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Abstract

Simultaneous quantifier elimination in sequent calculus is an improvement over the
well-known skolemization. It allows a lazy handling of instantiations as well as of the order
of certain reductions. We prove the soundness of a sequent calculus which incorporates
a rule for simultaneous quantifier elimination. The proof is performed by semantical
arguments and provides some insights into the dependencies between various formulas in
a sequent.

1 Introduction

Sequent calculi are a very common search space representation. Originally developed by
Gentzen [6] they have been applied in automated deduction, in logic programming, in formal
program development, and other areas. During analytic proof search formulas in a sequent
are decomposed into sub-formulas in a stepwise manner. The structure of sub-formulas and of
formulas which are not decomposed is preserved. The preservation of structure is especially
beneficial when user interaction is required. A user can recognize structures which e.g. in the
context of formal methods [7] originate from a specification.

The relation between standard presentations of Hilbert type, natural deduction, and se-
quent calculi has been investigated by Avron [2] for the propositional case. The additional
structure in sequent calculi usually provides advantages in proof search. In the presence of
quantifiers additional differences between these type of calculi arise. Gentzen’s rules for the
elimination of quantifiers employ an eager handling of instantiations. This causes a high-
degree of non-determinism in proof search which can be avoided by a lazy handling of in-
stantiations with meta-variables together with a computation of instantiations by unification.
Skolemization [14] is a well-known technique which guarantees that proofs constructed with a
lazy handling of instantiations can be validated in general. In the context of sequent calculi,
skolemization has been investigated for classical [4] as well as for non-classical logics [13, 10].

The technique for simultaneous quantifier elimination [1] is specific to sequent calculi. It
provides an optimization over the usual approach for lazy handling of instantiations. Our
algebraic justification of its soundness clarifies the dependencies between the formulas of a
sequent in the presence of quantifiers.

After presenting some fundamentals in section 2 we present a sequent calculus K with
a rule for simultaneous quantifier elimination in section 3. We point out its advantages in



comparison to usual handling of quantifiers in sequent calculus proof search. The soundness of
K is demonstrated in section 4 using semantical arguments. We conclude with some remarks
on related work.

2 Fundamentals

Basing on [11], we define syntax and semantics of first-order logic. A signature ¥ is a pair
(F,P) consisting of a set F of operation symbols and a set P of predicate symbols. Each
f € F has an arity ny € IN and each p € P has an arity n, € IN. A 3-algebra A has a carrier
set S4 and assigns to each ns-ary operation f € F a total function A(f) : (S4)"f — S4 and
to each predicate p € P a ny-ary relation A(p) C (S4)™. Constants are O0-ary operations.

Syntax of First-Order Logic. The set 15 (V) of first-order terms for a signature X and a
set V of variables is defined recursively. For each z € V holds z € T (V). Ifty,...,tn, € Tx(V)
then for any ns-ary operation f € F holds f(t1,...,tn,) € Tx(V). The set wff(X,V) of first-
order formulas for ¥ = (F,P) and V is defined recursively. For ty,...,t,, € Tx(V) and p € P
with arity n, the expression p(t1,...,t,,) is an atomic formula in wff(£,V). If o, € wff(5,V)
and z € V then —p,p A, p V h,Vx.0, 3.0 € wff(E,V) are formulas.

For a term ¢ the function Var returns the variables and Op the operations which occur
in t. The function free which returns the free variables of a formula is defined recursively
over the structure of formulas, i.e. free(p(ty,. .. tn,)) = Up2y Var(t), free(—p) = free(yp),
free(cpcw) = free(y)Ufree(1)), and free(azv.go) = free( N\ {z}. Op returns for ¢ the operations
which occur in ¢.

Semantics of First-Order Logic. The value A(a)(t) of a term ¢ € T (V) and the value
A(a)(p) of a formula ¢ € wff(X,V) for a X-algebra A and an assignment « : V — S4 where

free(p) C V is respectively an element of the carrier set S4 or a truth value (true or false).
o A(e)(z) = a(z) for 7 € V,
o A@@)(f(tr,.. . tny) = AF)A@)(H2), -, A(0) (tn,)),
o A(0)(plt1, ., tn,)) = true Hf (A(a)(tr),. .-, A(@)(tn,)) € Alp),
o A(a)(~p) = true iff A(a)(y) = false,
o A(0)(p10p2) = true iff A(a)(p1) = true 2 A(a) (o) = true,

o A(c)(Ya.p) = true iff (A(ofa/z])(p) = forall " e 4()).

true fo. some

where afa/z] is the assignment: afa/z](z) = a and afa/z](y) = a(y), if y # z. A formula ¢
is valid in a X-algebra A (A |=x ) iff for any assignment « holds A(a)(p) = true. A formula
@ is valid (=x @) iff it is valid in every X-algebra.

Substitutions. Let Y be a signature and V be a set of variables for 3. A function o :
V — Tx(y) s called a substitution. The application of a substitution to a formula ¢ €
wff(2,V) yields a formula o (), where all free occurrences of variables = € V are replaced by
o(z). If o is the identity except for a finite number of variables z1,...,z,, we denote ¢ by



[o(z1)/x1,...,0(zy)/zy). Dom(o) = {z1,...,z,} is called the domain of 0. A substitution o
is admissible for ¢ if for every sub-formula Qz.¢' of ¢ holds z ¢ o(y) for all y € free(Qz.¢").
We require substitutions to be idempotent and admissible.

The following theorem states a fundamental relationship between substitutions and as-
signments. For a proof we refer the interested reader to [11].

Theorem 1 [Substitution Theorem)]

Let V be a set of variables for a signature ¥, o : V — Tx(y) a substitution, A a ¥-algebra,
and 3:V — Sy an assignment. Then for every t € Ty () holds A(B)(o(t)) = A(a)(t), where
a:V — Sy is an assignment defined by a(z) := A(B)(o(z)) for every z € V.

We restrict ourselves throughout this report to formulas in negation-normal form, i.e. formulas
where negation — occurs only directly in front of atomic formulas. Using the de-Morgan laws
any first-order formula can be transformed into an equivalent formula which is in negation
normal form.

Sequents. A (one-sided) sequent s is a set ' of formulas in negation-normal form denoted
by — I'. We define free(— I') = ,cr free(p). Given an algebra A and an assignment
a:V — Sy with free(s) C V. The value A(a)(s) is true iff A(a)(p) = true for some p € T'. s
is walid in an algebra A (A =y, s) if for all assignments a A(«)(s) = true. s is valid (=5 s) if
it is valid in all algebras.

A sequent calculus is a pair (Az, Inf). Az is a finite set of axiom schemes each of which is
a decidable set of sequents. Inf is a finite set of inference rules. Each inference rule consists
of a decidable set of pairs (s1,...,8,),s where s1,...,s, and s are sequents. s is called the
conclusion and s1,..., s, the premises of the inference rule. A principal formula is a formula
that occurs in the conclusion but not in any premise. Formulas which occur in a premise
but not in the conclusion are called side formulas. All other formulas compose the context.
Sequent rules can be represented graphically where the conclusion is written underneath the
premises and separated from them by a horizontal line. A derivation of a sequent s from a

set of sequents S is a finite sequence of sequents s1,...,s; with £ > 1 and s; = s such that
for each 7 < k holds s; € S, s; is an axiom in Az, or there exist indices i1,...,%, such that
there is an inference rule in Inf with conclusion s; and premises s;,,...,s;,. A sequent s is

said to be derivable from a set of sequents S (S I s) if there exists a derivation from S for it.
The one-sided sequent calculus K, for formulas in negation normal form® is:

az — 01 —T' 0 A — 01,02 v ‘)F)(p[c/w] v ‘>F,<P[t/w]
— T, — T p1Ap2 —T,p1Vp2 —T V. — T 3z.¢

* ¢ must not occur in — I',Vz.p (Figenvariable condition). =% ¢t may be any term.

In analytic proof search with K. one starts with the sequent to be proven and reduces it
by application of rules until the az-rule is applicable.

3 Simultaneous Quantifier Elimination

In this section we first introduce a calculus with a rule for conventional skolemization and
point out its advantage for proof search with respect to the classical sequent calculus (sec-

!The restriction to formulas in negation-normal form and to one-sided sequents has only presentational
purposes. The theory presented in this report could also be developed for arbitrary formulas and two-sided
sequents.



tion 3.1). Then we introduce in section 3.3 a calculus with a simultaneous skolemization
rule which overcomes some restrictions still present in the conventional skolemization rule.
This is illustrated by a comparison in section 3.4 of both conventional and simultaneous
skolemization.

3.1 Conventional Skolemization

The quantifier rules of K, cause problems in analytic proof search. Whenever the 3-rule
is applied a term ¢ must be guessed immediately. To postpone the choice of ¢ until more
information about good choices of ¢ are at hand is a superior approach. In order to do so
the rule 3’ depicted below inserts a free variable X (sometimes also called meta-variable)
which is implicitly existentially quantified. Thus, it may be instantiated later during proof
search. However, precautions must be taken to guarantee the correctness of the resulting
proofs because not all possible instantiations are admissible. Skolemization is used for this
purpose. The rule Skolem inserts a skolem-term consisting of a new function symbol with all
free variables of the sequent as arguments. Free variables may be instantiated during proof
search. The instantiation of a variable affects all parts of a derivation where the variable
occurs, i.e. Inst is a rewrite rule on derivations rather than an ordinary sequent rule. The
occur-check ensures that a variable X can only be substituted by terms ¢ which do not contain
X.

—lplx/a] | —Tlf(2)/a]
— I, Jz.0 . —I'\Vz.p

*
Skolem X/ . \1 Inst(X,0)**

* f must not occur in s =—— I',Vx.¢ and Z must contain all free variables of s.
% X must not occur in ¢ and all variables and operations in ¢ must also occur in the left-hand
side proof-tree.

The calculus Ky results from K. by adding the rules 3, Skolem, and Inst while the rules 3
and V are removed.

The use of free variables and skolemization allows to postpone the instantiation until it
can be computed, e.g. by unification. Nevertheless, if multiple quantified formulas occur in a
sequent a principal formula must be determined. Although in some cases a principal formula
can be chosen in a safe way, in general, the right order of reductions cannot be calculated
from a sequent. This is demonstrated by the following example.

Example?2. Below a Kg-derivation with six rule applications is depicted.

—ro(X1,1(X1),21),79(Z2,X2,f2(X1,X2))
—rp(X1,f1(X1),Z1),322.7p(22,X 2, f2(X1,X2))
—3z1.90(X1,f1(X1),21),322.7¢(22,X2, f2(X1,X2))
—3z1.0(X1,f1(X1),21),Yy2.322.7¢(22,X2,y2)
3
—3z1.0(X1,f1(X1),21),322.Vy2.320.~¢0(22,22,y2)
Skolem
—Vy1.321.0(X1,y1,21),3x2.Vy2.322.7¢(22,22,y2) ,
3
—3x1.Vy1.321.0(21,Y1,21),3%2.Vy2.322.70(22,22,Y2)

3/

Skolem
!

The proof attempt would have failed if we first had reduced the second formula.

3.2 A Visualization of Conventional Skolemization

Illustrative Elements. We aim at illustrating what skolemization together with the occur-
check achieves during analytic proof search. To this end we introduce a graphical notation for



variables and use it to illustrate the behavior of the calculus rules. The illustrative element
we introduce are called restriction boxes in which for a given meta-variable X those terms are
collected, which are not allowed to be instantiated for X. E.g., the following box is used as

a graphical element to represent, that the terms %1, ..., ¢, are not allowed to be instantiated
for X.

X

t

tn

For each (partial) Kg-proof there is an environment composed of restriction boxes. During
analytical proof-search such an environment is successively constructed and updated. There
are three basic operations: one to create a new restriction box for a variable and two update
operations. Each of the operation corresponds to a rule of K.

1. Creation of a restriction box: This operation creates an empty restriction box for a given
meta-variable X. This operation corresponds to the F'-rule. E.g., during the proof-step

—Vy1.321.9(X1,91,21),3%2.Vy2.322. 70 (22,32,Y2)
—3x1.Vy1.321.0(21,y1,21),322.Vy2.322.70(22,22,y2)

!

the restriction box

Xy

is introduced into the environment. This restriction box expresses, that X can be
instantiated without any restrictions.

2. Updating of existing restriction boxes: This operation introduces a term in a restriction
box and corresponds to the Skolem rule: E.g., during the proof step

—32 'QO(Xl 5f1 (X1)=Z1)53$2 -VyQ .322-“(,0(22 »L2 1y2)
—Vy1.321.90(X1,y1,21),3x2.Vy2.322.79(22,22,y2)

Skolem

the restriction box for X; is updated by inserting f;(X7) yielding

X

J1(X1)

This expresses the restriction that f1(X7) must not be instantiated for X;.

3. The third operation is an updating operation which corresponds to the application of
the Inst-rule. If a meta-variable X is instantiated by a term ¢, then this is only allowed,
if the variable and skolem-functions occurring in ¢ do not occur in the restriction box
of X. If the instantiation is valid, then (1) the instantiation is applied to all restriction
boxes in the actual environment, in which X occurs and (2) all the terms occurring in



the restriction box of X are introduced in the restriction box of any variable occurring
in t. E.g., assume we have the following environment:

X1 Al X5
f1(Xq) f2(X2)

Applying the instantiation Inst(X71, fo(X2)) entails the following updates:

X X
O rey] (R
() [ 72
%
f2(X2) ff(f22(X2))

The resulting environment is

X, Al X5
f1(f2(X2)) f2(X2)
f1(f2(X2))

3.3 A Rule for Simultaneous Quantifier Elimination

We now define a rule for simultaneous quantifier elimination. To define this rule in a general
way, we want to be able to eliminate arbitrarily many leading quantifiers of formulas in a
sequent. To this end we define the notion of quantifier lists gl and use them to describe
the leading quantifiers of some formula. Quantifier lists gl are defined recursively starting
from the empty list € and for a variable z by Vz.ql’ and Jz.ql’. E.g., the quantified formula
Vz1.3y1Vz1.¢ can be decomposed in the following quantifier lists and formulas:

‘ Quantifier List Formula ‘

€ Vri1.3y1Vz1.9,
Va:1.e E|y1Vz1.<p,
Vzi1.3y;.e Vzi.0 and
le.ﬂyl.\m.e 2

Furthermore, in order to simplify the following definitions, we assume generators vgen and
fgen which respectively generate new symbols for variables and operations on every call.

We define the quantifier elimination function QE which takes a quantifier list ql, a formula
©, and a set Z of variables as arguments and returns a formula. ql determines which quantifiers
shall be eliminated from ¢. Z is used in order to determine the arguments of skolem functions.

* QE(e,9,2) ==,
e QE(Vz.ql,p,Z) := QE(ql,(p[f(Z)/m],Z), where f := fgen is new.
e QE(3z.ql, ¢, Z) := QE(ql, ¢[X/z], Z U {X} where X := vgen is new.



The rule SQEI for simultaneous quantifier elimination is depicted below.
—T\%15e0s¥n
—I'ql;.1,..,al, .00 SQEl*
x For each i (1 < ¢ < n) must hold ¥; = QE(ql;, @i, free(— T',qly.¢1,...,4l,.0n)).

The calculus K results from K by replacing the rules 3’ and Skolem by SQEIl . K is
complete with respect to Ky, i.e. for every sequent s which is K ;-derivable there is a K-
derivation, since 3’ and Skolem can be simulated by SQFI. However, SQFEI has advantages
compared to these rules because one does not need to bother about the order of certain
reductions.

Example 3. We reduce our example sequent by SQFEI

—p(X1,f1(X1),21),7p(Z2,X2,f2(X2))
—3z1.Vy1.321.0(T1,91,21),3T2 . Vy2.322.70(22,72,Y2)

SQEI

A comparison to example 2 shows the advantages of simultaneous quantifier elimination.
First, one does not need to worry about the order of quantifier eliminations. Second, the
skolem term in the second formula depends only on X5 and not on both X; and X5 as in
example 2. This shows that the quantifier elimination of different formulas in a sequent do
not depend on each other. For a more detailed comparison see section 3.4

The notion of derivations in a calculus with free variables and an instantiation rule differs
from the one in a calculus without these concepts. So far we have used K-derivations intu-
itively. In the sequel, we present a formal definition of K-derivations which meet our intuitive
understanding of K.

A K-derivation D from a set of sequents S, the assumptions, is a sequence of levels. Each
level is a pair which consists of a sequence of sequents and a substitution. A derivation must
fulfill the conditions 1-3 presented below.

D= < (<311915---33}L>, Ul)a
((3%2,...,321,...,3%), 02),
({8705 ey Shs s Sy S0y Om))

1. For each 1 < j <m and k; <17 < n, i.e. for each sequent in D, holds:
if j > 1 and ¢ > kj_; then s} = Jj(sgfl).

2. For each 1 < j <m, n; <7 <n holds: sf is j-derivable (defined below) in D.
3. o1 is the identity and for each j > 1 there is a substitution o such that o; = o0 0;_;.

The above definition of K-derivations captures the notion of analytic proof search (with
goal s1). The application of the instantiation rule with parameter o on a derivation D with
m levels adds a new level to D which is constructed by the application of o on the former last
level and by the substitution o o g,,,. An analytic application of the rule A, V, or SQFI adds a
new sequent to level m. Intuitively, condition 1 ensures that the instantiation rule is applied

correctly as a rewrite rule. In level 7 the sequents s?cj_l, ... s}, result from si;_ll, T by

an application of a substitution. Condition 2 requires that each sequent in the highest level
(i.e. level m) of D can be justified. Condition 3 guarantees that a substitution is constructed

by adapting the substitution of the previous level. Although proof search starts with sl as



goal, D is a derivation of s]'. This reflects that free variables can be regarded as implicitly
existentially quantified. _

We now define the “j-derivability of a sequent” in a K-proof: s! is j-derivable in D where
S are the assumptions if one of the following four conditions is fulfilled.

1. j>1,i>kj_1, and sgfl is (j — 1)-derivable.

2. 7>1and sg = 0(s) for some assumption s € S.

3. sf 1s an axiom.

4. There exist indices i1,...,% (all of which must be smaller than i) such that one of the
inference rules A, V, or SQFEI can be instantiated with sfl, ...sgl as premises and with
s’ as conclusion.

%

Intuitively, a sequent is j-derivable if it can be justified already by looking at the first j levels
of D.

Lemmad4. If a sequent is (j — 1)-derivable according to one of the cases 2, 3, or 4 then it is
also j-derivable respectively according to 2, 3, or 4 unless it has been derived by an application
of SQEI where o} affects one of the variables introduced by SQEL.

3.4 Visualization of Simultaneous Quantifier Elimination

Analogously to the restriction boxes for the Kg-calculus, restriction boxes can be defined
for the K-calculus; the boxes remain the same, but the construction of the environment is
slightly altered. Indeed, the instantiation rule corresponds to the same update operation on
environments as described in section 3.2. The two other operations, namely the construction
of a restriction box for a new variable and the insertion of a new term into restriction boxes
corresponds to the QE function as it is applied in the side condition of the SQFEI rule.

e In the case QE(e, p, Z) the construction terminates.

e In the case QE(Vz.ql, ¢, Z) := QE(ql, (p[f(Z)/m], Z), where f := fgen is new, the skolem
term f(Z) is inserted into the restriction boxes of all variables in Z.

e In the case QE(3z.ql, ¢, Z) := QE(ql, p[X/x], Z U{X}) where X := vgen is new, a new

restriction box for X is inserted into the environment.

We now illustrate the difference in proof search between K,z and K by the proof of the
sequent

— Jz1.Vy1.321.0(21, Y1, 21), 3T2.Vy2.320.70(22, T2, Y2)



Ksk K

Performing the quantifier-elimination in the | Performing the simultaneous quantifier
“right order” results in the sequent elimination results in the sequent

— (P(Xla fl(Xl)’ Zl), _|(,0(Z2,X2, fZ(XlaXQ)) — QD(Xl,fl(Xl)a Zl), _'(p(Z27X25 fQ(XQ))

and the following environment: and the following environment:
X; Zy | | Xo Zy X1 Zy | | Xo Zy
f1(X1) Jo(X1,Xo) f1(X4) f2(X2)
f2(X1, Xo)

At this stage the restriction on the further proof search applied by the conventional quan-
tifier elimination rule becomes clearly visible: X7 can not be instantiated by a term in which
f2(X1, X2) occurs, although this is not necessary as simultaneous quantifier elimination shows.
Furthermore, if the quantifiers were eliminated in the wrong order, the proof could not be
completed and backtracking would have been necessary. In general, for any environment
constructed by the conventional skolemization rule one can construct an equivalent or even
less restrictive environment obtained by simultaneous skolemization but not the other way
round. E.g, applying the instantiation Inst(Xs, f1(X1)) results in the following environments
(“conventional” and “simultaneous” respectively).

s Z X5 Zy X Al X9 Zs
By | 0 ROATE| [ ™ | 150 ) | ) [Re)

But the substitution [ X7/ f2(X2)] is only applicable in the “simultaneous” environment, since
it does not restrict the instantiation of X7, whereby the “conventional” environment does.

From these informal considerations about the differences between conventional skolem-
ization and simultaneous skolemization the advantage of the latter becomes visible. Indeed,
simultaneous skolemization avoids having to decide for a “right” order of quantifier elimina-
tions during proof search, although the necessary restrictions for variable instantiations are
captured. Hence, simultaneous skolemization reduces the search space and thus is much more
adequate for automation than the conventional skolemization rule is.

Remark 5. In the Isabelle system [12] for example a dual technique to skolemization is em-
ployed. According to this technique a universally quantified formula Vz.p(x) is reduced to
A z.¢o(z) and an existentially quantified formula 3z.p(z) to ¢(?z) where A is a meta-logic
quantifier and ?z is a (higher-order) meta-variable. Due to lifting over quantifiers meta-
variables receive arguments which essentially determine which constants may be used in in-
stantiations. The restrictions are represented positively by the constants of the signature
which may be used by an instantiation. This causes close interdependencies between for-
mulas in a sequent which are not present when skolemization is applied. Before a constant



may be instantiated, i.e. appear as an argument of a meta-variable, the corresponding quanti-
fier must have been reduced already. In skolemization restrictions are represented negatively
by variables. Compared to constants variables have the capability to propagate constraints.
Therefore, it appears to be quite difficult to develop an optimized handling of quantifiers
equivalent to SQEI for the Isabelle technique. For details of the technique we refer the inter-
ested reader to [12].

3.5 Analytical Environment Construction

In section 3.2 we have illustrated the effects of the Ky-rules 3, Skolem and Inst on a given
environment as well as their restrictions in the case of the rule Inst by examples. In section 3.4
these effects and restrictions have been illustrated for the K-rules SQEI and Inst. We now
define formally how an environment is constructed during analytical proof-search with the
calculi K4 and K.

Definition 6 [Environment Construction for QE on formulas]
The function QE has as parameters a quantifier list ql, a formula ¢ and a set of variables Z.
The stepwise modification of the environment by QE(ql,, Z) is defined inductively.

e The initial environment contains for each variable X € Z an empty restriction box .

e Case QE(e, ¢, Z): The construction terminates with the current environment.

e Case QE(3z.ql,p, Z): If E is the current environment then the new environment is

EU{)

where X is the new meta-variable introduced for ¥ and the construction is continued
with QE(ql, [X/z]p, Z).

e Case QE(Vz.ql, ¢, Z): If E is the current environment then the new environment is

X X
{: I qem
#2)| -

—

where f(Z) is the skolem term introduced for x and the construction is continued with
QE(ql, [f(Z/x]p, Z).

Definition 7 [Environment Construction for QE on sequents]
Let s = — I',ql;.¢1,...,ql,.0n, be a sequent with free variables in Z. We define the en-
vironment constructed for the application of QF on s as the union of the environments for

.. . . . X
QE(ql;, p;, Z) such that the restriction boxes for variables in Z are combined. If skr &
27" T
occurs in the environment for QE(ql;, p;, Z) and X in the environment for
Sknt1,- - Sknim

QE(ql;, ¢j, Z) (i # j), then the union contains

10



X
ski,...,skn,sknt1,--.,8kntm |

We now define inductively the function Env which constructs an environment for a deriva-
tion in Ky and K.

Definition 8 [Environment Construction for a Derivation]

Both calculi Ky, and K have derivations as defined in section 3.3, i.e., a derivation is a sequence
of levels, where each level is a pair composed of a sequence of sequents and a substitution.
Analytical proof-search for a sequent s starts with the initial Kq- or K-derivation

Do = (({s)), 1)

where o1 is the identity substitution. The environment Env(Dy) for this initial derivation
contains only restriction boxes with an empty restriction list for the meta-variables occurring
in s. Le., if X is a meta-variable in s, then the environment Env(Dy) contains

X

Let the E be the environment for a derivation D. Let D' be a derivation of s which results
from D by the application of a calculus rule. We define the environment for D'. In the left
hand side column of the following table K- and in the right hand side column K-derivations
are considered.

ICsk K

Application of the rules A-, V- and ax- results in a derivation D' with the same
environment. Hence Env(D') := Env(D).

Rule 3" where a new X is introduced Rule SQEl: Let Z be the meta-variables of
< the sequent s and E' be the environment
Env(D') := Env(D) U {1} obtained for the application of QE on s as

it is used in the side condition of the rule.

Rule Skolem where f(V) is introduced with alra
f new and V' the meta-variables occurring in EHV(D’)=—{’: | Env(p) and y¢z} u
the sequent v |
v v { ..Ski,....5kn, | Env(p) and
Env(p'):= | Env(p) and ygv} U Y ,
... E sk 1€ E'}
v v | B q SKi,...,SKy,
~ cEnv(p) and vev
{ W% | ] (D) }
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The application of the Inst-rule results for both calculi in the same restrictions and the
same effects.

e Restriction: Inst(X,t) is only applicable if X does not occur in t. Due to our
construction of environments this is equivalent to that variables and skolem-terms
occurring in t do not occur in the restriction box of X, i.e.

A X . Vs; . s; does not occur in t
S§1-.-8p
e Effect: Let the restriction box of X in Env(D) be ff . Then:
Y
Y Y

Env(p'):= {(x/t] . cEnv(D) | vy¢ Vart)} U {[x/t( 7'51 ) | [ leEnv(p) and ye Var(t)}

4 Semantical Justification

In this section we present a correctness proof for K using semantical arguments. For this
purpose an auxiliary calculus K,y is defined which allows to reason about sequents with
substitutions. The explicitly stated substitutions are used for meta-level arguments only.
We prove the soundness of K., and then conclude the soundness of K from that. In the
process we introduce orderings on constants and variables, an approach which is motivated
by orderings on positions in the context of matrix characterizations. [3, 16]

4.1 An auxiliary Calculus K.y,

Sequents with Substitutions. A sequent with substitution s is a pair — I'; o consisting
of a sequent — I' and a substitution 0. We define free(s) = |J,r free(o(¢)). The value
A(a)(s) is true in an algebra A under an assignment o : V — S4 where free(s) C V iff
A(a)(— o(T')) = true.

Below, we define the auziliary quantifier elimination function QE,,, which takes a quan-
tifier list ql, a formula ¢, a set O of constants and variables, and a binary relation < over
O as arguments. gl determines which quantified variables shall be eliminated from ¢. In O
the set of all constants and variables introduced during the elimination are collected while a
relation over these symbols is collected in <. QE,,, returns a triple consisting of a formula
¢, a set O of constants and variables, and an ordering <’ over O’.

* QF,..(6,¢0,0,K) :=(p,0,K),
* QE, . (Vz.ql, 0,0, <) := QE,,.(al, ¢[c/z], O U {c}, < U{(0,¢) | Yo € O}),

where ¢ := fgen is new.

12



b QEaum(Elqua <)07 07 <<) = QEGUI(qL (P[X/.Z‘], O U {X}’ << U{(07 X) ‘ VO E O})
where X := vgen is new.

Note 9. The restriction boxes used for the visualization are similar to the ones for K,y and
for K. However, there is a slight difference in the construction and update operations, since
the substitution of a sequent with substitution has to be taken into account. The formal
definition of the construction and update operations can be found in definition 15.

Example10. The value of (Vz13y1Vz1,(z1,v1,21),0,0) under QE,,, (with the appropriate
symbols generated by vgen and fgen) is

(p(X1,c1, Z1),{ X1, 1, Z1 |, {( X1, 1), (X1, Z1), (e1, Z1) })-

Orderings on Constants and Variables. QE,, . eliminates quantifiers in the order in
which they occur in gl. This order is represented by the relation < on the variables and con-
stants introduced during elimination which is returned by QE,,,. Clearly, < is an ordering,
the quantifier list ordering.

For a set of variables V), a set of constants C, and a substitution ¢ we define two relations
~CV xVand CC (VUC) X V as the minimal relations such that:

o for any u,v € V if o(u) = v then u ~ v,
e forany u € V and v € CUV if v occurs in o(u) and o(u) # v then v C u,
e and for any u,v € V if v C u and u ~ v then v C v’

We combine given orderings C and < to a relation <{C (C U V)?, i.e. <= (C U <)T where *
denotes the transitive closure. Indicating that < is intended to be usually irreflexive we call it a
reduction ordering. If < is a reduction ordering over some set O of variables and constants and
O' C O, then the restriction of <1 to O’ is defined by <1p:= {(0,0') | (0,0') €< and 0,0’ € O'}.

Calculus for Sequents with Substitutions. The auxiliary calculus K,y is depicted
below. Substitutions are explicitly stated and do not change in a Kgy.-proof. This is not
problematic since we only reason about the soundness of the calculus but do not use it for
proof search. Note, that in contrast to K in K4y; no skolem-terms are introduced during
quantifier elimination.

—p150 — 9250 — Y1, Pn50 SQEZ* —)FO”;O’ .
r ot T ; T.ql 1 . auz ~__ .. Subst
—L1,p,p0 — L, p1Ap250 —1,q 1'(p15'"aq n-Pni0 —Ll0

x For each i € {1,...,n} holds (¢, 0;, <;) = QE, 5 (ali, i, free(—> T',91,...,%5),0), C the ordering from
o, < = (Ux; i), 9= (C U K)F, O = U, O; the set of (free) variables and constants occurring in
the premise and <o is an irreflexive ordering.

x* Where o 0 ¢/ = ¢ holds.

Example1].
The orderings <, C, and <lp for the following rule application are Z1~., Zy
depicted in the diagram to the right. < is symbolized by solid arrows ( c|1 . c|2)
and C by dashed arrows. |
X Xo
— (X1, c1,Z1), ~p(X2, 2, Z2); {Za/ X1, c1/ X2, 02/ Z1 } 08

— Jz1.Vy1.321.0(21, Y1, 21), Fx2. Vy2.320.00(T2, Y2, 22); { Z2 /X1, €1/ X2, c2/ Z1 }
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4.2 Visualization of Simultaneous Quantifier Elimination

We illustrate the diagram from example 11 using restriction boxes. Ignoring the substitution,
we have the following environment for the sequent — (X1, ¢1, Z1), ~p(Xa, c2, Z2).

X1 Z X9 Zy
c1 Co

The restrictions result from the formula tree of the formula in the conclusion of the rule.
Indeed, the universally quantified variables y; and yo depend respectively on the existentially
quantified variables 1 and z5. Hence, the Eigenvariables c¢; and ¢y respectively introduced for
y1 and yo occur in the restriction boxes of the meta-variables introduced for z; and z9. This
ensures the invariance of that the FEigenvariables are always new constants under applications
of the Inst rule (Eigenvariable condition is always fulfilled).

The environment above represents roughly the solid lines of the diagram. Applying the
substitution (which corresponds to the introduction of the dashed lines in the diagram) on
this environment results in the following transformations of the environment:

1. Substituting c¢; for X5 integrates co into the restriction box of X since ¢; occurs in the
restriction box of X; and hence X; inherits the restrictions from X5. This results in:

X1
C2
C1

2. Substituting co for Z; does not change anything, since the restriction box of Z; is empty.

3. And finally the substitution of X; by Z, identifies both variables by integrating the
whole restrictions of X into the restrictions of the remaining variable Zs

Zy
c,C |

Note that the substitution of a variable by another variable corresponds to the equiva-
lence link ~ established between the two variables during the definition of the reduction
ordering <. However, this is not represented in the diagram, since the diagram repre-
sents only the mixture of quantifier list ordering and the substitution ordering.

4. These substitutions result in the final environment

X1 A X9 Zy
(&1 Co C1
Cc2 C2

14



4.3 Analytical Environment Construction

We define, when an is compatible with some substitution . This is done in order to illustrate
when the simultaneous quantifier elimination rule is applicable on a sequent with substitution
s;0.

Definition 12. Let o be a substitution and E an environment. Then E is compatible with
o iff

v X € E.Ve . holdsc; & o(X)

Cl,.-+9Cn

We now define how an environment is constructed during analytic proof-search with the
calculus K gyp-

Definition 13 [Environment Construction by QE,,, on Formulas]
The function QE,,, has as parameters a quantifier list ql, a formula ¢ and a set of variables
Z. The stepwise modification of the environment by QE,, .(ql,p, Z) is defined inductively.

e The initial environment contains for each variable X € Z an empty restriction box .

e Case QE,,,(¢,p, Z): The construction terminates with the current environment.

e Case QE,,,(3z.ql,p, Z): If E is the current environment then the new environment is

Buit)

where X is the new meta-variable introduced for z.

e Case QE,,,(Vx.ql,, Z): If E is the current environment then the new environment is

X
i em

where c is the Eigenvariable introduced for x.

——

Definition 14 [Environment Construction by QE,, . on Sequents]

Lets =—T',qly.¢1,...,qlL,.¢o0n,0 be a sequent with substitution with free variables in Z. We
define the environment for the application of QE,,,, on s by the union of the environments for
i . . . X
QE, .. (al;, pi, Z) such that restriction boxes for variables in Z are combined. If o p
R
. . X . .
occurs in the environment for QE,,,.(ql;, pi, Z) and in the environment for
Cn+ly- -3 Cnim
QFE,u:(dlj, 05, Z) (i # j), then the union contains
X
Cly---yCnyCntly---sCntm |

We now define inductively the function Env which constructs an environment for a deriva-
tion in /Cyyy.
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Definition 15 [Analytical Environment Construction]

The calculus K,,x has derivations as defined in section 2, i.e., a derivation is a sequence of
sequents with substitutions. Analytic proof-search for a sequent s with K,y starts with the
initial Koyx-derivation

Do = (s;0)

where o is a guessed substitution. The environment Env(Dy) for this initial derivation
contains only restriction boxes with an empty restriction list for the meta-variables occurring
in o(s). Le., if X is a meta-variable in o(s), then the environment Env(Dy) contains

X

Let E be the environment for a derivation D. Let D' be a derivation of s which results
from D by the application of a calculus rule. We define the environment for D'.

e Application of the rules A-, V- and ax- results in a derivation D' with the same envi-
ronment. Hence Env(D') := Env(D).

e Application of the Subst-rule results in a derivation D' with the same environment.
Hence Env(D') := Env(D).

o Rule SQEL,, ons;o: Let E be the environment generated from the sequent s by QE,,,.
If E is compatible with o then the new environment Env(D’) is defined by

Let E' := {Y | Y € Env(D), Y ¢ o(X) for all i,...,cn € E}
U { X € E | for all Y € Env(D),X #Y}
Ul € Env(D), Y €o(X;)
cey e e e L C
for all “5——— ¢ E}
) yenn

Then Env(D') results from E' by the following manipulation of E':

X ..
For every X X € E' and every ¢ from the restriction box let Y x be the
13> k 1

variables, such that ¢} € a(chX), i.e. all variables for which ¢ is substituted. For

every Y% in E' let Res(Y&) denote the terms in the restriction box of Y’y and let
Ci Ci Ci

j X
Res(Y x) :=U; Res(YCJX). Env(D') is build from E' by replacing every X X by
i 3 13---9C

X
cr,. .. ,ckX,ReS(Ycic), . ,Res(ch)

Note that E' and Env(D') are identical, if the variables in the sequent s are not affected
by o.
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The following definition is used in order to state in a lemma, that for any K,,,-derivation
an ordering can be constructed.

Definition 16. Let E be an environment generated for a Kyyx-derivation. The ordering <pg
is defined by:

| X
X <pge Iff ek
Cly...4Cp

The following lemma, shows that an ordering <g which can be constructed for a Kgyq-
derivation is irreflexive.

Lemma1l7. Let E be an environment constructed for a K,,x-derivation. Then <g is irreflex-
ive.

Lemma 18. Let E be an environment generated by QE,,,.

and let E' be an environment of a Kaux proof. It holds:

for some sequent with substitution

1. The ordering <p generated from E is equivalent to the ordering < from section 4.1 up
to the deletion of relationships between two meta-variables.

2. The ordering < generated from E' a specialization of any ordering < (see section 4.1)
generated during application of the rule SQEI

aux-*

Proof. The relationship between the ordering <g and the ordering < from section 4.1 is
trivial: <pg is a subset of <, which can be obtained from < by removing any relationship
between two meta-variables.

The integration of an environment from QE,,, with an environment of a proof before
SQEL,«-rule application, especially the part corresponding to the integration of the substi-

tution corresponds to the construction of < from < and L.

We use the ordering <z constructed from a (proof) environment in order to define a new
side-condition of the SQEI,,, rule in K4y;. If a K4y proof is constructed without checking the
side-condition of SQFEI,,, then an environment can only be constructed if the side condition
is fulfilled at any application of SQEI,,,,.
Lemma 19. Let Py, be a proof constructed from the Kyyx-rules without checking the side
condition of the SQEL,,, rule. If an environment can be constructed for P,,, then the side
condition of any application of the SQEL, . rule is fulfilled and, thus P, is a K,ux-proof.

aux

Proof. Let Paux be a proof constructed by the K,ux-rules without checking the side-condition
of the SQEL,, rule. Let us assume that an environment can be constructed for Paux ac-
cording to definition 15. From lemma 17 we conclude that the ordering <pg specified by
the environment is irreflexive. From lemma 18 we infer that the ordering is irreflexive. The
irreflexivity of <p implies that the ordering < is also irreflexive as required in the side con-
ditions of the rule SQEI Thus, the side-condition of the SQEL, ., rule is fulfilled. ad

aux- aux

According to lemma 19 we have two possible side-conditions of the SQFEI,, . rule.

aur
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4.4 Soundness of K-

Theorem 20 [Soundness]
If there exists a Kyux-proof P of a sequent with substitution s then s is valid.

Proof. The proof is by induction on the structure of P. The base case where P consists only
of an application of ax is trivial. In the induction step a case distinction depending on the
last rule application in P is made. We concentrate on the interesting cases where A, Subst,
or SQEL,, is applied. In each case we assume that all premises of the rule are valid and infer
the validity of the conclusion.

e Let A be the last rule applied in P. We assume that for every algebra A and every
assignment « holds A(a)(— T',p1;0) = true = A(a)(— T',p9;0). Let A be an
arbitrary algebra and o be an arbitrary assignment. If there is a F' € I' such that
A(a)(o(F')) = true, then A(a)(— T',p1 A @9;0) = true holds trivially. Otherwise,
A(a)(o(p1)) = true = A(a)(o(p2)) must hold which implies A(a)(— ', 1 A po;0) =
true.

e Let Subst be the last rule applied in P. We assume that for every algebra A and every
assignment « holds A(a)(— o'(T"); o) = true. According to the side condition of the
rule holds o o ¢’ = 0. Thus, — o(I') =— o(0'(T")) and the validity of the conclusion
follows.

e Let SQEL,, be the last rule applied in P. The proof is done by induction over the
number m of quantifiers eliminated, i.e. the sum of the lengths of the ql;. The base case
where m = 0 is trivial, since the premise and the conclusion are the same sequent. We
first prove the case m =1 with s =— I', Qz.p;0

— If Q = 3, we assume that for every algebra A and every assignment « holds
A(a)(— T, ¢[X/xz];0) = true. Let A be an arbitrary algebra and o be an arbi-
trary assignment. The interesting case is where A(a)(o(F)) = false for all F € T
and A(a)(o(p[X/x])) = true. Let o' be the restriction of o to free(T' U {3z.p}).
Then

e = A(0)(o(o[X/s])) = Ale)(o'(¢1X/5])) = A(a) (o' (9) o' (X)/])
A(a[A(a) (o' (X)) /x]) (o' (¢)) by substitution theorem
A(a)(3z.0'(¢)) by definition of the semantics of 3
A(a)(o

a)(0’(Fz.p)) = A(a)(0(3z-¢)) = A(e)(— T, 32005 0)

— If Q = V, we assume that for every algebra A and every assignment o holds
A(a)(— T, p[c/z];0) = true. Let A be an arbitrary algebra and a be an arbitrary
assignment. The interesting case is where A(a)(o(F)) = false for all F € T and
A(a)(o(p[c/z])) = true. We consider all variants A, of A, i.e. all algebras which
differ from A only in the interpretation of ¢ such that Ay,(c) = a. The side-
condition of SQEL,, and the definition of QE,,, ensure that X < c holds for
every X € free(— I',Vz.p;0). Because < is required to be irreflexive for any
F €T, ¢ does not occur in o(F) and thus, As(a)(o(F)) = A(a)(o(F)) = false.
Let ¢’ be the restriction of o to free(I' U {Vz.p)}. Then for all A, holds
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true = Agi(a)(o'(plc/z])) = Aa(a)((o'(p))[c/z]) since o' is admissible
= ja(a[ o(¢)/z])(c'(p)) by substitution theorem

o(ala/z])(o"(¥)) -
For every a € S4 there is an A,, thus A(a)(— T',Vz.p;0) = true.

In the induction step we assume the soundness of SQEL,,, for the elimination of less
than m quantifiers (m > 1) and show the soundness for m quantifiers. The irreflexivity
of < ensures that there is a maximal element o € O with regard to <. According to
the definition of C o is not instantiated for any variable in O. Let o be introduced
by the elimination of ij.zp;-. We split the application of SQEL,,, as follows into two
applications of the rule where each of the applications reduces less than m quantifiers.
Due to the choice of Qjx.1p; the side conditions for both rule applications are fulfilled.

—>F,¢1,---,¢ja---,¢n;0
ST, Qulhs i
— I, qlp1,..., qlj.Qz.pj,..., qly.pn;o

SQEL,x 1 quantifier elimination

SQElL,,x  (m — 1) quantifier eliminations

Remark 21. In the induction step of the above proof we show that it is always possible to
focus on a single formula in a sequent. In the case where the rule SQFEI,,, is the last rule
applied this is non-trivial because multiple formulas are reduced in a single rule application.
Free variables in a sequent cause dependencies between formulas. Only the side condition of
the rule SQEI,,, allow us to single out a specific formula according to the reduction ordering
and ensure in the case V that this formula is valid in all variants of a specific algebra.

4.5 Justification of £

There are three differences between Kyyyp and K. In K4y a substitution is explicitly stated
in sequents, Eigenvariables have no arguments (i.e. are no skolem-terms), and the Subst-
rule is a sequent rule while the Inst-rule of K is a rewrite rule on proof trees. Proof search
in Kgyz would require that an appropriate substitution is guessed before any rule may be
applied. None of the rules in K,,; is capable to modify this substitution. This appears to be
impractical, however, Kz is only an auxiliary calculus. We show by the following theorem
that the skolemization based technique applied in K is a realization of the constraints imposed
by ICau:c-

Theorem 22 [Soundness]
If there exists a K-proof for a sequent s then s is valid.

Proof. Let P be a K-proof of some sequent s such that all meta-variables which occur in s
are not instantiated in P. Let o be the substitution of the last level of P. From P and o
we construct a Kaux-proof P and a substitution ¢ such that P is a proof of s; 0. Theorem 20
ensures that s; 0 is valid. If no skolem-terms occur in s then s = s holds. According to the
definition of validity for sequents with substitutions we can conclude that s is valid. Since s
and P were chosen arbitrarily we can conclude the soundness of K.

We now fill the gaps in this proof sketch.
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In order to simplify the proof, we (1) require that in P meta-variables are only instantiated
immediately after their introduction and (2) that variables free in the initial sequent cannot
be instantiated after a calculus rule different from Inst has been applied. This restriction is
complete, i.e. any K-proof can be transformed into a proof which has this property. The only
rule which introduces new meta-variables is SQEL. Applications of the Inst rule which do not
affect variables introduced by SQE] can be permuted such that Inst is applied before SQEI
where the order of rule applications is seen from the point of view of analytic proof search.
Inst is also permutable with the rules A and V.

Please keep in mind that P is a K-proof which consists of a sequence of levels where each
level contains a sequence of sequents and a substitution while P is a sequence of sequents
with substitutions. B

For each skolem-function f which occurs in P we define a new constant symbol f.

We define ™ as a function on terms.

X = X , where X is a meta-variable
z = z , where x is a variable
flt1, ... ty) = f , where f is a skolem-function
g(ti,...,tn) = g(t1,...,t,) , where g is not a skolem-function
~ is extended homomorphically to formulas. For a substitution ¢ we define ¢ =~ o g. The

application of ~ on an environment E results in the application of ~ to all elements of the
restriction boxes in E. B
We construct a Kyux-proof P for s™, o, by induction from a K-proof

P = < ((S]{;Ia"' aS}L)a Ul)a
((si2,...,s%1,...,s%), o2),
({87 Shs e e s Shes e S0y Om))

of s)*. The construction ensures that for each i the sequent ;;V”; & occurs in P. Additionally,
if E is the environment corresponding to P then E is the environment corresponding to
P. The induction assumption is that for any K-proof P' with length less than n, P’ is the
corresponding K,ux-proof and that if E' is the environment constructed from P’ then E' = E
holds.

We make a case distinction depending on how s]* has been derived. According to lemma 4
it suffices to consider the cases where s, can be derived on level m by an application of ax,
A, or V or s can be derived on some level j < m by an application of SQEL. Let P’ be the
KC-proof where s}, has been removed from each level j in P.

e If 57! can be derived on level m in P by an application of ax. Then, a, (s 07m) is a
Kaux-proof of sm ST Oy,

E and E' are the initial environments. Because of G,,sT = s™ holds E=EFE.

o If s7' can be derived on level m in P by an application of A. Let s} and sm be the

premises of that rule app11cat1on According to the induction assumptwn ;0m and

n1?

ST ;0 occur in P Thus, ’P ( 8™ apy,) 1S a Kaux-proof ofsn $Om-

The construction of the environment is not affected by this rule in both calculi, thus,
the induction assumption can be applied directly.
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e If 57! can be derived on level m in P by an application of V. Let s be the premise

of that rule application. According to the induction assumption s ; 0, occurs in P

Thus, ﬁ, (gi:n, Om) 18 a Kaux-proof of ;Zn; Om-
The construction of the environment is not affected by this rule in both calculi, thus,

the induction assumption can be applied directly.

e If si' can be derived on level j (j < m) in P by an application of SQEL Let sh, be the

premise of that rule application. According to the induction assumption s ; 0, occurs

in P'. The reduction of this sequent by Subst with parameter o, results in s%; Om. The
subsequent application of SQEL, . results in gr,{l; Om- Thus, 'ﬁ, (3%; Om), (:92;”, Om) Is a

Kaux-proof of s; ap,.

If the variables introduced by SQEL,
tion 8 and definition 15 E = E' holds.

The case where some of the variables introduced are affected by o, is shown by induction
on the number of variables which are affected. Let us assume, that E = E' holds when
at most k variables are affected. We show that it also holds when k + 1 variables are
affected. This follows from definition 8 and 15 because an application of the Inst-rule in
K with parameters X and t has the same effect on the environment construction as the
substitution & with &(X) = ¢ together with the restriction box of X in the environment
construction for an Kux-proof.

Thus, E = E' holds.
According to lemma 19 the construction of an environment for P guarantees that the

side condition of SQEL,,, is fulfilled. Thus, our application of SQEI in the construction
of P! was admissible.

are not affected by o, then according to defini-

aux

5 Conclusion

We defined the sequent calculus K which incorporates a rule for simultaneous quantifier
elimination [1]. This rule provides advantages for proof search: As conventional skolemization
already postpones the choice of a term for an existentially quantified variable, the simultaneous
quantifier elimination rule additionally overcomes the unnecessary decision for the ordering
in which quantifiers are eliminated. This makes this rule especially attractive for automation.
The simultaneous quantifier elimination rule presented in this report has been implemented in
the VSE II system [8] for formal software development which is currently under development
at the DFKI as a successor of the VSE system [7].

The calculus K is proven to be sound and complete. The more difficult proof of the
soundness theorem has been carried out by semantical arguments. The proof clarifies the
interdependencies between the formulas of a sequent. In order to visualize the relation be-
tween skolemization and the Eigenvariable condition the concept of restriction boxes has been
introduced.

Other systems handle quantifiers with different degrees of sophistication. Lazy handling of
instantiations has been used in classical as well as in non-classical logics and in first-order as
well as in higher-order formalisms. Except in sequent calculus and natural deduction calculi,
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Skolemization has been studied in the context of resolution, connection method and tableau
calculi as well.

For instance in PVS [5] Gentzen-like quantifier elimination rules are used where instanti-
ations must be guessed. Ketonen and Weyhrauch [9] present an approach where sequents are
annotated by a substitution, like in the semantical part of this article, and used a technique
similar to our quantifier list ordering. However, they have only classical quantifier rules with
the corresponding non-determinism in proof search. In the Isabelle system [12] a technique
dual to classical skolemization is used. In remark 5 we have pointed out that this technique
causes close interdependencies between formulas in a sequent which make it quite difficult
to develop an optimized handling of quantifiers equivalent to our simultaneous quantifier
elimination rule.
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