analysis is the first for automatically computing reliable upper
bounds on the cache-side-channel leakage of x86 binaries that use floating-point
instructions. We evaluated the analysis on a simplified implementation of the
QKD protocol BB84 and subsequently lifted the results to the original code.

During the evaluation, we discovered a vulnerability in the original code that
might leak the entire secret key. The vulnerability is caused by an optimization
in the application of an LDPC matrix to the secret key. Note that QKD is not
the only place where LDPC is applied to secret information. Applications of
LDPC to secrets can also be found, for instance, in post-quantum cryptography
[5] and, hence, our findings should be of interest beyond QKD.

We showed how to mitigate the vulnerability by program rewriting and
presented a parametric mitigation that combines the physical and software parts
of QKD. Since currently the exchange of polarized photons is the performance
bottleneck, a purely rewriting-based mitigation provides the best results to date.
As improving the performance of the photon exchange is subject to intensive
research, we expect progress in the future that might affect the trade-off, and
our finding about the best trade-off should then be revisited.
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