
Case-Study Documentation for “AVR Processors
as a Platform for Language-Based Security”

Florian Dewald, Heiko Mantel, and Alexandra Weber

Computer Science Department, TU Darmstadt, Germany
{dewald,mantel,weber}@mais.informatik.tu-darmstadt.de

The security type system presented has been implemented in a tool called
Side-Channel FinderAVR (SCFAVR). This document explains its usage and how
to carry out our performed case-study.

A Installation

To run SCFAVR, Python 3 with setuptools is required.

Running apt-get install python3 python3-setuptools installs the re-
quired packages on a Debian Jessie system.

SCFAVR can then be installed by running python3 setup.py install. Run-
ning this command installs additional required python packages and SCFAVR.

The AVR toolchain allows compilation and preparation of libraries and pro-
grams. Running apt-get install gcc-avr binutils-avr avr-libc avrdude

make installs the toolchain on a Debian Jessie system.

B Preparing the Input Program

For running an analysis, SCFAVR requires a disassembled object file. We call
this format objdump as it may be obtained by using the eponymous tool. An
objdump contains all functions present in the object file, marked as assembly
labels. Instructions and their arguments are also found directly in the objdump.

The process of creating an objdump file starts from code available in C. This
code can be compiled as usual. In the simplest setting, a call like avr-gcc -g

-c -Os -o file.o file.c is enough to compile it. Flags g and c are used to
correctly assemble the file, but not to link it yet. This is required, as we need a
library to work with. We suggest to use the size optimization -Os, as it generates
easier code that is more likely in the scope of SCFAVR.

Executing this command gives an object file file.o. This file is passed fur-
ther to avr-objdump which creates the objdump file.

The final objdump file can be created by using avr-objdump -d -r file.o

> file.dump. Flag d tells the disassembler that it should actually disassemble
the file. Flag r includes the dynamic reallocation table. This makes branch, call
and jump targets visible in the objdump.



C Creating a Configuration

SCFAVR takes configuration files in JSON format. A configuration file specifies
the function that shall be analyzed, parser constraints and the security domains
of parameters and return values of the function to be analyzed.

To explain the configuration file format, we assume a function

char func(char secret, char secret1, short public)

in file file.dump. Parameters secret and secret1 should be of H confidential-
ity, while public is of L confidentiality. The return value is of L confidentiality.

{
"file": "file.dump",
"starting_function ": "func",
"timing_sensitive ": true ,
"include_functions ": ["func"],
"parameters ": [{

"size": 1,
"confidential ": true

}, {
"size": 1,
"confidential ": true

}, {
"size": 2,
"confidential ": false

}],
"memory ": true ,
"result ": {

"size": 1,
"confidential ": true

}
}

Figure 1: Example configuration file.

The corresponding configuration file is presented in Figure 1. The file di-
rective specifies the path to the objdump file that contains the assembler code
that shall be analyzed. The function that shall be analyzed is given by the
starting function directive. By setting the timing sensitive directive, the
timing sensitivity of the analysis can be turned on or off. When it is deactivated,
a normal flow analysis is performed. If a file contains more functions that might
not be needed in the analysis, they can be excluded from getting parsed. This can
be done by only specifying required functions in include functions. This di-
rective is optional. If it is not specified, then all functions in the objdump will be

2



included. Confidentiality of parameters can be set in the parameters directive.
For each parameter in the function signature a size and confidential direc-
tive is required. The size is the number of bytes the input parameter requires.
For standard types, this can be read of the AVR GCC manual [1]. Setting the
confidential directive to true makes the parameter confidential. Note, that
the ordering of parameters has to match the order as specified in the function
signature. The same is done for the result in the result directive. Note, that
setting confidential to true here sets the output argument to L, such that no
information from H parameters is allowed to flow to the output. As parameters
could be passed via memory as well, setting memory to true signals that there
is some confidential data inside the memory.

D Running SCFAVR

For running SCFAVR, Python 3 and its setuptools are required. SCFAVR can
then be installed using python3 setup.py install inside the folder containing
the setup file. This will install SCFAVR as a command line utility as well as the
required graph library NetworkX [2].

The analysis can then be started by running scfavr configuration.json,
where configuration.json is the path to the configuration file that shall be
used. The output is in JSON format, just like the input configuration.

{
"execution_point ": null ,
"result_code ": 0,
"result ": "SUCCESS",
"unique_ret ": "True"

}

Figure 2: Example output.

Code Result Explanation

0 SUCCESS The analysis has found no security issues.
1 INFORMATION LEAK Parameters marked as H are leaked to a result

set to L.
2 TIMING LEAK A branch depending on H data has different re-

gion execution times.
3 LOOP ON SECRET DATA A loop whose execution count is depending on

H data has been found.

Table 1: Possible result values.

3



A possible output is shown in Figure 2. The result and result code di-
rective present the analysis result. In the example, the analysis has found no
security issues. Possible values for both directives are shown in Table 1. If the
analysis finds security issues, the execution point where this issue occurred is
given in execution point. Finally, unique ret verifies whether the assumption
of a unique return instruction is satisfied by the program.

E Running our Case-Study

We have performed the case study using version 20140813 of µNaCl. For com-
piling, we have used avr-gcc 4.8.1. We have modified the provided Makefile

inside avrnacl small slightly. In order to get the full assembly code, we have
removed the compiler flag --mcall-prologues. This flag uses combined func-
tions to get accordance to calling conventions. It stores all used registers on the
stack and restores them after function execution. Combining them into such a
function saves space. We require the full assembly code, thus we have removed
this flag.

The compiled libnacl.a file from the small package has then been passed to
avr-objdump as described in Section B for obtaining the corresponding objdump
libnacl.dump, on which our tool operates.

We provide suitable configuration files and the compiled library inside the
corresponding folder. The case-study can be run by executing the prepared
run-case-study.sh script.

To reproduce the case study for verify leaky starting from the source, run
(while in the top-level folder):

1. Run avr-gcc -g -c -Os -o case-study/verify leaky.o

case-study/verify leaky.c
2. Run avr-objdump -d -r case-study/verify leaky.o >

case-study/verify leaky.dump
3. Run scfavr case-study/verify leaky.json

To reproduce the results for µNaCl from the source:

1. Download the µNaCl source code (Version 20140813) from http://munacl.

cryptojedi.org/data/avrnacl-20140813.tar.bz2
2. Change the file avrnacl-20140813/avrnacl small/Makefile by removing

the flag --mcall-prologues.
3. Run make inside avrnacl-20140813/avrnacl small/
4. Run avr-objdump -d -r avrnacl-20140813/avrnacl small/obj/libnacl.a

> libnacl.dump
5. Replace the file libnacl.dump on the top-level folder case-study by the

new file.
6. Run scfavr case-study/crypto stream salsa20.json
7. Run scfavr case-study/crypto stream xsalsa20.json
8. Run scfavr case-study/crypto onetimeauth poly1305.json
9. Run scfavr case-study/crypto verify 16.json

10. Run scfavr case-study/crypto verify 32.json

4

http://munacl.cryptojedi.org/data/avrnacl-20140813.tar.bz2
http://munacl.cryptojedi.org/data/avrnacl-20140813.tar.bz2


References

1. Foundation, F.S.: GCC Wiki. https://gcc.gnu.org/wiki/avr-gcc, accessed on
29.03.2016

2. Hagberg, A.A., Schult, D.S., Swart, P.J.: Exploring Network Structure, Dynam-
ics, and Function using NetworkX. In: Proceedings of the 7th Python in Science
Conference (2008)

5

https://gcc.gnu.org/wiki/avr-gcc

	Case-Study Documentation for ``AVR Processors as a Platform for Language-Based Security''

