
A Generic Approach to the Security
of Multi-Threaded Programs

In Proceedings of the 14th IEEE Computer Security Foundations Workshop,
Cape Breton, Nova Scotia, Canada, pp. 126–142, June 11-13, 2001. IEEE
Computer Society.

c
�

2001 IEEE. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or prom otional purposes or
for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

Heiko Mantel
German Research Center
for Artificial Intelligence

Stuhlsatzenhausweg 3
66123 Saarbrücken, Germany

E-mail: mantel@dfki.de

Andrei Sabelfeld
Department of Computer Science

Chalmers University of Technology
and University of Göteborg
41296 Göteborg, Sweden

E-mail: andrei@cs.chalmers.se

Abstract

The security of computation at the level of a specific pro-
gramming language and the security of complex systems at
a more abstract level are two major areas of current secu-
rity research. With the objective to integrate the two, this
article proposes a translation of a timing-sensitive security
property for simple multi-threaded programs into a more
general security framework. Interestingly, our notion of se-
curity for programs is bisimulation-based while the secu-
rity framework is trace-based. Nevertheless, we show that
the translation issoundandcompletein the sense that the
trace-based specification which results from the translation
of a multi-threaded program is secure if and only if the orig-
inal program is secure. The translation is presented as a
two-step process where the first step is independent from
the concrete programming language.

1. Introduction

1.1. Motivation

An important step in the specification of secure infor-
mation flow in a complex distributed system where local
parts are written in a particular programming language is
to combine two types of security. Namely, the first type is
the security of communication between local computations
and the second type is the security of the local computa-
tions themselves. The former is often defined as security
of an event-based system (as in the underlying model of
[18]) whereas the latter relies on the security specification
of the programming language (as in the underlying model
of [27] for a simple imperative multi-threaded language).
Embracing the two kinds of security into a single security
framework is the motivation of this paper.

1.2. Background

There is a large body of research on information flow
control aiming at specifying, verifying, and analyzing se-
curity. In the traditional abstract view, security is often
defined for an abstracttrace-basedmodel of computation.
In particular, a system can be represented as a set of its
traces and, thus, security is a property that can be true
or false for a given set of traces. In a distributed set-
ting, these traces can be viewed as sequences of events
like, e.g., communication of local processes in a distributed
network. Many different approaches to this type of gen-
eral information flow control have been proposed (e.g.,
[13, 30, 12, 22, 16, 14, 33, 25, 26]), which increased the
need to unify and to compare. This has led to uniform
frameworks and detailed comparisons [23, 10, 34, 18].

Another line of research that is becoming increasingly
popular is information flow control in a setting of a con-
crete programming language. The efforts in this area are
focused on determining whether a given program written in
a particular programming language has secure information
flow. More concrete assumptions are usually made about
local computations. For example, one might assume that
the program runs on a partition of data on high (private) and
low (public) security data (although a more general lattice
of security levels can be considered). The program is not
trusted (possibly received over the Internet). The program’s
low output is publicly available (e.g., sent over the Internet)
as well as, perhaps, timing information about the program’s
execution (e.g., times when the program makes Internet ac-
cesses are observable).

Originating from early work of Denning [8, 9] and Co-
hen [5, 6], secure information flow in programming lan-
guages received its recent reincarnation in work of Vol-
pano et al. [32] with the main contribution being soundness
proofs for a Denning-style security analysis. Many other

researchers have investigated the problem of secure infor-
mation flow including Joshi and Leino’s equational spec-
ification [17], a single calculus for security, binding-time
analysis, program slicing and call-tracking (DCC) by Abadi
et al. [1], Heintze and Riecke’s Secure Lambda Calculus
(Slam) [15], Volpano and Smith’s investigations on security
of concurrent programs [29, 31], and Sabelfeld and Sands’s
security formalization based on partial equivalence relations
[28] and a scheduler-independent probability-sensitive se-
curity specification for multi-threaded programs [27].

The security formalization in the studies mentioned
founds on the extensional approach to security, namelynon-
interference[13]. The idea behind non-interference is that
a system is considered secure if high inputs do not interfere
with low-observable behavior of the system (low outputs,
timing, etc.).

It has often been claimed that extensional programming-
language-based security can be viewed as a form of non-
interference (e.g., in [32]), especially since the revivalof
the interest in language-based security. Nevertheless, for
the language-based extensional security models that have
been proposed since the mid-nineties a rigorous connection
to non-interference-like properties has not so far been es-
tablished to the best of our knowledge. This paper is a step
in this direction.

Our choice for the abstract event-based framework is
Mantel’s assembly kit [18]. Adapting the assembly kit al-
lows picking the appropriate security property from the as-
sembly kit rather than inventing a new one. This also allows
for combining the security of programs with the security of
other components in a (potentially distributed system) us-
ing the assembly kit as an interface. This means integrat-
ing programming-language-based security at a higher level
of abstraction, opening the opportunity for plugging the se-
curity of sub-systems written in a particular programming
language to the global security of the system defined in a
general event-based framework.

Finally, the assembly kit enjoys a number of useful ex-
tensions including local verification conditions [19], intran-
sitive security policies [20], and refinement operators [21],
which potentially enables us to use these verification tech-
niques, to apply intransitive security policies, and to do
stepwise development in the setting of secure information
flow in programs (although these issues are outside the
scope of the present article).

The focus of this paper is on a simple multi-threaded
language (MWL) and a timing-sensitive security specifica-
tion (strong security[27]) that implies robust security in-
dependently of a particular scheduler. We translate MWL
programs into state-event systems, pick an appropriate def-
inition of security from the assembly kit, and establish a
precise correspondence between the security of MWL pro-
grams and their translations. Namely, that the translationis

soundin the sense that the translation of any secure MWL
program is secure as a state-event system; andcompletein
the sense that if the translation of an MWL program is se-
cure as a state-event system then the original program is
secure.

1.3. Overview

After recalling some preliminaries in Section 2, we intro-
duce the concept of thread pools in Section 3. In Section 4,
we specialize this generic model according to the syntax
and semantics of the MWL programming language. That
this specialization indeed reflects the semantics of MWL, is
ensured by a collection of theorems in Section 5. The key
contribution of our translation is that it preserves the speci-
fication of secure information flow. Section 6 shows that a
thread pool is considered to be secure in the MWL program-
ming language if and only if the corresponding state-event
system is also considered to be secure in the assembly kit.
We conclude by a discussion in Section 7.

2. Preliminaries

2.1. System Specifications

The behavior of systems can often be adequately speci-
fied by the set of its possible execution sequences. We fol-
low this trace-based approach throughout this article (with
the exception of parts where we use a concrete program-
ming language). Atrace is a sequence of events that mod-
els a possible execution sequence of the system. Anevent
is an atomic action like, e.g., the sending or receiving of a
message on some channel. We distinguish between input
and output events. The underlying intuition is that input
events are controlled by the environment of a system while
output events are controlled by the system. The distinction
between input and output events is somewhat fuzzy. When a
system is capable to prevent the occurrence of input events,
then this can be interpreted as a signal to the environment.
To avoid this kind of communication,input totality is often
assumed, i.e., that a system cannot prevent the occurrence
of input events. Since input totality is quite restrictive,we
refrain from making this assumption in this article. In com-
plex systems, communication between components is done
by synchronization on the occurrence of shared events (usu-
ally output events of the one component that are input events
of others).

For specifying systems, we do not define the set of traces
directly but rather use states as an auxiliary concept. This
allows us to define the possible traces inductively by a tran-
sition relation. The system model, we use for specifica-
tion, are state-event systems. This system model allows
for the specification of non-deterministic systems where the

127

non-determinism is reflected by the choice between dif-
ferent events that are enabled. For simplicity, any non-
determinism in the effects of events is ruled out.

Definition 1 Let � be a set of states,� be a set of events,
and� � � �� �� be a transition relation. Astate-event
systemSES is a tuple�� � �� � � � � � 	 � �
 where�� � � are
the initial states and� � 	 � � respectively are the input
and output events. Throughout this paper we assume that
�� is a singleton set and that for a given state� and event�
there is at most one state�
 with �� � � � �

 � � .

Let �� � �� � �
 � � , � � � , and � � � �. Instead of
��� � � � ��
 � � we sometimes use the notation�� ���� �� .
For multi-event transitions, we use the notation�� ���� �
.
If � is obvious from the context then we omit the index and
write �� ��� �� or �� ��� �
. The relation ���� is formally
defined as follows:

�� ����� �
 , if �� � �

�� � ����� �
 , if ��� � � ��� ���� �� � �� ���� �

A sequence � � � of events is atrace of a state-event
systemSES� �� � !�" # � � � � � 	 � �
 if it is accepted in the
initial state, i.e.,��
 � � ��" $��� �
. The set of all traces
for SESis denoted byTrSES. We omit the index and simply
write Tr if the state-event system is obvious from the con-
text. The tuple�� � � � 	 �TrSES
 is referred to as theevent
systemcorresponding toSES. A state� � � is reachable,
denoted byreachable��
, if there exists a trace � � � such
that�" $�� �. Theprojection% &' (of a sequence% � � � to
the events in�
 � � results from% by deleting all events
not in �
.
2.2. Security Properties

Security requirements can be expressed as restrictions on
the information flow within a system. To express confiden-
tiality or integrity by such restrictions is the key idea of
information flow control. Asecurity property SecProp�)
consists of three elements: a flow policyFP, a domain as-
signmentdom, and a security predicateSP.

A flow policy specifies restrictions on the information
flow within a system. For this purpose, firstly, a set of secu-
rity domains is chosen. Typical domains are, e.g., groups of
users, collections of files, or memory sections. Secondly,
relations *+ �+ , �+ - � . � . are defined. Thenon-
interference relation*+ specifies where information flow
between domains is forbidden. E.g.,/ � *+ /� expresses
that there must beno information flowfrom / � to /�. The
interference relation+ , specifies that certain domains are
visible for others./ � + , /� expresses that/ � is visible
for /�. Finally, the relation+ - , specifies between which

L

HI H \ HI �0 � 1 � 2
3
HI �� � 4 � 4
3
L �L � H5HI � HI
3
H6HI �� � 4 � 4

Figure 1. The flow policy FPTP and the views
of all domains

domains information flow isnot restricted./� + - /� ex-
presses that/ � is not visible for/� but that information
about/ � may be deducible for/�.
Definition 2 A flow policy FP is a tuple�. �+ , �+ - � *+

where+ , �+ - � *+ � . � . form a disjoint partition of
. �. and+ , is reflexive. FP is calledtransitiveif + , is
transitive and, otherwise,intransitive.

A domain assignmentlinks a flow policy to a system speci-
fication by associating domains to events. We often denote
the set of all events with a given domain/ also by/ , the
name of the security domain, and use that name in lower
case, possibly with indices or primes, e.g.,7 � 7 � � � � �, to de-
note events with that domain.

Definition 3 A domain assignmentdom 8 � � . is a func-
tion that assigns domains to events.

We depict flow policies as graphs where each node corre-
sponds to a security domain. The relations+ , , + - , and
*+ are respectively depicted as solid, dashed, and crossed
arrows. For the sake of readability, the reflexive sub-relation
of + , is usually omitted. This graphical representation is
shown on the left hand side of Figure 1 for the flow pol-
icy FPTP, which consists of three domainsHI (high-level
input events),9 (low-level events), andH5HI (high-level
internal and output events). According toFPTP, occur-
rences of low-level events are visible for both high-level
domains. High-level inputs must not be deducible for the
low-level (HI *+ 9). Other high-level events may be de-
ducible (H5HI + - 9), if this does not reveal information
about high-level inputs.

Traditionally, FPTP would be defined as a policy with
two domains9 �: and the relations: *+ 9 , 9 + : . This
leaves it implicit that occurrences of events inH5HI may be
deducible forL. Our distinction between*+ and+ - allows
us to make such assumptions explicit in the flow policy.

A security predicatespecifies under which conditions a
system specification satisfies a flow policy for some domain
assignment. It can also be understood as adefinition of
what information flow means. SPmust be satisfied for the
view of each domain, whereas theview

3; � �0 � 1 � 2

128

for a domain/ � . in FP is defined by0 � � !/
 �
. & /
 + , / #, 1 � � !/
 � . & /
 + - / #, and
2 � � !/
 � . & /
 *+ / #. Basically, 0 contains
all events that arevisible for / , 2 contains all events that
areconfidentialfor / , and1 contains all events that are
neithervisible nor confidential. The views for all domains
of FPTP are depicted on the right-hand side of Figure 1.
Among these, the view of domainL is the only interesting
one because it gives rise to a non-trivial proof obligation.
The precise proof obligation, of course, depends on the se-
curity predicate.

An assembly kit that allows for the uniform and modular
representation of security predicates, has been previously
proposed by one of the authors [18]. It simplifies the com-
parison among the existing security predicates and a goal-
directed construction of new ones. In the assembly kit, se-
curity predicates are composed by conjunction from one or
more basic security predicates (abbreviated byBSP).

For the purposes of the current paper, a simple secu-
rity predicate suffices which consists only of a singleBSP,
backwards strict insertion of admissible confidential events
(abbreviated byBSIA). BSIA� requires that the occurrence
of an event from2 doesnot removepossible low-level ob-
servations. Considering the system after a trace� has oc-
curred, any observation% � 0 � that is possible must also
be possible after an arbitrary confidential event� � 2 has
occurred. If the observation% results from% � �0 � 1
�,
i.e., % &, � %, then some%
 � �0 � 1
� must be possi-
ble after� has occurred where%
 may differ from% only in
events from1 . The premise� �� � Tr ensures that the event
� is admissible after� . For a given view

3 � �0 � 1 � 2
,
BSIA� is formally defined as follows:

BSIA, �- �� �Tr
 �
�% � � �� � �� � �2 � ��� �% �Tr � % &� � 	
 � � �� �Tr
�� �%
 �� � � �%
 &, � % &, � %
 &� � 	
 � � �� �%
 �Tr

The security guarantee provided byBSIAis: if an adversary
observes% starting in some state then he or she cannot de-
duce that a confidential event� has notoccurred. Clearly, it
could also be important to prevent an adversary from de-
ducing that a confidential eventhas occurred. ForBSPs
which provide this type of guarantee (and others), we re-
fer to [18, 19, 20].

3. Generic Thread Pools

For distributed programming, the use of multi-threaded
programming languages has become extremely popular [4].
The use of concurrent threads that operate in the same ad-
dress space appears to be the adequate approach for applica-
tions that are, e.g., based on the client-server paradigm. For
example, this allows one to program a file server that cre-
ates, for every incoming request, a new thread that handles

outvarexecutedapid

ainfo

Thread Pool

yieldschedule

thread

memsetvar

Figure 2. Generic thread pool with interface
events and state objects

this request and terminates afterwards. Compared to paral-
lelism at the level of processes, an important advantage is
that context switching is far less expensive for threads.

To model the behavior of multi-threaded processes in
state-event systems is technically somewhat difficult.1 The
main difficulty is that threads communicate with each other
asynchronously via shared memory, while state-event sys-
tems are based on a synchronous, message-passing-like
communication paradigm (cf. Section 2.1). However, to
specify processes with these formalisms is very natural be-
cause inter-process communication is usually synchronous.

In this section, we demonstrate how the behavior of
multi-threaded processes can be modeled using state-event
systems. The proposed specification is highly generic be-
cause it is not only parametric in the particular program but
also in the programming language. How to instantiate this
specification for the concrete programming language MWL
will be demonstrated in Section 4.

3.1. Trace-Based Formal Specification

In our specification, a multi-threaded process is modeled
as a collection of threads that shares a global memory. We
refer to such a collection as athread pool. As depicted in
Figure 2, a thread pool has five state objects (mem, thread,
apid, ainfo, executed) and can communicate with the envi-
ronment by four kinds of interface events (setvar-, outvar-,
schedule- andyield-events).

The shared memoryof a thread pool is modeled by the
functionmem8 VAR � VAL that assigns values (fromVAL)
to variables (fromVAR). The shared memory can be up-
dated at the interface of a thread pool bysetvar-events. If an
eventsetvar�var�val
 occurs then variablevar is assigned
valueval. outvar-events output the value of variables to the
environment. An eventoutvar�var�val
 is only enabled if
var currently has valueval. For simplicity, we assume that
outvar-events have no other preconditions and thatsetvar-
events are always enabled.

The local state of threadsis modeled by the function
thread 8 PID � �THREAD � !� �� � 	
#
. thread�pid
 re-

1Similar problems occur when using process algebras like CSPor CCS.

129

turns a local state (fromTHREAD) for the identifierpid �
PID. The results� , �, and 	
 do not denote a proper local
state but have a special meaning. If a thread with identifier
pid has never existed thenthread�pid
 � � holds. After
a thread has spawned child processes, the identifier of the
parent thread is modified andthreadreturns� for the old
identifier. If thread�pid
 � 	
 then a thread with identifier
pid has existed but has already terminated.

The remaining state objects are used for controlling the
execution of threads. The value ofapid � PID � !� # de-
notes the identifier of the thread that is currently active in
the thread pool.apid � � indicates that no thread is active.
For simplicity, we assume that there is at most one active
thread at any point of time.ainfo is a buffer in which in-
formation is collected that shall be send to the scheduler.
Note that the scheduler is external to a thread pool. The flag
executed8 BOOL is used for managing context switching.
Thread execution proceeds as follows.

� If no thread is active (indicated byapid � �) then
schedule-events are enabled. After an occurrence of
schedule�pid
, apid is set topid, and the thread with
local statethread�pid
 becomes active.schedule�pid

is only enabled if the thread is alive (thread�pid
 *�
!� �� � 	
#).

� If there is an active thread (indicated byapid *� � �
executed� ff) then this thread can run. Thread execu-
tion is formally modeled by the occurrence of events
that are internal to the thread pool. Since these internal
events depend closely on the particular instantiation
of a generic thread pool, especially on the program-
ming language, they are intentionally not modeled at
the generic level. During execution, a thread can af-
fect the state objectsmemand thread. Additionally,
information for the scheduler is stored inainfo. Even-
tually, the active thread stops executing (indicated by
executed� tt).

� After the active thread has stopped (executed� tt), the
scheduler can be informed about this by ayield-event.
yield�info
 is only enabled ifinfo corresponds to the
actual scheduler information (info � ainfo). A yield-
event resets theexecuted-flag,apid, andainfo.

For the initial state, we assume that all variables are initial-
ized with the same valueinitval. Moreover, we assume that
there is exactly one thread. This thread hasinitpid as iden-
tifier and initthread as local state. In the initial state, the
executed-flag,apid, andainfoare reset.

Generic thread pools are formalized as state-event sys-
tems in the following definition.

Definition 4 Let VAR, VAL, PID, THREAD, andINFO be
types. Let� , �" , �pool, �pool, 	pool, and�pool be defined

as depicted in Figure 3. Let initval� VAL, initpid � PID,
initthread � THREAD, � local be a set of events that is dis-
joint from�pool, and� local � � �� local �� be a transition
relation.

The generic thread poolwhich is parametric inVAR,
VAL, PID, THREAD, INFO, initval, initpid, initthread,
� local, and � local, is defined by the following state-event
system:

GenPool�VAR �VAL�PID �THREAD�INFO �
initval � initthread� initpid � � local � � local
� �� � !�" # � �pool � � local � �pool� 	pool� �pool � � local

3.2. Security of Thread Pools

The problem of information flow control in multi-
threaded programming languages is to prevent information
flow from high to low variables. For this purpose, a se-
curity level (low or high) is assigned to each variable by a
function domvar 8 var � !low�high#. This differs from
the event-based approach, in which information flow con-
trol prevents that occurrences or non-occurrences of confi-
dential events affect the possibility of observable behaviors.
Although both approaches share the same intuitive motiva-
tion, i.e., that there should be no information flow from high
to low, this technical difference complicates an integration
of the two approaches. However, an integration is very de-
sirable because it allows for a uniform investigation of in-
formation flow at the level of processes as well as at the
level of threads.

The key observation, which will allow us to integrate the
two approaches, is that high-level data can only be intro-
duced into a thread pool by occurrences ofsetvar-events
that change the value of high-level variables. All other
events can change the state of the thread pool but cannot
increase the confidentiality of data. Thus, we can express
the security requirement by demanding that the occurrences
of thesesetvar-events must not influence the possibility of
low-level observations.

The flow policy FPTP (cf. left-hand side of Figure 1)
expresses the necessary restrictions on information flow.
We assume that a (malicious) low-level user has complete
knowledge about the definition of thread pools (as usual),
can observe the occurrence ofschedule- andyield-events,
and can observe the occurrences ofoutvar- and setvar-
events that involve only low-level variables. Consequently,
all these events are assigned domainL (cf. Figure 4).setvar-
events that involve high-level variables are assigned domain
HI because the occurrence of these events must not be de-
ducible by a low-level user. Occurrences of all other events
must not be observable by the low-level user. They may be
deducible. However, such deductions must not reveal any
information about occurrences of events inHI.

130

� � !mem� thread�apid�ainfo�executed&
mem8 VAR � VAL � thread 8 PID � THREAD � !� �� � 	
#�
apid 8 PID � !� # �ainfo 8 INFO � !� #�executed8 BOOL#

�" � !�var � VAR �mem�var
 � initval� thread�initpid
 � initthread��� �7 � PID�pid *� initpid �� thread�pid
 � � �
apid � � �ainfo � � �executed� ff#

�pool
� �pool � 	pool

�pool
� !setvar�var�val
 & var � VAR � val � VAL# � !schedule�pid
 & pid � PID#

	pool
� !outvar�var�val
 & var � VAR � val � VAL# � !yield�info
 & info � INFO#

�pool is defined by
� setvar�var�val
 affectsmem�var

Pre : true
Post: mem’�var
 � val

� schedule�pid
 affectsapid
Pre : apid � � � thread�pid
 *� !� �� � 	
#
Post: apid’ � pid

� yield�info
 affectsexecuted, apid, ainfo
Pre : executed� tt � ainfo � info
Post: executed’� ff � apid’ � � � ainfo’ � �

� outvar�var�val
 affects —
Pre : mem�var
 � val
Post: true

Figure 3. Definition of fixed components of a generic thread po ol

� dom�) ��

schedule�pid

yield�info
 L

setvar�var�val

outvar�var�val
 L , if domvar�var
 � low

setvar�var�val
 HI , if domvar�var
 � high
outvar�var�val
 H5HI , if domvar�var
 � high
� H5HI , if � � � local

Figure 4. Domain assignment dom�)

131

Definition 5 The security property SecProp�) for thread
pools is�FPTP�dom�) �BSIA
.
According to FPTP, proof obligations arise only for the
view of domainL. Thus, a thread poolsatisfies SecProp�)
if BSIA� holds for the view

3� � �L �H5HI �HI
. Note
thatBSIA(cf. Section 2.2) is indeed an appropriate defini-
tion of information flow for this application. The argument
is as follows: if changing the value of high-level variables
does not eliminate the possibility of low-level behaviors,
then there is no information flow from high to low because
high-level variables could have any value at any given point
of time. Technically, a similar effect could be achieved by
demanding aBSPthat deletes confidential events, like, e.g.,
BSD (cf. [19]). However, this possibility is not important
for the purposes of this paper.

In general, choosing a definition of information flow
closely depends on the particular application under consid-
eration and there appears not to be a single “right” definition
(as, e.g., also observed in [26]). The assembly kit offers a
(still growing) collection of very primitive definitions ofin-
formation flow (BSPs) and allows one to assemble these to
more complex definitions (security predicates). This fine-
grained view has proved to be very helpful for determining
SecProp�) .

4. MWL Thread Pools

In this section, we revisit the simple multi-threaded
while-language (abbreviated by MWL) along with the
timing-sensitive definition of security for MWL from [27].
Further, we demonstrate how our generic specification of
thread pools from Section 3 can be instantiated for MWL.

4.1. The Multi-Threaded While-Language MWL

MWL is a shared-variable multi-threaded while-
language with dynamic thread creation. The syntax of
MWL commands is given by the grammar in Figure 5. As
usual, boolean expressions

�
range overBOOL and arith-

metic expressions� �� range overEXP. Let 2 � / � � � � � �
range over commands (MWL threads)CMD, and let

�2 de-
note a vector of commands of the form	2� � � � 2�
. Vec-
tors

�2 � �/ � �� � � � � range over
�

CMD � ����CMD� , the set of
multi-threaded programs.

MWL programs execute under a shared memory on a
single processor (or in a single process) such that at most
one thread can be active at any given point of time. Acon-
figuration 	&2 �mem&
 (or 	& �2 �mem&
) is a pair, consisting of a
command2 � CMD (or a vector of commands

�2 � �
CMD)

and a memorymem� VAR � VAL. memis a finite map-
ping from variables to values, as in Section 3. The set of
variables is partitioned into high and low security classes.

For simplicity (but without loss of generality), we will as-
sume that there is only one variable for each security class,�

and�, respectively. We will often write the memory sim-
ply as a pair�val	 �val

 with the valuesval	 for

�
and

val
 for �. Further, we definelow-equivalenceon memo-
ries by “mem� ��

mem� if and only if the values of� for
mem� andmem� are the same”. The small-step semantics
is given by transitions between configurations. The deter-
ministic part of the semantics is defined by the transition
rules in Figure 6. Arithmetic and boolean expressions are
executed atomically by� transitions. The� -transitions are
deterministic. The general form of a deterministic transition
is either	&2 �mem&
 � 	&	
 �mem
 &
, which means termination
with the final memorymem
, or 	&2 �mem&
 � 	&2
 �/ �mem
 &
.
Here, one step of computation starting with command2 in
a memorymemgives a new main thread2
, a vector

�/
of spawned threads (possibly empty), and a new memory
mem
. The commandfork�2 �/
, where

�/ is required to be
non-empty, dynamically creates a new vector

�/ of threads
that, afterwards, run in parallel with the main thread2 . This
has the effect of adding the vector

�/ to the configuration.
The rule [Pick] in Figure 7 defines the concurrent semantics
of MWL. Whenever the scheduler picks a thread2
 for ex-
ecution, then a� -transition takes place updating the com-
mand pool and the shared memory according to a (small)
computation step of2
. Let �� denote the reflexive and
transitive closure of� .

We can extract a simple model of the timing behavior
of multi-threaded programs from the small-step semantics.
This is done by the assumption that each� -transition takes
a single unit of time to execute. This approach gives only
a rough approximation of real timing behavior, but simple
extensions are possible in order to make it sensitive to the
timing behavior of particular commands (cf. [2]).

4.2. Definition of Security for MWL

Now, we define the security of MWL programs and mo-
tivate the choice of this definition. The central idea of
extensionalsecurity, as opposed tointensionalsecurity, is
that confidentiality should not be specified by a special-
purpose security formalism, but, rather, should be defined
in terms of a standard semantics as a dependency property
(more precisely, absence of dependence). If direct, indi-
rect, and timing flows are considered, then, intuitively, a
program has the extensionalnoninterferenceproperty, if
varying the high input will not change the possible low-
level observations, i.e., low inputs/outputs and timing. This
differs from intensional security which relies on particu-
lar security primitives that are only motivated by intuition
rather than a mathematical justification. Many investiga-
tions have successfully followed the extensional view in-
cluding [6, 32, 15, 29, 1, 31, 17, 27, 2, 28] for justification

132

CMD 88� skip & VAR 8� EXP & CMD� �CMD� & if BOOL then CMD� else CMD�
& while BOOL do CMD & fork�CMD �

CMD

Figure 5. Command syntax

�
Skip

� 	&skip �mem&
 � 	&	
 �mem&

�
Assign

� � �� �mem� �

	&� 7 8� � �� �mem&
 � 	&	
 � �� 7 � ��
mem&

�
Seq� � 	&2 � �mem&
 � 	&	
 �mem
 &
	&2 � �2� �mem&
 � 	&2� �mem
 &

�
Seq� � 	&2 � �mem&
 � 	&2
� �/ �mem
 &

	&2 � �2� �mem&
 � 	&�2
� � 2�
 �/ �mem
 &

�
If tt

�
� �mem� tt	&if � then 2� else 2� �mem&
 � 	&2 � �mem&

�
If ff

�
� �mem� ff	&if � then 2� else 2� �mem&
 � 	&2� �mem&

�
Whilett

�
� �mem� tt	&while

�
do 2 �mem&
 � 	&2 �while

�
do 2 �mem&

�
Whileff

�
� �mem� ff	&while

�
do 2 �mem&
 � 	&	
 �mem&

�
Fork

� 	&fork�2 �/
�mem&
 � 	&2 �/ �mem&

Figure 6. Small-step deterministic semantics of commands

�
Pick

� 	&2
 �mem&
 � 	& �2 �mem
 &

	&	2� � � � 2�
 �mem&
 � 	&	2� � � � 2
�� �2 2
� � � � � 2�
 �mem
 &

Figure 7. Concurrent semantics of programs

133

of security analysis and verification techniques for different
languages. We follow the extensional approach and focus
on extensional security for MWL.

A previous investigation [27] gives an account on choos-
ing an adequate definition of extensional security for multi-
threaded programs. Which definition is appropriate depends
on, for instance, whether a particular scheduler is assumed,
or a robust scheduler-independent security is wanted. The
central idea of the bisimulation-based approach is to de-
fine a low-bisimulationon commands such that the indis-
tinguishability of the behaviors of two programs2 and/
for the attacker is formalized by2 �� / , where��

is
a low-bisimulation. Such an approach is flexible in the
choice of an appropriate low-bisimulation (different low-
bisimulations are available for different degrees of secu-
rity). For a given low-bisimulation��

, the definition of se-
curity is simply: “2 is secure iff2 �� 2 ”. For the purpose
of this paper we adapt thestrong low-bisimulation[27].

Definition 6 Definestrong low-bisimulation
��

to be the
union of all symmetric relations� on MWL command pools
(programs) of equal size for which whenever	2� � � � 2�
 �	/ � � � � / �
 then

�
mem� �mem� � � �	&2
 �mem� &
 � 	& �2
 �mem
� &

� mem� ��
mem� ��

� �/
 �mem
� �	&/
 �mem� &
 � 	& �/
 �mem
� &

� mem
� ��

mem
� � �2
 � �/

Our definition of security for MWL programs is based
on strong low-bisimulations. The choice of this particu-
lar bisimulation results in a definition of security that is
timing-sensitive and scheduler-independent.Strong bisim-
ulation captures timing flows.If two commands might have
a different timing behavior depending on high data (which
would result in information flow from high to low) then
they are not low-bisimilar.Strong bisimulation is scheduler-
independent.Thus, our notion of security is robust with the
respect to any choice of a particular scheduler (including
probabilistic schedulers as shown in [27]). Although these
features impose restrictions on what can be considered low-
bisimilar, the choice ofstrong low-bisimulation is adequate
(not too restrictive), e.g., for the type-based analysis that
is proposed in [27]. This analysis is sound with respect to
the security definition, i.e., if a program passes the analysis,
then it must be secure. For more details on the power of this
type of security definition to capture insecure programs and
examples of secure programming with common algorithms,
such as sorting and searching, we refer to [27, 3].

Definition 7 An MWL program
�2 is secureif and only if�2 �� �2 .

In order to illustrate Definitions 6 and 7 we give some ex-
amples of secure and insecure information flow which may
occur in MWL programs.

� 8� �
This is an example of adirect flow. To see that

this program is insecure according to Definition 7,
choosemem� � �� � �
 and mem� � �� � �
. Since	&� 8� � � �� � �
 &
 � 	&	
 � �� � �
 &
 and 	&� 8� � � �� � �
 &
 �	&	
 � �� � �
 &
 holds, the resulting memories are not low-
equivalent�� � �
 *�� �� � �
. Thus, there cannot be a
relation with the properties necessary for strong low-
bisimilarity.

if
� � � then � 8� � else � 8� � This exemplifies anindi-

rect flow through branching on a high condition. If
the computation starts with low-equivalent memories
�� � �
 and �� � �
, then, after one step of the computa-
tion (the test of the condition), the memories are still
low-equivalent. However, after another computation
step they become different depending on the initial
value of

�
. There cannot be a relation with the proper-

ties necessary for strong low-bisimilarity.

if
� � � then �while � � MaxIntdo � 8� � � �
 else skip

From the timing behavior of the program the attacker
may deduce secret information. This is an instance
of a timing leak. Clearly, the timing behavior of the
branches is different. This is captured by Definition 7.
Indeed, in case thethen-branch of theif is chosen,
there will be no transition in the other branch to match
the transitions of thewhile-loop.

if
� � � then �while true do skip
 else skip is a variation

of the timing leak called aterminationleak.

All examples above are insecure according to our definition.
Here is an instance of a secure program:

if
� � � then

� 8� � � � else skip Indeed, the timing be-
havior is independent of the value of

�
, as well

as the low variable�. A suitable symmetric rela-
tion that makes this program low-bisimilar to itself
is, e.g., the relation!�if � � � then

� 8� � �
� else skip � if � � � then

� 8� � � � else skip
 � �� 8�� � � �skip
 � �skip � � 8� � � �
 � �� 8� � � � � � 8�� � �
 � �skip �skip
 � �	
 � 	

#.
4.3. Instantiating Generic Thread Pools

We now instantiate our generic model for thread pools
from Section 3 in order to model the behavior of the multi-
threaded programs of MWL. Recall, that, according to Def-
inition 4, the following parameters must be actualized:

� types:VAR, VAL, PID, THREAD, INFO

134

� initial values:initval, initthread, initpid,

� internal events:� local; and their behavior:� local.

Consistently with the simplification of Section 4.1, the set
VAR of variables consists of only two variables

�
and� (hav-

ing in mind that
�

is a high-level and� a low-level vari-
able). We do not further specify the setVAL of values.
However, we assume that there is a setEXP of expressions.
� �� �mem� val denotes that� �� � EXP evaluates toval
where the memorymemin the index is only important if
� �� contains variables. Moreover, assume a setBOOL of
boolean expressions.

� �mem� tt and
� �mem� ff de-

note, respectively, that
� � BOOL evaluates totrueor false.

PID is specialized to the set of sequences of natural num-
bers (PID � � �). The setTHREAD is specialized toCMD,
i.e., the local state of a thread is simply an MWL com-
mand. INFO is specialized toVAL � INT whereVAL is
the value of the priority variable (which is adapted to be�
for simplicity) and theINT part says whether the process
has been killed (value� �), continues running (value�) or
has spawned� � � new processes (value�).

We do not further specifyinitval, the initial value of all
variables. The identifier of the (unique) initial thread is
zero, i.e.,initpid � �. MWL thread pools shall be para-
metric in the initial thread (parameterinitthread).

We now introduce two auxiliary functionsfirst 8 CMD �
CMD andrest 8 CMD � CMD� ! 	
#. The purpose offirst and
rest is to decompose sequential compositions. In the defi-
nition given in Figure 8 we assume that2� doesnot have
the form/� �/� , i.e.,2� is not a sequential composition on
the top level. The set� MWL

local of internal events of an MWL
thread pool is defined in Figure 9. Note that for each of
these events there is a corresponding rule of the small-step
semantics (cf. Figure 6). E.g., theassign-events correspond
to rule Assign and the eventsitett anditeff respectively cor-
respond to Iftt and Ifff. With the exception of the rules Seq�
and Seq� , there are corresponding events in� MWL

local for each
rule in Figure 6. The reason for this correspondence is that,
on the one hand side, events model atomic actions and, on
the other hand, rules of a small-step semantics model atomic
transitions between states (or configurations – in the case of
MWL). The atomic actions that can occur during the execu-
tion of an MWL thread pool include, taking up time (caused
by skip), assignments to variables, branching in the control
flow depending on boolean tests (if then else or while do),
or spawning of threads (fork). Note that, we do not consider
the decomposition of sequentially composed commands as
a separate action. Thus, there are no corresponding events.

The behavior of internal events is defined by the transi-
tion relation� MWL

local (cf. Figure 10). Clearly,� MWL

local should re-
flect the semantics of MWL. The pre- and postcondition of
each event shall capture the corresponding rule of the small-
step semantics. E.g., the precondition ofassign�var�val
 re-

quires that there is an active thread (apid *� �) that has not
already executed a command (executed� ff), the current
command must be an assignment (first�thread�apid

 �
var 8� � ��), and the expression� �� must evaluate toval
under the current memory (� �� �mem� val). Note that,
when new threads are spawned, then the generation of iden-
tifiers is managed in such a way that no pid is used for two
different processes (cf. postcondition offork). That� MWL

local
indeed reflects the semantics of MWL will be proved in
Section 5.

The instantiation of generic thread pools for MWL is
summarized in the following definition.

Definition 8 Let initthread� CMD. TheMWL thread pool
for initthread results from the following instantiation of
generic thread pools:

MWLPool�initthread
 � GenPool�!� � �# �VAL� � � �CMD �
VAL � INT � initval � initthread� � � � MWL

local � � MWL

local

5. Semantic Relation between MWL Programs

and MWL Thread Pools

The objective of our specification of MWL thread pools
was to provide an adequate model of MWL programs and
their behavior. Firstly, any behavior of an MWL thread pool
should comply with the MWL semantics. Secondly, any
behavior that complies with the MWL semantics should be
possible for an MWL thread pool. That our specification,
indeed, is adequate is ensured by the results presented in
the current section.

Recall that the system models that, respectively, underly
MWL programs and MWL thread pools are somewhat dif-
ferent. The model underlying MWL programs is based on
trees of states(to be precise, configurations). It is possible
to enrich these trees with events but from the perspective of
the underlying paradigm these events would be mere dec-
orations. Since the model of computation is state-based,
the natural communication paradigm is via shared memory.
The system model underlying MWL thread pools is based
on sequences of events. It is possible to enrich these se-
quences with states but from the perspective of the under-
lying model these states would be mere decorations. Since
the system model is event-based, the natural communica-
tion paradigm is via message passing. These differences
between the system models on which MWL programs and
MWL thread pools are based, somewhat complicate the
proofs of the following theorems.

5.1. Adequateness of MWL Thread Pools

In Theorem 1 we will show that every trace of an MWL
thread pool models a behavior that complies with the se-
mantics of MWL. We define the functioncseq, which

135

	first�2
 � rest�2

 �
��
�

	2 � 	

 , if 2 � !skip �var 8� � �� � if � then 2� else 2� �
while

�
do 2 � fork�2 �/
#	2� � 2�
 , if 2 � �2 � �2�

Figure 8. Definition of first and rest

� MWL

local
� !skip#� !assign�var�val
 & var � VAR � val � VAL#

� !itett �� � 2 � � 2�
 � iteff �� � 2 � � 2�
 & � � BOOL � 2� � 2� � CMD#
� !whilett �� � 2 �
 �whileff �� � 2 �
 & � � BOOL � 2� � CMD#
� !fork�2 � �/
 & 2 � CMD � �/ � �

CMD#
Figure 9. Definition of local events � MWL

local of an MWL thread pool

� MWL

local is defined by
� skipaffectsthread�apid
, executed, ainfo

Pre : executed� ff � apid *� � � first�thread�apid

 � skip
Post: thread’�apid
 � rest�thread�apid

 � executed’� tt

�ainfo’ � �mem��
 � terminates�thread�apid

� assign�var�val
 affectsmem�var
, thread�apid
, executed, ainfo

Pre : executed� ff � apid *� � � � �� �mem� val � first�thread�apid

 � var 8� � ��
Post: mem’�var
 � val � thread’�apid
 � rest�thread�apid

 � executed’� tt

�ainfo’ � �mem��
 � terminates�thread�apid

� itett �� � 2 � � 2�
 affectsthread�apid
, executed, ainfo

Pre : executed� ff � apid *� � � � �mem� tt � first�thread�apid

 � if
�

then 2� else 2�
Post: thread’�apid
 � 2� � rest�thread�apid

 � executed’� tt � ainfo’ � �mem��
 � �

� iteff �� � 2 � � 2�
 affectsthread�apid
, executed, ainfo
Pre : executed� ff � apid *� � � � �mem� ff � first�thread�apid

 � if

�
then 2� else 2�

Post: thread’�apid
 � 2� � rest�thread�apid

 � executed’� tt � ainfo’ � �mem��
 � �

� whilett �� � 2 �
 affectsthread�apid
, executed, ainfo

Pre : executed� ff � apid *� � � � �mem� tt � first�thread�apid

 � while
�

do 2�
Post: thread’�apid
 � 2� �while

�
do 2� � rest�thread�apid

 � executed’� tt � ainfo’ � �mem��
 � �

� whileff �� � 2 �
 affectsthread�apid
, executed, ainfo
Pre : executed� ff � apid *� � � � �mem� ff � first�thread�apid

 � while

�
do 2�

Post: thread’�apid
 � rest�thread�apid

 � executed’� tt
�ainfo’ � �mem��
 � terminates�thread�apid

� fork�2 � / � � � � / �
 affectsthread�apid
, thread�apid��
 � � � thread�apid��
, executed, ainfo
Pre : executed� ff � apid *� � � first�thread�apid

 � fork�2 / � � � � / �

Post: thread’�apid
 � � � thread’�apid��
 � 2 � rest�thread�apid

�� � � !� � � � � �� # 8 thread’�apid��
 � /
 � executed’� tt � ainfo’ � �mem��
 ��

whereterminates�thread�apid

 equals� � if rest�thread�apid

 � 	
 and� otherwise.

Figure 10. Definition of transition relation � MWL

local of an MWL thread pool

cseqaux �pid� thread
 �

������
�����

	
 , if thread�pid
 � !� � 	
#
thread�pid
 , if thread�pid
 � CMD
cseqaux �pid�� � thread
 � � �
� � �cseqaux �pid�� � thread
 , if thread�pid
 � �

� � � is chosen maximal such thatthread�pid��
 *� �
Figure 11. Definition of cseqaux

136

translates a functionthread 8 PID � �CMD � !� �� � 	
#

into a corresponding vector of MWL commands. Note that
this definition exploits that identifiers are chosen incremen-
tally by fork-events and thatthread�pid
 � 	
 holds after
termination of a thread with identifierpid.

Definition 9 cseq 8 �PID � �CMD � !� �� � 	
#
 � �
CMD

returns a corresponding vector of MWL commands for each
function thread 8 PID � �CMD � !� �� � 	
#
. cseq
is defined bycseq�thread
 � cseqaux �� � thread
 where
cseqaux 8 PID � �PID � �CMD � !� �� � 	
#
 � �

CMD
is defined in Figure 11.

We now present two lemmas that are helpful for proving
Theorems 1, 3, and 4. The proofs of lemmas and theo-
rems that are omitted in the present paper can be accessed
via the authors’ homepages. Throughout this section, we
assume thatSES � �� � �� � � � � � 	 � �
 models an MWL
thread pool, i.e., thatSES � MWLPool�initthread
 holds
for some commandinitthread � CMD.

Lemma 1 If reachable��
 holds in a state� of SES then

� executed�� ff�apid� *� � � thread��apid�
 �� !� ���	
#,
� executed� � tt � apid� *� �, or
� executed� � ff � apid� � � holds.

Lemma 2 Let � � �
 be states of SES with executed� � ff,
apid� *� �, �����7 � �apid�
 �� !� �� � 	
#, and� � � MWL

local
be an event such that� ��� �
 holds.

� If � *� fork�2 � / � � � � / �
 then	&thread� �apid�
 �mem� &
� 	&thread�(�apid�(
 �mem� (&
.
� If � � fork�2 � / � � � � / �
 then	&thread� �apid�
 �mem� &
 �	&thread�(�apid� ��
 � � � thread�(�apid� ��
 �mem�(&
.

Theorem 1 Let � � �
 � � be states of SES,� � � � be a se-
quence of events, and

�/ � � �/ �(be vector of MWL commands
with

�/ � � cseq�thread�
 and
�/ �(� cseq�thread�(
. If

reachable��
, � ��� �
, and � contains no setvar-events
then 	& �/ � �mem� &
 �� 	& �/ � (�mem�(&
.
In Theorem 2, we will show that for every behavior that
complies with the semantics of MWL, there is a correspond-
ing trace of an MWL thread pool which models that behav-
ior. We now present a lemma that is helpful for proving that
theorem and also Theorems 3 and 4.

Lemma 3 Let 2
 � CMD, / � � � � / � � �
CMD, and mem
 8

VAR � VAL. Moreover, let� be a state of SES with
executed� � ff, apid� *� � , and thread� �apid�
 �� !� ��� 	
#.

1. If 	&thread� �apid�
 � mem� &
 � 	&2
 � mem
 &
 then there
exists an event� � � MWL

local and a state�
 of SES with

� ��� �
, mem�(� mem
, thread�(�apid�
 � 2
,
apid�(� apid�, and executed�(� tt. Moreover, for
all pid � PID with pid *� apid� holds thread�(�pid
 �
thread� �pid
.

2. If 	&thread� �apid�
 �mem� &
 � 	&2
/ � � � � / � �mem
 &

(with � � �) then there exists an event� � � MWL

local
and a state�
 of SES with� ��� �
, mem�(�
mem
, thread�(�apid�
 � �, apid�(� apid�, and
executed�(� tt. Moreover, thread�(�apid� ��
 � 2
,
thread�(�apid� ��
 � /
 holds for all

� � !� � � � � �� #,
and thread�(�pid
 � thread� �pid
 holds for all pid �
PID with pid

�� !apid� �apid� �� � � � � �apid� �� #.

Theorem 2 Let � be a state of SES such that apid� � � ,
executed�� ff, and reachable��
. Let

�/ �� cseq�thread�
,�/
 � �
CMD, and mem
 8 var � val. If 	& �/ � �mem� &
 ��	& �/
 �mem
 &
 then there exists a sequence� 8 � � that con-

tains no setvar-events and a state�
 � � such that� ��� �
,
mem�(� mem
, and

�/
 � cseq�thread�(
.
Theorem 1 and 2 ensure that MWL thread pools are an ad-
equate specification of MWL programs and their behavior.
All behaviors of an MWL thread pool comply with the se-
mantics of MWL and all behaviors that comply with the
semantics of MWL are possible for an MWL thread pool.

6. Soundness and Completeness Results

The aim of this section is to establish the soundness and
completeness results. First, we recall the definition of the
translation of a program in MWL into a state-event system
and then proceed by proving soundness (if2 is secure as an
MWL program then its translation is secure as a state-event
system) and completeness (if2 ’s translation is secure as a
state-event system then2 is secure).

According to Definition 8 from Section 4, the transla-
tion MWLPool�2
 of an MWL program2 is the thread
pool with initthread � 2 . The following two sub-sections
present the soundness and completeness results respec-
tively.

6.1. Soundness

Before we present the soundness theorem we state a se-
curity invariant lemma. Intuitively, the lemma says that
if computation starts with a secure program then all the
threads in the thread pool are secure at all times. Define
an auxiliary boolean functionlive�� �pid
 � thread� �pid
 *�
!� �� � 	
that takes the valuett whenever thread atpid in
the state� is alive (exists and has not terminated). Note

137

that live�� �pid
 � tt is the precondition for scheduling the
thread atpid in �.
Lemma 4 Assume an MWL program2 is secure and� �
Tr is a trace for MWLPool�2
 such that�" ��� �. Then�

pid� live�� �pid
 �� thread� �pid
 ��
thread� �pid
.

Theorem 3 (Soundness)If an MWL program2 is secure
then the MWL thread pool MWLPool�2
 satisfies the secu-
rity property SecProp�) .

6.2. Completeness

Let us first recall some facts from standard bisimulation
theory before we turn to proving completeness. Restat-
ing Definition 6, two thread pools

�2 � 	2� � � � 2�
 and�/ � 	/ � � � � / �
 are strongly low-bisimilar
�2 �� �/ iff

�� �� � � ��
 where function� from pers to pers (partial
equivalence relations over

�
CMD) is given by:

�2 � ��
 �/ iff

�
mem� �mem� � � �	&2
 �mem� &
 � 	& �2
 �mem
� &

� mem� ��
mem� ��

� �/
 �mem
� �	&/
 �mem� &
 � 	& �/
 �mem
� &

� mem
� ��

mem
� � �2
 � �/

Let us state two lemmas that give an alternative repre-

sentation for the strong low-bisimulation. The proof of the
lemmas is a standard argument, by appeal to the Knaster-
Tarski fixed-point theorem (see, e.g., [7]).

Lemma 5 Function� is � -cocontinuous, i.e., for a non-
increasing� -chain of pers� " � � � � � �
 � � � �, � pre-
serves colimits:

� ��
���

 � �
�� � ��

 �
Lemma 6 (Fixed point) The relation

��
is the greatest

fixed point of� in the lattice of pers. It can be alternatively
represented by

�� � �
�� �
� where
�
� �� � � ��
�
 and� "� is the total relation

�
CMD � �

CMD.

We are now ready to present the completeness result.

Theorem 4 (Completeness)An MWL program2 is se-
cure whenever MWLPool�2
 satisfies the security predicate
SecProp�) .

Proof. [Sketch] Due to the space restrictions we present
a detailed sketch of the proof technique rather than giv-
ing the complete proof. Assuming thatMWLPool�2
 sat-
isfiesBSIA�� � ��	 6
� � ��
� � we need to show that2 is se-
cure, i.e.,2 �� 2 (by Definition 7). Let us prove this
statement by contraposition. In other words, assuming

2 *�� 2 � SecProp�) �MWLPool�2

 we aim to arrive at
a contradiction.

By Lemma 62 �� 2 �� 2 ��
�� �
�
2 . Assuming
2 *�� 2 implies �� � 2 *�
� 2 . Take
 � ��� !� & 2 �
�
2 � 2 *�
� �� 2 #. Note that
 � � since, obviously,
2 � "� 2 . Assume for simplicity that nofork-command oc-
curs in2 , i.e.,2 never spawns new threads. Along the way,
we discuss how the proof can be modified to go through
without the assumption. We consider two sequences of tran-
sitions of the form given in Figure 12. Note that each ele-
ment of the sequences inherits the command in the config-
uration from the previous element. Observe that the low
parts of the memory progress in both sequences in the same
way. The sequences continue as shown in Figure 13. These
sequences must exist due to

� � � !� � � �
 # � 2 �
� 2 and
2 *� �� �� 2 . Matching the first
 steps in both sequences
and the low-equivalence of the memories during the first

steps are guaranteed by

� � � !� � � �
 #� 2 �
� 2 . How-
ever, at step
 � � we have

�/ �� � � ��
�� � � 	&/ � � ��
� � ��
 &
 �	&/ �� � � ���
�� � � ��
�� �
 &
 �� ���� � *� ��
�� �. In case2 may
spawn new threads, the difference is that instead of inher-
iting the commands from the previous element in the se-
quences Seq1 and Seq2, the next command is chosen from
the command in the previous configuration by selecting the
thread that is the counterexample for the low-bisimulation
of thread pools obtained at the previous step. Importantly,
the sequences ofpid’s chosen in both Seq1 and Seq2 are
then identical. We will use this observation later.

We proceed by constructing two traces ofMWLPool�2

that correspond to the two sequences. We will transform
one trace into the other usingSecProp�) such that the
low-equivalences and step matching is preserved. This
will take us to a contradiction at step
 � �. Start off by
constructing a trace ofMWLPool�2
 that corresponds to
Seq1. We appeal to Lemma 3 to obtain step-by-step con-
struction of a trace� of the form given in Figure 14 for
somepid" � � � � �pid� � info� � � � � � info�� � where each�
 �� �
� � � � � �
 � �
 is the internal event that corresponds to the
� -transition in Seq1 according to Lemma 3. In case no
threads are spawnedpid
 � � for all

� � � � � � � �
 . As we
noted, in case2 may spawn new threads the sequences of
pid’s chosen in both Seq1 and Seq2 are identical. By a sim-
ilar argument the information contained ininfo sequences
must also be identical for Seq1 and Seq2 up toinfo� .

Due toSecProp�) we can insert high events into right
tails of� that do not contain any high events. We get a legiti-
mate trace after the insertion. Let us insert thesetvar�� � ���

event betweensetvar�� � ��
 and ��� � in � . Define � �
setvar�� � ���
 % � ��� � �yield�info�� �
 �outvar�� � ���� �
 and
� � � �setvar�� � ��
 for some� such that� � � �%. We
have % &
� � 	
. By SecProp�) we have�%
 � %
 &� �
% &� � %
 &
� � 	
 � � �setvar�� � ��
 �setvar�� � ���
 �%
 � Tr.
Observe that setting

�
to ��� means restoring the value of

�

138

Seq1:	&2 � ��" � �"
 &
 � 	&2 � � ��� � � ���
 &
 	&2 � � �� � � ��
 &
 � 	&2� � ���� � ���
 &
 	&2� � ��� � ��
 &
 � 	&2 � � ���� � ���
 &
 � � �
Seq2:	&2 � ��
" � �"
 &
 � 	&/ � � ���
� � ���
 &
 	&/ � � ��
� � ��
 &
 � 	&/ � � ���
� � ���
 &
 	&/ � � ��
� � ��
 &
 � 	&/ � � ���
� � ���
 &
 � � �

Figure 12. Sequences Seq1 and Seq2

Seq1: � � � 	&2 ��� � ����� � ����
 &
 � 	&2 � � ���� � ���
 &
 	&2 � � ��� � ��
 &
 � 	&2 �� � � ����� � � ���� �
 &

Seq2: � � � 	&/ ��� � ��
��� � ����
 &
 � 	&/ � � ���
� � ���
 &
 	&/ � � ��
� � ��
 &
 *� 	&/ �� � � ���
�� � � ���� �
 &

Figure 13. The continuation of Seq1 and Seq2

� �schedule�pid"
 �setvar�� � �"
 �setvar�� � �"
 �� � �yield�info�
 �outvar�� � ���
 �
schedule�pid�
 �setvar�� � ��
 �setvar�� � � �
 ��� �yield�info�
 �outvar�� � ���
 � � � �

� � �schedule�pid���
 �setvar�� � ����
 �setvar�� � ����
 ��� �yield�info�
 �outvar�� � ���
 �
schedule�pid�
 �setvar�� � ��
 �setvar�� � ��
 ���� � �yield�info�� �
 �outvar�� � ���� �

Figure 14. Sequence �

�
 �schedule�pid"
 �setvar�� � �"
 ��
� �yield�info�
 �outvar�� � ���
 �
schedule�pid�
 �setvar�� � ��
 ��
� �yield�info�
 �outvar�� � ���
 � � � �

� � �schedule�pid���
 �setvar�� � ����
 ��
� �yield�info�
 �outvar�� � ���
 �
schedule�pid�
 �setvar�� � ��
 ��
�� � �yield�info�� �
 �outvar�� � ���� �

Figure 15. Sequence �

�

 �schedule�pid"
 �setvar�� � �"
 �setvar�� � �
"
 ��

� �yield�info�
 �outvar�� � ���
 �
schedule�pid�
 �setvar�� � ��
 �setvar�� � �
�
 ��

� �yield�info�
 �outvar�� � ���
 � � � �

� � �schedule�pid���
 �setvar�� � ����
 �setvar�� � �
���
 ��

� �yield�info�
 �outvar�� � ���
 �
schedule�pid�
 �setvar�� � ��
 �setvar�� � �
�
 ��

�� � �yield�info�� �
 �outvar�� � ���� �

Figure 16. Sequence �

Seq2:	&2 � ��
" � �"
 &
 � 	&/ � � ���
� � ���
 &
 	&/ � � ��
� � ��
 &
 � 	&/ � � ���
� � ���
 &
 	&/ � � ��
� � ��
 &
 � 	&/ � � ���
� � ���
 &
 � � �
� � � 	&/ ��� � ��
��� � ����
 &
 � 	&/ � � ���
� � ���
 &
 	&/ � � ��
� � ��
 &
 � 	&/ �� � � ����� � � ���� �
 &

Figure 17. New form of Seq2

139

from the result of the previous transition in Seq1. We can
just as well omit both updates of

�
implying � �%
 � Tr.

Carrying on with the elimination of the rightmost event
setvar�� � �

 for

� �
 � � � � � � we get a trace�
 � Tr that
(after removing all occurrences ofoutvar�� � �
-events with-
out loss of generality) has the form depicted in Figure 15.
Due to the low events embracing each local event�
 for
� � � � � � � �
 � � it must be the case that there is a one-to-
one correspondence between�
 and�

 for

� � � � � � � �
 � �
(although they are not necessarily identical).

The next pass is the insertion ofsetvar�� � �
 follow-
ing the sequence Seq2. Let us construct new versions
of �, %, � in order to applySecProp�) . Let � �
setvar�� � �
"
, � � schedule�pid"
 �setvar�� � �"
 and % is
such that�
 � � �%. By SecProp�) we have�%
 � %
 &� �
% &� � %
 &
� � 	
 � � �setvar�� � �
"
 �%
 � Tr. Continuing
rightmostsetvar�� � �

 �� � � � � � � �
� �
 insertion we get a
trace�

 � Tr that (again, after removing all occurrences of
outvar�� � �
-events without loss of generality) has the form
depicted on Figure 16. Due to the lowschedule- andyield-
events embracing each local event�

 �� � � � � � � �
 � �
 it
must be the case that there is a one-to-one correspondence
between�

 and�

 for

� � � � � � � �
 � � (although they are
not necessarily identical).

According to Lemma 2 we can now convert the trace
�

 into a sequence of� -transitions. The crucial prop-
erty is that these transitions are deterministic, i.e., if	&� �mem&
 � 	&�
 �mem
 &
 then

��

 �mem

 � 	&� �mem&
 �	&�

 �mem

 &
 �� �
 � �

 � mem
 � mem

. In case
2 may spawn processes, we also need the observation we
made about the same sequences ofpid’s andinfo’s that are
used in the construction of Seq1 and Seq2. This is impor-
tant to restore the branching behavior of traces as it was
in Seq1 and Seq2. The fact that only programs with the
same branching structure can be low-bisimilar is reflected
in the traces, because the branching behavior is recorded
in the lowschedule-events. Thus, by induction, we can re-
store the sequence Seq2, as depicted in Figure 17 for some
command/ �� �, which contradicts our original assumption
about Seq2.

�

7. Discussion and Future Work

Contributions. We have established a one-to-one corre-
spondence between a time-sensitive definition of security
for the multi-threaded programs of MWL (from [27]) and a
security property based on traces of events that was origi-
nally developed in the context of a general security frame-
work – the assembly kit (from [18, 19]). As a prerequi-
site for this, we had to model the semantics of MWL using
state-event systems, which resulted in the specification of
MWL thread pools. The development of this specification
has been straightforward (although technically subtle). To

us, it is appealing that generic thread pools, which served
as an intermediate step in this process, are independent of
MWL. We expect that this will allow the adaptation of other
multi-threaded programming languages, e.g., Slam [15].

The main motivation of our work has been the objec-
tive to integrate the two kinds of security: the security of
local computations and the security of their communica-
tions. Event-based security aims at protecting occurrences
of events and programming-language-based security aims
at protecting secret values. Our work is a step to aid in
the systematic security analysis of complex (potentially dis-
tributed) system where some of the components are (or shall
be) implemented in a specific programming language. To
the best of our knowledge this article is the first attempt to
establish a rigorous connection between these two notions
of security. The connection suggests directions for mutual
benefits where the two areas can borrow from each other
(cf. Future Work).

As a side effect, we have demonstrated how to use the
assembly kit [18] at the concrete example of the multi-
threaded programming language MWL. Using the assem-
bly kit has turned out to be very helpful in the identification
of an appropriate security property. This application is also
interesting because it shows how time-sensitive security can
be specified in the assembly kit. For a different technique
to address timing channels by explicittick-events we refer
to [11].

Bisimulation vs Trace-based Equivalence. The reader
familiar with transition-system-based semantics might be
surprised by the fact that the article relates a bisimulation-
based property of programs with a trace-based one. It is
well-known that small-step bisimulation makes more dis-
tinctions than trace-based equivalence. It is also well-
known that trace-based properties are usually not compo-
sitional whereas bisimulation-based ones often are. Never-
theless, we have been able to prove correctness and com-
pleteness results for our translation of the security property.

What made these developments possible in the pres-
ence of the two major differences between the bisimulation-
based and trace-based models? The crucial property is the
deterministic nature of strong low-bisimulation. Indeed,
bisimulation is defined on deterministic transitions ensur-
ing that two bisimilar thread pools have the same branch-
ing behavior.2 This property is necessary for guarantee-
ing scheduler-independent security. Two programs have
to have identical branching behavior in order to be indis-
tinguishable for the attacker under a scheduler-independent
low-bisimulation. Otherwise, the two programs in thethen
and else branches, respectively, of anif statement with a

2Technically one can view the identifierpid of a thread that is chosen
by the scheduler for the next transition as a label that is distinguished by
the strong low-bisimulation.

140

secret condition could be used to leak the secret condition
through observing the branching behavior ([27] shows how
to implement this attack using the properties of a particular
scheduler).

Although the determinism of bisimulation is the key fea-
ture to relating bisimulation-based and trace-based models,
it is not crucial for the actual security definition of MWL
(certain security properties can be defined through low de-
terminism, as in [25, 24]). For example, if MWL had a non-
deterministic choice operator

�
then the non-deterministic

program� 8� �
� � 8� � would be considered secure under

Definition 7. However, the two security definitions (Def-
inition 7 and Definition 2 for MWL thread pools) would
be no longer equivalent. Indeed, at no surprise, the com-
pleteness theorem (Theorem 4) would not hold. A coun-
terexample is the programif

� � � then 2� else 2� where
2� � � 8� � � �� 8� �

� � 8� �
 and2� � �� 8� � � � 8�
�
 � �� 8� � � � 8� �
. This program is considered secure
under the trace-based model (Definition 2) but not secure
according to the bisimulation-based Definition 7. Note that,
whether one intuitively considers this program as secure or
not depends very much on the model of computation one
has in mind. For a detailed investigation of this close re-
lation between notions of information flow and models of
computation (notions of equivalence) we refer to [26].

Future Work. Plans for future work are centered around
exploiting the connection between the two types of security
that we have established in the present article. Promising
directions include the adaption of intransitive security poli-
cies3 for MWL basing on solutions that were proposed in
the context of the assembly kit [20] and progress towards a
development method that allows for the stepwise develop-
ment starting from abstract specifications and ending with
concrete programs (cf. [21] for recent progress on the re-
finement of information flow properties).

Another potentially interesting direction of research is to
apply the reduction techniques of [27] combined with the
results of this paper to reasoning about probabilistic secu-
rity properties for event-based systems. Moreover, the in-
tegration of synchronization primitives for communication
between multiple thread pools together with an according
strengthening of the security predicate is another important
goal for future work because it is a prerequisite for applying
the results of this paper to truly distributed systems.

Acknowledgments

Thanks are due to Fabio Martinelli for encouraging dis-
cussions. We also wish to thank David Sands and Koen

3Intransitive flow policies would provide a way to represent down-
grading (and thus, e.g., secure encryption) in the multi-threaded while-
language.

Claessen for useful feedback on bisimulation proofs. For
useful comments on the presentation, we would like to
thank Alexandra Heidger and Axel Schairer.

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A Core
Calculus of Dependency. InProceedings of the 26th ACM
Symposium on Principles of Programming Languages, Jan-
uary 1999.

[2] J. Agat. Transforming out Timing Leaks. InProceedings
of the 27th ACM Symposium on Principles of Programming
Languages, pages 40–53, January 2000.

[3] J. Agat and D. Sands. On Confidentiality and Algorithms.
In Proceedings of 2001 IEEE Symposium on Security and
Privacy, May 2001. To appear.

[4] G. R. Andrews.Foundations of Multithreaded, Parallel, and
Distributed Programming. Addison Wesley, 2000.

[5] E. S. Cohen. Information Transmission in Computa-
tional Systems.ACM SIGOPS Operating Systems Review,
11(5):133–139, 1977.

[6] E. S. Cohen. Information Transmission in Sequential Pro-
grams. In R. A. DeMillo, D. P. Dobkin, A. K. Jones, and
R. J. Lipton, editors,Foundations of Secure Computation,
pages 297–335. Academic Press, 1978.

[7] B. Davey and H. Priestley.Introduction to Lattices and Or-
der. Cambridge University Press, 1990.

[8] D. E. Denning. A Lattice Model of Secure Information
Flow. Communications of the ACM, 19(5):236–243, May
1976.

[9] D. E. Denning and P. J. Denning. Certification of Programs
for Secure Information Flow.Communications of the ACM,
20(7):504–513, July 1977.

[10] R. Focardi and R. Gorrieri. A Classification of Security
Properties for Process Algebras.Journal of Computer Se-
curity, 3(1):5–33, 1995.

[11] R. Focardi, R. Gorrieri, and F. Martinelli. Information Flow
Analysis in a Discrete-Time Process Algebra. InProceed-
ings of the IEEE Computer Security Foundations Workshop,
pages 170–184, July 3–5 2000.

[12] S. N. Foley. A Universal Theory of Information Flow. In
Proceedings of the IEEE Symposium on Security and Pri-
vacy, pages 116–122, Oakland, CA, April 27–29 1987.

[13] J. A. Goguen and J. Meseguer. Security Policies and Se-
curity Models. InProceedings of the IEEE Symposium on
Security and Privacy, pages 11–20, Oakland, CA, April 26–
28 1982.

[14] J. Guttman and M. Nadel. ”What Needs Securing?”. InPro-
ceedings of the IEEE Computer Security Foundations Work-
shop, pages 34–57, June 12-15 1988.

[15] N. Heintze and J. G. Riecke. The SLam Calculus: Program-
ming with Secrecy and Integrity. InProceedings of the 25th
ACM Symposium on Principles of Programming Languages,
pages 365–377, 1998.

[16] D. M. Johnson and F. J. Thayer. Security and the Composi-
tion of Machines. InProceedings of the Computer Security
Foundations Workshop, pages 72–89, Franconia, NH, June
1988.

141

[17] K. R. M. Leino and R. Joshi. A Semantic Approach to Se-
cure Information Flow.Science of Computer Programming,
37(1–3):113–138, 2000.

[18] H. Mantel. Possibilistic Definitions of Security – An As-
sembly Kit –. InProceedings of the IEEE Computer Se-
curity Foundations Workshop, pages 185–199, Cambridge,
UK, July 3–5 2000.

[19] H. Mantel. Unwinding Possibilistic Security Properties. In
F. Cuppens, Y. Deswarte, D. Gollmann, and M. Waidner, ed-
itors,Proceedings of the European Symposium on Research
in Computer Security (ESORICS), LNCS 1895, pages 238–
254, Toulouse, France, October 4-6 2000. Springer.

[20] H. Mantel. Information Flow Control and Applications –
Bridging a Gap –. In J. N. Olivera and P. Zave, editors,
Proceedings of FME 2001: Formal Methods for Increasing
Software Productivity, International Symposium of Formal
Methods Europe, LNCS 2021, pages 153–172, Berlin, Ger-
many, March 12-16 2001. Springer.

[21] H. Mantel. Preserving Information Flow Properties under
Refinement. InProceedings of IEEE Symposium on Security
and Privacy, Oakland, CA, May 13-16 2001. To appear.

[22] D. McCullough. Specifications for Multi-Level Security and
a Hook-Up Property. InProceedings of the IEEE Sympo-
sium on Security and Privacy, pages 161–166, Oakland, CA,
April 27–29 1987.

[23] J. McLean. A General Theory of Composition for Trace Sets
Closed under Selective Interleaving Functions. InProceed-
ings of the IEEE Symposium on Research in Security and
Privacy, pages 79–93, Oakland, CA, May 16–18 1994.

[24] A. Roscoe. CSP and Determinism in Security Modelling. In
Proceedings of the IEEE Symposium on Research in Security
and Privacy, pages 114–127, Oakland, CA, May 1995.

[25] A. Roscoe, J. Woodcock, and L. Wulf. Non-interference
through Determinism. InProceedings of the European
Symposium on Research in Computer Security (ESORICS),
LNCS 875, pages 33–53, Brighton, UK, November 7–9
1994. Springer.

[26] P. Ryan and S. Schneider. Process Algebra and Non-
interference. InProceedings of the 12th IEEE Computer
Security Foundations Workshop, pages 214–227, Mordano,
Italy, June 28–30 1999.

[27] A. Sabelfeld and D. Sands. Probabilistic Noninterference
for Multi-threaded Programs. InProceedings of the IEEE
Computer Security Foundations Workshop, pages 200–215,
Cambridge, UK, July 3–5 2000.

[28] A. Sabelfeld and D. Sands. A Per Model of Secure Informa-
tion Flow in Sequential Programs.Higher-Order and Sym-
bolic Computation, 14(1):59–91, March 2001.

[29] G. Smith and D. Volpano. Secure Information Flow in a
Multi-threaded Imperative Language. InProceedings of
the 27th ACM Symposium on Principles of Programming
Languages, pages 355–364, San Diego, California, January
1998.

[30] D. Sutherland. A Model of Information. In9th National
Computer Security Conference, September 1986.

[31] D. Volpano and G. Smith. Probabilistic Noninterference
in a Concurrent Language.Journal of Computer Security,
7(2,3):231–253, November 1999.

[32] D. Volpano, G. Smith, and C. Irvine. A Sound Type System
for Secure Flow Analysis.J. Computer Security, 4(3):1–21,
1996.

[33] J. T. Wittbold and D. M. Johnson. Information Flow in Non-
deterministic Systems. InProceedings of the IEEE Sympo-
sium on Research in Security and Privacy, pages 144–161,
Oakland, CA, May 1990.

[34] A. Zakinthinos and E. Lee. A General Theory of Security
Properties. InProceedings of the IEEE Symposium on Se-
curity and Privacy, pages 94–102, Oakland, CA, May 4–7
1997.

142

