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Abstract. Current standard security practices do not provide substan-
tial assurance about information flow security: the end-to-end behavior
of a computing system. Noninterference is the basic semantical condition
used to account for information flow security. In the literature, there are
many definitions of noninterference: Non-inference, Separability and so
on. Mantel presented a framework of Basic Security Predicates (BSPs) for
characterizing the definitions of noninterference in the literature. Model-
checking these BSPs for finite state systems was shown to be decidable in
[8]. In this paper, we show that verifying these BSPs for the more expres-
sive system model of pushdown systems is undecidable. We also give an
example of a simple security property which is undecidable even for finite-
state systems: the property is a weak form of non-inference called WNI,
which is not expressible in Mantel’s BSP framework.

1 Introduction

Current standard security practices do not provide substantial assurance that
the end-to-end behavior of a computing system satisfies important security poli-
cies such as confidentiality. Military, medical and financial information systems,
as well as web based services such as mail, shopping and business-to-business
transactions are all applications that create serious privacy concerns. The stan-
dard way to protect data is (discretionary) access control: some privilege is re-
quired in order to access files or objects containing the confidential data. Access
control checks place restrictions on the release of information but not its prop-
agation. Once information is released from its container, the accessing program
may, through error or malice, improperly transmit the information in some form.
Hence there is a lack of end-to-end security guarantees in access control systems.

Information flow security aims at answering end-to-end security. Most often
the concept is studied in the setting of multi-level security [5] with data assigned
levels in a security lattice, such that levels higher in the lattice correspond to
data of higher sensitivity. A flow of information from a higher level in the security
lattice to a lower one could breach confidentiality and a flow from a lower level
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to a higher one might indicate a breach of integrity. Information flow security
has been a focal research topic in computer security for more than 30 years.
Nevertheless, the problem of securing the flow of information in systems is far
from being solved. The two main research problems are, firstly, finding adequate
formal properties of a “secure” system and, secondly, developing sound and
efficient verification techniques to check systems for these properties.

Noninterference is the basic semantical condition used to account for informa-
tion flow security. It requires that high-level behavior should not interfere with
low-level observations. There are several semantical models for which noninter-
ference has been studied. In [20], the state of the art was surveyed for approaches
to capture and analyze information flow security of concrete programs. A broad
spectrum of notions has been developed for noninterference at the level of more
abstract specifications, in particular event systems (e.g., [13,17]), state based
system (e.g,[10]) and process algebras (e.g.,[9]).

In this article, we look at information flow security at the level of abstract
specifications. A system is viewed as generating traces containing “confidential”
and “visible” events. The assumption is that any “low level-user”, e.g. an at-
tacker, knows the set of all possible behaviors (traces) but can observe only
visible events. The information flow properties specify restrictions on the kind
of traces the system may generate, so as to restrict the amount of information
a low-level user can infer from his observations about confidential events having
taken place in the system. For example, the “non-inference” [18,17,24] property
states that for every trace produced by the system, its projection to only visible
events must also be a possible trace of the system. Thus if a system satisfies the
non-inference information flow property, a low-level user who observes the visible
behavior of the trace is unable to infer whether or not any high-level behavior has
taken place. There are other security properties defined in the literature: separa-
bility [17] (which requires that every possible low-level behavior interleaved with
every possible high-level behaviour must be a possible behaviour of a system),
generalized noninterference [16] (which requires that for every possible trace and
every possible perturbation there is a correction to the perturbation such that
the resulting trace is again a possible trace of the system), nondeducability [22],
restrictiveness [16], the perfect security property [24] etc.

In [15] Mantel provides a framework for reasoning about the various informa-
tion flow properties presented in the literature, in a modular way. He identifies
a set of basic information flow properties which he calls “Basic Security Predi-
cates” or BSPs, which are shown to be the building blocks of most of the known
trace-based properties in the literature. The framework is modular in that BSPs
that are common to several properties of interest for the given system need only
be verified once for the system.

In this paper we consider the problem of model-checking information flow
properties – that is, given a system model and a security property, can we al-
gorithmically check whether the system satisfies the property? The most popu-
lar verification techniques are security type systems and program logics at the
level of programs (see, e.g. [4]) and the unwinding technique at the level of
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specifications (see, e.g., [14,11,7]). Other approaches for abstract systems are
the more recent “model-checking” technique in [8] and the algorithmic approach
in [23].

The unwinding technique is based on identifying structural properties of the
system model which ensure the satisfaction of the information flow property. The
method is not complete in general, in that a system could satisfy the information
flow property but fail the unwinding condition. In [15] Mantel gives unwinding
conditions for most of the BSPs he identifies. However, finding a useful unwinding
relation is not trivial and remains up to the verifier.

The model-checking approach in [8] on the other hand is both sound and
complete for all information flow properties that can be characterised in terms of
BSPs and relies on an automata-based approach (when the given system is finite-
state) to check language-theoretic properties of the system. Meyden and Zhang
[23] also develop algorithms for model-checking information flow properties for
finite-state systems and characterize the complexity of the associated verification
problem.

In this article we investigate the problem of model-checking BSPs for systems
modelled as “pushdown” systems. These systems can make use of an unbounded
stack, and are useful in modelling programs with procedure calls but no dynamic
memory allocation (“boolean programs” [2]), or recursive state machines [1]. We
show that this problem is undecidable for all the BSPs, and hence we cannot
hope to find an algorithmic solution to the problem. This result does not imme-
diately tell us that verifying the non-interference properties in literature (which
Mantel showed can be expressed as conjuctions of his BSP’s) is undecidable for
pushdown systems. However, we can conclude that (a) it is not possible to al-
gorithmically check BSPs – which are useful security properities in their own
right – for pushdown system models; and (b) Mantel’s framework is not benefi-
cial for the purpose of algorithmic verification of noninterference properties for
pushdown systems, unlike the case of finite-state systems.

Systematic approaches investigating the decidability of noninterference prop-
erties for infinite state systems are, to the best of our knowledge, still missing.
In the context of language based notions of noninterference, [4] shows that the
notion of strong low bisimulation as defined by [21] is decidable for a simple par-
allel while language. Alternative notions of noninterference, defined for example
in [3], turn out to be undecidable.

In the second part of the paper we consider a natural security property we call
Weak Non-inference or WNI . The property essentially says that by observing
a visible system trace a low-level user cannot pinpoint the exact sequence of
confidential events that have taken place in the system. The property is thus in
the the same spirit as the BSPs and noninterference properties as they all say
that by seeing a visible trace a low-level user cannot infer “too much” about the
confidential events that have taken place in the system. In fact, WNI can be
seen to be weaker than all these properties. We show that the problem of model-
checking WNI is undecidable not just for pushdown systems but for finite-state
systems as well.
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This result is interesting for a couple of reasons: Firstly, it follows from our
results that WNI , an interesting noninterference property, is not definable in
Mantel’s BSP framework. Secondly, this result sheds some light on a broader
question: Is there a natural first-order logic which can express properties like the
BSPs and which can be model-checked for finite-state systems? We note that
BSPs make use of the operations of concatenation (implicitly) and projection to
a subset of the alphabet. By earlier undecidability results in the literature ([19])
a general FO logic that allows concatenation is necessarily undecidable. By our
undecidability result for WNI , it follows that a FO logic that uses projection
(and negation, which BSPs don’t use) is necessarily undecidable.

The rest of the paper is organized as follows. Section 2 defines the technical
terms used in the paper. Section 3 proves the undecidability of model-checking
BSPs for pushdown systems. Section 4 introduces a property called “Weak Non
Inference”, which cannot be characterized in terms of BSPs and gives its decid-
ability results. Finally Section 5 concludes the article.

2 Preliminaries

By an alphabet we will mean a finite set of symbols representing events or actions
of a system. For an alphabet Σ we use Σ∗ to denote the set of finite strings over
Σ, and Σ+ to denote the set of non-empty strings over Σ. The null or empty
string is represented by the symbol ε. For two strings α and β in Σ∗ we write
αβ for the concatenation of α followed by β. A language over Σ is just a subset
of Σ∗.

We fix an alphabet of eventsΣ and assume a partition ofΣ into V,C,N , which
in the framework of [13] correspond to events that are visible, confidential, and
neither visible nor confidential, from a particular user’s point of view.

Let X ⊆ Σ. The projection of a string τ ∈ Σ∗ to X is written τ �X and is
obtained from τ by deleting all events that are not elements of X . The projection
of the language L to X , written L�X , is defined to be {τ �X | τ ∈ L}.

A (labelled) transition system over an alphabet Σ is a structure of the form
T = (Q, s,−→), where Q is a set of states, s ∈ Q is the start state, and −→⊆
Q×Σ×Q is the transition relation. We write p a−→ q to stand for (p, a, q) ∈−→,
and use p w−→

∗
q to denote the fact that we have a path labelled w from p to q

in the underlying graph of the transition system T . If some state q has an edge
labelled a, then we say a is enabled at q.

The language generated by T is defined to be

L(T ) = {α ∈ Σ∗ | there exists a t ∈ Q such that s α−→∗
t}.

We begin by recalling the basic security predicates (BSPs) of Mantel [15]. It
will be convenient to use the notation α =Y β where α, β ∈ Σ∗ and Y ⊆ Σ, to
mean α and β are the same “modulo a correction on Y -events”. More precisely,
α =Y β iff α �Y = β �Y , where Y denotes Σ − Y . By extension, for languages L
and M over Σ, we say L ⊆Y M iff L�Y ⊆M �Y .

In the definitions below, we assume L to be a language over Σ.
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1. L satisfies R (Removal of events) iff for all τ ∈ L there exists τ ′ ∈ L such
that τ ′ �C= ε and τ ′ �V = τ �V .

2. L satisfies D (stepwise Deletion of events) iff for all αcβ ∈ L, such that
c ∈ C and β �C= ε, we have α′β′ ∈ L with α′ =N α and β′ =N β.

3. L satisfies I (Insertion of events) iff for all αβ ∈ L such that β �C= ε, and
for every c ∈ C, we have α′cβ′ ∈ L, with β′ =N β and α′ =N α.

4. Let X ⊆ Σ. Then L satisfies IA (Insertion of Admissible events) w.r.t X iff
for all αβ ∈ L such that β �C= ε and for some c ∈ C, there exists γc ∈ L
with γ �X= α�X , we have α′cβ′ ∈ L with β′ =N β and α′ =N α.

5. L satisfies BSD (Backwards Strict Deletion) iff for all αcβ ∈ L such that
c ∈ C and β �C= ε, we have αβ′ ∈ L with β′ =N β.

6. L satisfies BSI (Backwards Strict Insertion) iff for all αβ ∈ L such that
β �C= ε, and for every c ∈ C, we have αcβ′ ∈ L, with β′ =N β.

7. Let X ⊆ Σ. Then L satisfies BSIA (Backwards Strict Insertion of Admissible
events) w.r.t X iff for all αβ ∈ L such that β �C= ε and there exists γc ∈ L
with c ∈ C and γ �X= α�X , we have αcβ′ ∈ L with β′ =N β.

8. Let X ⊆ Σ, V ′ ⊆ V , C′ ⊆ C, and N ′ ⊆ N . Then L satisfies FCD (Forward
Correctable Deletion) w.r.t V ′, C′, N ′ iff for all αcvβ ∈ L such that c ∈ C′,
v ∈ V ′ and β �C= ε, we have αδvβ′ ∈ L where δ ∈ (N ′)∗ and β′ =N β.

9. Let, V ′ ⊆ V , C′ ⊆ C, and N ′ ⊆ N . Then L satisfies FCI (Forward Cor-
rectable Insertion) w.r.t C′, V ′, N ′ iff for all αvβ ∈ L such that v ∈ V ′,
β �C= ε, and for every c ∈ C′ we have αcδvβ′ ∈ L, with δ ∈ (N ′)∗ and
β′ =N β.

10. Let X ⊆ Σ, V ′ ⊆ V , C′ ⊆ C, and N ′ ⊆ N . Then L satisfies FCIA (For-
ward Correctable Insertion of admissible events) w.r.t. X,V ′, C′, N ′ iff for
all αvβ ∈ L such that: v ∈ V ′, β �C= ε, and there exists γc ∈ L, with c ∈ C′

and γ �X= α�X ; we have αcδvβ′ ∈ L with δ ∈ (N ′)∗ and β′ =N β.
11. L satisfies SR (Strict Removal) iff for all τ ∈ L we have τ �C∈ L.
12. L satisfies SD (Strict Deletion) iff for all αcβ ∈ L such that c ∈ C and

β �C= ε, we have αβ ∈ L.
13. L satisfies SI (Strict Insertion) iff for all αβ ∈ L such that β �C= ε, and for

every c ∈ C, we have αcβ ∈ L.
14. Let X ⊆ Σ. L satisfies SIA (Strict Insertion of Admissible events) w.r.t X

iff for all αβ ∈ L such that β �C= ε and there exists γc ∈ L with c ∈ C and
γ �X= α�X , we have αcβ ∈ L.

We say a Σ-labelled transition system T satisfies a BSP iff L(T ) satisfies the
BSP.

3 BSPs and Pushdown Systems

The model-checking problem for BSPs is the following: Given a BSP P and a sys-
tem modelled as transition system T , does T satisfy P? The problem was shown
to be decidable when the system is presented as a finite-state transition system
[8]. In this section we show that if the system is modelled as a pushdown system,
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the model-checking problem becomes undecidable. We use a reduction from the
emptiness problem of Turing machines, which is known to be undecidable.

This section is organized as follows. First, we introduce Pushdown Systems
and show that they accept exactly the class of prefix-closed context-free lan-
guages. Then we show for the BSP D that verifying D for Pushdown systems
is undecidable by reducing the emptiness problem for Turing machines to this
problem. More concretely, for a given Turing machine M we construct a prefix
closed context-free language LM such that LM satisfies BSP D iff the language
L(M) of the turing machine M is empty. By adjusting the prefix-closed context-
free language LM appropriately, we can show the same for all other BSPs defined
in Mantel’s MAKS framework. We will give all the respective languages for the
other BSPs in this chapter. The detailed undecidability proofs can be found in
the technical report [6].

We assume that Σ, the set of events, contains two visible events v1 and v2,
and one confidential event c.

A pushdown system (PDS) given by P = (Q,ΣP , ΓP , Δ, s,⊥) consists of a fi-
nite set of control statesQ, a finite input alphabetΣP , a finite stack alphabet ΓP ,
and a transition relation Δ ⊆ ((Q×(ΣP ∪{ε})×ΓP )×(Q×Γ ∗

P )), a starting state
s ∈ Q and an initial stack symbol ⊥ ∈ ΓP . If ((p, a, A), (q,B1B2 · · ·Bk)) ∈ Δ,
this means that whenever the machine is in state p reading input symbol a
on the input tape and A on top of the stack, it can pop A off the stack,
push B1B2 · · ·Bk onto the stack (such that B1 becomes the new stack top
symbol), move its read head right one cell past the a, and enter state q. If
((p, ε, A), (q,B1B2 · · ·Bk)) ∈ Δ, this means that whenever the machine is in
state p and A on top of the stack, it can pop A off the stack, push B1B2 · · ·Bk

onto the stack (such that B1 becomes the new stack top symbol), leave its read
head unchanged and enter state q.

A configuration of pushdown system P is an element ofQ×Σ∗
P ×Γ ∗

P describing
the current state, the portion of the input yet unread and the current stack
contents. For example, when x is the input string, the start configuration is
(s, x,⊥). The next configuration relation −→ is defined for any y ∈ Σ∗

P and
β ∈ Γ ∗

P , as (p, ay,Aβ) −→ (q, y, γβ) if ((p, a, A), (q, γ)) ∈ Δ and (p, y, Aβ) −→
(q, y, γβ) if ((p, ε, A), (q, γ)) ∈ Δ. Let −→∗ be defined as the reflexive transitive
closure of −→. Then P accepts w iff (s, w,⊥) −→∗ (q, ε, γ) for some q ∈ Q,
γ ∈ Γ ∗

P .
Pushdown systems also appear in other equivalent forms in literature. For

example Recursive state machines (RSM’s) [1] and Boolean programs [2]. Push-
down systems then capture an interesting class of systems. The class of languages
accepted by pushdown systems is closely related to context-free languages.

Lemma 1. The class of languages accepted by pushdown systems is exactly the
class of prefix closed context-free languages.

Proof. Pushdown systems can be seen as a special case of pushdown automata
with all its control states treated as final states. Hence pushdown systems gen-
erate a context-free language. It is easy to see that if a PDS accepts a string w,
then it also accepts all the prefixes of w.
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Conversely, let L be a prefix closed context-free language. Then there exists
a context-free grammar (CFG) G generating L. Without loss of generality, we
assume that G is in Greibach Normal Form with every non-terminal deriving
a terminal string. A nondeterminstic pushdown automata P with a single state
q, accepting by empty stack, with S (starting non-terminal in G) as the initial
stack symbol, accepting exactly L(G) can be constructed [12]. The idea of the
construction is that for each production A → cB1B2 · · ·Bk in G, a transition
((q, c, A), (q,B1B2 · · ·Bk)) is added to P . We now observe that if P has a run on
w with γ as the string of symbols in stack, then there exists a left-most senten-
tial form S −→∗ wγ in G. Then every terminal prefix of a left-most sentential
form in G has an extension in L (since every non- terminal derives a string).
Now view P as a PDS P ′ (ignoring the empty stack condition for acceptance).
Clearly P ′ accepts all the strings in L. Further, if P ′ has a run on some string
w with γ as the string of symbols (corresponds to non-terminals in G) in stack,
then w corresponds to a prefix of a left-most sentential form in G, and hence
has an extension in L. Since L is a prefix closed, w also belongs to L. Hence
L(P ′) = L.

We use the emptiness problem of Turing machines to show the undecidability
of verifying BSPs for pushdown systems. Let M be a Turing machine defined as
M = (Q,ΣM , ΓM ,�,�, δ, s, t, r), where Q is a finite set of states, ΣM is a finite
input alphabet, ΓM is a finite tape alphabet containing ΣM , � ∈ ΓM \ΣM is the
left endmarker, � ∈ ΓM \ΣM is the blank symbol, δ : Q×ΓM → Q×ΓM ×{L,R}
is the transition function, s ∈ Q is the start state, t ∈ Q is the accept state
and r ∈ Q is the reject state with r 	= t and no transitions defined out of r
and t. The configuration x of M at any instant is defined as a triple (q, y, n)
where q ∈ Q is a state, y is a non-blank finite string describing the con-
tents of the tape and n is a non negative integer describing the head posi-
tion. The next configuration relation � is defined as (p, aβ, n) � (q, bβ, n+ 1),
when δ(p, a) = (q, b, R). Similarly (p, aβ, n) � (q, bβ, n − 1), when δ(p, a) =
(q, b, L).

We can encode configurations as finite strings over the alphabet ΓM × (Q ∪
{−}), where − 	∈ Q. A pair in ΓM × (Q ∪ {−}) is written vertically with the
element of ΓM on top. We represent a computation of M as a sequence of
configurations xi separated by #. It will be of the form #x1#x2# · · ·#xn#.
Each letter in (ΓM × (Q∪ {−}))∪ {#} can be encoded as a string of v1’s and a
string (computation) in (ΓM × (Q∪ {−}))∪ {#} can be represented as a string
of v1’s and v2’s, with v2 used as the separator. Recall the assumption that Σ
contains v1, v2 (visible events) and c (confidential event). For a computation w,
we use enc(w) to denote this encoding.

We now show that the problem of verifying BSP D for pushdown systems is
as hard as checking the language emptiness problem of a Turing machine. To
do so, we construct a language LM out of a given Turing machine M and show,
that LM satisfies BSP D iff L(M) is empty. Afterwards we show, that LM can
be generated by a Pushdown system and is hence a prefix closed context-free
language.
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Let M = (Q,ΣM , ΓM ,�,�, δ, s, t, r) be a Turing machine. Consider the lan-
guage LM to be the prefix closure of L1 ∪ L2 where

L1 = {c · enc(#x1#x2 · · ·xn#) | x1 is a starting configuration,
xn is an accepting configuration}

L2 = {enc(#x1#x2 · · ·xn#) | x1 is a starting configuration,
xn is an accepting configuration,
exists i : xi � xi+1 invalid transition}

Lemma 2. LM satisfies BSP D iff L(M) = ∅.

Proof. (⇐:) Let us assume L(M) = ∅. Consider any string containing a confi-
dential event in LM . The string has to be of the form cτ in L1 or a prefix of
it. τ cannot be a valid computation (encoded) of M , since L(M) = ∅. So, if we
delete the last c, we will get τ , which is included in L2. Also, all the prefixes of
cτ and τ will be in LM , as it is prefix closed. Hence LM satisfies D.

(⇒:) If L(M) is not empty then there exists some string τ which is a valid
computation (encoded). L1 contains cτ . If we delete the last c, the resulting
string τ is not present in LM . Hence D is not satisfied. Hence L(M) is empty,
when LM satisfies the BSP D.

To complete the reduction, we need to show, that LM is a prefix-closed context-
free language, and we do this by translating M into a PDS accepting LM .

Since CFLs are closed under prefix operation (adding the prefixes of the
strings in the language) and as prefix closed CFLs are equivalent to PDS (from
Lemma 1), it is enough to show that L1 ∪ L2 is a CFL.

Let T = (ΓM×(Q∪{−}))∪{#}. Consider the above defined language L2 ⊆ T ∗

(with the strings being unencoded versions).

L2 = {#x1#x2# · · ·#xn# | x1 is a starting configuration,
xn is an accepting configuration,
exists i : xi � xi+1 invalid transition}

L2 can be thought of as the intersection of languages A1, A2, A3, A4 and A5,
where

A1 = {w | w begins and ends with #}
A2 = {w | the string between any two #s must be a valid configuration}
A3 = {#x#w | x ∈ (T \ {#})∗ is a valid starting configuration}
A4 = {w#x# | x ∈ (T \ {#})∗ is a valid accepting configuration}
A5 = {#x1# · · ·#xn# | exists some i, with xi � xi+1 not a valid transition}

We now show that the languages from A1 to A4 are regular and A5 is a CFL.
Since CFLs are closed under intersection with regular languages, L2 will be
shown to be context-free. Note that L1 (unencoded) is the intersection of A1, A2,
A3 and A4, and hence regular. Since CFLs are closed under union, L1 ∪ L2 will
also be context-free.
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The language A1 can be generated by the regular expression #(T \ {#})∗#.
For A2, we only need to check that between every #’s there is exactly one
symbol with a state q on the bottom, and � occurs on the top immediately
after each # (except the last) and nowhere else. This can be easily checked
with a finite automaton. The set A3 can be generated by the regular expression
#(�, s)K∗#T ∗, with K = Γ \{�}×{−}. To check that a string is in A4, we only
need to check that t appears someplace in the string. This can be easily checked
by an automaton. For A5, we construct a nondeterministic pushdown automaton
(NPDA). The NPDA nondeterministically guesses i for xi and then it scans to
the three-length substring in xi with a state in the middle component of the
three-length string and checks with the corresponding three-length substring in
xi+1 using the stack. Then, these substrings are checked against the transition
relation of M , accepting if it is not a valid transition. Interested readers are
referred to [12], for detailed proofs of above languages to be regular and context-
free languages. Now, it follows that L1 is regular and L2 is context-free. As
languages accepted by pushdown systems (Lemma 1) are equivalent to prefix
closed context-free languages, LM is a language of a pushdown system.

We have shown, that the prefix closed context-free language LM satisfies BSP
D iff the language L(M) of Turing machine M is empty. Since the emptiness
problem of Turing machines is undecidable, we get the following theorem.

Lemma 3. The problem of verifying BSP D for pushdown systems is
undecidable.

Undecidability for the rest of the BSPs can be shown in a similar fashion. For
the BSPs R, SR, SD, BSD we can use the same language LM and get

Lemma 4. LM satisfies BSP R (and SR and SD and BSD) iff L(M) = ∅.

For the other BSPs we need to adapt the languages appropriately as shown in the
following. The detailed proofs for these languages can be found in the technical
report [6].

To show undecidability of BSPs I, BSI, and SI, we consider LI
M to be the

prefix closure of L1 ∪ L2 where

L1 = {enc(#x1#x2 · · ·xn#) | x1 is a starting configuration,
xn is an accepting configuration}

L2 = {w ∈ ({v1, v2} ∪ C ∪N)∗ | w �{v1,v2}= enc(#x1#x2 · · ·xn#),
x1 is a starting configuration,
xn is an accepting configuration,
exists i : xi � xi+1 invalid transition}

Lemma 5. LI
M satisfies BSP I (and SI and BSI) iff L(M) = ∅.
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To show undecidability of BSPs IAX , BSIAX , and SIAX with X ⊆ Σ, we
consider LIAX

M to be the prefix closure of L1 ∪ L2 ∪ L3 where

L1 = {enc(#x1#x2 · · ·xn#) | x1 is a starting configuration,
xn is an accepting configuration}

L2 = {w ∈ ({v1, v2} ∪ C)∗ | w �{v1,v2}= enc(#x1#x2 · · ·xn#),
x1 is a starting configuration,
xn is an accepting configuration,
exists i : xi � xi+1invalid transition}

L3 = X∗ · C

Lemma 6. LIAX
M satisfies BSP IAX (and SIAX and BSIAX) iff L(M) = ∅.

To show undecidability of BSP FCD we assume V ′ ⊆ V,N ′ ⊆ N,C′ ⊆ C to
be given and v2 ∈ V ′ and c ∈ C′. We consider language LFCD

M to be the prefix
closure of L1 ∪ L2 where

L1 = {cv2 · enc(x1x2 · · ·xn) | x1 is a starting configuration,
xn is an accepting configuration}

L2 = {v2 · enc(x1x2 · · ·xn) | x1 is a starting configuration,
xn is an accepting configuration,
exists i : xi � xi+1 invalid transition}

Lemma 7. LFCD
M satisfies BSP FCD iff L(M) = ∅.

To prove undecidability of BSP FCI we assume V ′ ⊆ V,N ′ ⊆ N,C′ ⊆ C to
be given and v2 ∈ V ′. We consider language LFCI

M to be the prefix closure of
L1 ∪ L2 where

L1 = {v2 · enc(x1x2 · · ·xn) | x1 is a starting configuration,
xn is an accepting configuration}

L2 = {w ∈ ({v1, v2} ∪C′)∗ | w �{v1,v2}= v2 · enc(x1x2 · · ·xn),
x1 is a starting configuration,
xn is an accepting configuration,
exists i : xi � xi+1 invalid transition}

Lemma 8. LFCI
M satisfies FCI iff L(M) = ∅.

Finally, to show undecidability of BSP FCIAX , where X ⊆ Σ we assume V ′ ⊆
V,N ′ ⊆ N,C′ ⊆ C to be given with v2 ∈ V ′. We consider language LFCIAX

M to
be the prefix closure of L1 ∪ L2 ∪ L3 where
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L1 = {v2 · enc(x1x2 · · ·xn) | x1 is a starting configuration,
xn is an accepting configuration}

L2 = {w ∈ ({v1, v2} ∪C′)∗ | w �{v1,v2}= v2 · enc(x1x2 · · ·xn),
x1 is a starting configuration,
xn is an accepting configuration,
exists i : xi � xi+1 invalid transition}

L3 = X∗ · C′

Lemma 9. LFCIAX
M satisfies BSP FCIAX iff L(M) = ∅.

The proofs of undecidability for these BSPs are given in the technical report [6].
We have shown that the BSPs defined by Mantel are undecidable for pushdown
systems. Hence we get the following theorem.

Theorem 1. The problem of model-checking any of the BSPs for pushdown
systems is undecidable.

4 Weak Non-Inference

In this section we introduce a natural information flow property which we call
Weak Non-Inference (WNI ) as it is weaker than most of the properties proposed
in the literature. We show that model-checking this property even for finite-state
transition systems is undecidable.

A set of traces L over Σ is said to satisfy WNI iff

∀τ ∈ L, ∃τ ′ ∈ L : (τ �C 	= ε ⇒ (τ �V = τ ′ �V ∧ τ �C 	= τ ′ �C)).

The classical non-inference property can be phrased as ∀τ ∈ L, ∃τ ′ ∈ L : (τ ′ =
τ �V ). Thus it is easy to see that any language that satisfies non-inference also
satisfies WNI .

We show that checking whether a finite-state transition system satifies this
property is undecidable, by showing a reduction from Post’s Correspondence
Problem (PCP). We recall that an instance of PCP is a collection of dominos
P = {(x1, y1), (x2, y2), . . . , (xn, yn)} where each xi, yi ∈ Δ+ where Δ is a finite
alphabet (recall that Δ+ is the set of non-empty words over Δ). A match in P
is a sequence i1, i2, . . . il such that xi1 · · ·xil

= yi1 · · · yil
. The PCP problem is

to determine if a given instance P has a match, and this problem is known to
be undecidable.

We construct a transition system TP = (Q, s1,→) on the alphabet Σ′ = V ∪C,
where V = {v1, . . . , vn} , C = Δ and the transition relation → is as shown in
Fig. 1. The states s2 and s3 have n loops each on them: state s3 has loops on the
strings v1x1v1 through vnxnvn, and s3 has loops on the strings v1y1v1 through
vnynvn. We choose each vi to be different from the symbols in Δ.
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xn

x1

s2

vn

yn

y1

s1

ε

ε

s3

vn

v1

vn

vn

v1

v1v1

Fig. 1.

We call a string “interesting” if it is of the form vi1wi1vi1vi2wi2vi2 · · · vik
wik

vik

for some i1, . . . , ik with k ≥ 1, and wij in Δ∗ – in other words, the string must
be non-empty and each visible alphabet occurs twice in succession. Thus every
interesting string generated by TP will end up in state s2 or in state s3. We
observe that for every interesting string z in L(TP ), there is exactly one other
string z′ in L(TP ) with the same projection to V , which is moreover also an
interesting string. If z passes through state s2, then z′ is the string which mimics
the run of z but through s3. Any other string will have a different projection
to V .

Lemma 10. A PCP instance P has a match iff TP does not satisfy WNI .

Proof. (⇐:) Suppose TP does not satisfy WNI . Then there must exist a string
τ in L(TP ) such that there is no other string in L(TP ) with the same projection
to V and different projection to C. Now τ must be an interesting string – all
uninteresting strings trivially satisfy the WNI condition since we can append or
remove one confidential event from each of these strings. By our earlier observa-
tion, we know that there exists an interesting string τ ′ in L(TP ) which takes the
symmetric path in TP and has the same projection to V as τ . Now by our choice
of τ , the projection of τ ′ on C is the same as the projection of τ on C. But this
means that we have found a match for P , given by the indices corresponding to
the loops traces out by τ and τ ′.

(⇒:) Let i1, i2, . . . , il be a match for P . Thus xi1 · · ·xil
= yi1 · · · yil

. Consider
the interesting string τ = vi1xi1vi1 · · · vil

xil
vil

in L(T ). Now there is exactly
one other string τ ′ with the same projection to V , given by vi1yi1vi1 · · · vil

yil
vil

.
However, as the indices chosen are a match for P , the projections of τ and τ ′ to
C are identical. Thus T does not satisfy WNI . ��
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This completes the reduction of PCP to the problem of model-checking WNI
for finite-state systems, and we conclude:

Theorem 2. The problem of model-checking the property WNI for finite-state
systems is undecidable. ��

We note that if the property WNI were expressible as a boolean combination of
BSPs, the decision procedure for model-checking BSPs for finite-state systems in
[8] would imply that model-checking WNI for finite-state systems is decidable.
Hence we can conclude that:

Corollary 1. The property WNI is not expressible as a boolean combination of
Mantel’s BSPs. ��

However, we can show that a restricted version of the problem is decidable. If we
have a system model (finite-state or pushdown) that uses only one confidential
event and one visible event, the problem of checking WNI becomes decidable.

Theorem 3. The problem of model-checking WNI for pushdown systems when
|V | = 1 and |C| = 1, is decidable.

Proof. Consider an alphabet Σ = {v, c}, where v is the only visible event and
c is the only confidential event. Recall that the Parikh vector of a string x over
Σ, denoted ψ(x), is the vector (nv, nc) where nv is the number of occurrences
of event v in x and nc is the number of occurrences of event c in x. For a
language L over Σ, its Parikh map ψ(L) is defined to be the set of vectors
{ψ(x) | x ∈ L}. By Parikh’s theorem (see [12]), we know that whenever L
is context-free, its Parikh map ψ(L) forms a “semi-linear” set of vectors. To
explain what this means, let us first introduce some notation. For a finite set
of vectors X = {(n1,m1), . . . , (nk,mk)} we denote the set of vectors generated
by X , with initial vector (n0,m0), to be the set gen(n0,m0)(X) = {(n0,m0) +
t1(n1,m1) + · · · + tk(nk,mk) | t1, . . . , tk ∈ N}. Then ψ(L) is semi-linear means
that there exist finite non-empty sets of vectors X1, . . . , Xl, and initial vectors
(n1

0,m
1
0), . . . , (n

l
0,m

l
0), such that

ψ(L) =
⋃

i∈{1,...,l}
gen(ni

0,mi
0)

(Xi).

Now let L be the given context-free language over the alphabet Σ = {v, c}, with
Parikh map given by the setsX1, . . . , Xl, and initial vectors (n1

0,m
1
0),. . . ,(n

l
0,m

l
0).

Let each Xi = {(mi
1, n

i
1), . . . , (m

i
ki
, ni

ki
)}. To verify WNI property for L, we

need to check that for every vector in ψ(L) there exists another vector which
is in gen(ni

0,mi
0)

(Xi) for some i, such that their visible event count is same, and
confidential event count is different. For l = 1, L satisfies WNI iff the following
formula in Presberger arithmetic1 is valid:
1 Presburger arithmetic is the first-order theory of natural numbers with addition

which is known to be decidable in double-exponential time.
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∀t1, . . . , tk1 ∈ N, ∃t′1, . . . , t′k1
∈ N

(
n1

0 + t1n
1
1 + · · · + tk1n

1
k1
> 0 =⇒

(
m1

0 + t1m
1
1 + · · · + tk1m

1
k1

= m1
0 + t′1m

1
1 + · · · + t′k1

m1
k1

∧

n1
0 + t1n

1
1 + · · · + tk1n

1
k1

	= n1
0 + t′1n

1
1 + · · · + t′k1

n1
k1

))
.

The validity of this formula can be found using the decision procedure for Pres-
burger arithmetic. The formula is extended in the expected way for higher values
of l.

In fact, any property which just asks for the counting relationship between visible
and confidential events can be decided using the above technique.

5 Conclusions

In this paper we have studied the problem of model-checking Mantel’s Basic
Security Predicates for systems modelled as pushdown systems. We have shown
that unlike the case of finite-state system models, this problem is undecidable.
We also studied the model-checking problem for a property called WNI which is
a weak form of the property of non-inference studied earlier in the literature. We
show that this problem is undecidable, not just for pushdown systems but also
for finite-state systems. It follows from this result that WNI is not expressible
in Mantel’s BSP framework. We also show that for a restricted class of systems
(with only one visible and confidential event) this property is decidable for both
finite-state and pushdown system models.

In future work we plan to see if similar reductions can be used to argue that the
model-checking problem for noninterference properties in the literature (of which
Mantel showed the BSPs to be the basic building blocks) – are also undecidable.
Another open question is whether the model-checking problem continues to be
undecidable even when we consider deterministic pushdown systems.
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