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Abstract 1.2. Background

The security of computation at the level of a specific pro-  There is a large body of research on information flow
gramming language and the security of complex systems atontrol aiming at specifying, verifying, and analyzing se-
a more abstract level are two major areas of current secu- curity. In the traditional abstract view, security is often
rity research. With the objective to integrate the two, this defined for an abstrattace-basednodel of computation.
article proposes a translation of a timing-sensitive ségur  |n particular, a system can be represented as a set of its
property for simple multi-threaded programs into a more traces and, thus, security is a property that can be true
general security framework. Interestingly, our notionefs  or false for a given set of traces. In a distributed set-
curity for programs is bisimulation-based while the secu- ting, these traces can be viewed as sequences of events
rity framework is trace-based. Nevertheless, we show thatjike, e.g., communication of local processes in a distgbut
the translation issoundand completein the sense thatthe  network. Many different approaches to this type of gen-
trace-based specification which results from the transfati  eral information flow control have been proposed (e.g.,
of a multi-threaded program is secure if and only if the orig- [13, 30, 12, 22, 16, 14, 33, 25, 26]), which increased the
inal program is secure. The translation is presented as a need to unify and to compare. This has led to uniform
two-step process where the first step is independent fromframeworks and detailed comparisons [23, 10, 34, 18].
the concrete programming language. Another line of research that is becoming increasingly

popular is information flow control in a setting of a con-
crete programming language. The efforts in this area are

1. Introduction focused on determining whether a given program written in
a particular programming language has secure information
1.1. Motivation flow. More concrete assumptions are usually made about

local computations. For example, one might assume that

An important step in the specification of secure infor- the program runs on a partition of data on high (private) and
mation flow in a complex distributed system where local low (public) security data (although a more general lattice
parts are written in a particular programming language is of security levels can be considered). The program is not
to combine two types of security. Namely, the first type is trusted (possibly received over the Internet). The pro¢ggam
the security of communication between local computations low output is publicly available (e.g., sent over the Inggjn
and the second type is the security of the local computa-as well as, perhaps, timing information about the program’s
tions themselves. The former is often defined as securityexecution (e.g., times when the program makes Internet ac-
of an event-based system (as in the underlying model ofcesses are observable).
[18]) whereas the latter relies on the security specificatio Originating from early work of Denning [8, 9] and Co-
of the programming language (as in the underlying model hen [5, 6], secure information flow in programming lan-
of [27] for a simple imperative multi-threaded language). guages received its recent reincarnation in work of Vol-
Embracing the two kinds of security into a single security pano et al. [32] with the main contribution being soundness
framework is the motivation of this paper. proofs for a Denning-style security analysis. Many other
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researchers have investigated the problem of secure inforsoundin the sense that the translation of any secure MWL

mation flow including Joshi and Leino’s equational spec- program is secure as a state-event system;cantpleten

ification [17], a single calculus for security, binding-8m  the sense that if the translation of an MWL program is se-

analysis, program slicing and call-tracking (DCC) by Abadi cure as a state-event system then the original program is

et al. [1], Heintze and Riecke’s Secure Lambda Calculus secure.

(Slam) [15], Volpano and Smith’s investigations on segurit

of concurrent programs [29, 31], and Sabelfeld and Sands’s1.3. Overview

security formalization based on partial equivalence i@t

[28] and a scheduler-independent probability-sensitere s After recalling some preliminaries in Section 2, we intro-

curity specification for multi-threaded programs [27]. duce the concept of thread pools in Section 3. In Section 4,
The security formalization in the studies mentioned we specialize this generic model according to the syntax

founds on the extensional approach to security, namety and semantics of the MWL programming language. That

interferencg13]. The idea behind non-interference is that this specialization indeed reflects the semantics of MWL, is

a system is considered secure if high inputs do not interfereensured by a collection of theorems in Section 5. The key

with low-observable behavior of the system (low outputs, contribution of our translation is that it preserves thecspe

timing, etc.). fication of secure information flow. Section 6 shows that a
It has often been claimed that extensional programming-thread pool is considered to be secure in the MWL program-

language-based security can be viewed as a form of nonming language if and only if the corresponding state-event

interference (e.g., in [32]), especially since the revivhl ~ System is also considered to be secure in the assembly kit.

the interest in language-based security. Nevertheless, foWe conclude by a discussion in Section 7.

the language-based extensional security models that have

been proposed since the mid-nineties a rigorous connectior. Preliminaries

to non-interference-like properties has not so far been es-

_tabli_she_d to _the best of our knowledge. This paper is a stepy 1 System Specifications

in this direction.

Our choice for the abstract event-based framework is  The pbehavior of systems can often be adequately speci-
Mantel's assembly kit [18]. Adapting the assembly kit al- fieq by the set of its possible execution sequences. We fol-
lows picking the appropriate security property from the as- |\ this trace-based approach throughout this articleh(wit
sembly kit rather than inventing a new one. This also allows he exception of parts where we use a concrete program-
for combining the security of programs with the security of ming language). Araceis a sequence of events that mod-
other components in a (potentially distributed system) us- g|s a possible execution sequence of the systemevemt
ing the assembly kit as an interface. This means integrat-is an atomic action like, e.g., the sending or receiving of a
ing programming-language-based security at a higher leveljessage on some channel. We distinguish between input
of abstraction, opening the opportunity for plugging the se anqd output events. The underlying intuition is that input
curity of sub-systems written in a particular programming events are controlled by the environment of a system while
language to the global security of the system defined in agytput events are controlled by the system. The distinction

gengral event-based fram-ewor.k. between input and output events is somewhat fuzzy. When a
Finally, the assembly kit enjoys a number of useful ex- system is capable to prevent the occurrence of input events,
tensions including local verification conditions [19], rieub- then this can be interpreted as a signal to the environment.

sitive security policies [20], and refinement operatord,[21 To avoid this kind of communicatiomput totalityis often
which potentially enables us to use these verification tech-assumed, i.e., that a system cannot prevent the occurrence
niques, to apply intransitive security policies, and to do of input events. Since input totality is quite restrictiveg
stepwise development in the setting of secure informationrefrain from making this assumption in this article. In com-
flow in programs (although these issues are outside theplex systems, communication between components is done
scope of the present article). by synchronization on the occurrence of shared events (usu-
The focus of this paper is on a simple multi-threaded ally output events of the one componentthat are input events
language (MWL) and a timing-sensitive security specifica- of others).
tion (strong security{27]) that implies robust security in- For specifying systems, we do not define the set of traces
dependently of a particular scheduler. We translate MWL directly but rather use states as an auxiliary concept. This
programs into state-event systems, pick an appropriate defallows us to define the possible traces inductively by a tran-
inition of security from the assembly kit, and establish a sition relation. The system model, we use for specifica-
precise correspondence between the security of MWL pro-tion, are state-event systems. This system model allows
grams and their translations. Namely, that the translasion for the specification of non-deterministic systems wheee th

127



non-determinism is reflected by the choice between dif-
ferent events that are enabled. For simplicity, any non-
determinism in the effects of events is ruled out.

Definition 1 Let S be a set of stated; be a set of events,
andT C S x Ex S be a transition relation. Astate-event
systemSES is a tupléS, Sy, E, I,0,T) whereS; C S are

the initial states and,O C E respectively are the input

(V, N, )
VH| (E7 ®7 @ )
VL (L, H\Hl, HI)
Vinni | (B, 0, 0)

Figure 1. The flow policy
of all domains

FPtp and the views

and output events. Throughout this paper we assume that

St is a singleton set and that for a given statand event
there is at most one staté with (s, e, s') € T.

Let s1,s2,8' € S, e € E, andy € E*. Instead of
(s1,e,s9) € T we sometimes use the notation — 7 so.
For multi-event transitions, we use the notatign=> s’.
If T is obvious from the context then we omit the index and
write s; — s, Ors; == s'. The relation==r is formally
defined as follows:

$1 %T s’

§) =1 8’

A sequencer € E* of events is arace of a state-event
systemSES= (S, {so}, E, I,0,T) if it is accepted in the
initial state, i.e.3s' € S.sy =>r s'. The set of all traces
for SESs denoted bylrsgg We omit the index and simply
write Tr if the state-event system is obvious from the con-
text. The tuple(E, I,0, Trsgg is referred to as thevent
systencorresponding t&ES A states € S is reachable
denoted byeachablés), if there exists a trace € E* such
thatsy = s. Theprojectiona|g of a sequence € E* to
the events inE’ C E results froma by deleting all events
notinE'.

y if S1 = Sl
L if 352 €8.8] 37 89 A 89 == 8’

2.2. Security Properties

domains information flow isotrestricted.D; ~»n D5 €Xx-
presses thab; is not visible for D, but that information
aboutD; may be deducible fab5.

Definition 2 A flow policy FP is a tuple(D,~y ,~ N, %)
where~ vy, ~n,%C D x D form a disjoint partition of
D x D and~»y is reflexive. FP is calletransitiveif ~»y, is
transitive and, otherwiséntransitive

A domain assignmetinks a flow policy to a system speci-
fication by associating domains to events. We often denote
the set of all events with a given domalhalso byD, the
name of the security domain, and use that name in lower
case, possibly with indices or primes, edj.ds, .. ., to de-
note events with that domain.

Definition 3 Adomain assignmeom: £ — Disafunc-
tion that assigns domains to events.

We depict flow policies as graphs where each node corre-
sponds to a security domain. The relatiens , ~»n, and

+» are respectively depicted as solid, dashed, and crossed
arrows. For the sake of readability, the reflexive sub-iatat

of ~»y is usually omitted. This graphical representation is
shown on the left hand side of Figure 1 for the flow pol-
icy FPtp, which consists of three domaih# (high-level

Security requirements can be expressed as restrictions oinput events),L (low-level events), andH\HI (high-level

the information flow within a system. To express confiden-
tiality or integrity by such restrictions is the key idea of
information flow control. Asecurity property SecPrgp,
consists of three elements: a flow poliel?, a domain as-
signmentdom and a security predicat&P

A flow policy specifies restrictions on the information
flow within a system. For this purpose, firstly, a set of secu-

internal and output events). According E°tp, occur-
rences of low-level events are visible for both high-level
domains. High-level inputs must not be deducible for the
low-level HI + L). Other high-level events may be de-
ducible H\HI ~n L), if this does not reveal information
about high-level inputs.

Traditionally, FPtp would be defined as a policy with

rity domains is chosen. Typical domains are, e.g., groups oftwo domainsL, H and the relation#l 4 L, L ~» H. This
users, collections of files, or memory sections. Secondly, leaves it implicit that occurrences of eventdHiHI may be

relations»,~y,~nyC D x D are defined. Theon-
interference relation» specifies where information flow
between domains is forbidden. E.@; % D, expresses
that there must beo information flowfrom D, to D>. The
interference relationy, specifies that certain domains are
visiblefor others.D; ~»y D, expresses thdD, is visible
for D,. Finally, the relation~ y, specifies between which
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deducible folL. Our distinction betweet» and~» y allows
us to make such assumptions explicit in the flow policy.

A security predicatespecifies under which conditions a
system specification satisfies a flow policy for some domain
assignment. It can also be understood adefinition of
what information flow meansSPmust be satisfied for the
view of each domain, whereas theew Vp = (V,N,C)



for a domainD € D in FP is defined by = (J{D' € Thread Pool

i _ ! i = ——————— -
D | D M‘I/ D}’ N _,U{D €D | D ~N D}’ a_nd setvar | mem  apid executed' | outvar
C = U{D' € D| D' & D}. Basically,V contains ———{ | thread _ ainfo T
all events that areisible for D, C contains all events that o -
are conf|_d(_ant|alfor D, r_;md]\_f contalns_ all events that are schedulei i yield
neithervisible nor confidential. The views for all domains

of FP1p are depicted on the right-hand side of Figure 1.
Among these, the view of domalnis the only interesting Figure 2. Generic thread pool with interface
one because it gives rise to a non-trivial proof obligation.  eyents and state objects
The precise proof obligation, of course, depends on the se-
curity predicate.

An assembly kit that allows for the uniform and modular
representation of security predicates, has been preyiousl this request and terminates afterwards. Compared to paral-
proposed by one of the authors [18]. It simplifies the com- lelism at the level of processes, an important advantage is
parison among the existing Security predicates and a goai_that context SWitChing is far less eXpenSiVe for threads.
directed construction of new ones. In the assembly kit, se- To model the behavior of multi-threaded processes in
curity predicates are composed by conjunction from one or State-event systems is technically somewhat diffitdihe

more basic security predicates (abbreviate®By. main difficulty is that threads communicate with each other
For the purposes of the current paper, a simple secu-asynchronously via shared memory, while state-event sys-
rity predicate suffices which consists only of a sinBigP tems are based on a synchronous, message-passing-like

backwards gict insertion of @missible confidential events communication paradigm (cf. Section 2.1). However, to
(abbreviated bBSIA. BSIA, requires that the occurrence specify processes with these formalisms is very natural be-
of an event fronC' doesnot removepossible low-level ob-  cause inter-process communication is usually synchronous
servations. Considering the system after a trfades oc- In this section, we demonstrate how the behavior of
curred, any observatiom € V* that is possible must also Multi-threaded processes can be modeled using state-event
be possible after an arbitrary confidential everg C has ~ systems. The proposed specification is highly generic be-

occurred. If the observatiam results froma € (V U N)*, cause it is not only parametric in the particular program but
i.e.,aly = @, then soma’ € (V U N)* must be possi-  also in the programming language. How to instantiate this
ble afterc has occurred where' may differ froma onlyin  specification for the concrete programming language MWL

events fromV. The premise.c € Tr ensures that the event  Will be demonstrated in Section 4.
¢ is admissible aftef. For a given vieww = (V, N, C),

BSIA, is formally defined as follows: 3.1. Trace-Based Formal Specification
BSI Tr) =
AT In our specification, a multi-threaded process is modeled
Va,Be E*.VceC. ((B.a€TrAalc=() A B.ceTr) as a collection of threads that shares a global memory. We
= o' €E*.(d|v=alv Ad|c=() AB.c.a’ €Tr)) refer to such a collection astaread pool As depicted in

The security guarantee provided B@lAis: if an adversary ~ Figure 2, a thread pool has five state objenteif thread
observesy starting in some state then he or she cannot de-2pid, ainfo, executejland can communicate with the envi-
duce that a confidential evenhas notoccurred. Clearly, it ~ fonment by four kinds of interface eventefvar, outvar,
could also be important to prevent an adversary from de- Scheduleandyield-events).

ducing that a confidential evehias occurred. FoBSPs The shared memoryf a thread pool is modeled by the
which provide this type of guarantee (and others), we re- functionmem: VAR — VAL that assigns values (frowAL)
fer to [18, 19, 20]. to variables (fromVAR). The shared memory can be up-
dated at the interface of a thread pooldggvarevents. If an
3. Generic Thread Pools eventsetvafvar, val) occurs then variablear is assigned

valueval. outvarevents output the value of variables to the

For distributed programming, the use of multi-threaded environment. An evem)utvar(vqr, va_l)_|s only enabled if
var currently has valugal. For simplicity, we assume that

programming languages has become extremely popular [4]. L
The use of concurrent threads that operate in the same adlutvarevents have no other preconditions and setvar

: ts are always enabled.
dress space appears to be the adequate approach for appllc‘gl\—/en . .
tions that are, e.g., based on the client-server paradigm. F h Th((ja'IoPciaIIDstateTic_)iintErLr\gadssLm_(r)deled tl:;}y the f_lénctlon
example, this allows one to program a file server that cre- read: = ( U{L T, 0})- threadpid) re-

ates, for every incoming request, a new thread that handles *Similar problems occur when using process algebras like @EES.
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turns a local state (froffHREAD) for the identifierpid € as depicted in Figure 3. Let initvad VAL, initpid € PI D,
PI D. The resultsL, T, and() do not denote a proper local initthread € THREAD, Ejoc5 be a set of events that is dis-
state but have a special meaning. If a thread with identifier joint from Epqo), and7joca) € S X Ejgcal X S be a transition
pid has never existed thethreadpid) = L holds. After relation.
a thread has spawned child processes, the identifier of the The generic thread poolvhich is parametric inVAR,
parent thread is modified artdreadreturnsT for the old VAL, PI D, THREAD, | NFO, initval, initpid, initthread,
identifier. If thread pid) = () then a thread with identifier ~ Ejgcq, and Tigcq), is defined by the following state-event
pid has existed but has already terminated. system:

The remaining state objects are used for controlling the
execution of threads. The value apid € Pl DU { L} de- GenPoofVAR, VAL, PI D, THREAD, | NFO,
notes the identifier of the thread that is currently active in initval, initthread, initpid, Ejocal; Tiocal)
the thread poolapid = L indicates that no thread is active. = (5, {50}, Epool U Eiocal; Ipools Opool> Tpool U Tiocal)
For simplicity, we assume that there is at most one active
thread at any point of timeainfo is a buffer in which in-
formation is collected that shall be send to the scheduler.
Note that the scheduler is external to a thread pool. The flag
executed BOOL is used for managing context switching.
Thread execution proceeds as follows.

3.2. Security of Thread Pools

The problem of information flow control in multi-
threaded programming languages is to prevent information
flow from high to low variables. For this purpose, a se-
e If no thread is active (indicated bgpid = 1) then curity level (ow or high) is assigned to each variable by a

schedulesvents are enabled. After an occurrence of functiondomyar : var — {low, high}. This differs from

schedulépid), apid is set topid, and the thread with  the event-based approach, in which information flow con-

local statethread pid) becomes activeschedulgpid) trol prevents that occurrences or non-occurrences of confi-
is only enabled if the thread is alivéh(eadpid) ¢ dential events affect the possibility of observable betbravi
{L, T,0}. Although both approaches share the same intuitive motiva-
) ) o ) tion, i.e., that there should be no information flow from high
e Ifthere is an active thread (indicated Bpid # L A to low, this technical difference complicates an integnati

executeds ff) then this thread can run. Thread execu- of the two approaches. However, an integration is very de-
tion is formally modeled by the occurrence of events gjraple because it allows for a uniform investigation of in-
that are internal to the thread pool. Since these internalsqmation flow at the level of processes as well as at the
events depend closely on the particular instantiation |o\¢| of threads.

of a generic thread pool, especially on the program-  Te key observation, which will allow us to integrate the
ming language, they are intentionally not modeled at o approaches, is that high-level data can only be intro-
the generic level. During execution, a thread can af- g,ced into a thread pool by occurrencessefvarevents

fect the state objectmemandthread Additionally,  {hat change the value of high-level variables. All other

information for the scheduler is storedamfo. Even-  gyents can change the state of the thread pool but cannot
tually, the active thread stops executing (indicated by jycrease the confidentiality of data. Thus, we can express
executed= tf). the security requirement by demanding that the occurrences

o After the active thread has stoppesécuted= tt), the of thesesetvarevents must not influence the possibility of

scheduler can be informed about this byield-event.  0W-level observations. , ,
yield(info) is only enabled ifinfo corresponds to the The flow policy FPrp (cf. left-hand side of Figure 1)

actual scheduler informatiofnfo = ainfo). A yield- expresses the necessary restrictions on information flow.
event resets thexecutedlag, apid, andainfo We assume that a (malicious) low-level user has complete

knowledge about the definition of thread pools (as usual),
For the initial state, we assume that all variables areaiRiti  can observe the occurrence stthedule andyield-events,
ized with the same valueitval. Moreover, we assume that and can observe the occurrencesooftvar and setvar
there is exactly one thread. This thread hdipid as iden- events that involve only low-level variables. Consequgntl
tifier andinitthread as local state. In the initial state, the all these events are assigned domaof. Figure 4).setvar

executedlag, apid, andainfoare reset. events that involve high-level variables are assigned doma
Generic thread pools are formalized as state-event sysHI because the occurrence of these events must not be de-
tems in the following definition. ducible by a low-level user. Occurrences of all other events

must not be observable by the low-level user. They may be
Definition 4 Let VAR, VAL, PI D, THREAD, andl NFO be deducible. However, such deductions must not reveal any
types. LetS, so, Epools Ipools Opools @andTpoo b€ defined  information about occurrences of eventsih
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S = {memthread apid, ainfo, executed
mem: VAR — VAL, thread: Pl D — THREADU {L, T, ()},
apid: Pl DU {1}, ainfo: | NFOU {_L}, executed BOOL }

50 = {Vvar € VAR men{var) = initval, threadinitpid) = initthread,
Vpid € Pl D. pid # initpid = threadpid) = L,
apid= 1, ainfo= L, executed= ff}
Epool = Ipool U Opool
Inoot = {setvafvar,val) | var € VARA val € VAL } U {schedul¢pid) | pid € PI D}
Opooi = {outvar(var,val) | var € VARA val € VAL} U {yield(info) | info € | NFO}

Thool is defined by
e setva(var, val) affectsmengvar)
Pre: true
Post memf{var) = val

e schedulépid) affectsapid
Pre: apid= L Athreadpid) ¢ {L, T,{)}
Post apid’ = pid
¢ yield(info) affectsexecutedapid, ainfo
Pre: executed= tt A ainfo = info
Post executed= ff A apid’ = L A ainfo’ = L

e outvarvar, val) affects —
Pre: men{var) = val

Post true
Figure 3. Definition of fixed components of a generic thread po ol
e domyp(e)
schedulépid) L
yield(info)

setvafvar, val)

outvarvar, val) L , if domvar(var) = low
setva(var, val) HI , if dormvar(var) = high
outvar(var, val) H\HI , if domvar(var) = high
e H\H| ,if e € Ejgcal

Figure 4. Domain assignment domyp
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Definition 5 The security property SecPrpp for thread
pools is(FPtp, domyp, BSIA.

According to FPtp, proof obligations arise only for the
view of domainL. Thus, a thread podaatisfies SecPrgp.

if BSIA, holds for the viewV;, = (L,H\HI, HI). Note
that BSIA(cf. Section 2.2) is indeed an appropriate defini-
tion of information flow for this application. The argument
is as follows: if changing the value of high-level variables
does not eliminate the possibility of low-level behaviors,
then there is no information flow from high to low because

For simplicity (but without loss of generality), we will as-
sume that there is only one variable for each security class,
h andl, respectively. We will often write the memory sim-
ply as a pair(valy,val;) with the valuesval, for A and

val; for I. Further, we defindow-equivalenceon memo-
ries by ‘mem =r mem if and only if the values of for
mem andmem are the same”. The small-step semantics
is given by transitions between configurations. The deter-
ministic part of the semantics is defined by the transition
rules in Figure 6. Arithmetic and boolean expressions are
executed atomically by transitions. The--transitions are

high-level variables could have any value at any given point yeerministic. The general form of a deterministic traosit

of time. Technically, a similar effect could be achieved by
demanding 8SPthat deletes confidential events, like, e.g.,
BSD(cf. [19]). However, this possibility is not important
for the purposes of this paper.

In general, choosing a definition of information flow
closely depends on the particular application under censid
eration and there appears not to be a single “right” defimitio

(as, e.g., also observed in [26]). The assembly kit offers a

(still growing) collection of very primitive definitions dh-
formation flow BSP$ and allows one to assemble these to
more complex definitions (security predicates). This fine-
grained view has proved to be very helpful for determining
SecProgp.

4. MWL Thread Pools

In this section, we revisit the simple multi-threaded
while-language (abbreviated by MWL) along with the
timing-sensitive definition of security for MWL from [27].

is either{(C, men} — ((), meni), which means termination
with the final memorynent, or (C, men) — (C' D, ment).
Here, one step of computation starting with comméhich

a memorymemgives a new main threa@’, a vectorD

of spawned threads (possibly empty), and a new memory
mem. The commandork(C' D), whereD is required to be
non-empty, dynamically creates a new vedibof threads
that, afterwards, run in parallel with the main thréadThis

has the effect of adding the vectbr to the configuration.
The rule [Pick] in Figure 7 defines the concurrent semantics
of MWL. Whenever the scheduler picks a thre@dfor ex-
ecution, then a~»-transition takes place updating the com-
mand pool and the shared memory according to a (small)
computation step of’;. Let —* denote the reflexive and
transitive closure of>.

We can extract a simple model of the timing behavior
of multi-threaded programs from the small-step semantics.
This is done by the assumption that eaekransition takes
a single unit of time to execute. This approach gives only

Further, we demonstrate how our generic specification ofa rough approximation of real timing behavior, but simple

thread pools from Section 3 can be instantiated for MWL.
4.1. The Multi-Threaded While-Language MWL

MWL is a shared-variable multi-threaded while-
language with dynamic thread creation.
MWL commands is given by the grammar in Figure 5. As
usual, boolean expressiofisrange oveiBOOL and arith-
metic expression&zp range ovelEXP. LetC,D,E, ...
range over commands (MWL threadsyD, and letC de-
note a vector of commands of the forf@; ... C,). Vec-
torsC, D, E, ... range ovelCND = U,,enCMD?, the set of
multi-threaded programs.

The syntax of

extensions are possible in order to make it sensitive to the
timing behavior of particular commands (cf. [2]).

4.2. Definition of Security for MWL

Now, we define the security of MWL programs and mo-
tivate the choice of this definition. The central idea of
extensionakecurity, as opposed fatensionalsecurity, is
that confidentiality should not be specified by a special-
purpose security formalism, but, rather, should be defined
in terms of a standard semantics as a dependency property
(more precisely, absence of dependence). If direct, indi-
rect, and timing flows are considered, then, intuitively, a

MWL programs execute under a shared memory on aprogram has the extensionabninterferenceproperty, if
single processor (or in a single process) such that at mostwarying the high input will not change the possible low-

one thread can be active at any given point of timecoh-
figuration{C, meny} (or 4(7, men}) is a pair, consisting of a
commandC € CND (or a vector of command§ € CVD)
and a memorynemée VAR — VAL. memis a finite map-

level observations, i.e., low inputs/outputs and timingisT
differs from intensional security which relies on particu-
lar security primitives that are only motivated by intuitio
rather than a mathematical justification. Many investiga-

ping from variables to values, as in Section 3. The set of tions have successfully followed the extensional view in-
variables is partitioned into high and low security classes cluding [6, 32, 15, 29, 1, 31, 17, 27, 2, 28] for justification
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CMD ::= skip | VAR := EXP | CMD; ; CMVD; | if BOOL then CVD; else CVD,
| while BOOL do CVD | fork(CVD CVD)

Figure 5. Command syntax

[Skip) {skip, menm} — {(), men}

[Assign

Ezxp M= p,
{Id := Exp,men} — ({),[Id = njmen}

(C1, men) — (), men)

[Seq] (C1:C5, men) — (Cs, men)
Seq] (C1, men) — (C} D, men)
(C1; Cy,men) — ((C}; Cy) D, mem)
mem_
I . byt
(if B then C; else Cy, men) — (C7, men)
mem_
(4] , By =1
{if B then C; else C2,men) — (Ca, men)
[Whilex] B ™=t
{while B do C, men} — (C'; while B do C, mem)
. B \Lmemz ff
[Whiler {while B do C, men) s {{), men}
[ForK {fork(C D), men) — (CD, men)

Figure 6. Small-step deterministic semantics of commands

(Ci, men) — (C, men)
((Cy...CLY,mem) = ((Cy ...Ci_1CCiy ... Ch), men)

[PicK

Figure 7. Concurrent semantics of programs
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of security analysis and verification techniques for défgdr ~ In order to illustrate Definitions 6 and 7 we give some ex-
languages. We follow the extensional approach and focusamples of secure and insecure information flow which may
on extensional security for MWL. occur in MWL programs.

A previous investigation [27] gives an account on choos- o )
ing an adequate definition of extensional security for multi ! := h This is an example of girect flow. To see that
threaded programs. Which definition is appropriate depends ~ this program s insecure according to Definition 7,
on, for instance, whether a particular scheduler is assymed ~ choosemem = (0,0) andmem = (1,0). Since
or a robust scheduler-independent security is wanted. The (I:=h,(0,0)) — {(),(0,0)) and{l := h, (1,0)) —

central idea of the bisimulation-based approach is to de-  {{); (1, 1)) holds, the resulting memories are not low-
fine alow-bisimulationon commands such that the indis- equivalent(0,0) #r, (1,1). Thus, there cannot be a

tinguishability of the behaviors of two prograr@sand D relation with the properties necessary for strong low-
for the attacker is formalized b¢' ~; D, where~y, is bisimilarity.

a low-bisimulation Such an approach is flexible in the
choice of an appropriate low-bisimulation (different low-
bisimulations are available for different degrees of secu-
rity). For a given low-bisimulation-,, the definition of se-
curity is simply: “C' is secure iffC’' ~1, C”. For the purpose

of this paper we adapt thetrong low-bisimulatior27].

if h=1then [:=1elsel:=0 This exemplifies arindi-
rect flow through branching on a high condition. If
the computation starts with low-equivalent memories
(0,0) and(1,0), then, after one step of the computa-
tion (the test of the condition), the memories are still
low-equivalent. However, after another computation
step they become different depending on the initial

Definition 6 Definestrong low-bisimulatior®,, to be the value ofh. There cannot be a relation with the proper-
union of all symmetric relation® on MWL command pools ties necessary for strong low-bisimilarity.
(programs) of equal size for which whenev€y ... C,) R
(D1 ...Dy) then if h = 1then (while [ < MaxIntdo [ := [ + 1) else skip
From the timing behavior of the program the attacker
Ymem, men, i.{C;, mem) — 46—"', men) may deduce secret information. This is an instance
A mem =y mem — of a timing leak. Clearly, the timing behavior of the
. S branches is different. This is captured by Definition 7.
aD', mem.{D;, mem) — (D', meny) Indeed, in case théhen-branch of theif is chosen,
A men =, memy A C' R D' there will be no transition in the other branch to match

the transitions of thevhile-loop.
Our definition of security for MWL programs is based _ o
on strong low-bisimulations. The choice of this particu- if = 1then (while truedo skip ) else skip is a variation
lar bisimulation results in a definition of security that is of the timing leak called &rminationleak.
timing-sensitive and scheduler-independeitrong bisim-
ulation captures timing flowsf two commands might have
a different timing behavior depending on high data (which
would result in information flow from high to low) then it j, = 1 then h:= h+ 1 else skip Indeed, the timing be-
they are not low-bisimilarStrong bisimulation is scheduler- havior is independent of the value df as well
independentThus, our notion of security is robust with the as the low variabld. A suitable symmetric rela-

respect to any choice of a particular scheduler (including  tion that makes this program low-bisimilar to itself
probabilistic schedulers as shown in [27]). Although these is, e.g., the relation{(if h = 1 then h := h +

All examples above are insecure according to our definition.
Here is an instance of a secure program:

features impose restrictions on what can be considered low- 1 else skip,if h = 1 then h := h + 1 else skip), (h :=
bisimilar, the choice o$trong low-bisimulation is adequate h + 1,skip), (skip,h := h + 1), (h := h + 1,h :=
(not too restrictive), e.g., for the type-based analysi th h + 1), (skip, skip), ((}, ())}.

is proposed in [27]. This analysis is sound with respect to

the security definition, i.e., if a program passes the amglys 4 3. Instantiating Generic Thread Pools
then it must be secure. For more details on the power of this
type of security definition to capture insecure programs and
examples of secure programming with common algorithms
such as sorting and searching, we refer to [27, 3].

We now instantiate our generic model for thread pools
'from Section 3 in order to model the behavior of the multi-
threaded programs of MWL. Recall, that, according to Def-

e o _ ) inition 4, the following parameters must be actualized:
Qef|n|t|9n 7 An MWL programC' is secureif and only if

Crp C. e types:VAR, VAL, PI D, THREAD, | NFO
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e initial values:initval, initthread, initpid,
e internal eventsEjycq; and their behaviorTgey

Consistently with the simplification of Section 4.1, the set
VAR of variables consists of only two variablesind! (hav-

ing in mind thath is a high-level and a low-level vari-
able). We do not further specify the séAL of values.
However, we assume that there is alS¥P of expressions.
Exp [M®™= val denotes thaEzp € EXP evaluates tval
where the memorynemin the index is only important if
Ezp contains variables. Moreover, assume aBadL of
boolean expressionsB |M"= tt and B |M"= ff de-
note, respectively, thd € BOOL evaluates tdrue or false

quires that there is an active threagbid # L) that has not
already executed a commanekécuted= ff), the current
command must be an assignmefits{(threadapid)) =
var := Exp), and the expressioBzp must evaluate toal
under the current memon&p ™™= val). Note that,
when new threads are spawned, then the generation of iden-
tifiers is managed in such a way that no pid is used for two
different processes (cf. postconditionfofk). That7;j,
indeed reflects the semantics of MWL will be proved in
Section 5.

The instantiation of generic thread pools for MWL is
summarized in the following definition.

Definition 8 Let initthreade CVD. TheMWL thread pool

PI Dis specialized to the set of sequences of natural num-for njtthread results from the following instantiation of

bers PI D = N*). The sefTHREAD is specialized t&CVD,
i.e., the local state of a thread is simply an MWL com-
mand. | NFO s specialized to/AL x | NT whereVAL is
the value of the priority variable (which is adapted tolbe
for simplicity) and thel NT part says whether the process
has been killed (value-1), continues running (valu@) or
has spawned > 0 new processes (valug.

We do not further specifinitval, the initial value of all
variables. The identifier of the (unique) initial thread is
zero, i.e.,initpid = 0. MWL thread pools shall be para-
metric in the initial thread (parametimitthread).

We now introduce two auxiliary functiorfgst : CVD —
CMVDandrest: CVMD — CVDU{()}. The purpose dirstand

restis to decompose sequential compositions. In the defi-

nition given in Figure 8 we assume th@{ doesnot have
the formDy; D», i.e.,C} is not a sequential composition on

the top level. The seE[, of internal events of an MWL

generic thread pools:
MWLPoolinitthread) = GenPoo({l, h}, VAL, N*, C\VD,
VAL x | NT,initval, initthread 0, Ejgdy), Tiocal)

5. Semantic Relation between MWL Programs
and MWL Thread Pools

The objective of our specification of MWL thread pools
was to provide an adequate model of MWL programs and
their behavior. Firstly, any behavior of an MWL thread pool
should comply with the MWL semantics. Secondly, any
behavior that complies with the MWL semantics should be
possible for an MWL thread pool. That our specification,
indeed, is adequate is ensured by the results presented in
the current section.

Recall that the system models that, respectively, underly

thread pOOl is defined in Figure 9. Note that for each of MWL programs and MWL thread poo|s are somewhat dif-
these events there is a corresponding rule of the small-steferent. The model underlying MWL programs is based on

semantics (cf. Figure 6). E.g., thssigrevents correspond
to rule Assign and the everits" andite’ respectively cor-
respond to k§ and Ifs. With the exception of the rules Seq

and Seg, there are corresponding eventsAfi: for each

trees of state§to be precise, configurations). It is possible

to enrich these trees with events but from the perspective of
the underlying paradigm these events would be mere dec-
orations. Since the model of computation is state-based,

rule in Figure 6. The reason for this correspondence is that,the natural communication paradigm is via shared memory.
on the one hand side, events model atomic actions and, orhe system model underlying MWL thread pools is based
the other hand, rules of a small-step semantics model atomign sequences of eventst is possible to enrich these se-
transitions between states (Or Configurations— in the clase Oquences with states but from the perspective of the under-
MW.L). The atomic actions that can occur during the execu- |ying model these states would be mere decorations. Since
tion of an MWL thread poolinclude, taking up time (caused the system model is event-based, the natural communica-
by skip), assignments to variables, branching in the control tion paradigm is via message passing. These differences
flow depending on boolean tesisthen else orwhile do), between the system models on which MWL programs and

or spawning of threadsofk). Note that, we do not consider  MwL thread pools are based, somewhat complicate the
the decomposition of sequentially composed commands agyroofs of the following theorems.
a separate action. Thus, there are no corresponding events.

The behavior of internal events is defined by the transi- 5.1. Adequateness of MWL Thread Pools
tion relationT}7, (cf. Figure 10). ClearlyZ5, should re-
flect the semantics of MWL. The pre- and postcondition of  In Theorem 1 we will show that every trace of an MWL
each event shall capture the corresponding rule of the small thread pool models a behavior that complies with the se-

step semantics. E.g., the preconditioms$igr{var, val) re- mantics of MWL. We define the functionseq, which
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(C, () ,if C € {skip,var:= Ezp,if B then C; else Cs,
(first(C), rest(C)) = while B do C, fork(CD)}
<C1,02) y if C = (01; CQ)

Figure 8. Definition of firstand rest

Ept, = {skiptu{assigrvar, val) |var € VARA val € VAL}
U{itett(B C1,Cy), itel (B Ci,C,) | B € BOOLACY,Cy € CMD}
U{while" (B Cy), while(B, Cl) | B € BOOL A Cy € CVD}
u{fork(C, D) | C € CMDA D € CND}

Figure 9. Definition of local events  EM™ of an MWL thread pool

local
T ds is defined by

¢ skipaffectsthreadapid), executedainfo
Pre: executed= ff A apid # L A first(threadapid)) = skip
Post thread’(apid) = rest(threadapid)) A executed= tt
Aainfo’ = (menfl), terminateéthread apid)))
e assigrvar, val) affectsmengvar), thread apid), executedainfo
Pre: executed= ff A apid# L A Exp |™"= val A first(thread apid)) = var := Exp
Post mem({var) = val A thread(apid) = restthreadapid)) A executed= tt
Aainfo’ = (menfl), terminateéthread apid)))
o ite'(B, Cy, C,) affectsthread apid), executedainfo
Pre: executed= ff A apid# L A B ™M= tt A first(threadapid)) = if B then C; else Cs
Post thread'(apid) = C; rest(thread apid)) A executed= tt A ainfo’ = (menql), 0)

e ite(B, C1, C,) affectsthreadapid), executedainfo
Pre: executed= ff A apid# L A B ™M= ff A first(thread apid)) = if B then C; else Cs
Post thread’(apid) = C»; rest(thread apid)) A executed= tt A ainfo’ = (men{l), 0)
o while"(B, C}) affectsthreadapid), executedainfo
Pre: executed= ff A apid# L A B ™M= tt A first(thread(apid)) = while B do C;
Post thread(apid) = C;;while B do Cf; restthread apid)) A executed= tt A ainfo’ = (mengl), 0)

. whileﬁ(B, () affectsthread apid), executedainfo
Pre: executed= ff A apid# L A B M= ff A first(thread apid)) = while B do C;
Post thread’(apid) = rest(threadapid)) A executed= tt
Aainfo’ = (men{l), terminategthread apid)))
o fork(C, D; ... D,) affectsthreadapid), threadapid.0) . . . thread apid.n), executedainfo
Pre: executed= ff A apid # L A first(thread apid)) = fork(CD; ... D,)
Post thread(apid) = T A thread'(apid.0) = C;restthreadapid))
AYi € {1,...,n} : thread(apid.i) = D; A executed= tt A ainfo’ = (men{l),n)

whereterminategthreadapid)) equals—1 if resfthread apid)) = () and0 otherwise.

Figure 10. Definition of transition relation Tioes of an MWL thread pool
() , if threadpid) € {L,{)}
thread pid) , if threadpid) € CVD

cseqayx(pid, thread = ¢ cseqaux(pid.0,thread ...
.. CSe(aux (pid.n, thread , if threadpid) =
n € Nis chosen maximal such thétreadpid.n) # L

Figure 11. Definition of cseqaux
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translates a functiothread: PI D — (CMDU {L,T,{}})
into a corresponding vector of MWL commands. Note that
this definition exploits that identifiers are chosen incrame
tally by fork-events and thathreadpid) = () holds after
termination of a thread with identifigyid.

Definition 9 cseq: (PI D— (CMDU {1, T,()}) = CVD
returns a corresponding vector of MWL commands for each
function thread: PID — (CMDU {L,T,{)}). cseq

is defined bycseq(thread = cseqaux(0,thread where
CS€Qaux : PID—= (PID— (CMDU {1, T,()}) — CND

is defined in Figure 11.

We now present two lemmas that are helpful for proving
Theorems 1, 3, and 4. The proofs of lemmas and theo-

rems that are omitted in the present paper can be accessed

via the authors’ homepages. Throughout this section, we
assume thaBES= (S,S;, E,I,0,T) models an MWL
thread pool, i.e., thaBES= MWLPoolinitthread) holds

for some commanthitthread € CVD.

Lemma 1 If reachablés) holds in a states of SES then

o executeg= ffAapid, # L Athread(apid,) ¢ { L, T,{)},
e executeg= tt A apid, # L, or
e executegd = ff A apid, = L holds.

Lemma 2 Let s, s’ be states of SES with executed ff,
apid, # L, thread,(apid,) ¢ {1, T, ()}, ande € EJ%
be an event such that— s’ holds.

e If e # fork(C, D, ... D,) then
({thread, (apid,), mem) — (thread, (apid,, ), mem.).

e If e =fork(C, D, ... D,) then
(thread, (apid,), mem) —
(thread, (apid,.0) . .. thread, (apid,.n), memy).

Theorem 1 Lets, s’ € S be states of SES, € E* be a se-
guence of events, adﬂs, D:/ be vector of MWL commands
with D, = cseq(thread,) and D, = cseq(thread,). If
reachablés), s == s, and~ contains no setvar-events
then(D,, mem) —* (D,/, mem).

In Theorem 2, we will show that for every behavior that

complies with the semantics of MWL, there is a correspond-
ing trace of an MWL thread pool which models that behav-
ior. We now present a lemma that is helpful for proving that
theorem and also Theorems 3 and 4.

Lemma3 LetC' € CVD, Dy ...D,, € CND, and merh:

VAR — VAL. Moreover, lets be a state of SES with
executeg=ff, apid, # L, and thread(apid,) ¢ {L,T,{)}.
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1. If {thread,(apid,), mem) — (C’, meni) then there

exists an everd € Etal and a states’ of SES with

s — s', meny = meni, thread (apid,) = C’,
apid, = apid,, and executed = tt. Moreover, for
all pid € PI Dwith pid # apid, holds thread (pid) =
thread, (pid).

If {thread,(apid,),mem) — (C'D;...D,,menl)

(with n > 1) then there exists an eveate EJ%

and a states’ of SES withs - s, memy =
mem, thread-(apid,) = T, apid, = apid,, and
executegt = tt. Moreover, threag (apid,.0) = C’,
thread, (apid,.i) = D; holds for alli € {1,...,n},
and threagq: (pid) = thread (pid) holds for all pid €
PI Dwith pid ¢ {apid,, apid,.0, ..., apid,.n}.

2.

Theorem 2 Let s be a state of SES such that apid L,
executeg=ff, and reachablés). Let D,= cseq(thread,),
D' € CND, and merh: var — val. If (D,,mem) —*
(D', meni) then there exists a sequenge E* that con-
tains no setvar-events and a statec S such thats = s,
mem: = mem, andD' = cseq(thread, ).

Theorem 1 and 2 ensure that MWL thread pools are an ad-
equate specification of MWL programs and their behavior.
All behaviors of an MWL thread pool comply with the se-
mantics of MWL and all behaviors that comply with the
semantics of MWL are possible for an MWL thread pool.

6. Soundness and Completeness Results

The aim of this section is to establish the soundness and
completeness results. First, we recall the definition of the
translation of a program in MWL into a state-event system
and then proceed by proving soundnesg’(is secure as an
MWL program then its translation is secure as a state-event
system) and completeness (ifs translation is secure as a
state-event system th&his secure).

According to Definition 8 from Section 4, the transla-
tion MWLPool[C) of an MWL programC' is the thread
pool with initthread = C. The following two sub-sections
present the soundness and completeness results respec-
tively.

6.1. Soundness

Before we present the soundness theorem we state a se-
curity invariant lemma. Intuitively, the lemma says that
if computation starts with a secure program then all the
threads in the thread pool are secure at all times. Define
an auxiliary boolean functiolive(s, pid) = thread, (pid) ¢
{L, T, ()} that takes the valug whenever thread atid in
the states is alive (exists and has not terminated). Note



thatlive(s, pid) = tt is the precondition for scheduling the
thread apidin s.

Lemma 4 Assume an MWL prograid is secure angB €

Tr is a trace for MWLPod|C) such thatsg 2L, 5. Then

Vpid. live(s, pid) = thread; (pid) &, thread,(pid).

Theorem 3 (Soundness)f an MWL programC' is secure
then the MWL thread pool MWLPd@l) satisfies the secu-
rity property SecPropp.

6.2. Completeness

Let us first recall some facts from standard bisimulation
theory before we turn to proving completeness. Restat-
ing Definition 6, two thread pool€’ = (C;...C,) and
D = (D;...D,) are strongly low-bisimilaC' ~;, D iff
dR. R C F(R) where functionF' from pers to pers (partial
equivalence relations ov@VD) is given by:C F(R) D iff

Vmem, mem, i.{C;, mem) — {C’, menj)
A mem =; men =
3D, men.(D;, mem) — (D', menj)
A meny =, memy A C' R D'

Let us state two lemmas that give an alternative repre-

sentation for the strong low-bisimulation. The proof of the

C %1, C A SecProgp(MWLPoo[C)) we aim to arrive at
a contradiction.

By Lemma 6C =, C <= C(Ni<,=%)C. Assuming
C %1 C implies3i.C %4 C. Takek = min{i | C =
C AC %7 C}. Note thatk > 0 since, obviously,
C =% C. Assume for simplicity that néork-command oc-
cursinC, i.e.,C never spawns new threads. Along the way,
we discuss how the proof can be modified to go through
without the assumption. We consider two sequences of tran-
sitions of the form given in Figure 12. Note that each ele-
ment of the sequences inherits the command in the config-
uration from the previous element. Observe that the low
parts of the memory progress in both sequences in the same
way. The sequences continue as shown in Figure 13. These
sequences must exist dueto € {0...k}.C =% C and
c ,8_9’““ C. Matching the firstt steps in both sequences
and the low-equivalence of the memories during the first
steps are guaranteed by € {0...k}.C =% C. How-
ever, at steft + 1 we havevDy44, lA;ngl. (D, (hy, lk)) —
(Dit1s (Byyqsliy1)) = lerr # ljy- In caseC may
spawn new threads, the difference is that instead of inher-
iting the commands from the previous element in the se-
guences Seql and Seq?2, the next command is chosen from
the command in the previous configuration by selecting the
thread that is the counterexample for the low-bisimulation
of thread pools obtained at the previous step. Importantly,
the sequences gfid's chosen in both Seql and Seq2 are
then identical. We will use this observation later.

lemmas is a standard argument, by appeal to the Knaster- We proceed by constructing two traces\@#/LPoo(C)

Tarski fixed-point theorem (see, e.g., [7])-

Lemma5 Function F' is w-cocontinuous, i.e., for a non-
increasingw-chain of persRy O ... D R; D ..., F pre-
serves colimits:

F(NicwRi) = Nicw F(R;).

Lemma 6 (Fixed point) The relationz;, is the greatest
fixed point ofF” in the lattice of pers. It can be alternatively
represented by, = Ni<w ™), wherext™ = F(xi) and
&9 is the total relationCVD x CND.

We are now ready to present the completeness result.

Theorem 4 (Completeness)An MWL programC' is se-
cure whenever MWLPol') satisfies the security predicate
SecProp.p.

that correspond to the two sequences. We will transform
one trace into the other usinBecProg.p, such that the
low-equivalences and step matching is preserved. This
will take us to a contradiction at stép+ 1. Start off by
constructing a trace ofiWLPoo(C) that corresponds to
Seql. We appeal to Lemma 3 to obtain step-by-step con-
struction of a tracey of the form given in Figure 14 for
somepidy, . . ., pid, info,, .. . ,info, , , where eacle; (i =
.,k + 1) is the internal event that corresponds to the

—-transition in Seql according to Lemma 3. In case no
threads are spawngaid; = O forall< = 0,...,k. Aswe
noted, in cas€' may spawn new threads the sequences of
pid's chosen in both Seql and Seq2 are identical. By a sim-
ilar argument the information contained iimfo sequences
must also be identical for Seql and Seq2 umfo,.

Due toSecProg.p, we can insert high events into right
tails ofy that do not contain any high events. We get a legiti-
mate trace after the insertion. Let us insertshtvalh, hy)

Proof. [Sketch] Due to the space restrictions we present 8vent betweersetvalh, hi) andegyy in 3. Definec =

a detailed sketch of the proof technique rather than giv-
ing the complete proof. Assuming thistWLPoo(C') sat-
isfiesBSIA 1y, {m\ m1},{ 1} We need to show that is se-
cure, i.e.,C = C (by Definition 7). Let us prove this
statement by contraposition.
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setvalh, hi) & = epqr. yield(info, , ; ).outvar(l, Ir4+1) and
B = d.setvafh, hy) for somed such thaty = f.a. We
have a|ur (). By SecProgp we havedd'.d/|p =
alp Ad'|gr = () Ad.setvalh, hy).setvalh, hy).o! € Tr.

In other words, assumingObserve that setting to hy, means restoring the value bf



Seql:(C, (ho,lo)) — {C1, (h, 1)} (C1, (A1, 1)) —{Ch, (ha, 1)) (Ca, (ha,l2)) — (Cs, (ha,l3)) ...
Seq2:407 (h6;l0)b - 4D1,(iL’1,i1)D 4D17(h117l1)b _>4D27(ﬁl27i2)b 4D2,(h12,lz)b - 4D3’(ﬁ,3’i3)b

Figure 12. Sequences Seql and Seq2

Seql:... (Ch_1, (hk—1,lk—1)) = {Ch, (his 1)) {Chy (hiy Ie)) = (Crrrs (rerr, lr1))

SquZ.. 'qu—la (h;c—lalk—l)b - 4Dka(h;calk)b 4Dk7( ;c)lk)b 7“> 4Dk+17(ﬁ;6+17ik+1)b

Figure 13. The continuation of Seql and Seq2

~ =schedulépid,).setvarl, ly).setvalh, he).e; .yield(info, ) .outvar(, I ).
schedulépid, ).setvarl, I;).setvalh, hy ).e;.yield(info,).outvar(i, i). . . .
...schedulépid, ,).setval,l;_;).setvakh, hy_1).ex.yield(info, ).outvar(i, I,).
schedulépid, ).setva(l, I;).setvakh, hy).ex1 .yield(info, , , ) .outvar(, Iks1)

Figure 14. Sequence «

~' =schedulépid,).setvarl, ly).¢; .yield(info, ) .outvar(, I, ).
schedulépid, ).setvarl, I )¢}, .yield(info, ) .outvarl, i,). . . .
...schedulépid,_,).setvarl, I;_; ).€} .yield(info, ).outvar(i, I},).
schedulépid, ).setvall, Ix).e}, . , .yield(info, , , ).outvar(l, lks1)

Figure 15. Sequence ~'

N

4" =schedulépid,).setvaxl, ly).setvak h, hl) €} .yield(info, ).outvar(, I ).
schedulépid, ).setvall, I,).setvakh, h}).e! yield(info, ).outvar(l, i). . . .

...schedulépid,_,).setvarl,l;_;).setvafh, h},_,).e} yield(info,).outvar(i, ij,).
schedulépid,).setvafl, I ).setvakh, hy,).ex , ; .yield(info,  ; ).outvar(, lky1)

Figure 16. Sequence ~"

Seq2:(C, (hg,lo)) — D, (R, 1)) (D, (B, 1)) — (D2, (i, 12)) (D, (hy, 1)} — (Ds, (R, I3)) ...

oo ADk—1, (Mo, k1)) = (Di, (i, lk)) (D, (Bl 1)) = (Dt (g, lisn))

Figure 17. New form of Seq2
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from the result of the previous transition in Seql. We can us, it is appealing that generic thread pools, which served

just as well omit both updates afimplying §.a’ € Tr. as an intermediate step in this process, are independent of
Carrying on with the elimination of the rightmost event MWL. We expect that this will allow the adaptation of other

setvakh, h;) fori = k,...,0 we get a trace/ € Tr that multi-threaded programming languages, e.g., Slam [15].

(after removing all occurrences ofitvar(h, -)-events with- The main motivation of our work has been the objec-
out loss of generality) has the form depicted in Figure 15. tive to integrate the two kinds of security: the security of
Due to the low events embracing each local ewgnfor local computations and the security of their communica-
i =1,...,k + 1it must be the case that there is a one-to- tions. Event-based security aims at protecting occurience
one correspondence betwegrande} fori =1,...,k+1 of events and programming-language-based security aims
(although they are not necessarily identical). at protecting secret values. Our work is a step to aid in
The next pass is the insertion sktva(h,-) follow- the systematic security analysis of complex (potentialy d
ing the sequence Seq2. Let us construct new versiondributed) system where some of the components are (or shall
of ¢, a, B in order to applySecPropp,. Letc = be) implemented in a specific programming language. To
setvalh, h{), f = schedulépid,).setvall,ly) and « is the best of our knowledge this article is the first attempt to
such thaty’ = f.a. By SecProp.p we havedd'.o'|r = establish a rigorous connection between these two notions
alp A d|ar = () A B.setvakh, hj).o' € Tr. Continuing of security. The connection suggests directions for mutual
rightmostsetvalh, h}) (i = 0,...,k+1) insertionwe geta  benefits where the two areas can borrow from each other

tracey” € Tr that (again, after removing all occurrences of (cf. Future Work).
outvar(h, -)-events without loss of generality) has the form As a side effect, we have demonstrated how to use the

depicted on Figure 16. Due to the I@esheduleandyield- assembly kit [18] at the concrete example of the multi-
events embracing each local evehi(s = 1,...,k+ 1) it threaded programming language MWL. Using the assem-
must be the case that there is a one-to-one correspondendsly kit has turned out to be very helpful in the identification
betweere; ande} fori = 1,...,k + 1 (although they are  of an appropriate security property. This application gal
not necessarily identical). interesting because it shows how time-sensitive secuaity ¢

According to Lemma 2 we can now convert the trace be specified in the assembly kit. For a different technique
v into a sequence ofe-transitions. The crucial prop- to address timing channels by explititk-events we refer
erty is that these transitions are deterministic, i.e., if to[11].

(E,men} — (E',ment) thenVE" menY.(E, men} —
(E",menf) = E' = E" Amem = menf. In case
C may spawn processes, we also need the observation w
made about the same sequencepidt andinfo’s that are

Bisimulation vs Trace-based Equivalence. The reader
familiar with transition-system-based semantics might be

. ; B surprised by the fact that the article relates a bisimufatio
used in the construction of Seql and Seqg2. This is impor- . .
. . : based property of programs with a trace-based one. It is
tant to restore the branching behavior of traces as it was

. : well-known that small-step bisimulation makes more dis-
in Seql and Seq2. The fact that only programs with the .. ~ . P . :

; oS tinctions than trace-based equivalence. It is also well-
same branching structure can be low-bisimilar is reflected :
. ) o known that trace-based properties are usually not compo-
in the traces, because the branching behavior is recorded.... - .
. . . Sitional whereas bisimulation-based ones often are. Never
in the lowschedulesvents. Thus, by induction, we can re-

; o theless, we have been able to prove correctness and com-
store the sequence Seqg2, as depicted in Figure 17 for some P

. : - . pleteness results for our translation of the security pitype
commandDy1, which contradicts our original assumption . .
What made these developments possible in the pres-
about Seq2. O S . :
ence of the two major differences between the bisimulation-
] ) based and trace-based models? The crucial property is the
7. Discussion and Future Work deterministic nature of strong low-bisimulation. Indeed,
bisimulation is defined on deterministic transitions ensur
Contributions. We have established a one-to-one corre- ing that two bisimilar thread pools have the same branch-
spondence between a time-sensitive definition of securitying behavio? This property is necessary for guarantee-
for the multi-threaded programs of MWL (from [27]) and a ing scheduler-independent securityTwo programs have
security property based on traces of events that was origi-to have identical branching behavior in order to be indis-
nally developed in the context of a general security frame- tinguishable for the attacker under a scheduler-independe
work — the assembly kit (from [18, 19]). As a prerequi- low-bisimulation. Otherwise, the two programs in then
site for this, we had to model the semantics of MWL using andelse branches, respectively, of ahstatement with a
state-event systems, which resulted in the_spemfl_c_atlo_n ol 2Technically one can view the identifigid of a thread that is chosen
MWL thread 900|S- The development of t_h|5 specification yy the scheduler for the next transition as a label that ingisished by
has been straightforward (although technically subtl@). T the strong low-bisimulation.
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secret condition could be used to leak the secret conditionClaessen for useful feedback on bisimulation proofs. For
through observing the branching behavior ([27] shows how useful comments on the presentation, we would like to
to implement this attack using the properties of a particula thank Alexandra Heidger and Axel Schairer.

scheduler).

Although the determinism of bisimulation is the key fea- References

ture to relating bisimulation-based and trace-based nspdel
it is not crucial for the actual security definition of MWL
(certain security properties can be defined through low de-
terminism, as in [25, 24]). For example, if MWL had a non-
deterministic choice operatdrthen the non-deterministic
program/ := 0[]/ := 1 would be considered secure under
Definition 7. However, the two security definitions (Def-
inition 7 and Definition 2 for MWL thread pools) would
be no longer equivalent. Indeed, at no surprise, the com-
pleteness theorem (Theorem 4) would not hold. A coun-
terexample is the prograihh = 0 then C; else Cy where
Ci=1:=0(10:=1[1:=2)andCy = (I := 0;] :=

1) ] (I :== 0;1 := 2). This program is considered secure
under the trace-based model (Definition 2) but not secure
according to the bisimulation-based Definition 7. Note that
whether one intuitively considers this program as secure or
not depends very much on the model of computation one
has in mind. For a detailed investigation of this close re-
lation between notions of information flow and models of
computation (notions of equivalence) we refer to [26].

Future Work.  Plans for future work are centered around
exploiting the connection between the two types of security
that we have established in the present article. Promising
directions include the adaption of intransitive securiyip
cies’ for MWL basing on solutions that were proposed in
the context of the assembly kit [20] and progress towards a
development method that allows for the stepwise develop-
ment starting from abstract specifications and ending with
concrete programs (cf. [21] for recent progress on the re-
finement of information flow properties).

Another potentially interesting direction of researctois t

apply the reduction techniques of [27] combined with the [12]

results of this paper to reasoning about probabilistic secu
rity properties for event-based systems. Moreover, the in-
tegration of synchronization primitives for communicatio
between multiple thread pools together with an according
strengthening of the security predicate is another impbrta
goal for future work because it is a prerequisite for appyin
the results of this paper to truly distributed systems.
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