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Abstract

To date, there is little evidence that modular reasoningiabo
fault-tolerant systems can simplify the verification prexe
practice. We study this question using a prominent exam-
ple from the fault tolerance literature: the problem ofable
broadcast in point-to-point networks opposed to crash fail
ures of processes. The experiences from this case study show
how modular specification techniques and rigorous proof re-
use can indeed help in such undertakings.

Introduction

A system is said to béault-tolerantif it exhibits a well-
defined system behavior in the presence of faults. The
importance of fault-tolerant systems stems from their om-
nipresence throughout today’s technical infrastructure. The
failure of a critical computer system can have catastrophi-
cal consequences, resulting in loss of considerable industrial
value or even loss of human life. Thus, there is an increasing
need for systems with verifiable fault-tolerance properties.
Because it is necessary to precisely describe faulty behav-
ior and its interaction with normal system operation, fault-
tolerance considerations place an additional complexity bur-
den on a formal verification process. In theory, the addi-
tional complexity can be dealt with by first reasoning about
the system in fault free environments and — after placing
it into a faulty environment — reasoning only about those
aspects of the system which have changed (Gartner 1999).
Many case studies exist which prove certain algorithms cor-
rect in the case of faults using theorem provers like PVS
(Lincoln & Rushby 1993; Qadeer & Shankar 1998). How-

ever, these case studies do not exploit the theoretical ideas

sketched above and thus the proofs seem more complex tha
they need to be. Consequently, there is little evidence to date
that such modular reasoning can indeed simplify the verifi-
cation process using theorem provers in practice.

The basic notion underlying most of the theory behind
modular reasoning about fault-tolerant systems is that of a
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transformation(Gartner 1999). Today, there exists a solid
basis of elegant transformational techniques in the litera-
ture (Peled & Joseph 1994; Liu & Joseph 1992; Arora &
Kulkarni 1998). However, the examples used to show the
usefulness of these theories have been rather small and aca-
demic. To the best of our knowledge, the only real case
study which has been performed using theorem provers
is the component-based mechanical verification of a self-
stabilizing mutual exclusion protocol by Kulkarni, Rushby
and Shankar (1999). While it shows that modular reason-
ing does have advantages, it also concludes that — being
the first such case study — more experiences are obviously
needed.

Using the industrial-strength Verification Support Envi-
ronment (VSE) (Hutteet al. 1996), we study the bene-
fits of modular reasoning in fault-tolerance using another
prominent example from the fault tolerance literature: the
problem of reliable broadcast in point-to-point networks
with crash failures (Hadzilacos & Toueg 1994). Again,
the formalization and hand-written proofs of correctness
have appeared in the literature (Hadzilacos & Toueg 1994;
Gartner 1998), but to our knowledge there has been no at-
tempt to study whether the methodologies involved really
lend themselves to rigorous mechanical verification. So nei-
ther are we presenting a new algorithm, nor are we present-
ing a new tool or proof method; we are proposing a modular
specification method and evaluate it in practice.

We begin by presenting a formal specification of broad-
cast in point-to-point networks and — by this example —
introduce the VSE system. Subsequently, we transform the
broadcast system into one which is opposed to crash faults of
processes and prove its correctness. It turns out that trans-

"formational reasoning can indeed lessen the complexity of

the verification task; the benefits lie not so much in simpli-
fication of the proofs (they still remain lengthy and cumber-
some), but rather in the massive potential of rigorous re-use
of subspecifications and proofs. Finally, the results are sum-
marized and their impacts are discussed.

Formal Specification of Broadcast

Informally, broadcastinga message in a distributed system
means to send the same message to all nodes in the net-
work. Usually it is defined using two primitive operations
broadcastand deliver. As such primitives are often not



directly supported by the communication system (as is the ment graphconsisting ofdevelopment objectndlinks be-
case, e.g., in wide area networks), it must be implemented tween them. Briefly spoken, development objects are sub-
using low-level operations likeendandreceiveof individ- specifications and links are special types of relations be-
ual messages. Broadcast is an important concept easing,tween such specifications. There are mainly two different
among others, the design of observation and control mecha- types of development objectabstract data typeandstate-
nisms in distributed systems. The broadcast algorithm we based systemd~or this case study we have formulated all
consider is the well-known algorithm by Hadzilacos and parts of the system using abstract data types.

Toueg (1994). We build upon a prior formalization of it Using abstract data types a system is modelealgg-
by Gartner (1998) which, however, was done in thety bras i.e., structured collections of sorts (sets of values) and
theory (Chandy & Misra 1988). We briefly recall the main  sorted collections of functions which operate on these val-
points before we describe the formalization in VSE. ues. Elementary algebraic specifications are cdaliedries

in VSE and introduce the types (the sorts) and functions (the
operations) necessary to describe the modeled system. The
semantics of the operations are defined axiomatically (i.e.,
by a set of axioms which they are supposed to respect) or
algorithmically (i.e., by a small program from a restricted
programming language). Theories mayport other theo-
ries, which corresponds to making types, operations and the
corresponding axioms visible in another theory. This makes
it possible to specify systems in a modular fashion.
“Importing” specifications also makes it possible to per-

X form proofs in a modular way. Proofs are always considered
sage, and a multiset of messag#y.(In order to broadcast local to a specification, i.e., the proof of a lemma within

a messagen, a process places it into its broadcast buffer 5 ge cification module only depends on the proofs of “im-
b (commandB,). This corresponds to the invocation of  oried” theories. Thus, the system can give assistance in
from b to the incoming buffeb (B7). If the message has  Furthermore, in VSE the validity of proofs is managed au-

Overview of the broadcast system. The broadcast system
consists ofn processes which communicate using a point-
to-point network of reliable unidirectional channels. The
processes need not be fully connected but it is required that
there is a communication path between every two processes.
The broadcast algorithm is described by six guarded com-

mands (denotef$; —Bs andBj) which are executed by each
process locally. The state of each process consists of three

buffers ¢, b, andd), each of which can hold a single mes-

not been delivered by that process befareg D) then it is tomatically. When a theory has changed, all proofs which
sent on all outgoing channels, addedpand put into the rely on that specification are flagged as invalid and have to
delivery bufferd (Bs), otherwise) is cleared B4). After a be proved again.

message has been processes, cleared ;). A message We have depicted a simplified version of the final devel-

on an ingoing channel is delivered to a process by putting opment graph obroadcastin Fig. 1. On the “lowest-level”

it into b (B) from where the process may resume by com- the theoryMessages defines a datatype of messages. Uni-

mandBs; or By. The respective guards ensure that none of directional channels are modeled as multisets of messages

the buffers are accidently cleared. For details of the algo- in UChannel . There are two operations defined on chan-

rithm and its formalization in WITy the reader is referred  nels,send andr enove which, respectively, place a mes-

to Gartner (1998). sage into the channel and remove it again. Channels can be
The correctness of a broadcast system is defined by the combined to &hannel Mat ri x. Overall there is an x n

following properties. matrix of channels, whereby a channel of typmchannel

S (safety) Every delivered message was previously broad- at pqsmon(a:, y) of the matrix expresses_th_at thereis no con-
cast and every message is delivered at most once. nection from process to procesy. This is the basis for
. L local connectivity.
L (liveness) Every message which is broadcast at some pro-  pygcesses are modeled in modieocesses as a

cessr will eventually be delivered locally, and delivery at  gatatype which has an identification and local data structures
z will lead to delivery at all other processes. (b, b, d, andD). Processes can be combined to lists.
The St at e of the entire system consists mainly of the

Formalization in VSE. We perform our correctness states of all processes (i.e.PaocessLi st ) and the state
proofs using theVerification Support Environmerf/SE), of all channels (i.e., &hannel Matri x). To specify the
a system which is described in detail by Hugeal. (1996). assumption that every message is broadcasted only once, we
Apart from offering verification methods, VSE explicitly = add to the global state a sBtof messages which have been
contains means to specify complex systems in a structured broadcast.
way which facilitates modular specification and verification, The low-level specificatiodct i ons identifies the pos-
and supports proof re-use. In this section we will introduce sible actions which a process can perform. Using the identi-
the central concepts of VSE and its specification and verifi- fiers defined inAct i ons, traces are modeled as sequences
cation methodologies along the lines of the broadcast algo- of states and actions. Starting with a state, actions and
rithm sketched above. states alternate within a sequence. Intuitively, a subsequence

In VSE, we have modeled a distributed system in amod- ...,s;,a, s> ... models that the execution of actienin
ular bottom-up fashion. The central concept of VSE to sup- states; resulted in stat@,. Note that the set of traces con-
port modular specification and verification is tHevelop- tainsall possible sequences, i.e., not only those allowed by
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Figure 1: Simplified development graphtwbadcast

obligations which are generated automatically by the
system. In order to guarantee correctness all these proof
obligations must be proven. Other proof obligations arise
from the necessity to prove that the specification in its
entirety is consistent(i.e., was not self-contradictory).
This proof is often not considered being at the heart of
the verification task. But proving consistency is usually
considered a mandatory part in arguing that a specification
is in fact adequaté As expected, the work involved in
proving consistency was considerable. The number of proof
obligations concerned with consistency exceeded the ones
concerned with correctness slightly. However, the more
difficult proofs were among the correctness proofs in which
the safety properties had to be proved by induction and case
analysis.

A Transformation from Broadcast to Reliable
Broadcast

The broadcast system presented in the previous section was
one in which all components were assumed to work cor-
rectly. As shown by Hadzilacos and Toueg (1994), their
broadcast algorithm will also work correctly in situations
where a limited number of components may fail. The de-
scription of the number and type of component failures

the algorithm because the guarded commands have not yetwhich the algorithm can tolerate (i.e., without failing alto-
been specified. Nevertheless, it is now possible to specify gether) is usually called tHault assumptionThe fault as-

the Saf et yProperti es (S) of the broadcast specifica-
tion: A states is safe if for every process in

S1 the multiset of delivered messagBsis a subset of the
setB of messages which have been broadcast, and

S2 the multiset of delivered messagPshas no duplicates.

Finally, the set of possible traces is restricted to those al-
lowed by respecting the actions of the broadcast algorithm.
This is encoded in the specificatiddm ssi bl eTr aces.
Here, the action identifiers definedAgt i ons are associ-

ated with their corresponding actions, i.e., the guarded com-

mands described informally earlier. An action consists of a
boolean expression on the current state ¢ihnerd) and a de-

sumption is a necessary starting point for any type of fault
tolerance considerations.

The fault assumption under consideration here is usually
termedcrash meaning that at most < n processes may
at some point in time simply stop executing steps. Fault
assumptions can be described formally as transformations
(Gartner 1999). Consequently, at the level of processes, a
fault assumption can be formulated as a functidrmap-
ping a “fault-free” progrand into a “fault-affected” version
A" = F(A) (Gartner 1998). For the crash fault assump-
tion, F' will add an additional boolean variahlg@to the state
space of every process which is initialized to the vatue.
Additionally, an action (called th&ult action) is added to

scription of how the state changes if the action is executed A which setaupto false if up holds. Finally,upis added as

(thecommand. An action may only be executed in some
states if its guard evaluates true on s. Thus, the spec-
ification of admissible traces describes all traces which the
algorithm might generate.

At the level of admissible traces it is now possible to for-
mulate the safety specification of broadcast as follo®s:
and S2 hold for every state in every admissible trace

These two properties are formulated as axioms within the
safety specificatioBr oadcast . The special link between
the specificatioBr oadcast andAdmni ssi bl eTr aces
means that all admissible traces shouddtisfy the
Br oadcast specification. (Note that the relations between
the other specifications have up to now merely signified that
one specificationmportsthe other in the sense described
above).

Proof obligations. The satisfies relation between
Admi ssi bl eTraces and Br oadcast leads to proof

a precondition to every remaining action4f Overall, this
means thatd’ will initially behave like A. However, if the
fault action is executedyup holds, and so the preconditions
of all actions become invalid. Hence, the process is not able
anymore to perform steps, mimicking a crash.

Since the transformation adds behavior4pit is obvi-
ous that in general the original correctness specification of
broadcast (i.e., S and L) must be weakened to reflect this
fact. A simple and mechanical way to do this is to restrict
the original specification to the behavior of only the cor-
rect processes. Obviously, this can also be described using
a transformation. A property for some process in the

1o prove consistency we had to introduce additional nodes in
the graph and had to perform some additional proofs. For sim-
plicity, these nodes are omitted from Fig. 1. The complete de
velopment graph which can be imported into VSE is available o
the Internet atwwv. i nf or mat i k. t u- dar nst adt . de/ BS/
Gaertner/vse/ Reliabl e. out



original specification is transformed into the weaker prop-
erty “x is up” = P. The resulting specification is called the
tolerance specificatian

these questions can be answered easily since after a crash of
an affected process this process does not execute further ac-
tions. For other fault assumptions we expect this to be more

The transformational approach makes it possible to re-use difficult.
much of the given development graph. In our case study we
have built both fault-free and fault-affected scenarios into
one development graph. The additions made to the original
graph of Fig. 1 are shown in Fig. 2. In general, those parts
of the specification which need to be altered, are generated
from the corresponding parts of the original specification.

In the resulting specification, a crash action has been
added to the actions of the broadcast algorithm in
CrashAct i ons. AtheoryUpDownl i st models a list of
booleanup flags which is used as an additional component
of states as defined i@&r ashSt at es. Using the modified
definition of states, traces are modeled exactly like in the
fault-free case. The safety properties are weakened by the
precondition % is up” which is expressed using the list of
up flags. InCrashAdni ssi bl eTr aces, the crash ac-
tion allows for additional behaviour and:is up” is added
to the guard of each action.

Our modular specification allows for a precise identifica-
tion of which parts are affected by the transformation and
in which way. Although this transformation has been per-
formed by hand, our case study suggests that it can be au-
tomated in the following way: (1) add theories with auxil-
iary datatypes, (2) add actions for faulty behaviour, (3) add

auxiliary datatypes to the state space, (4) weaken the prop-  Qyerall, our case study shows that the transformational
erties, and (5) add conditions to the guards and add faulty gpproach in combination with our modular specification
behaviour. Note that this approach is not restricted to our tachnique is a good basis for the mechanical verification of
case study but should cover the whole family of transforma- oyt tolerance. The main argument for this is the potential
tions for fault tolerance as described by Gartner (1999). The for re-use of specifications as well as of proofs. In the case
various fgult assumptions dlffer in the auxiliary datatypes, study this re-use has mostly be done by hand, however, fur-
in the actions for faulty behaviour, in how the properties are - ther automation is desirable. Based on our experiences we
weakened, and in how the guards are affected. have outlined how the transformation could be automated
After the transformation, the proof that the broadcast sych that much of the specification can be re-used. Many of
System running under t_h_e qrash fault assumption satis- the interactions in the construction of proofs for the trans-
fies the tolerance specification, can be done using the formed specification were rather mechanical and could be
same methods as in the fault-free case. If the proof gone using the original proofs as guidelines. Further au-
succeeds, we have shown that the broadcast algorithmtomation of the re-use appears to be achievable. However,

is fault-tolerant regarding the crash fault assumption for the realization of this automation is a different issue which
the given tolerance specification. Again, the transforma- needs further investigation.

tional approach offers much potential for re-use. Proofs
which belong to unchanged parts of the specification re-
main valid. Fig. 2 demonstrates that at least the specifi-
cation moduledessages, MessageSet s, UChannel ,
Channel Li st, Channel Matri x, Processes, and

ReliableBroadcast Broadcast
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Figure 2: Changes made to the original graph for the fault-
affected case.

Results and Conclusions

Modeling the effects of faults as a transformation has opened
the domain of verifying fault-tolerant systems to the realm of
ProcessLi st could be re-used. To be exact, 35 of 45 mechanical verification. As indicated above, fault assump-
theories remained unchanged during the transformation. tions can be translated into transformations and “applied” to
In the construction of proofs which need to be re-done, given systems and their specifications rather mechanically.
many of the old proofs or parts thereof could be re-used. Part The transformed systems can then be reasoned about using
of this re-use was performed automatically by VSE but more standard tools and methodologies. It has often been argued
often proofs were used as guidelines such that we could con- that the difficulty in reasoning about fault-tolerant systems
centrate on those aspects which involved fault actions. As mainly lies in the additional system complexity caused by
might be expected, we identified the following two questions faults (mainly the state space explosion). However, a modu-
as important: (1) Does the occurrence of a fault directly vi- lar view of the system reveals that — when proving a fault-
olate the desired properties? (2) Does the occurrence of atolerant system correct — many parts of the proof do not
fault affect the system state such that later actions of the sys- actually involve reasoning about faults. These refer exactly
tem violate the properties? Under the crash fault assumption to those parts of the system which are not affected by the



fault assumption. Thus, proofs for the fault-free case can be
re-used directly.
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