Possibilistic Definitions of Security
— An Assembly Kit —

Heiko Mantel

German Research Center for Atrtificial Intelligence (DFKI),
Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany
E-mail: mant el @if ki . de

Abstract cates that there might not be a definition which is optimal
for all purposes. Rather, the choice of such a definition de-
We present a framework in which different notions of se- pends on the particular application. This demands for a uni-
curity can be defined in a uniform and modular way. Each form framework in which one can compare different defi-
definition of security is formalized as a security predicate nitions and choose the most appropriate one. McLean’s se-
by assembling more primitive basic security predicates. A lective interleaving functions [12, 14] provide such a fexm
collection of such basic security predicates is defined andwork in which security can be defined by closure condi-
we demonstrate how well-known concepts like generalizedtions, but Zakinthinos and Lee pointed out that the ex-
non-interference or separability can be constructed from pressiveness of his framework is too limited [20]. Their
them. The framework is open and can be extended with neviramework overcomes this limitation and allows them to de-
basic security predicates using a general schema. We in-fine a perfect security properBSP. However, the general
vestigate the compatibility of the assembled definitiotis wi correspondence between closure conditions and security is
system properties apart from security and propose a newlost. The framework presented in this article seeks to com-
definition of security which does not restrict non-critical bine the expressiveness of the one by Zakinthinos and Lee
information flow. It turns out that the modularity of our with the elegance of McLean’s framework while overcom-
framework simplifies these investigation. Finally, we dis- ing their limitations.
cuss the stepwise development of secure systems. One novelty of our framework is its modular structure.
It consists of a collection dfasic security predicateshich
can be combined teecurity predicatesn order to define
a notion of security. Thus, our framework really is as
sembly kifor such definitions in which basic security pred-
icates are the building blocks. This modularity also reduce
Non-interference has become a popular concept for for-the complexity of reasoning about security, because many
malizing security. Its main benefit over access control mod- properties of the building blocks are preserved under com-
els like the one by Bell and LaPadula [1] or Biba [2] is that binations. New basic building blocks can be defined using a
it provides a definition of security rather than only a mech- general schema which ensures that each basic security pred-
anism for enforcing it. The initial work on non-interferenc icate corresponds to a closure condition.
by Goguen and Meseguer [6, 7] was limited to deterministic ~ This correspondence forms the theoretical basis for an
systems. Beginning with Sutherland [18], various general- investigation of theompatibility of security with other sys-
izations of non-interference for non-deterministic sysie tem propertiesvhich is an important criterion in the selec-
have been proposed, e.g. [9, 12, 20]. In this article, we con-tion of a definition of security. As examples, we investigate
sider confidentiality aspects of security and focugpossi- properties which require certain types of non-criticabmf
bilistic definitions of security The underlying idea of this mation flow. We demonstrate th@SPis incompatible with
approach is that information cannot be deduced by observ-some of these properties and derive pingtty good security
ing a system because the set of possible behaviours whiclpredicate PGSR a less restrictive definition which allows
may have generated a given observation is too large. Forthe respective types of information flow.
a discussion of benefits and limitations of the possibdisti The correspondence to closure conditions also provides
approach we refer to [11, 13]. a basis for asstepwise development of secure systeAls
The variety of definitions of possibilistic security indi- though, security is not preserved under refinement [9] in

1. Introduction

In Proceedings of the 13th IEEE Computer Security Foundati@orkshop,
Cambridge, United Kingdom, pp.185-199, July 3-5, 2000. BEREbmputer Society.

(© 2000 IEEE. Personal use of this material is permitted. Hargyermission to
reprint/republish this material for advertising or promagal purposes or for creat-
ing new collective works for resale or redistribution tovas or lists, or to reuse any
copyrighted component of this work in other works must beotetd from the IEEE.

general, we show that certain definitions of security are pre with domainsH and L and the non-interference relation
served undeintersectionwhich is a special case of refine- which demand$7 % L.
ment. In order to prove that a systems satisfies a given security
After some basic definitions in Section 2, we introduce policy it is necessary to define formally what is meant by
our framework in Section 3. We present a collection of basic “ D; does not interfere witD,", i.e. o4 must be given a se-
security predicates in Section 4 and show how to assemblemantics in terms of event systems. The formal definition of
these basic predicates into well-known definitions of possi this phrase can be regarded adefinition of securityCon-
bilistic security in Section 5. In Section 6 we investigdtet sequently aecurity propertys defined by a security policy
compatibility of security with other system properties and together with a definition of securitilon-inferencegener-
derive PGSPin our framework in order to overcome cer- alized non-interferengendrestrictivenessre well-known
tain incompatibilities oPSP In Section 7 we consider the examples among the various possibilistic security progert
preservation of security in a stepwise development processwhich have been proposed for non-deterministic systems.
We discuss our approach in relation to previous work in When proving that a system satisfies a given security pol-
Section 8. Finally, in Section 9 we summarize our achieve- icy one shows for each domain that the non-interference re-

ments and remark on future plans. lation is respected. Since the security polRylg, is fixed
we can focus on the different definitions of security in the
2. Preliminaries remainder of this article. Therefore, we use the term “defi-

nition of security” instead of “security property”.

Following [20] we model non-deterministic systems us-
ing event systems. Computation steps and interactions ar
modeled byeventsi.e. actions without duration, like e.g. as-)
signing a value to a variable or sending a message. We dis- We assume thaflS is an event systeni®, I,0,Tr)
tinguish betweerinput, internal, andoutput eventsInput ~ WhereE denotes a set of eventsandO, respectively, the
events are not controlled by the system but rather by someSets Of input and output events iy andTr a set of traces
external environment while all other events are controlled OVer £. Individual events are denoted by sequences of
by the system. The interface of a system is modeled by the€Vents byx or 5 and byr or¢ —if they are traces. A dot con-

g.l. Notational Conventions

input and output events and its executiongrages i.e. se- catenates events to form sequences g.g,.e3. We delib-
quences of events. Thus, a system can be specified by a s&fatély use a dot also for appending sequences,aed.
of traces which models its possible behaviours. a.e, anda.e.. The empty sequence is denoted (hyand

the projectionof a given trace to a set of event&’ C E
Definition 1. An event systenkS is a tuple(E, I, O, Tr) by t|£'. t|E’ results fromt by deleting all events not if’.
whereE is a set of eventd, C E, O C E respectively are We useH and L, the names of the high- and low-level
the input and output events, aild € P(E*) is the set of domains, also to denote the subsets of evenfs with do-
traces. We denote the set of finite sequence é&vby E*. main H andL. HI, LI, HO, and LO denote the corre-
Each trace € Tr is a finite sequence of eventsEandTr sponding sets of input and output events. Events, i,
must be closed under prefixes. HI, andHO are denoted respectively byh, hi, andho.
Subscripts and primes are used in combination with all of

For the definition of security policies we assume aBet .
these denotations.

of security domainsuch that each such domain is an ab-

straction from concrete entities, like e.g. individual nsse o)

groups of users, processes, or collections of files. A secu-3- A Framework for Possibilistic Security

rity domaindom(e) is associated with each eventising a

functiondom: E — D. A non-interference relationan ir- The confidentiality of classified information can only be

reflexive relatiomt>: D x D, can then be used to specify ensured if direct as well as indirect flows of information are

which information flows are restricted between domains, restricted. An observer must neither directly observerinfo

e.g. D1 6 D, states thafD; must not interfere withtD- mation for which he does not possess the appropriate clear-

for domainsD+, D-. Finally, asecurity policy Pols a triple ance nor be able to deduce such information from other ob-

(D,dom-£). Polis calledtransitiveif ~», the complement servations. In order to prevent direct information flow cer-

of +, is transitive. Unless explicitely stated otherwise, we tain aspects of the system behaviour must not be observable.

consider transitive security policies in this article. Here, we assume that only low-level events are observable
For transitive security policies, in principle, it suffices on the low-level, i.e. for a trace the sequence|z can be

to consider two domain& andL only, a high and a low- observed. However, in the worst case an observer who has

level. In the subsequent sections we will make use of thiscomplete knowledge of the system, can construct all sys-

abstraction and consider theo-level security policy Paiy, tem behaviours which generate a given observation, and try

186

to deduce confidential information from this set. Formally,
such an observer constructs tlosv-level equivalence set
LLESTr,7) = {t € Tr | t|{z = 7|z} (introduced in [20])
from the observatiom|z and the knowledge about the sys-
tem.

The underlying idea of possibilistic security is to demand
thatLLESTr, 7) is so large that an observer cannot deduce
confidential information from it. Any trace ibLESTr, 7)
could have generated the observation and, unless is
the only element i LESTr, 7), one cannot deduce that
has actually occurret.However, even iLLESTr,7) has
more than one element, the deduction of confidential in-
formation may still be possible. If certain high-level be-

haviours are compatible with a given observation but others
are not then one deduces from this observation that one o
the former high-level behaviours has occurred but not any

constructing a closure dfr. This is essential for the con-
struction of closure operations from BSPs in Subsection 4.3
The definition of a BSP with our schema states when a set
of traces is closed wrt. some criterion, while the satisfiabi
ity condition ensures that for any set of traces such a cfosur
can be constructed.

Technically we use a slightly more complicated schema
for the definition of BSPs which allows for inductive defi-
nitions. This is achieved by additional variables3 € E*
ande € E in the schema which are universally quantified.
These auxiliary variables are used to dividénto subse-
guences, like3.e.a or SB.a, in the restrictionR and to use
the same division in the closure requiremént

Pefinition 2. Thebasic security predicate B&# for the

restriction R and theclosure requiremen) is defined by

of the latter ones. Such channels may cause a system to bevT € TrVo,B € E*Ve € E.

insecure because they could be exploited by Trojan horses

for example. In order to avoid this, a possibilistic secu-
rity property demands that if a given high-level behaviaur i
compatible with some observation then certain other high-
level behaviours must be compatible with it as well. Thus,
LLESTr, 7) must beclosedwrt. some criterion. This gives
rise to a general correspondence between possibilistic sec
rity properties and closure conditions.

In our framework, possibilistic security properties are
represented in a modular way security predicatesFor-
mally, a security predicat8Pis either a singldasic secu-
rity predicate BSPi.e. SP= BSPor a conjunction of basic
security predicates, i.&P= BSR A ... A BSR,. Each ba-
sic security predicatBSPdemands that for any trageof
the system there must be another tracerhich is compati-
ble with the same observation and which fulfills a condition
@, the closure requirement of BSPThe existence of’,
however, is only required if a conditioR, the restriction
of BSR holds. This results in the following schema for the
formal definition of basic security predicates:

V7 € Tr.R(Tr,7) = 37’ € LLESTr,7).Q(7, ') .

[R(Tr, 7,0, 8,€) = 37" €LLESTr,7).Q(7, 7', @, B, €)].

We require tha®(Tr, 7, , 8,e) = Ir' € E*.7'|t=7|L A
Q(r, 7, a, B, e), thesatisfiability conditioncan be satisfied
forall Tr € P(E*), T € Tr, a, 8 € E*, ande € E. Note
that7' need not be ifr.

Definition 3. A security predicate SB either a single ba-
sic security predicate or a conjunction of multiple basic se
curity predicates.

Possibilistic security properties are represented agrisgcu
predicates within our framework in a modular way. Defini-
tion 2 and 3 enforce a certain structure for such representa-
tions. In particular, this structure ensures that the cpoa-
dence between possibilistic security and closure comnditio
also exists in the framework. The schema for the definition
of BSPs allows for inductive definitions. This enables us
to distinguish two dimensions of BSPs when we instantiate
the schema for BSPs (cf. Section 4). The expressiveness
of our framework allows for a representation of the well-
known possibilistic security properties (cf. Section SheT
correspondence to closure conditions is the basis for the in

Since there is a general correspondence between possibilisvestigation of the compatibility of such security propesti

tic security properties and closure conditions, as explhin

with other system properties (cf. Section 6) and for a step-

above, it is desirable to establish such a correspondence fowise development of secure systems (cf. Section 7).

basic security predicates (abbreviated by BSP in the spquel
as well. In order to achieve this, we have to impose an addi-

tional requirement on the definition of BSPs. Thétisfia-
bility conditiondemands thaR(Tr,7) = ' € E*.7'|1=
T|L A Q(7,7") is satisfiable for any € Tr. Note thatr’
need not be iILLESTr,), not even inTr, but it must yield
the same observation @asThe condition ensures that a BSP
can be made valid fofr by adding elements t@r, i.e. by

1The possibilistic approach prevents certainty about dedlirforma-
tion and abstracts from probabilities.

187

4. Basic Security Predicates

In this section, we illustrate how to instantiate our
schema for the definition of BSPs and present a collection
of BSPs which will be used as examples in the remainder
of the article. Two dimensions of BSPs are distinguished in
Subsection 4.1 and 4.2 and, if possible, the BSPs in each
dimension are ordered by implication. BSPs in the first
dimension express that it is confidential that an event has

occurred. Formally this corresponds to the possibility to
delete this event without changing the observation. In the
second dimension it is confidential that an eventinat®oc-
curred which corresponds to the possibility to insert esent
All BSPs presented, correspond to closure conditions. Our
schema for BSPs ensures this correspondence for BSPs in
general as we will show in Subsection 4.3. The distinc-
tion of two dimensions together with the ordering of BSPs
helps to compare the various BSPs easily and provides use-
ful orientation when BSPs are selected for the construction
of security predicates.

Recall that we assume that only low-level events are ob-
servable for a low-level user. However, not all high-level
events need to be confidential. Depending on the particular
application, a BSP may be appropriate which ensures the
confidentiality of only some high-level events and does not
care if an occurrence of the others can be deduced. Nev-

BSPs based on removal of events:

RETr) =7'|m =)
RI(Tr) =7'|lar=)
SRITr) =7'|ar =) AT'|(B\HI) = T|(E\HT)

BSPs based on stepwise deletion of events:

DE(Tr) =(e€e HAT=p.e.ahalH=))
S (' = f.a)
DI(Tr) =(e€e HIANT = B.eaAalHr =)

= (7' = f".a' A B'|LubT = B|LuHI
A o'|LUHTI = a|LUHT)
BSDKTr) = (e € HIAT = f.e.a Aa|HI = ())
= (' = .o/ Ad'|LuHT = a|LuHT)
=(e€e HINT = B.e.a Aa|HT = ()
= (7' = B.a)

SDI(TY)

ertheless, in other cases it may be necessary to considel

Unprimed variablesr(, a, 3, e) are universally and
primed onesAt’, o/, ') are existentially quantified.
7' must be inLLESTr, 7).

all high-level events as confidential. In this article, we re
strict our considerations to two scenarios in which either
all high-level events or (only) high-level inputs are confi-

Figure 1. BSPs based on removal or stepwise
deletion of high-level events

dential. An adaption of the definitions to other scenarios,
where e.g. high-level outputs are confidential, is possible
4.1. Removal and Stepwise Deletion of Events primed ones existentially quantified. & holds trivially we
write) instead ofTRUE = (). ForRI andSR| 7' results

BSPs which prevent a low-level user from inferring that from 7 by removing all high-level inputs. WhilRI allows
certain high-level events have occurred are based on the’ to differ from7 in high-level internal and output events,
possibility to remove these events from traces while pre- SRIdoes not. HenceSRlis calledstrict. For the example
serving the resulting observation. In the sequel, we distin trace Rlwould be satisfied if any df .ho; .l orl;.ls occurs
guish between BSPs which require tleenovalof all these in Tr while SRIis satisfied only by the first trace.

events at once and BSPs which require t&pwise dele- The basic security predicat&E (Deletion of Events),
tion. Each of these BSPs is defined using the schema fromp, (Deletion of hputs),SDI (Strict Deletion of hputs), and
Definition 2 such that the satisfiability condition is fuléid. BSDI (Backwards 8ict Deletion of hputs) are based on
When defining BSPs, we employ a uniform naming the stepwise deletion of events. These BSPs are inductively
scheme. If e.g. a BSP is based on removal or deletion of§efined. A trace- requires the existence of a tracewhich
events then ani’ or * D’ respectively occurs inits name. If asyits fromr by deleting a single event! may require the
only high-level inputs are affected thefi is used and if all existence of a trace’” which results by the deletion of an-
high-level events are affected thefi"is used instead. other event, and so on. In the definition of these BSPs the
The basic security predicat®E (Removal of vents), gyxiliary variablesy, 3, ande are used in order to divide
RI(Removal of hputs), andSRI(Strict Removal of hputs) + into subsequences. Similarly’ is divided using addi-
require a global removal of events. The BREdemands tjonal auxiliary variablesy’, 3’ € E* which are existen-
the removal of high-level events. Givene Tr, it assures tja|ly quantified in the respective closure requirement. In
the existence of a low-level equivalent tracesuch that Figyre 1 the quantifiers for the latter auxiliary variables a

7'|m is empty.7’ results fromr by removingall high-level 4150 omitted. Note that these variables do not occur in the
events, e.g. ifr is ly.hoy.hiy.lo, thent' = [, mustbe a yestrictions of the BSPs.

trace. In Figure 1, we use a shorthand notation to abbreviate For DE, ' results fromr by the deletion of the last

high-level event, e.g. if;.ho;.hi1.lo € Tr thenl;.ho; Iy
as well ad; .l must also be iffr. For DI, BSDI andSD|,

7' results fromr by the deletion of the last high-level in-
In the shorthand notation, we omit quantifiers since they put evente. While in DI, o' and 8’ may differ, respec-
are clear from the schema for defining BSPs and just write tively, from « andg in high-level internal and output events

R = @. Unprimed variables are implicitly universally and (but not in high-level inputs or low-level events), BEDI

RETr) = VreTrVe,f € E*Ve€ ETRUE=

7' € LLESTr,7).7"|H = () .

188

only o' may differ, and inSDI none of them may differ. If
€.0.l1.hoy .hiy.hos.lo € TrthenDI would be satisfied if any
of 11.hoy.hoy 13, 11 .hoy 12, Or ly.l5 is in Tr, BSDIonly for
any of the first two, an&DI only for the first trace. Hence,
BSDlis calledbackwards stricandSDI strict.

(1) sDI

BSDI

Figure 2. Ordering BSPs based on removal or
stepwise deletion of high-level events

Theorem 4. RE, RI, SRI, DE, DI, BSDI, and SDI are or-
dered by implication as depicted in Figure 2.

Proof. SDI= SRlandDI = Rl are proved by induction on
the number of high-level input evenBBE = REby induc-
tion on the number of high-level events, an& = BSDI

by induction on the number of high-level output events in
a. All other implications are trivial. O

Note that there is no link betwee3DVSRIand DE/RE in
Figure 2. Informally, the reason is th&DI and SRIre-
quire that high-level output and internal events are pre-

served when high-level input events are deleted/removed

while DE andRErequire that output and internal events are
deleted/removed as well. This is reflected by the follow-
ing counterexamples. F&IE A SRIconsider the trace set
Try = {hi.ho, hi, ()} forwhichDE(Tr;) holds butSR(Try)
does not hold becaus® ¢ Tr;. For SDI # RE consider
the trace setry = {ho.l, ho, ()} for which SDI(Trz) holds
butRE(Tr,) does not hold becaugeZ Tr,.

Again, we use a uniform naming scheme for BSPs. For
all BSPs based on the stepwise insertion of events/an *
occurs in the name. If only high-level inputs are inserted
then an additionall” is used and if all kinds of high-level
events are inserted, theR™is used instead.

BSPs based on insertion of events:

IE(Tr) =(e€e HAT=f.aNa|lg=))

= (7' = p.e.q)
I(Tr) =(e€ HINT =B.aAa|HI =)

= (' = pB'.e.d’ A B'|LuHT = B|LUHT

A &'|LuHT = a|LUHT)

BSI(Tr)=(e€ HINT = f.a Aa|HI = ()

= (7' = B.e.d/ N &'|LuHT = a|LUHT)
SI(Tr) =(e€ HINT = B.aNalHI =)

Y

(7' = B.e.q)

BSPs based on insertion of hl-admissible events:

IHAE(TI‘) = (R|E A HAdn’H(TI‘,,B,e)) = QI
IHAI(Tr) = (R A HAdmg;(Tr, B,€)) = Q)
BSIHA(Tr) = (Rgs) A HAdmg;(Tr, 8, €) = QBsii
SIHAITr) = (Rsy A HAdmg £ (Tr, B,e) = Qs

BSPs based on insertion of admissible events:

IAE(Tr) = (Rie AADN(Tr, B,€)) = Qe
IAI(Tr) = (Ry AADN(Tr, B8,e)) = Qu
BSIA(Tr) = (RgsyAADMTr, 8,e) = Qs
SIATr) = (Rsy AAIMTr, 5,¢e) = Qg

Unprimed variablesr(, «, 3, e) are universally and
primed onest’, o/, ') are existentially quantified.
7' must be inLLESTr, 7).

Figure 3. BSPs based on stepwise insertion
of high-level events

The basic security predicatés (Insertion of Eents),
Il (Insertion of hputs),BSII (Backwards 8ict Insertion of
Inputs), andsll (Strict Insertion of hputs) require the step-
wise insertion of events. These BSPs are, again, indugtivel
defined. In Figure 3, the predicalie demands that an ar-

The BSPs presented in this subsection have different mo-bitrary high-level event can be inserted into a trace. Given

tivations. Some BSPs, IikRE or RI, are building blocks
of well-known definitions of security (cf. Section 5) while
others, likeSR| SDI, or DE, help us to prove properties of
security predicates (cf. Section @SDIlandDI have been
added mainly for reasons of uniformity.

4.2. Stepwise Insertion of Events

BSPs which prevent the low-level user from inferring

that certain high-level events have not occurred, are basedackwards strict anéll strict.

on the possibility to insert these events into traces white p

7 € Tr which can be divided int@.a such thakx contains
no high-level events, it assures, the existence of a lowtlev
equivalent trace’ = f.e.a. 7' results fromr by inserting

a high-level event, e.g. ifl; € Tr thenhi;.l; is also in
Tr (among many other traces). Fdr BSlI, andSlI, 7' re-
sults fromr by inserting a high-level input. While in Il

o' and g’ may differ, respectively, frona and g in high-
level internal and output events, BSIl only o' may differ,
and inSll none of them may differ. Henc&Sllis called
Like for BSPs based on
removal/deletion, the strict versions are motivated byrthe

serving the resulting low-level observation. We define BSPs properties which help us to derive interesting theorems.

which require thestepwise insertionf these events.

189

Although the definition olE might appear appropriate

for the insertion of high-level events, it demands too much of Admissible Ezents),JAl (Insertion of Admissible hputs),
and makes any meaningful high-level behaviour impossible.BSIAI (Backwards_8ict Insertion of_Admissible_hputs),
A similar problem exists foll, BSII, andSlIl. The problem andSlIAl (Strict Insertion of Admissible hputs) in Figure 3.
for IE is illustrated by the following example. IAI (BSIAL SIAl) andIAE demand that a low-level user
))) cannot infer that an admissible high-level input or arljtra
Example 5.We consider a system with two input events pigh-level event hasot occurred. Althoughl, BSII, and
hiy, hiz, two output eventaor, ho, on the high-level, and g)| have similar problems likéE, they are reasonable pred-
arbitrary low-level events. The purpose of the system is 10 jcates if one assumésput totality(as e.g. done in [20]), i.e.
record each high-level input by the corresponding output \ToT(Tr) = V7 € Tr.¥i € I.7.i € Tr. Under this assump-
event, i.e /iy by ho, andhiz by hoy. hiy.hoy is apossible o inputis always admissible at the end of a trace and the
trace of the system and therefore also the prifixof this difference between e.4)., IHAI, andIAl disappears. High-
sequencelE demands thali .ho, must be a trace as well, |eye| admissibility appears to be inferior &aim However,
however, this trace violates the intended system behaviour tor example generalized non-interference or separabitity

In general IE rules out any meaningful system behaviour based on this concept as we will show in Section 5.

on the high-level. This problem can be solved by demand-

ing that inserted events are admissible on the high-level, (2) IE Sl

i.e. occur in some high-level behaviour. Note that this so-

lution does not compromise security. In order to express IHAE SIHAI BSII

high-level admissibility formally, we definelAdmg and l

HAdM 7. IAE SIAI BSIHAI I
HAdmy (Tr, B,e) =3y € E*y.e€ TrAy|u = Blu \ l\. l
HAdm(Tr, 8,e) = 3y € E*.v.e € Tr Ay|HI = B|HI BSIAI IHAI

HAdMy (Tr, B,e) (HAdmg;(Tr, 3,e)) holds if there is a \|,£I

tracev.e in Tr which has the same observations for high-
level events (high-level input events) gs.
Adding high-level admissibility iAdmy or HAdmy ;) Figure 4. Ordering BSPs based on insertion
to the restrictions ofg, Il, BSII, andSlI results in four new
BSPs in Figure 3HAE (Insertion of Hgh-level Admissible
Events),IHAI (Insertion of H-Admissible_hputs),BSIHAI Theorem 7. IE, II, BSII, SlI, IHAE, IHAI, BSIHAI, SIHAI,
(Backwards_ﬂ'ict Insertion of_H.Admissible_hputs), and IAE, 1AIl, BSIAI, and SIAIl are ordered by implication as
SIHAI(Strict Insertion of H-Admissible hputs). In the fig- depicted in Figure 4.
ure we use a shorthand notation and abbreviate the restric-

tion and closure requirement of a previously defined BSP gg:f th";t_ trf]]ere IS nt(:]hr?k bett_wed;E:]I_HﬁllE/IAllE_ andt the ¢
respectively byRpsp and@ psp. s which require the insertion of high-level input events

To require high-level admissibility solves the problem in Figure 4. This is reflected by the following counterex-

pointed out previously. However, the resulting BSPs are amples. ForlE # IAl consider the trace selr, =

still too strong since they prevent information flow from the I{équ._l,hzr)], }Ilé’ %} and tthet_clots)ﬁsT[? OL ™ ur:(:)er IE.
low- to the high-level which we demonstrate by example. (Tr2) holds by construction (Trz) does not because

hi.ho.l &€ Try. To construct the other counterexamples is
Example 6.Like in Example 5, a system is considered straightforward.

which records input events. However, this time low-level : - . .
inputs are recorded in the high-level outpui;.ho; and I?]emark 8'}:\/8 have ;:Ia|med at tge begl{mlng of;hgsechgn
liz.hoo are possible traces of the system and so is the prefixt atourco ectlpn ° B.SPS can be easlly extende asedon
li, of the first trace. Sincéo- is a possible high-level be- the tWO. scenarios which we have cons_ldere.d here, -6 all
haviour,HAE demands that, .ho, is a trace of the system, events inH or only events inH I are confidential. Techni-

. : . .~ cally, this can be achieved by replacifHg with some other
h , this t lates the intended system beh _ i o
OWEVeT, this trace violates the Intended system behaviour set H' of high-level events in Figure 1 and 3. This yields

This problem can be solved by demanding the stronger ad-BSPs for the case where eventddhare confidential rather

missibility conditionAdm(Tr, 3,€) = B.e € Tr. than HI. Theorem 4 and 7 can be adapted accordingly.
Replacing high-level admissibilitdAdmy or HAdMy 7, This allows for the easy extension of our collection of BSPs
by general admissibilityAdm in the definition of[HAE, such that e.g. the case where all high-level outputs or only

IHAI, BSIHA| andSIHAI yields the BSPSIAE (Insertion certain high-level events are confidential can be covered.

190

4.3. Induced Closure Operations from the preceding section. The defined security predicates
are ordered with respect to their logical strength and veill b
There is a correspondence between BSPs and closure opssed as examples in the remainder of this article. The modu-
erations. A closure operation constructs the closure of alar construction within our framework helps us in achieving
given set by adding elements and a closure condition de-these results easily.
mands for a set that it is closed wrt. some criterion. Recall Generalized non-inference GNR2] demands that a
that this is also the underlying idea of possibilistic secu- low-level user cannot infer that high-level inputs have oc-
rity. If a high-level behaviour is compatible with a given curred. It has been motivated by a limitation bn-
observation then certain other high-level behaviours mustinference NH16] which prevents not only information flow
be compatible with it as well. For a basic introduction to from the high- to the low-level but also certain kinds of in-
closure operations and closure systems we refer to [3]. formation flow in the other direction. We will discuss in-
o _ formation flow from the low- to the high-level in greater
Definition 9. A closure operatiorC1 : P(S) — P(S) for detail in Section 6Generalized non-interference GNIO]
a setS, briefly S-closure is a function for which the fol- jemands that any interleaving of the high-level input of one
lowing conditions hold. trace with the low-level behaviour of another trace can be

Cl1 §; C Ci(Sy) foranyS; C S made a possible trace by adapting the outputs. We use
Cl2 §; C Sy = CI(S1) C CI(S,) foranyS;, S5, C S the definition of generalized non-interference from [12] in
CI3 CI(CI(S1)) = CI(S:) for anyS; C S which a functioninterleaveis used to construct the set of

all possible interleavings for two traces. All of these diefin
tions allow some information flow from the high- to the low-
level. McLeanseparability SER12] prevents any such in-

Now we are able to identify the correspondence betweenformation flow. A similar notion of security has been intro-
BSPs and closure operations formally. This correspondencéluced by Foley [5]. However, separability is stronger than
is the basis for many of the subsequent considerations and'€c€ssary because tberfect security property PSR0]

results. Note that the satisfiability condition in Definitia @ISO prevents any information flow from the high- to the
is necessary in order to achieve this correspondence. low-level. Furthermore, there is no weaker definition which

shares this property [20]PSPresulted from the observa-
Definition 10. A closure operationC! for E* ensures a tion that high-level admissibility restricts informatidiow
basic security predicate BSP for any setTr of traces from the low- to the high-level and that therefore general
BSRCI(Tr)) holds. The set of (wrt<) minimal closure admissibility should be used instead.
operations which ensuSP the set ofnduced closure op-
erationsfor BSR is denoted by Lgsp Definition 12.

The following simple theorem states which BSPs have a GNF(Tr) =Vt € Tr.3¢" € LLETr, t).'| a1 = ()
unique corresponding closure operation. All other BSPs NF(Tr) =Vt € Tr.3t' € LLES(Tr,t).t'|a = ()
have, in general, more than one induced closure operation. GNI(Tr) =V, t, € Tr.Vt € interleavéty|ur,t;|L).
' € Tr.t = t'|LusT

An ordering=< on S-closures is defined Wyl; < Cly <
VS' € P(S).Cl1(S") C Cly(S5") .

Theorem 11. For BSP € {DE, RE, SR| SD|, IE, IHAE, B _
IAE, SlI, SIHAL, SIAI}, CLgsp is a singleton. For these ~ SERIT) = Vh, ty €Tr.Vt€interleavety|u, ti|r) tTr

cases, we denote the unique closure operatio@'agp PSRTr) =VteTrVa, € E* Ve€ E.t|L € LLESTr, t)
A(e€ H A B.a € LLESTr, t) A a|lH={()A
GivenTr = {hi.l;.ho.ls, hi.ly.ho, hi.ly, hi, ()}, for exam- B.eeTr) = B.e.c € LLESTr,7)]

ple, Clsp|(Tr) = Tr U {l;.ho.l3,1;.ho,l1 } holds. This set
also satisfieBSDI| howeverBSDIdoes not have a unique All of these definitions of security can be expressed as se-

closure operation.Tr U {ho.l;.ho.lz, ho.ly.ho, ho.l;, ho}, curity predicates in our framework.
for example, would be another set which is closed wirt.
BSDL Note that the latter set is not a closed v@DI. Theorem 13. The following equivalences hold:

GNF(Tr) < RI(Tr)
NF(Tr) < RETr)

In this section, we illustrate how security predicates can e GNI(Tr) < (RI(Tr) A IHAI(Tr))
be defined and demonstrate the expressiveness of our frame- | SERTY) < (RE(Tr) A IHAE(TT))

work by describing several previously proposed definitions
of security as security predicates, i.e. conjunctions d?8S PSRTr) < (RE(Tr) A IAE(TT))

5. Assembling Security Predicates

191

Proof. The first two equivalences and the last one follow
directly from Figures 1, 3 and Definition 12. Recall, tiat
is closed under prefixes, therefore, d)ge Tr if Tr # 0.

e For GNI = Rl chooset; = 7, t, = (), t = 7|L,
and 7 = ¢ in Figure 1 and Definition 12. For
GNI = IHAI chooset; T = f.a, tp = 7.e,
t = (B.e.a)|(zurD), andr’ = t' in Figure 3 and Defi-
nition 12.

(RI'A IHAI) = GNI is proved by induction on the
length ofty|rr. The base case follows frolRl. In
the step case we assume the implication fot;aikith
less thann and prove it fort;, with n high-level in-
puts. We choosey:,tns,t1,t2 € E* andhi € HI
such that;, = tp1.hi.the, t = t1.hi.te, andeps|HT =
to|Hr = () hold. Sincety; € Tr, the induction as-
sumption implies that there atg, ¢!, with ¢}.t5 € Tr,
ti|LuHT = ti|LuHI, andty|LuHT = to|LuHI. We
choose (iNHAI) 7 = t{.th, 8 = t}, a = t, e = hi,
~ = tp1, and construct’ = 7 = f'.e.d.

For SEP= REchooset; = 7, t, = (), t = 7|z, and
7! = tin Figure 1 and Definition 12. FBEP=- IHAE
choose; =7 = B.a, tp, = v.e,t = B.e.a, andr’ =t
in Figure 3 and Definition 12.

(REA IHAE) = SEPis proved by induction on the
length oft,|H. The base case follows directly from
RE In the step case we assume the implication for all
t; with less thann and prove it fort, with n high-
level events. We chooss,1,tye,t1,t2 € E* and

h € H such thatty, = tp1.h.tpe, t = t1.h.t2, and
the|H = t2|H = () hold. Sincet,; € Tr, the induction
assumption implieg; .t € Tr. We choose (ifHAE)

T = t1.19, ,B =t1, 0 = ty, e = h, vy = tp1, and con-
structt’ = 7' = B.e.a. |

Theorem 13 demonstrates that all these previously propose

definitions of possibilistic security can be expressed in ou
framework and the distinction of two dimensions for BSPs
provides us with an intuitive understanding. EGNI de-
mands that the low-level user cannot infer that any high-
level inputs have occurred() or that a hl-admissible high-
level input has not occurretHAL).

GNF, NF, GNI, and SEP can also be expressed by
McLeans selective interleaving functionsif§) [12, 14].
Howeversifsare not expressive enough to define inductive
definitions likePSP interleavecan only capture high-level

set of closure operationg'Lgp and Clgp are defined ac-
cordingly. The correspondence to closure conditions will
be the basis for our investigations in Section 6 and 7. An-
other improvement is the modular structure which allows
us to achieve results like the following theorem easily from
properties of the building blocks. The additional security
predicateR| A IAE in the theorem will be used in Section 6.

SEP

GNF

Figure 5. Security predicates

Theorem 14. GNF, NF, GNI, GNI, SEP, PSP, and RInE
are ordered by implication as depicted in Figuré 5.

Proof. Due to the modular construction within our frame-
work, most of the implications can be inferred from ear-
lier results. SEP = PSP PSP = NF, NF = GNF,
PSP= (RIA IAE), (RIA IAE) = GNF, andGNI = GNF
follow directly from Theorems 4, 7, and 13. We only need
to proveSEP = [HAI. With this implication, SEP =
GNI follows from Theorems 4 and 13. We assuiirefor
which RE(Tr) andIHAE(Tr) hold, choose arbitrary € Tr,
a,f € E*, ande € HI with 7 = S.a, a|ar = (), and
HAdmy 7 (Tr, 8,¢). BecauseRE holds forTr we conclude
that7|z € Tr. HAdmg; ensures that there is a tracé
&uch thatr*|ar = (B.e)|H1. Choosen*,* € E* such
that* = f*.e.a™ andf*|ar = pB|ar. IHAE allows us
to insert all high-level events fromfi*.e into 7|z (HAdMy

is fulfilled) until we receiver’ € LLESTr,7) for which
o, p" € E* existwitht = f'.e.d!, f'|cuar = B|LuHT,
anda'|LuHI = a|LuHI. Sincer was arbitrary)HAI holds
for Tr. O

6. Compatibility with other Properties

The compatibility of security with other properties is a

admissibility. This was the main motivation for the defi- critical issue. The specification of a secure system cansist
nition of a new framework by Zakinthinos and Lee [20]. notonly of a security property but also of other system prop-
However, no correspondence exists between definitions oferties. Usually, such system properties are modeled as sets
security and closure conditions in their framework. One of traces. Thus, a secure system can be specified as a pair
benefit OT our framewo.rk over [20] is that this correspon- °Note that there is a link fronPSPto NF in Figure 5 which was for-
dence_ exists as it d(_)es inthe framewo_r_k from _[121_14]- Each gotten in [20]. The link fromPSPto GNI in that paper results from the
security predicate is a closure condition which induces a assumption of input totality which we do not make.

192

(P, SP)whereP is a set of traces ar§lP is a security pred- from this andCI1 from Definition 9.C1, is a closure oper-
icate. For exampleP could specify a bookkeeping system ation for SR, becaus&R, (Cly (Tr)) impliesSR, (Cly (Tr)).
andSP the intended security property.ffis not closed for If Cly is minimal wrt.< then choos€'l, = C1,, otherwise,
SP thenP alone is an insecure specification. Simply con- choose som€l, < Cl; which is minimal. O
structing the closur€'lsp(P) of P by adding traces leads

to a secure specification which allows behaviours which aLemma 17. Let Cl; € CLsp,, Cls € CLgp, be closure
bookkeeping system is not supposed to have. In order tooperations for security predicates SFSR, and leto denote
ensure the bookkeeping functionality we, therefore, have t function composition. €1, o (Cly o Cly) = Cly o Cl, then
construct a subse®’ C P which is closed forSP. This ClyoClyis aclosure operation for SASR,. If CLsp, and
leads to a specification of a secure bookkeeping system. UnC Lsp, are singleton sets thefiLsp, rsp, iS a singleton set
fortunately,P’ may allow no traces, i.e. be an inconsistent With Clsp, o Clsp, as the only minimal closure operation.
specification, require the system to stop after some steps, o)))
just restrict the possible behaviours in a less severe tiut st Proof. We first show thaCl; o Cl; is a closure operation.
undesirable way. Clearly, a specifier should be aware of anyC!1 andCI2 in Definition 9 follow from CI1 and CI2 for

such restrictions. Therefore itis of interest with whichdis
of properties the various security predicates are comlgatib
or incompatible.

The correspondence between security predicates and

closure conditions gives rise to a formal definition of com-
patibility which we use as the basis for our investigations.

We illustrate the approach at several examples which re-

quire information flow from the low- to the high-level for

the security predicates from the previous section. The re-

sults are also interesting in their own right. It turns owtth

a complete prevention of information flow from the high- to
the low-level implies that certain kinds of information flow
in the other direction are also restricted. If such inforiorat
flow is required then complete security must be sacrificed.
We propose a new security predic&®&SPwhich can be
used to gradually allow for information flow from low to
high while minimizing the resulting loss of security.

6.1. Closures and Compatibility

Definition 15. A property P is a set of traces ovet. A
closure operatiof’! is compatiblewith P if Cl(P) = P.
A security predicat&SPis compatiblewith P if one of its
induced closure operationsis. Otherwise, insompatible

The compatibility of SPwith P ensures that no stronger
property thanP is enforced byS P which might restrict the
possible behaviours in an undesirable way. The following
two lemmas are very useful in proving the compatibility or
incompatibility of a security predicate with a given projyer

in the subsequent subsections.

Lemma 16. Let SR and SB be security predicates with
SP, = SRB. If P is compatible with SPthen it is com-
patible with SB. If P is incompatible with SPthen it is
incompatible with SP.

Proof. We prove that if there is a closure operati@h in-

duced bySP, then there is a closure operati6fl, induced
by SR, such thatCl, < Cl; holds. The lemma follows

193

Cly andCl,. The following equations provel3.

(Cll o Cl2) (o] (Cll [¢] Clz)
=Clyo (Clz o (Cl1 o Clg))
= Cll o (Cll o Clg)

= (Cll o Cll) o Cl2

= Cll OClz

(associativity)
(by assumption)
(associativity)
(CI3)

SR (Cl1(Trq)) andSR:(Cl2(Tr2)) hold for anyTry andTrs.
To show thatCl; o Cl; is a closure operation f@P, A SR,
we choosélr; = Cla(Tr) andTry = (Cly o Cl2)(Tr) for
arbitraryTr.

To show thatCClgp, o Clsp, is the unique minimal closure
operation foiSP, A SR, (if CLsp, andC'Lgp, are singleton
sets), we assume th&f is a minimal closure operation for
SR A SR,. Thus,Cl is a closure operation f&# P; as well
as forSP,. Becaus&'lgp, andCligp, are both minimal and
unique, we receiv€'lsp, < Cl andClsp, < Cl. This
implies that(Clsp, o Clsp,) = (Clo Cl) = CI. O

6.2. Information Flow from Low- to High

The two-level security policyPolyf requires that there
is no information flow from the high- to the low-level,
i.e. H +4 L. It does not restrict information flow in the
other direction. ~» H. In fact, such information flow is
often required, however, many well-known definitions of
possibilistic security restrict or prevent it completeiye
demonstrate, using concrete examples, that it depends on
the specific kind of information flow if a security predicate
is compatible or not.

In particular, we investigate the auditing of low-level
events on the high-level. Here, each low-level evieigt
recorded by a corresponding high-level outpufl) from
a set of recording eventd0,... C HO. We distinguish
three variations of such properties, depending on when the
recording event must occur. IRec(immediate recording),
the recording evertio(l) must occur immediately after the
low-level event has occurred. IBRestepwise recording)
ho(l) must occur before the next low-level evéhbccurs.

Finally, Rec(general recording) demands only that some
part of the low-level history|z is recorded. In the formal
definition, this is expressed using arelation C E* x E*.

~v C +' holds if v is an initial substring ofy’. Clearly,IRec

is more restrictive thailsRecand SRecis more restrictive
thanRec These properties are formalized as follows:

IRedt) =Va,B € E*Vl € LVe € E.

t = B.l.e.ca = e = ho(l)
SRe€t) =Va,5 € E*.y € H*.I,l' € L.

[t = a.ly = y|HOR.. T ho(l)]A

[t =alyl'.8 = y|HOR.. = ho(l)]
Redt) =t|HO,.. C ho(t|L)

For auditing, a low-level event enforces a high-level event
The prevention of a high-level event by the occurrence of
a low-level event is an alternative type of information flow.
A system where a guard must pass a checkpoint within a
specific time period is an example which requires this type
of information flow. If the guard passes the checkpoint in
time, then no alarm should be invoked, otherwise, the alarm
may be invoked. We distinguish two variants. IFl (im-
mediate prevention of input) the next event afterust not

be a high-level input from the séf I (1) of prevented inputs
and inlPO (immediate prevention of output) the next event
after! must not be a high-level output from the $80(1).
These properties are formalized as follows:

IPI(t) =Va,8 € E*Vl € LVe€ E.
t=plea=e¢ HI()

IPO(t) =Va,p € E*Vl € LVe € E.
t=Blea=e¢ HO()

Lemma 18.

1. SDI, IAE, and SIAIl are compatible with IRec. SDI,
IAE, and SlI are compatible with SRec. SDI, DE, IAE,
and Sl are compatible with Rec. SDI, DE, IAE, and
SIAl are compatible with IPI. DE, IAE, and SllI are
compatible with IPO.

. RE, IHAE, and IHAI are incompatible with IRec. RE
and IHAE are incompatible with SRec. IHAE is in-
compatible with Rec. IHAE and IHAI are incompatible
with IPl. SRI and IHAE are incompatible with IPO.

A proof of Lemma 18 is contained in the appendix. The next
theorem follows directly from Lemma 16 and 18. The mod-
ular structure of our framework has simplified this proof
considerably. The only cases that we had to prove (in
Lemma 18) are the ones which are underlined in Figure 6,
i.e. only 27 out of 95 cases had to be investigated.

Theorem 19. The basic security predicates are compati-
ble/incompatible with IRec, SRec, Rec, IPI, and IPO as de-
picted in Figure 6.

194

compatible incompatible
IRec|SDI, SRI RI, BSD| DI, |IAE, |RE, DE, IHAE, IE,
SIAI BSIAL IAI IHAL, SII, BSII, 11,
SIHAI, BSIHAI
SRe¢SD|, SR| RI, BSDI|, DI, lAE, |RE DE, IHAE, IE
Sli, BSII, 11, SIHAI, BSIHA|,
IHAI, SIAI, BSIAL IAI
Rec |SDI, SR| RI, BSD|, DI, DE, |IHAE, IE
RE, IAE, SlI, BSI|, I, SIHAI
BSIHAL IHAI, SIAl, BSIA|
1Al
IPI |SDI, SRI RI, BSDI, DI, DE, |IHAE, IE, IHAI, S|,
RE, IAE, SIAI, BSIAL IAI BSII, 11, SIHAI,
BSIHAI
IPO |DE, BSDI DI, RI, RE IAE, |SRI SD|, IHAE, IE
Sli, BSII, 11, SIHAI, BSIHA|,
IHAI, SIAI, BSIAL IAI

Figure 6. Compatibility of BSPs

The following theorem follows from Theorem 13, Lemma
16, and Theorem 19.

Theorem 20.

e NF and PSP are incompatible with IRec and SRec.
e GNI is incompatible with IRec and IPI.

e SEP is incompatible with IRec, SRec, Rec, IPI, and
IPO.

Theorem 20 might suggest that all established security
properties, except faBNF, are incompatible with informa-
tion flow L ~» H. SEPis not even compatible with a single
one of the investigated kinds of information flow. However,
depending on the application, some of these incompatibil-
ities might be acceptable. Our investigation identifieg tha
the problem folPSPis the use oRE To use any oB8SD|,

DI, or Rl would solve the problem. This is the motivation
for the definition ofPGSPin Subsection 6.3.

Lemma 21. Clgsp o(Clgsp oClgsp) = Clgsp,oClesp
holds for BSP € {SDI,DE } and BSR € {SII, SIA|, IAE }.

The proof of Lemma 21 is contained in the appendix.
Theorem 22.

1. GNF and RIA IAE are compatible with IRec, SRec,
Rec, IPI, and IPO.

2. NF and PSP are compatible with Rec, IPI, and IPO.
3. GNI is compatible with Rec, SRec, and IPO.

Proof. Recall Theorem 13 which demonstrates how the se-
curity predicates can be assembled from BSPs. The compat-
ibilities of GNF andNF follow directly from Theorem 19.

The compatibilities oRIA IAE follow from Lemma 16 and This provokes the question if it is possible to strengthen
the compatibility ofSDI A IAE with IRec SRe¢Reg¢ and PGSPwhile preserving the compatibilities. In fact, it is
IPI and of DE A IAE with IPO. The compatibilities oPSP possible. Letd’ C H \ HI contain all high level events
follow from Lemma 16 and the compatibility &E A IAE which are concerned with the processing of low-level in-
with Reg IPI, andIPO. The compatibilities of5NI follow formation. LetR(H \ H') be the BSP which requires the
from Lemma 16, the compatibility dE A Sl with Recand removal of all high-level events which are notifi. Then
IPO, and the compatibility o8DIA Sll with SRec Compat- PGSRy = R(H\ H')AIAE has the same compatibilities as
ibilities of the conjunctions used in this proof follow from PGSPdoes. Depending on the choice Bf one receives a
Lemma 17, 21, and Theorem 11, 19. O collection of predicates which is indicated by the dotted ar
row in Figure 5. In order to receive a security predicate, as
%trong as possible, one must choéEeas small as possible.
However, it is essential thé’ really contains all high level
events which are concerned with the processing of low-level
information because, otherwise, the compatibilities may b
lost. Note thaPGSP= PGSRy ;; andPSP= PGSR

A look at the BSPs from whiclPGSRy, is composed
yields an intuitive understanding: By observing a system
which isPGSRy. -secure, a low-level user cannot infer that
an admissible high-level event hast occurred or that a
high-level event i \ H' has occurred. However, he might
be able to infer that a high-level event frdifit has occurred,
i.e. events which are concerned with the processing of low-
level events must not be confidential.

We have demonstrated at several examples how to prove th
compatibility or incompatibility of a security predicatetiv
a property and how to exploit the modularity of our frame-
work during this process. The results are also interesting i
their own right. We have shown that the compatibility of
a security predicate with information flow from the low- to
the high-level depends on the particular kind of informatio
flow because the results for well-known definitions differ
for the various examples (Theorem 20 and 2R%Pis in-
compatible with certain kinds of information flow from
to H. According to Theorem 2 in [20] there is no secu-
rity property which is weaker thaRSPand ensures com-
plete security, i.e. prevents all information flow frafhto
L. Thus, one cannot have both, complete security and in-
formation flow likeIRecor SRec
7. Stepwise Development of Secure Systems
6.3. The Pretty Good Security Predicate
A stepwise development process for secure systems is
We have demonstrated in the previous subsection thatdesirable. In stepwise development, one starts with an ab-
certain kinds of information flow become impossible when stract specification and refines it in several steps to a con-
complete security is required. Thus, for information flow crete specification of a system which then can be imple-
like in IRecor SRecone must sacrifice complete security. mented. However, unlike other system properties, security
Clearly, it is desirable not to give up more security than properties need to be expressed as sets of trace sets and can-
necessary. This is the motivation for the definition of a new not be expressed simply by sets of traces, thus, they are
security property, the pretty good security predidd@SP outside the Alpern-Schneider framework of safety and live-
Theorem 22 (1) demonstrates tiitA IAE shares the ness properties [12]. Moreover, Jacob [9] showed that, in
compatibilities of GNF, i.e. it is compatible with all the general, a security ordering is neither monotonic nor anti-
properties which we have considered. On the one hand, itismonotonic with respect to the subset relation. Since the
strictly stronger thatGNF and, thus, more secure. On the subset relation is the basis for refinement, this gives dse t
other hand, it provides only slightly less security ti8P therefinement paradowhich says that the refinement of a
does (which ensures complete security). TherfRie, IAE secure system need not be secure. Thus, in general, security
is an attractive candidate for a security predicate. We defin is not preserved under refinement.
the pretty good security predicatsy The refinement paradox is a major obstacle for a step-
PGSP= RIA IAE . wise development of secure system;. Howgver, our gen-
eral correspondence between security predicates and clo-
Since PGSPis weaker tharPSP it must allow for some sure conditions can be used as the basis for such a step-
(undesired) flow of information from the high- to the low- wise development. Starting with an abstract specification
level. It is of interest to identify to which extent and by ES, = (E,I,O,Tr,), which has been proved to be secure,
which means high-level behaviour can be deduced for a sys-one constructs more concrete specifications. In each step
tem which satisfie®GSP By looking at the basic building one constructs a specificatidnS, = (E, I, 0, Tr.) which
blocks we see that the use Bf instead ofRE can be the must be proved to be closed wrt. the corresponding closure
only reason for such information flow. ThuRGSPallows condition or, alternatively, the closure &fS, can be con-
the low-level user to infer that a high-level output or imizir structed using an appropriate closure operation. Whike thi
event has occurred. idea might sound simple, in theory, it can be difficult to ap-

195

ply in practice. Therefore, it is important to identify spe- 8. Discussion
cialized refinement operators which preserve security. In
the sequel we demonstrate that the intersection of specifica We discuss the relation to previously proposed frame-

tions is such a refinement operator which preserves Certaiﬂ/\/orks for possibilistic security by McLean [12, 14] and Za-
s_ecur_|ty predhlcclalt](casl._ Thehpor_respr?ndencle to closure Condlkinthinos/Lee [20] as well as to a comparison of possibilis-
tions|is very _e pfulin achieving this reSL_J t) tic security properties by Focardi and Gorrieri [4]. Fiyall

The following theorem shows that the intersection of two \ye summarize criteria for selecting a security predicate.
specifications which are closed under a closure operglion McLean uses traces that are sequences of states (instead

is again closed under!. of events) as basis for his framework of selective inteHeav
ing functions. A selective interleaving functiosifj takes
Theorem 23. Given two properties”, and P, with which o traces as arguments and returns a trace. The type of a
a closure operatiorC'l is compatible ther€'l is also com- sjf decides from which trace the values of a state object are
patible with P, N P. taken for the resulting trace or if they may be chosen arbi-
trarily. In McLeans framework each definition corresponds

Proof. According to Theorem 1.1 in [3] a closure operation 0 @ closure condition, i.e. the set of traces must be closed

induces a closure system and closure systems are closed uftnder asif of a specific type. The expressiveness of his
der intersection. O framework is limited sinceifs can only express high-level

admissibility and cannot capture inductive definitions (cf
Section 5), which are required PGSPas well as irPSP.

The framework of Zakinthinos and Lee [20] uses a
schema for the representation of security properties which
is based on the notion of a low-level equivalence set (like
ours). Their framework is more expressive than the one
by McLean and can capture inductive definitions as well as
When constructing a refineme#S. of a specification admissibility. However, the correspondence between secu-
ES,, which is secure with respect 8P, then one must ity properties and closure conditions is lost. Their schem
again prove thatS. is secure. Corollary 24 states that we provides less structure than ours for the representation of
do not need to re-prove security if we use intersection be-security properties and does not incorporate a satistiabili
causentersection preserves security condition (cf. Definition 2).

If SPdoes not have a unique closure operation (cf. The- |n our framework, we re-establish the correspondence
orem 11) then Corollary 24 is not applicable. In this case between security properties and closure conditions by the
one should select one particular closure operaGunin satisfiability condition in the schema for BSPs (cf. Defini-
CLsp and use Theorem 23. This requires that the secu-tion 2). The quantification of, a, 3, e, and 7' allowed
rity of specifications which are composed has been provedus to express such a satisfiability condition. The distinc-
wrt. the same closure operation. tion of a restrictionR and a closure requireme@tprovides

While the stepwise development of a secure system frommore structure for the definition of a BSP and for proving
its specification, i.e. the top-down approach, has beensomesatisfiability conditions. Apparently, this additionafist-
what handicapped by the refinement paradox, the bottom-ture could restrict the expressiveness of our framework in
up approach, i.e. the modular construction of a secure sys<comparison to the one by Zakinthinos and Lee. The reader
tem from components has received considerable attentionmight be curious since we have not formalized McCul-
e.g.[10, 12, 14, 17, 19]. If the composition of secure com- loughs original definition of generalized noninterference
ponents yields again a system which is secure then the securon-deducibility output security [8] which can be exprekse
rity of composed systems can be proved in a modular fash-in the framework by Zakinthinos and Lee. However, both
ion. This reduces the complexity when reasoning about se-of these definitions of security could also be expressed as
curity. Another motivation is that it allows for the use of security predicates in our framework, although this regguiir
off-the-shelf components which are certified to fulfill acer the definition of further BSP%.In general, the schema can
tain security property but for which the complete system capture closure conditions where the requirement’ds
documentation is not disclosed. Composed systems are @aused by a finite set of traces rather than only by a sin-
natural area of application for possibilistic security dese gle tracer. First, one should recall that e.g. [HAI or
they are often non-deterministic, like distributed system . — _
general. However, an investigation of system composition ,, ~\on-deducibility output security can be expressed by cingos =

. t, a = ‘7', and7’ = ‘s’ in Definition 2 where the symbols in apostro-
within our framework is outside the scope of this article and phes are taken from [20]. The concept underlying McCullaudéfinition
we point to the existing work mentioned above. of generalized non-interference is similar to our backwastict BSPs.

Corollary 24. Given two propertied?, and P, which are
secure with respect to a security predicai@ which in-
duces a unique closure operati6ti thenP; N P; is secure
with respect ta5 P.

196

IAI the existence of' depends on two tracesand-y.e or 9. Conclusion

B.e and all definitions of security which were expressed in

the selective interleaving framework could be expressed in e have proposed a new framework for investigating and
our framework as well. If definitions of security are defined comparing definitions of possibilistic security, which dzn
which cannot be expressed easily by our schema, one mighhssembled within our framework in a modular way and pro-
be tempted to use or 3 for artificial encodings. Since this vided a variety of BSPs as building blocks for such defi-
is not intuitive, we propose that under such circumstancesnitions. New building blocks can be added using a general
one should move to a more general schema in whith schema for the definition of BSPs. All definitions expressed

replaced by a finite subs@tof Tr which results in: in earlier frameworks [12, 14, 20] could also be expressed
in our framework. Our framework is more expressive than

VT €Pyin(Tr), (ar, Br)rer €(E* x EX)T (e,), € ET. the one by McLean [12, 14] and there is a general corre-

[R(...)=3r.Q(...)] spondence between definitions of security and closure con-
ditions which is not present in the framework by Zakinthi-

Focardi and Gorrieri [4] investigate various possibitiste- ~ N0s and Lee [20]. We have investigated the compatibility

curity properties in a process algebra based on CCS [15].0f the various definitions of security with system propfsrti_e
Therefore, internal events are not distinguished but rathe apart from security at several examples which require in-
identified with a single hidden event In particular, non- formation flow from the low- to the high-level. In order to
deterministic non-interference (which is similar @NF ~ Overcome limitations of the perfect security propeP§gh
discussed in this paper), strong non-deterministic non-We have derived the pretty good security predida@SP
interference (similar toNF), two-level non-deducibility on ~ We @lso indicated h_owast_epvv_lse and modular development
inputs (similar toaGNI), Its-restrictiveness, Its-correctability, ©f secure systems is possible in our framework and demon-
and non-deducibility on compositions are compared. In- Strated the benefits of using intersection. Finally, we have
terestingly, the comparison is not limited to trace equiva- Provided criteria for the selection of an appropriate siggur
lence but also covers other notions of behavioural equiv- Predicate. _ _ _

alence, in particular weak bisimulation. However, unlike !N future work we intend to investigate how systems can
in [12, 14, 20] or this article, no general schema for the be proved to fulfill a possibilistic security property. An-
definition of possibilistic security (like McLeans seleeti ~ Other area of interest are intransitive security policies f
interleaving functions, the security properties from [20] ~ Non-deterministic systems.

our security predicates) is provided which we consider to be

a necessary component of a general framework for security Acknowledgments

We now return to the issue of selecting an appropriate
definition of security which has been mentioned at various This work benefited from discussions with Fred B.
places in this article. We have argued that the choice of anSchneider and Christoph Kreitz. Thanks to Christoph and
appropriate definition depends on the application and thatDieter Hutter for many valuable comments on the presen-
there is no definition which can be recommended as the op-tation and to Cornell University for providing an inspiring
timal one for all purposes. As usual in the development of working environment.
secure systems one has to analyze which information flows
are critical and what threads exist. This mightresult eg. i References
the decision that only high-level inputs or outputs must be
hidden from low-level users. The compatibility of security

. o - . [1] D.E.Belland L. LaPadula. Secure Computer Systems: Uni-
with other system properties is critical because if the two

fied Exposition and Multics Interpretation. Technical Repo

are incompatible, a stronger system property must be im- MTR-2997, MITRE, March 1976.
plemented. If one wants to use off-the-shelf components [2] K. Biba. Integrity Considerations for Secure ComputgsS
which are certified to satisfy a given security property then tems. Technical Report MTR-3153, MITRE, 1977.

the chosen definition of security and the one ensured by the [3] P. M. Cohn.Universal Algebra Harper & Row, 1965.

component must fit together. The composability of speci- [4] R. Foca}rd| and R. Gorrieri. A Classification of Security

fications for a stepwise development process and the com- Prqferg(els) gorszr(’f;;s Algebragournal of Computer Se-
. o curity, :5-33, .

posablllty_ of Componer]ts IS Important for modular system [5] S. N. Foley. A Universal Theory of Information Flow. In

construction. Another issue which — to our knowledge — so

. . .) ; Proceedings of the IEEE Symposium on Security and Pri-
far has not been addressed in the literature (including this vacy, pagei 116-122 OaklayndeA 1087. y

arti_cle) is, hO_N _d_iff?CU“ it iS_ to actually prove that a syste [6] J. A. Goguen and J. Meseguer. Security Policies and Se-
fulfills a possibilistic security property. This certairilyan curity Models. InProceedings of the IEEE Symposium on
important area for future work. Security and Privacypages 11-20, Oakland, CA, 1982.

197

[71 J. A. Goguen and J. Meseguer. Inference Control and Un- and SIAI because’l is minimal. Thus, they are compati-
winding. InProceedings of the IEEE Symposium on Security ble with IRec The strict deletion of high-level inputs does
and Privacy pages 75-86, Oakland, CA, 1984. not violate SRec Thus, SDI is compatible withSRec If

[8] J. Guttman and M. Nadal. "What Needs Securing?’Pto- ¢ ¢[(Tr) then there is &' € Tr such thatr results from
ceedings of the IEEE Computer Security Foundations Work- ./, the strict insertion of high-level inputs according to
shop pages 34-57, 1988. Sll. SRecholds for7' by assumption. The strict insertion

[9] J. Jacob. On the Derivation of Secure Component®rta
ceedings of the IEEE Symposium on Security and Privacy does not wolatéSRecT_hus,SII is compatible wittSRec If
pages 242-247, Oakland, CA, 1989. 7 € CI(Tr) then there is @' € Tr such thatr results from

[10] D.McCullough. Specifications for Multi-Level Secuyriand 7' by the insertion of admissible high-level events according
a Hook-Up Property. IProceedings of the IEEE Symposium to IAE. SRedolds forr’ by assumption. The insertion does
on Security and Privagypp. 161-166, Oakland, CA, 1987. not violateSRedecaus&’! is minimal and, therefore, each

[11] J. McLean. Security Models and Information Flow.Rmo- of the inserted events must be admissible. ThAi s com-
ceedm_gs of the IEEE Symposium on Research in Securitypatible withSReclf € CI(Tr) thenthereisa’ € Trsuch
and Privacy pages 180-187, Oakland, CA, 1990. thatr|HOg.. C 7'|HOR.. andr results fromr' by the dele-

[12] J. McLean. A General Theory of Composition for TracesSet
Closed under Selective Interleaving FunctionsPhceed-
ings of the IEEE Symposium on Research in Security and

tion of arbitrary high-level events f@E. 7|z = 7’|z holds.
Thus,DE is compatible wittRec If 7 € CI(Tr) then there

Privacy, pages 79-93, Oakland, CA, 1994. is ar’ € Tr such thatr|HOg..uL = 7'|HOg..uL for SDI
[13] J. McLean. Security Model€ncyclopedia of Software En- @ndSll. Thus, they are compatible witkec If 7 € CI(Tr)
gineering 1994. then there is a’ € Tr such thatr|HOg.. = 7'|HOR.. and

[14] J. McLean. A General Theory of Composition for a Class 7|z = 7’|z for IAE. This holds becaus€! is minimal and
of "Possibilistic” Security PropertiedEEE Transaction on because of the admissibility conditionliAE. Thus,IAE is

Software Engineering?2(1):53-67, January 1996. compatible withRec The stepwise deletion of high-level
[15] R. Milner. Communication and Concurrencirentice Hall, events or high-level inputs does not violdl. Thus,SDI
1989. andDE are compatible withP!. If 3.0.hi.a € CI(Tr) then

[16] C.O’Halloran. A Calculus of Information Flow. IRroceed- . :
ings of the European Symposium on Research in Computerﬂ‘l‘hl € Trfor IAE andSIAL Thus, they are compatible

Security, ESORICS 9(@ages 147-159, Toulouse, France, with IP1. If 7 € CI(Tr) for DE then there ar@’ﬂ_e_ E*
1990. suchthapd.a € Trandr = (.(a|L) becaus€'l is minimal.

[17] A. Roscoe and L. Wulf. Composing and Decomposing PO holds in3.a by assumption. The stepwise deletion of
Systems under Security Properties. Aroceedings of the high-level events does not violate this. ThD& is compat-
IEEE Computer Security Foundations Workshppges 9— ible with IPO. If 8.l.ho.a € CI(Tr) thengB.l.ho € Tr for
15, Kenmare, Ireland, 1995. _ _ IAE. Thus,IAE is compatible withPO. If 7 € CI(Tr) for

[18] D. Sutherland. A Model of Information. 18th National Slithen there are,, 8 € E* such tha.(a|e\uT) € Trand

[19] gogglzﬁ;]iizu;ydclgn:_eergn(:hfﬁs.Composabi“ty of Non- | .. B.o becausdl is minimal. IPO holds inf. (o] =\ 1)

’) ' by assumption. Strict stepwise insertion of high-levelitsp

Interference. IfProceedings of the IEEE Computer Security h
Foundations Workshoages 2-8, Kenmare, Ireland, 1995, does not violate this. ThuS§llis compatible withPO.

[20] A. Zakinthinos and E. Lee. A General Theory of Security FOF the proofs of the incompatibilities, we give coun-
Properties. IProceedings of the IEEE Symposium on Secu- terexamples. For the incompatibility &E with IRectake
rity and Privacy pages 94—-102, Oakland, CA, 1997. the closure ofl.ho(l).l2,1.ho(1),1, ()} which containg.l.

For the incompatibility oiIHAE and IHAI with IRectake

the closure of{hi,l.ho(l),1, ()} which containd.hi. For

the incompatibility ofREwith SRedake the closure of the

set{ly.ho(ly).l2,11.ho(l1),1, ()} which containd.l>. For
Proof. (of Lemma 18[Recall that Theorem 11 ensures that the incompatibility o HAE with SRe@ndRectake the clo-

all BSPs in the lemma induce a unique closure operation.Sure of {l,.h

3 i 1- 0(l1).12.h0(12),ll.hO(ll).lz,ll.hO(ll),ll, <)}
We denote the respective closure operatiortiiyand the \nich containsho(l;)0 .ho(ls). For the incompatibility
property byTr in each of the cases. Below, we show that o |yAE and IHAI with IPI take the closure of the set
CU(Tr) C Tr. With Tr C CI(Tr) (CI1) this impliesTr = {hi, 1, ()} which containd.hi (hi € HI(l)). For the in-

Cl('l_'r), \.. compatibility. A compatibility of SRIwith IPO consider the closure of the
First, the proofs of the compatibilities. # € CI(Tr) set{l.hi.ho, L., 1,)} which containd.ho (ho € HO()).
for SDI then there arey, § € E* such thatf.a € Tr and For the incompatibility of HAE with IPO take the closure

T = pB.(a|E\HI) because’l is minimal. IRecholds in of the set{ho. | which containg.ho (hoe HO(1 0
B.c. by assumption. The strict deletion of high-level in- {ho, 1, ()} -ho (ho 1).

puts does not violate this. ThuSDI is compatible with Proof. (of Lemma 21yWe prove each of the cases by con-
IRec If B.l.e.a € CI(Tr) theng.l.e € Tr (Adm) for IAE tradiction. Assume that there is a set of traesuch that

Appendix

198

the equation does not hold. Thus, there isa (Clgsp ©
(Clgsp, 0 Clgsp))(Tr) with 7 ¢ (Clgsp, o Clgsg) (Tr).

ForBSR = SDlandBSR € {SlI, SIAl}: SinceClgp,is
minimal we can choose such that3,a € E* ande € HI
exist witht = B.a, f.e.a € (ClBS% o Clgp))(Tr), and
alHI = (). B.e.a ¢ Clgp(Tr) because, otherwise, we have
a contradictiong.a € (Clgsp, o Clsp))(Tr) sinceClgsp,
is minimal. This contradicts our initial assumption.

For BSR = SDlIandBSR = IAE: SinceClgp is
minimal we can choose such that there arg,a € E*
ande € HI with 7 = f.a, 7 = B.ea € (Cliag o
Clspy)(Tr), anda|ar = (). B.e.a ¢ Clsp(Tr) because,
otherwise, we would have a contradiction. We distinguish
two cases (1) there argy, 2 € E* with 3 = ;.52
such thatr” € Clgp|(Tr) wherer” = (1.(82|L).(alL),
(2) there area;, a2 € E* with a = «aj.ap such that
B.e.a1.(az|L) € Clgp(Tr). In case (1) there is a sequence
oftracess” = (7{/,... 7)) in (CliagoClspy)) (Tr) for which

n = 7', 7] = 7', andt},, results fromr;" by inser-
tion of a single high-level event according t&E. Since
Cliag is minimal, there is a sequense= (ty,...,t,) of

traces inClgp)(Tr) such thatt; ensures the admissibility
condition as required bME in the construction of;’ from
7/',. Thereis am € {1,...,n} such thatt,, = S.e.

For anyj > m there is aa; such thatr} = B.e.q;
with o]z = a|rL. We construct a sequengeof traces by
5= (t1,---stm—1,tm+1,---,tn) Where each of the; is

constructed by deletingin ¢; according t&SDI. Now, 7 can

be constructed from” by the insertion of high-level events
as in the construction of’ from 7" except fore which is

not inserted. The admissibility of the events is ensured by
5. Thus,B.a € (Cliag o Clsp))(Tr), a contradiction. Case
(2) is proved similarly by choosing’ = 8.01.(az|L).

ForBSR = DE andBSR € {SlI, SIAl}: SinceClpe
is minimal we can choose such that there arg, a € E*
ande € H with 7 = f.a, B.e.a € (Clgsp, o Clpg)(Tr),
anda|r = (). B.e.a ¢ Clpg(Tr) because, otherwise, we
would have a contradiction. We distinguish two cases (1)
e € HI, (2)e € (H\ HI). In case (1), we infeB.a €
(Clgsp, o Clpg)(Tr) or f.e.a € Clpg(Tr) from the mini-
mality of Clgsp,. In case (2), there exig, S € E* such
thats = ;.82 andfy.(B2|E\HI).e.a € Clpg(Tr) because
Clgsp is minimal. Thus,f.(8:|E\HI).0c € Clpg(Tr).
According toSll and SIAl we can re-insert thél I-events
into f1.(B=2|E\HI).cc @nd receivep;.fr.ac € (Clpsp, ©
Clpg)(Tr). For both cases we have a contradiction with
our initial assumption.

ForBSR = DE andBSR, = IAE: SinceClpg is mini-
mal we can choose such thats, o € E* ande € H exist
with 7 = S.a, f.e.a € (Cliag o Clpg)(Tr), anda|a = ().
B.e.a ¢ Clpe(Tr) because, otherwise, we would have a
contradiction,S.a € (Cliag o Clpg)(Tr) becaus€lag is
minimal. This contradicts our initial assumption. O

199

