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Abstract. What is a matrix characterization? We give a formal answer
to this question by the definition of matrix systems. They provide a
framework in which all major existing matrix characterizations can be
presented uniformly and also support the development of new ones. We
describe how to develop a matrix characterization from a sequent cal-
culus. Once a matrix characterization exists, a close relation to possible
world semantics supports the development of such semantics for a logic.

1 Introduction

In the computer science community interest in non—classical logics has tremen-
dously grown during the last years [9]. These logics arise from classical logic by
adding new operators or by removal of structural rules in an appropriate sequent
calculus. Structural rules have an important impact on the expressiveness and
complexity of a logic. Dropping the contraction rule results in direct logic [3, 14]
which is decidable. On the other hand, a controlled application of contraction
and weakening (i.e. contraction and weakening is only applicable to a designated
subclass of formulas) results in linear logic [12] which is undecidable already for
the propositional case. From a practical point of view these logics are well suited
for resource sensitive tasks like planning. They yield a much more natural rep-
resentation of knowledge than classical logic in such application domains.
Hand in hand with this development a need for appropriate automated proof
methods for these logics becomes apparent. Matriz characterizations of logical
validity have already been successfully applied to non—classical logics. A matrix
characterization defines a notion of complementarity of matrices. That validity
of formulas and complementarity of respective matrices correspond must be en-
sured by a characterization theorem. A matrix characterization of a logic yields
a representation of the search space which avoids many redundancies inherent
to methods based on sequent—style or tableau proofs. Starting with Bibel’s [4, 6]
connection method for classical logic matrix characterizations have later been
extended to many non—classical logics by Wallen [20]. Recently, matrix charac-
terizations for fragments of linear-logic have been developed [11, 16, 15].
Different approaches have been undertaken to represent matrix characteri-
zations in a uniform way [20, 7]. They allow to share results among different
characterizations, e.g. based on Wallen’s style of formulation a uniform proof
method [17] and a uniform procedure for transforming matrix into sequent—style



proofs [19] could be developed. However, these approaches do not exactly give
an answer to the question what a matrix-characterization is.

It is our aim to fill this gap by an abstract definition of matrix character-
izations. We identify a language of matrices, a notion of complementarity and
translation functions as major components of existing characterizations. Based
on these components matriz systems are defined as a framework. We see mainly
two benefits from such a unifying approach. First, it is of practical interest to
have a framework in which different characterizations can be presented uniformly
and then be compared. A uniform method to prove characterization theorems
appears to be achievable. Assuming further progress, we regard this work as
foundation of a building kit for matrix characterizations. Second, besides practi-
cal benefits it is interesting by itself to extract the common concepts underlying
the different approaches and to study the interrelationships between matrix sys-
tems and logics in general and in particular with sequent calculi. In so far, we
regard a matrix-system as a mathematical object of its own interest.

In section 2 we present Wallen’s matrix-characterization of the first-order
modal-logic S4 as an example. In the subsequent section we identify the main
concepts in that characterization as a motivation for the definition of matrix
systems. We investigate the relation of sequent calculi to matrix systems and
sketch how matrix systems naturally induce Kripke-like semantics. We conclude
with a comparison to other approaches and an outline of future work.

2 A Matrix Characterization of Modal Logics

In this section we present Wallen’s [20] matrix characterization for the first-order
modal logic S4 with cumulative domains (short: S4). The language of S4 is an
extension of the classical first-order language with unary modalities O (necessity)
and < (possibility). The meaning of the connectives, modalities and quantifiers
can be given by possible world semantics or by a cut free sequent calculus [20].
Due to the symmetries in this calculus we present a one-sided version which
presumes that formulas are in negation-normal form. The resulting calculus is
similar to one for classical logic with two extra rules for modalities:
=>TI,A =T A
=>TI,0A4 =I',04
Performing proof search based on this calculus goes hand in hand with several
types of redundancies. Due to the sub-formula property it suffices to maintain
which part of the endsequent occurs how often at which place instead of copying
these parts around in a sequent proof, i.e. avoiding notational redundancies. It is
also preferable to look ahead when applying sequent rules, i.e. to avoid detours in
the proof and therefore irrelevance. Another problem is the involved treatment
of so called in-permutabilities, i.e. constraints on the order of rule applications.
These three types of redundancies are more or less present in every sequent cal-
culus. We describe Wallen’s way out of this problem using ¢3z.—p(z) VVy.Op(y)
as an example. The reader familiar with [20] should be warned: our presentation
is different from the one given there in order to make definitions in subsequent
sections more comprehensible.
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To represent matrix proofs a tree ordering < based on the formula tree
of a formula A is used. To each sub-formula B of A a polarity k € {0,1} is
assigned, which depends on the number of implicit and explicit negations before
B. The polarity is 0 (1) for an equal (odd) number of negations. We call a
formula/polarity pair (B, k) a signed formula. Each (B, k) has a type (¢, 8, 7,
d, v, or 7) determined according to the tableau scheme [20]. The tree ordering <
can be represented by positions, i.e. objects that uniquely address a sub-formula
in the formula tree. If a is a position designating a signed formula (B, k) then
lab(a) = B is its label, pol(a) = k its polarity and Ptype(a) its type. At a -
or d—position a the actual variable in lab(a) is replaced in the successor formula
with the corresponding y— or d—position. Formulas of type v or v, so called
generative formulas, may be needed more then once in a proof. Therefore, we
assign a multiplicity p to all positions in <, where p(a) > 1 if Ptype (a) € {v, v}
and otherwise p(a) = 1. In < each generative position a is extended by inserting
u(a) copies of the corresponding subtree. To discriminate the new positions a
string reflecting the number of copies of the actual and all proceeding generative
formulas is attached. The resulting new formula is denoted by A¥. The sets of
v (), v (V) are called variable and 6 (A), © (II) constant positions. We use
prefizes, i.e. strings of positions to integrate the modal in-permutabilities into
the characterization. Each position a in < has an associated prefix pre(a), which
is constructed by collecting all positions @ € V/ U II when going from the root of
< to a.

The tree ordering < and the corresponding signed (sub-)formulas of our
example are shown below. We choose p(a) =1 for all variable positions @ (marked
with an overbar). To define paths we start at the root of <« and successively

E% r\-.a.s | a |Ptype (a)| (lab(a), pol(a)) |pre(a)|
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replace positions with their successors. When reaching a S-position (one where
the sequent proof would branch) we split into two paths, each containing one
successor of 4. Paths which contain only non-reducible positions, i.e. leaves in
the tree, are called atomic. An important concept is the connection, which is a
two-element set of atomic positions with similar labels but different polarities.
In our example, we have just one path {ai!,a7} and one connection {a}',ar}.
The existence of a sequent proof is guaranteed by an admissible combined
substitution o := (op,oq), consisting of a prefix and a quantorial substitution.
A prefix substitution op : V — T} (Tp = II U V) induces a relation Cp on
Tp x Tp by 'Lf O'P(I_)l) = by and by ¢ U then fOT oll bs € by,b3 Cp I_)l. The
homomorphic extension to Tj is o}. Let T by a set of terms created over Tg U
I'U A. A quantorial substitution og : I' = 7 induces a relation Cp on A x T’



by if UQ(I_)l) =t then for all by € A which are sub-terms of t holds by Tp by.
The relations Cp and Cg reflect the restrictions on rule applications caused by
modal and quantorial in-permutabilities. We define a new relation < := (K
U Cp U Cg)t (" denotes the transitive closure) representing the combined
restrictions on rule applications caused by «,Cp and Cg. Now a combined
substitution ¢ := {op,0q) is admissible, if

1. op induces a homomorphism on prefixes, i.e. p <X ¢ implies o} (p) X 05 (q).
2. < is irreflexive.

3. Let t € T be a term and P(¢) denote the set of all v and § positions in ¢. For

any a with o(@) = ¢ must hold for all b € P(t) : of(pre(b)) < o*(pre(a)).
Let (A,0) be a signed formula, < its position tree, p a path through (A,0),
and o := (op,0g) an admissible combined substitution. A connection {b1, b2}
is called o-complementary, if of(pre(b1)) = op(pre(b2)) and of(lab(bi)) =
o5 (lab(bz)), where o7 is the homomorphic extension of og. A path p is o-
complementary if it contains a o—complementary connection. A set of oc—comple-
mentary connections span (A, 0) if each path through (A, 0) is c—complementary.
Putting this together we obtain:

Theorem 1. A formula A is valid if and only if there is a multiplicity p, an
admissible combined substitution o := (op,0q), and a set of o—complementary
connections that spans the signed formula (A*,0). [20]

In our example we use dashed lines to indicate the induced relations Cp and
Cq- < is irreflexive, the combined substitution o = (op,0¢g) admissible, and the
connection o—complementary. According to theorem 1 the formula is therefore
valid.

3 Matrix Systems

Four major components can be identified in Wallen’s matrix characterization of
S4. These are a language of matrices, a translation of formulas into matrices,
a notion of complementarity, and a re-translation into formulas. Matrices are
represented as trees (<) where nodes are denoted by positions. To each position
a label, a polarity, and a type are associated. Labels are simply modal logic
formulas, positions are either 0 or 1, and possible types are a, 3, v, 4, v, or 7.
The translation from formulas into matrices is pretty straightforward because of
a one-to-one correspondence between nodes in a matrix and nodes in a formula
tree. The notion of complementarity is more subtle. Paths are defined as sets of
positions and are determined purely from the structure of a matrix. Connections
are sets of two positions with opposite polarities but identical labels. Sets of con-
nections span a matrix iff every path contains a connection. A prefix is a string
of positions which can be calculated from the structure of a matrix. Two kinds
of unification problems arise: one from terms and the other from prefixes. Com-
plementarity of a matrix requires the existence of a spanning set of connections
which is unifiable such that the induced reduction ordering is irreflexive.



In this section we define matrix systems as a framework for presenting and
developing matrix characterizations. Our framework is sufficiently expressive to
present all major existing matrix characterizations within it. Furthermore, some
concepts have been extended in order to capture future developments.

3.1 Matrix Concept

A matrix concept consists of a matrix language and a multiplicity concept. Each
element of a matrix language represents a matrix. A multiplicity concept defines
which parts of a matrix can be duplicated. The precise number of duplications
is specified by a multiplicity.

A language of matrices is defined as a first order language. As usual, a lan-
guage ¥ of terms is defined recursively from a set of variables V' and families F;
(¢ € IN) of function symbols of arity i, e.g. f(t1,...,t;) € Tfor f € Fyandt; €
(j € {1,...,i}). A language £ of literals is defined from a language of terms ¥
and families R; (i € IN) of relation symbols of arity 4, e.g. r(t1,...,t;) € £ for
re€Ryand t; € T (j €{l,...,i}).

Definition 2. Given a language of literals £(V, F}j;cIN, R;jicv) and an ordered
set (S, <) a language of matrices M is defined recursively:

1. Each literal L € £ and the empty matrix e are atomic matrices.

2. If My, M € M then M;UM,, and MMM, are matrices.

3. f M e Mand z €V then \/(z, M) and A(z, M) are matrices.

4. If M € M and s € S then ¢,M and O,M are matrices.

In order to emphasize that \/ and A are binding operators we also write \/z.M
and Az.M instead of \/(xz, M) and A(z, M), respectively.

According to definition 2 each non-atomic matrix can be decomposed into its
sub-matrices, e.g. My and My are direct sub-matrices of M = MiMMs,. This
yields a binary sub-matrix relation >, e.g. M;>M. The function succ returns
the list of direct sub-matrices for a given matrix, e.g. succ(M) = (My, Ma).
Each matrix M can be viewed as a directed tree. The nodes of such a matriz
tree correspond to sub-matrices of M and the edges indicate . The transitive
closure of > is denoted by > and the transitive reflexive closure by >.

Ezample 1. The matrix tree for ¢, Vz.r(z)U((Az.Opr (@)W Ay-Onr(f(y,v))))
is depicted below.

— T pos |op(p)|| pos |op(p)|| pos op(p)
Om n
* A 0 -
Ve Am = 00 | Om || 01 | 1
" 000 | Vz. || 010 | Az. || 011 | Aw.
") Om Om 0000| r(z) || 0100 | O, |[0110] O
01000| r(z) ||01100|7(f(y,y))

r(z) r(f(y, v))

Definition 3. A multiplicity concept D is a subset of {e,U,M,\/, A, s, O}

1 Note that this set depends on S. We will use similar notations at other places.



Usually, matrices are investigated with respect to a fixed multiplicity concept 2.
When depicting a matrix, we underline operators from ® in order to exemplify
the multiplicity concept under consideration, e.g. the matrix from example 1
would be written O\ z.r(z)U((Az.Om(2))(Ay-Omr(y))) when considering
Dss = {V,Om}. This convention is not a change in syntax but rather syn-
tactic sugar. An operator is subject to deletion or duplication iff it is underlined.

Definition 4. A matriz concept M is a pair (I, D).

Basic Positions, Prefixes, and Extended Matrices. Basic positions are
strings over {0, 1} which point into a matrix (. denotes concatenation). A specific
basic position is defined as a reference to a sub-matrix. The resulting one-to-one
correspondence between basic positions and sub-matrices allows us to identify
both concepts in the sequel. Thus, definitions based on the one concept will be
used with the obvious meaning for the other concept. When building a theorem
prover basic positions can be used in order to avoid notational redundancy.

Definition 5. For any matrix M the basic position of a sub-matrizis determined
recursively over the structure of M. bposys denotes the set of basic positions.
1. M has basic position 0 in M.

2. If My ﬁMg has basic position p then M; (M>) has basic position p.0 (p.1).
3. If Xm.Ml , g: M, has basic position p then M; has basic position p.0.

We define lab as the function which returns the corresponding sub-matrix for
a basic position. The main operator of that sub-matrix can be retrieved by
the function op. The table in example 1 illustrates the correspondence between
positions and sub-matrices. A basic position p is called atomic iff lab(p) € £.
According to the table below types are assigned to basic positions depending
on the operator. All basic positions with type a, 8, v, d, ¢s, and 1, compose
the set ¢, B3, T, A, ¥y, and ¥, respectively. Each basic position p is associated
with a prefir. The prefix of p is the ordered string of basic positions which are
of type ¢s or s (for some s € S) and precede p w.r.t. >. The empty prefix is
denoted by . The prefix of a basic position can be retrieved by the function pre,
e.g. in example 1 pre(0) = g, pre(00) = 00, and pre(01000) = 0100 holds.
op(p) |type(p)| op(p) |type(p) || op(p)| type(p)
U a V v Cs | &s
a B A 4 Os | ¥s
A matrix can be transformed into an extended matriz by replacing bound vari-
ables by the basic position of the respective binding operator, e.g. the extended
matrix for example 1 is O\ 2.7(000)U((Az.Op,r(010))M(Ay.Opr(f(011,011)))).
We denote the language of terms which results from the extension of ¥ by basic
positions as constants by T,.




Positions, Multiplicities, and Expanded Matrix Trees. The definition of
positions becomes more complicated when multiplicities are taken into account.
Positions are strings over {0,1} U {0;, 1; };cin+-
Definition 6. Assume a multiplicity concept D, a matrix M € 9, and a set of
numbers N = {n, €IN|we ({0,1}U{0;, 1; };emn+)*}- We define a set of positions
posyr,n and a function bp which returns the basic position of a given position.
1. M has basic position 0 according to definition 5.
(a) If op(0) ¢ © then 0 € posyr,n and bp(0) =0
(b) else 0; € posp, v and bp(0;) = 0 for 0 < 3 < nyg.
2. If p € posyr, v and succ(bp(p)) = (p1,---, ) then
(a) If op(bp(p).pr) ¢ ® then (p.pr) € posy,n and bp(p.pr) = bp(p).pr
(b) else p.(pk); € posm,n and bp(p.(pr):) =bp(p).pr for 0 < i<ny p, .
lab, op, and > are extended to posyr,n such that for each position p the value
for the corresponding basic position is returned.

Definition 7. A multiplicity p is a function from ({0,1} U {0;,1;};emnv)™ to IN.

Usually, a multiplicity p is used instead of the set N in definition 6. Given a
matrix M and a multiplicity u, we denote the set of positions by posas,,. p needs
to be evaluated only at a finite number of points when calculating posar,,. For
our purposes, it suffices to specify u just at these points. In a matrix proof just
o must be searched for while the set of positions can then be calculated.

Example 2. The tree for our example matrix and the corresponding positions
are depicted below for the multiplicity g with p(00) = 2, u(00;0) = 1 and
1(0020) = 1. Note that nodes of arity > 2 may occur in such a tree.

o pos op(p)[|_pos Jop(®)[| pos | op(p) |
Om Om n 0 u
1 ! — T~ 001,002 | Om || 01 | 1
Va. Va. Az. A:' 00101,00201 \{.’E) 010 /\:c 011 /\y.
001010,0020,0| (z) || 0100 | Oy |[ 0110 | Ty
(010w r(00201) Bm i 01000| (z) ||01100r(f(y, %))

»(010)  »(F(011, 011))

We call trees like the one in example 2 implicitly expanded trees. These trees are
based on the notion of positions and therefore — in general — require nodes of
arity > 2. Explicitly expanded trees provide a means to express a matrix with a
given multiplicity with basic positions and without the need for nodes of arity
> 2. They also enable us to extend the notion of basic-complementarity to
multiplicities as will be explained in the subsequent subsection.

The explicit expansion of a matrix M for a multiplicity u is defined recur-
sively. If M contains no position p with u(p) # 1 then M is explicitly expanded.
If M contains a position p with p(p) = 0 and M' is the matrix which results
from replacing the sub-matrix which corresponds to p by the empty matrix e
then the expansion of M for u equals the expansion of M’ for u. If M contains a
position p with u(p) = n > 1 and there is no proper prefix p of p with u(p) > 1,
M' is the matrix which results from replacing the sub-matrix corresponding to



p with the matrix lab(p)Ulab(p), p1 (p2) is the position of the left-hand (right-
hand) formula lab(p) in M', and p' is a multiplicity which equals p except for
1 (1) =n—1and p/(p2) = 1 then the expanded matrix of M for u equals the
expanded matrix of M’ for y'. Since they are superfluous, indices of positions
are omitted for expanded trees.

Ezample 3. The explicitly expanded matrix tree and the corresponding positions
for the multiplicity p as defined in example 2 are depicted below. Note that minor
changes to a multiplicity cause only local changes to the corresponding explicitly

expanded matrix tree. /u\‘
pos op(p)|| pos |op(p)|| pos | op(p) u n
0 ] /\\ /\
Om Om Az. Ay.
00 U 01 M * * * *
000,001 | Om || 010 | Az. || 011 |  Aw. Ve. Ve ol o
0000,0010 | \/z. || 0100 | O,, || 0110 Om * * * *
00000, 00100| 7(x) ||01000] r(x) ||01100|r(f(y,y))| r(©010)  r(0000) r(o10) r(f(011, 011))

Remark. The reader familiar with [4, 6] might be astonished by our rather com-
plicated definition of matrices. However, it is necessary in order to capture many
non—classical logics and to keep the approach extensible.

3.2 Complementarity Concept

We first define a basic—complementarity concept using basic positions, i.e. leaving
multiplicities out of consideration. Using the notion of expanded matrices, we
extend our definitions in order to capture multiplicities afterwards.

Paths, Polarities, and Connections. We define paths through a matrix M
as specific sets of basic positions.

1. {0} is a path.

2. If PU{p} is a path, p is not atomic, and

(a) if op(p) € {U, V, A\, s, 05} then P U suce(p) is path

(b) if op(p) =M then P U {py} is a path for each p; € succ(p).

A path p is atomic if it contains atomic positions only. There are 2 atomic paths
through the matrix in example 3 which are p; = {00000,00100,01000} and
p2 = {00000,00100,01100}.

A polarity is a function pol which assigns to atomic basic positions elements
of a finite boolean algebra (L,U,N,~, L, T) (e.g. [8]), the polarity concept. pol
assigns to all positions with label e the polarity L. For a matrix—polarity pair
(M, pol), a connection ¢ is a set of atomic basic positions for which a subset
¢ exists such that the labels all basic positions in ¢’ have the same relational
symbol and that |J,c. pol(p) = T holds. ¢’ is called the relevant subset of c.

Ezample 4. We inspect the lattice with L = {T7,0,1, L} as depicted.

We define a polarity pol for the expanded tree in example 3 by 0;/\*1
pol(00000) = 0, pol(00100) = 0, pol(01000) = 1 and pol(01100) = 1. Pos- N7
sible connections would be ¢; = {00000,01000}, ¢z = {00000, 01100},

¢s = {00100,01000}, and c; = {00100, 01100}



Substitutions, Unification Problems, and Matings. In matrix systems
two different kinds of substitutions exist. Both substitutions are required to be
idempotent. A quantorial substitution o, assigns terms from %, to basic positions
from T (see [6] for usual binding rules). A prefiz substitution op assigns strings
of basic positions from |J,.g(®s U ¥) to basic positions from |J, g ®. For any
p € ®, with o,(p) =t must hold t € |J,,,(Ps U ¥y )*, ie. t contains no basic
positions of bigger sorts. We extend o, to |J,.4(®s U ¥,) by 0,(p) = p for any
P € U,cg ¥s and denote the homomorphic extension to (|J,cq(®s U ¥,))* by
k. Given a Matrix M we define a set of prefixes Pre(M) = {t | t € bposy},
Preg, (M) ={t |t C Ufp(t’ ),t' € Pre(M), and restrict prefix substitutions by
t.p € Preg, (M) = tp= alﬂ)(pre(p)), i.e. they should result from unifications.

The two kinds of substitutions result in different unification problems arising
from connections. A quantorial unification problem arises from the task to unify
the labels of all positions in a relevant subset, i.e. a quantorial substitution is
required under which the arguments of the respective literals become identical.
For example the substitution with o4 (0000) = f(011,011) unifies the labels of cs.
A prefix unification problem arises when the prefixes of all elements in a relevant
subset need to be unified, e.g. the substitution with o, (000) = 0100 unifies the
prefixes of ca. A combined unification problem is a combination of both.

Each substitution o, and op induces a reduction ordering C, C T x (TUA)
and Cp C U, es s X U,eg(PsUTy), respectively. For a substitution oq and any
position p € A if p occurs in o4 (p') for some p’ € T' then pCop'. For o and any
position p € (J,cg ¥s if p occurs in o, (p') for any p’ € J,c g ®s then pCpp'. We
define < as the transitive closure of < U Cq U Cp.

A mating C is a set of connections for a matrix—polarity pair (M, pol). If
every path through a matrix M contains at least one connection from C' then
C spans M, e.g. in example 4 Cy = {c1,¢3,c4} and Cy = {cz,c3} are spanning.
A mating is quantorial unifiable if there exists a quantorial substitution o, such
that all positions from the relevant subset of each connection in C' have the same
label under o,. A mating is prefiz unifiable if there exists a prefix substitution op
such that the prefixes of all connections in C are identical under o,. A mating
C' is unifiable if there exists a combined substitution o = (o4, 0p) such that C is
quantorial unifiable with respect to o, and prefix unifiable with respect to o5,
e.g. C is unifiable while C} is not.

Complementarity. A matrix—polarity pair (M, pol) is basic—complementary if
there exists a set of connections C' and a combined substitution ¢ = (0g,05)
such that C spans M, o unifies C, the induced reduction ordering < is irreflexive,
and a set of complementary properties P is fulfilled. Typical properties will be
discussed in section 4.1.

A matrix—polarity pair (M, pol) is complementary if there exists a multiplicity
p for which M is the corresponding expanded matrix and pol the corresponding
polarity which assigns to any atomic position the polarity of the corresponding
basic position such that (M, pol) is basic-complementary. A complementarity
concept C is defined by P. It induces a binary predicate C such that C(M, pol)
holds iff (M, pol) is complementary.



Definition 8. A matriz system MS is a pair (M, C).

4 Relating a Matrix System and a Logic

Matrix based proof methods can be applied to a specific logic if an appropriate
matrix characterization exists. Four major components of matrix characteriza-
tions can be distinguished: a logic, a matrix system, and two translations. In
this framework it suffices to define a logic by £ = (§,V) where § is a language
(of well-formed formulas) and V is a validity concept. V(F') holds for a formula
F € § iff F is valid in the logic.

Definition 9. Assume a logic £, a matrix system MS = (M, (), a translation
Im which maps a formula to a matrix—polarity pair, and a translation ml which
maps a matrix—polarity pair from the codomain of im (coDOM(Im)) to a formula.
We call the 4-tuple MC = (£, MS, Im, ml) a matriz-characterization of L iff for
any formula F' € § and any matrix—polarity pair (M, pol) € copom(lm) holds

1.) V(F) iff C(Im(F)) and  2.) C((M, pol)) iff V(ml((M, pol)))

The asymmetry in the definition is because we require every formula to be
mapped to an appropriate matrix—polarity pair but do not enforce that every
matrix has a formula as counterpart.

4.1 Relation to Proof Theory

For many logics validity can be expressed by a sequent calculus. We sketch how
to get from a specific calculus for a logic £ to a matrix—characterization of that
logic. In fact, we describe how to determine MS and Im.

A sequent calculus is composed of a set of rules. Each rule consists of a
conclusion and possibly multiple premises. A principal formula of a rule occurs
in the conclusion but not in any premise. Formulas which occur in a premise but
not in the conclusion are called active. All other formulas are the context. A rule
with multiple principal formulas is called context—sensitive, e.g. the O-rule in
section 2 . A principal formula in such a rule is either reduced, i.e. sub-formulas
of it are active, or otherwise deleted.

Usually, formulas are translated to matrices in a recursive manner. Most
operators can be translated using the tableaux-scheme [20]. However, the trans-
lation must take care of non-permutabilities in the sequent calculus. Quantifiers
are translated into \/ and A. Context—sensitive rules can result in ¢4 or O,
operators in the image of formulas — ¢, for reduced formulas, O, for formulas
in the context but none for deleted formulas. For the example in section 2, there
is a one-to-one correspondence where O and < connectives are translated into
0,, and <, operators, respectively. For other logics, this is more complicated,
e.g. intuitionistic logics [20] or MLL [15]. However, to construct an efficient ma-
trix representation the number of such operators should be kept to minimum.
Similarly, the multiplicity concept should be kept to a minimal size. For our S4
example the multiplicity concept Dgq4 = {V/, O} is sufficient.



After M and Im have been determined one needs to find a suitable comple-
mentarity concept, i.e. a set of complementarity properties. In existing matrix
characterizations these properties originate from context—sensitive rules (e.g. K
modal logics [20]), domain conditions (e.g. cumulative domains [20]), or missing
structural rules (e.g. linear logic [15]). For the first two we refer to [20] and just
sketch the last one.

Omitting structural rules (depicted below) from a sequent calculus results
in a sub-structural logic. For each missing structural rule a complementarity
property needs to be added to the corresponding matrix system. Elements of
this subset of P are called structural complementarity properties (Pg). Omitting
the contraction rule is the key to resource sensitivity. Without such a rule
a linearity condition must be added to Pg (e.g. linear connection method [5])
which requires that each atomic position occurs in at most one connection of the
mating. Omitting the weakening rule results in relevance logics. Any sub-formula
must contribute to the proof in some axiom. The corresponding complementarity
condition is that each atomic position must occur in at least one connection of
the mating, i.e. it is relevant. If the mix-rule which is a weak version of the
weakening rule is removed as well each formula must contribute to an important
axiom. For a matrix the spanning set of connections is required to be minimal,
i.e. removal of any connection would result in a mating which is not spanning
any more.

iF,F,F =T W =>F1,F1 =>F27F2
:>F,F :>F,F :>F1,F2,F1,F2

4.2 Semantics of matrix systems

There is a close relationship between complementarity in matrix systems and
possible world semantics. Due to the lack of space we only sketch the idea.
The key is to denote variable (constant) positions of a matrix as infinite joins
(meets) over structures reflecting the structural complementarity properties. In
this setting adding structural rules, i.e. forgetting about some restrictions of these
properties, is reflected by further narrowing the class of these structures. Since
in S4 all structural rules are present, we choose the class of boolean-algebras [8].
In general, we assume that these structures consist of a complete ortholattice [8]
with a monoid and several requirements concerning the interaction between the
lattice and monoid operations. Semantically, we interpret the operator M (U) by
the monoid operation (its dual).

To handle quantorial and prefix positions uniformly we treat quantifiers as
multi-modal operators, whereby Vz and Jx play the role of modalities for each
variable x. Possible valuations play the role of worlds and the accessibility re-
lation relates valuations that are equal up to x. To cope with quantorial and
prefix positions a new argument, the cluster-valuation pair, for short the world
is added to the interpretation. A cluster is representing a zone of permutabilities
modulo prefix-types, while valuations represent specific points of permutabilities



concerning quantorial permutabilities. Each prefix-type comes with an accessi-
bility relation integrating the requirements of the complementarity concept. For
instance, in S4 the accessibility relation, say R, is reflexive and transitive because
the variable prefix positions can be substituted by any string of basic-positions
including the empty one.

Dependencies between different substitutions are represented by an unary
relation I over worlds, i.e. cluster-valuation pairs. In S4 interaction between
the quantorial and modal positions is represented by the hereditary condition: If
(w,v) € I and (w,w) € R then (w,v) € I. This is just another way to express the
monotonicity of valuations with respect to the reachability of clusters. By this
we have recovered the semantics of first-order modal logic S4 with cumulative
domains. Though this result might not be very surprising for S4, our approach
offers a way to obtain possible world semantics for any non-classical logic that
comes with a matrix system. Instead of using semantics to obtain a matrix
system, like e.g. in [4, 20], we extract the semantics from the matrix system.

5 Conclusion

We have presented a formal definition of matrix systems as a framework for
matrix characterizations, their relation to sequent calculi, and the semantics
naturally induced by matrix-systems. By this, we substantiate the results of [4,
20, 17, 11] concerning an exact definition of a matrix characterization. Addition-
ally, we extend Wallen’s approach [20] concerning multiplicities, connections, the
integration of partial-ordered prefix types, and polarities. It is noteworthy that
the extension of polarities offers a natural way to handle even multi-valued log-
ics and that our notion of a connection becomes necessary for handling logical
constants.

An important problem is clearly how to find the appropriate complemen-
tarity properties, i.e. answering the question: given a sequent calculus how to
obtain an appropriate matrix characterization ? While this seems easy for the
structural complementarity properties, the conditions imposed on the others are
more subtle. We expect that further experience will provide the necessary in-
sights to solve this problem for a well-chosen class of sequent calculi. Besides
working purely proof-theoretically, it might be interesting to make use of al-
ready existing semantics. Indeed the matrix characterizations for modal logics
presented in [20] are based on Kripke semantics.

Regarding a matrix system as a mathematical object of its own rights of-
fers a lot room for extensions. One might be interested in performing typical
constructions of matrix systems like direct-(co-)products or (co-)limits. For in-
stance, the latter one could be used to melt together different matrix systems.
The question arising in this setting, is how these constructions could be reflected
in the semantics of the matrix system.

In so far we regard the work presented here, as a foundation for a promising
new research area in the spirit of Tarski’s contribution to meta-mathematics
concerning his concept of a formalized deductive-system [18].
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