
The Verisoft Approach to Systems Verification

Eyad Alkassar1,?, Mark A. Hillebrand2,??, Dirk Leinenbach2,?,??,
Norbert W. Schirmer2,??, and Artem Starostin1,? ? ?

1 Universität des Saarlandes
P.O. Box 15 11 50, 66041 Saarbrücken, Germany

{eyad,starostin}@wjpserver.cs.uni-sb.de
2 German Research Center for Artificial Intelligence (DFKI)

P.O. Box 15 11 50, 66041 Saarbrücken, Germany
{mah,dirk.leinenbach,norbert.schirmer}@dfki.de

Abstract. The Verisoft project aims at the pervasive formal verification
from the application layer over the system level software, comprising a
microkernel and a compiler, down to the hardware. The different layers of
the system give rise to various abstraction levels to conduct the reasoning
steps efficiently. The lower the abstraction level the more details and
invariants are necessary to ensure overall system correctness. Illustrated
by a page-fault handler we discuss the layers and the trade-off between
efficiency of reasoning at a more abstract layer versus the development
of meta-theory to transfer the verification results between the layers.

1 Motivation and Challenges

The layer of system software confines the essential components of modern com-
puter architectures. Any flaw up to this level has a decisive impact on the ro-
bustness, safety, and security of applications running on top of it. An operating
system kernel that might fail to guarantee isolation of processes can hardly serve
as a trustworthy computing basis to process security critical data. Hence, the
design and verification of the crucial system level parts by the most rigorous
means is an effort both worthwhile and promising.

Examining the system design up to the level of a microkernel, we typically
have to deal with at least the following layers: hardware, assembler, and the C
programming language. The different layers come along with a rise in abstrac-
tion regarding formal models and reasoning about them. However, the final goal
is to provide objective evidence that the actual running system behaves cor-
rectly. The lower the layer the ‘correctness theorem’ holds on the better. Ideally,
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this is a theorem in the domain of physics. For computer science a transistor
or gate-level hardware model is a realistic target to state the final correctness
result. Employing higher abstraction levels to improve effectiveness of reasoning
demands that we close the ‘semantic gap’ and bring the results down to the
hardware level. This is the very idea of pervasive or systems verification [1,2]. In
Verisoft every abstraction layer is justified by meta-theorems that allow trans-
ferring the results to the low-level models. All the development is mechanized in
the uniform logical framework of the interactive theorem prover Isabelle/HOL
and hence it is rigorously checked that all the results fit together.3 The goal of
this paper is to provide an informal overview of the different layers and their
connection. This bird’s eye view easily gets lost in detailed technical papers on
parts of this work that were already or are simultaneously published.

Related Work. First attempts to use theorem provers to specify and even prove
correct operating systems were made as early as the 1970ies in PSOS [3] and
UCLA Secure Unix [4]. However, a missing or to a large extent underdeveloped
tool environment made mechanized verification futile. With the CLI stack [1], a
new pioneering approach for pervasive systems verification was undertaken. The
goal of this project was to build a system from verified, hierarchically stacked
components. In extension to their seminal work the Verisoft project aims at a
more realistic system architecture regarding both hardware and system software.
In particular, devices are integrated into the Verisoft system stack. For realistic
systems, this is already required for booting or scheduling in a microkernel. It is
theoretically challenging, since devices are a concurrent source of computation
and break the abstraction of sequential programs.

The project L4.verified [5] focuses on the verification of an efficient micro-
kernel, rather than on formal pervasiveness, as no compiler correctness or an
accurate device interaction is considered. The microkernel is implemented in a
larger subset of C as C0 (the C-like programming language used in Verisoft),
including pointer arithmetic and an explicit low-level memory model [6]. How-
ever, with inline assembler code we gain an even more expressive semantics as
machine registers become visible if necessary. So far, only exemplary portions
of kernel code were reported to be verified, the virtual memory subsystem uses
no demand paging [7]. For code verification L4.verified relies on Verisoft’s Hoare
environment [8]. In the FLINT project, an assembly code verification framework
is developed and code for context switching on a x86 architecture was formally
proven [9]. A program logic for assembler code is presented, but no integration
of results into high-level programming languages is undertaken.

The VFiasco project [10] aims at the verification of the microkernel Fiasco
implemented in a subset of C++ and embedded into PVS. There is no attempt
to map the results to the machine level.

Overview. In Sect. 2 we give an overview of the Verisoft system stack and our
approach towards pervasive verification. We proceed in Sect. 3 by introducing
the C0 language stack from a Hoare logic down to a low-level small-step C0
3 Theory files are available at http://www.verisoft.de/VerisoftRepository.html.
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semantics. The compiler verification detailed in Sect. 4 is the bridge between
C0 and the machine model. In Sect. 5 we explain how machine-level entities can
be made accessible from within the high-level Hoare logic based reasoning and
Sect. 6 explains the integration of devices. In Sect. 7 we illustrate the approach
on the example of a page-fault handler implementing demand paging for memory
virtualization. We conclude in Sect. 8.

2 Pervasiveness

In short, pervasive verification means that at the end of the day we obtain a
correctness theorem at the lowest level of abstraction, the machine level. To
avoid conducting all the verification at the machine level in the first place we
introduce layers (like a C0 semantics and a Hoare logic) to improve the level
of abstraction along with the performance of verification. Nevertheless, meta-
theoretic theorems allow us to bring the verification results all the way down
to the machine level, where they can be composed for an overall system cor-
rectness proof. Figure 1 depicts our system stack. The bottom layer is given
by the gate-level description of the VAMP hardware, our hardware platform. A
processor correctness result [11] links this to the layer of the instruction set ar-
chitecture (ISA), where instructions and values are encoded as bit-vectors. The
VAMP assembler layer formalizes the programmer’s view on the machine and
is a slight abstraction of the ISA layer, where the bit-vector encodings of the
instructions and values are switched to an abstract data type and natural num-
bers, respectively. A straightforward simulation theorem connects these layers.
Assembler computations are described by a small-step semantics. The high-level
programming language C0 is also formalized with a small-step semantics and
a compiler correctness result relates C0 computations to assembler computa-
tions. This is the junction where inline assembler code and concurrent device
interaction can be merged into purely sequential C0 code. At the upper levels
the inline assembler code is abstracted to so-called XCalls. A big-step semantics
serves as intermediate layer towards a Hoare logic, which is our main vehicle
for reasoning about C0 programs. Soundness of the Hoare logic and simulation
between the operational semantics allow us to transfer the Hoare triples down
to the small-step semantics.

3 C0 Semantic Stack

The C0 programming language is a subset of C, designed to be expressive enough
to allow the implementation of large parts of the system software, while re-
maining ‘neat’ to verify by restricting ourselves to a type-safe fragment without
pointer arithmetic. In the lucky position not having to verify already existing
C system code we could develop the code base ourselves in parallel with the
specification and verification. Hence, it was reasonable to restrict ourselves to
a subset of C to make the code verification less tedious and detailed, and thus
make it faster. However, it is intrinsic to system level code to perform low-level
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Fig. 1. System Stack

architecture dependent operations. We clearly cannot avoid those parts without
sacrificing any correspondence to real systems. Our approach is to encapsulate
those tricky low-level parts in inline assembler code. We have to deal with ap-
proximately 99% of type safe C0 code and 1% of assembler.

The C0 semantics plays a central role. On the one hand the Hoare logic has
to be sound with respect to the C0 semantics, on the other hand it is a corner-
stone of the compiler correctness theorem that links the formal C0 semantics
to the machine semantics of the generated code. All the Hoare logic based code
verification, as well as the C0 semantics, the compiler and the meta-theorems
are mechanized in the theorem prover Isabelle/HOL. It is challenging to come
up with a formalization that is equally well equipped to support both the veri-
fication of individual programs besides the meta-theory. For example, to specify
and verify a C0 compiler it is natural to explicitly represent C0 types, such that
the compiler can exploit this information. To reason about an individual C0 pro-
gram however, this type information is not explicitly necessary or can be even
obstructive. In C0 there is neither a means nor a need to access type information
from within the program. Quite the opposite, the C0 programs we consider are
all well-typed and C0 is a type safe language. Hence it is tempting to find a way
to abstract from potential typing issues while reasoning about individual pro-
grams. In a typed logical framework like HOL this can be achieved by mapping
programming language types for C0 variables directly to HOL types. The built
in type inference of Isabelle/HOL then automatically takes care of typing. While
this is a reasonable approach for a Hoare logic, it is not well-suited as a formal-
ization of the C0 semantics itself and the accompanying meta-theory. In this
context an explicit representation of programming language typing is necessary
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in order to even express things like ‘type-safety’. These conflicting requirements
on ‘the’ C0 semantics (together with further ones described below) is the reason
we defined a complete C0 semantics stack. To preserve our goal of pervasive
verification the semantics are linked together via meta-theorems.

A more fundamental difference in the semantic formalization is the decision
between big-step and small-step semantics. C0 is a sequential language and even
the target machine is a uni-processor architecture. Sequential reasoning and a
big-step semantics seem to be adequate. However, the processor is not the only
relevant hardware unit at the level of system software: devices run concurrently
with the processor, and communication involves interrupt handling and memory-
mapped I/O. This concurrency makes a small-step semantics adequate. To cover
the sequential and concurrent aspects we introduce both a big-step and a small-
step semantics.

The big-step semantics serves as a target for Hoare logic based reasoning:
a Hoare triple is a ‘big-step’ program property relating the initial and final
state. In general, a small-step semantics is more expressive than the big-step
counterpart. It describes the complete trace of the computation rather then
just the initial and final state. Moreover, it can be used to reason about non-
terminating computations, whereas the big-step semantics does not distinguish
between stuck computations and non-termination. A big-step semantics however
is more abstract (e.g., an explicit frame-stack for procedures is unnecessary) and
supplies a powerful proof principle: rule induction (i.e., induction on the depth
of the derivation tree). The similar structure of both a big-step semantics and a
Hoare calculus makes its soundness proof quite straightforward.

An orthogonal issue is the representation of programming language values.
C0 offers aggregate values as arrays, structures, or combinations of both. For
reasoning about C0 programs it is both sufficient and comfortable to keep this
abstraction of aggregate values: a single ‘memory cell’ can contain an aggregate
value of arbitrary size. The real memory of the target architecture however is
byte addressable and aggregate values are stored in a consecutive sequence of
bytes. We flatten aggregate values to byte sequences in the small-step semantics
whereas we treat them as compact atomic entities in the big-step semantics.

Another aspect of aggregate values is their representation on the heap, in
particular considering dynamic pointer structures. Aliasing is one of the key
obstacles when reasoning about pointer programs. Any reduction of potential
aliasing means a significant benefit for verification. Type-safety of C0 prohibits
aliasing between pointers to different types. We exploit this invariant by switch-
ing to a different memory model in the Hoare logic. Instead of a single monolithic
heap that stores every kind of value, we introduce a separate heap [12] for each
field of a structure. Without further reasoning the model already rules out alias-
ing between different types or even different structure fields.

3.1 Simpl Hoare Logic

The Hoare logic environment [8], built on top of the Isabelle/HOL, was moti-
vated by C0 but is by no means restricted to C0. It is a self-contained theory
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development for a quite generic model of a sequential imperative programming
language called Simpl. A big-step semantics as well as a Hoare logic for both
partial and total correctness is defined. Soundness and completeness is proven.

Theorem 1 (Soundness). Every triple derived in the Hoare logic is valid with
respect to the operational semantics.

Theorem 2 (Completeness). Every triple that is valid with respect to the
operational semantics can be derived in the Hoare logic.

Soundness is crucial for pervasive verification in order to formally link the results
from the Hoare logic to the operational semantics. Completeness can be viewed
as a sophisticated sanity check for the Hoare logic, ensuring that one cannot get
stuck in the verification because of some missing Hoare rules.

The state-space representation within Simpl is not fixed, rather it is a HOL
type variable. It can be instantiated to meet the requirements and format of
the program one attempts to verify. In Simpl all expressions are shallowly em-
bedded, whereas compound statements are deeply embedded. The basic atomic
statements however, are also modeled semantically as a state update function.
This careful arrangement makes it possible to define and reason about the Hoare
logic via the statement structure of the program and additionally provides the
flexibility to instantiate the language with various state-space models or atomic
operations that reflect the programming language under consideration.

To facilitate the usage of the Hoare logic within Isabelle/HOL, the application
of the rules is automated as a verification condition generator. Moreover, an
interface to software model checkers and termination analysis is provided [13].

3.2 Simpl to C0 Big-Step

We embed C0 into Simpl and use its verification environment to conduct C0
program proofs. To be able to transfer Simpl Hoare triples down to C0, we make
sure that every behavior of the C0 program is also part of the Simpl counterpart
and is thus covered by the Hoare triple. The C0 representation in HOL is a tradi-
tional deep embedding. First the abstract syntax of all relevant entities—types,
values, expressions, and statements—is defined and then meaning is assigned to
these entities, via a type system or the operational semantics. On the C0 syntax
we define an abstraction to Simpl programs. Similarly, we define an abstraction
of the C0 program state to the corresponding Simpl state. The following key
theorems allow us to transfer Hoare triples from Simpl to C0.

Theorem 3 (Simpl simulates C0). Every execution of a C0 program is sim-
ulated by the execution of the corresponding Simpl program.

Theorem 4 (Preservation of termination). Termination of the Simpl pro-
gram implies termination of the original C0 program.
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The proof of Theorem 3 is conducted by induction on the big-step execution of
the C0 program (cf. [8, Chapter 8]). The most important invariant used for the
induction is type safety. This matches the intuition of the abstraction that goes
on between the C0 and the Simpl representation. In C0 typing is explicit whereas
in Simpl it is mapped to HOL typing. To be more accurate Theorems 3 and 4
only hold for well-typed C0 programs and well-typed memory states. In C0 those
constraints are encoded in predicates whereas in Simpl they are maintained by
Isabelle’s type-inference. A type-safe memory is also the prerequisite to justify
the split heap representation in Simpl against the monolithic heap in C0.

A technical issue of the simulation proof comes from the state-space repre-
sentation in Simpl. As we use a HOL record to encode program variables and
heap components the HOL type of the state is not fixed for all C0 programs, but
depends on the individual program. We achieve an individual HOL typing for
the different variables and heap components, but cannot formulate Theorems 3
and 4 generically for all C0 programs within HOL. Instead we come up with
a stratification of the theorems in two stages. A meta-theorem holds for all C0
programs and assumes commutation properties for the atomic state lookups and
updates that appear in the program. For each individual C0 program we sepa-
rately discharge these commutation properties. Fortunately, the second step is
straightforward and can be automated. Hence, the resulting methodology is still
generically applicable for all C0 programs. Isabelle’s lightweight module concept
of locales [14] supports this separation into a meta-theorem for all programs as
well as the instantiation [15] for individual programs.

3.3 From Big-Step to Small-Step

The theorems to transfer Hoare triples from the big-step semantics down to the
small-step semantics are analogous to Theorems 3 and 4.

Theorem 5 (Big-step simulates small-step). Every terminating C0 small-
step computation can be simulated by a big-step execution.

Theorem 6 (Preservation of termination). Termination of the C0 program
in big-step semantics implies termination in the small-step semantics.

Intuitively, we have to bring two orthogonal aspects of the semantics together:
(i) computation: from a sequence of steps to a big-step and (ii) memory: from
flat to aggregate values. We reflect this separation in the proofs by introducing
an intermediate semantic level. A small-step semantics with the same memory
model as the big-step semantics as well as the same (computational) granularity
as the small-step semantics. First we focus on the computation aspect and prove
that a terminating sequence of computation steps in the intermediate semantics
can be simulated by a single big-step execution and that termination of the big-
step semantics implies termination of the intermediate small-step semantics. In
the second step we focus on the memory and define an abstraction function that
maps a small-step configuration to a configuration in the intermediate semantics.
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We prove that every step in the small-step semantics can be simulated in the
intermediate semantics, which also implies that termination is preserved.

Again, the simulation only holds for well-typed programs and well-typed
memories. Since the memory representation varies in the different semantics the
notion of a well-typed memory also differs. The low-level notion introduced in
the small-step semantics together with the abstraction function to aggregate
values is sufficient to imply the relevant restrictions at the big-step level.

4 Compiler Correctness

Software verification in Verisoft does not stop at the C0 level. To allow execution
of verified programs on the ‘real’ hardware they are compiled to binary code. Of
course, this translation could itself introduce errors into an otherwise verified C0
program. Thus, verification of the translation process is essential for pervasive
systems verification if the system software and applications are implemented in
a high-level programming language.

We close this gap by verifying a simple, non-optimizing compiler translating
C0 to VAMP assembler code [16]. In addition to a compiling specification in
Isabelle/HOL the compiler is implemented as a C0 program. Both the compiling
specification and the compiler implementation have been formally verified. For
the former we have proven a small-step simulation theorem stating that the
original C0 program (executed by the C0 small-step semantics) and the compiled
code behave equivalently. For the latter we have shown using our Hoare logic
environment that it produces exactly the same list of assembler instructions as
the compiling specification. Both results are combined into a single theorem. In
this paper we can focus on the correctness of the compiling specification.

The correctness theorem presented below applies to translatable programs,
which must be well-formed and fulfill certain resource restrictions of the tar-
get machine, e.g., to deal with limited memory size. Since the C0 small-step
semantics and the VAMP assembler machine are deterministic this allows us to
transfer Hoare triples down to the assembler and hardware layer.

The code generation algorithm of the C0 compiler follows directly the struc-
ture of the input program. It starts by iterating over all functions in the function
table and generates code for their bodies. The code generation for statements and
expressions—in the context of a certain function—is done by a simple recursive
algorithm which follows the structure of the corresponding data types.

Essentially, the main theorem of the compiler correctness proof states that for
all steps i of the C0 machine there exists a corresponding step number s(i) such
that after s(i) steps the assembler machine is consistent with the C0 machine
after i steps. This consistency is stated formally by a simulation relation between
configurations of the C0 machine and configurations of the VAMP assembler
machine. The simulation relation consists of several parts. Control consistency
states that the VAMP’s program counters point to the code of the first statement
in the current C0 program rest. Code consistency requires that the compiled
code of the C0 program remains intact, i.e., it forbids self-modification. Value
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consistency requires for all reachable variables g of basic type that the (C0)
value of g is stored in the VAMP configuration at the allocated address of g.
For reachable pointer variables p which point to some variable g we require
that the value stored at the allocated address of p in the VAMP machine is
the allocated base address of g. This defines a subgraph isomorphism between
the reachable portions of the heaps of the C0 machine and the VAMP machine.
Stack consistency is a technical predicate about the implementation of the run
time stack and the content of some special registers.

Because the set of valid variables of a C0 machine changes with new state-
ments, function calls, and returns, and because garbage collectors can change
the allocated base address of variables on the heap, the simulation relation is
parametrized by the current allocation function, which maps variables to their
allocated base address in the target machine.

Theorem 7 (Compiling Specification Correctness). Let p be a translat-
able C0 program, and assume that the initial assembler configuration holds the
compiled code of p. Then, for all steps i of the C0 machine executing program p
that did not reach an error state or produced a stack overflow there exists an
assembler step number s(i) and an allocation function alloci such that the C0
machine after i steps (of small-step semantics) is consistent with the assembler
machine after s(i) steps with respect to alloci.

5 Extended Hoare Logic

The language stack described in Sects. 3 and 4 allows us to transfer program
properties from the Hoare logic down to the assembler level. However, in the
context of system code we have to deal with portions of inline assembler code
that break the abstraction of structured C0 programs: low-level entities (like the
state of a device) may become visible even in the specification of code that is only
a client to the inline assembler parts. To avoid doing all the verification in the
lower semantic levels we extend the Hoare logic to represent the low-level actions
on an abstract extension of the state-space. Inline assembler code is encapsulated
in so-called XCalls at the Hoare logic level, which are modeled as atomic state
updates. The correctness proofs of Sect. 3 allow us to transfer XCalls down to
the assembler semantics, where they are finally discharged by an implementation
proof. The compiler correctness proof only covers the assembler free portions of
the code. Assembler code is inserted literally into the target code. Since compiler
correctness is stated relatively to small-step semantics (of both the C0 and the
assembler machine) the results can be extended to the combined computation:
As long as the ordinary C0 code is executed the compiler correctness theorem
covers the computation of the translated code and guarantees that we arrive at
corresponding configurations at the machine and the C0 semantics level. Then
the inline assembler code is executed according to the assembler semantics. The
implementation proof (which also includes termination) ensures that its effect
is the one expected by the abstract XCall semantics. Hence, at the end of the
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assembler computation we again arrive at corresponding final configurations.
Then we can switch back to the compiler correctness result, and so on.

6 Dealing with Devices

Device drivers are an integral part of system software. Not only high-level func-
tionality such as file I/O or networking depend on devices. Even basic operating
system features, such as demand paging (Sect. 7), need correctly implemented
drivers. Hence, any verification approach of computer system stacks should deal
with driver correctness. Nonetheless, when proving functional driver correctness
it does not suffice to reason only about code running on a processor. Devices
themselves and their interaction with the processor also have to be formalized.

We model devices as deterministic finite-state-machines communicating with
both an external environment and the processor. The external environment is
used to model non-determinism and communication; the network interface card,
for example, sends and receives network packets. The processor accesses a device
by reading or writing special address ranges. The devices, in turn, can signal
interrupts to the processor; DMA is not considered. In Verisoft, we formalized
models for an ATAPI disk, a serial interface, and an automotive bus controller.

At the gate-level hardware, devices are executed in lock-step. However, mov-
ing to the instruction set architecture, we loose granularity and hence timing
information. We compensate for this loss by introducing interleaved execution
of devices and the processor. An oracle, called executing sequence, determines
when some device or the processor is allowed to take steps. In the following we
refer to this interleaved semantics as the combined system.

Obviously, when proving correctness of a concrete driver, an interleaved se-
mantics of all devices is extremely cumbersome. Integration of results into tradi-
tional Hoare logic proofs also becomes hardly manageable. Preferably, we would
like to maintain a sequential programming model or at least, only bother with
interleaved steps of those devices controlled by the driver we attempt to verify.

A basic observation of our overall model is that device and processor steps
that do not interfere with each other can be swapped. For a processor and a
device step, this is the case if the processor does not access the device and the
device does not cause an interrupt. Similarly, we can swap steps of devices not
communicating with each other. Utilizing this observation we reorder execution
sequences into parts where the processor accesses no device or only one device.
All interleaved and non-interfering device steps are moved to the end of the con-
sidered part and hence a (partially) sequential programming model is obtained.

Theorem 8 (Reordering of Non-Interfering Devices). The interleaved ex-
ecution of the combined system can be reordered into non-interleaved chunks of
processor and device steps, such that the resulting execution simulates the origi-
nal computation.

Note that compiled, pure C0 programs never access devices, because data
and code segments must not overlap with device addresses. Hence, all inter-
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leaved device steps can be delayed until some inline assembler statement is en-
countered. In combination with the concept of XCalls, lifting driver correctness
statements to pure sequential Hoare logic, as demonstrated in the next section,
becomes feasible. More generally, the execution of drivers controlling different
(non-interfering) devices can also be separated, enabling modular verification
of device drivers (the sketched reordering theory is developed and applied to a
simple hard disk driver in [17]).

7 Property Transfer Example: Page-Fault Handler

The formal verification of an academic operating system microkernel is a Verisoft
subproject. The microkernel contains a verified page-fault handler that, in collab-
oration with other memory management routines, implements isolated, virtual
memory for the user processes by means of demand paging [18]. Implemented
in about 300 lines of C0 code with several calls to a hard disk driver written in
assembler, it is a perfect candidate to illustrate our verification methodology.

Problem. One of the most challenging parts of verification of the Verisoft micro-
kernel is memory virtualization, i.e., to ensure that each user process controls
its own, large, and isolated memory. User processes access memory by virtual
addresses, which are subsequently translated to physical ones. Modern computer
systems implement virtual memory by demand paging: small consecutive chunks
of data, called pages, are either stored in a fast but small physical memory or in
a large but slower swap memory (usually a hard disk). The page table, a data
structure both accessed by the processor and by software, maintains whether a
page is in the swap or the physical memory. A process attempting to access a
page currently in swap memory causes the processor to signal a page-fault inter-
rupt. On the hardware side, the memory management unit (MMU) triggers the
interrupt and translates from virtual to physical page addresses. On the soft-
ware side, the page-fault handler reacts to page-faults by loading the requested
page to the physical memory. If the physical memory is full, some other page is
swapped out (cf. Fig. 2).

The verification objective is a simulation proof between a processor running
a page-fault handler and user processes with virtual memory.
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Implementation Model and Correctness. The correctness theorem is stated at the
level of VAMP assembler combined with interleaved devices. One of the devices is
instantiated with an ATA/ATAPI hard disk model. We call the processor model
at the assembler level physical machine. It makes address translation and page-
faults visible. User processes are modeled by virtual machines that, in essence,
do not have address translation.

Theorem 9 (Virtual Memory Simulation). The physical machine with a
page-fault handler and a hard disk simulates virtual machines.

A simulation relation projects the virtual memories of processes to the memory
of the physical machine and the swap (i.e., sector) memory of the hard disk.
Proving the correctness of memory virtualization is a step-to-n-steps simulation
between the virtual and physical machine. The interesting case is the occurrence
of a page-fault during the execution of a load or store instruction. In all other
cases the semantics of the virtual and physical machines almost coincides. Thus,
a proof of Theorem 9 boils down to justification of the next theorem.

Theorem 10 (Page-Fault Handler Correctness). The simulation relation
is preserved under an execution of the page-fault handler.

The page-fault handler is a C0 program with calls to assembler subroutines,
implementing the hard disk driver. The semantics of the assembler portions is
encapsulated in XCalls. The extended state consists of a sector memory of the
hard disk and the part of the physical memory that cannot be accessed by C0
variables. This enables us to verify the page-fault handler in our Hoare logic en-
vironment. We do not conduct all the verification even at this level. We introduce
a higher-level concept for the data structures and algorithms of the page-fault
handler to which we refer to as PFH automaton. For instance, a doubly linked
list, a pointer data structure used by the page-fault handler implementation, is
abstracted to a Isabelle/HOL list of references. This is formalized as an abstrac-
tion mapping and is proven to be preserved under page-fault handler executions.

Formal Verification. Conceptually, Theorem 10 follows from the page-fault han-
dler functional correctness. The overall approach is sketched in Fig. 3. We first
specify and prove all necessary and sufficient properties in terms of the PFH
automaton. By proving in Hoare logic that the abstraction mapping holds in
the state after executing the page-fault handler provided it holds before, we ob-
tain the desired properties at the level of Simpl. Applying Theorems 3 and 4
we map these results down to the C0 big-step semantics level and further via
Theorems 5 and 6 to the level of the C0 small-step semantics. We justify the
XCalls to the hard disk driver by plugging in the results from [17]: driver correct-
ness can largely be shown in a sequential setting, ignoring other devices than
the hard disk. Exploiting reordering (Theorem 8) we generalize this result to
arbitrary interleaved sequences. Next, by the compiling specification correctness
Theorem 7 we are able to state the page-fault handler functional correctness in
terms of the assembler semantics. Altogether we conclude Theorem 10.
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Fig. 3. Putting It All Together – Correctness of the Page-Fault Handler

8 Conclusion: Proving as an Engineering Science?

In this article we presented an overview of the core layers in the Verisoft project.
They support effective reasoning at proper abstraction levels while still allowing
to transfer properties down to the machine level. Our approach is quite funda-
mental, since every layer and all the theorems are formalized within the theorem
prover Isabelle/HOL. Integrating devices into the system stack in a way that
allows to preserve sequential reasoning for major parts of the system can be
regarded as major achievement of the Verisoft project. The example of memory
virtualization via demand paging gives strong confidence in the appropriateness
of the system stack and the verification methodology.

The meta-theorems that allow us to transfer results from one level down to
another only had to be proven once and for all. The effort for these proofs is
compensated by the improved effectiveness in conducting major parts of the ver-
ification at a more abstract level. However, we want to point out that there is a
difference between just having proven the transfer theorems (which gives an ab-
stract notion of the soundness of the abstractions) and really instantiating them
to transfer concrete properties. These instantiations can become quite tedious,
since they demand to formulate the ‘same’ property at different abstraction lev-
els where usually additional invariants have to be considered in order to exploit
abstract information at the lower level.

All the Verisoft work done in Isabelle/HOL sums up to tens of megabytes
of formal proof documents and marks the cutting edge of current academic
verification projects, challenging both the theorem prover Isabelle as well as the
social process to organize dozens of researchers at different places collaborating
on the theories. The final correctness theorem of the page-fault handler is the
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tip of an iceberg of ca. 12 MB of proof documents, importing various models,
theorems, and proofs developed by different authors with different background
and different style of formalization. This variety naturally results in friction
losses, especially as the focus of this work was to show that one can ‘get the
verification done’, even for a realistic system stack. The general observation
is that these friction losses are annoying for the simpler proofs and tend to
culminate around the more sophisticated arguments, making them even harder
to obtain. For example the simulation of the C0 big-step and the intermediate
small-step semantics took only about two weeks of work, since all the models
were out of one hand and neatly fitted together. However, the simulation of the
intermediate small-step semantics and the small-step semantics with flattened
values took almost a year. This is due to some technically involved arguments
and intermediate notions, especially regarding the memory update, but also due
to a bunch of minor deviations in the formalization of corresponding aspects,
which resulted from the fact that the theories were developed at different sites.
Some were adapted and others were just bridged, because a change would have
led to an enormous amount of work to accommodate the existing proofs.

An interesting social phenomenon is a kind of ‘advice-resistance’ and an
extremely high tolerance level of the users. The lower the system level, the more
invariants and assumptions appear in the theorems and proofs. These get both
hard to grasp for the user and also ineffective to deal with by Isabelle’s built in
automation like the simplifier. To a large degree these issues can be avoided by
switching from the tactical apply style to structured Isar proofs [19]. However,
most users started working with apply-scripts (since the Isabelle tutorial [20]
is still written in that style) and will not switch to the new paradigm until
completing the proof at hand, even if that takes longer than expected.

At the ML level Isabelle provides means to profile the system. However, there
is no support to effectively analyze and optimize a big theory corpus at the user
level answering questions like: Where are performance bottlenecks in the proofs?
Do lemmas appear in the ‘right’ theory or library? Are some lemmas repeatedly
proven? Moreover, Isabelle’s built in lemma search facility assumes that relevant
theories are already loaded. This is seldom the case in large developments like
ours, unless the vision of shared heaps or a proof wiki becomes reality.

One of the major challenges of Verisoft is the integration of various models,
which technically means a high dependency on ‘all’ other theories. This lack of
modularity leads to long turnaround cycles and a high sensitivity to changes of
other users. Isabelle’s theory structure relies on the user’s discipline and does
not necessarily impose proper boundaries or reflect the real dependencies. Using
Isabelle’s locales to disentangle theories may bring some relief, but still a more
fine-grained management of the formal entities within Isabelle seems promising.
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