
Addendum to “AVR Processors as a Platform
for Language-Based Security”

Florian Dewald, Heiko Mantel, and Alexandra Weber

Computer Science Department, TU Darmstadt, Germany
{dewald,mantel,weber}@mais.informatik.tu-darmstadt.de

This addendum document is structured as follows:

– In Section A, we provide our complete operational semantics. It consists of
definitions to model data storages, instructions and programs. The section
concludes with presenting and arguing for the faithfulness of our small-step
semantics.

– In Section B, we start of by repeating domain assignments and our security
property. We continue by introducing all special concepts used in our security
type system, before we define typability and present the complete set of
typing rules.

– In Section C, we prove our security type system sound with respect to our
operational semantics and security property.

A Complete Definition of Semantics

A.1 Hardware Modeling

Definition 1 (Status registers). The set of status registers is {C,Z}.

Definition 2 (Status register assignment). Values of status registers are
given by a function out of the set

STAT-VAL := {C,Z} → {0, 1}

The identifier Z represents the zero status flag and the C represents the carry
status flag.

Definition 3 (8-bit values). The set VAL8 contains all possible values, that
can be stored on an 8-bit machine. That is, the set VAL8 is defined as:

VAL8 := {z ∈ Z | z ≥ −27 ∧ z ≤ 27 − 1}

AVR operates with 8-bit values, so the set VAL8 represents all possible repre-
sentable values in 8-bit two’s complement.

Definition 4 (Registers). The set REG denotes the set of available registers
and is given by

REG := {rn | n ∈ {0, . . . , 31}} ∪ {spl, spu}

Definition 5 (Register assignment). Values of registers are given by a func-
tion out of the set

REG-VAL := REG→ VAL8

The AVR microcontrollers contain 32 general purpose registers, in our case iden-
tified by r0, . . . , r31. The stack pointer is 16-bit wide, requiring it to be split into
two separate registers spl for the lower part and spu for the higher part of a
16-bit value.

Definition 6 (16-bit values). The set VAL16 contains all possible 16-bit values
and is given by

VAL16 := {z ∈ Z | z ≥ −215 ∧ z ≤ 215 − 1}

Definition 7 (Register pairs). The set REGPAIR contains all possible register
pairs and is given by

REGPAIR := {r0, . . . , r30} ∪ {X,Y, Z, spl}

Definition 8 (Low register pair conversion). The function regconvert-l :
REGPAIR → REG maps a given register pair to the lower concatenated register
and is given by

regconvert-l(a) :=

a if a ∈ {r0, . . . , r30}
r26 if a = X

r28 if a = Y

r30 if a = Z

spl if a = spl

Definition 9 (Upper register pair conversion). The function regconvert-u :
REGPAIR→ REG maps a given register pair to the upper concatenated register and
is given by

regconvert-u(a) :=

rn+1 if ∃rn ∈ {r0, . . . , r30} : a = rn

r27 if a = X

r29 if a = Y

r31 if a = Z

spu if a = spl

Definition 10 (Register pair assignment). Let r ∈ REG-VAL be a register
assignment. The function

regpair-valr : REGPAIR→ VAL16

is given by

regpair-valr(a) := r(regconvert-u(a))� r(regconvert-l(a))

2

The stack pointer is a first example of register pairs. Register pairs are used for
16-bit wide values by concatenating two adjacent registers. Given a register, the
corresponding lower and upper registers that belong to the pair can be obtained
using functions regconvert-l and regconvert-u, respectively. For convenience, the
16-bit value stored in a register pair with respect to a register assignment can
be obtained using regpair-valr.

Definition 11 (Memory addresses). The memory addresses are given by the
set

MEM := {0, . . . , MAXADDR}

Definition 12 (Memory assignment). Values of memories are given by a
function out of the set

MEM-VAL := MEM→ VAL8

A main memory cell is identified by its address, given by MEM. It contains all
available memory addresses, where the largest one is denoted by MAXADDR.

Definition 13 (Stack assignment). The set of possible stack assignments is
given by STACK-VAL := VAL∗8.

The stack is modeled by a list of values, where the head of the list represents
the topmost element on the stack.

Definition 14 (Function updating). Let f : X → Y be a function, x ∈ X
and y ∈ Y , then the function f [x 7→ y] : X → Y is given by

f [x 7→ y](a) :=

{
f(a) if a 6= x

y if a = x

When computations on values are performed and the result shall be stored
inside a data storage, it might happen that the result is too large for the value
range of the desired data storage. Unfortunately, we were unable to find an exact
documentation what happens in such a case. A reasonable and in this work used
way is that the stored value is determined bitwise to match the bit length of the
desired storage container and if necessary the most significant bits are cut off.

Example 1. Assume the result of adding a = 1111 11112 and b = 0000 00012
shall be stored inside a register r that can hold 8 bits. The result would be
r = a + b = 1 0000 00002, where only the last 8 bit can be stored inside the
register. Thus, the final content of r is 0000 00002.

Definition 15 (Register pair updating). Let r ∈ REG-VAL be a register as-
signment, rn ∈ REGPAIR be a possible register pair and z ∈ VAL16 a new value.
Then the function r[rn 7→p z] : REG→ VAL8 is given by

r[rn 7→p z](a) :=

lower(z) if a = regconvert-l(rn)

upper(z) if a = regconvert-u(rn)

r(a) otherwise

3

Definition 16 (Status Register updating). Let s ∈ STAT-VAL be a status
register assignment, x ∈ {C,Z} a status register and t ∈ B a truth value, then
the function s[x 7→s t] is given by

s[x 7→s t] :=

{
s[x 7→ 1] if t = True

s[x 7→ 0] if t = False

Special notations are introduced to update register pairs and status registers.
When a register pair is updated, the 16-bit value is split in its lower and upper
part and put in the corresponding registers. The notation for updating a status
register allows to pass a truth value which is converted into 0 and 1.

A.2 Instructions and Programs

Definition 17 (Execution point). The set of base execution points is given
by

EPS0 := {(f, a) | f ∈ FUNC ∧ a ∈ N}
The set of execution points is given by

EPS := EPS0 × EPS∗0

Definition 18 (Execution Point addition). The function +ep : EPS × N →
EPS is given by

+ep((f, a, c), n) := (f, a+ n, c)

An execution point models a pointer to a location inside a program. We distin-
guish between base execution points and plain execution points. A base execution
point is a pair consisting of a function name and an address to determine the
instruction inside the function. It corresponds to the layout found inside an ob-
ject dump that acts as input for our prototypical implementation. An execution
point contains additionally a list of base execution points that act as call stack
to determine return locations upon a function call.

Whenever necessary, we rely on implicit conversions from execution points
to base execution points, where the call stack is dropped.

The special +ep symbol is used to shift forward the address of an execution
point without affecting its remaining components.

Definition 19 (Instructions without operands). The set

INSTR-NO-OP := {(in, ()) | in ∈ {clc, cli, ret}}

contains instructions which take no operand.

Definition 20 (Instructions influencing control flow). The set

INSTR-CF :={(in, (epa)) | epa ∈ EPS ∧ in ∈
{brcc, brcs, breq, brne, call, jmp, rcall, rjmp}}

contains instructions which take an execution point as operand.

4

Definition 21 (Instructions with immediate and register operands).
The set

INSTR-IMM-REG :={(in, (Rd, im)) | im ∈ Z ∧Rd ∈ REG ∧ in ∈
{adiw, andi, cpi, ldi,
sbci, sbiw, subi}} ∪

{(in, (Rd, a)), (out, (a,Rr)) | im ∈ Z∧
Rr ∈ REG ∧Rd ∈ REG ∧ a ∈ {0x3d, 0x3e, 0x3f}}

contains instructions which take an immediate and a register(-pair) as operand.

Definition 22 (Instructions with one register as operand). The set

INSTR-REG :={(in, (Rd)) | Rd ∈ REG ∧ in ∈
{dec, inc, lsr, neg, pop, push, ror}}

contains instructions which take one register as operand.

Definition 23 (Instructions with two register operands). The set

INSTR-TWO-REG :={(in, (Rd,Rr)) | Rd,Rr ∈ REG ∧ in ∈
{adc, add, and, cp, cpc, cpse, eor, mov,
movw, mul, or, sbc, sub}}

contains instructions which take two registers as operand.

Definition 24 (Instructions with special registers as operand). The set

INSTR-REG-SPE :={(ld, (Rd,Rs,m)), (st, (Rs,Rr,m)) | Rs ∈ {X,Y, Z} ∧
Rd,Rr ∈ REG ∧m ∈ {−,+,#}}}

contains instructions which take a special register and a modifier as operand.

Definition 25 (Instructions with special registers and displacement).
The set

INSTR-REG-SPE-DIS :={(ldd, (Rd,Rs, k)), (std, (Rs,Rr, k)) | Rs ∈ {X,Y, Z}∧
Rd,Rr ∈ REG ∧ k ∈ Z}}

contains instructions which take a special register and a modifier as operand.

Definition 26 (Instructions). The set

INSTR :=INSTR-NO-OP ∪ INSTR-CF ∪ INSTR-IMM-REG ∪
INSTR-REG ∪ INSTR-TWO-REG ∪ INSTR-REG-SPE ∪
INSTR-REG-SPE-DIS

contains all possible instructions.1

1 The notation for instructions in “AVR Processors as a Platform for Language-Based
Security” omits the commas and parantheses in instructions for presentation pur-
poses.

5

Instructions are pairs consisting of the instruction name and a possibly empty
list of arguments. The allowed value range of some arguments vary between
instructions. We assume that no invalid arguments are given. This assumption
is safe as a compiler should respect all argument restrictions.

Definition 27 (Instruction execution time). The function t : INSTR → N
assigns every instruction its corresponding execution time in clock cycles.

It is defined as follows:

t(i) =

1 i ∈ {(adc, (Rd,Rr)), (add, (Rd,Rr)), (and, (Rd,Rr)), (andi, (Rd, k)),

(brcc, (epa)), (brcs, (epa)), (breq, (epa)), (brne, (epa)), (clc, ())),

(cli, ())), (cp, (Rd,Rr)), (cpc, (Rd,Rr)), (cpse, (Rd,Rr)),

(cpi, (Rd, k)), (dec, (Rd)), (eor, (Rd,Rr)), (in, (Rd, k)),

(inc, (Rd)), (ld, (Rd,Rs,#)), (ldi, (Rd, k)), (lsr, (Rd)),

(mov, (Rd,Rr)), (movw, (Rd,Rr)), (neg, (Rd)), (or, (Rd,Rr)),

(out, (k,Rr)), (ror, (Rd)), (sbc, (Rd,Rr)), (sbci, (Rd, k)),

(sub, (Rd,Rr)), (subi, (Rd k))}
2 i ∈ {(adiw, (Rd, k)), (ld, (Rd,Rs,+)), (ldd, (Rd,Rs, k)), (mul, (Rd,Rr)),

(pop, (Rd)), (push, (Rr)), (rjmp, (epa)), (sbiw, (Rd, k)),

(st, (Rs, k,−)), (st, (Rs, k,+)), (st, (Rs, k,#)), (std, (Rs,Rr, k))}
3 i ∈ {(jmp, (epa)), (ld, (Rd,Rs,−)), (rcall, (epa))}
4 i ∈ {(call, (epa)), (ret, ())}

.

Given an instruction, the function t returns its execution time. A special con-
stant br := 1 is used for branching instructions. When a branching condition
is satisfied such that a branching is performed, the instruction takes additional
br cycles to be executed. This additional timing is reflected in our small-step
semantics.

Definition 28 (Two word instructions). The predicate twP : EPS → B is
defined as:

twP (ep) :=∃(i, a) ∈ INSTR : P (ep) = (i, a) ∧
i ∈ {call, jmp}

Some instructions are larger than normal, affecting the execution time of cpse.
Those instruction can be identified by the predicate tw.

Definition 29 (Program). A program is a function out of the set

PROG := EPS0 ⇀ INSTR

A program is a mapping from base execution points to instructions. We only
consider programs that satisfy a well-formedness criterion, namely that each
function contains a unique return instruction ret and the arguments to all in-
structions lie within the ranges permitted according to [2]. The execution point

6

arguments to all instructions must lie within the program. Immediate arguments
must lie in the range [0, 63] for all adiw, sbiw, ldd and std instructions and in
the range [0, 255] for all andi, cpi, ldi, sbci, and subi instructions. The special
registers given as arguments to all ldd and std instructions must be from the
set {Y, Z}. Register arguments must be from the set {rn | n ∈ {24, 26, 28, 30}}
for all adiw and sbiw instructions and from the set {rn | n ∈ [16, 31]} for all
andi, cpi, ldi, sbci and subi instructions.

A unique return instruction in each function can be achieved by rewriting
return instructions in branches to jumps to a common return instruction. The
permitted ranges for arguments should be enforced by compilation.

In addition to the well-formedness criterion we require that the immediate
arguments to all in and out instructions are from the set {0x3f, 0x3e, 0x3d}. The
values in this set correspond to the addresses of the status register, spu and spl on
an ATmega microcontroller [1]. The requirement on the arguments of in and out

instructions restricts the support of these instructions. However, the supported
arguments suffice already to cover relevant cryptographic implementations like
the µNaCl implementations of Salsa20, XSalsa20 and Poly1305.

A.3 Big-Step Semantics

Definition 30 (States). The set of possible microcontroller states is given by

STATE := STAT-VAL× MEM-VAL× REG-VAL× STACK-VAL× (EPS ∪ {ε})

Definition 31 (Execution point selector). The function epselect : STATE→
(EPS ∪ {ε}) selects the current execution point from a state. It is defined as fol-
lows

epselect ((sr,m, r, st, ep)) := ep

A state combines all hardware data storages from Section A.1 with the current
execution point. The ε symbol models a terminating state.

Definition 32 (Transition relation). Let P ∈ PROG be a program . The tran-
sition relation ⇓nP⊆ STATE× STATE× N is then given by the rules

(sr,m, r, st, ep)
c−→P (sr′,m′, r′, st′, ep′) (sr′,m′, r′, st′, ep′) ⇓c′P (sr′′,m′′, r′′, st′′, ε)

(sr,m, r, st, ep) ⇓c+c′

P (sr′′,m′′, r′′, st′′, ε)
(Seq)

(sr,m, r, st, ep)
c−→P (sr′,m′, r′, st′, ε)

(sr,m, r, st, ep) ⇓cP (sr′,m′, r′, st′, ε)
(Ter)

where (sr,m, r, st, ep), (sr′,m′, r′, st′, ep′), (sr′′,m′′, r′′, st′′, ε) ∈ STATE and c, c′ ∈
N.

Our transition relation captures a whole execution. If s ⇓cP s′, then an execution
starting in state s terminates in state s′ after running for c clock cycles. Rule
(Seq) models a sequential execution step while rule (Ter) allows termination.

7

A.4 Small-Step Semantics

Our small-step semantics consists of rules of the form s
c−→P s′, representing

that executing a single instruction in state s leads to state s′ and requires c
clock cycles. In the following, we present our full small-step semantics as well
as arguments for the faithfulness of every small-step rule we have modeled with
respect to the official instruction manual [2].

Arithmetic Instructions Arithmetic instructions have in common that they
modify the Z status flag and overwrite the contents of the first register, mostly
named Rd, according to the operation performed.

The instruction manual gives a common boolean formula for the Z status
register flag, with the only exceptions being instructions operating on regis-
ter pairs and instructions cp, cpi, cpc, sbc and sbci. The formula given is
¬r′(Rd)[7] ∧ . . .∧¬r′(Rd)[0]. This formula is captured by the update to the sta-
tus register assignment [Z 7→s r

′(Rd) = 0]. In the condition r′(Rd) = 0, r′ is the
register assignment after execution of the instruction and Rd is the destination
register, where the result is written to. Thus, it adequately checks if the result
is zero and sets the Z bit accordingly.

For the carry flag C the situation looks a little different. Each instruction sets
the C flag according to a different boolean formula. We thus give the formula
found in [2]. This flag is translated directly into the boolean formula used to
update the carry flag’s value sr(C).

Apart from providing faithfulness arguments for common aspects of arith-
metic instructions, we provide detailed arguments for every single small step
semantic rule in the following.

Adc

P (ep) = (adc, (Rd,Rr)) r′ = r[Rd 7→ r(Rd) + r(Rr) + sr(C)]
sr′ = sr[C 7→s cf][Z 7→s r

′(Rd) = 0]
cf = (r(Rd)[7] ∧ r(Rr)[7]) ∨ (r(Rr)[7] ∧ ¬r′(Rd)[7]) ∨ (¬r′(Rd)[7] ∧ r(Rd)[7])

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(adc)

Description The adc instruction takes two registers and sums up their con-
tents, including the carry flag. The sum is stored in the first
passed register Rd.

Status Flags C:
(
r(Rd)[7] ∧ r(Rr)[7]

)
∨

(
r(Rr)[7] ∧ ¬r′(Rd)[7]

)
∨(

¬r′(Rd)[7] ∧ r(Rd)[7]
)

Faithfulness
Effect

The desired effect of addition is captured by the premise r′ =
r[Rd 7→ r(Rd) + r(Rr) + sr(C)]. It performs an addition of the
two passed registers and the carry flag. The result is stored in
register Rd.

8

Add

P (ep) = (add, (Rd,Rr)) r′ = r[Rd 7→ r(Rd) + r(Rr)]
sr′ = sr[C 7→s cf][Z 7→s r

′(Rd) = 0]
cf = (r(Rd)[7] ∧ r(Rr)[7]) ∨ (r(Rr)[7] ∧ ¬r′(Rd)[7]) ∨ (¬r′(Rd)[7] ∧ r(Rd)[7])

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(add)

Description The add instruction takes two registers and sums up their con-
tents. The sum is stored in the first passed register Rd.

Status Flags C:
(
r(Rd)[7] ∧ r(Rr)[7]

)
∨

(
r(Rr)[7] ∧ ¬r′(Rd)[7]

)
∨(

¬r′(Rd)[7] ∧ r(Rd)[7]
)

Faithfulness
Effect

The desired effect of addition is captured by the premise r′ =
r[Rd 7→ r(Rd)+r(Rr)]. It performs an addition of the two passed
registers and stores the result in register Rd.

Adiw

P (ep) = (adiw, (Rd, k)) r′ = r[Rd 7→p regpair-valr(Rd) + k]
sr′ = sr[C 7→s cf][Z 7→s regpair-valr′(Rd) = 0]

cf = (¬regpair-valr′(Rd)[15] ∧ r(regconvert-u(Rd))[7])

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(adiw)

Description The adiw instruction takes a register pair and sums up its con-
tent with a provided immediate value k. The sum is stored in
the first passed register.

Status Flags C:
(
¬regpair-valr′(Rd)[15] ∧ r(regconvert-u(Rd))[7]

)
Faithfulness
Effect

The desired effect of addition is captured by the update to the
registers [Rd 7→p regpair-valr(Rd)+k]. It performs an addition of
the passed register pairs content and the given immediate value
k. The result is stored in the register pair with lower register Rd.
The Z flag is captured by [Z 7→s regpair-valr′(Rd) = 0]. It is
the standard Z flag update, only extended to work with register
pairs.

And

P (ep) = (and, (Rd,Rr)) r′ = r[Rd 7→ r(Rd) ∧ r(Rr)]
sr′ = sr[Z 7→s r

′(Rd) = 0]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(and)

9

Description The and instruction performs a logical and operation between
the given register contents. The result is stored in the first reg-
ister.

Status Flags None, except Z.
Faithfulness
Effect

The logical and effect is captured by [Rd 7→ r(Rd)∧ r(Rr)]. The
first passed register Rd is updated to the ∧ operation with the
contents of Rd and Rr as arguments.

Andi
P (ep) = (andi, (Rd, k)) r′ = r[Rd 7→ r(Rd) ∧ k]

sr′ = sr[Z 7→s r
′(Rd) = 0]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(andi)

Description The andi instruction performs a logical and operation between
the given register content and a given immediate value. The
result is stored in the Rd register.

Status Flags None, except Z.
Faithfulness
Effect

The logical and effect is captured by [Rd 7→ r(Rd) & k]. The
first passed register Rd is updated to the & operation with the
contents of Rd and the immediate k as arguments.

Cp

P (ep) = (cp, (Rd,Rr)) sr′ = sr[Z 7→s r(Rd)− r(Rr) = 0]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r, st, ep+ep 1)

(cp)

Description The cp instruction takes two registers and compares their con-
tents. It sets the Z flag for further usage in e.g. branching oper-
ations. Register contents are not modified.

Status Flags According to [2], a subtraction is performed and if the result is
0, the flag is set.

Faithfulness
Effect

The register content is left untouched, as required by the de-
scription.
To determine the value of Z, a subtraction is performed as in-
structed by the manual. If the result is 0, the flag is set, according
to [Z 7→s r(Rd)− r(Rr) = 0].

10

Cpi

P (ep) = (cpi, (Rd, k)) sr′ = sr[Z 7→s r(Rd) = k][C 7→s |k| > |r(Rd)|]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r, st, ep+ep 1)

(cpi)

Description The cpi instruction takes a registes and compares its content
with a given immediate value. It sets the Z flag for further usage
in e.g. branching operations depending on the outcome of this
comparison. Additionally, the C flag is set depending on the sizes
of compared values. Register contents are not modified.

Status Flags According to [2], a subtraction is performed and if the result is
0, the Z flag is set.
C: “Set if the absolute value of K is larger than the absolute
value of Rd; cleared otherwise.” [2]

Faithfulness
Effect

The register content is left untouched, as required by the de-
scription.
To determine the value of Z, the content of Rd is compared with
the given immediate value k. A subtraction of those values if 0 if
and only if they are equal. Thus, the use update [Z 7→s r(Rd) =
k] correctly handles the Z flag.
According to the supplied explanation of the C flag, it is suffi-
cient to have a look at the absolute values. The explanation is
directly captured by the update [C 7→s |k| > |r(Rd)|].

Cpc

P (ep) = (cpc, (Rd,Rr)) sr′ = sr[Z 7→s r(Rd)− r(Rr)− sr(C) = 0]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r, st, ep+ep 1)

(cpc)

Description The cpc instruction takes two registers and compares their con-
tents, also taking the carry flag into account. It sets the Z flag
for further usage in e.g. branching operations.

Status Flags According to [2], a subtraction is performed and if the result is
0, the flag is set.

Faithfulness
Effect

The register content is left untouched, as required by the de-
scription.
To determine the value of Z, a subtraction, including the value of
the C flag, is performed as instructed by the manual. If the result
is 0, the flag is set, according to [Z 7→s r(Rd)− r(Rr)− sr(C) =
0].

11

Dec

P (ep) = (dec, (Rd)) r′ = r[Rd 7→ r(Rd)− 1] sr′ = sr[Z 7→s r
′(Rd) = 0]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(dec)

Description The dec instruction takes a registers and decreases its content
by one. The result is stored inside the Rd register.

Status Flags None, except Z.
Faithfulness
Effect

The decreasing operation is captured by performing the update
[Rd 7→ r(Rd)− 1]. It directly captures the informal description.

Eor

P (ep) = (eor, (Rd,Rr)) r′ = r[Rd 7→ r(Rd)⊕ r(Rr)]
sr′ = sr[Z 7→s r

′(Rd) = 0]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(eor)

Description The eor instruction takes two registers and performs an
exclusive-or operation on their contents. The result is stored in-
side the Rd register.

Status Flags None, except Z.
Faithfulness
Effect

The exclusive-or operation is captured by updating the regis-
ter’s contents [Rd 7→ r(Rd)⊕ r(Rr)]. Here, ⊕ is the exclusive-or
operator.

Inc

P (ep) = (inc, (Rd)) r′ = r[Rd 7→ r(Rd) + 1] sr′ = sr[Z 7→s r
′(Rd) = 0]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(inc)

Description The inc instruction takes a registers and increases its content
by one. The result is stored inside the Rd register.

Status Flags None, except Z.
Faithfulness
Effect

The increasing operation is captured by performing the update
[Rd 7→ r(Rd) + 1]. It directly captures the informal description.

12

Lsr
P (ep) = (lsr, (Rd)) r′ = r[Rd 7→ r(Rd)≫ 1]
sr′ = sr[Z 7→s r

′(Rd) = 0][C 7→s r(Rd) mod 2 = 1]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(lsr)

Description The lsr instruction takes a register and performs a logical shift
right. The result is stored in Rd.

Status Flags C: r(Rd)[0]
Faithfulness
Effect

The logical shift right operation is captured by updating the
register’s contents [Rd 7→ r(Rd)≫ 1]. The ≫ operator stands
for the logical shift right.
According to the provided formula, the C flag is set if the least
significant bit is set. This is the case, if r(Rd) is odd. Thus, the
updated performed by [C 7→s r(Rd) mod 2 = 1] is correct.

Mul

P (ep) = (mul, (Rd,Rr)) r′ = r[r0 7→p r(Rd) · r(Rr)]
sr′ = sr[C 7→s regpair-valr′(r0)≫ 15 ≥ 1][Z 7→s regpair-valr′(r0) = 0]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(mul)

Description The mul instruction takes two registers and performs a multipli-
cation on their contents. The result is stored in r0 and r1.

Status Flags C : r′(r1)[15] = 1
Z : The result is 0.

Faithfulness
Effect

The exclusive-or operation is captured by updating the regis-
ter’s contents [Rd 7→ r(Rd)⊕ r(Rr)]. Here, ⊕ is the exclusive-or
operator.
The carry flag, according to the given formula, is set when
the 15-th bit of the result is set. The used update [C 7→s

regpair-valr′(r0) ≫ 15 ≥ 1] does this by right shifting the re-
sult by 15. Note, that the value is 16 bit long, such that a right
shift of 15 leaves only the rightmost bit. If this right shifted value
is greater or equal 1, then the 15-th bit must have been set.
Setting the Z flag is done according to the value found in the
result register pair.

13

Neg
P (ep) = (neg, (Rd)) r′ = r[Rd 7→ −r(Rd)]
sr′ = sr[Z 7→s r

′(Rd) = 0][C 7→s ¬(r′(Rd) = 0)]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(neg)

Description The neg instruction takes a registers and negates its value. The
result is stored inside the Rd register.

Status Flags C: “The C Flag will be set in all cases except when the contents
of register Rd after operation is $00.” [2].

Faithfulness
Effect

The negation operation is captured by [Rd 7→ −r(Rd)]. This
is adequate, as performing a two’s complement negation as in-
tended by neg, leads to a simple negation in decimal notation.
C and Z are set according to the result.

Or
P (ep) = (or, (Rd,Rr)) r′ = r[Rd 7→ r(Rd) ∨ r(Rr)]

sr′ = sr[Z 7→s r
′(Rd) = 0]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(or)

Description The or instruction takes two registers and performs an logical
or operation on their contents. The result is stored in Rd.

Status Flags None, except Z.
Faithfulness
Effect

The or operation is captured by updating the register’s contents
[Rd 7→ r(Rd) ∨ r(Rr)].

Ror
P (ep) = (ror, (Rd))

r′ = r[Rd 7→ (r(Rd)≫ 1) + (sr(C)≪ 7)]
sr′ = sr[Z 7→s r

′(Rd) = 0][C 7→s r(Rd) mod 2 = 1]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(ror)

Description The ror instruction takes a register and performs a shift right.
The most significant bit of the result is set to the C flag. The
result is stored in Rd.

Status Flags C: r(Rd)[0]

14

Faithfulness
Effect

The update is performed according to [Rd 7→ (r(Rd) ≫ 1) +
(sr(C)≪ 7)]. Here, (r(Rd)≫ 1) performs the right shift of the
previous contents of register Rd. The carry flag is left shifted to
the right by (sr(C)≪ 7). By adding it, it can be placed directly
to the most significant bit of the result.
According to the provided formula, the C flag is set if the least
significant bit is set. This is the case, if r(Rd) is odd. Thus, the
updated performed by [C 7→s r(Rd) mod 2 = 1] is correct.

Sbc

P (ep) = (sbc, (Rd,Rr)) r′ = r[Rd 7→ r(Rd)− r(Rr)− sr(C)]
sr′ = sr[C 7→s cf][Z 7→s r

′(Rd) = 0 ∧ sr(Z) = 1]
cf = (¬r(Rd)[7] ∧ r(Rr)[7]) ∨ (r(Rr)[7] ∧ r′(Rd)[7]) ∨ (r′(Rd)[7] ∧ ¬r(Rd)[7])

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(sbc)

Description The sbc instruction takes two registers and performs a a sub-
traction on their contents, including the carry flag. The result is
stored in Rd.

Status Flags C:
(
¬r(Rd)[7] ∧ r(Rr)[7]

)
∨

(
r(Rr)[7] ∧ r′(Rd)[7]

)
∨(

r′(Rd)[7] ∧ ¬r(Rd)[7]
)

Faithfulness
Effect

The subtraction operation is captured by [Rd 7→ r(Rd)−r(Rr)−
sr(C)]. The register Rd is updated according to the difference
between the values of Rd, Rr and the C flag.

Sbci

P (ep) = (sbci, (Rd, k)) r′ = r[Rd 7→ r(Rd)− k − sr(C)]
sr′ = sr[C 7→s cf][Z 7→s r

′(Rd) = 0 ∧ sr(Z) = 1]
cf = (¬r(Rd)[7] ∧ k[7]) ∨ (k[7] ∧ r′(Rd)[7]) ∨ (r′(Rd)[7] ∧ ¬r(Rd)[7])

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(sbci)

Description The sbci instruction takes a register Rd and performs a sub-
traction with a given immediate value k and the C flag. The
result is stored in register Rd.

Status Flags Z: ¬r′(Rd)[7] ∧ . . . ∧ ¬r′(Rd)[0] ∧ sr(Z)

C:
(
¬r(Rd)[7] ∧ k[7]

)
∨
(
k[7] ∧ r′(Rd)[7]

)
∨
(
r′(Rd)[7] ∧ ¬r(Rd)[7]

)

15

Faithfulness
Effect

The subtraction operation is captured by [Rd 7→ r(Rd) − k −
sr(C)]. The register Rd is updated according to the difference
between the values of the register Rd, the given immediate value
k and the carry flag C.

Sub

P (ep) = (sub, (Rd,Rr)) r′ = r[Rd 7→ r(Rd)− r(Rr)]
sr′ = sr[C 7→s cf][Z 7→s r

′(Rd) = 0]
cf = (¬r(Rd)[7] ∧ r(Rr)[7]) ∨ (r(Rr)[7] ∧ r′(Rd)[7]) ∨ (r′(Rd)[7] ∧ ¬r(Rd)[7])

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(sub)

Description The sub instruction takes two registers and performs a subtrac-
tion on their contents. The result is stored in register Rd.

Status Flags C:
(
¬r(Rd)[7] ∧ r(Rr)[7]

)
∨

(
r(Rr)[7] ∧ r′(Rd)[7]

)
∨(

r′(Rd)[7] ∧ ¬r(Rd)[7]
)

Faithfulness
Effect

The subtraction operation is captured by [Rd 7→ r(Rd)−r(Rr)].
The register Rd is updated according to the difference between
the values of registers Rd and Rr.

Subi

P (ep) = (subi, (Rd, k)) r′ = r[Rd 7→ r(Rd)− k]
sr′ = sr[C 7→s cf][Z 7→s r

′(Rd) = 0]
cf = (¬r(Rd)[7] ∧ k[7]) ∨ (k[7] ∧ r′(Rd)[7]) ∨ (r′(Rd)[7] ∧ ¬r(Rd)[7])

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(subi)

Description The subi instruction takes a register Rd and performs a sub-
traction with a given immediate value k. The result is stored in
register Rd.

Status Flags C:
(
¬r(Rd)[7] ∧ k[7]

)
∨
(
k[7] ∧ r′(Rd)[7]

)
∨
(
r′(Rd)[7] ∧ ¬r(Rd)[7]

)
Faithfulness
Effect

The subtraction operation is captured by [Rd 7→ r(Rd)−k]. The
register Rd is updated according to the difference between the
values of the register Rd and the given immediate value k.

16

Sbiw

P (ep) = (sbiw, (Rd, k)) r′ = r[Rd 7→p regpair-valr(Rd)− k]
sr′ = sr[C 7→s cf][Z 7→s regpair-valr′(Rd) = 0]

cf = (regpair-valr′(Rd)[15] ∧ ¬r(regconvert-u(Rd))[7])

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r′, st, ep+ep 1)

(sbiw)

Description The sbiw instruction takes a register pair Rd and performs a
subtraction with a given immediate value k. The result is stored
in register pair Rd.

Status Flags C:
(
regpair-valr′(Rd)[15] ∧ ¬r(regconvert-u(Rd))[7]

)
Faithfulness
Effect

The subtraction operation is captured by [Rd 7→p

regpair-valr(Rd) − k]. The register pair Rd is updated ac-
cording to the difference between the values of the register pair
Rd and the given immediate value k.
The Z flag is captured by [Z 7→s regpair-valr′(Rd) = 0]. It is
the standard Z flag update, only extended to work with register
pairs.

Branching Instructions There are two rules for every branching instruction.
One rule handles a branching where the condition for performing a branching
operation is satisfied. Such rules are suffixed with -t. A second rule is in place to
handle a situation where the branching condition is not satisfied and the program
shall continue with the normal control flow. Such rules are suffixed with -f.

In general, the syntax of a branching instruction is (instr, (epa)). If the
intended branching condition is satisfied, the next execution point is modified
by rules suffixed with -t. The rule also takes care of extra time required by
performing a branching operation. This extra time is represented by the br

constant. It has been defined to equal one clock cycle. It is added to the usual
execution time modeled by t(P (ep)). If the intended branching condition is not
satisfied, the execution point is shifted forward as usual by applying +ep1 by the
rules suffixed with -f.

A branching operation does not modify registers, memory or status registers.
Thus, the functions used to store values of those data storages are not modified.
This is captured by using the same assignment functions for those data storages
in conclusions of semantic rules.

According to the instruction manual, branching as well as control flow in-
structions set the next execution point to be their argument, incremented by
one (e.g. [2, p. 25]). We observe a difference between this description in the in-
struction manual and actually disassembled code. It is for example not possible,
to jump to address 0 when the description as in the instruction manual is used.
Our small-step semantics use our observed version of control flow behavior.

We provide detailed faithfulness arguments for every single small step seman-
tic rule in the following.

17

brcc

P (ep) = (brcc, (epa)) sr(C) = 0 ep = (ep0, fs) ep′ = (epa, fs)

(sr,m, r, st, ep)
t(P (ep))+br−−−−−−−−→P (sr,m, r, st, ep′)

(brcc-t)

P (ep) = (brcc, (epa)) sr(C) 6= 0

(sr,m, r, ep)
t(P (ep))−−−−−→P (sr,m, r, ep+ep 1)

(brcc-f)

Description The brcc instruction performs a branching, if the carry flag C
is cleared.

Status Flags No flags are modified.
Faithfulness
Effect

A comparison between the carry flag C and 0 is performed by
sr(C) = 0. If the carry flag has 0 as value, it is cleared and
thus a branching is performed. The rule (brcc-t) is applicable
in this case and sets the next execution point to the given one,
leaving the call stack unmodified.. If the carry flag is not set,
the rule (brcc-f) is applicable, as it tests for inequality with 0. It
continues with the normal control flow.

brcs

P (ep) = (brcs, (epa)) sr(C) 6= 0 ep = (ep0, fs) ep′ = (epa, fs)

(sr,m, r, st, ep)
t(P (ep))+br−−−−−−−−→P (sr,m, r, st, ep′)

(brcs-t)

P (ep) = (brcs, (epa)) sr(C) = 0

(sr,m, r, ep)
t(P (ep))−−−−−→P (sr,m, r, ep+ep 1)

(brcs-f)

Description The brcs instruction performs a branching, if the carry flag C
is set.

Status Flags No flags are modified.
Faithfulness
Effect

A comparison between the carry flag C and 0 is performed by
sr(C) 6= 0. If the carry flag is unequal to 0, it is set and thus
a branching is performed. The rule (brcs-t) is applicable in this
case and sets the next execution point to the given one, leaving
the call stack unmodified. If the carry flag is set, the rule (brcs-f)
is applicable, as it tests for equality with 0. It continues with the
normal control flow.

18

breq

P (ep) = (breq, (epa)) sr(Z) = 1 ep = (ep0, fs) ep′ = (epa, fs)

(sr,m, r, st, ep)
t(P (ep))+br−−−−−−−−→P (sr,m, r, st, ep′)

(breq-t)

P (ep) = (breq, (epa)) sr(Z) 6= 1

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r, st, ep+ep 1)

(breq-f)

Description The breq instruction performs a branching, if the zero flag Z is
set.

Status Flags No flags are modified.
Faithfulness
Effect

A comparison between the zero flag Z and 1 is performed by
sr(Z) = 1. Upon equality, (breq-t) is applicable and sets the
next execution point to the given one, leaving the call stack
unmodified. (breq-f) is applicable otherwise and continues with
the normal control flow.

brne

P (ep) = (brne, (epa)) sr(Z) 6= 1 ep = (ep0, fs) ep′ = (epa, fs)

(sr,m, r, st, ep)
t(P (ep))+br−−−−−−−−→P (sr,m, r, st, ep′)

(brne-t)

P (ep) = (brne, (epa)) sr(Z) = 1

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r, st, ep+ep 1)

(brne-f)

Description The brne instruction performs a branching, if the zero flag Z is
cleared.

Status Flags No flags are modified.
Faithfulness
Effect

A comparison between the zero flag Z and 1 is performed by
sr(Z) = 1. Upon inequality, (breq-t) is applicable and sets the
next execution point to the given one, leaving the call stack
unmodified. (breq-f) is applicable otherwise and continues with
the normal control flow.

cpse

P (ep) = (cpse, (Rd,Rr)) r(Rd) = r(Rr) ¬twP (ep+ep 1)

(sr,m, r, st, ep)
t(P (ep))+br−−−−−−−−→P (sr,m, r, st, ep+ep 2)

(cpse-t)

19

P (ep) = (cpse, (Rd,Rr)) r(Rd) = r(Rr) twP (ep+ep 1)

(sr,m, r, st, ep)
t(P (ep))+2br−−−−−−−−→P (sr,m, r, st, ep+ep 2)

(cpse-t-2w)

P (ep) = (cpse, (Rd,Rr)) r(Rd) 6= r(Rr)

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r, st, ep+ep 1)

(cpse-f)

Description In comparison to the other branching operations, cpse does not
take a branching target as argument. It rather takes two registers
and compares their contents. If the contents are equal, the next
instruction is skipped. Depending on the skipped instruction’s
length, execution takes additional 1 or 2 cycles.

Status Flags No flags are modified.
Faithfulness
Effect

A comparison is performed by r(Rd) = r(Rr). In rule (cpse-t)
where this comparison has to be satisfied in order to be appli-
cable, it is skipped to the next instruction by adding 2 to the
current execution point ep. This skips the next instruction. In
the case of inequality in rule (cpse-f), the control flow continues
as normal.
Timing is correctly captured, as (cpse-t) checks for the next in-
struction’s length. If it is a two word instruction, (cpse-t-2w) has
to be applied which takes the double br additionally to execute.

Control Flow Instructions All control flow instructions have in common that
they manipulate the next execution point and set it to their argument value.

There are two types of control flow instructions that have been considered.
The first type are function calls. The currently executed function is left and a new
function execution is started with the given current data storage values. Once
the function call is terminated, the execution point is set back to the execution
point represented by the call, shifted forward by one. The second type are jumps
that do only manipulate the next executed instruction. It is not returned to the
jump source once the execution has terminated.

Control flow instructions do not modify register or status register contents.
We provide detailed faithfulness arguments for every single small step seman-

tic rule in the following.

call & rcall

P (ep) = (call, (f ′, a′)) ep = (f, a, l) ep′ = (f ′, a′, (f, a) +ep 1 :: l)

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r, st, ep′)

(call)

P (ep) = (rcall, (f ′, a′)) ep = (f, a, l) ep′ = (f ′, a′, (f, a) +ep 1 :: l)

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r, st, ep′)

(rcall)

20

Description A call instruction halts the execution of the currently executed
function, starts a new function execution and after termination
of the called function, the execution of the function before the
call is resumed.

Status Flags No flags are modified.
Faithfulness
Effect

Rule (call) modifies the next execution pint. Its sets its function
and address component according to its given argument. The
usually next execution point is added on the call stack, such
that a following ret instruction can find where to jump back to.
The rcall is different to call only in terms of a limited argu-
ment space. Not the whole program memory is reachable by a
rcall instruction. Not taking this into account in the rule mod-
eling is faithful according to our assumptions. Thus, the same
arguments as in the call instruction apply to rcall instruction.

jmp & rjmp

P (ep) = (jmp, (epa)) ep = (ep0, fs) ep′ = (epa, fs)

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r, st, ep′)

(jmp)

P (ep) = (rjmp, (epa)) ep = (ep0, fs) ep′ = (epa, fs)

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r, st, ep′)

(rjmp)

Description A jmp instruction modifies the control flow. The next instruction
that is executed is set to the given argument epa.

Status Flags No flags are modified.
Faithfulness
Effect

The instruction takes an argument epa. This argument is set
as the next execution point, performing a modification in the
control flow as required. The call stack is left intact.
The rjmp is different to jmp only in terms of a limited argument
space. Not the whole program memory is reachable by a rjmp

instruction. Not taking this into account in the rule modeling is
faithful according to our assumptions. Thus, the same arguments
as in the jmp instruction apply to rjmp instruction.

Stack Instructions The stack is direct part of the memory. The stack pointer
register spl and spu mark the beginning of the stack inside the memory.

We discuss the faithfulness of push and pop instructions which handle reading
and writing to the stack in detail in the following.

21

push
P (ep) = (push, (Rd)) st′ = r(Rd) :: st

r′ = r[spl 7→p regpair-valr(spl)− 1]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r′, st′, ep+ep 1)

(push)

Description The push instruction takes a register as argument. Its content is
stored at the memory address the stack pointer currently points
at. Afterwards, the stack pointer is decremented by 1.

Status Flags No flags are modified.
Faithfulness
Effect

There are two steps that have to be performed.
At first, the value of register Rd has to be stored on the
stack. This is done by modifying the memory according to
[regpair-valr(spl) 7→ r(Rd)]. The memory address the stack
pointer is pointing at, represented by regpair-valr(spl), is up-
dated to the contents of register Rd.
In a second step, the stack pointer is decremented by 1. This is
done by updating the register’s contents according to [spl 7→p

regpair-valr(spl)− 1]. The register pair spl is decremented by 1.
All other components of the state, except the execution point,
are left unmodified.

pop

P (ep) = (pop, (Rd)) st = x :: xs st′ = xs
r′′ = r[Rd 7→ x] r′ = r′′[spl 7→p regpair-valr(spl) + 1]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r′, st′, ep+ep 1)

(pop)

Description The pop instruction increments the stack pointer by 1. Af-
terwards, it reads the topmost entry using the updated stack
pointer and stores its content in the given Rd register.

Status Flags No flags are modified.
Faithfulness
Effect

The topmost entry is read and its content stored in reg-
ister Rd. This is done by the assignment r′′ = r[Rd 7→
m(regpair-valr(spl))]. Reading from the memory is performed by
m(regpair-valr(spl)) which concatenates the stack pointer regis-
ter pair and reads its value from the register assignment r. The
result of this read is stored in register Rd.
The stack pointer is incremented by the update [spl 7→p

regpair-valr(spl)+1]. The stack pointer register pair, represented
by spl, is increased by one.
All other components of the state, except the execution point,
are left unmodified.

22

Memory Instructions Instructions for reading from and writing into memory
are fairly similar when it comes to their inner workings. The ld and st instruc-
tions for reading and writing, respectively, take two registers and a modifier.
One of the registers holds the memory address that is read from or written to,
the other holds the data that has to be written or serves as destination for the
read data. The modifier allows the modification of the memory address that has
been used. Modifier # leaves the memory address unchanged, + post-increments
it, and − pre-decrements it. Instructions ldd and std allow the passing of an
immediate value to be added when determining the memory address, instead of
a modifier.

We provide detailed faithfulness arguments for every single small step seman-
tic rule in the following.

Ld

P (ep) = (ld, (Rd,Rr,#)) r′ = r[Rd 7→ m(regpair-valr(Rr))]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r′, st, epa+ep 1)

(ld-nm)

P (ep) = (ld, (Rd,Rr,+))
r′′ = r[Rd 7→ m(regpair-valr(Rr))]
r′ = r′′[Rr 7→p regpair-valr′′(Rr) + 1]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r′, st, epa+ep 1)

(ld-post-inc)

P (ep) = (ld, (Rd,Rr,−))
r′′ = r[Rr 7→p regpair-valr(Rr)− 1]
r′ = r′′[Rd 7→ m(regpair-valr′′(Rr))]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r′, st, epa+ep 1)

(ld-pre-dec)

Description The ld instruction takes two registers and a modifier. The first
register Rd is the destination register for the read value. The
second register Rr is treated as pair and represents the memory
address that is being read from. It is also the register that is
being influenced by modifiers.

Status Flags No flags are modified.

23

Faithfulness
Effect

In all instructions, reading from memory and writing to register
Rd is handled by the update [Rd 7→ m(regpair-valr(Rr))]. If
a pre-decrement is performed, as in (ld-pre-dec), the modified
register assignment r′′ is used to read the memory address.
Rule (ld-nm) handles the # modifier that does not modify the
Rr register.
Rule (ld-post-inc) handles the + modifier that performs a post-
increment of Rr. This is performed by the update r′′[Rr 7→p

regpair-valr′′(Rr) + 1], where r′′ is the register assignment after
the memory has been read.
Rule (ld-pre-dec) handles the − modifier that performs a pre-
decrement of Rr. It is performed by the assignment r′′ =
r[Rr 7→p regpair-valr(Rr) − 1]. When reading from the mem-
ory, the register assignment r′′ is used to get the memory ad-
dress that is being read from, correctly capturing that it is a
pre-decrement.

St

P (ep) = (st, (Rd,Rr,#)) m′ = m[regpair-valr(Rd) 7→ r(Rr)]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m′, r, st, epa+ep 1)

(st-nm)

P (ep) = (st, (Rd,Rr,+))
m′ = m[regpair-valr(Rd) 7→ r(Rr)]
r′ = r[Rd 7→p regpair-valr(Rd) + 1]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m′, r′, st, epa+ep 1)

(st-post-inc)

P (ep) = (st, (Rd,Rr,−))
r′ = r[Rd 7→p regpair-valr(Rd)− 1]
m′ = m[regpair-valr′(Rd) 7→ r(Rr)]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m′, r′, st, epa+ep 1)

(st-pre-dec)

Description The st instruction takes two registers and a modifier. The first
register Rd is treated as pair and used as memory address that
is being written to. It is also the register that is being influenced
by modifiers. The second register Rr contains the value that is
being written into the memory.

Status Flags No flags are modified.

24

Faithfulness
Effect

In all instructions, reading from memory and writing to register
Rd is handled by the update [regpair-valr(Rd) 7→ r(Rr)] to m
The current content of register Rr is read by r(Rr) and is stored
in the memory at the address represented by the register pair in
Rd. If a pre-decrement is performed, as in (st-pre-dec), the mod-
ified register assignment r′ is used to read the memory address
which holds the memory address after the decrement operation.
Rule (st-nm) handles the # modifier that does not modify the
Rr register.
Rule (st-post-inc) handles the + modifier that performs a post-
increment of Rd. This is performed by the update r[Rd 7→p

regpair-valr(Rd) + 1].
Rule (st-pre-dec) handles the − modifier that performs a pre-
decrement of Rd. It is performed by the update [Rd 7→p

regpair-valr(Rd)− 1]. When writing to the memory, the register
assignment r′ is used to get the memory address that is being
written to, correctly capturing that it is a pre-decrement.

Ldd

P (ep) = (ldd, (Rd,Rr, k)) r′ = r[Rd 7→ m(regpair-valr(Rr) + k)]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r′, st, epa+ep 1)

(ldd)

Description The ldd instruction takes two registers and an immediate value.
The first register Rd is the destination register for the read value.
The value is being read from the memory. The memory address
that is being read is determined by the register pair represented
by Rr and the immediate value k.

Status Flags No flags are modified.
Faithfulness
Effect

Reading from memory and storing in Rd is performed by the up-
date [Rd 7→ m(regpair-valr(Rr) + k)] to the registers. The mem-
ory address that is being read is determined by regpair-valr(Rr)+
k. This correctly captures the base address read from register
pair Rr, summed up with the given immediate value.
Other components of the state are not modified.

Std

P (ep) = (std, (Rd,Rr, k)) m′ = m[regpair-valr(Rd) + k 7→ r(Rr)]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m′, r, st, epa+ep 1)

(std)

25

Description The std instruction takes two registers and an immediate value.
The first register Rd represents the register pair that serves as
base address. To determine the memory address to which the
value in Rr is stored, the base address is summed up with the
given immediate value k.

Status Flags No flags are modified.
Faithfulness
Effect

Writing to memory is performed by the update
[regpair-valr(Rd) + k 7→ r(Rr)] to m. The address that is
being written to is calculated by regpair-valr(Rd) + k. The value
of the register pair represented by Rd is added with k, correctly
capturing the memory address calculation. The contents of this
memory address is replaced with the contents of register Rr.
Other components of the state are not modified.

Input/Output Instructions The in and out instructions are to read and
write data from some special locations such as ports on a microcontroller or
specific configuration registers. In our setting, they are used for direct access to
the stack pointer and the status register flags.

Both instructions take a register that is either destination or source. In ad-
dition, an identifier for the location is taken. Exact values for those identifiers
are not to be found in [2]. We rely on the register summary in [1, p. 402].

Considered locations are:

– 0x3d: Contents of spl.
– 0x3e: Contents of spu.
– 0x3f: A combination of all status registers, where bit 0 is the C flag and bit

1 is the Z flag.

We provide detailed faithfulness arguments for every single small step seman-
tic rule in the following.

In
P (ep) = (in, (Rd, 0x3d)) r′ = r[Rd 7→ r(spl)]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r′, st, ep+ep 1)

(in-sp-l)

P (ep) = (in, (Rd, 0x3e)) r′ = r[Rd 7→ r(spu)]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r′, st, ep+ep 1)

(in-sp-u)

P (ep) = (in, (Rd, 0x3f)) r′ = r[Rd 7→ sr(C) + (sr(Z)≪ 1)]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r′, st, ep+ep 1)

(in-stat)

Description The in instruction takes a register Rd and an immediate value
representing a special location. Register Rd shall be set accord-
ing to the value found in the special location.

26

Status Flags No flags are modified.
Faithfulness
Effect

All rules have in common, that Rd is updated according to
[Rd 7→ x] where x is set according to the given identifier.
Values for x are:

– 0x3d: It is set to r(spl), as required by the identifier.
– 0x3e: It is set to r(spu), as required by the identifier.
– 0x3f: The leftmost bit is set to the carry flag C. The fol-

lowing bit has to be set to the zero flag Z. This is done by
left-shifting sr(Z) by one and adding it to the carry flag.

Out
P (ep) = (out, (0x3d, Rr)) r′ = r[spl 7→ r(Rr)]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r′, st, ep+ep 1)

(out-sp-l)

P (ep) = (out, (0x3e, Rr)) r′ = r[spu 7→ r(Rr)]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r′, st, ep+ep 1)

(out-sp-u)

P (ep) = (out, (0x3f, Rr))
sr′ = sr[C 7→ r(Rr)[0]][Z 7→ r(Rr)[1]]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r, st, ep+ep 1)

(out-stat)

Description The out instruction takes a register Rr and an immediate value
representing a special location. The special location’s value is set
to the content of register Rr.

Status Flags No flags are modified.
Faithfulness
Effect

Rules (out-sp-l) and (out-sp-u) straightforwardly set the contents
of the stack pointer registers to the value of the given register
by updating the register assignment according to [spl 7→ r(Rr)]
and [spu 7→ r(Rr)], respectively.
Rule (out-stat) shall update flags Z and C to the contents of the
bits 1 and 0 of Rr. The idea behind the rules is to force all other
bits to 0 and shift it according to the position.

27

Miscellaneous Instructions There are a few instructions missing for whose
semantic rules we have not yet introduced and given faithfulness arguments for.
They are handled in the following.

Mov & Movw

P (ep) = (mov, (Rd,Rr)) r′ = r[Rd 7→ r(Rr)]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r′, st, ep+ep 1)

(mov)

P (ep) = (movw, (Rd,Rr)) r′ = r[Rd 7→p regpair-valr(Rr)]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r′, st, ep+ep 1)

(movw)

Description The mov and movw instructions move a value from the first regis-
ter (pair) Rd to the second register (pair) Rr. It does not modify
and status register flags.

Status Flags No flags are modified.
Faithfulness
Effect

Moving contents of registers is done straightforward by the up-
date [Rd 7→ r(Rr)] to r. The register Rd is overwritten by the
contents of Rr, as required by the description.
For words, pair updating and reading is used.
Other components of the state are not modified.

Ldi
P (ep) = (ldi, (Rd, k)) r′ = r[Rd 7→ k]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r′, st, ep+ep 1)

(ldi)

Description The ldi instruction takes an immediate value k and a register
Rd as arguments. The register Rd is set to the value of k.

Status Flags No flags are modified.
Faithfulness
Effect

Setting the register Rd to contain k is done straightforward by
the assignment r′ = r[Rd 7→ k].
Other components of the state are not modified.

Clc
P (ep) = (clc, ()) sr′ = sr[C 7→ 0]

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr′,m, r, st, ep+ep 1)

(clc)

28

Description The clc instruction takes no arguments. It resets the carry flag
C to 0.

Status Flags C: 0
Faithfulness
Effect

The C flag is statically set to 0 by performing the assignment
sr′ = sr[C 7→ 0].

Cli
P (ep) = (cli, ())

(sr,m, r, st, ep)
t(P (ep))−−−−−→P (sr,m, r, st, ep+ep 1)

(cli)

Description The cli instruction takes no arguments. It resets the interrupt
flag I to 0.

Status Flags No flags are modified (the interrupt flag is out of scope in this
work).

Faithfulness
Effect

No effect (the interrupt flag is out of scope in this work).

29

B Complete Definition of Type System

B.1 Security Property

We use security domains H and L to denote confidential and public data, re-
spectively. The security lattice allows L v H, where t represents the least upper
bound operation.

Definition 33 (Register domain assignment). A register domain assign-
ment is a function out of the set

REG-DA := REG→ {L,H}

Definition 34 (Status register domain assignment). A status register do-
main assignment is a function out of the set

STAT-DA := {C,Z} → {L,H}

Definition 35 (Flows to relation for domain assignments). Let A be a
set. The relation v⊆ (A→ {L,H})2, is given by

(a v b)⇔ ∀x ∈ dom(a) : a(x) v b(x)

Confidentiality of registers and status registers are expressed by domain assign-
ments mapping identifiers for (status) registers to security domains.

Definition 36 (Stack domain assignment). The set of possible stack domain
assignments is given by

STACK-DA := {L,H}∗

The confidentiality of values on the stack are modeled by a list of security do-
mains that correspond to elements on the stack.

Definition 37 (Indistinguishability of stack assignments). The indistin-
guishability relation of stack assignments 'sda⊆ STACK-VAL × STACK-VAL for
sda ∈ STACK-DA is the smallest relation, such that the following properties are
satisfied:

1. xs '[] zs
2. [] 'ys []
3. xs 'ys zs⇒ x :: xs 'L::ys x :: zs
4. xs 'ys zs⇒ x :: xs 'H::ys z :: zs
5. (xs 'ys zs ∧ ys ∈ {H}∗)⇒ xs 'H::ys z :: zs
6. (xs 'ys zs ∧ ys ∈ {H}∗)⇒ x :: xs 'H::ys zs

for all xs, zs ∈ STACK-VAL, x, z ∈ VAL8 and ys ∈ STACK-DA.

Definition 38 (Indistinguishability of functions). Let A and B be sets,
f, f ′ : A → B be two functions and ass : A → {L,H} be a domain assignment.
Functions f and f ′ are indistinguishable with respect to ass, written f ≈ass f

′,
if and only if

∀x ∈ dom(ass) : ass(x) = L ⇒ f(x) = f ′(x)

30

Definition 39 (Indistinguishability of states). Let (sr,m, r, st, ep), (sr′,m′, r′, st′, ep′) ∈
STATE be two states. Let srda ∈ STAT-DA, md ∈ {L,H}, rda ∈ REG-DA and
sda ∈ STACK-DA be domain assignments. The states are indistinguishable with
respect to srda, md, rda and sda, written

(sr,m, r, st, ep) ≈sda,md,rda,srda (sr′,m′, r′, st′, ep′)

if and only if sr ≈srda sr
′, md = L ⇒ m = m′ r ≈rda r

′, and st 'sda st
′.

We express capabilities of the attacker through an indistinguishability relation
on states. He is allowed to observe all L annotated data. Indistinguishability of
stack assignments also allows him to probe for the height of the stack.

Definition 40 (TSNI). Let P ∈ PROG be a program. Program P satisfies TSNI
starting from eps ∈ EPS with initial domain assignments srda ∈ STAT-DA, md ∈
{L,H}, rda ∈ REG-DA and sda ∈ STACK-DA and finishing domain assignments
srda′ ∈ STAT-DA, md′ ∈ {L,H}, rda′ ∈ REG-DA and sda′ ∈ STACK-DA if and only
if

∀s0, s′0,s1, s′1 ∈ STATE : ∀n, n′ ∈ N :

(1) epselect(s0) = eps ∧ epselect(s′0) = eps ∧
(2) s0 ≈sda,md,rda,srda s

′
0 ∧

(3) (s0, s1) ∈⇓nP ∧ (s′0, s
′
1) ∈⇓n

′

P

(4) ⇒ s1 ≈sda′ ,md′ ,rda′ ,srda′ s
′
1 ∧ n = n′

Our security property requires two terminating executions starting in indistin-
guishable states to terminate in still indistinguishable states after the same
amount of clock cycles. Thus, the attacker is additionally able to observe the
exact required execution time.

B.2 Used Concepts in Type System

Definition 41 (Lift). The function lift : (STACK-DA × {L,H}) → STACK-DA is
recursively defined as follows:

lift([], d) := []

lift(x :: xs, d) := (x t d) :: lift(xs, d)

The lift function raises security domains in a given list to a least upper bound.

Definition 42 (Successor relation). Let P be a program. The successor re-
lation P⊆ EPS × EPS is defined such that for all ep1, ep2 ∈ EPS it holds that
ep1 P ep2 if and only if

∃s1, s2 ∈ STATE : ∃c ∈ N : s1
c−→P s2 ∧ epselect(s1) = ep1 ∧ epselect(s2) = ep2

31

Definition 43 (Control dependence regions). Let P be a program. The
functions region1P , region

2
P : EPS → P(EPS) and junP : EPS ⇀ EPS are a safe

over approximation of the program’s control dependence regions if they satisfy
the safe over approximation properties (SOAPs):

SOAP1 For all execution points ep1, ep2, ep3 ∈ EPS such that ep1 P ep2,
ep1 P ep3 and ep2 6= ep3 exactly one of the following holds

– ep2 ∈ region1P (ep1) and ep3 ∈ region2P (ep1)
– ep2 ∈ region2P (ep1) and ep3 ∈ region1P (ep1)
– ep2 ∈ region1P (ep1) and junP (ep1) = ep3
– ep3 ∈ region1P (ep1) and junP (ep1) = ep2

SOAP2 For all execution points ep ∈ EPS it holds that region1P (ep)∩region2P (ep) =
∅.

SOAP3 For all execution points ep1, ep2, ep3 ∈ EPS, for all i ∈ {1, 2},
if ep2 ∈ regioniP (ep1) and ep2 P ep3, then either ep3 ∈ regioniP (ep1) or
junP (ep1) = ep3.

SOAP4 For all execution points ep1, ep2 ∈ EPS, for all i ∈ {1, 2}, if ep2 ∈
regioniP (ep1) and there exists no ep3 ∈ EPS such that ep2 P ep3, then junP (ep1)
is undefined.

The function regionP : EPS→ P(EPS) is given by

regionP (ep) := region1P (ep) ∪ region2P (ep)

Definition 44 (Then and else regions). Let P ∈ PROG be a program. The
functions regionthenP , regionelseP : EPS→ P(EPS) are defined as follows

regionthenP (ep) :=

{
region1P (ep) if the branch target at ep is in region1P (ep)

region2P (ep) else

regionelseP (ep) :=

{
region2P (ep) if the branch target at ep is in region1P (ep)

region1P (ep) else

Definition 45 (Security environment). A security environment is a func-
tion se : EPS → {L,H}. A security environment se is smaller than another
security environment se′ if and only if se v se′.

Control dependence regions model dependence between execution points. If ep1 ∈
regionP (ep2), then the execution of ep1 depends on the outcome of a branching
of ep2. As we care for the branches separately to determine their execution time
in the following, they are separated into “then” and “else” branches. If then ep2
operates on high data, the security environment of ep1 has to be set to high.
In the following we only consider functions regionthenP and regionelseP that satisfy
the SOAPs.

Definition 46 (Branchtime). Let P ∈ PROG be a program. The functions
branchtimerP : EPS→ N for r ∈ {then, else} are defined as follows

32

branchtimerP (ep) :=
∑

epi∈region
r
P (ep)

epi 6=ep

(
t(P (epi))− branchtimethenP (epi)

)

The branchtimerP function calculates the execution time a branch requires. It is
the key to verify the absence of timing variations in high branchings.

Definition 47 (Loop detection). Let P ∈ PROG be a program. The predicate
loopP : EPS→ B is defined as

loopP (ep) := ∃ep′ ∈ regionP (ep) : ep +
P ep′ is a back edge

The predicate loop allows the detection of loops inside the control flow of a
program. Later on, this predicate is used to forbid loops where the number of
iteration depends on high data.

Definition 48 (Reachability). Let P ∈ PROG be a program. Then the function
reachableP : EPS→ P(EPS) is defined by

reachableP (ep) := {ep′ ∈ EPS | ep +
P ep′}

B.3 Typable Programs

We use typing judgments of the form

P, regionthenP , regionelseP , se, epi :

(sdaepi , mdepi , rdaepi , srdaepi) ` (sdaepj , mdepj , rdaepj , srdaepj)

that relates domain assignments (sdaepi , mdepi , rdaepi , srdaepi) before the ex-
ecution of instruction P (epi) to domain assignments (sdaepj , mdepj , rdaepj , srdaepj)
after its execution.

In the following, we use the abbreviation

P, · · · , epi : (sdaepi , mdepi , rdaepi , srdaepi) ` (sdaepj , mdepj , rdaepj , srdaepj)

instead of the full judgment.

Definition 49 (Typable programs). Let P ∈ PROG be a program with control
dependence regions regionthenP , regionelseP . The program is typable with starting
execution point eps, initial domain assignments sdaeps , mdeps , rdaeps , srdaeps ,
final domain assignments sdaepfinal

, mdepfinal
, rdaepfinal

, srdaepfinal
, and secu-

rity environment se, if and only if for every ep′ ∈ reachableP (eps) there exist
domain assignments sdaep′ , mdep′ , rdaep′ , srdaep′ such that

33

1. for all epi, epj ∈ reachableP (eps) ∪ {eps}, if epi P epj then there exists
sda′epj , md′epj , rda′epj , srda′epj such that sda′epj vs sdaepj , md′epj v mdepj ,

rda′epj v rdaepj , srda′epj v srdaepj and the judgment

P, · · · , epi : (sdaepi , mdepi , rdaepi , srdaepi) ` (sda′epj , md
′
epj
, rda′epj , srda

′
epj

)

is derivable, and
2. for all epi ∈ reachableP (eps)∪{eps} if there exists no epj ∈ reachableP (eps)

such that epi P epj then the judgment

P, · · · , epi : (sdaepi , mdepi , rdaepi , srdaepi) ` (sdaepi , mdepi , rdaepi , srdaepi)

is derivable and sdaepi vs sdaepfinal
, mdepi v mdepfinal

, rdaepi v rdaepfinal
,

srdaepi v srdaepfinal
.

A program is typable if intermediate domain assignments can be assigned
to all intermediate states in the program execution. The intermediate domain
assignments must allow the derivation of a typing judgment that relates the
intermediate domain assignments of an execution point to domain assignments
that are at most as restrictive as the intermediate domain assignments of all
successors of the execution point.

B.4 Typing Rules

∃instr ∈ {call, jmp, rcall, rjmp} : P (ep) = (instr, (epa))

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda, srda)
(t-cf)

Figure 1: Typing rules for control flow instructions.

P (ep) = (ret, ())

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda, srda)
(t-ret)

P (ep) = (clc, ()) srda′ = srda[C 7→ se(ep)]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda)
(t-clc)

P (ep) = (cli, ())

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda, srda)
(t-cli)

Figure 2: Typing rules for instructions without arguments.

34

∃instr ∈ {breq, brne} : P (ep) = (instr, (epa))
se(ep) t srda(Z) = L

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda, srda)
(t-brZ-l)

∃instr ∈ {breq, brne} : P (ep) = (instr, (epa))
¬loopP (ep) se(ep) t srda(Z) = H se(ep) = H
∀ep′ ∈ regionP (ep) : se(ep

′) = H sda′ = lift(sda,H)
branchtimethenP (ep) + br = branchtimeelseP (ep)

P, · · · , ep : (sda, md, rda, srda) ` (sda′, md, rda, srda)
(t-brZ-h)

∃instr ∈ {brcc, brcs} : P (ep) = (instr, (epa))
se(ep) t srda(C) = L

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda, srda)
(t-brC-l)

∃instr ∈ {brcc, brcs} : P (ep) = (instr, (epa))
¬loopP (ep) se(ep) t srda(C) = H se(ep) = H
∀ep′ ∈ regionP (ep) : se(ep

′) = H sda′ = lift(sda,H)
branchtimethenP (ep) + br = branchtimeelseP (ep)

P, · · · , ep : (sda, md, rda, srda) ` (sda′, md, rda, srda)
(t-brC-h)

P (ep) = (cpse, (Rd,Rr))
se(ep) t rda(Rd) t rda(Rr) = L

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda, srda)
(t-cpse-l)

P (ep) = (cpse, (Rd,Rr)) se(ep) t rda(Rd) t rda(Rr) = H
¬twP (ep+ep 1) se(ep) = H ¬loopP (ep) ∀ep′ ∈ regionP (ep) : se(ep

′) = H
sda′ = lift(sda,H) branchtimethenP (ep) + br = branchtimeelseP (ep)

P, · · · , ep : (sda, md, rda, srda) ` (sda′, md, rda, srda)
(t-cpse-h)

P (ep) = (cpse, (Rd,Rr)) se(ep) t rda(Rd) t rda(Rr) = H
twP (ep+ep 1) se(ep) = H ¬loopP (ep) ∀ep′ ∈ regionP (ep) : se(ep

′) = H
sda′ = lift(sda,H) branchtimethenP (ep) + 2br = branchtimeelseP (ep)

P, · · · , ep : (sda, md, rda, srda) ` (sda′, md, rda, srda)
(t-cpse-h2w)

Figure 3: Typing rules for branching instructions.

∃instr ∈ {dec, inc} : P (ep) = (instr, (Rd, k))
rda′ = rda[Rd 7→ rda(Rd) t se(ep)] srda′ = srda[Z 7→ rda(Rd) t se(ep)]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda′)
(t-1a-z)

∃instr ∈ {lsr, neg, ror} : P (ep) = (instr, (Rd, k))
rda′ = rda[Rd 7→ rda(Rd) t se(ep)]

srda′ = srda[C 7→ rda(Rd) t se(ep)][Z 7→ rda(Rd) t se(ep)]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda′)
(t-1a-cz)

Figure 4: Typing rules for instructions with one register as argument.

35

P (ep) = (push, (Rr)) erg = rda(Rr) t se(ep)
spa = se(ep) t rda(spl) t rda(spu) rda′ = rda[spl 7→ spa][spu 7→ spa]

P, · · · , ep : (sda, md, rda, srda) ` (erg :: sda, md, rda′, srda)
(t-push)

P (ep) = (pop, (Rd)) rda′′ = rda[Rd 7→ erg t se(ep)]
spa = se(ep) t rda(spl) t rda(spu) rda′ = rda′′[spl 7→ spa][spu 7→ spa]

P, · · · , ep : (erg :: sda, md, rda, srda) ` (sda, md, rda′, srda)
(t-pop)

Figure 5: Typing rules for push and pop instructions.

∃instr ∈ {ld, ldd} : ∃a ∈ ({#} ∪ Z) : P (ep) = (instr, (Rd,Rr, a))
sd = md t se(ep) t rda(regconvert-l(Rr)) t rda(regconvert-u(Rr))

rda′ = rda[Rd 7→ sd]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda)
(t-ld-nm)

∃a ∈ {−,+} : P (ep) = (ld, (Rd,Rr, a)) sd2 = sd1 t md

sd1 = rda(regconvert-l(Rr)) t rda(regconvert-u(Rr)) t se(ep)
rda′ = rda[Rd 7→ sd2][regconvert-l(Rr) 7→ sd1][regconvert-u(Rr) 7→ sd1]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda)
(t-ld-m)

∃instr ∈ {st, std} : ∃a ∈ ({#} ∪ Z) : P (ep) = (instr, (Rd,Rr, a))
md′ = md t rda(Rr) t se(ep) t rda(regconvert-l(Rd)) t rda(regconvert-u(Rd))

P, · · · , ep : (sda, md, rda, srda) ` (sda, md′, rda, srda)
(t-st-nm)

∃a ∈ {−,+} : P (ep) = (st, (Rd,Rr, a))
sd1 = rda(regconvert-l(Rd)) t rda(regconvert-u(Rd)) t se(ep)
rda′ = rda[regconvert-l(Rd) 7→ sd1][regconvert-u(Rd) 7→ sd1]

md′ = md t rda(Rr) t sd1

P, · · · , ep : (sda, md, rda, srda) ` (sda, md′, rda′, srda)
(t-st)

Figure 6: Typing rules for instructions with displacement.

36

P (ep) = (in, (Rd, 0x3d)) rda′ = rda[Rd 7→ rda(spl) t se(ep)]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda)
(t-in-sp-l)

P (ep) = (in, (Rd, 0x3e)) rda′ = rda[Rd 7→ rda(spu) t se(ep)]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda)
(t-in-sp-u)

P (ep) = (in, (Rd, 0x3f)) rda′ = rda[Rd 7→ srda(C) t srda(Z) t se(ep)]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda)
(t-in-stat)

P (ep) = (out, (0x3d, Rr)) rda′ = rda[spl 7→ rda(Rr) t se(ep)]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda)
(t-out-sp-l)

P (ep) = (out, (0x3e, Rr)) rda′ = rda[spu 7→ rda(Rr) t se(ep)]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda)
(t-out-sp-u)

P (ep) = (out, (0x3f, Rr)) erg = rda(Rr) t se(ep)
srda′ = srda[C 7→ erg][Z 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda, srda′)
(t-out-stat)

Figure 7: Typing rules for I/O instructions.

37

P (ep) = (subi, (Rd, k)) erg = rda(Rd) t se(ep)
rda′ = rda[Rd 7→ erg] srda′ = srda[Z 7→ erg][C 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda′)
(t-subi)

P (ep) = (andi, (Rd, k)) erg = rda(Rd) t se(ep)
rda′ = rda[Rd 7→ erg] srda′ = srda[Z 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda′)
(t-andi)

P (ep) = (cpi, (Rd, k)) erg = rda(Rd) t se(ep)
srda′ = srda[C 7→ erg][Z 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda, srda′)
(t-cpi)

P (ep) = (sbci, (Rd, k)) erg = rda(Rd) t srda(C) t se(ep)
srda′ = srda[C 7→ erg][Z 7→ erg t srda(Z)] rda′ = rda[Rd 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda′)
(t-sbci)

∃instr ∈ {adiw, sbiw} : P (ep) = (instr, (Rd, k))
erg = rda(Rd) t rda(regconvert-u(Rd)) t se(ep)
rda′ = rda[Rd 7→ erg][regconvert-u(Rd) 7→ erg]

srda′ = srda[C 7→ erg][Z 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda′)
(t-ai-word)

P (ep) = (ldi, (Rd, k)) rda′ = rda[Rd 7→ se(ep)]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda)
(t-ldi)

Figure 8: Typing rules for instructions with register and immediate arguments

38

∃instr ∈ {add, sub} : P (ep) = (instr, (Rd,Rr))
erg = rda(Rd) t rda(Rr) t se(ep)

rda′ = rda[Rd 7→ erg] srda′ = srda[Z 7→ erg][C 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda′)
(t-2a-full)

∃instr ∈ {and, or} : P (ep) = (instr, (Rd,Rr))
erg = rda(Rd) t rda(Rr) t se(ep)

rda′ = rda[Rd 7→ erg] srda′ = srda[Z 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda′)
(t-2a-full-oz)

P (ep) = (adc, (Rd,Rr))
erg = rda(Rd) t rda(Rr) t se(ep) t srda(C)

rda′ = rda[Rd 7→ erg] srda′ = srda[C 7→ erg][Z 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda′)
(t-adc)

P (ep) = (sbc, (Rd,Rr))
erg = rda(Rd) t rda(Rr) t se(ep) t srda(C)

rda′ = rda[Rd 7→ erg] srda′ = srda[C 7→ erg][Z 7→ erg t srda(Z)]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda′)
(t-sbc)

Figure 9: Typing rules for two argument instructions.

39

P (ep) = (mul, (Rd,Rr)) erg = rda(Rd) t rda(Rr) t se(ep)
rda′ = rda[r0 7→ erg][r1 7→ erg] srda′ = srda[C 7→ erg][Z 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda′)
(t-mul)

P (ep) = (eor, (Rd,Rr)) erg = rda(Rd) t rda(Rr) t se(ep)
Rd 6= Rr rda′ = rda[Rd 7→ erg] srda′ = srda[Z 7→ erg]

P, · · · ep : (sda, md, rda, srda) ` (sda, md, rda′, srda′)
(t-eor-normal)

P (ep) = (eor, (Rd,Rr)) erg = se(ep)
Rd = Rr rda′ = rda[Rd 7→ erg] srda′ = srda[Z 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda′)
(t-eor-erasure)

P (ep) = (mov, (Rd,Rr)) rda′ = rda[Rd 7→ rda(Rr) t se(ep)]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda)
(t-mov)

P (ep) = (movw, (Rd,Rr))
erg = rda(regconvert-l(Rr)) t rda(regconvert-u(Rr)) t se(ep)
rda′ = rda[regconvert-l(Rd) 7→ erg][regconvert-u(Rd) 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda′, srda)
(t-movw)

P (ep) = (cp, (Rd,Rr)) erg = rda(Rd) t rda(Rr) t se(ep)
srda′ = srda[C 7→ erg][Z 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda, srda′)
(t-cp)

P (ep) = (cpc, (Rd,Rr)) erg = rda(Rd) t rda(Rr) t srda(C) t se(ep)
srda′ = srda[C 7→ erg][Z 7→ erg]

P, · · · , ep : (sda, md, rda, srda) ` (sda, md, rda, srda′)
(t-cpc)

Figure 10: Typing rules for two argument instructions differing from groups.

40

C Proof of Type System Soundness

Our soundness proof utilizes the Unwinding technique and an additional lemma
that guarantees the absence of timing variations in high branchings. The Un-
winding lemmas have the following intuitions:

The main result of this section will be our soundness theorem.

Theorem 1 (Soundness). Let P ∈ PROG be a program and eps ∈ EPS be an
execution point. If P is typable starting from eps with initial domain assignments
sdaeps , mdeps , rdaeps , srdaeps and final domain assignments sdaepf , mdepf , rdaepf ,
srdaepf , then P satisfies TSNI starting from eps with the same initial and final
domain assignments.

Step Consistent 4: Executing an instruction in a low security environment
from indistinguishable states leads to indistinguishable states and has a constant
timing. Intuitively, this lemma ensures that no high data can be copied directly
to a low data container.

Locally Respect 5: Executing an instruction in a high security environment leads
to no observable change in states. Note, that states do not include running time.
Intuitively, this lemma ensures no indirect leakage of information by control flow
instructions.

High Branching 6: Control dependence regions are complete in the sense that all
execution points that depend on a high branching decision are in a high security
environment.

Indistinguishability after High Branching 7: Executing a sequence of instruc-
tions in a high security environment leads to no observable information leakage.

Timing Indistinguishability after High Branching 9: Executing a whole sequence
of instructions in a high security environment up to the junction point leads to
no observable information leakage. This includes no leakage of information by
state indistinguishability, given by locally respect, as well as a passed execution
time at the junction point that is constant.

Security of Typable Sequences 10: Starting an execution in indistinguishable
states leads to indistinguishable states and does not leak any timing information.

The dependencies of the Unwinding lemmas are shown in Figure 11. During
the proof, we further rely on a few properties of our indistinguishability relation
≈. We present the individual lemmas and their corresponding proofs in bottom
up direction in the following, starting of with a collection of made assumptions
and required properties of ≈. The section concludes with our proof of soundness,
with Theorem 1.

41

Soundness

Security of
Typable Sequences

High Branching

Indistinguishability after
High Branching

Timing Indistinguishability
after High Branching

Locally Respect Step Consistent

Figure 11: Dependencies of Unwinding lemmas.

C.1 Made Assumptions

Assumption 1 The ret instruction inside a function is assumed to be unique.

Inside our proofs, we rely heavily on the existence of junction points. A non-
existent junction point can happen when there are separate ret statements inside
each branch (“then” and “else”) of a branching instruction. Thus, Assumption 1
guarantees that all branchings have a junction point. Note, that Assumption 1
has no negative impact of the expressiveness of our operational semantics, as
programs can be rewritten to have such an unique ret instruction, e.g. jumping
to a ret instruction at the end of branch.

Assumption 2 It is assumed that control flow and branching instructions do
not have an invalid execution point as argument.

Control flow instruction and branching instructions have an execution point as
operand. It might happen that this execution point is not in the domain of the
considered program function. Such a case shall be avoided by Assumption 2.

Both, Assumption 1 and Assumption 2 hold for well-formed programs.

C.2 Properties of Indistinguishability

This section proves some required properties about the indistinguishability on
states.

Lemma 1 (Reflexivity of ≈). For all s ∈ STATE and all domain assignments
sda, md, rda, srda it holds that s ≈sda,md,rda,srda s.

Proof. Let (sr,m, r, st, ep) ∈ STATE be an arbitrary state and let sda, md, rda,
srda be arbitrary domain assignments. It is now to show that

42

1. sr ≈srda sr
2. md = L ⇒ m = m
3. r ≈rda r
4. st 'sda st

Goal 2 is directly clear. For Goals 1 and 3 observe that indistinguishability of
functions requires agreement on all L variables. As the functions are equal, they
do agree on all values, so especially on all L values.

To show st 'sda st, one can perform an induction over |st|:

Base Case |st| = 0: Applying Condition 2 in Definition 37 concludes the base
case.

Induction Step: Let st = x :: xs. If sda = [], apply Condition 1 to conclude the
induction step, else let sda = y :: ys. The induction hypothesis gives xs 'ys xs,
thus depending on y, apply Condition 3 or Condition 4 in Definition 37 to
conclude the induction step. ut

Lemma 2 (Monotonicity of ≈). For all s1, s2, s3 ∈ STATE and for all domain
assignments sda1, md1, rda1, srda1, sda2, md2, rda2, srda2, if s1 ≈sda1,md1,rda1,srda1

s2, s2 ≈sda2,md2,rda2,srda2 s3, sda1 vs sda2, md1 v md2, rda1 v rda2 and
srda1 v srda2, then s1 ≈sda2,md2,rda2,srda2 s3.

Proof. Let (sr1,m1, r1, st1, ep1), (sr2,m2, r2, st2, ep2), (sr3,m3, r3, st3, ep3) ∈ STATE

be arbitrary states and let sda1, md1, rda1, srda1, sda2, md2, rda2, srda2 be ar-
bitrary domain assignments, such that

1. (sr1,m1, r1, st1, ep1) ≈sda1,md1,rda1,srda1 (sr2,m2, r2, st2, ep2)
2. (sr2,m2, r2, st2, ep2) ≈sda2,md2,rda2,srda2 (sr3,m3, r3, st3, ep3)
3. sda1 vs sda2, md1 v md2, rda1 v rda2 and srda1 v srda2

It is now to show that (sr1,m1, r1, st1, ep1) ≈sda2,md2,rda2,srda2 (sr3,m3, r3, st3, ep3),
or expanded that

1. sr1 ≈srda2 sr3
2. md2 = L ⇒ m1 = m3

3. r1 ≈rda2 r3
4. st1 'sda2 st3

For Goal 1, let rs ∈ {C,Z} be an arbitrary identifier for a status register. It is
now to show that srda2(rs) = L ⇒ sr1(rs) = sr3(rs). So assume srda2(rs) = L.
By Assumption 2 this directly gives sr2(rs) = sr3(rs). By Assumption 3, one
gets that srda1(rs) v srda2(rs), that is srda2(rs) = L ⇒ srda1(rs) = L. This
gives sr1(rs) = sr2(rs) and in combination sr1(rs) = sr3(rs) what was to show.
Goal 3 is shown analogously.

For Goal 2, assume md2 = L. By Assumption 2 this gives m2 = m3. By
Assumption 3 one obtains that md1 = L as well, so m1 = m2 by Assumption 1.
Together, it is m1 = m3.

43

For Goal 4, let h1 ∈ {H}∗ and h2 ∈ {H}∗ be the largest lists such that sda1 =
sda′1 :: h1, sda2 = sda′2 :: h2 and |sda′1| = |sda′2|. As we have by Assumption 3
that sda1 vs sda2 one obtains by the definition of vs that sda′1 vs sda

′
2 holds.

In the lower part represented by h1 and h2, indistinguishability is directly given,
according to the definition of '. So it is left to show indistinguishability for the
upper part. For this, we perform an induction over the height of the upper part,
represented by sda′1 and sda′2.

Base Case: Assume |sda′2| = 0, then we get indistinguishability directly by
condition 1 in Definition 37.

Induction Hypothesis: Indistinguishability is assumed to hold for all sda′′2 with
|sda′′2 | < |sda′2|.

Induction Step: Assume sda′2 = L :: sda′′2 . Let st1 = x1 :: st′1, st2 = x2 :: st′2
and st3 = x3 :: st′3. According to Definition 37 it is now to show that x1 = x3.
Let sda′1 = d :: sda′′1 . As we have that sda′1 vs sda

′
2 and sda′2 = L :: sda′′2 , one

obtains that d v L and as such, d = L. By Assumption 1 and Assumption 2
one then obtains x1 = x2 and x2 = x3. This implies x1 = x3, what was to
show. Applying the induction hypothesis on sda′′2 , which is now shorter than
sda′2 concludes the induction step. ut

Lemma 3 (Transitivity of ≈). For all s1, s2, s3 ∈ STATE and for all domain
assignments sda, md, rda, srda, whenever s1 ≈sda,md,rda,srda s2 and s2 ≈sda,md,rda,srda

s3, then s1 ≈sda,md,rda,srda s3.

Proof. Observe that sda vs sda, md v md, rda v rda and srda v srda. So
transitivity is a special case of monotonicity and follows from Lemma 2. ut

C.3 Step Consistent

Lemma 4 (Step Consistent). Let P ∈ PROG be a program. For all states
s1, s

′
1, s2, s

′
2 ∈ STATE, clock cycles c, c′ ∈ N, domain assignments sda1, md1, rda1,

srda1, sda2, md2, rda2, srda2 and security environments se, if

1. epselect(s1) = epselect(s′1)
2. se(epselect(s1)) = L
3. s1 ≈sda1,md1,rda1,srda1 s

′
1

4. s1
c−→P s2

5. s′1
c′−→P s′2

6. P, · · · , epselect(s1) : (sda1, md1, rda1, srda1) ` (sda2, md2, rda2, srda2)

then s2 ≈sda2,md2,rda2,srda2 s
′
2, epselect(s2) = epselect(s′2) and c = c′.

Proof (Lemma 4 – Step Consistent). Let P ∈ PROG be a program. Let s1, s
′
1,

s2, s
′
2 ∈ STATE be states, c, c′ ∈ N be clock cycles, sda1, md1, rda1, srda1, sda2,

md2, rda2, srda2 be domain assignments and se be a security environment, such
that

44

1. epselect(s1) = epselect(s′1)
2. se(epselect(s1)) = L
3. s1 ≈sda1,md1,rda1,srda1 s

′
1

4. s1
c−→P s2

5. s′1
c′−→P s′2

6. P, · · · , epselect(s1) : (sda1, md1, rda1, srda1) ` (sda2, md2, rda2, srda2)

It is now to show that s2 ≈sda2,md2,rda2,srda2 s
′
2, epselect(s2) = epselect(s′2) and

c = c′.
This is proven by a case distinction over the possibly executed instruction

P (epselect(s1)). For this, let s1 = (sr1,m1, r1, st1, ep1), s′1 = (sr′1,m
′
1, r
′
1, st

′
1, ep

′
1),

s2 = (sr2,m2, r2, st2, ep2) and s′2 = (sr′2,m
′
2, r
′
2, st

′
2, ep

′
2).

As all instructions, except control flow and branching instructions, set their
next execution point to ep1 +ep 1 and by Assumption 1 ep1 = ep′1, one gets di-
rectly that epselect(s2) = epselect(s′2). Additionally, instructions (except branch-
ing instructions) are executed in constant time, giving c = c′ for all other in-
structions. We thus limit ourselves to show s2 ≈sda2,md2,rda2,srda2 s

′
2 in all cases

except branching instructions and control flow instructions.
When listing changes to domain assignments, we leave out the security envi-

ronment for brevity, as it is L by Assumption 2. Taking the least upper bound
with a L security domain does not change it.

Case P (epselect(s1)) = (push, (Rr)) The push instruction adds the contents of
register Rr to the stack and decrements the stack pointer by one. Thus, the
stack as well as the current register contents are modified.

Status registers and memory are left unmodified, giving sr1 = sr2 and m1 =
m2 and the same for the primed ones. So it remains to show that registers and
stack are still indistinguishable.

Assume sda2 = L :: sda1, then it is to show that r1(Rr) = r′1(Rr) to
obtain stack indistinguishability according to its definition and the small-step
semantic rule (push). From sda2 = L :: sda1 one obtains that L = rda1(Rr) t
se(epselect(s1)) and from this it follows that rda1(Rr) = L. As states s1 and
s′1 are indistinguishable by Assumption 3 and rda1(Rr) = L, one obtains that
r1(Rr) = r′1(Rr), what was to show.

It remains to show indistinguishability for the stack pointer registers. For
this, assume rda2(spl) = L or rda2(spu) = L. According to rule (t-push), both
register domain assignments are updated according to rda1(spl)trda1(spu). So
this can only be the case if rda1(spl) = L and rda1(spu) = L.

As states s1 and s′1 are indistinguishable by Assumption 3 and rda1(spl) =
rda1(spu) = L, one obtains that r1(spl) = r′1(spl) and r1(spu) = r′1(spu). This
directly gives r2(spl) = r′2(spl) and r2(spu) = r′2(spu), what was to show.

We have shown both required indistinguishabilities and can thus conclude
s2 ≈sda2,md2,rda2,srda2 s

′
2 for this case.

Case P (epselect(s1)) = (pop, (Rd)) The pop instruction removes the topmost
element from the stack and stores it in register Rd. Additionally the stack pointer

45

is incremented by one. Thus, the stack as well as the current register contents
are modified.

Status registers and memory are left unmodified, giving sr1 = sr2 and m1 =
m2 and the same for the primed ones. So it remains to show that registers and
stack are still indistinguishable.

According to rule (t-pop) one obtains for the stack domain assignment that
d :: sda2 = sda1 for d ∈ {L,H}. We assume d = L, as otherwise indistinguisha-
bilty would follow from the minimality of '. Let st1 = v :: vs and st′1 = v′ :: vs′

for some v, v′ ∈ VAL8 and vs, vs′ ∈ STACK-VAL. As we have d = L and by As-
sumption 3 that s1 and s′1 are indistinguishable, we get by the definition of stack
indistinguishability that v = v′ and vs 'sda2 vs

′. As r2(Rd) = v, r′2(Rd) = v′

and v = v′, we get indistinguishability for register contents of Rd.

It remains to show indistinguishability for the stack pointer registers. For
this, assume rda2(spl) = L or rda2(spu) = L. According to rule (t-pop), both
register domain assignments are updated according to rda1(spl)trda1(spu). So
this can only be the case if rda1(spl) = L and rda1(spu) = L.

As states s1 and s′1 are indistinguishable by Assumption 3 and rda1(spl) =
rda1(spu) = L, one obtains that r1(spl) = r′1(spl) and r1(spu) = r′1(spu). This
directly gives r2(spl) = r′2(spl) and r2(spu) = r′2(spu), what was to show.

We have shown both required indistinguishabilities and can thus conclude
s2 ≈sda2,md2,rda2,srda2 s

′
2 for this case.

Case P (epselect(s1)) = (instr, (epa)) for instr ∈ {breq, brne} All those instruc-
tions have in common that no data storage is modified. That is, their small-step
rules give sr1 = sr2,m1 = m2, r1 = r2 and st1 = st2 and similar for the primed
states. Since all applicable typing rules do not modify any domain assignments,
it follows that s2 ≈sda2,md2,rda2,srda2 s

′
2 by Assumption 3.

As we have by Assumption 2 that se(epselect(s1)) = se(epselect(s′1)) = L,
only rule (t-brZ-l) can be applicable. Rule (t-brZ-h) can not be used as it re-
quires a high security environment. The applicable rules require further that
srda1(Z) = L which implies sr1(Z) = sr′1(Z) by Assumption 3. As such the
assumed transitions 4 and 5 have to be made with the same small-step semantic
rule. As such, this gives epselect(s2) = epselect(s′2) and c = c′.

Case P (epselect(s1)) = (instr, (epa)) for instr ∈ {brcc, brcs} All those instruc-
tions have in common that no data storage is modified. That is, their small-step
rules give sr1 = sr2,m1 = m2, r1 = r2 and st1 = st2 and similar for the primed
states. Since all applicable typing rules do not modify any domain assignments,
it follows that s2 ≈sda2,md2,rda2,srda2 s

′
2 by Assumption 3.

As we have by Assumption 2 that se(epselect(s1)) = se(epselect(s′1)) = L,
only rule (t-brC-l) can be applicable. Rule (t-brC-h) can not be used as it re-
quires a high security environment. The applicable rules require further that
srda1(C) = L which implies sr1(C) = sr′1(C). As such the assumed transitions
4 and 5 have to be made with the same small-step semantic rule. As such, this
gives epselect(s2) = epselect(s′2) and c = c′.

46

Case P (epselect(s1)) = (cpse, (Rd,Rr)) This instruction does not modify any
data storage. That is, its small-step rules give sr1 = sr2,m1 = m2, r1 = r2 and
st1 = st2 and similar for the primed states. Since all applicable typing rules do
not modify any domain assignments, it follows that s2 ≈sda2,md2,rda2,srda2 s

′
2 by

Assumption 3.
As we have by Assumption 2 that se(epselect(s1)) = se(epselect(s′1)) = L,

only rule (t-cpse-l) can be applicable. Rule (t-cpse-h) or (t-cpse-h2w) can not
be used as it requires a high security environment. The applicable rules re-
quire further that rda1(Rd) t rda1(Rr) = L which implies rda1(Rd) = L and
rda1(Rr) = L. This further gives r1(Rd) = r′1(Rd) and r1(Rr) = r′1(Rr). As
such the assumed transitions 4 and 5 have to be made with the same small-step
semantic rule. As such, this gives epselect(s2) = epselect(s′2) and c = c′.

Case P (epselect(s1)) = (instr, (Rd,Rr, a)) for instr ∈ {ld, ldd} Instructions ld
and ldd load values from memory into register Rd and depending on a, they also
increment or decrement the pointer register pair Rr. Memory, stack and status
registers are left unmodified giving sr1 = sr2, m1 = m2, st1 = st2 and similar
for the primed data containers. So it remains to show that registers are still
indistinguishable. As parameter a has influence on which registers are modified,
a case distinction over values of a is required:

a = # or instr = ldd: In this case, register Rr is left unmodified. Only Rd
is modified.

So we look at the case rda2(Rd) = L. As we have by (t-ld-nm) that rda2(Rd) =
md1 t rda1(regconvert-l(Rr)) t rda1(regconvert-u(Rr)), it follows that md1 = L,
rda1(regconvert-l(Rr)) = L and rda1(regconvert-u(Rr)) = L. Together with As-
sumption 3, one obtains that m1 = m′1 and regpair-valr1(Rr) = regpair-valr′1(Rr).

According to the semantics, Rd is set to m1(regpair-valr1(Rr)). As we have
equalities for both, the register pair Rr and m, we can conclude that r2(Rd) =
r′2(Rd) and thus s2 ≈sda2,md2,rda2,srda2 s

′
2.

a ∈ {+,−}: In this case, Rr is modified. The arguments in the previous
case can be applied the same way to obtain m1 = m′1 and regpair-valr1(Rr) =
regpair-valr′1(Rr).

From this, one similarly gets r2(Rd) = r′2(Rd). As Rr is incremented or decre-
mented by one depending on a, it follows that regpair-valr2(Rr) = regpair-valr′2(Rr).

Together, it follows that s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (instr, (Rd,Rr, a)) for instr ∈ {st, std} Instructions st
and std load values from register Rr into the memory pointed to by register Rd.
Stack and status registers are left unmodified giving st1 = st2 and sr1 = sr2 and
similar for the primed data containers. Depending on a, they also increment or
decrement the pointer register Rd. So another case distinction over values of a
is required:

a = # or instr = std: In this case, only the memory is modified. Reg-
isters are left unchanged. So we have a look at the case md2 = L. As we
have by rule (t-st-nm) that md2 = md1 t rda1(Rr) t rda1(regconvert-u(Rd)) t

47

rda1(regconvert-l(Rd)), we obtain that md1 = L, rda1(Rr) = L,
rda1(regconvert-u(Rd)) = L and rda1(regconvert-l(Rd)) = L. Together with As-
sumption 3, one obtains that m1 = m′1, r1(Rr) = r′1(Rr) and regpair-valr1(Rd) =
regpair-valr′1(Rd).

According to the semantics, the memory at address regpair-valr1(Rd) is up-
dated to r1(Rr). As we have all those equalities, one can conclude that m2 = m′2
and s2 ≈sda2,md2,rda2,srda2 s

′
2.

a ∈ {+,−}: In this case, Rd is modified. The arguments in the previous
case can be applied the same way to obtain m1 = m′1, r1(Rr) = r′1(Rr) and
regpair-valr1(Rd) = regpair-valr′1(Rd).

From this, one similarly gets m2 = m′2. As Rd is incremented or decremented
by one depending on a, it follows that regpair-valr2(Rd) = regpair-valr′2(Rd).

Together, it follows that s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (adc, (Rd,Rr)) Instruction adc modifies register Rd and
status registers C and Z, according to contents of register Rd and Rr and the
carry flag C. Thus, one gets directly that m1 = m2, m′1 = m′2, st1 = st2 and
st′1 = st′2.

So it remains to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd), srda2(C) =
L ⇒ sr2(C) = sr′2(C) and srda2(Z) = L ⇒ sr2(Z) = sr′2(Z).

Assume rda2(Rd) = L, srda2(C) = L or srda2(Z) = L. By rule (t-adc) one
gets from this that erg = L and as erg = rda1(Rd) t rda1(Rr) t srda1(C), it
follows that rda1(Rd) = L, rda1(Rr) = L and srda1(C) = L.

By definition of indistinguishability and Assumption 3 this implies r1(Rd) =
r′1(Rd), r1(Rr) = r′1(Rr) and sr1(C) = sr′1(C). As we have equality of all
arguments and a function is executed, one gets that r2(Rd) = r′2(Rd), sr2(C) =
sr′2(C) and sr2(Z) = sr′2(Z).

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (sbc, (Rd,Rr)) Instruction sbc modifies register Rd and
status registers C and Z, according to contents of register Rd and Rr and the
carry flag C. Status register Z also depends on the previous value of Z. Thus,
one gets directly that m1 = m2, m′1 = m′2, st1 = st2 and st′1 = st′2.

So it remains to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd), srda2(C) =
L ⇒ sr2(C) = sr′2(C) and srda2(Z) = L ⇒ sr2(Z) = sr′2(Z).

Assume rda2(Rd) = L, srda2(C) = L or srda2(Z) = L. By rule (t-sbc) one
gets from this that erg = L and as erg = rda1(Rd) t rda1(Rr) t srda1(C), it
follows that rda1(Rd) = L, rda1(Rr) = L and srda1(C) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd), r1(Rr) =
r′1(Rr) and sr1(C) = sr′1(C). As we have equality of all arguments and a function
is executed, one gets that r2(Rd) = r′2(Rd) and sr2(C) = sr′2(C).

It remains to show that sr2(Z) = sr′2(Z). For this, assume specifically that
srda2(Z) = L. According to (t-sbc) it follows that srda1(Z) = L, which implies
sr1(Z) = sr′1(Z). As Z depends on the previous value of Z and the computation
result, we can conclude sr2(Z) = sr′2(Z).

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

48

Case P (epselect(s1)) = (sbci, (Rd, k)) Instruction sbci modifies register Rd
and status registers C and Z, according to contents of register Rd, the given
immediate k and the carry flag C. Status register Z also depends on the previous
value of Z. Thus, one gets directly that m1 = m2, m′1 = m′2, st1 = st2 and
st′1 = st′2.

So it remains to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd), srda2(C) =
L ⇒ sr2(C) = sr′2(C) and srda2(Z) = L ⇒ sr2(Z) = sr′2(Z).

Assume rda2(Rd) = L, srda2(C) = L or srda2(Z) = L. By rule (t-sbci) one
gets from this that erg = L and as erg = rda1(Rd) t srda1(C), it follows that
rda1(Rd) = L and srda1(C) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd) and sr1(C) =
sr′1(C). As we have equality of all arguments and a function is executed, one gets
that r2(Rd) = r′2(Rd) and sr2(C) = sr′2(C).

It remains to show that sr2(Z) = sr′2(Z). For this, assume specifically that
srda2(Z) = L. According to (t-sbci) it follows that srda1(Z) = L, which implies
sr1(Z) = sr′1(Z). As Z depends on the previous value of Z and the computation
result, we can conclude sr2(Z) = sr′2(Z).

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (instr, (Rd,Rr)) for instr ∈ {add, sub} Both possible
instructions have in common, that they modify register Rd and status registers
C and Z, according to contents of register Rd and Rr. Thus, one gets directly
that m1 = m2, m′1 = m′2, st1 = st2 and st′1 = st′2.

So it remains to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd), srda2(C) =
L ⇒ sr2(C) = sr′2(C) and srda2(Z) = L ⇒ sr2(Z) = sr′2(Z).

Assume rda2(Rd) = L, srda2(C) = L or srda2(Z) = L. By rule (t-2a-full)
one gets from this that erg = L and as erg = rda1(Rd) t rda1(Rr), it follows
that rda1(Rd) = L and rda1(Rr) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd) and r1(Rr) =
r′1(Rr). As we have equality of all arguments and a function is executed, one gets
that r2(Rd) = r′2(Rd), sr2(C) = sr′2(C) and sr2(Z) = sr′2(Z).

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (instr, (Rd,Rr)) for instr ∈ {and, or} Both possible
instructions have in common, that they modify register Rd and status register
Z, according to contents of register Rd and Rr. Thus, one gets directly that
m1 = m2, m′1 = m′2, st1 = st2 and st′1 = st′2.

So it remains to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd) and srda2(Z) =
L ⇒ sr2(Z) = sr′2(Z).

Assume rda2(Rd) = L or srda2(Z) = L. By rule (t-2a-full-oz) one gets
from this that erg = L and as erg = rda1(Rd) t rda1(Rr), it follows that
rda1(Rd) = L and rda1(Rr) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd) and r1(Rr) =
r′1(Rr). As we have equality of all arguments and a function is executed, one gets
that r2(Rd) = r′2(Rd) and sr2(Z) = sr′2(Z).

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

49

Case P (epselect(s1)) = (instr, (Rd, k)) for instr ∈ {dec, inc} Both possible
instructions have in common, that they modify register Rd and status register
Z, according to contents of register Rd. Thus, one gets directly that m1 = m2,
m′1 = m′2, st1 = st2 and st′1 = st′2.

So it remains to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd) and srda2(Z) =
L ⇒ sr2(Z) = sr′2(Z).

Assume rda2(Rd) = L or srda2(Z) = L. By rule (t-1a-z) one gets from this
that rda1(Rd) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd). As we have
equality of all arguments and a function is executed, one gets that r2(Rd) =
r′2(Rd) and sr2(Z) = sr′2(Z).

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (instr, (Rd, k)) for instr ∈ {lsr, neg, ror} All possible
instructions have in common, that they modify register Rd and status registers
C and Z, according to contents of register Rd. Thus, one gets directly that
m1 = m2, m′1 = m′2, st1 = st2 and st′1 = st′2.

So it remains to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd), srda2(C) =
L ⇒ sr2(C) = sr′2(C) and srda2(Z) = L ⇒ sr2(Z) = sr′2(Z).

Assume rda2(Rd) = L, srda2(C) = L or srda2(Z) = L. By rule (t-1a-cz)
one gets from this that rda1(Rd) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd). As we have
equality of all arguments and a function is executed, one gets that r2(Rd) =
r′2(Rd), sr2(C) = sr′2(C) and sr2(Z) = sr′2(Z).

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (eor, (Rd,Rr)) Instruction eor performs an exclusive-or
operation on the contents of registers Rd and Rr and stores the result in register
Rd. It also modifies status register Z. Thus, one gets directly that m1 = m2,
m′1 = m′2, st1 = st2 and st′1 = st′2.

So it remains to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd) and srda2(Z) =
L ⇒ sr2(Z) = sr′2(Z).

Assume rda2(Rd) = L or srda2(Z) = L. Then there are two possible cases:
Rd 6= Rr: By rule (t-eor-normal) one gets from this that erg = L and as erg =
rda1(Rd) t rda1(Rr), it follows that rda1(Rd) = L and rda1(Rr) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd) and r1(Rr) =
r′1(Rr). As we have equality of all arguments and a function is executed, one gets
that r2(Rd) = r′2(Rd) and sr2(Z) = sr′2(Z).

Rd = Rr: In this case typing rule (t-eor-erasure) is applicable. The semantics
of eor imply that r2(Rd) = 0 and r′2(Rd) = 0, independent of the values in
registers Rd and Rr. This also directly implies that sr2(Z) = 1 and sr′2(Z) = 1.

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (ldi, (Rd, k)) Instruction ldi loads the given immediate
value k into register Rd. No status registers are modified. Thus, one gets directly
that sr1 = sr2, sr′1 = sr′2, m1 = m2, m′1 = m′2, st1 = st2 and st′1 = st′2.

50

So it remains to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd).
Assume rda2(Rd) = L. Then according to the semantics, one gains that

r2(Rd) = k and r′2(Rd) = k, resulting in equality, what was to show.
Together, this gives s2 ≈sda2,md2,rda2,srda2 s

′
2.

Case P (epselect(s1)) = (cp, (Rd,Rr)) Instruction cp performs a comparison be-
tween the contents of registers Rd and Rr. It stores the results of the comparison
in status registers C and Z. The registers are left unmodified. Thus, one gets
directly that r1 = r2, r′1 = r′2, m1 = m2, m′1 = m′2, st1 = st2 and st′1 = st′2.

So it remains to show that srda2(C) = L ⇒ sr2(C) = sr′2(C) and srda2(Z) =
L ⇒ sr2(Z) = sr′2(Z).

Assume srda2(C) = L or srda2(Z) = L. By rule (t-cp) one gets from this
that erg = L and as erg = rda1(Rd) t rda1(Rr), it follows that rda1(Rd) = L
and rda1(Rr) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd) and r1(Rr) =
r′1(Rr). As we have equality of all arguments and a function is executed, one gets
that sr2(C) = sr′2(C) and sr2(Z) = sr′2(Z).

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (cpc, (Rd,Rr)) Instruction cpc performs a comparison
between the contents of registers Rd and Rr and status register C. It stores
the results of the comparison in status registers C and Z. The registers are left
unmodified. Thus, one gets directly that r1 = r2, r′1 = r′2, m1 = m2, m′1 = m′2,
st1 = st2 and st′1 = st′2.

So it remains to show that srda2(C) = L ⇒ sr2(C) = sr′2(C) and srda2(Z) =
L ⇒ sr2(Z) = sr′2(Z).

Assume srda2(C) = L or srda2(Z) = L. By rule (t-cpc) one gets from this
that erg = L and as erg = rda1(Rd) t rda1(Rr) t srda1(C), it follows that
rda1(Rd) = L, rda1(Rr) = L and srda1(C) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd), r1(Rr) =
r′1(Rr) and sr1(C) = sr′1(C). As we have equality of all arguments and a function
is executed, one gets that sr2(C) = sr′2(C) and sr2(Z) = sr′2(Z).

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (cpi, (Rd, k)) Instruction cpi performs a comparison
between the contents of registers Rd and the given immediate value k. It stores
the results of the comparison in status registers C and Z. The registers are left
unmodified. Thus, one gets directly that r1 = r2, r′1 = r′2, m1 = m2, m′1 = m′2,
st1 = st2 and st′1 = st′2.

So it remains to show that srda2(C) = L ⇒ sr2(C) = sr′2(C) and srda2(Z) =
L ⇒ sr2(Z) = sr′2(Z).

Assume srda2(C) = L or srda2(Z) = L. By rule (t-cpi) one gets from this
that erg = L and as erg = rda1(Rd), it follows that rda1(Rd) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd). As we have
equality of all arguments and a function is executed, one gets that sr2(C) =
sr′2(C) and sr2(Z) = sr′2(Z).

51

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (clc, ()) Instruction clc clears the C status register. No
other data containers are modified. Thus, one gets directly that r1 = r2, r′1 = r′2,
m1 = m2, m′1 = m′2, st1 = st2 and st′1 = st′2.

So it remains to show that srda2(C) = L ⇒ sr2(C) = sr′2(C).
Assume srda2(C) = L. Then according to the semantics, one gains that

sr2(C) = 0 and sr′2(C) = 0, resulting in equality, what was to show.
Together, this gives s2 ≈sda2,md2,rda2,srda2 s

′
2.

Case P (epselect(s1)) = (cli, ()) Instruction cli clears the I status register. As
we do not consider the I flag and the small-step rule has no effects, one gets
directly that r1 = r2, r′1 = r′2, sr1 = sr2, sr′1 = sr′2, m1 = m2, m′1 = m′2,
st1 = st2 and st′1 = st′2.

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (mov, (Rd,Rr)) Instruction mov copies the contents of
register Rr into register Rd. Thus, one gets directly that sr1 = sr2, sr′1 = sr′2,
m1 = m2, m′1 = m′2, st1 = st2 and st′1 = st′2.

So it remains to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd).
Assume rda2(Rd) = L. By rule (t-mov) one gets from this that rda1(Rr) = L.
By definition of indistinguishability this implies r1(Rr) = r′1(Rr) and. By

the semantics of mov one obtains that r2(Rd) = r1(Rr) and r′2(Rd) = r′1(Rr),
which are both equal what was to show.

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (movw, (Rd,Rr)) Instruction movw copies the contents of
register pair Rr into register pair Rd. Thus, one gets directly that sr1 = sr2,
sr′1 = sr′2, m1 = m2, m′1 = m′2, st1 = st2 and st′1 = st′2.

So it remains to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd) and rda2(regconvert-u(Rd)) =
L ⇒ r2(regconvert-u(Rd)) = r′2(regconvert-u(Rd)).

Assume rda2(Rd) = L or rda2(regconvert-u(Rd)) = L. By rule (t-movw) one
gets from this that erg = L and erg = rda1(Rd)trda1(regconvert-u(Rd)). Thus,
it must be that rda1(Rd) = L and rda1(regconvert-u(Rd)) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd) and r1(regconvert-u(Rd)) =
r′1(regconvert-u(Rd)). This implies regpair-valr1(Rd) = regpair-valr′1(Rd). As we

have equality of all arguments, one gets that r2(Rd) = r′2(Rd) and r2(regconvert-u(Rd)) =
r′2(regconvert-u(Rd)).

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (subi, (Rd, k)) Instruction subi subtracts k from the
register Rd. It stores results in register Rd and modifies status registers C and
Z. Thus, one gets directly that m1 = m2, m′1 = m′2, st1 = st2 and st′1 = st′2.

So it remains to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd), srda2(C) =
L ⇒ sr2(C) = sr′2(C) and srda2(Z) = L ⇒ sr2(Z) = sr′2(Z).

52

Assume rda2(Rd) = L, srda2(C) = L or srda2(Z) = L. By rule (t-subi) one
gets from this that erg = L and as erg = rda1(Rd), it follows that rda1(Rd) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd). As we have
equality of all arguments (Rd and k) and a function is executed, one gets that
r2(Rd) = r′2(Rd), sr2(C) = sr′2(C) and sr2(Z) = sr′2(Z).

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (andi, (Rd, k)) Instruction andi performs a logical and
operation on k and the contents of register Rd. It stores its result in register Rd
and modifies status register Z accordingly. Thus, one gets directly that m1 = m2,
m′1 = m′2, st1 = st2 and st′1 = st′2.

So it remains to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd) and srda2(Z) =
L ⇒ sr2(Z) = sr′2(Z).

Assume rda2(Rd) = L or srda2(Z) = L. By rule (t-andi) one gets from this
that erg = L and as erg = rda1(Rd), it follows that rda1(Rd) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd). As we have
equality of all arguments (Rd and k) and a function is executed, one gets that
r2(Rd) = r′2(Rd) and sr2(Z) = sr′2(Z).

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (instr, (Rd, k)) for instr ∈ {adiw, sbiw} All possible
instructions have in common, that they modify register pair Rd and status reg-
isters C and Z, according to the previous contents of register pair Rd and the
immediate value k. Thus, one gets directly that m1 = m2, m′1 = m′2, st1 = st2
and st′1 = st′2.

So it remains to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd), rda2(regconvert-u(Rd)) =
L ⇒ r2(regconvert-u(Rd)) = r′2(regconvert-u(Rd)), srda2(C) = L ⇒ sr2(C) =
sr′2(C) and srda2(Z) = L ⇒ sr2(Z) = sr′2(Z).

Assume rda2(Rd) = L, rda2(regconvert-u(Rd)) = L, srda2(C) = L or
srda2(Z) = L. By rule (t-ai-word) one gets from this that erg = L and erg =
rda1(Rd) t rda1(regconvert-u(Rd)). Thus, it must be that rda1(Rd) = L and
rda1(regconvert-u(Rd)) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd) and r1(regconvert-u(Rd)) =
r′1(regconvert-u(Rd)). This implies regpair-valr1(Rd) = regpair-valr′1(Rd). As we

have equality of all arguments and a function is executed, one gets that r2(Rd) =
r′2(Rd), r2(regconvert-u(Rd)) = r′2(regconvert-u(Rd)), sr2(C) = sr′2(C) and sr2(Z) =
sr′2(Z).

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (mul, (Rd,Rr)) Instruction mul modifies register pair r0
and status registers C and Z, according to the product of registers Rd and Rr.
Thus, one gets directly that m1 = m2, m′1 = m′2, st1 = st2 and st′1 = st′2.

So it remains to show that rda2(r0) = L ⇒ r2(r0) = r′2(r0), rda2(r1) =
L ⇒ r2(r1) = r′2(r1), srda2(C) = L ⇒ sr2(C) = sr′2(C) and srda2(Z) = L ⇒
sr2(Z) = sr′2(Z).

53

Assume rda2(r0) = L, rda2(r1) = L, srda2(C) = L or srda2(Z) = L. By
rule (t-mul) one gets from this that erg = L and as erg = rda1(Rd)t rda1(Rr),
it follows that rda1(Rd) = L and rda1(Rr) = L.

By definition of indistinguishability this implies r1(Rd) = r′1(Rd) and r1(Rr) =
r′1(Rr). As we have equality of all arguments and a function is executed, one gets
that r2(r0) = r′2(r0), r2(r1) = r′2(r1), sr2(C) = sr′2(C) and sr2(Z) = sr′2(Z).

Together, this gives s2 ≈sda2,md2,rda2,srda2 s
′
2.

Case P (epselect(s1)) = (in, (Rd, addr)) for addr ∈ {0x3d, 0x3e}: According to
the semantics of in with the given addr, the register Rd is set to the contents of
spl for addr = 0x3d and to the contents of spu for addr = 0x3e. We show the
case for addr = 0x3d. The other case is shown analogously, replacing spl with
spu. So it is to show that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd).

Assume rda2(Rd) = L. According to rule (t-in-sp-l) we get that rda2(Rd) =
rda1(spl)tse(epselect(s1)). So rda2(Rd) = L can only be the case if rda1(spl) =
L as well. Thus, by Assumption 3, one gets that r1(spl) = r′1(spl). As we have
by the semantics of in that r2(Rd) = r1(spl) and r′2(Rd) = r′1(spl) we can
conclude s2 ≈sda2,md2,rda2,srda2 s

′
2.

Case P (epselect(s1)) = (in, (Rd, 0x3f)): The instruction sets the content of the
register Rd according to the current status registers C and Z. So it is to show
that rda2(Rd) = L ⇒ r2(Rd) = r′2(Rd) to obtain indistinguishability.

Assume rda2(Rd) = L. According to rule (t-in-stat) we obtain that rda2(Rd) =
srda1(C)tsrda1(Z)tse(epselect(s1)). This implies srda1(C) = L and srda1(Z) =
L. Together with Assumption 3 one obtains sr1(C) = sr′1(C) and sr1(Z) =
sr′1(Z). According to the semantics of in this gives r2(Rd) = r′2(Rd) what shows
s2 ≈sda2,md2,rda2,srda2 s

′
2.

Case P (epselect(s1)) = (out, (addr,Rr)) for addr ∈ {0x3d, 0x3e}: According to
the semantics of out with the given addr, spl is set to the contents of register
Rr in the case of addr = 0x3d or spu is set to the contents of register Rr in
the case of addr = 0x3e. We show the case for addr = 0x3d. The other case
is shown analogously, replacing spl with spu. So it is to show that rda2(spl) =
L ⇒ r2(spl) = r′2(spl).

Assume rda2(spl) = L. According to rule (t-out-sp-l) we get that rda2(spl) =
rda1(Rr) t se(epselect(s1)). Thus, it has to be that rda1(Rr) = L. By As-
sumption 3 it follows that r1(Rr) = r′1(Rr). By the semantics of instruction
out we get that r1(spl) = r1(Rr) and r′2(spl) = r′1(Rr). Together, one obtains
s2 ≈sda2,md2,rda2,srda2 s

′
2.

Case P (epselect(s1)) = (out, (0x3f, Rr)): The instruction sets the content of
status registers C and Z according to the contents of register Rr. So it is to show
that srda2(C) = L ⇒ sr2(C) = sr′2(C) and srda2(Z) = L ⇒ sr2(Z) = sr′2(Z)
to obtain indistinguishability.

According to (t-out-stat) we get that srda2(C) = srda2(Z), so we can safely
only assume either one of those to be L.

54

Assume srda2(C) = L. According to (t-out-stat) we get that srda2(C) =
rda1(Rr) t se(epselect(s1)). This implies rda1(Rr) = L and together with As-
sumption 3 we obtain r1(Rr) = r′1(Rr). As sr2 and sr′2 do only depend on
register Rr and the contents are equal in both cases, we can conclude that
s2 ≈sda2,md2,rda2,srda2 s

′
2.

Case P (epselect(s1)) = (instr, (epa)) for instr ∈ {call, jmp, rcall, rjmp}:
All control flow instructions have in common, that no data storages are modified.
This directly gives s2 ≈sda2,md2,rda2,srda2 s

′
2. They do however modify the next

execution point, so we show epselect(s2) = epselect(s′2).
Instructions jmp and rjmp have ep2 = epa and ep′2 = epa statically by the

semantics of the instructions.
As we have by Assumption 1 that ep1 = ep′1 we can conclude that also

ep2 = ep′2 in the case of call and rcall, as both execution points are extended
by the semantics of the instructions in the same way.

Case P (epselect(s1)) = (ret, ()): The ret instruction does not modify any data
storages, giving s2 ≈sda2,md2,rda2,srda2 s

′
2 directly. It does however modify the next

execution point, so we show epselect(s2) = epselect(s′2).
As we have by Assumption 1 that ep1 = ep′1 we can conclude that also

ep2 = ep′2, as the same comparison and computation is performed on both of
them.

ut

C.4 Locally Respect

Lemma 5 (Locally Respect). Let P ∈ PROG be a program. For all states
s1, s2 ∈ STATE, clock cycles c ∈ N, domain assignments sda1, md1, rda1, srda1, sda2,
md2, rda2, srda2 and security environments se, if

1. se(epselect(s1)) = H
2. s1

c−→P s2
3. P, · · · , epselect(s1) : (sda1, md1, rda1, srda1) ` (sda2, md2, rda2, srda2)
4. sda1 ∈ {H}∗

then s1 ≈sda2,md2,rda2,srda2 s2, sda1 vs sda2, md1 v md2, rda1 v rda2 and
srda1 v srda2.

Proof (Lemma 5 – Locally Respect). Let P ∈ PROG be a program. Let s1, s2 ∈
STATE be states, c ∈ N be a clock cycle, sda1, md1, rda1, srda1, sda2, md2, rda2,
srda2 be domain assignments and se be a security environment, such that

1. se(epselect(s1)) = H
2. s1

c−→P s2
3. P, · · · , epselect(s1) : (sda1, md1, rda1, srda1) ` (sda2, md2, rda2, srda2)
4. sda1 ∈ {H}∗

55

It is now to show that s1 ≈sda2,md2,rda2,srda2 s2, sda1 vs sda2, md1 v md2, rda1 v
rda2 and srda1 v srda2.

This case is proven by a case distinction over the possibly executed in-
struction P (epselect(s1)). For this, let s1 = (sr1,m1, r1, st1, ep1) and s2 =
(sr2,m2, r2, st2, ep2).

Case P (epselect(s1)) = (push, (Rr)) The push instruction adds the contents of
register Rr to the stack and decrements the stack pointer by one. Thus, the stack
as well as the current register domain assignment is modified. From the typing
rules one obtains that spa = se(epselect(s1))t. . . and by Assumption 1, spa = H.
Furthermore, the domain assignments are updated as follows: sda2 = spa :: sda1,
rda2 = rda1[spl 7→ spa][spu 7→ spa]. As spa = H, all modified register’s security
domains are H after typing, such that r1 ≈rda2 r2 holds. As sda1 ∈ {H}∗ by
Assumption 4 and another H element is added to the stack domain assignment,
one obtains st1 'sda2 st2 by the definition of stack indistinguishability.

Case P (epselect(s1)) = (pop, (Rd)) The pop instruction removes the topmost
element from the stack and stores it in register Rd. Additionally the stack
pointer is incremented by one. Thus, the stack as well as the current regis-
ter domain assignment is modified. From the typing rules one obtains that
spa = se(epselect(s1)) t . . . and by Assumption 1, spa = H. Furthermore, the
domain assignments of the stack pointer is updated by sda′2 = spa :: sda1,
rda2 = rda1[spl 7→ spa][spu 7→ spa]. The register where the content is stored is
updated by sda2 = sda′2[Rd 7→ se(epselect(s1)) t . . .] and is by Assumption 1
set to H. Thus, all modified register’s security domains are H after typing, such
that r1 ≈rda2 r2 holds. As sda1 ∈ {H}∗ by Assumption 4 and a H element is
removed from the stack domain assignment, one obtains st1 'sda2 st2 by the
definition of stack indistinguishability.

Case P (epselect(s1)) = (instr, (epa)) for instr ∈ {breq, brne, brcc, brcs} and
P (epselect(s1)) = (cpse, (Rd,Rr)) All those instructions have in common that
no data storage is modified. That is, their small-step rules give sr1 = sr2,m1 =
m2, r1 = r2 and st1 = st2. This directly gives s1 ≈sda2,md2,rda2,srda2 s2. As a
consequence, their typing rules have sda1 = sda2, md1 = md2, rda1 = rda2 and
srda1 = srda2. This directly gives sda1 vs sda2, md1 v md2, rda1 v rda2 and
srda1 v srda2.

Case P (epselect(s1)) = (instr, (Rd,Rr, a)) for instr ∈ {ld, ldd} Instructions ld
and ldd load values from memory into register Rd. Depending on a, they also
increment or decrement the pointer register pair Rr. So another case distinction
over values of a is required:

a = # or instr = ldd: In this case, register pair Rr is left unmodified. From
the typing rules one gets that rda2 = rda1[Rd 7→ (se(epselect(s1))t. . .)] while all
other domain assignments are left unmodified. As Rd is the only modified register
by the small-step rules and one has that se(epselect(s1)) = H by Assumption 1,

56

one gets s1 ≈sda2,md2,rda2,srda2 s2 and sda1 vs sda2, md1 v md2, rda1 v rda2 and
srda1 v srda2 in this case.

a ∈ {+,−}: In this case, register Rd and register pair Rr are modified by
the small-step rules. Likewise, one gets that in the typing rules that rda2 =
rda1[Rd 7→ sd][regconvert-l(Rr) 7→ sd][regconvert-u(Rr) 7→ sd] where sd =
se(epselect(s1))t All other domain assignments are left unmodified. By As-
sumption 1 one gets that se(epselect(s1)) = H and as such, the security domain
of Rd and both registers of the register pair Rr are set to H. Thus, one can con-
clude that s1 ≈sda2,md2,rda2,srda2 s2 and sda1 vs sda2, md1 v md2, rda1 v rda2
and srda1 v srda2.

Case P (epselect(s1)) = (instr, (Rd,Rr, a)) for instr ∈ {st, std} Instructions
st and std load values from register Rr into the memory pointed to by register
Rd. Depending on a, they also increment or decrement the pointer register Rd.
So another case distinction over values of a is required:

a = # or instr = std: In this case, only the memory is modified. From the
typing rules one gets that md2 = se(epselect(s1)) t . . . while all other domain
assignments are left unmodified. As only the memory is modified by the small-
step rules and one has that se(epselect(s1)) = H by Assumption 1, one gets
s1 ≈sda2,md2,rda2,srda2 s2 and sda1 vs sda2, md1 v md2, rda1 v rda2 and srda1 v
srda2 in this case.

a ∈ {+,−}: In this case, the pointer register pair Rd and the memory are
modified by the small-step rules. Likewise, one gets that in the typing rules that
rda2 = rda1[regconvert-l(Rd) 7→ sd][regconvert-u(Rd) 7→ sd] and md2 = sd where
sd = se(epselect(s1))t All other domain assignments are left unmodified. By
Assumption 1 one gets that se(epselect(s1)) = H and as such memory security
domain as well as both pointer registers are set to H. Thus, one can conclude
that s1 ≈sda2,md2,rda2,srda2 s2 and sda1 vs sda2, md1 v md2, rda1 v rda2 and
srda1 v srda2.

Case P (epselect(s1)) = (adc, (Rd,Rr)) Instruction adc modifies register Rd and
status registers C and Z, according to contents of registers Rd, Rr and the carry
flag C. As we have in the typing rules that rda2 = rda1[Rd 7→ erg], srda2 =
srda1[Z 7→ erg][C 7→ erg] and erg = se(epselect(s1))t. . . and se(epselect(s1)) =
H by Assumption 1, it follows directly that s1 ≈sda2,md2,rda2,srda2 s2 as all mod-
ified data containers are H after modification. As md1 = md2, sda1 = sda2
and security domains in rda2 and srda2 have only been set to H, one gets
sda1 vs sda2, md1 v md2, rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (sbc, (Rd,Rr)) Instruction sbc modifies register Rd and
status registers C and Z, according to contents of registers Rd, Rr and the carry
flag C. Status register Z also depends on the previous value of Z. As we have
in the typing rules that rda2 = rda1[Rd 7→ erg], srda2 = srda1[Z 7→ erg][C 7→
erg] and erg = se(epselect(s1))t . . . and se(epselect(s1)) = H by Assumption 1,
it follows directly that s1 ≈sda2,md2,rda2,srda2 s2 as all modified data containers
are H after modification. As md1 = md2, sda1 = sda2 and security domains in

57

rda2 and srda2 have only been set to H, one gets sda1 vs sda2, md1 v md2,
rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (sbci, (Rd, k)) Instruction sbci modifies register Rd
and status registers C and Z, according to contents of register Rd, the given im-
mediate k and the carry flag C. Status register Z also depends on the previous
value of Z. As we have in the typing rules that rda2 = rda1[Rd 7→ erg], srda2 =
srda1[Z 7→ erg][C 7→ erg] and erg = se(epselect(s1))t. . . and se(epselect(s1)) =
H by Assumption 1, it follows directly that s1 ≈sda2,md2,rda2,srda2 s2 as all mod-
ified data containers are H after modification. As md1 = md2, sda1 = sda2
and security domains in rda2 and srda2 have only been set to H, one gets
sda1 vs sda2, md1 v md2, rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (instr, (Rd,Rr)) for instr ∈ {add, sub} Both possible
instructions have in common, that they modify register Rd and status registers
C and Z, according to contents of registers Rd and Rr. As we have in the typing
rules that rda2 = rda1[Rd 7→ erg], srda2 = srda1[Z 7→ erg][C 7→ erg] and
erg = se(epselect(s1))t . . . and se(epselect(s1)) = H by Assumption 1, it follows
directly that s1 ≈sda2,md2,rda2,srda2 s2 as all modified data containers are H after
modification. As md1 = md2, sda1 = sda2 and security domains in rda2 and
srda2 have only been set to H, one gets sda1 vs sda2, md1 v md2, rda1 v rda2
and srda1 v srda2.

Case P (epselect(s1)) = (instr, (Rd,Rr)) for instr ∈ {and, or} Both possible
instructions have in common, that they modify register Rd and status regis-
ter Z, according to contents of registers Rd and Rr. As we have in the typ-
ing rules that rda2 = rda1[Rd 7→ erg], srda2 = srda1[Z 7→ erg] and erg =
se(epselect(s1)) t . . . and se(epselect(s1)) = H by Assumption 1, it follows di-
rectly that s1 ≈sda2,md2,rda2,srda2 s2 as all modified data containers are H after
modification. As md1 = md2, sda1 = sda2 and security domains in rda2 and
srda2 have only been set to H, one gets sda1 vs sda2, md1 v md2, rda1 v rda2
and srda1 v srda2.

Case P (epselect(s1)) = (instr, (Rd, k)) for instr ∈ {dec, inc} Both possible in-
structions have in common, that they modify register Rd and status register Z,
according to contents of registers Rd. As we have in the typing rules that rda2 =
rda1[Rd 7→ se(epselect(s1))t . . .], srda2 = srda1[Z 7→ se(epselect(s1))t . . .] and
se(epselect(s1)) = H by Assumption 1, it follows directly that s1 ≈sda2,md2,rda2,srda2

s2 as all modified data containers are H after modification. As md1 = md2,
sda1 = sda2 and security domains in rda2 and srda2 have only been set to
H, one gets sda1 vs sda2, md1 v md2, rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (instr, (Rd, k)) for instr ∈ {lsr, neg, ror} All possible
instructions have in common, that they modify register Rd and status registers C
and Z, according to contents of registers Rd. As we have in the typing rules that
rda2 = rda1[Rd 7→ se(epselect(s1))t . . .], srda2 = srda1[C 7→ se(epselect(s1))t

58

. . .][Z 7→ se(epselect(s1)) t . . .] and se(epselect(s1)) = H by Assumption 1, it
follows directly that s1 ≈sda2,md2,rda2,srda2 s2 as all modified data containers are
H after modification. As md1 = md2, sda1 = sda2 and security domains in
rda2 and srda2 have only been set to H, one gets sda1 vs sda2, md1 v md2,
rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (eor, (Rd,Rr)) Instruction eor modifies register Rd and
status register Z, according to contents of registers Rd and Rr. As we have in
the typing rules that rda2 = rda1[Rd 7→ erg], srda2 = srda1[Z 7→ erg] and
erg = se(epselect(s1))t . . . and se(epselect(s1)) = H by Assumption 1, it follows
directly that s1 ≈sda2,md2,rda2,srda2 s2 as all modified data containers are H after
modification. As md1 = md2, sda1 = sda2 and security domains in rda2 and
srda2 have only been set to H, one gets sda1 vs sda2, md1 v md2, rda1 v rda2
and srda1 v srda2.

Case P (epselect(s1)) = (ldi, (Rd, k)) Instruction ldi modifies register Rd ac-
cording to value k. As we have in the typing rules that rda2 = rda1[Rd 7→
se(epselect(s1))] and se(epselect(s1)) = H by Assumption 1, it follows directly
that s1 ≈sda2,md2,rda2,srda2 s2 as all modified data containers are H after modi-
fication. As md1 = md2, sda1 = sda2, srda1 = srda2 and security domains in
rda2 have only been set to H, one gets sda1 vs sda2, md1 v md2, rda1 v rda2
and srda1 v srda2.

Case P (epselect(s1)) = (cp, (Rd,Rr)) Instruction cp modifies status registers C
and Z, according to contents of registers Rd and Rr. As we have in the typing
rules that srda2 = srda1[C 7→ erg][Z 7→ erg] and erg = se(epselect(s1))t. . . and
se(epselect(s1)) = H by Assumption 1, it follows directly that s1 ≈sda2,md2,rda2,srda2

s2 as all modified data containers are H after modification. As rda1 = rda2,
md1 = md2, sda1 = sda2 and security domains in rda2 and srda2 have only been
set to H, one gets sda1 vs sda2, md1 v md2, rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (cpc, (Rd,Rr)) Instruction cpc modifies status registers
C and Z, according to contents of registers Rd and Rr and status register C.
As we have in the typing rules that srda2 = srda1[C 7→ erg][Z 7→ erg] and
erg = se(epselect(s1))t . . . and se(epselect(s1)) = H by Assumption 1, it follows
directly that s1 ≈sda2,md2,rda2,srda2 s2 as all modified data containers are H after
modification. As rda1 = rda2, md1 = md2, sda1 = sda2 and security domains
in rda2 and srda2 have only been set to H, one gets sda1 vs sda2, md1 v md2,
rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (cpi, (Rd, k)) Instruction cpi modifies status registers
C and Z, according to contents of registers Rd and the given immediate value
k. As we have in the typing rules that srda2 = srda1[C 7→ erg][Z 7→ erg] and
erg = se(epselect(s1))t . . . and se(epselect(s1)) = H by Assumption 1, it follows
directly that s1 ≈sda2,md2,rda2,srda2 s2 as all modified data containers are H after
modification. As rda1 = rda2, md1 = md2, sda1 = sda2 and security domains

59

in rda2 and srda2 have only been set to H, one gets sda1 vs sda2, md1 v md2,
rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (clc, ()) Instruction clc resets the status register C to
0. As we have in the typing rules that srda2 = srda1[C 7→ se(epselect(s1))] and
se(epselect(s1)) = H by Assumption 1, it follows directly that s1 ≈sda2,md2,rda2,srda2

s2 as all modified data containers are H after modification. As md1 = md2,
sda1 = sda2, rda1 = rda2 and security domains in srda2 have only been set to
H, one gets sda1 vs sda2, md1 v md2, rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (cli, ()) Instruction cli resets the interrupt flag I to
0. As we do not consider this flag, neither small-step rule (cli) nor typing rule
(t-cli) has an effect. Thus, one gets directly that s1 ≈sda2,md2,rda2,srda2 s2, and as
all domain assignments remain unchanged, one gets sda1 vs sda2, md1 v md2,
rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (mov, (Rd,Rr)) Instruction mov copies the content of reg-
ister Rr into register Rd. As we have in the typing rule that rda2 = rda1[Rd 7→
se(epselect(s1)) t . . .] and se(epselect(s1)) = H by Assumption 1, it follows di-
rectly that s1 ≈sda2,md2,rda2,srda2 s2 as all modified data containers are H after
modification. As md1 = md2, sda1 = sda2, srda1 = srda2 and security domains
in rda2 have only been set to H, one gets sda1 vs sda2, md1 v md2, rda1 v rda2
and srda1 v srda2.

Case P (epselect(s1)) = (movw, (Rd,Rr)) Instruction movw copies the contents of
register pair Rr into register pair Rd. As we have in the typing rules that rda2 =
rda1[Rd 7→ erg][regconvert-u(Rd) 7→ erg] and erg = se(epselect(s1)) t . . . and
se(epselect(s1)) = H by Assumption 1, it follows directly that s1 ≈sda2,md2,rda2,srda2

s2 as all modified data containers are H after modification. As srda1 = srda2,
md1 = md2, sda1 = sda2 and security domains in rda2 have only been set to H,
one gets sda1 vs sda2, md1 v md2, rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (subi, (Rd, k)) Instruction subi modifies register Rd
and status registers C and Z, according to contents of register Rd and the given
immediate k. As we have in the typing rules that rda2 = rda1[Rd 7→ erg],
srda2 = srda1[Z 7→ erg][C 7→ erg] and erg = se(epselect(s1)) t . . . and
se(epselect(s1)) = H by Assumption 1, it follows directly that s1 ≈sda2,md2,rda2,srda2

s2 as all modified data containers are H after modification. As md1 = md2,
sda1 = sda2 and security domains in rda2 and srda2 have only been set to
H, one gets sda1 vs sda2, md1 v md2, rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (andi, (Rd, k)) Instruction andi modifies register Rd
and status register Z, according to contents of register Rd and the given imme-
diate k. As we have in the typing rules that rda2 = rda1[Rd 7→ erg], srda2 =
srda1[Z 7→ erg] and erg = se(epselect(s1))t . . . and se(epselect(s1)) = H by As-
sumption 1, it follows directly that s1 ≈sda2,md2,rda2,srda2 s2 as all modified data

60

containers are H after modification. As md1 = md2, sda1 = sda2 and security
domains in rda2 and srda2 have only been set to H, one gets sda1 vs sda2,
md1 v md2, rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (instr, (Rd, k)) for instr ∈ {adiw, sbiw} Both instruc-
tions modify register pair Rd and status registers C and Z, according to contents
of register pair Rd and the given immediate k. As we have in the typing rules
that rda2 = rda1[Rd 7→ erg][regconvert-u(Rd) 7→ erg], srda2 = srda1[Z 7→ erg]
and erg = se(epselect(s1)) t . . . and se(epselect(s1)) = H by Assumption 1,
it follows directly that s1 ≈sda2,md2,rda2,srda2 s2 as all modified data containers
are H after modification. As md1 = md2, sda1 = sda2 and security domains in
rda2 and srda2 have only been set to H, one gets sda1 vs sda2, md1 v md2,
rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (mul, (Rd,Rr)) Instruction mul modifies r0 and r1 and
status registers C and Z, according to contents of registers Rd and Rr. As
we have in the typing rules that rda2 = rda1[r0 7→ erg][r1 7→ erg], srda2 =
srda1[Z 7→ erg][C 7→ erg] and erg = se(epselect(s1))t. . . and se(epselect(s1)) =
H by Assumption 1, it follows directly that s1 ≈sda2,md2,rda2,srda2 s2 as all mod-
ified data containers are H after modification. As md1 = md2, sda1 = sda2
and security domains in rda2 and srda2 have only been set to H, one gets
sda1 vs sda2, md1 v md2, rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (in, (Rd, addr)) for addr ∈ {0x3d, 0x3e, 0x3f}: Accord-
ing to the semantics of in with the given addr, the register Rd is set to the
contents of spl for addr = 0x3d, to the contents of spu for addr = 0x3e and to
the contents of status registers C and Z in the case of addr = 0x3f. So in all
cases, only register Rd is modified.

According to (t-in-*) one obtains that rda2(Rd) = se(epselect(s1)) t . . .
while all other domain assignments are left unmodified. As se(epselect(s1)) =
H by Assumption 1, one directly obtains that rda2(Rd) = H and as such,
s1 ≈sda2,md2,rda2,srda2 s2 is given. As only one register is set to H and nothing
else is modified, sda1 vs sda2, md1 v md2, rda1 v rda2 and srda1 v srda2 also
holds.

Case P (epselect(s1)) = (out, (addr,Rr)) for addr ∈ {0x3d, 0x3e}: According to
the semantics of out with the given addr, spl is set to the contents of register
Rr in the case of addr = 0x3d or spu is set to the contents of register Rr in
the case of addr = 0x3e. We show the case for addr = 0x3d. The other case is
shown analogously, replacing spl with spu.

According to rule (t-out-sp-*) one obtains that rda2(spl) = se(epselect(s1))t
. . . and as se(epselect(s1)) = H by Assumption 1, it must be that rda2(spl) = H.
As spl is the only modified register and all other domain assignments are left
unmodified, we can conclude s1 ≈sda2,md2,rda2,srda2 s2 and sda1 vs sda2, md1 v
md2, rda1 v rda2 and srda1 v srda2.

61

Case P (epselect(s1)) = (out, (0x3f, Rr)): The instruction sets the content of
status registers C and Z according to the contents of register Rr.

According to rule (t-out-stat) one obtains that srda2(C) = se(epselect(s1))t
. . . and as se(epselect(s1)) = H by Assumption 1, it must be that srda2(C) = H.
Again, according to rule (t-out-stat) one obtains that srda2(Z) = se(epselect(s1))t
. . . and as se(epselect(s1)) = H by Assumption 1, it must be that srda2(Z) = H.

As all modified status registers are H and all other domain assignments
are left unmodified, it follows that s1 ≈sda2,md2,rda2,srda2 s2 and sda1 vs sda2,
md1 v md2, rda1 v rda2 and srda1 v srda2.

Case P (epselect(s1)) = (instr, (epa)) for instr ∈ {call, jmp, rcall, rjmp}:
All control flow instructions have in common, that no data storages are mod-
ified. As such, also no domain assignments are modified. This directly gives
s1 ≈sda2,md2,rda2,srda2 s2 and sda1 vs sda2, md1 v md2, rda1 v rda2 and
srda1 v srda2.

Case P (epselect(s1)) = (ret, ()): The ret instruction does not modify and data
storages. As such, also no domain assignments are modified. This directly gives
s1 ≈sda2,md2,rda2,srda2 s2 and sda1 vs sda2, md1 v md2, rda1 v rda2 and srda1 v
srda2.

ut

C.5 High Branching

Lemma 6 (High Branching). Let P ∈ PROG be a program. For all states
s1, s

′
1, s2, s

′
2 ∈ STATE, clock cycles c, c′ ∈ N, domain assignments sda1, md1, rda1,

srda1, sda2, md2, rda2, srda2 and security environments se, if

1. epselect(s1) = epselect(s′1)
2. epselect(s2) 6= epselect(s′2)
3. s1 ≈sda1,md1,rda1,srda1 s

′
1

4. s1
c−→P s2

5. s′1
c′−→P s′2

6. P, · · · , epselect(s1) : (sda1, md1, rda1, srda1) ` (sda2, md2, rda2, srda2)

then se(ep) = H for all ep ∈ regionP (epselect(s1)) and sda2 ∈ {H}∗.

Proof (Lemma 6 – High Branching). Let P ∈ PROG be a program. Let s1, s
′
1, s2, s

′
2 ∈

STATE be states, c, c′ ∈ N be clock cycles, sda1, md1, rda1, srda1, sda2, md2, rda2,
srda2 be domain assignments and se be a security environment, such that

1. epselect(s1) = epselect(s′1)
2. epselect(s2) 6= epselect(s′2)
3. s1 ≈sda1,md1,rda1,srda1 s

′
1

4. s1
c−→P s2

5. s′1
c′−→P s′2

62

6. P, · · · , epselect(s1) : (sda1, md1, rda1, srda1) ` (sda2, md2, rda2, srda2)

It is now to show that se(ep) = H for all ep ∈ regionP (epselect(s1)) and sda2 ∈
{H}∗. For this, let s1 = (sr1,m1, r1, st1, ep1) and s′1 = (sr′1,m

′
1, r
′
1, st

′
1, ep

′
1).

As we have that epselect(s2) 6= epselect(s′2), a branching instruction must
reside at epselect(s1). We perform a case distinction on the possible branching
instructions:

Case P (epselect(s1)) ∈ {(breq, (epa)), (brne, (epa))}: By small-step rules, the
branching decision is based on the the Z flag. As we have by Assumption 2 that
epselect(s2) 6= epselect(s′2) it follows that sr1(Z) 6= sr′1(Z) and together with
Assumption 3 that s1 ≈sda1,md1,rda1,srda1 s

′
1 it must be that srda1(Z) = H.

Together, the typing rule used in Assumption 6 must have been (t-brZ-h)
which does exactly require that se(ep) = H, ∀ep′ ∈ regionP (epselect(s1)) :
se(ep′) = H and sda2 = lift(sda1,H), which forces sda2 ∈ {H}∗, what was
to show.

Case P (epselect(s1)) ∈ {(brcc, (epa)), (brcs, (epa))}: By small-step rules, the
branching decision is based on the the C flag. As we have by Assumption 2 that
epselect(s2) 6= epselect(s′2) it follows that sr1(C) 6= sr′1(C) and together with
Assumption 3 that s1 ≈sda1,md1,rda1,srda1 s

′
1 it must be that srda1(C) = H.

Together, the typing rule used in Assumption 6 must have been (t-brC-h)
which does exactly require that se(ep) = H, ∀ep′ ∈ regionP (epselect(s1)) :
se(ep′) = H and sda2 = lift(sda1,H), which forces sda2 ∈ {H}∗, what was
to show.

Case P (epselect(s1)) = (cpse, (Rd,Rr)): By small-step rules, the branching
decision is based on the the contents of registers Rd and Rr. As we have by
Assumption 2 that epselect(s2) 6= epselect(s′2) it follows that (without loss of
generality) r1(Rd) = r1(Rr) and r′1(Rd) 6= r′1(Rr). Together with Assumption 3
that s1 ≈sda1,md1,rda1,srda1 s

′
1 it must be that at least one of rda1(Rd) = H or

rda1(Rr) = H holds, as otherwise states s1 and s′1 would have to agree on the
contents of both registers.

Together, the typing rule used in Assumption 6 must have been (t-cpse-h) or
(t-cpse-h2w) as rda1(Rd) t rda1(Rr) = H. Both rules do exactly require that
se(ep) = H, ∀ep′ ∈ regionP (epselect(s1)) : se(ep′) = H and sda2 = lift(sda1,H),
which forces sda2 ∈ {H}∗, what was to show.

At this point, all possible cases have been considered. ut

C.6 Indistinguishability after High Branching

Lemma 7 (Indistinguishability after High Branching). Let P ∈ PROG

be a program. For all natural numbers n ∈ N, states si ∈ STATE, clock cycles
ci ∈ N, domain assignments sdai, mdi, rdai, srdai, security environments se for
each i ∈ {0, . . . , n}, if

63

1. se(epselect(si)) = H for all i ∈ {0, . . . , n}
2. s0

c0−→P · · ·
cn−1−−−→P sn

3. for all j, k ∈ {0, . . . , n} if epselect(sj) P epselect(sk) there are sdak′ , mdk′ ,
rdak′ , srdak′ such that the judgment P, · · · , epselect(sj) : (sdaj , mdj , rdaj ,
srdaj) ` (sdak′ , mdk′ , rdak′ , srdak′) is derivable and sdak′ v sdak, mdk′ v
mdk, rdak′ v rdak, srdak′ v srdak.

4. sda0 ∈ {H}∗

then s0 ≈sdan,mdn,rdan,srdan sn.

Proof (Lemma 7 – Indistinguishability after High Branching). Let P ∈ PROG be
a program, n ∈ N be a natural number, si ∈ STATE be states, ci ∈ N be clock
cycles, sdai, mdi, rdai, srdai be domain assignments for i ∈ {0, . . . , n} and se be
a security environment such that

1. se(ep) = H for all ep ∈ {epselect(s) | s ∈ {s0, . . . , sn}
2. s0

c0−→P · · ·
cn−1−−−→P sn

3. for all j, k ∈ {0, . . . , n} if epselect(sj) P epselect(sk) there are sdak′ , mdk′ ,
rdak′ , srdak′ such that the judgment P, · · · , epselect(sj) : (sdaj , mdj , rdaj ,
srdaj) ` (sdak′ , mdk′ , rdak′ , srdak′) is derivable and sdak′ v sdak, mdk′ v
mdk, rdak′ v rdak, srdak′ v srdak.

4. sda0 ∈ {H}∗

It is now to show that s0 ≈sdan,mdn,rdan,srdan sn. We prove this by induction on
the number of execution steps n in sequence 2.

Base Case: Assume n = 0, then s0 = sn and we obtain s0 ≈sdan,mdn,rdan,srdan s0
as ≈ is reflexive by Lemma 1.

Induction Hypothesis: The proof goal and sdai vs sdan, mdi v mdn, rdai v
rdan and srdai v srdan for all i < n is assumed to hold for all execution
sequences that are shorter than n steps, whenever the prerequisites are satisfied.

Induction Step: Let n ∈ N be arbitrary and n > 0. Then it is to show that
s0 ≈sdan,mdn,rdan,srdan sn. As s0 is in a H security environment by Assumption
1, a judgment is derivable by Assumption 3 and sda0 ∈ {H}∗ by Assumption
4, Lemma 5 (Locally Respect) is applicable. Applying Lemma 5 to s0 gives
s0 ≈sda1,md1,rda1,srda1 s1 and sda0 vs sda1, md0 v md1, rda0 v rda1 and srda0 v
srda1. Applying the induction hypothesis to the remaining execution sequence
starting in s1, which has now length n′ = n − 1 and is as such smaller than n,
leads to s1 ≈sdan,mdn,rdan,srdan sn, sda1 vs sdan, md1 v mdn, rda1 v rdan and
srda1 v srdan.

As ≈ is monotone by Lemma 2, one can conclude s0 ≈sdan,mdn,rdan,srdan sn,
what was to show. ut

64

C.7 Timing Indistinguishability after High Branching

Definition 50 (Branching Depth). Let P ∈ PROG be a program and r ∈
{then, else}. The function branchdepthP : EPS→ N is defined by

branchdepthrP (ep) :=

{
0 if ¬∃ep′ ∈ regionrP (ep) : regionP (ep′) 6= ∅
1 + max(b) else

where b = {branchdepthr
′

P (ep′) | ep′ ∈ regionrP (ep) ∧ r′ ∈ {then, else}}.

The following proof performs an induction over the branching depth, given by
the branchdepthP function. Intuitively, the branching depth denotes how many
branches are nested inside each other. A branching depth of 0 means that there
are no other branchings inside the control dependence region of a branching
instruction.

Lemma 8 (Correctness of branchtimeP). Let P ∈ PROG be a program. For all
natural numbers n ∈ N, states s0, . . . , sn ∈ STATE, clock cycles c0, . . . , cn−1 ∈ N
security environments se and r ∈ {then, else}, if

1. P (epselect(s0)) is a branching instruction
2. se(epselect(s0)) = H
3. epselect(sn) = junP (epselect(s0))
4. epselect(s1) ∈ regionrP (epselect(s0))

5. s0
c0−→P · · ·

cn−1−−−→P sn
6. for all j, k ∈ {0, . . . , n} if epselect(sj) P epselect(sk) there are sdak′ , mdk′ ,

rdak′ , srdak′ such that the judgment P, · · · , epselect(sj) : (sdaj , mdj , rdaj ,
srdaj) ` (sdak′ , mdk′ , rdak′ , srdak′) is derivable and sdak′ v sdak, mdk′ v
mdk, rdak′ v rdak, srdak′ v srdak.

then branchtimerP (epselect(s0)) =
∑n−1

i=1 ci.

Lemma Correctness of branchtimeP shall ensure that the branchtimeP does
what it is supposed to do. Namely, for a branching instruction (1) in a high secu-
rity environment (2), it shall give the execution time of a typable (6) execution
(5) up to the junction point (4).

Proof (Lemma 8 – Correctness of branchtimeP). Let P ∈ PROG be a program.
Let n ∈ N, c0, . . . , cn−1 ∈ N be clock cycles and s0, . . . , sn ∈ STATE be states, se
be a security environment and let r ∈ {then, else} such that

1. P (epselect(s0)) is a branching instruction
2. se(epselect(s0)) = H
3. epselect(sn) = junP (epselect(s0))
4. epselect(s1) ∈ regionrP (epselect(s0))

5. s0
c0−→P · · ·

cn−1−−−→P sn

65

6. for all j, k ∈ {0, . . . , n} if epselect(sj) P epselect(sk) there are sdak′ , mdk′ ,
rdak′ , srdak′ such that the judgment P, · · · , epselect(sj) : (sdaj , mdj , rdaj ,
srdaj) ` (sdak′ , mdk′ , rdak′ , srdak′) is derivable and sdak′ v sdak, mdk′ v
mdk, rdak′ v rdak, srdak′ v srdak.

it is now to show that branchtimerP (epselect(s0)) =
∑n−1

i=1 ci.
As epselect(s0) is typable and in a high security environment, all typing rules

of branching instructions require that ¬loopP (epselect(s0)). As such, one gets
that no execution point is reached twice inside the sequence of Assumption 5.
We prove this goal by induction over the branching depth of epselect(s0).

Base Case: Let branchdepthrP (epselect(s0)) = 0, that is, there are no further
branching instructions inside the region of epselect(s0). This gives that for all
ep ∈ regionP (epselect(s0)) it holds that regionP (ep) = ∅. As such, the calculations
using the branchtimerP function simplifies to

branchtimerP (epselect(s0)) =
∑

epi∈region
r
P (epselect(s0))

t(P (epi)) (1)

Additionally, branching instructions are the only ones where it can hap-
pen that ci 6= t(P (epselect(si))). So we get ci = t(P (epselect(si))) for all i ∈
{1, . . . , n− 1}. Furthermore, no more branching instructions and Assumption 3
give regionrP (epselect(s0)) = {epselect(si) | i ∈ {1, . . . , n − 1}}. Together with
Equation (1) this gives

branchtimerP (epselect(s0)) =

n−1∑
i=1

ci

what was to show.

Induction Hypothesis: The proof goal is assumed to hold for all ep with branchdepthrP (ep) <
m.

Induction Step: To simplify argumentation, we split up the sum of the branchtimeP
to

branchtimerP (ep) :=
∑

epi∈region
r
P (ep)

t(P (epi))−
∑

epi∈region
r
P (ep)

branchtimethenP (epi) (2)

Let branchdepthrP (epselect(s0)) = m with m > 0. Then there is at least one
additional branching instruction inside the r region and its junction point is
reached. Let epselect(sj) point to an arbitrary reached branching instruction
and let k ∈ N be such that junP (epselect(sj)) = epselect(sk). As epselect(sj)
points to a branching instruction, either the “then” or the “else” branch are
executed.

Observe the positive sum in (2). For the control dependence regions it holds
that regionP (epselect(sj)) ⊆ regionrP (epselect(s0)), so the positive sum is too
large as both possible branches are inside the positive sum. One has to make

66

sure that only one of the taken branches of epselect(sj) is part of the result. We
argue why this is correctly handled by the negative sum in (2).

By definition of branchdepthrP , one gets that branchdepthr
′

P (epselect(sj)) <
m for either r′ = then or r′ = else. This gives, by the induction hypothesis,

correctness for branchtimer
′

P (epselect(sj)) for either r′ = then or r′ = else. More
concretely, let

branchtimer
′

P (epselect(sj)) =

k−1∑
i=j+1

ci (3)

for either r′ = then or r′ = else.
As epselect(sj) is typable according to Assumption 6, one gets that

br + branchtimethenP (epselect(sj)) = branchtimeelseP (epselect(sj)) (4)

For r′ = then, one gets that cj = t(P (epselect(sj))) + br and for r′ = else one
gets that cj = t(P (epselect(sj))). Together, this gives

t(P (epselect(sj))) + branchtimeelseP (epselect(sj)) =

k−1∑
i=j

ci

Note, that only t(P (epselect(sj))) is part of the positive sum in calculation

(2). Inside the subtraction, it is thus correct to subtract branchtimethenP (epselect(sj)),
as this leaves an additional br inside the sum and equals exactly the other
branches execution time, which is not executed.

The given argument can be repeated for every other branching instruction
found inside regionrP (epselect(s0)) to conclude the induction step.

Lemma 9 (Timing Indistinguishability after High Branching). Let P ∈
PROG be a program. For all natural numbers n,m ∈ N, states s1i , s

2
j ∈ STATE,

clock cycles c1i , c
2
j ∈ N, domain assignments sdaep, mdep, rdaep, srdaep, security

environments se for each i ∈ {0, . . . , n}, each j ∈ {0, . . . ,m} and each ep ∈
{epselect(s) | s ∈ {s10, . . . , s1n, s20, . . . s2m}}, if

1. P (epselect(s10)) is a branching instruction
2. epselect(s10) = epselect(s20)
3. se(epselect(s10)) = H
4. epselect(s1n) = epselect(s2m) = junP (epselect(s10))

5. s10
c10−→P · · ·

c1n−1−−−→P s1n

6. s20
c20−→P · · ·

c2m−1−−−→P s2m
7. for all ep1, ep2 ∈ {epselect(s) | s ∈ {s10, . . . , s1n, s20, . . . s2m}} if ep1 P ep2

there are sda′ep2
, md′ep2

, rda′ep2
, srda′ep2

such that the judgment P, · · · , ep1 :
(sdaep1

, mdep1
, rdaep1

, srdaep1
) ` (sda′ep2

, md′ep2
, rda′ep2

, srda′ep2
) is derivable

and sda′ep2
v sdaep2 , md′ep2

v mdep2 , rda′ep2
v rdaep2 , srda′ep2

v srdaep2 .

then
∑n

0 c
1
n =

∑m
0 c2m.

67

Proof (Lemma 9 – Timing Indistinguishability after High Branching). Let P ∈
PROG be a program. Let n,m ∈ N be natural numbers, s1i , s

2
j ∈ STATE be

states, c1i , c
2
j ∈ N be clock cycles, sdaep, mdep, rdaep, srdaep be domain assign-

ments for each i ∈ {0, . . . , n}, j ∈ {0, . . . ,m} and ep ∈ {epselect(s) | s ∈
{s10, . . . , s1n, s20, . . . s2m}} and let se be a security environment, such that

1. P (epselect(s10)) is a branching instruction
2. epselect(s10) = epselect(s20)
3. se(epselect(s10)) = H
4. epselect(s1n) = epselect(s2m) = junP (epselect(s0))

5. s10
c10−→P s11

c11−→P · · ·
c1n−1−−−→P s1n

6. s20
c20−→P s21

c21−→P · · ·
c2m−1−−−→P s2m

7. for all ep1, ep2 ∈ {epselect(s) | s ∈ {s10, . . . , s1n, s20, . . . s2m}} if ep1 P ep2
there are sda′ep2

, md′ep2
, rda′ep2

, srda′ep2
such that the judgment P, · · · , ep1 :

(sdaep1
, mdep1

, rdaep1
, srdaep1

) ` (sda′ep2
, md′ep2

, rda′ep2
, srda′ep2

) is derivable
and sda′ep2

v sdaep2 , md′ep2
v mdep2 , rda′ep2

v rdaep2 , srda′ep2
v srdaep2 .

It is now to show that
∑n−1

i=0 c
1
i =

∑m−1
i=0 c2i .

As epselect(s10) is typable and in a high security environment, all typing rules
of branching instructions require that ¬loopP (epselect(s10)). As such, one gets
that no execution point is reached twice inside the sequences 5 and 6.

After this first observation, the goal is shown by a case distinction on the
second reached execution point.

Case epselect(s11) = epselect(s21): In this case, the same small-step rule must have
been executed. This leads to c10 = c20. By application of Lemma 8 one gets that

branchtimerP (epselect(s10)) =
∑n−1

i=1 c
1
i and branchtimer

′

P (epselect(s20)) =
∑m−1

i=1 c2i .
As epselect(s11) = epselect(s21) we get that r = r′. Together, we obtain what was
to show.

Case epselect(s11) 6= epselect(s21): In this case, one gets without loss of generality
that epselect(s11) ∈ regionthenP (epselect(s10)) and epselect(s21) ∈ regionelseP (epselect(s10)).
This holds true because of SOAP1 that separates both following execution points
into separate regions. It can be assumed without loss of generality, because se-
quences 5 and 6 are interchangeable.

Typability of the branching instruction at epselect(s10) now gives the equality

n · br + branchtimethenP (epselect(s10)) = branchtimeelseP (epselect(s10)) (5)

as requirement for the values of the branchtime function, where n = 2 for the
case where (t-cpse-h2w) is used and n = 1 in all other cases.

Application of Lemma 8 now gives

branchtimethenP (epselect(s10)) =

n−1∑
i=1

c1i (6)

68

branchtimeelseP (epselect(s10)) =

m−1∑
i=1

c2i (7)

Inspecting the small-step semantic rules for branching instructions give re-
quired clock cycles c10 = t + n · br for the “then” case and c20 = t for the “else”
case, for some t ∈ N.

This gives us the following equation

n−1∑
i=0

c1n = c10 +

n−1∑
i=1

c1i

= t+ n · br +

n−1∑
i=1

c1i

(6)
= t+ n · br + branchtimethenP (epselect(s10))

(5)
= t+ branchtimeelseP (epselect(s10))

(7)
= t+

m−1∑
i=1

c2i

=

m−1∑
i=0

c2i

what was to show. ut

C.8 Security of Typable Sequences

Lemma 10 (Security of Typable Sequences). Let P ∈ PROG be a program.
For all natural numbers n,m ∈ N, states s1i , s

2
j ∈ STATE, clock cycles c1i , c

2
j ∈

N, domain assignments sdaep, mdep, rdaep, srdaep, security environments se for
each i ∈ {0, . . . , n}, each j ∈ {0, . . . ,m} and each ep ∈ {epselect(s) | s ∈
{s10, . . . , s1n, s20, . . . s2m}}, if

1. epselect(s10) = epselect(s20)
2. epselect(s1n) = ε
3. se(epselect(s2m)) = L
4. s10 ≈sdaep,mdep,rdaep,srdaep s

2
0 for ep = epselect(s10).

5. s10
c10−→P · · ·

c1n−1−−−→P s1n

6. s20
c20−→P · · ·

c2m−1−−−→P s2m
7. for all ep1, ep2 ∈ {epselect(s) | s ∈ {s10, . . . , s1n, s20, . . . s2m}} if ep1 P ep2

there are sda′ep2 , md
′
ep2 , rda

′
ep2 , srda

′
ep2 such that the judgment P, · · · , ep1 :

(sdaep1 , mdep1 , rdaep1 , srdaep1) ` (sda′ep2
, md′ep2

, rda′ep2
, srda′ep2

) is derivable
and sda′ep2

v sdaep2
, md′ep2

v mdep2
, rda′ep2

v rdaep2
, srda′ep2

v srdaep2

and se is the smallest security environment that can be used in the derivation.

then there exists d ∈ N such that

69

1. d ≤ n
2. epselect(s1d) = epselect(s2m)
3. s1d ≈sdaep′ ,mdep′ ,rdaep′ ,srdaep′ s

2
m for ep′ = epselect(s1d)

4.
∑d−1

i=0 c
1
i =

∑m−1
i=0 c2i

Proof (Lemma 10 – Security of Typable Sequences). Let P ∈ PROG be a program.
Let n,m ∈ N be natural numbers, s1i , s

2
j ∈ STATE be states, c1i , c

2
j ∈ N be

clock cycles, sdaep, mdep, rdaep, srdaep be domain assignments for i ∈ {0, . . . , n},
j ∈ {0, . . . ,m} and ep ∈ {epselect(s) | s ∈ {s10, . . . , s1n, s20, . . . s2m}} and let se be
a security environment, such that

1. epselect(s10) = epselect(s20)
2. epselect(s1n) = ε
3. se(epselect(s2m)) = L
4. s10 ≈sdaep,mdep,rdaep,srdaep s

2
0 for ep = epselect(s10)

5. s10
c10−→P · · ·

c1n−1−−−→P s1n

6. s20
c20−→P · · ·

c2m−1−−−→P s2m
7. for all ep1, ep2 ∈ {epselect(s) | s ∈ {s10, . . . , s1n, s20, . . . s2m}} if ep1 P ep2

there are sda′ep2 , md
′
ep2 , rda

′
ep2 , srda

′
ep2 such that the judgment P, · · · , ep1 :

(sdaep1 , mdep1 , rdaep1 , srdaep1) ` (sda′ep2
, md′ep2

, rda′ep2
, srda′ep2

) is derivable
and sda′ep2

v sdaep2
, md′ep2

v mdep2
, rda′ep2

v rdaep2
, srda′ep2

v srdaep2
and

se is the smallest security environment that can be used in the derivation.

Now it is to show that there is a d ∈ N such that

1. d ≤ n
2. epselect(s1d) = epselect(s2m)
3. s1d ≈sdaep,mdep,rdaep,srdaep s

2
m for ep = epselect(s1d)

4.
∑d−1

i=0 c
1
i =

∑m−1
i=0 c2i

We prove this objective by induction over m, thus over the length of the
execution sequence denoted by requirement 6.

Base Case: In the base case, it is m = 0, thus d = 0 is a valid choice. In this
case we get epselect(s10) = epselect(s20) by Assumption 1, s10 ≈sdaep,mdep,rdaep,srdaep

s20 for ep = epselect(s1d) by Assumption 4 and
∑−1

i=0 c
1
i =

∑−1
i=0 c

2
i is trivially

satisfied, as both sides equal 0.

Induction Hypothesis: The proof goal is assumed to hold whenever m′ < m and
the prerequisites are satisfied.

Induction Step: Assume m > 0. In this case, there is a transition s20
c20−→P s21.

By assumption 1, one gets epselect(s10) = epselect(s20) and by Assumption 2
epselect(s1n) = ε. As there is a transition into s21, both s10 and s20 can not be
terminating states. Thus, one gets that n > 0 and the existence of state s11

70

inside the execution sequence 5. We further perform a case distinction on the
security environment of the first execution point epselect(s20) in sequence 6.

Case se(epselect(s20)) = L: The assumption in this case together with as-
sumptions 1, 4, 5, 6 and 7 satisfy the prerequisites for Lemma 4 (Step Consis-
tent). Application of this lemma gives s11 ≈sdaep,mdep,rdaep,srdaep s

2
1, epselect(s11) =

epselect(s21) and c11 = c21 for ep = epselect(s11).
The remaining sequence starting from s21 is now strictly shorter than m steps

and by the results gained from locally respect, the assumptions 1-7 do still hold,
such that applying the induction hypothesis concludes this case.

Case se(epselect(s20)) = H: We perform an additional case distinction on
P (epselect(s20)), whether it is a branching instruction or not.

Case P (epselect(s20)) is a branching instruction: By Lemma 6 one gets that
every execution point inside the region of epselect(s20) has a high execution en-
vironment and sdaepselect(s20) ∈ {H}

∗. As we have by the Assumption 3 that

se(epselect(s2m)) = L, there has to be a junction point of the branching in-
struction, as otherwise by Lemma 6 se(epselect(s2m)) would be H. Let s2c denote
the state at which this junction point is reached. That is, junP (epselect(s20)) =
epselect(s2c) has to hold. By Assumption 1 and the case that execution sequence 5
leads to termination, the execution starting in s10 has to pass this junction point
as well. Thus, choose d ∈ N such that epselect(s1d) = epselect(s2c).

One can now apply Lemma 7 twice to obtain that s10 ≈sdaep,mdep,rdaep,srdaep s
1
d

and s20 ≈sdaep,mdep,rdaep,srdaep s2c for ep = epselect(s1d) = epselect(s2c). As ≈ is
transitive by Lemma 3 one obtains by Assumption 4 and the previous indistin-
guishability result that

s1d ≈sdaep,mdep,rdaep,srdaep s
2
c (8)

By application of Lemma 9 one obtains directly that

d−1∑
i=0

c1i =

c−1∑
i=0

c2i (9)

The remaining sequence starting from state s2c is now strictly shorter and
the indistinguishability requirement is still satisfied by (8), allowing the appli-
cation of the induction hypothesis together with the sequence starting from
states s1d and s2c . This gives a d′ ∈ N such that epselect(s1d′) = epselect(s2m),

s1d′ ≈sdaep′ ,mdep′ ,rdaep′ ,srdaep′ s
2
m for ep′ = epselect(s1d′) and

∑n−1
i=d c

1
i =

∑m−1
i=c c2i .

Those directly conclude goals 1 to 3. Goal 4 can be obtained by combining∑n−1
i=d c

1
i =

∑m−1
i=c c2i with the result (9).

Case P (epselect(s20)) is not a branching instruction: As we are in a high
security environment in this case, there has to be some branching instruction
on secrets prior to s20. This follows from Assumption 7, that se is minimal, and
Lemma 6 (High Branching), which is the only way an execution point can obtain
a H security environment. Otherwise, P (epselect(s20)) could not be high. That
is, there has to be some ep ∈ EPS such that epselect(s20) ∈ regionP (ep). The
remainder of this case is now shown analogously as in the previous case using

71

Lemma 7, Lemma 9 and the induction hypothesis on the junction point of the
branching of ep.

This concludes both open case distinctions as all cases have been considered
and as such the proof of the induction step is complete. ut

C.9 Soundness

Proof (Theorem 1 – Soundness). Let p ∈ PROG be a program and eps ∈ EPS

be an execution point. Let p be typable starting from eps with initial domain
assignments sdaeps , mdeps , rdaeps , srdaeps and final domain assignments sdaepf ,
mdepf , rdaepf , srdaepf .

It is then to show that p satisfies TSNI starting from eps with the same do-
main assignments. That is, let s10, s

2
0, s

1
n, s

2
m ∈ STATE be states and n,m, c1, c2 ∈

N such that

1. s10 ≈sdaeps ,mdeps ,rdaeps ,srdaeps
s20

2. epselect(s10) = epselect(s20) = eps
3. s10 ⇓c

1

P s1n
4. s20 ⇓c

2

P s2m
5. epselect(s1n) = epselect(s2m) = epf

Now it has to hold that

Goal I s1n ≈sdaepf ,mdepf ,rdaepf ,srdaepf
s2m

Goal II c1 = c2

Performing an expansion on the big-step semantics leads to

s10
c10−→P · · ·

c1n−2−−−→P s1n−1
c1n−1−−−→P s1n (10)

and

s20
c20−→P · · ·

c2m−2−−−→P s2m−1
c2m−1−−−→P s2m (11)

for some intermediate states s11, . . . , s
1
n−1 and s21, . . . , s

2
m−1 and clock cycles

c10, . . . , c
1
n−1 and c20, . . . , c

2
m−1. Note, as rule (Ter) is the only way to reach ter-

mination and it requires the execution of a ret instruction, one gets that n ≥ 1
and m ≥ 1. According to rules (Seq) and (Ter), the times are the sum over each

small-step timing, giving c1 =
∑n−1

i=0 c
1
i and c2 =

∑m−1
i=0 c2i . And, according to

(Ter), one gets that epselect(s1n) = epselect(s2m) = ε as both are terminating
states according to assumptions 3 and 4.

The goal is now to apply Lemma 10 (Security of Typable Sequences) on the
state sequences (10) and (11), where (11) is truncated by the last small-step
execution, such that s2m−1 is the last state. We thus check the prerequisites of
Lemma 10. By the observations above, prerequisites 2, 5 and 6 are satisfied. As
P is typable with at least one security environment, let se be the smallest such.
Prerequisite 7 is then given by the typability assumption and this smallest se.
Prerequisites 4 is given by assumption 1, prerequisite 1 is given by assumption 2.

72

Prerequisite 3, that s2m−1 is in a L security environment, is seen to be satisfied, as
it has to point to a ret instruction in a L security environment. A ret instruction
can only be in a H security environment by being inside a region that involves
branchings on secrets. This is not possible by Assumption 1.

Now that Lemma 10 is applicable, its application as described gives a d ≤ n,
such that

1. epselect(s1d) = epselect(s2m−1)
2. s1d ≈sda

ep1
d
,md

ep1
d
,rda

ep1
d
,srda

ep1
d

s2m−1, where ep1d = epselect(s1d)

3.
∑d−1

i=0 c
1
i =

∑m−2
i=0 c2i

As state s1n is a terminating state as well, we get that s1n−1 has to be a ret

instruction. As this one is unique by Assumption 1, we get d = n− 1 by the as-
sumption about the execution sequence (10) and thus s1n−1 ≈sdaep,mdep,rdaep,srdaep

s2m−1, where ep = epselect(s1n−1), and
∑n−2

i=0 c
1
i =

∑m−2
i=0 c2i .

As argued before, epselect(s1n−1) and epselect(s2m−1) have to point to a ret

instruction and as such be in a L security environment. This, together by the re-
sults gained after applying Lemma 10, lead to that the prerequisites of Lemma 4
(Step Consistent) are satisfied. Applying Lemma 4 on s1n−1 and s2m−1 allows to
conclude that

1. s1n ≈sdaep′ ,mdep′ ,rdaep′ ,srdaep′ s
2
m, where ep′ = epselect(s1n)

2. epselect(s1n) = epselect(s2m) = epf
3. c1n−1 = c2m−1

From 1 and 2 we directly obtain Goal I and by combining 3 with the previous
result that

∑n−2
i=0 c

1
i =

∑m−2
i=0 c2i , we obtain Goal II. ut

73

References

1. Atmel: ATmega 8 Datasheet (02 2013), http://www.atmel.com/images/

atmel-2486-8-bit-avr-microcontroller-atmega8_l_datasheet.pdf,
rev.2486AA–AVR–02/2013

2. Atmel: Atmel AVR 8-bit Instruction Set: Instruction Set Manual (07 2014),
http://www.atmel.com/images/atmel-0856-avr-instruction-set-manual.pdf,
rev. 0856J–AVR–07/2014

74

http://www.atmel.com/images/atmel-2486-8-bit-avr-microcontroller-atmega8_l_datasheet.pdf
http://www.atmel.com/images/atmel-2486-8-bit-avr-microcontroller-atmega8_l_datasheet.pdf
http://www.atmel.com/images/atmel-0856-avr-instruction-set-manual.pdf

	Addendum to ``AVR Processors as a Platform for Language-Based Security''

