
On the Composition of Secure Systems

Heiko Mantel

In Proceedings of the 2002 IEEE Symposium on Security and Privacy, Oakland,
CA, USA, pp. 88–101, May 12-15, 2002. IEEE Computer Society.

c
�

2002 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creat-
ing new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

German Research Center for Artificial Intelligence (DFKI),
Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

E-mail:mantel@dfki.de

Abstract

When complex systems are constructed from simpler
components it is important to know how properties of the
components behave under composition. In this article, we
present various compositionality results for security prop-
erties. In particular, we introduce a novel security property
and show that this property is, in general, composable al-
though it is weaker than forward correctability. Moreover,
we demonstrate that certain nontrivial security properties
emerge under composition and illustrate how this fact can
be exploited. All compositionality results that we present
are verified with the help of a single, quite powerful lemma.
Basing on this lemma, we also re-prove several already
known compositionality results with the objective to unify
these results. As a side effect, we obtain a classification of
known compositionality results for security properties.

1 Introduction

It is absolutely crucial, for making the development of
large and complex systems feasible, to apply some kind of
divide-and-conquer approach. Requirements for the over-
all system are divided into subtasks, these subtasks are as-
signed to system components, and, after a specification of
component interfaces, components can be developed inde-
pendently. Upon composing the system, the satisfaction of
the overall system requirements should follow from the fact
that all components fulfill their specifications. Any need
to inspect implementation details of system components in
this process would not only violate the idea of the divide-
and-conquer approach but also lead to an undesired increase
of complexity. Moreover, since vendors are often unwilling
to reveal details about their products, implementation de-
tails about some components might simply not be available.

For safety and liveness properties, general theories of
compositionality exist [15, 32, 3] that provide a basis for
the divide-and-conquer approach to system development.
These theories are applicable for properties that can be spec-

ified as combinations of safety and liveness properties [4]
like, e.g., most functional system properties. However, it
is well known that many security properties are outside the
domain of safety and liveness properties. For example, in-
formation flow properties are closure properties of sets of
traces rather than properties of single traces [19]. There-
fore, the above theories of composition cannot be applied
for these security properties.

Since McCullough’s proposal of a compositional infor-
mation flow property [16] much progress has been made
concerning the composition of secure systems. There is a
collection of information flow properties that are preserved
under arbitrary composition like, e.g., restrictiveness [16,
17], forward correctability [9], or separability [19]. Forcer-
tain security properties that are, in general, not preserved
under composition it is known how to restrict composition
in order to preserve these properties [19, 20]. Nevertheless,
a couple of important problems have remained unsolved.
In particular, a uniform theory of composition for secure
systems is still missing. To date, the various composition-
ality results are only loosely connected. Deeper insights,
on how these results are related, would be highly desir-
able. Moreover, deriving compositionality results is often
nontrivial and quite different techniques have been used to
verify, e.g., the above results. More uniform verification
techniques could be helpful to reveal similarities between
different compositionality results and would also be help-
ful to simplify their proofs. McLean’s theory of selective
interleaving functions [19, 20] is certainly a step towardsa
uniform theory of composition for secure systems. How-
ever, this theory is not expressive enough to explain several
known compositionality results. In particular, inductively
defined security properties like, e.g., forward correctability,
are outside the scope of selective interleaving functions.

The main objective of this article is to provide a uniform
basis for compositionality results in the context of secure
systems. For this purpose, we present a powerful lemma
that is helpful for deriving compositionality results. Tech-
nically, our lemma can be regarded as a generalization of
Johnson and Thayer’s zipping lemma [9] that was intro-

duced to prove the compositionality of forward correctabil-
ity. However, we found that the underlying idea of this
lemma is not restricted to forward correctability but rather is
much more powerful. Our generalized zipping lemma can
be used to prove known compositionality results of quite
different flavor, as we will show at various examples. As
a side effect of re-proving already known results with our
lemma, we obtain a classification of compositionality re-
sults that makes close relations between some previously
unrelated results explicit. Moreover, in contrast to a state-
ment in [35], we show that there exists a security property
that is weaker than forward correctability but, nevertheless,
composable. Interestingly, our generalized zipping lemma
is not only helpful to prove that security properties arepre-
servedunder composition (after they have been explicitely
proved for the system components) but also for proving
that security propertiesemergeunder composition if certain
conditions are fulfilled (without proving them explicitely).
For example, if high- and low-level components are not
physically connected to each other within a system then this
system satisfies most information flow properties. However,
we will show that information flow properties also emerge
under more subtle conditions.

For the uniform representation of information flow prop-
erties we employ Mantel’s modular assembly kit for secu-
rity properties [11] (abbreviated byMAKS in the sequel).
In MAKS , information flow properties are composed from
simple building blocks with the effect that reasoning about
complex information flow properties can be reduced to rea-
soning about simpler building blocks. As a consequence,
two orthogonal notions of composition occur in this arti-
cle: firstly, the composition of system components and, sec-
ondly, the composition of security properties. Note that
the focus of this article is on the preservation of security
properties under the composition of system components.
That security properties are composed from simpler build-
ing blocks is very helpful in our investigations, however,
this is not the main novelty of the current article.

This article is structured as follows: in Section 2, we
introduce a system model and the corresponding notion of
composition that we use in this article. We also recall some
basics aboutMAKS . In Section 3, we present a generalized
zipping lemma that is the main technical contribution of this
article. All compositionality results that are presented sub-
sequently have been derived with the help of this lemma.
A novel classification of known compositionality results is
proposed in Section 4. In Section 5, we weaken Johnson
and Thayer’s forward correctability and demonstrate that
the resulting security property is preserved under arbitrary
compositions. In Section 6, we show that certain nontrivial
information flow properties emerge under restricted forms
of composition. Before we conclude in Section 8, we dis-
cuss the large body of related work in Section 7. Proof

sketches of our main results are contained in the appendix.

2 Preliminaries

2.1 System Specifications

The behavior of a system can often be adequately spec-
ified by the set of its possible execution sequences. We
follow this trace-based approach throughout this article.A
trace is a sequence of events that models one possible ex-
ecution sequence. Aneventis an atomic action like, e.g.,
sending or receiving a message. For a given system, we
distinguish between input, output, and internal events. The
underlying intuition is that input events are controlled by
the environment while output and internal events are con-
trolled by the system. When a system is capable to prevent
occurrences of input events, then this can be regarded as a
signal to the environment. To avoid this kind of communi-
cation, input totality is often assumed, i.e. that a system can-
not prevent occurrences of input events. Since input totality
is quite restrictive, we refrain from making this assumption.

The system model that we assume is that of event sys-
tems. Anevent system ESis a tuple�� � � � � �Tr� where�
is a set of events, � � � � � , respectively, are thesets of
input and output events, andTr � � � is theset of traces,
i.e. a set of finite sequences over� . Each trace� 	 Tr
models a possible behavior ofES. Tr must be closed un-
der prefixes, i.e. any prefix of a trace inTr must also be in
Tr. Event systems allow for the specification of nondeter-
ministic systems where nondeterminism is reflected by the
choice between different events. Note, however, that event
systems are a possibilistic system model that abstracts from
probabilities.

Rather than specifying complex systems directly, they
can be specified as the composition of simpler system com-
ponents. Synchronization on the occurrence of shared
events is used to model communication between different
components of a system or between a system and its envi-
ronment. We define the composition between event systems
as usual with the restriction that output events of a compo-
nent may only be connected to input events of other com-
ponents. Moreover, communication events between com-
ponents become internal events for the composed system.

Definition 1 Assume�
 � �� � ��
 � �� �
 ��� � �
 �,
�
 � �
 � �, �� � �� � �. Thecompositionof ES
 and ES�
is the event system ES� ES
 � ES� where� , � , � , and
Tr are defined by� � �

 �� , � � ��
 ����
 ��� ��
�,
� � ��
 � �� �
 ��� � �
�, and Tr � �� 	 ��

 �� �� �
� �� � 	 Tr
 � � ��� 	 Tr� �.1

1In the remainder of this article, we assume thatES � �� � � � � �Tr�,
ES � �� � � � � �Tr �, andES! � �� ! � �! � � ! �Tr! � are event sys-

89

FPLH

L

H � �
LH�

H �� � � � ��
L �L � � �H� � � ���

FPLHI HI

L

H\HI
� �

LHI�
HI �� � � � ��

H�HI �� � � � ��
L �L �H�HI �HI� � � ����

Figure 1. The flow policies FPLH and FPLHI and the views of all domains

For the compositionality of security properties, two re-
stricted forms of composition are of special interest: prod-
uct and cascade. The composition ofES
 andES� is aprod-
uct if the event systems do not synchronize on any events
(i.e. �
 � �� � �). The composition is acascadeif ES
 re-
ceives no inputs fromES� (�
 � �� � �), all outputs ofES

are inputs ofES� , andES� has no other inputs (�
 � ��).
For arelaxed cascade, only �
 � �� � � is required.

2.2 Security Properties

Often, security requirements can be expressed nicely as
restrictions on the allowed flow of information within a sys-
tem. To express confidentiality or integrity by such re-
strictions is the key idea of information flow control. For
the specification of information flow properties, we employ
MAKS , Mantel’s modular assembly kit for security proper-
ties [11, 12, 13, 14]. InMAKS , an information flow prop-
erty consists of two elements: a flow policy and a security
predicate.

A flow policy FPis a tuple�� �� � �� 	 �
� � that spec-
ifies restrictions on the allowed flow of information within
a system.

�
specifies a set of security domains. Typical

domains are, e.g., groups of users, collections of files, or
memory sections. The relations� � �� 	 �
� � � ��

must
form a disjoint partition of

� ��
and� � must be reflex-

ive. Thenoninterference relation
� specifies where infor-
mation flow between domains is forbidden. E.g.,

�

� � �
expresses thatinformation must not flowfrom

�
 to
� �.

Theinterference relation� � specifies that activities of cer-
tain domains are directly visible for others.

�
� � � � ex-
presses that activities of

�
 are visiblefor
� �. Finally, the

relation� 	 specifies between which domains information
flow is not restricted.

�
 � 	 � � expresses that activities
of

�
 arenot directly visible for
� � (in contrast to� �)

and that we donot care if information about activities of�
 is deducible for
� � (in contrast to
�). Note that for any

two domains either
�

� � � , �
 � � � � , or

�
 � 	 � �
holds. If� � is a transitive relation thenFP is calledtransi-
tiveand, otherwise,intransitive. In this article, we will only
consider transitive flow policies.

tems for which� � �!
 �� � �! � � ��! � � �, � � � � �, and�! � �! � � hold. ESshall be defined as the composition ofES andES! ,
i.e. ES� ES � ES! . Theprojection� �� � of a sequence� � � � to a set� �
 � results from� by removing all events that arenot in � �.

A domain assignmentis a functiondom � � � �
that

assigns security domains to events. Thereby, a domain as-
signment links an information flow property to a system
specification. We often leavedom implicit and denote the
set of all events that are associated with a given domain

�
also by

�
, the name of the security domain. We also use

that name in lower case, possibly with indices or primes,
e.g.,� � �
 � � � �, to denote events with that domain.

Flow policies can be depicted as graphs where each node
corresponds to a security domain. The relations� � , � 	 ,
and
� are depicted as solid, dashed, and crossed arrows,
respectively. For the sake of readability, the reflexive subre-
lation of� � is usually omitted. This graphical representa-
tion is illustrated in Figure 1 for two flow policiesFPLH and
FPLHI . Flow policyFPLH consists of two domainsH (high-
level events) andL (low-level events). According toFPLH,
occurrences of low-level events are visible for the high-level
domain (L � � H). Occurrences of high-level events must
not be visible toL and, moreover, no information about
such occurrences must be deducible forL (H
� L). The
flow policy FPLHI results fromFPLH by splitting the high-
level domain into two domainsHI (high-level input events)
andH�HI (high-level internal and output events). The main
difference toFPLH is the dashed arrow fromH�HI to L.
While occurrences of high-level input events must not be
deducible for the low-level (HI
� L), we do not care if
information about occurrences of other high-level events is
deducible for the low-level domain (H�HI � 	 L).

The view
�� � �� �� �� � for a domain

� 	 �
in FP

underdomis a disjoint partition of� that is defined by� �
�� 	 � � dom���� � � �, � � �� 	 � � dom���� 	 � �,
and� � �� 	 � � dom���
� � �.2 Consequently,� con-
tains all events that arevisible for

�
, � contains all events

confidentialfor
�

, and� contains all eventsneithervisible
nor confidential for

�
. The views of all domains inFPLH

andFPLHI are depicted in Figure 1. Among these, only the
views of the low-level domainL are interesting because they
give rise to nontrivial proof obligations. We abbreviate the
view of L in FPLH andFPLHI by, respectively,

� ��� (vis-
ible, ! confidential) and

� ���� (visible,! � � confiden-
tial). The precise proof obligations for these views depend
on the security predicate.

2In the remainder of this article, we assume that" � �# �$ �% �, " ��# �$ �% �, " ! � �#! �$! �% ! � are views in, respectively,� , � , �! .

90

BSP BSP� �Tr�
R

� � 	 � � � �� 	 Tr �� �� � 	 � � � �� � 	 Tr � � � �� � � �� � � � �� � ����
BSD

�� � 	 	 � � ��
 	 � � ��	 �
 �� 	 Tr � � �� � ���
�� ��� 	 � � � �	 �� � 	 Tr � � � �� � � �� � � � �� � ����

BSI
�� � 	 	 � � ��
 	 � � ��	 �� 	 Tr � � �� � ���
�� ��� 	 � � � �	 �
 �� � 	 Tr � � � �� � � �� � �� �� � ����

BSIA� �� � 	 	 � � ��
 	 � � �	 �� 	 Tr � � �� � �� � Adm�� �Tr � 	 �
��
�� ��� 	 � � � �	 �
 �� � 	 Tr � � � �� � � �� � �� �� � ����

FCD�
�
� �� � 	 	 � � ��
 	 � � � ��� 	 � � � � ��	 �
 �� �� 	 Tr � � �� � ���
�� ��� 	 � � � �� � 	 �� � � �� � �	 �� ��� ��� 	 Tr � � � �� � � �� � � � �� � ����

FCI�
�
� �� � 	 	 � � ��
 	 � � � ��� 	 � � � � ��	 �� �� 	 Tr � � �� � ���
�� ��� 	 � � � �� � 	 �� � � �� � �	 �
 �� ��� �� � 	 Tr � � � �� � � �� � � � �� � ����

Figure 2. Definition of basic security predicates

2.3 Basic Security Predicates

Recall that an information flow property is defined by
a flow policy FP and a security predicateSP. We say
that an event systemsatisfies an information flow property
�FP�SP� wrt. a domain assignmentdomif SPholds for the
view

�
(denoted bySP� �Tr�) of every domain inFP un-

der dom. In MAKS , security predicates are composed by
conjunction from one or more basic security predicates (ab-
breviated by BSP).SP� �Tr� holds if BSP� �Tr� holds for
every BSP from whichSPis composed.

BSPs are closure properties on sets of possible traces.
Intuitively, a BSP expresses that there aresufficiently many
possible tracessuch that adversaries cannot deduce infor-
mation of a particular kind (depending on the respective
BSP). In Figure 2, a collection of concrete BSPs is pre-
sented.3 These BSPs are abbreviated byR (for Removal),
BSD (Backwards Strict Deletion), BSI (Backwards Strict
Insertion),BSIA(Backwards Strict Insertion of Admissible
events),FCD (Forward Correctable Deletion), andFCI
(Forward Correctable Insertion).4 Technically, each of
these BSPs demands that a particular perturbation of a trace
can be corrected such that the resulting sequence, again, is
a possible trace.

For example,BSI perturbs a trace	 �� by inserting a
confidential event

 	 � such that it is not followed by
any other confidential events (

� �� � ��). The requirement
imposed byBSI� �Tr� is that the resulting sequence	 �
 ��
can be corrected to a possible trace. Corrections must be

3In Figure 2 and in the remainder of this article, we assume that �,� , and �! are functions from views in, respectively,� , � , and �!
to subsets of, respectively,� , � , and�! . Moreover,� �� ��
 � ;� �� ��
 � ; and� ! �� ! �� !
 �! shall be sets of events.

4The definitions ofR, BSD, BSI, BSIAare generalizations of respec-
tively RI, BSDI, BSII, BSIHAI in [11] that result from using the concept of
views [13].FCD andFCI are novel BSPs.

causal, i.e. they may only occur after the inserted event,
and they are limited to events in� (

�� �� � �� � � �� and�� �� � � ��). The requirementBSI� �Tr� can be read as:
the occurrence of a confidential event

 	 � mustnot dis-
ablepossible� -observations. Hence, the security guarantee
provided byBSI is: adversaries cannot deduce from any� -
observation that a confidential event

has notoccurred.

To guarantee that adversaries cannot deduce that a con-
fidential eventhasoccurred is the purpose ofBSD, another
BSP ofMAKS . BSD� �Tr� requires that the occurrence of
an event from� mustnot enableadditional� -observations.
Considering the system after a trace	 �
 has occurred, any
observation

� �� that is possible must be possible also if
 	 � is deletedfrom the trace. Consequently, some se-
quence

� � 	 ��
 � �� must be enabled after	 where
� �

may differ from
�

only in events from� .
The requirements imposed by the four remaining BSPs

from Figure 2 can be informally described as follows.R
is similar to BSDbecause it demands that the removal of
events in� from a trace yields, again a possible trace. Since
Ronly demands thatall events in� can beremovedat once
it is a slightly weaker requirement thanBSD. FCD is an-
other BSP that is concerned with thedeletionof events.
However, it requires that the deletion of an event

 	 � � �
that occurs immediately before an event

� 	 � � � , yields
a trace. The specialty ofFCD is that adaptations are not
only restricted to after the occurrence of

but, moreover,

adaptations in between

and
�

are restricted to events in
� � � . BSIAresults fromBSI by adding the assumption
Adm�� �Tr � 	 �
�.5 Since only events that are�-admissible
need to beinsertable, BSIAis slightly weaker thanBSI. FCI
is concerned only with theinsertionof events from� � �

5If Adm�� �Tr �� � �� holds then we say that� is �-admissibleafter
the trace� � Tr for the view " � �# �$ �% �. Adm is defined by
Adm�� �Tr �� � �� �� � ! � � � " ! "� � Tr # ! �� $� % � � �� $� % �.

91

BSD� ��� �Tr� � BSI� ��� �Tr�
BSD� ���

�
Tr� � BSIA��� ���

�
Tr� separability forward correctability

BSD� ����
�
Tr� � BSI� ����

�
Tr� �

FCD � �	 ��� ����
�
Tr� � FCI � �	 ��� ����

�
Tr�

BSD� ���
�
Tr� � BSIA�
�� ���

�
Tr� nondeducibility on outputs

BSD� ���
�
Tr� � BSIA��� ���

�
Tr� perfect security property

R� ���
�
Tr� noninference generalized noninterferenceBSD� ����

�
Tr� � BSI� ����

�
Tr�

generalized noninferenceR� ����
�
Tr�

Figure 3. Ordering of known security properties by implicat ion

immediately before the occurrence of visible events from
� � � . In this respect,FCI is related toFCD.

Let us summarize a few useful facts about these BSPs.

Theorem 1 Let � � � � be functions from views in� to sub-
sets of� ,

� � �� �� �� � and
� � � �� � �� � �� � � be views

in � , and� �� � � ��� � �� � �� � � be sets of events.

1. BSD� �Tr� implies R� �Tr�.
2. BSI� �Tr� is equivalent to BSIA�� �Tr� and the condition

that ES is total in� .6

3. If � � � then BSI� �Tr� implies FCI�
�
�� �Tr�.
4. Assume� � � � and� � � �.

(a) R� �Tr� and BSD� �Tr�, imply that R� � �Tr� and
BSD� � �Tr� hold, respectively.

(b) If BSD� �Tr� then BSI� �Tr� implies BSI� � �Tr�.
(c) If BSD� �Tr� and � �� � � � � �� �� hold then

BSIA�� �Tr� implies BSIA�
�

� � �Tr�.
(d) If BSD� �Tr�, �� � � , �� � � , and �� � �

hold then FCD�
�
�� �Tr� and FCI�
�
�� �Tr� imply

FCD� �
� �
� �� � �Tr� and FCI�
�
� �
� �� � �Tr�, respectively.

2.4 Representing Known Security Properties

Let us demonstrate how some known security proper-
ties can be represented inMAKS . Basically, two popular
classes of known security properties can be distinguished,
depending on whetherFPLH or FPLHI is enforced (cf. Fig-
ure 1). Generalized noninterference[16], forward cor-
rectability [9], and generalized noninference[19] all en-
force the flow policyFPLHI, i.e. only deductions about oc-
currences of high-level input events are prevented.Nonde-
ducibility on outputs[8], noninference[24, 19], separabil-
ity [19], and theperfect security property[36] all enforce

6ESis total in % if for all � � % and all
 � Tr holds
 "� � Tr.

the flow policyFPLH. Note that inFPLH andFPLHI , proof
obligations arise only, respectively, for the views

� ��� and� ���� .

Theorem 2 Let�� , �� , and��� be defined by�� �� � � � ,
�� �� � � �
 �
 � , and��� �� � � �
 �
 �� � UI�
where UI� � is a set of user input events that constitute the
interface to the user.

� Generalized noninferenceas defined in [36]7 is equiv-
alent to R� ���� �Tr�.

� Generalized noninterferenceis equivalent to
BSD� ���� �Tr� � BSI� ���� �Tr�.

� Forward correctabilityis equivalent to BSD� ���� �Tr� �
BSI� ���� �Tr� � FCD

�
�
�� ���� �Tr� � FCI
�
�
�� ���� �Tr�.

� Noninferenceis equivalent to R� ��� �Tr�.
� Separabilityis equivalent to

BSD� ��� �Tr� � BSIA��� ��� �Tr�.
� Nondeducibility on outputsis equivalent to

BSD� ��� �Tr� � BSIA�
�� ��� �Tr�.
� Theperfect security propertyis equivalent to

BSD� ��� �Tr� � BSIA��� ��� �Tr�.
The following corollary shows how these security proper-
ties can be ordered. It follows from Theorems 1 and 2.

Corollary 1 Generalized noninference, generalized non-
interference, forward correctability, noninference, nonde-
ducibility on outputs, separability, and the perfect security
property are ordered by implication as depicted in Figure 3.

7The definitions of generalized noninference, noninference, and sepa-
rability in [19] are based on sequences of states rather thansequences of
events. Therefore, we use the event-based formalizations from [36].

92

3 Generalized Zipping Lemma

A zipping lemma allows one to construct a trace of a
composed system by merging traces of the system compo-
nents. This merging can be envisioned as closing a zipper
where the component traces correspond to the two sides of
a zipper and the resulting system trace to the closed zipper.

The technique to prove compositionality of a security
property with the help of a zipping lemma was pioneered by
Johnson and Thayer [9]. Their zipping lemma is only ap-
plicable to forward correctability. However, we found that
the underlying idea of this proof technique is far more pow-
erful. Below, we propose a generalization of Johnson and
Thayer’s zipping lemma that provides the basis for all com-
positionality results in this article.

Lemma 1 (Generalized Zipping Lemma) For � 	 �� � ��,
assume that� � � � � � � and � � � � � � � hold. More-
over, assume that�
�� � � � and one of the following four
conditions hold:

1. �
 � �� � � and� � � �
 � �
2. �
 � �� � � and BSI� � �Tr
 �
3. � � � �
 � � and BSI� � �Tr� �
4. There are�
 � �
 � �
 � �
, �� �� � � �� � �� such that

� BSI� � �Tr
 �, BSI� � �Tr� �
� FCI� �
� �
� �

� � �Tr
 �, FCI� �
� �
� �
�� �Tr� �;

� �
 � �� � �

 � � ;
� �
 � � � � �
, � � � �
 � � �; and
� �
 � �
 � �� � �, � � � � � � �
 � � hold.

If � �� � ��
 	 Tr
, � ��� ��� 	 Tr� , � �� � � �
 �� , � �� � � �� �� ,�
 �� � � ��, and
�� �� � � �� hold for � 	 � �, � 	 � �, �
 	 � �
 ,�� 	 � �� then there is a sequence

� 	 � � with � �� 	 Tr,� �� � �, and
� �� � ��.

In the lemma,� can be envisioned as the part of the zipper
that has been closed already because� 	 Tr (follows from
� �� � ��
 	 Tr
 and � ��� ��� 	 Tr�). �
 and

�� can be envi-
sioned as parts of the zipper that are not yet closed. That the
zipper can be closed completely is expressed by� �� 	 Tr.
The remaining conditions, i.e.

� �� � �, � �� � � �
 �� ,
� �� � � �� �� ,

� �� � ��, �
 �� � � ��, and
�� �� � � ��, en-

sure that the zipper is not modified in any essential way.
For a compositional security analysis it appears to be

necessary that events that are visible or confidential wrt. the
composed system have also been assumed to be, respec-
tively, visible or confidential in the analysis of the compo-
nents (� � � � � � �, � � � � � � �). Moreover, events
used for corrections in the one component cannot be used

for corrections by the other component (�
 � � � � �). The
four remaining conditions differ in whether corrections of
one component have effects on the other one (1: no effects,
2 and 3: only in one direction, 4: in both directions).

Our generalized zipping lemma makes use of the build-
ing blocks of MAKS . Interestingly, only BSPs are de-
manded that are concerned with the insertion of events,
i.e. BSI andFCI. However, upon applying the lemma, it
might be sensible to requireR or BSDadditionally in order
to satisfy the preconditions

�
 �� � � �� and
�� �� � � ��. For

example, this will be the case in Theorem 3.

4 Preservation of Security Properties

In this section, we derive various compositionality re-
sults based on our generalized zipping lemma. In particu-
lar, we present compositionality results for all BSPs from
Section 2.3. These results are used to re-justify several al-
ready known compositionality results. This approach leads
to very simple justifications and, moreover, gives rise to a
classification of known compositionality results.

Theorem 3 If the preconditions of Lemma 1 are satisfied
then the following propositions are valid:

1. R� � �Tr
 � � R�� �Tr� � �� R� �Tr� holds.

2. BSD� � �Tr
 � � BSD� � �Tr� � �� BSD� �Tr� holds.

3. BSI� � �Tr
 � � BSI�� �Tr� � �� BSI� �Tr� holds if, for
� 	 �� � ��, BSD� � �Tr� �.

4. BSIA� �� � �Tr
 � � BSIA���� �Tr� � �� BSIA�� �Tr� holds if,
for � 	 �� � ��, BSD� � �Tr� � and� � �� � �� � �� �� � �.

5. FCD��
��
��
� � �Tr
 � � FCD��
��
��

�� �Tr� � � FCD�
�
�� �Tr�
holds if, for � 	 �� � ��, BSD� � �Tr� �, � � � � � � �,
� � � � � � �, � � ���
 � �
 �
 �� � � � � ��, �
 �
�
 � �� � �, and� � � � � � �
 � �.

6. FCI��
��
��
� � �Tr
 � � FCI ��
��
��

�� �Tr� � � FCI �
�
�� �Tr�
holds if, for � 	 �� � ��, ES� is total in � � � � �,
BSD� � �Tr� �, BSIA� �� � �Tr� �, � � � � � � �, � � � � � � �,
� � ���
 � �
 �
 �� � � � � ��, and

� �
 � �
 � �� � � and� � � � � � �
 � �
; or
� � � � � � � �
 � � and�
 � �
 � �� � � �.

For the preservation of certain BSPs, Theorem 3 demands
that other BSPs hold in addition. E.g., for preservingBSI,
alsoBSDneeds to hold. Technically, this additional BSP
is required in order to satisfy the preconditions

�
 �� � � �
and

�� �� � � � of the generalized zipping lemma. E.g.,
for preservingFCI, alsoBSDandBSIAneed to hold and,
moreover, the components need to be total in certain events

93

(recall from Theorem 1 that, alternatively,BSI can be re-
quired instead ofBSIA and totality). In the remainder of
this section, we will demonstrate by deriving various com-
positionality results that the additional BSPs are not a major
obstacle when applying Theorem 3.

Note that in Proposition 6 of Theorem 3 only one of
�
 � �
 � �� � � or � � � � � � �
 � � needs to hold.
This differs from Proposition 5 and also from Condition 4
of Lemma 1 in which both equations need to hold. This fact
will be important for some results of Section 6.

4.1 A New Classification of Known Composition-
ality Results

Before deriving novel compositionality results with the
help of our generalized zipping lemma in Sections 5 and 6,
let us re-investigate some known compositionality results.
Although these results have already been verified in [9, 8,
19, 20, 36], we find it appealing how easily these results
can been justified in our setting. Moreover, the four con-
ditions of our generalized zipping lemma provide a natural
classification of known compositionality results. Depend-
ing on which of these conditions is satisfied, a composition-
ality result falls into one of three classes. There are three,
rather than four, classes because the second and third con-
dition of the generalized zipping lemma are symmetric. For
the following discussion, recall the modular representation
of security properties from Theorem 2.

First Class of Compositionality Results. Three main ap-
proaches to satisfy the first condition of Lemma 1, i.e.�
 �
�� � � and� � � �
 � �, can be distinguished: firstly,
by ensuring�
 � �� � �, which corresponds to restrict-
ing composition to product; secondly, by ensuring�
 �
� � � �, which can be achieved, e.g., in the context of
two security levels by preventing deductions not only about
occurrences of high-level input but also of high-level out-
put events; and, thirdly, by ensuring�
 � � by the se-
curity property and then restricting composition such that
� � � �
 � � holds.

Following the first approach (restricted composition en-
sures�
 � �� � �), we obtain from Theorem 3 thatall se-
curity properties that can be assembled from R, BSD, BSI,
BSIA, FCD, and FCI are preserved under product(for BSI,
BSIA, FCD, FCI a few side conditions need to hold). A sim-
ple consequence of the modular representation of security
properties (cf. Theorem 2) is that, e.g.,generalized nonin-
ference(represented byR� ���� �Tr�) and generalized nonin-
terference(BSD� ���� �Tr� � BSI� ���� �Tr�) are preserved un-
der product, results first presented in [19].

Following the second approach (security property en-
sures�
 � � � � �), we obtain thatnoninference
(R� ��� �Tr�), separability(BSD� ��� �Tr��BSIA��� ��� �Tr�), and

the perfect security property(BSD� ��� �Tr� � BSIA��� ��� �Tr�)
are preserved under arbitrary compositions, results also
presented in [19, 36]. For these results recall that

� ��� �
�L � � �H� and, hence,�
 � � � � � . The side condition
� � �� � � � � �� � � � � of Proposition 4 in Theorem 3 holds
because of the following equations:

�� �� ���� � � ! � � ! � � � � �� �� ��� �� � �
�� �� ���� � � �
! � � �
! �� � � � �� �� ��� �� � �

Nondeducibility on outputs(BSD� ��� �Tr� � BSIA�
�� ��� �Tr�)
is preserved under composition if low-level user inputs are
not connected, a result from [8], because for� 	 �� � ��:

��� �� ���� � � ! �
 � � � UI � �
� �!
 � � UI�� � � �
� ��� �� ��� � � � �

holds. Low-level user inputs must not be connected be-
cause, otherwise,UI � � UI � � � would not hold.

Following the third approach (security property ensures
�
 � �, restricted composition ensures� � � �
 � �), we
obtain various conditional compositionality results. Forex-
ample, if an event system ES
 that satisfies noninference
(R� ���� �Tr
 �) is composed by a relaxed cascade(ensures

�
 � �� � �
 � ��) with an event system ES� that satisfies
generalized noninference(R� ����� �Tr� �) then� � � �
 � �
is satisfied because

� ����� � � � �! � � �� �! � � �� �. Ac-
cording to Theorem 3,the resulting event systemsatis-
fies R�
	
� �Tr�, where � �

 �, � � ! � � �� ,
� � !

 �! � � �� �. This implies thatES satisfies gen-
eralized noninference(R� ���� �Tr�), a result also presented
in [19].

Second Class of Compositionality Results. Composi-
tionality results that fall into this class, satisfy eitherthe sec-
ond or the third condition of the generalized zipping lemma.
Since these conditions are symmetric, we focus only on the
third condition (� � � �
 � �, BSI� � �Tr� �) below.

The condition� � � �
 � � can be satisfied by first re-
stricting composition to relaxed cascade (ensures�
��� �
�
 � ��) and then choosing a security property for the sec-
ond component that ensures that no input events are con-
tained in� �, i.e. �� � � � � �. Results along these lines
include thatgeneralized noninterference(BSD� ���� �Tr� �
BSI� ���� �Tr�) is preserved under relaxed cascade, a result
also presented in [19, 34]. Moreover,if a system ES
 that
satisfies generalized noninterference is composed in a re-
laxed cascade with an input total system ES� that satis-
fies separability then the resulting system satisfies gener-
alized noninterference. For this result, recall from Theo-
rem 1 thatBSIA��� ����� �Tr� � (follows from BSD� ���� �Tr� � and

94

BSIA��� ���� �Tr� �) and totality in�� imply BSI� ����� �Tr� �. If a

system that satisfies generalized noninference(R� ����� �Tr
 �)
is composed in a relaxed cascade with a system that satisfies
generalized noninterference or is input total and satisfies
separability then the resulting system satisfies generalized
noninference, results first presented in [19].

Third Class of Compositionality Results. That for-
ward correctability is composable, in general, can be ex-
plained using the fourth condition of the generalized zip-
ping lemma. Recall from Theorem 2 that forward cor-
rectability is equivalent to
BSD� ���� �Tr�� BSI� ���� �Tr� �FCD

�
�
�� ���� �Tr� �FCI
�
�
�� ���� �Tr� �

Theorem 3 is applicable to forward correctability because
all side conditions are satisfied for� � � �, � � � � � ,
� � � ! � � � � , � � � �, and� � � � � (� 	 �� � ��). Therefore,
forward correctability is preserved under arbitrary compo-
sition, a result, first presented in [9].

Our classification above reveals similarities between pre-
viously unrelated compositionality results. E.g., general-
ized noninference is preserved under product for the same
reasons that ensure the preservation of noninference under
arbitrary compositions. Unlike in previous classifications
like, e.g., [19], we do not classify merely depending on re-
strictions that are imposed on composition like, e.g., prod-
uct or cascade. Rather, we classify depending on the effect
of such restrictions.

5 Weakened Forward Correctability

In this section, we show that Johnson and Thayer’s for-
ward correctability [9] is not the weakest information flow
property possible that is preserved under arbitrary compo-
sitions and that does not impose any restrictions on the oc-
currence of high-level output events.8

According to Theorem 2, forward correctability is equiv-
alent to BSD� ���� �Tr� � BSI� ���� �Tr� � FCD

�
�
�� ���� �Tr� �
FCI

�
�
�� ���� �Tr�. This modular representation is now used to

analyze how the restrictions of forward correctability can
be relaxed while retaining compositionality. Firstly, observe
that in order to satisfy Condition 1, 2, or 3 of the generalized
zipping lemma, it is necessary to either restrict composition
(e.g. to product or cascade) or to prevent deductions about
high-level output events (e.g, by using flow policyFPLH

rather thanFPLHI). Consequently, these conditions cannot

8Recall the ordering of security properties from Corollary 1and that
generalized noninterference is, in general, not preservedunder arbitrary
compositions. Also note that the perfect security property, nondeducibility
on outputs, and separability all impose restrictions on deductions about
occurrences of output events (cf. Theorem 2).

be satisfied by a compositional security property that does
not prevent deductions about high-level outputs. However,
such a security property may satisfy Condition 4 of the gen-
eralized zipping lemma. According to this condition,BSI
andFCI must be satisfied. Moreover, certain side condi-
tions must be satisfied for the parameters� , � , �. Re-
call from Theorem 1 that for a weak security property, the
sets� and� should be chosen as small as possible while
� should be chosen as large as possible. An appropriate
choice of� � �, and� that satisfies all side conditions from
Proposition 4 of Lemma 1 is� � � , � � � � ��
 � �,
� � � . Note that the side conditions, indeed, are ful-
filled: �
 � � � � ��

 �� �, �HI
 � �! � � HI� �� � �
,
�HI� � �!
 � HI
 �� � �� , �
 � ��
 � ��

 �
�� � �� � �,
and � � � �� � � ���
 �� �� � �
 � �. Hence, it suf-

fices to requireFCI
�
� � ���� �
�� ���� �Tr� instead of the stronger

FCI
�
�
�� ���� �Tr�. If BSDis required in addition toBSIandFCI

then all preconditions of Propositions 2, 3, and 6 in Theo-
rem 3 are fulfilled because� � � � � � � holds for� 	 �� � ��
and� � ��
 � � � � ���

�� ��� � � �� �
 � � �� � �! � � HI � ��.
Apparently, there is no need to requireFCD. This results in
the following definition of a novel security property that is
preserved under arbitrary compositions.

Definition 2 We defineweakened forward correctabilityby

BSD� ���� �Tr� � BSI� ���� �Tr� � FCI
�
� � ���� �
�� ���� �Tr� �

Theorem 4 (Composability) If ES
 and ES� satisfy weak-
ened forward correctability then ES� ES
 � ES� satisfies
weakened forward correctability.

In order to show that weakened forward correctability is,
indeed, weaker than forward correctability, it remains to
prove thatFCI

�
�
�� ���� �Tr� andFCD
�
�
�� ���� �Tr� are not implied

by weakened forward correctability. ForFCI
�
�
�� ���� �Tr� this

is obvious from the definition ofFCI. For FCD
�
�
�� ���� �Tr�,

consider a system with the following possible traces:Tr �
�hi� � hi�hi��li �hi� � ho�hi� � ho�hi��li �hi� � wherehi� denotes
a (possibly empty) sequence of eventshi of arbitrary length
andhi, ho, li shall be, respectively, high-level input, high-
level output, and low-level input events. This system satis-
fiesBSD� ���� �Tr�, BSI� ���� �Tr� andFCI

�
�
�� ���� �Tr�. However,

it does not satisfyFCD
�
�
�� ���� �Tr� because ifhi is deleted in

the tracehi �li then the only possible correction, i.e.ho�li ,
requires the insertion ofho beforeli , however, this is not
allowed byFCD

�
�
�� ���� �Tr�.
Hence, weakened forward correctability is a composable

security property that is weaker than forward correctability.
Our results above are in contrast to the following statement
from [35, page 100] “forward correctability is the weakest

95

condition of any [composable] property that solely elimi-
nates the possible of there being a condition on a low-level
input event”. Note that in Definition 2,� � � contains only
low-level input events because� � � � � � holds.

Since weaker properties are easier to verify, weakened
forward correctability seems to be, in general, preferable
to forward correctability. Verification techniques for weak-
ened forward correctability are outside the scope of the
current article. However, the derivation of unwinding re-
sults appears to be straightforward by combining the ideas
from [21] and [12]. We expect that our weakening of the
security property also results in weaker unwinding condi-
tions.

6 Properties Emerging During Composition

Verifying that a given system specification satisfies an
information flow property means to prove that the set of
possible traces is closed under some closure condition. Usu-
ally, so called unwinding results are used during verification
(e.g. [7, 27, 21, 11]). However, information flow proper-
ties can also be verified directly (e.g. [18]). The elaboration
of these verification techniques has simplified the verifica-
tion of information flow properties substantially but, never-
theless, the effort to verify information flow properties can
be considerable. Therefore, it is very appealing that some
information flow properties hold trivially and, more inter-
estingly, that certain nontrivial information flow properties
emerge during composition.

6.1 Trivially Satisfied Security Properties

Theorem 5 Let � �� � � � � be arbitrary.

1. If � � � then R� �Tr�, BSD� �Tr�, BSI� �Tr�,
BSIA�� �Tr�, FCD�
�
�� �Tr�, FCI�
�
�� �Tr� hold.

2. (a) If � � � then R� �Tr�, BSD� �Tr�,
FCD�
�
�� �Tr�, and FCI�
�
�� �Tr� hold.

(b) If � � � and� �� � � �
 � then BSIA�� �Tr�
holds.

(c) If � � � and ES is total in� then BSI� �Tr�
holds.

3. If � � � or � � � then FCD�
�
�� �Tr� and
FCI �
�
�� �Tr� hold.

For systems that either do not operate on confidential data
or whose behavior does not result in any visible output, one
might already expect that most security properties are satis-
fied. The first two propositions in the above theorem show
that this is, indeed, the case. Proposition 1 says that sys-
tems that do not engage in any confidential events satisfy

all BSPs from Section 2.3. According to Propositions 2a–
2c, these BSPs are also satisfied by systems that do not en-
gage in any visible events (forBSIAandBSIunder certain
restrictions). Although these facts are intuitively not too
astonishing and also technically quite trivial, they can be
helpful when building secure systems by composition.

In particular, untrusted programs (potentially Trojan
horses) may be connected to the high-level interface of a
security critical system without verification under the con-
dition that they cannot directly engage in events that are
visible to low-level adversaries. Without explicit verifica-
tion, most BSPs are trivially satisfied by such components.
Note that the security properties that are trivially satisfied
include separability, nondeducibility on outputs, the perfect
security property, noninference, and generalized noninfer-
ence (cf. Figure 3). Moreover, if an (untrusted) program is
input total then forward correctability and generalized non-
interference are also satisfied.

To restrict unverified components to only either operate
on confidential data or to provide output to potential adver-
saries, seems to be a necessity for secure systems.9 Com-
ponents that engage in confidential as well as visible events
need to be verified to be secure. Minimizing the number of
such critical components reduces the verification effort and
also appears to be good design practice for secure systems
anyway. Upon composition, the security of the overall sys-
tem should be derived from security properties satisfied by
the components (trivially satisfied ones as well as ones that
have been proved explicitely) with the help of composition-
ality results (cf. Section 3–5).

6.2 Nontrivial Security Properties Emerging from
Trivial Ones

Security properties that are trivially satisfied by system
components can be exploited to demonstrate that a com-
posed system satisfies nontrivial security properties. Tech-
nically, the emergent properties follow from the triviallysat-
isfied properties (cf. Theorems 1 and 5) together with com-
positionality results like the ones in Theorem 3. It is quite
appealing that some of the emergent properties are nontriv-
ial in the sense that they would not be known to be satisfied
by the composed system if that system is considered as a
black box (as for the trivially satisfied BSPs).

Let us illustrate how this phenomenon can be exploited
at the example ofFCI. For this purpose assume a sys-
tem that is composed of several components that each sat-
isfy BSD as well asBSI. Moreover, for any two compo-
nents, the second or third condition of the generalized zip-

9A computationally inexpensive method to verify untrusted programs
is the use of security type systems (e.g. [1, 2, 30, 29]). The connection
between language-based security and trace-based securityproperties has
been explored, e.g., in [22].

96

ping lemma shall be satisfied. Consequently, we can con-
clude from Theorem 3 that for the composition of anytwo
components,BSD and BSI are also satisfied. However,
if the system consists of more than two components, this
does not explain why the overall system also satisfiesBSD
and BSI. The problem is that neither the second nor the
third condition of the generalized zipping lemma need to
be satisfied after composing two components. For example,
consider a system that consists of three componentsES
,
ES� , andES� with �
 � ��
 � �
� � �
� � �
 � �
� � �
� �, �� �
��� � �
� � ��� � �� � �
� � ��� �, � � � ��� � �
� � ��� � �� � �
� � ��� �
and the views

�
 � ���
 � �
� � �
� �� ��
� � � ��
 � �
� ���,� � � ���� � �
� � ��� �� ���� � � ��� � �
� ���, � �� ���� � �
� � ��� � �
��
� � � ��� � ��� ���. Note that� � � �
 � ���� � � �
 � �,
� � � �� � ��
� � � �� � �, and�
 � � � � ��
� � hold
for the components. After composing, e.g.,ES
 andES� ,
we have�
� � � � � ��

 � � � � � � � ���� �
� � and
� � � �
� � � � � ��

 �� � � ��
� �
� �. I.e. neither
the second nor the third condition of the generalized zipping
lemma are fulfilled forES� and the composition ofES
 and
ES� . Nevertheless, our compositionality results can be ap-
plied to show that the overall system satisfiesBSDandBSI.
The reason is that the fourth condition of the generalized
zipping lemma holds after composing any number of com-
ponents. This is demonstrated by the following theorem.

Theorem 6 Let � be a nonempty index set. For every� 	
� , let ES� � �� � � �� � � � �Tr� � be an event system such that
�� � � � � � and, for all � � � 	 � with �
� �, � � � � � �
��� � � �� �
 �� � � �� �� hold. Let ES� �� � � � � �Tr� be the
composition of these event systems, i.e. ES� �� �� ES� .

Let
� � �� �� �� � be a view in� . For every� 	 � , let�� � ��� �� � ��� � be a view in� � such that� � � � � ��

and� � � � � �� hold.
If, for every� 	 � , BSD� 	 �Tr� �, BSI�	 �Tr� �, and, for

every� 	 � with �
� � , � � � � � � � or � � � � � � � holds
then BSD� �Tr�, BSI� �Tr�, and, for every� 	 � , holds:

1. FCI
� 	 ��
��
�� ��	 � � �
 � 	
 � 	 � �
��
�� ��	 � � �
� �Tr�;

2. FCI
�
��
�� ��	 � � ��� 	
 �
 � 	 � �
��
�� ��	 � � �
� �Tr�; and

3. FCI
� 	 ��
��
�� ��	 � � �
 �
 �
 ��
�� ��	 � � ��� 	� �Tr�.

Theorem 6 shows thatBSD, BSI, andFCI hold for the com-
position of any number of components that satisfy the above
restrictions. Note that if� contains more than one element
thenFCI does not hold trivially for the choices of� , � , �
in the Theorem. Nevertheless, it is neither necessary to ver-
ify FCI explicitely for the overall system nor for any of the
components. The satisfaction ofFCI follows merely from
our compositionality results and the trivial satisfactionof
FCI for each component if� � �, � � �, or � � � �
(cf. Proposition 3 in Theorem 1 and Proposition 3 in Theo-
rem 5).

Example 1 For the example components ES
, ES�, and
ES� that we introduced before, Theorem 6 ensures that, e.g.,

FCI
���
���
� �
� �� �
� �
 ���
���
� �
� �� �� �� �Tr
� � and (1)

FCI
���
���
��
��� �
 �
 ���
���
��
� �� �� �� �Tr
� � (2)

hold after composing ES
 and ES�.
FCI

���
���
��
���
� �
� ��
��
��� �
� �
 ���
���
� �
��� �� �� �Tr
� �
(follows from Formulas 1 and 2) and FCI�
 �
 ���� ��� �Tr� �
(holds trivially) ensure that Condition 4 of the generalized
zipping lemma is fulfilled for ES
 � ES� and ES� (leaving
the detailed check as a straightforward exercise). Conse-
quently, ES
 � ES� � ES� satisfies BSD, BSI, and FCI (for
choices of� , � , � that are in accordance with Theorem 6).

7 Related Work

That possibilistic information flow properties need not
be preserved under composition has been first demonstrated
by McCullough with his well-known example that general-
ized noninterference is not preserved under arbitrary com-
positions [16]. The same example can also be used to prove
that Sutherland’s nondeducibility [31], i.e. the first general-
ization of Goguen and Meseguer’s noninterference [6] for
nondeterministic systems, is not compositional. The first
information flow property that is preserved under arbitrary
compositions was McCullough’s restrictiveness [16, 17].
Johnson and Thayer found that restrictiveness is stronger
than necessary in order to be composable. As a solution,
they proposed forward correctability, an information flow
property that is preserved under arbitrary compositions al-
though it is weaker than restrictiveness and, hence, eas-
ier to verify [9]. Since forward correctability is, in gen-
eral, superior to restrictiveness the latter property has been
made obsolete. Guttman and Nadel proposed nondeducibil-
ity on outputs, another information flow property that is pre-
served under composition (with minor restrictions, cf. Sec-
tion 4.1) [8]. The reason for the compositionality of this
property is that deductions about high-level outputs are pre-
vented (in addition to high-level inputs). This differs con-
siderably from the requirements imposed by forward cor-
rectability or restrictiveness, which only prevent deduc-
tions about high-level inputs. Interestingly, this difference
also becomes apparent in our classification of known com-
positionality results in Section 4.1. While the composi-
tionality results for nondeducibility on outputs belongs to
the first class, the compositionality of forward correctabil-
ity belongs to the third class. Other compositionality re-
sults in the first class are the compositionality of noninfer-
ence [24, 19], of separability [19], and of the perfect secu-
rity property [36].

97

All results mentioned so far are concerned with infor-
mation flow properties that are preserved underarbitrary
compositions. McLean pioneered another line of research
that is driven by the question ofhow to restrict composi-
tion in order to preserve a given information flow property.
In Section 4.1 we have already restated McLean’s results
along these lines [19, 20] in our setting. Compositionality
results based on restricted forms of composition have also
been developed by Zakinthinos and Lee in a series of pub-
lications [34, 35, 37]. In [34], it has been demonstrated
that McCullough’s version of generalized noninterference
is preserved if feedback loops are avoided (for the com-
positionality of a slightly different version cf. [19]). More
interestingly, generalized noninterference is preservedif a
delay component is inserted into all feedback loops that in-
volve high-level events. These components need to delay
any feedback to after the next low-level event. According
to [35], generalized noninterference is also preserved if ev-
ery feedback path contains at least three components. If
there are no 2-cycles then the amount of delay is immaterial
and, hence, a delay of feedback to after the next low-level
event is not necessary.10 A second compositionality the-
orem is somewhat ambiguous because several notions are
used without being formalized.11 This theorem led to the
statement that forward correctability would be the “weakest
condition of any [composable] property that solely elimi-
nates the possible of there being a condition on a low-level
input event” [35, page 100], which is in contrast to our re-
sults in Section 5.

The intuition underlying nondeducibility on strategies
[33] is that a secure system should make it impossible for
a low-level user to distinguish different strategies employed
by a high-level user. Consequently, any system that fulfills
nondeducibility on strategies prevents an unverified high-
level program (potential Trojan horse) from transmitting
confidential information to a low-level adversary. This set-
ting is similar to the one that we have investigated in Sec-
tion 6.1. The reformulation of nondeducibility on strategies
into other system models (the system model used in [33]
is somewhat nonstandard) has shown that, in a trace-based
model, nondeducibility on strategies is equivalent to non-
inference [5]. Interestingly, Schneider has derived an in-
formation flow property, “may-NI”, that is also equivalent
to noninference although he has started from may testing,
which is a quite different perspective [28]. In that article,
compositionality results are presented for various forms of
composition, including ones that permit the synchronization

10This astonishing no-2-cycle result can also be obtained as aspecial
case of our Theorem 6.

11Theorem 2 in [35] is based on the following notions: “high-level
state”, “a condition to be true at a given point of time”, “a condition to
becomefalse”, and “a condition to bemadetrue”. However, these notions
are neither formally defined in terms of the computational model nor does
their meaning become entirely clear from the context.

of high-level events of one component with low-level events
of other components.12

Emergent properties have already been investigated in
[37]. Technically, the results presented can be regarded as
combinations of compositionality results with an ordering
of security properties by implication. E.g., if two systems
satisfy, respectively, security properties�
 and� � then the
product of these systems satisfies any security property�
that is product-composable and for which�
 �� � as well
as� � �� � hold. Similar results, that are, however, tech-
nically more involved have been presented for cascade and
unrestricted composition. Results of a similar flavor can
also be found in [19], however, the term emergent proper-
ties is not used in that article.

The observation that a uniform framework can be helpful
in the derivation of compositionality results has also been
made by McLean. In [19, 20], various compositionality re-
sults have been derived based on the elegant framework of
selective interleaving functions. That all external compo-
sitionality results from these articles can be restated in our
setting has been demonstrated in Section 4.1. However, our
compositionality results go beyond the ones derived in the
framework of selective interleaving functions. One reason
for this might be that selective interleaving functions are
not well suited for expressing inductively defined proper-
ties like, e.g., forward correctability, restrictiveness, or Mc-
Cullough’s original formalization of generalized noninter-
ference (the formalization in [19] differs in that corrections
are allowed before the first perturbation).

For comparisons of known information flow proper-
ties and further frameworks for such properties, we refer
to [5, 36, 25]. Although, compositionality issues have also
been investigated in these articles, no benefit has been taken
from a uniform representation to simplify the derivation of
compositionality results (unlike in the work of McLean or
in the current article).

In this article, we have focused on information flow
properties in a trace-based system model that abstracts from
probabilities. For compositionality results based on other
possibilistic system models, we refer to [5, 26, 25]. For
compositionality results for a probabilistic system model
that, however, is only suitable for synchronous systems, we
refer to [10].

8 Conclusion

The behavior of information flow properties under com-
position has been an important topic of security research

12The side conditions of Lemma 1 and Theorem 3 rule out synchro-
nization of confidential events in% with visible events in# . However,
according to Proposition 4 in Theorem 1, all BSPs remain valid when the
view is modified by moving events from# to $. After all critical events
have been moved, Lemma 1 and Theorem 3 become applicable.

98

for the last fifteen years and numerous interesting and use-
ful insights have been achieved. In this article, we have
provided a uniform perspective on compositionality results
for information flow properties. In our presentation, uni-
formity occurs at two levels: firstly,MAKS [11, 12, 13]
has been used for the uniform representation of information
flow properties and, secondly, we have proposed a powerful
lemma that can be used to justify various compositionality
results in a uniform way. This generalized zipping lemma
is the main technical contribution of this article. Based on
this lemma, we have derived a classification of composi-
tionality results for information flow properties that, unlike
previous classifications, classifies depending on theeffects
of restrictions on the composition rather than only depend-
ing on the restriction itself. Several known compositional-
ity results have been re-justified in order to classify them.
We have also proposed a novel security property, “weak-
ened forward correctability”, that is weaker than Johnson
and Thayer’s forward correctability [9] but still is com-
posable. Hence, weakened forward correctability makes
forward correctability obsolete for the same reason why
forward correctability made restrictiveness [16] obsolete.
Moreover, we have demonstrated how to reduce the veri-
fication effort when building secure systems by choosing
a compositional design that ensures that many components
trivially fulfill the security properties of interest. Finally, we
have illustrated that nontrivial security properties emerge
under composition.

Future and ongoing work is focused on the application
of the results presented in this article, in particular in the
context of programming languages [22, 23].

Acknowledgments. The author would like to thank Die-
ter Hutter, Serge Autexier, Alexandra Heidger, and Axel
Schairer for their valuable comments on an earlier version
of this article. This work has been partly supported by the
German Research Foundation (DFG).

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A
Core Calculus of Dependency. InACM Symposium on
Principles of Programming Languages, 1999.

[2] J. Agat. Transforming out Timing Leaks. InACM
Symposium on Principles of Programming Lan-
guages, pages 40–53, 2000.

[3] M. Abadi and L. Lamport. Conjoining Specifications.
ACM Transactions on Programming Languages and
Systems, 17(3):507–534, 1995.

[4] B. Alpern and F. B. Schneider. Defining Liveness. In-
formation Processing Letters, 21:181–185, 1985.

[5] R. Focardi and R. Gorrieri. A Classification of Secu-
rity Properties for Process Algebras.Journal of Com-
puter Security, 3(1):5–33, 1995.

[6] J. A. Goguen and J. Meseguer. Security Policies and
Security Models. InIEEE Symposium on Security and
Privacy, pages 11–20, 1982.

[7] J. A. Goguen and J. Meseguer. Inference Control and
Unwinding. InIEEE Symposium on Security and Pri-
vacy, pages 75–86, 1984.

[8] J. D. Guttman and M. E. Nadel. ”What Needs Secur-
ing?”. In IEEE Computer Security Foundations Work-
shop, pages 34–57, 1988.

[9] D. M. Johnson and F. J. Thayer. Security and the
Composition of Machines. InIEEE Computer Secu-
rity Foundations Workshop, pages 72–89, 1988.

[10] J. Jürjens. Secure Information Flow for Concurrent
Processes. InInternational Conference on Concur-
rency Theory, Concur 2000, LNCS 1877, pages 395–
409, 2000.

[11] H. Mantel. Possibilistic Definitions of Security – An
Assembly Kit. In IEEE Computer Security Founda-
tions Workshop, pages 185–199, 2000.

[12] H. Mantel. Unwinding Possibilistic Security Proper-
ties. In European Symposium on Research in Com-
puter Security (ESORICS), LNCS 1895, pages 238–
254, 2000.

[13] H. Mantel. Information Flow Control and Applica-
tions – Bridging a Gap. InFME 2001: Formal Meth-
ods for Increasing Software Productivity, LNCS 2021,
pages 153–172, 2001.

[14] H. Mantel. Preserving Information Flow Properties
under Refinement. InIEEE Symposium on Security
and Privacy, pages 78–91, 2001.

[15] J. Misra and K. M. Chandy. Proofs of Networks of
Processes.IEEE Transactions on Software Engineer-
ing, SE-7(4):417–426, 1981.

[16] D. McCullough. Specifications for Multi-Level Secu-
rity and a Hook-Up Property. InIEEE Symposium on
Security and Privacy, pages 161–166, 1987.

[17] D. McCullough. A Hookup Theorem for Multilevel
Security. IEEE Transactions on Software Engineer-
ing, 16(6), 1990.

[18] J. McLean. Proving Noninterference and Functional
Correctness using Traces.Journal of Computer Secu-
rity, 1(1):37–57, 1992.

99

[19] J. McLean. A General Theory of Composition for
Trace Sets Closed under Selective Interleaving Func-
tions. In IEEE Symposium on Research in Security
and Privacy, pages 79–93, 1994.

[20] J. McLean. A General Theory of Composition for
a Class of ”Possibilistic” Security Properties.IEEE
Transaction on Software Engineering, 22(1):53–67,
1996.

[21] J. K. Millen. Unwinding Forward Correctability. In
Computer Security Foundations Workshop, pages 2–
10, 1994.

[22] H. Mantel and A. Sabelfeld. A Generic Approach to
the Security of Multi-threaded Programs. InIEEE
Computer Security Foundations Workshop, pages
126–142, 2001.

[23] H. Mantel and A. Sabelfeld. A Unifying Approach
to the Security of Distributed and Multi-threaded Pro-
grams. Submitted, 2001.

[24] C. O’Halloran. A Calculus of Information Flow. In
European Symposium on Research in Computer Secu-
rity (ESORICS), pages 147–159, 1990.

[25] P. Y. A. Ryan and S. A. Schneider. Process Alge-
bra and Non-interference. InIEEE Computer Security
Foundations Workshop, pages 214–227, 1999.

[26] A. W. Roscoe and L. Wulf. Composing and Decom-
posing Systems under Security Properties. InIEEE
Computer Security Foundations Workshop, pages 9–
15, 1995.

[27] P. Y. A. Ryan. A CSP Formulation of Non-
Interference and Unwinding.Cipher, pages 19–30,
Winter 1991.

[28] S. Schneider. May Testing, Non-interference, and
Compositionality. Technical Report CSD-TR-00-02,
Royal Holloway, University of London, January 2001.

[29] G. Smith. A New Type System for Secure Informa-
tion Flow. In IEEE Computer Security Foundations
Workshop, pages 115–125, 2001.

[30] A. Sabelfeld and D. Sands. Probabilistic Noninter-
ference for Multi-threaded Programs. InIEEE Com-
puter Security Foundations Workshop, pages 200–215,
2000.

[31] D. Sutherland. A Model of Information. InNational
Computer Security Conference, 1986.

[32] J. Widom, D. Gries, and F. B. Schneider. Trace-Based
Network Proof Systems: Expressiveness and Com-
pleteness.ACM Transactions on Programming Lan-
guages and Systems, 14(3):396–416, 1992.

[33] J. T. Wittbold and D. M. Johnson. Information Flow
in Nondeterministic Systems. InIEEE Symposium
on Research in Security and Privacy, pages 144–161,
1990.

[34] A. Zakinthinos and E. S. Lee. The Composability of
Non-Interference. InIEEE Computer Security Foun-
dations Workshop, pages 2–8, 1995.

[35] A. Zakinthinos and E. S. Lee. How and Why Feed-
back Composition Fails. InIEEE Computer Security
Foundations Workshop, pages 95–101, 1996.

[36] A. Zakinthinos and E. S. Lee. A General Theory of
Security Properties. InIEEE Symposium on Security
and Privacy, pages 94–102, 1997.

[37] A. Zakinthinos and E. S. Lee. Composing Secure Sys-
tems that have Emergent Properties. InIEEE Com-
puter Security Foundations Workshop, pages 117–122,
1998.

Appendix

This appendix contains proof sketches of the main results
presented in the article. Detailed proofs of these results can
be obtained from the author upon request.

Proof. [Sketch of Lemma 1] We make a case distinction
on the four conditions in the lemma. In the proofs of the
first three cases, the following facts are used:�
 � �� � �,
� � � �
 � �, �
 � �� � � implies

�
 �� � � � �� ���� ,
and� � � �
 � � implies

�� �� � � � �� ���� . The first
case follows directly from these conditions. In the proof
of the second case,BSI� � �Tr
 � is applied in order to insert
the sequence

�� �	 ��� � into � �� � ��
. In the proof of the third
case,BSI�� �Tr� � is applied in order to insert the sequence�
 �	 ��� � into � ��� ��� . The proof of the fourth case is the
most difficult one. This proof proceeds along similar lines
as the proof of the zipping lemma in [9] but differs in tech-
nical details:

An induction on the length of� is performed. In the base
case, the proposition holds for the choice

� � ��. In the step
case, a case distinction on the first event

�
in � is made. The

four cases are (a)
� 	 �
 � �� � �
, (b)

� 	 �
 � �� � � � ,
(c)

� 	 �
 � �� , and (d)
� 	 �� � �
. Due to the symmetry

of the conditions, the proofs of (b) and (d) are similar to the
proofs of (a) and (c), respectively.

In the proof of case (a),
�
 is split into subsequences be-

fore and after
�
, resulting in�
 �� ��
 (�
 �� ��
 � �
, �
 ��� �

100

��). Then�
 �� � is inserted into� ��� ��� usingBSI� � �Tr� �,
resulting in � ��� �� �� . � �� is split into subsequences before
and after

�
, resulting in� �� �� �� �� (� �� �� �� �� � � �� , � �� ��� � ��).

The sequence� �� �� � is inserted by an inductive argument
from left to right into � �� � ��
 �� ��
 directly before

�
using

FCI � �
� �
� �
� � �Tr
 �, resulting in � �� � ��
 �� �
 �� �� �
. The se-

quence� �
 	 ���
 � �
 �
 ��
 � �
 ��� need not be identical
to � �� �� � but it may differ in events from�
 � �
. The proof
of case (a) is concluded by an application of the induction
hypothesis.

The proof of case (c) is identical to the proof of case (a)
until the step where� ��� �� �� is constructed. After this step,
the induction hypothesis can be applied directly.

Proof. [Sketch of Theorem 3] We prove the first of the six
propositions in the Theorem as an example. The proofs of
the other propositions proceed along similar lines and, in
particular also make use of the generalized zipping lemma.

Proposition 1: Let � � 	 Tr be arbitrary. We have� � �� � 	
Tr
 and� � �� � 	 Tr�. According toR� � �Tr
 � andR� � �Tr� �,
there are� �
 	 Tr
 and � �� 	 Tr� with � �
 �� � � � �� ��� ,
� �
 �� � � ��, � �� �� � � � �� ��� , � �� �� � � ��. Lemma 1 yields
for � � ��, � � � � �� ,

�
 � � �
, and
�� � � �� that there is a

sequence
� 	 � � with

� 	 Tr,
� �� � � � �� , and

� �� � ��.
Thus,R� �Tr� holds.

Proof. [Sketch of Theorem 4] Assume that, for� 	 �� � ��,
BSD� ����� �Tr� �, BSI� ����� �Tr� �, andFCI ��
� �
��� ����� �Tr� � hold for� ����� � �L� �H��HI � �HI � �, � � � � �, � � � � �, and� � �
� � � �� �
 � � �. Consequently, the fourth condition of the
generalized zipping lemma is satisfied, i.e.�
 � �� � �

� � , �
 � � � � �
, � � � �
 � � �, �
 � �� � �, and
� � � �
 � � hold. Moreover, the conditions of the second,
third, and sixth case of Theorem 3 are satisfied. Note that
� � � � � � �, � � � � � � �, and� � ���
 � �
 �

�� � � � � �� hold for � 	 �� � ��, � � � , � � � , and� �
� � ��
 � �. Moreover,�
 � �� � � and � � � �
 �
� hold. Therefore, Theorem 3 implies thatBSD� ���� �Tr�,
BSI� ���� �Tr�, andFCI �
�
�� ���� �Tr� are all satisfied.

Proof. [Sketch of Theorem 6] The proof proceeds by in-
duction on the size of the index set� .

In the base case (� � �� �), BSD�	 �Tr� � andBSI� 	 �Tr� �
hold by assumption. Since� ���
� ��� � � � � holds, the

remaining three propositions reduce toFCI
� 	
� 	
� 	�	 �Tr� �,

FCI �
�

� 	� 	 �Tr� �, and FCI

� 	
�
�� 	 �Tr� �. These propositions
follow from Proposition 3 of Theorem 1 and Proposition
3 of Theorem 5.

In the step case,� � � �
 ���, � �
� �, and� �	 � � holds.
Let ES� � �� � � � � � � � �Tr� � be defined byES� � �� �� � ES� .
Hence, it remains to composeES� andES�. In order to apply
Theorem 3, it is shown that all assumptions of Lemma 1 can
be satisfied forES� andES�. For this purpose, firstly,� � is
partitioned into two disjoint subsets� �
 � � �� that are defined
by � �
 � �� 	 � � � � � � � � � �� and � �� � � � � � �

(� � � � � � � holds for every� 	 � ��). Secondly, a view� � � �� � �� � �� � � in � � is defined by:

� � � � � �� � �� �
� � � � � �� � � � , and
� � � �
 	 � � � �� 	 � �� �
 	 � � ��
 	 �� �� �

Thirdly, it is shown thatFCI �
�
� �
� �� � �Tr� holds where the

sets�� � �� � �� � � � are defined by:

�� � � � � �� 	 � � � � � � � � � 	 � � � �
� ���
�� � �� �� �� � � , and
�� � �� � �� �� � � � � �� 	 � � � � � � � � � 	 � �� �
� �� �

Therefore,BSI� � �Tr� � (induction hypothesis),BSI� � �Tr� �,
FCI �

�
� �
� �� � �Tr� �, andFCI � �
� �
� �� � �Tr� � hold where� � �
�, � � � �, and � � � � � (last statement follows from
Proposition 3 of Theorem 5). All remaining assumptions
of Condition 4 in Lemma 1 are fulfilled for��, ��, ��,
� �, � �, and � �. The fact that no event can belong to
more than two components (follows from�� � � � � � and
� � � � � � ��� � � � �
 ��� � � � �) is important when proving
some of these assumptions.

BSD� �Tr� andBSI� �Tr� follow from Propositions 2 and
3 of Theorem 3, respectively. The propositions

FCI
� 	 � �
��
�� ��	 � � �
 � 	
 � 	 ��
��
�� ��	 � � �
� �Tr� (3)

FCI
�
��
�� ��	 � � ��� 	
 �
 � 	 ��
��
�� ��	 � � �
� �Tr� (4)

FCI
� 	 � �
��
�� ��	 � � �
 �
 �
��
�� ��	 � � ��� 	� �Tr� (5)

follow from Proposition 6 of Theorem 3. To prove
that all side conditions of Proposition 6 are, indeed, ful-
filled, is somewhat tedious – but possible. For each
of Formula 3, 4, and 5, a case distinction on� � �
or � 	 � � is made. The six resulting cases follow
from the induction hypothesis and the following propo-
sitions: FCI�
�
�

�
� � �Tr� �, FCI

� �
�
�� � �Tr� �, FCI
� �
� �
� �� � �Tr� �,

FCI�
�
� �� � �Tr� �, and FCI
� �
�
�� � �Tr� �. These propositions

hold according to Theorems 1 and 5.

101

