
An Automata Based Approach for Verifying

Information Flow Properties

Deepak D’Souza Raghavendra K.R. Barbara Sprick

Department of Computer Science and Automation
Indian Institute of Science

Bangalore, India

Abstract

We present an automated verification technique to verify trace based information flow properties
for finite state systems. We show that the Basic Security Predicates (BSPs) defined by Mantel in
[5], which are shown to be the building blocks of known trace based information flow properties,
can be characterised in terms of regularity preserving language theoretic operations. This leads to
a decision procedure for checking whether a finite state system satisfies a given BSP. Verification
techniques in the literature (e.g. unwinding) are based on the structure of the transition system
and are incomplete in some cases. In contrast, our technique is language based and complete for
all information flow properties that can be expressed in terms of BSPs.

Keywords: information flow control, verification, finite state systems

1 Introduction

Granting, restricting and controlling the flow of information is a core part of
computing system security. In particular, confidential data needs to be pro-
tected from undesired accesses. Access control policies are defined to serve
this task by specifying which accesses are allowed for which users. However,
access control methods can only restrict direct information flow (over open
channels). Information leakage over covert channels (e.g. Trojan Horses, ob-
servable behaviour and time or space availability, etc) is not controllable by
access control methods.

In [4], Goguen and Meseguer first introduced the notion of Non-Interference
as a means to control both direct as well as indirect information flow. Infor-
mally, Goguen and Meseguer distinguish between high level and low level users

Electronic Notes in Theoretical Computer Science 135 (2005) 39–58

1571-0661/$ – see front matter © 2005 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.06.005

http://www.elsevier.com/locate/entcs


and describe non-interference as What one group of users does using a cer-
tain ability has no effect on what some other group of users does [4]. More
precisely, their original notion of non-interference says that two systems (or
users) S1 and S2 are non-interfering if the output of S2 does not depend on
the input of S1.

Since Goguen and Meseguer’s initial work, many more definitions about
non-interference have been proposed in the literature. They all follow the
same principle of a low level entity not being able to infer too much informa-
tion about a high level user or high level activity in general. These security
properties include, among others, non-inference [10,9,12] (which requires that
each system behavior projected to low level behavior is itself a possible be-
havior), separability [9] (which requires that every possible low level behavior
interleaved with every possible high level behaviour must be a possible be-
haviour of a system), generalized non-interference [8] (which requires that for
every possible trace and every possible perturbation there is a correction to
the perturbation such that the resulting trace is again a possible trace of the
system), nondeducability [11], restrictiveness [8], the perfect security property
[12], and many more.

Though all these properties follow the main idea of ensuring, that informa-
tion is not leaked from high level users to low level users, they differ in their
strictness as well as in the type of system they are defined for.

In [7,5] Mantel has presented an approach to uniformly formalize all known
trace based information flow properties. Based on sets of traces as the sys-
tem model, Mantel has defined a set of basic security predicates (BSPs). He
shows that all known trace based security properties can be represented as
conjunctions of these BSPs. For example generalized noninterference can be
defined as the conjunction of the two BSPs insertion (I) and deletion (D). A
set of traces L satisfies the BSP I if for every perturbation of a trace that
is obtained by inserting a confidential event after the last confidential event,
there exists a correction of this perturbation obtained by inserting or deleting
certain non-confidential events, such that the resulting trace is also in the lan-
guage L. A set of traces L satisfies the BSP D if for every perturbation that is
obtained by deleting the last confidential event, there exists a correction of this
perturbation that is obtained by inserting or deleting certain non-confidential
events, such that the resulting trace is also in the language L.

Our work is based on the modular framework presented in [5]. We present
an automated verification technique to check whether a finite state system
satisfies a given basic security predicate. Our approach is language based
rather than structure based. We define a set of language theoretic operations
and show that the question of whether a set of traces L satisfies a BSP P

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–5840



boils down to checking whether a language L1 is contained in a language L2,
where L1 and L2 are obtained from L by successive applications of the defined
language-theoretic operations. Finally we show that the language-theoretic
operations are regularity preserving, and effectively so. Thus if L is specified
by a finite state transition system (and is hence regular), then L1 and L2 are
also regular and the question of whether L1 ⊆ L2 can be answered effectively.

As has been observed earlier, the BSPs are properties of sets of traces
rather than properties of traces and hence cannot be handled by classical
model checking approaches. Nonetheless, our work gives a method to “model
check” these properties by reducing them to the language inclusion problem
for finite state systems.

Previous work dealing with the verification of trace based security prop-
erties (e.g.[6,1,3]) mainly employ unwinding theorems as verification tech-
nique for information flow properties. These techniques are typically sufficient
though not necessary in all cases. We feel that this may be due to the fact
that unwinding relations are based on the structure of the system rather than
on the language of traces generated by the system. The only other work we
are aware of which gives a decision procedure based on language inclusion
is [2]. While they have addressed the properties of non-deterministic nonin-
terference and strong non-deterministic noninterference (which is equivalent
to the definition of noninference given in [9] and [10]), our approach gives a
decision procedure for the whole class of information flow properties that can
be expressed in terms of BSPs.

2 Language-Theoretic Operations

By an alphabet we will mean a finite set of symbols representing events or
actions of a system. For an alphabet Σ we use Σ∗ to denote the set of finite
strings over Σ. The null or empty string is represented by the symbol ε. For
two strings α and β in Σ∗ we write αβ for the concatenation of α and β. A
language L over Σ is just a subset of Σ∗.

A marked language M over an alphabet Σ is a language over the alphabet
Σ ∪ {�}, where ‘�’ is a special “mark” symbol different from those in Σ, and
each string in M contains exactly one occurence of �.

For the rest of the paper we fix an alphabet of events Σ. We assume
a partition of Σ into V, C, N , which in the framework of [5] correspond to
events that are visible, confidential, and neither visible nor confidential, from
a particular user’s point of view.

Definition 2.1 (Language-theoretic operations) Let L be a language over
Σ modelling sets of possible traces of a system and let M be a marked language

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–58 41



over Σ. Let X be a subset of Σ.

We define the following language-theoretic operations on L:

(i) L �X := {τ �X | τ ∈ L}, where τ �X is obtained from τ by deleting all
events from τ that are not elements of X.

(ii) l-del(L) := {αβ | αcβ ∈ L, β �C= ε}.
Operation l-del corresponds to the deletion of the last confidential event in
a string. More precisely, this operation deletes the last occuring C-event
from every string in L.

(iii) l-ins(L) := {αcβ | αβ ∈ L, β �C= ε, c ∈ C}.
Operation l-ins corresponds to the insertion of confidential events in strings
of L. More precisely, l-ins contains all strings γ ∈ Σ∗ obtained by insert-
ing a C-event in a string τ ∈ L, in a position after which no C-events
occur.

(iv) l-ins-admX(L) :=
{αcβ | αβ ∈ L, β �C= ε, there exists γc ∈ L, γ �X= α�X , c ∈ C}.
Operation l-ins-admX corresponds to admissible insertion of confidential
events in strings of L. More precisely, this operation is similar to l-ins
but allows only the insertion of admissible C-events. The insertion of
an event c ∈ C is admissible after a prefix α in a string τ iff there exists
another string γc ∈ L with γ projected to the set X being equal to α

projected to X.

(v) l-del-mark(L) := {α�β | αcβ ∈ L, β �C= ε}.
Operation l-del-mark corresponds to marked deletion of the last confiden-
tial event. More precisely, this operation replaces the last event c ∈ C in
every string of L by the special mark symbol �.

(vi) l-ins-mark(L) := {αc�β | αβ ∈ L, β �C= ε, c ∈ C}.
Operation l-ins-mark corresponds to marked insertion of a confidential
event. This operation is similar to l-ins, but additionally introduces a
mark � after the newly inserted symbol.

(vii) l-ins-adm-markX(L) :=
{αc�β | αβ ∈ L, β �C= ε, there exists γc ∈ L, γ �X= α�X , c ∈ C}.
Operation l-ins-adm-markX corresponds to marked insertion of admissible
events. More precisely, this operation is similar to l-ins-admX, but a mark
� is introduced after the newly inserted (admissible) symbol c in the string.

(viii) mark(L) := {α�β | αβ ∈ L}.
Operation mark corresponds to the insertion of a mark at an arbitrary
position. More precisely mark contains all strings which can be obtained
by the insertion of the mark symbol in an arbitrary position of a string

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–5842



in L.

(ix) M �m
X := {α�β ′ | α�β ∈ L, β ′ = β �X}.

This operation corresponds to a marked projection. More precisely, this
operates on a marked language M and is similar to Projection, but leaves
every string intact upto the mark and projects to set X the suffix after
the mark.

(x) Let C ′ ⊆ C and V ′ ⊆ V .
l-del-con-markC′,V ′(L) := {αv�β |αcvβ ∈ L, β �C= ε, c ∈ C ′, v ∈ V ′}.
Operation l-del-con-mark corresponds to marked deletion in the “context”
of an event in V ′. More precisely, this operation replaces the last confi-
dential event c in a string by the mark symbol, provided c belongs to C ′

and and is immediately followed by a V ′ event in the string.

(xi) Let C ′ ⊆ C and V ′ ⊆ V .
l-ins-con-markC′,V ′(L) := {αcv�β | αvβ ∈ L, β �C= ε, c ∈ C ′, v ∈ V ′}.
Operation l-ins-con-mark corresponds to marked insertion in the context
of a V ′ event. More precisely, l-ins-con-mark contains all strings obtained
by inserting a C ′ event at a point in a string after which no confidential
events occur and which is immediately followed by a V ′ event v; the mark
symbol is also inserted after the event v.

(xii) Let C ′ ⊆ C and V ′ ⊆ V .
l-ins-adm-con-markX

C′,V ′(L) :=
{αcv�β | αvβ ∈ L, β �C= ε, there exists γc ∈ L, γ �X= α �X , c ∈
C ′, v ∈ V ′}.
Operation l-ins-adm-con-markX corresponds to the marked insertion of
admissible events in the context of a V ′ event. This operation is similar
to l-ins-con-mark but allows only the insertion of admissible C-symbols,
where admissibility is defined as for operation l-ins-admX.

(xiii) Let N ′ ⊆ N and V ′ ⊆ V .
erase-con-markN ′,V ′(L) := {αv�β | αδvβ ∈ L, δ ∈ (N ′)∗, v ∈ V ′}.
Operation erase-con-mark corresponds to the marked erasure of N ′-events.
More precisely, erase-con-markN ′,V ′(L) contains all strings obtained from
a string in L by the erasure of a consecutive sequence of N ′ events which
end before a V ′ event v. The mark symbol is also inserted after the event
v in the string.

3 Expressing BSP’s Language-Theoretically

We now express the basic security predicates (BSPs) of Mantel in terms of the
language-theoretic operations just defined, and the usual subset relation.

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–58 43



In this work we use a notion of “equality upto corrections of a set Y”.
For convenience, we thus introduce the following notations, where Y denotes
Σ − Y .

• α =Y β iff α �Y = β �Ȳ . String α is equal to β upto corrections on Y -events
iff the projection of α on Y is equal to the projection of β on Y .

• α ∈Y L iff there exists β ∈ L such that α =Y β. A string α belongs to L

upto corrections on Y -events iff L contains a string β that equals α upto
corrections on Y .

• L ⊆Y M iff for all strings α ∈ L we have α ∈Y M . L is a subset of M upto
corrections on Y iff every element of L belongs to M upto corrections on Y .

Recall, that we defined a partition of the set Σ into V, C and N .

Definition 3.1 (R) A language L satisfies property R (Removal of events)
iff for all strings τ ∈ L there exists a string τ ′ ∈ L such that τ ′ does not
contain any C-symbols and τ ′ �V = τ �V .

Lemma 3.2 Property R is satisfied by a language L iff L�V ⊆N L.

Proof. ⇒: Let us assume that L satisfies property R. Consider any string τ

in L �V . (Note, that all symbols in τ belong to set V .) By definition of the
projection L�V , there must exist some string τ ′ ∈ L such that τ ′ �V = τ . Since
property R is satisfied by language L, there must exist a string τ ′′ in L that
does not contain any C-symbols and whose projection τ ′′ �V is equal to the
projection τ ′ �V . Thus string τ ′′ differs from τ with only N -symbols and τ

belongs to language L modulo corrections of N (τ ∈N L). Hence L�V ⊆N L.

⇐: Let us assume that L�V ⊆N L. Consider any string τ ∈ L. Obviously,
the projection τ �V belongs to L�V . Since L�V ⊆N L, there must exist a string
τ ′ ∈ L that is equivalent to the projection τ�V upto corrections of N -symbols
and, moreover, does not contain any C-symbols. Thus, τ ′ �V = τ �V . Hence R

is satisfied. �

Definition 3.3 (D) Language L satisfies property D (Stepwise Deletion of
events) iff for each string αcβ ∈ L, where c ∈ C and the projection β �C on
C-events is empty, we have a string α′β ′ ∈ L such that α′ �V ∪C= α �V ∪C and
β ′ �V ∪C= β �V ∪C.

Lemma 3.4 Property D is satisfied by a language L iff l-del(L) ⊆N L.

Proof. ⇒: Let us assume that property P is satisfied by language L. Consider
a string τ ∈ l-del(L). This string will be of the form αβ where by definition
of l-del(L) β does not contain any C-symbols and the string αcβ belongs to L

for some symbol c ∈ C. Since D is satisfied, there must exist a string α′β ′ ∈ L

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–5844



such that α′ �V ∪C= α�V ∪C and β ′ �V ∪C= β �V ∪C . Thus string τ(= αβ) belongs
to L upto corrections of N -symbols. Hence l-del(L) ⊆N L.

⇐: Let us assume that l-del(L) ⊆N L. Consider a string τ ∈ L that is of
the form αcβ where β does not contain any C-symbols. By the definition of
the language l-del(L), the string αβ belongs to l-del(L). Since l-del(L) ⊆N L,
there must exist a string τ ′ ∈ L such that αβ and τ ′ are equivalent upto
corrections of N -symbols. Hence D is satisfied. �

Definition 3.5 (I) Language L satisfies property I (Insertion of events) iff
for all strings αβ ∈ L where β does not contain any C events and for all c ∈ C,
we have α′cβ ′ ∈ L, for some string β ′ with β ′ �V ∪C= β �V ∪C , α′ �V ∪C= α�V ∪C.

Lemma 3.6 Property I is satisfied by language L iff l-ins(L) ⊆N L.

Proof. ⇒: Let us assume that property I is satisfied. Consider a string τ in
language l-ins(L). By definition of l-ins(L), the string τ will be of the form
αcβ, where c belongs to set C, αβ belongs to L and β does not contain any
C-symbols. Since property I is satisfied by language L, there must exist a
string α′cβ ′ in L such that α′ �V ∪C= α�V ∪C and β ′ �V ∪C= β �V ∪C . Thus string
τ (= αcβ) belongs to L upto corrections of N -symbols. Hence l-ins(L) ⊆N L.

⇐: Let us assume that l-ins(L) ⊆N L. Consider a string τ ∈ L of the form
αβ, where β does not contain any C-events. By the definition of l-ins(L), there
exists a string αcβ ∈ l-ins(L) for each c ∈ C. Since l-ins(L) ⊆N L, we have
that αcβ ∈N L. This means that there must exist a string α′cβ ′ in L where
α and α′ as well as β and β ′ are equivalent upto corrections of N -symbols,
i.e. α′ �V ∪C= α�V ∪C and β ′ �V ∪C= β �V ∪C . Hence I is satisfied. �

Definition 3.7 (IAX) A language L satisfies the property IAX (Insertion of
X-admissible events) iff for every string αβ ∈ L such that β does not contain
any C-symbols and there exists a string γc ∈ L for some c ∈ C with γ �X=
α �X, we have that αcβ ∈N L, i.e. αcβ belongs to L upto corrections on N-
symbols.

Lemma 3.8 Property IAX is satisfied by language L iff l-ins-admX(L) ⊆N L.

Proof. ⇒: Let us assume that property IAX is satisfied by language L. Con-
sider any string τ in l-ins-admX(L). By definition of l-ins-admX(L), this
string τ will be of the form αcβ for some symbol c ∈ C such that the follow-
ing conditions hold: The string αβ belongs to L and for some string γ with
γ �X= α�X , the string γc belongs to L as well. Since IAX is satisfied, we have
that αcβ ∈N L, i.e. αcβ belongs to L upto corrections of N -symbols. Hence
l-ins-admX(L) ⊆N L.

⇐: Let us assume that l-ins-admX(L) ⊆N L. Consider any string αβ ∈ L

that satisfies the following conditions: the substring β does not contain any

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–58 45



C-symbols and there exists a string γc ∈ L for some C-symbol such that γ �X=
α�X. By definition of l-ins-admX(L) the string αcβ belongs to l-ins-admX(L).
Since l-ins-admX(L) ⊆N L, we have that the string αcβ belongs to L upto
corrections on N -symbols, i.e. αcβ ∈N L.Hence IAX is satisfied. �

Definition 3.9 (BSD) L satisfies BSD (Backwards Strict Deletion) iff for
every string αcβ ∈ L where c ∈ C and the substring β does not contain any
C-events there exists a string αβ ′ ∈ L with β ′ �V ∪C= β �V ∪C.

Lemma 3.10 Property BSD is satisfied by language L iff l-del-mark(L)�m
N
⊆

mark(L)�m
N
.

Proof. ⇒: Let us assume that property BSD is satisfied by language L.
Consider any string τ ∈ l-del-mark(L)�m

N
. This string will be of the form α�β

where β does not contain any N -symbol. By definition of marked projection,
there must exist a string α�β ′ ∈ l-del-mark(L) with β ′ �N= β �N . By definition
of l-del-mark(L), there must exist a symbol c ∈ C such that αcβ ′ belongs to
L. Since the property BSD is satisfied, there also exists a string αβ ′′ ∈ L,
such that β �N= β ′′�N . By definition of mark(L), we have that α�β ′′ ∈
mark(L). Since β does not contain any N -symbols and β and β ′′ are equal
upto corrections on N -symols, we have that β is equivalent to β ′′ with all
N -symbols deleted, which means, that α�β belongs to mark(L) �m

N
Hence

l-del-mark(L)�m
N
⊆ mark(L)�m

N
.

⇐: Let us assume that l-del-mark(L) �m
N
⊆ mark(L) �m

N
. Consider any

string αcβ ∈ L, where c ∈ C and β does not contain any C-events. By the
definition of l-del-mark(L), the marked string α�β belongs to l-del-mark(L).
By the definition of marked projection, there exists α�β ′ ∈ l-del-mark(L) �m

N

where β ′ is equal to β with N -symbols deleted. Since l-del-mark(L) �m
N

⊆
mark(L) �m

N
, the marked string α�β ′ belongs to mark(L) �m

N
as well. By the

definition of marked projection, there must exists a marked string α�β ′′ ∈
mark(L) for some β ′′ with β ′′ �N= β ′. Note, that the substring β ′′ is equal
to β upto corrections of N -symbols. By the definition of mark(L), the string
αβ ′′ also belongs to L. Hence BSD is satisfied. �

Definition 3.11 (BSI ) L satisfies BSI (Backwards Strict Insertion) iff for
all strings αβ ∈ L where β does not contain any C-symbols and for all symbols
c ∈ C, we have αcβ ′ ∈ L for some string β ′ with β ′ �V ∪C= β �V ∪C.

Lemma 3.12 Property BSI is satisfied by language L iff l-ins-mark(L) �m
N
⊆

mark(L)�m
N
.

Proof. ⇒: Let us assume that BSI is satisfied by language L. Consider any
string τ ∈ l-ins-mark(L)�m

N
. This string will be of the form αc�β where c ∈ C

and β contains only V -symbols. By the definition of marked projection, there

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–5846



must exist a string αc�β ′ in l-ins-mark(L), such that β ′ does not contain any
C-symbols and is equal to β on V -symbols. By the definition of l-ins-mark(L),
the string αβ ′ must belong to language L. Since property BSI is satisfied by
language L, for every symbol c ∈ C there must exist a string β ′′ with β ′′ �V ∪C

β ′, such that αcβ ′′ belongs to L. According to the definition of mark(L), α�cβ

belongs to mark(L). Since β ′′ is equal to β after deleting all N -symbols, we
have that α�cβ belongs to mark(L)�m

N
. Hence l-ins-mark(L)�m

N
⊆ mark(L)�m

N
.

⇐: Let us assume that l-ins-mark(L) �m
N
⊆ mark(L) �m

N
. Consider a string

τ ∈ L of the form αβ where β does not contain any C-symbols. By the
definition of l-ins-mark(L), there string αc�β belongs to l-ins-mark(L) for
every c ∈ C. By the definition of marked projection, there exists αc�β ′ ∈
l-ins-mark(L) �m

N
where β ′ is equal to β with all N -symbols deleted. Since

l-ins-mark(L)�m
N
⊆ mark(L)�m

N
, the string αc�β ′ also belongs to mark(L)�m

N
.

By the definition of marked projection, there must exist a string αc�β ′′ ∈
mark(L) for some β ′′ such that β ′′ �N= β ′. Note, that β ′′ is equivalent to β

upto corrections of N -symbols. By the definition of mark(L), the string αcβ ′′

belongs to L. Hence BSI is satisfied. �

Definition 3.13 (BSIAX) Language L satisfies property BSIAX (Backwards
Strict Insertion of X-admissible events) iff for all strings αβ ∈ L where β

does not contain any C-events and for which there exists a string γc ∈ L with
c ∈ C and γ �X= α�X, we have αcβ ′ ∈ L for some β ′ with β ′ �V ∪C= β �V ∪C.

Lemma 3.14 Property BSIAX is satisfied by language L iff

l-ins-adm-markX(L)�m
N
⊆ mark(L)�m

N
.

Proof. ⇒: Let us assume that property BSIAX is satisfied by language
L. Consider any string τ ∈ l-ins-adm-markX(L) �m

N
. This string τ will

be of the form αc�β, where c ∈ C and β contains only V -symbols. Ac-
cording to the definition of marked projection, there must exist a string
αc�β ′ ∈ l-ins-adm-markX(L), such that β ′ does not contain any C-symbols
and is equal to β on V -symbols. By definition of l-ins-adm-markX(L), the
string αβ belongs to L and there exists a string γc ∈ L with γ �X= α �X .
Since BSIAX is satisfied, there exists a string αcβ ′′ ∈ L for some string β ′′

with β and β ′′ being equivalent upto corrections of N -symbols. By definition
of mark(L), the string αc�β ′′ belongs to mark(L). Since β ′′ is equal to β after
deleting all N -symbols, we have that α�cβ belongs to mark(L) �m

N
. Hence

l-ins-adm-markX(L)�m
N
⊆ mark(L)�m

N
.

⇐: Let us assume that l-ins-adm-markX(L) �m
N
⊆ mark(L) �m

N
. Consider

any string αβ ∈ L where β does not contain any C-symbols and there exists
a string γc ∈ L for some c ∈ C such that γ �X= α �X . By the definition of

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–58 47



l-ins-adm-markX(L), the string αc�β belongs to l-ins-adm-markX(L). By defi-
nition of marked projection, the string αc�β ′ belongs to l-ins-adm-markX(L)�m

N

where β ′ is equal to β with N -symbols deleted. Since l-ins-adm-markX(L)�m
N

⊆ mark(L) �m
N

, the string αc�β ′ also belongs to mark(L) �m
N

. Again by
the definiton of marked projection, there must exist a string β ′′, such that
αc�β ′′ ∈ mark(L) and β ′′ �N= β ′. Note, that β ′′ is equivalent to β upto cor-
rections of N -symbols. Thus, by the definition of mark(L), the string αcβ ′′

belongs to language L. Hence BSIAX is satisfied. �

Definition 3.15 (FCD) Language L satisfies property FCD (Forward Cor-
rectable Deletion) iff for all strings αcvβ ∈ L where c ∈ C ′, v ∈ V ′ and where
β does not contain any C-symbols we have αδvβ ′ ∈ L with β ′ �V ∪C= β �V ∪C.

Lemma 3.16 Property FCD is satisfied by language L iff
l-del-con-markC′,V ′(L)�m

N
⊆ erase-con-markN ′,V ′(L)�m

N
.

Proof. ⇒: Let us assume that property FCD is satisfied by language L.
Consider a string τ in l-del-con-markC′,V ′(L). τ can be expressed as αv�β

where αcvβ ∈ L, c ∈ C ′, v ∈ V ′ with β �C= ε. There exists αv�β ′ ∈
l-del-con-markC′,V ′(L)�m

N
, where β ′ is β with N -symbols deleted. Since FCD is

satisfied by L, there exists αδvβ ′′ ∈ L where β ′′ and β are equivalent upto cor-
rections of N -symbols, with δ ∈ (N ′)∗ By definition of erase-con-markN ′,V ′(L),
there exists αv�β ′′ ∈ erase-con-markN ′,V ′(L). Deleting N -symbols from β ′′ re-
sults in β ′. So, αv�β ′ ∈ erase-con-markN ′,V ′(L)�m

N
.

Hence l-del-con-markC′,V ′(L)�m
N
⊆ erase-con-markN ′,V ′(L)�m

N
.

⇐: Let’s assume that l-del-con-markC′,V ′(L)�m
N
⊆ erase-con-markN ′,V ′(L)�m

N
.

Consider any string αcvβ ∈ L, where c ∈ C ′, v ∈ V ′ and where β does not con-
tain any C-symbols. By the definition of l-del-con-markC′,N ′(L), there exists
αv�β ∈ l-del-con-markC′,N ′(L). By the definition of Marked Projection, there
exists αv�β ′ ∈ l-del-con-markC′,N ′(L)�m

N
with β ′ = β �N . From the assumption

l-del-con-markC′,V ′(L) �m
N

⊆ erase-con-markN ′,V ′(L) �m
N

it follows that αv�β ′ ∈
erase-con-markN ′,V ′(L)�m

N
. There exists αv�β ′′ ∈ erase-con-markN ′,V ′(L) where

β ′′ �N= β ′. By the definition of erase-con-markN ′,V ′(L), there exists αδvβ ′′ ∈ L

with δ ∈ (N ′)∗. Note, that the strings β and β ′′ are equivalent upto correction
of N -symbols. This proves that FCD is satisfied. �

Definition 3.17 (FCI ) A language L satisfies a property FCI (Forward Cor-
rectable Insertion) iff for all αvβ ∈ L with v ∈ V ′ and where β does not con-
tain any C-symbols, we have αcδvβ ′ ∈ L, for every c ∈ C ′ with δ ∈ (N ′)∗ and
β ′ �V ∪C= β �V ∪C.

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–5848



Lemma 3.18 Property FCI is satisfied by language L iff

l-ins-con-markC′,V ′(L)�m
N
⊆ erase-con-markN ′,V ′(L)�m

N
.

Proof. ⇒: Let us assume that property FCI is satisfied by language L.
Consider a string τ ∈ l-ins-con-markC′,V ′(L). τ can be expressed as αcv�β,
c ∈ C ′, v ∈ V ′ with αvβ ∈ L and β �C= ε. If we let β ′ denote β with
N -symbols deleted, then there exists αcv�β ′ ∈ l-ins-con-markC′,V ′(L) �m

N
.

Since FCI is satisfied by L, there exists αcδvβ ′′ ∈ L with δ ∈ (N ′)∗ and
β ′′ �V ∪C= β �V ∪C . There exists αcv�β ′′ ∈ erase-con-markN ′,V ′(L). Deleting N -
symbols from β ′′ results in β ′. So, αcv�β ′ ∈ erase-con-markN ′,V ′(L)�m

N
. Hence

l-ins-con-markC′,V ′(L)�m
N
⊆ erase-con-markN ′,V ′(L)�m

N
.

⇐: Assume that l-ins-con-markC′,V ′(L) �m
N
⊆ erase-con-markN ′,V ′(L) �m

N
.

Consider a string τ ∈ L of the form αvβ, vinV ′ with β �C= ε. By the definition
of l-ins-con-markC′,V ′(L), there exists αcv�β ∈ l-ins-con-markC′,V ′(L), c ∈ C ′.
There exists αcv�β ′ ∈ l-ins-con-markC′,V ′(L) �m

N
with β ′ is β with N -symbols

deleted. Since l-ins-con-markC′,V ′(L)�m
N
⊆ erase-con-markN ′,V ′(L)�m

N
, αcv�β ′ ∈

erase-con-markN ′,V ′(L) �m
N

. There exists αcv�β ′′ ∈ erase-con-markN ′,V ′(L)
where β ′′ �N= β ′. β ′′ and β are equivalent upto corrections of N -symbols.
By the definition of erase-con-markN ′,V ′(L), there exists αcδvβ ′′ ∈ L. Hence
FCI is satisfied. �

q

Definition 3.19 (FCIAX) L satisfies FCIAX(Forward Correctable Insertion
of X-admissible events) iff for all αvβ ∈ L, v ∈ V ′ with β �C= ε and there
exists γc ∈ L, c ∈ C ′ with γ �X= α �X, we have αcδvβ ′ ∈ L with δ ∈ (N ′)∗

and β ′ �V ∪C= β �V ∪C.

Lemma 3.20 Property FCIAX is satisfied by language L iff

l-ins-adm-con-markX
C′,V ′(L)�m

N
⊆ erase-con-markN ′,V ′(L)�m

N
.

Proof. ⇒: Assume that property FCIAX is satisfied by language L. Con-
sider a string τ ∈ l-ins-adm-con-markX

C′,V ′(L). τ can be expressed as αcv�β,
c ∈ C ′, v ∈ V ′ with αvβ ∈ L and β �C= ε such that there exists γc ∈ L

with γ �X= α �X . There exists αcv�β ′ ∈ l-ins-adm-con-markX
C′,V ′(L) �m

N
where

β ′ is β with N -symbols deleted. Since FCIAX is satisfied by L, there ex-
ists αcδvβ ′′ ∈ L with δ ∈ (N ′)∗ and β ′′ �V ∪C= β �V ∪C . By the definition
of erase-con-markN ′,V ′(L), αcv�β ′′ ∈ erase-con-markN ′,V ′(L). Deleting N -
symbols from β ′′ results in β ′. So, αcv�β ′ ∈ erase-con-markN ′,V ′(L)�m

N
. Hence

l-ins-adm-con-markX
C′,V ′(L)�m

N
⊆ erase-con-markN ′,V ′(L)�m

N
.

⇐: Assume that l-ins-adm-con-markX
C′,V ′(L)�m

N
⊆ erase-con-markN ′,V ′(L)�m

N
.

Consider a string τ ∈ L of the form αvβ, vinV ′ with β �C= ε such that there ex-

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–58 49



ists γc ∈ L with γ �X= α�X . By the definition of l-ins-adm-con-markX
C′,V ′(L),

there exists αcv�β ∈ l-ins-adm-con-markX
C′,V ′(L), c ∈ C ′. There exists αcv�β ′ ∈

l-ins-adm-con-markX
C′,V ′(L) �m

N
with β ′ is β with N -symbols deleted. Us-

ing l-ins-adm-con-markX
C′,V ′(L) �m

N
⊆ erase-con-markN ′,V ′(L) �m

N
we conclude

that αcv�β ′ ∈ erase-con-markN ′,V ′(L) �m
N

. If β ′′ �N= β ′, then there exists
αcv�β ′′ ∈ erase-con-markN ′,V ′(L). Then β ′′ and β are equivalent upto correc-
tions of N -symbols. By the definition of erase-con-markN ′,V ′(L), there exists
αcδvβ ′′ ∈ L. Hence FCIAX is satisfied. �

Definition 3.21 (SR) Language L satisfies property SR (Strict Removal) iff
for all τ ∈ L we have τ �C∈ L.

Lemma 3.22 Property SR is satisfied by language L iff L�C⊆ L.

Proof. ⇒: Let us assume that property SR is satisfied by language L. Con-
sider any string τ in L�C . By the definition of projection, there exists τ ′ in L
such that τ ′ �C= τ . Since SR is satisfied by L, τ = τ ′ �C∈ L. Hence L�C⊆ L.

⇐: Let us assume that L �C⊆ L. Consider any string τ in L. τ �C∈ L �C .
Since L�C⊆ L, τ �C∈ L. Hence SR is satisfied. �

Definition 3.23 (SD) Language L satisfies property SD (Strict Deletion) iff
for all αcβ ∈ L, c ∈ C such that β �C= ε, we have αβ ∈ L.

Lemma 3.24 Property SD is satisfied by language L iff l-del(L) ⊆ L.

Proof. ⇒: Let us assume that property SD is satisfied by language L. Con-
sider a string τ in l-del(L). τ can be expressed as αβ with β �C= ε and
αcβ ∈ L for some c ∈ C. Since SD is satisfied by L, there exists αβ ∈ L.
Hence l-del(L) ⊆ L.

⇐: Let us assume that l-del(L) ⊆ L. Consider a string τ of the form
αcβ ∈ L, c ∈ C. By the definition of l-del(L), there exists αβ ∈ l-del(L).
Since l-del(L) ⊆ L, αβ ∈ L. Hence SD is satisfied. �

Definition 3.25 (SI ) Language L satisfies property SI (Strict Insertion) iff
for all αβ ∈ L such that β �C= ε, we have αcβ ∈ L, for every c ∈ C.

Lemma 3.26 Property SI is satisfied by language L iff l-ins(L) ⊆ L.

Proof. ⇒: Let us assume that property SI is satisfied by language L. Con-
sider a string τ ∈ L. τ can be expressed as αcβ, c ∈ C such that β �C= ε with
αβ ∈ L. Since SI is satisfied by L, there exists αcβ ∈ L. Hence l-ins(L) ⊆ L.

⇐: Let us assume that l-ins(L) ⊆ L. Consider a string τ ∈ L of the form
αβ such that β �C= ε. By the definition of l-ins(L), there exists αcβ ∈ l-ins(L)
for any c ∈ C. Since l-ins(L) ⊆ L, αcβ ∈ L. Hence SI is satisfied. �

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–5850



Definition 3.27 (SIAX) Language L satisfies property SIAX (Strict Inser-
tion of X-admissible events) iff for all αβ ∈ L such that β �C= ε and there
exists γc ∈ L, c ∈ C with γ �X= α�X, we have αcβ ∈ L.

Lemma 3.28 Property SIAX is satisfied by language L iff l-ins-admX(L) ⊆
L.

Proof. ⇒: Let us assume that property SIAX is satisfied by language L.
Consider a string τ ∈ l-ins-admX(L). τ can be expressed as αcβ with β �C= ε

such that there exists γc ∈ L, c ∈ C with γ �X= α�X . Since SIAX is satisfied
by L, there exists τ = αcβ ∈ L. Hence l-ins-admX(L) ⊆ L.

⇐: Let us assume that l-ins-admX(L) ⊆ L. Consider a string τ ∈ L

of the form αβ with β �C= ε such that there exists γc ∈ L, c ∈ C with
γ �X= α �X . By the definition of l-ins-admX(L), τ ∈ l-ins-admX(L). Since
l-ins-admX(L) ⊆ L, αcβ ∈ L. Hence SIAX is satisfied. �

4 Operations are Regularity Preserving

We now show how the language-theoretic characterisations of BSP’s lead to a
decision procedure for checking whether a finite-state system satisfies a given
BSP. We first introduce the necessary terminology, beginning with the required
notions in finite state automata.

A (finite-state) transition system over an alphabet ∆ is a structure of the
form T = (Q, s,−→), where Q is a finite set of states, s ∈ Q is the start
state, and −→⊆ Q × ∆ × Q is the transition relation. We write p

a
−→ q to

stand for (p, a, q) ∈−→, and use p
α

−→∗q to denote the fact that we have a
path labelled α from p to q in the underlying graph of the transition system
T . More precisely we define

α
−→∗ inductively by saying p

ε
−→∗p for all p ∈ Q,

and p
αa
−→∗q whenever there exists r ∈ Q such that p

α
−→∗r and r

a
−→ q. The

language accepted (or generated) by the transition system T is defined to be
L(T ) = {α ∈ ∆∗ | p

α
−→∗q for some q ∈ Q}.

A (finite state) automaton (FSA) over an alphabet ∆ is of the form A =
(Q, s,−→, F ) where (Q, s,−→) forms a transition system and F ⊆ Q is a set
of final states. The language accepted by A is defined to be L(A) = {α ∈
∆∗ | s

α
−→∗q for some q ∈ F}.

A transition system can thus be thought of as an automaton in which all
states are final.

It will be convenient to make use of automata with ε-transitions. Here
the automaton is also allowed transitions of the form p

ε
−→ q. The language

accepted by automata with ε-transitions is defined similarly, except that the
ε labels don’t contribute to the label of a path. ε-transitions don’t add the

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–58 51



to the expressive power of automata, as one can give a language equivalent
automaton B for a given automaton with ε-transitions A by adding transitions
of the form p

a
−→ q whenever p

a
−→∗q in A, and then deleting the ε-transitions.

The class of languages accepted by FSA’s is termed the class of regular
languages. Regular languages are effectively closed under intersection and
complementation. Moreover their language emptiness problem – i.e. given an
FSA A, is L(A) = ∅? – is efficiently decidable (by simply checking if there is
a final state reachable from the initial state). It thus follows that the language
inclusion problem (whether L(A) ⊆ L(B)?) is also decidable for automata,
since we can check equivalently that L(A) ∩ (∆∗ − L(B)) = ∅.

Returning to our problem of verifying BSP’s, we say that a system mod-
elled as a finite-state transition system T satisfies a given BSP P iff L(T )
satisfies P . In the previous section we showed that the question of whether a
language L satisfies P boils down to checking whether L1 ⊆ L2, where L1 and
L2 are obtained from L by successive applications of some language-theoretic
operations. If L is a regular language to begin with, and if each language-
theoretic operation op of section 2 is regularity preserving and effectively so
(in the sense that if M is presented by an FSA then we can construct an
FSA that accepts op(M)), then L1 and L2 are also regular languages and the
question L1 ⊆ L2 can be effectively answered. To give a decision procedure for
our BSP verification problem, it is thus sufficient to show that the language-
theoretic operations are regularity preserving in the above sense. In the rest
of this section we concentrate on showing this.

The language operations of section 2 are of the following kinds: they either
take a language over Σ and return a language over Σ, or they take a language
over Σ and return a marked language over Σ, or they take a marked language
over Σ and return a marked language over Σ. In all cases we show that if they
take a regular language, they return a regular language.

(i) Projection wrt X. Let L be a language over Σ accepted by an FSA A, and
let X ⊆ Σ. Then we can construct A′ accepting L�X by simply replacing
transitions of the form p

a
−→ q, with a 	∈ X, in A, by an ε-transition

p
ε

−→ q.

(ii) l-del. Let L be a language over Σ, with L = L(A). We construct A′ for
l-del(L) as follows. We create two copies of A. The initial state of A′ is
the initial state of the first copy. In the first copy we add an ε-transition
from a state p in the first copy to state q in the second copy if p

c
−→ q

in A, with c ∈ C. The final states in the first copy are marked non-final
and the the final states in the second copy are retained.
This construction can be described formally as follows. Let A = (Q, s,−→
, F ). Define A′ = (Q′, s′,−→′, F ′) where Q′ = Q×{1, 2}, s′ = (s, 1), −→′

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–5852



is given by

(p, 1)
a

−→′ (q, 1) if p
a

−→ q in A

(p, 1)
ε

−→′ (q, 2) if p
c

−→ q in A with c ∈ C

(p, 2)
a

−→′ (q, 2) if p
a

−→ q and a 	∈ C,

and F ′ = F × {2}.

The construction is depicted in Fig. 1.
ε

a a

c

Fig. 1. l-del(L)

(iii) l-ins. Let L be a language over Σ with L = L(A). We construct A′ for
l-ins(L) as follows. We make two copies of A. The start state of A′ is
the start state of the first copy, and the final states are the final states of
the second copy. In the first copy for every transition p

a
−→ q we add a

c transition (for every c ∈ C) from p in the first copy to p in the second
copy. The c-transitions for c ∈ C are deleted from the second copy. The
construction is depicted in Fig 2.

c

a a

c

Fig. 2. l-ins(L)

(iv) l-ins-admX . Let L be a language over Σ with L = L(A), and let X ⊆ Σ.
We construct A′ for l-ins-admX(L) as follows. We have two “copies” of
A. In the first copy, the states have two components: the first component
keeps track of a state from A, while the second keeps track of a set of
states of A that are reachable by words that are X-equivalent to the
current word being read. We have a transition labelled c, with c ∈ C,
from a state (p, T ) in the first copy to p in the second copy, provided T

contains a state t from which it is possible to do a c and reach a final
state. Once in the second copy, we allow only non-C transitions and
retain the original final states.

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–58 53



More formally, we can define A′ as follows. Let A = (Q, s,−→, F ) and
let B be the automaton obtained from A by replacing transitions of the

form p
a

−→ q by p
ε

−→ q whenever a 	∈ X. Then A′ = (Q′, s′,−→′, F ′)
where Q′ = (Q × 2Q) ∪ Q; s′ = (s, S) where S = {q ∈ Q | s

ε
−→∗q in B};

−→′ is given below:

(p, T )
a

−→′ (q, T ) if p
a

−→ q and a 	∈ X

(p, T )
a

−→′ (q, U) if p
a

−→ q, a ∈ X, and

U = {r | ∃t ∈ T, t
a

−→∗r in B}

(p, T )
c

−→′ p if ∃t ∈ T, q ∈ F : t
c

−→ q and c ∈ C;

p
a

−→′ q if a 	∈ C.

and F ′ = F .
c

Fig. 3. l-ins-admX(L)

(v) l-del-mark. This construction is similar to l-del except that the label of
the ε-transitions we add from the first copy to the second, is now �.

(vi) l-ins-mark. The construction is similar to l-ins. Here instead of inserting
a transition labelled c from the first copy to the second, we need to insert
a transition labelled c� from the first copy to the second. This can be
carried out by having a third copy of A placed between the first and
second. The third copy has all its transitions deleted, and all its states
are neither initial nor final. A c transition from p in the first copy now
goes to p in the third copy, and from p in the third copy we add a �

transition to p in the second copy.

(vii) l-ins-adm-markX . The construction is similar to l-ins-admX . Instead
of adding a c transition from the first copy to the second, we add one
labelled c� (once again this can be achieved using a third copy of A).

(viii) mark. Given A for L ⊆ Σ∗, we construct A′ which accepts the marked
language mark(L). A is obtained from A as follows. We again use two
copies of A. The initial state of A′ is the initial state of the first copy,
and the final states are only those of the second copy. From every state
in the first copy we add a transition labelled � to the same state in the

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–5854



second copy.

(ix) Marked projection. Given a marked language M , an FSA A accepting M ,
and X ⊆ Σ, we construct A′ which accepts the marked language M �m

X .
Once again we use two copies of A. The initial state of the first copy is
the initial state of A′ and the final states of the second copy are the final

states of A′. From the first copy we delete transitions of the form p
�

−→ q

and add a transition labelled � from p in the first copy to q in the second
copy. In the second copy, we replace transition labels which are not in X

by ε.
�

a ε

�

Fig. 4. M �m
X

(x) l-del-con-mark. Let L be a language over Σ and A be an FSA accepting
L. Let C ′ ⊆ C and V ′ ⊆ V . We construct A′ accepting the marked
language l-del-con-markC′,V ′(L) as follows. We have four copies of A.
The second and third copies have all transitions deleted from them, and
the fourth copy has all C transitions deleted from it. The initial state of
the first copy is the initial state of A′ and the final states of the fourth

copy are the final states of A′. For every transition p
c′

−→ q with c′ ∈ C ′,
we add an ε-transition from p in the first copy to q in the second copy.
We add a v′-transition from a state r in the second copy to a state t in

the third copy iff r
v′

−→ t, with v′ ∈ V ′, is a transition in A. Finally, we
add a �-transition from each state u in the third copy to u in the fourth
copy.

ε

a

c′

v′
a

v′

v′

�

Fig. 5. l-del-con-markC′,V ′(L)

(xi) l-ins-con-mark.
Let L be a language over Σ and A be an FSA accepting L. Let

C ′ ⊆ C and V ′ ⊆ V . We construct A′ accepting the marked language

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–58 55



l-ins-con-markC′,V ′(L) as follows. We have four copies of A. The second
and third copies have all transitions deleted from them, and the fourth
copy has all C transitions deleted from it. The initial state of the first
copy is the initial state of A′ and the final states of the fourth copy are

the final states of A′. For every transition p
v′

−→ q with v′ ∈ V ′, we add
a c′-transition (for every c′ ∈ C ′) from p in the first copy to q in the
second copy. We add a v′-transition from a state r in the second copy to

a state t in the third copy iff r
v′

−→ t, with v′ ∈ V ′, is a transition in A.
Finally, we add a �-transition from each state u in the third copy to u in
the fourth copy.

a

c

v′
a

v′

v′

�

c′

Fig. 6. l-ins-con-markC′,V ′(L)

(xii) l-ins-adm-con-markX . Let L be a language over Σ with L = L(A),
and let X ⊆ Σ. Let C ′ ⊆ C and V ′ ⊆ V . We construct A′ for
l-ins-adm-markX(C ′)V ′L as follows. We use four “copies” of A. The
first copy is exactly the same as in l-ins-admX(L), where the states have
two components, the first component keeping track of a state from A,
while the second keeps track of a set of states of A that are reachable
by words that are X-equivalent to the current word being read. The
second and third copies of A have all transitions deleted from them, and
the fourth copy has all C transitions deleted from it. The initial state of
the first copy is the initial state of A′ and the final states of the fourth
copy are the final states of A′. We have a transition labelled c′, with
c′ ∈ C ′, from a state (p, T ) in the first copy to p in the second copy,
provided T contains a state t from which it is possible to do a c′. We add
a v′-transition from a state r in the second copy to a state u in the third

copy iff r
v′

−→ u, with v′ ∈ V ′, is a transition in A. Finally, we add a
�-transition from each state w in the third copy to w in the fourth copy.

(xiii) erase-con-mark. Let L ⊆ Σ∗ and let A be an FSA with L = L(A). Let
N ′ ⊆ N and V ′ ⊆ V . We construct A′ accepting erase-con-markN ′,V ′(L)
as follows. We have four copies of A. The first and fourth copy have
all their original transitions intact, the second has all transitions labeled
with a 	∈ N ′ deleted and transitions labelled n′, with n′ ∈ N ′, replaced

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–5856



c′

v′ v′

v′

�

Fig. 7. l-ins-adm-con-markX
C′,V ′(L)

by ε-transitions; and the third has all its transitions deleted. We add an
ε-transition from every state p in the first copy to p in the second copy;

For every state p in the second copy such that p
v′

−→ q in A, we add a
v′-transition from p in the second copy to q in the third copy. From every
state p in the third copy we add a transition labelled � to p in the fourth
copy. The initial states of A′ are the initial states of the first copy and
the final states those of the fourth copy.

ε

a

n′

v′

a

n′

v′

ε

v′ �

Fig. 8. erase-con-markN′,V ′(L)

5 Conclusion

We have demonstrated in this paper a way to automatically verify trace based
information flow properties of finite state systems. We give characterisations
of the properties in terms of language-theoretic operations on the set of traces
of a system, rather than in terms of the structure of the system which is a
stronger notion. This perhaps explains why we are able to obtain complete
characterisations unlike the previous techniques in the literature.

The running time of our procedure can be seen to be exponential in the
number of states of the given finite state transition system, in the worst case.
This is because the automata constructions for the language-theoretic opera-
tions involve a blow-up in states of O(n) in most cases, and 2O(n) in the case
of the BSP’s based on the admissibility clause (here n is the number of states
in the given transition system). Furthermore, no operation used on the right
hand side of the containment (recall that our characterisations are typically
of the form op1(L) ⊆ op2(L)) introduces an exponential blow-up. Thus in

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–58 57



checking containment, we have to complement an automaton of size at most
O(n), and thus we have a bound of 2O(n) in the worst case.

References

[1] Bossi, A., R. Focardi, C. Piazza and S. Rossi, Bisimulation and unwinding for verifying
possibilistic security properties, in: VMCAI 2003: Proceedings of the 4th International
Conference on Verification, Model Checking, and Abstract Interpretation (2003), pp. 223–237.

[2] Focardi, R. and R. Gorrieri, Automatic compositional verification of some security properties,
in: Tools and Algorithms for Construction and Analysis of Systems, 1996, pp. 167–186.

[3] Focardi, R. and R. Gorrieri, The compositional security checker: A tool for the verification of
information flow security properties, Software Engineering 23 (1997), pp. 550–571.

[4] Goguen, J. A. and J. Meseguer, Security policies and security models, in: Proc. IEEE Symp.
on Security and Privacy, 1982, pp. 11–20.

[5] Mantel, H., Possibilistic Definitions of Security – An Assembly Kit, in: Proceedings of the 13th
IEEE Computer Security Foundations Workshop (2000), pp. 185–199.

[6] Mantel, H., Unwinding Possibilistic Security Properties, in: F. Cuppens, Y. Deswarte,
D. Gollmann and M. Waidner, editors, European Symposium on Research in Computer Security
(ESORICS), LNCS 1895 (2000), pp. 238–254.

[7] Mantel, H., “A Uniform Framework for the Formal Specification and Verification of Information
Flow Security,” Ph.D. thesis, Universität des Saarlandes (2003).

[8] McCullough, D., Specifications for multilevel security and a hookup property, in: Proc. 1987
IEEE Symp. Security and Privacy, 1987, pp. 161 – 166.

[9] McLean, J., A general theory of composition for trace sets closed under selective interleaving
functions, in: Proc. IEEE Symposium on Research in Security and Privacy (1994), pp. 79 – 93.

[10] O’Halloran, C., A calculus of information flow, in: Proceedings of the European Symposium on
Research in Computer Security, ESORICS 90 (1990), pp. 147 – 159.

[11] Sutherland, D., A model of information, in: Proceedings of the 9th National Computer Security
Conference, 1986.

[12] Zakinthinos, A. and E. S. Lee, A general theory of security properties, in: SP ’97: Proceedings
of the 1997 IEEE Symposium on Security and Privacy (1997), p. 94.

D. D’Souza et al. / Electronic Notes in Theoretical Computer Science 135 (2005) 39–5858


	Introduction
	Language-Theoretic Operations
	Expressing BSP's Language-Theoretically
	Operations are Regularity Preserving
	Conclusion
	References



