A Uniform Framework for the
Formal Specification and Verification
of Information Flow Security

Heiko Mantel

Dissertation zur Erlangung des Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultat I
der Universitat des Saarlandes

Saarbriicken, 2003

ii

Tag des Kolloquiums
Dekan

Vorsitzender
Gutachter

11. Juli 2003

Prof. Dr. Philipp Slusallek

Prof. Dr. Gert Smolka

Prof. Dr. Jorg H. Siekmann, Universitat des Saarlandes
Prof. Dr. David Basin, ETH Zurich, Schweiz

Dr. John D. McLean, Naval Research Laboratory, Wash-
ington, D.C., USA

iii

Short Abstract

In this thesis, we elaborate a uniform basis for the systematic investigation of possibilistic
information flow properties. These properties are suitable for specifying security requirements
formally such that they can be verified with mathematical rigor. We analyze the variety of
known properties, propose new ones, and develop techniques that simplify their verification.

To this end, we introduce MAKS, a uniform framework for the investigation of information
flow properties. The two basic ideas underlying MAKS are: firstly, to separate application-
specific aspects of an information flow property from more application-independent aspects
and, secondly, to express the latter aspects by assembling primitive building blocks. This
modular representation provides a basis for reducing complex reasoning about information
flow properties to reasoning about conceptually simpler building blocks. Following this ap-
proach, we analyze several information flow properties from the literature, elaborate their
advantages and disadvantages, and derive a taxonomy of these properties. In this process,
we discover several novel information flow properties that constitute improvements of known
ones. Moreover, we exploit the modular representation for developing verification techniques
for information flow properties. In particular, we derive unwinding results that reduce the
verification of information flow properties to the verification of simpler unwinding conditions.
We also derive compositionality results that support the verification of complex systems by
reducing the overall verification task to the verification of the individual system components.

The applicability of our results is demonstrated by several examples and also by a complex
case study from the area of language-based security.

iv

Deutsche Kurzzusammenfassung

Die vorliegende Arbeit prisentiert einen Ansatz zur systematischen Untersuchung possibilis-
tischer Informationsflusseigenschaften. Diese Klasse von Eigenschaften eignet sich fiir die for-
male Spezifikation von Sicherheitsanforderungen hinsichtlich Vertraulichkeit und Integritat
und ermoglicht es, solche Anforderungen mit mathematischer Genauigkeit zu beweisen. Die
aus der Literatur bekannten Informationsflusseigenschaften werden in der Arbeit eingehend
analysiert und verglichen, neue Eigenschaften werden synthetisiert, und es werden Verifika-
tionstechniken fiir Informationsflusseigenschaften vorgeschlagen.

Zu diesem Zweck wird ein einheitlicher Rahmen (MAKS) fiir die Analyse von Informa-
tionsflusseigenschaften vorgestellt. Dieser Rahmen basiert auf zwei grundlegenden Ideen:
Erstens, die applikationsabhingigen Aspekte einer Informationsflusseigenschaft klar von den
applikationsunabhingigen Aspekten zu trennen, und zweitens, die applikationsunabhingigen
Aspekte in einer modularen Weise aus Bausteinen zusammenzusetzen. Die modulare Darstel-
lung ermoglicht es, die Untersuchung komplexer Informationsflusseigenschaften auf die Un-
tersuchung der primitiven Bausteine zurickzufithren. Unter Verwendung dieses Ansatzes
werden verschiedene Eigenschaften aus der Literatur analysiert, ihre Vor- und Nachteile wer-
den herausgearbeitet, und es wird eine Taxonomie dieser Eigenschaften hergeleitet. Dabei
ergeben sich mehrere Verbesserungsmoglichkeiten, die zur Definition neuer Informationsfluss-
eigenschaften fithren. Aulerdem werden Techniken entwickelt, die die Verifikation einer Infor-
mationsflusseigenschaft fiir ein gegebenes System auf ein konzeptionell einfacheres Problem
zuriickfithren, ndmlich auf die Verifikation von einfacheren, lokalen Bedingungen (unwinding-
Technik) oder auf die Verifikation der Eigenschaft fiir die einzelnen Komponenten des Systems
(kompositionale Verifikation).

Die Verwendung der vorgestellten Ergebnisse und vorgeschlagenen Konzepte wird in vie-
len kleinen Beispielen illustriert. Auflerdem wird die praktische Verwendbarkeit an einer
komplexen Fallstudie aus dem Bereich der statischen Programmanalyse gezeigt.

Extended Abstract

The security of information systems is of critical importance. For instance, many customers
in electronic banking are concerned about keeping the balance of their accounts confidential.
The integrity of bank accounts is important for their owners and also for the banking industry.
In electronic commerce, some customers do not want their transactions to become public. For
the success of electronic voting, the confidentiality and integrity of electronic votes are obvious
prerequisites as they are the basis of democracy. However, the various security needs are
opposed by manifold possibilities for attacks, in particular, since the advent of the Internet.

The key question is: How can we, as computer scientists, make sure that the critical sys-
tems that we build are indeed secure? To this end, formal methods offer a rigorous solution:
By verifying formally that a system meets its requirements, one ensures with mathemati-
cal precision that this is indeed the case. Further advantages of formal methods are that
requirements can be specified without ambiguities and that specifying a system and its re-
quirements formally leads to a better understanding, which often reveals flaws before the
actual verification begins.

In this thesis, we focus on the formal specification and verification of security requirements
concerning confidentiality and integrity. The security properties that we investigate for this
purpose belong to the class of possibilistic information flow properties. Using these properties,
for instance, the confidentiality of data is expressed by the requirement that observations of
untrusted users are not influenced by any confidential data. This means, in particular, that
untrusted users must not be able to directly read the data. Expressing confidentiality by
the lack of dependencies excludes also more subtle attacks that exploit malfunctioning or
malicious programs with legitimate access to the confidential data (e.g. that a Trojan horse
sends the data in some encoded form to an untrusted user). This is what makes information
flow properties superior to access control policies. Another advantage of information flow
properties is that they do not constrain the security mechanism (e.g. access control) that is
used in a system for enforcing the security requirements. In other words, they capture what
the requirements are without prescribing how they should be fulfilled.

To date, there is a (confusing) variety of different information flow properties that have
been proposed for various reasons. For some of these properties, verification techniques have
been developed already. However, information flow properties differ fundamentally from
“usual” system properties like safety or liveness as they are properties of sets of traces.

In this thesis, our main objectives are: to provide a basis for the systematic investigation
of information flow properties, to elaborate a better understanding of the properties known
from the literature, to improve them where possible, and to develop techniques that simplify
their verification. We sketch our main contributions in these respects in the following.

In Chapter 3, we introduce the Modular Assembly Kit for Security Properties (abbreviated
MAKS), a framework for possibilistic information flow properties. The uniform representa-
tion in our framework provides a basis for the systematic investigation of a large number of
properties. Formally, an information flow property is represented in MAKS by a pair con-
sisting of a set of views and a security predicate. This representation cleanly separates the
application-specific restrictions on the flow of information (expressed by the set of views) from
the application-independent semantics of such restrictions (expressed by the security predi-
cate). Security predicates are defined in a modular way by assembling basic security predicates
(abbreviated BSPs) from a given set. These BSPs are the building blocks of MAKS. Based
on this modular representation, the investigation of a complex information flow property can

vi

be reduced to the investigation of each individual BSP from which the property is assembled.
We exploit this possibility at several points of this thesis to simplify our investigations.

In Chapter 4, we analyze information flow properties from the literature, elaborate their
relationship, and point out their advantages and disadvantages. So far, the diversity of
information flow properties has been confusing and the relationship between many properties
was not well understood. In particular, the selection of a suitable information flow property
has been a difficult task during formal developments. Beyond the investigation of known
properties, we show how novel properties can be derived in MAKS. The possibility to derive
a new property in a goal-directed fashion when it is needed is preferable to inventing the
property in an ad-hoc manner.

In Chapters 5 and 6, we develop techniques for simplifying the verification of information
flow properties. Without such techniques, the verification of these properties is quite involved
because they are closure properties of sets of traces. The unwinding approach reduces the
verification of information flow properties to the verification of so-called unwinding condi-
tions. These conditions are easier to handle during verification because they involve only
individual computation steps rather than complete system behaviors. We show for several
information flow properties how they can be proved by unwinding. Moreover, we simplify
the verification of unwinding conditions by dropping an assumption made in previous work
on unwinding (namely that unwinding relations must be equivalence relations). We show
that this assumption is not essential for the soundness of the unwinding technique. For the
verification of complex systems, the unwinding technique can be used in combination with
a divide-and-conquer approach. To this end, we derive several compositionality results that
reduce the verification of the overall system to the (conceptually simpler) verification of in-
dividual system components. We also present a classification of compositionality results that
provides a more structured perspective on these results. Furthermore, we propose a novel
information flow property, weakened forward correctability, that is preserved under compo-
sition, and we point out the improvement in comparison to previously proposed properties.
All of our verification techniques are developed in a uniform way by exploiting the concepts
of MAKS, i.e. we firstly develop the corresponding technique for the individual BSPs and
then lift it over the assembling operation. A side effect of this approach is that verification
techniques can be easily derived for an information flow property after this property has been
represented in MAKS. This facilitates the use of novel information flow properties during
formal developments.

We illustrate the applicability of our results in a complex case study from the domain of
language-based security in Chapter 7. In the course of the case study, we provide also more
general guidelines for such applications.

vii

Ausfiihrliche Zusammenfassung

Fiir die Akzeptanz vieler Informationssysteme ist deren Sicherheit von entscheidender Bedeu-
tung. So ist es zum Beispiel vielen e-banking-Kunden wichtig, dass ihr Kontostand vertraulich
bleibt. Die Integritidt von Kontostdnden ist fiir deren Inhaber bedeutsam, aber natiirlich auch
fiir das Bankgewerbe. Im e-commerce mochten manche Kunden nicht, dass ihre Transaktio-
nen oOffentlich werden. Fur e-voting sind die Vertraulichkeit und die Integritat abgegebener
Stimmen offensichtlich eine unabdingbare Voraussetzung. Jedoch steht den vielfiltigen Sicher-
heitsbediirfnissen eine Vielzahl an Angriffsmoglichkeiten gegeniiber, insbesondere wegen der
globalen Vernetzung durch das Internet.

Die zentrale Frage ist, wie die Sicherheit kritischer Systeme bereits bei deren Entwick-
lung garantiert werden kann. Formale Methoden bieten hierzu eine stringente Antwort, da
durch eine formale Verifikation der Sicherheitsanforderungen mit mathematischer Genauigkeit
sichergestellt werden kann, dass diese tatsachlich vom untersuchten System erfullt werden.
Weitere Vorteile formaler Methoden sind, dass Anforderungen eindeutig spezifiziert werden
konnen und dass ein verbessertes Verstandnis der betrachteten Systeme und ihrer Anforderun-
gen durch die Konstruktion formaler Spezifikationen gefordert wird. Das fithrt haufig zur
Entdeckung von Fehlern bereits bevor die eigentliche Verifikation begonnen hat.

Die vorliegende Arbeit behandelt die formale Spezifikation und Verifikation von Sicher-
heitsanforderungen hinsichtlich Vertraulichkeit und Integritit. Zu diesem Zweck werden
Sicherheitseigenschaften betrachtet, die zur Klasse der possibilistischen Informationsfluss-
eigenschaften gehdren. Die Vertraulichkeit von Daten wird mit diesen Eigenschaften zum
Beispiel durch die Anforderung ausgedriickt, dass die Beobachtungen von Nutzern, die nicht
vertrauenswiirdig sind, nicht von diesen Daten beeinflufit werden dirfen. Dadurch wird
insbesondere sichergestellt, dass nicht vertrauenswiirdige Nutzer die vertraulichen Daten
nicht unmittelbar lesen kénnen. Dariiberhinaus schlieit eine solche Modellierung von Ver-
traulichkeit auch subtilere Attacken aus, die die Existenz fehlerhafter oder vorsatzlich bos-
artiger Programme mit erlaubtem Zugriff auf die vertraulichen Daten ausnutzen (z.B. Tro-
janische Pferde, die die vertraulichen Daten kodiert an nicht vertrauenswiirdige Nutzer ver-
schicken). Dieses ist ein wesentlicher Vorteil gegeniiber Sicherheitsmodellen, die auf Zu-
griffskontrolle basieren. Ein weiterer Vorteil von Informationsflusseigenschaften ist, dass sie
offenlassen, mit welchen Mechanismen die Sicherheitsanforderungen im System realisiert wer-
den, d.h. sie beschreiben, was die Anforderungen sind, ohne die Realisierungsmoglichkeiten
einzuschranken.

Es gibt eine Vielzahl von Informationsflusseigenschaften, die jeweils aus unterschiedlichen
Griinden vorgeschlagen wurden, wobei fiir manche dieser Eigenschaften bereits entsprechende
Verifikationstechniken entwickelt wurden. Es ist auch bekannt, dass es zwischen Informa-
tionsflusseigenschaften und herkommlichen Systemeigenschaften, wie z.B. Lebendigkeit oder
Sicherheit im Sinne von safety, grundsatzliche Unterschiede gibt.

Die wesentlichen Ziele dieser Arbeit sind, eine Grundlage fiir die systematische Unter-
suchung von Informationsflusseigenschaften zu schaffen, ein besseres Verstindnis der bekan-
nten Eigenschaften herauszuarbeiten, diese weiter zu verbessern und Techniken fiir ihre Ver-
ifikation zu entwickeln. Im folgenden wollen wir unsere Beitriage kurz skizzieren.

In Kapitel 3 wird ein Rahmen MAKS (fiir: Modular Assembly Kit for Security Properties)
fir die einheitliche Darstellung von Informationsflusseigenschaften vorgestellt. Dieser uni-
forme Rahmen bildet die Grundlage fur die systematische Untersuchung einer Vielzahl von In-
formationsflusseigenschaften. Formal setzt sich die Darstellung einer Informationsflusseigen-

viii

schaft in MAKS aus zwei Komponenten zusammen, namlich einer Menge von sogenannten
views (zur Spezifikation von Einschrankungen an den Informationsfluss) und einem security
predicate (zur Definition der Semantik solcher Einschrankungen). Die anwendungsabhéngigen
Einschrankungen an den Informationsfluss werden also von der anwendungsunabhéngigen Se-
mantik klar getrennt. Weiterhin werden die security predicates in einer modularen Weise
definiert, indem primitive Bausteine (basic security predicates, abgekiirzt BSPs) zusammenge-
setzt werden, wofir eine Menge von BSPs zur Verfiigung gestellt wird, die die Bausteine von
MAKS bilden. Diese modulare Darstellung erlaubt es, die Untersuchung komplexer Informa-
tionsflusseigenschaften auf die Untersuchung der weniger komplexen BSPs zuriickzufiihren.
Von dieser Technik werden wir im Verlauf der Arbeit haufig Gebrauch machen, um unsere
Untersuchungen zu vereinfachen.

In Kapitel 4 werden die verschiedenen aus der Literatur bekannten Informationsflusseigen-
schaften untersucht, wobei die Vor- und Nachteile der einzelnen Eigenschaften detailiert her-
ausgearbeitet werden. Ein tieferes Verstindnis dieser Eigenschaften ist hilfreich, um die
Auswahl einer geeigneten Eigenschaft fiir die formale Spezifikation gegebener Anforderungen
zu erleichtern. Bisher war diese Auswahl recht schwierig, zum einen wegen der Vielzahl der
bekannten Informationsflusseigenschaften und zum anderen, weil die Zusammenhange zwis-
chen den einzelnen Eigenschaften in vielen Fillen nicht hinreichend geklart waren. Uber die
Untersuchung bereits bekannter Informationsflusseigenschaften hinausgehend wird aufgezeigt,
wie neue Eigenschaften in MAKS synthetisiert werden konnen. Werden neue Eigenschaften
bendtigt, so ist diese zielgerichtete Synthese einem Ad-hoc-Vorgehen bei der Konstruktion
vorzuziehen.

In den Kapiteln 5 und 6 werden Techniken zur Erleichterung der Verifikation von Informa-
tionsflusseigenschaften vorgeschlagen. Diese Eigenschaften sind Abschlusseigenschaften von
Mengen von Systemverhalten und daher ist eine direkte Verifikation sehr aufwendig. Der un-
winding-Ansatz vereinfacht die Verifikation von Informationsflusseigenschaften, indem er sie
auf die Verifikation von sogenannten unwinding-Bedingungen reduziert, die einfacher zu hand-
haben sind, weil sie nur lokale Anforderungen an einzelne Berechnungsschritte stellen (statt
an Mengen von kompletten Berechnungen). Diese Verifikationstechnik wird in Kapitel 5 auf
Informationsflusseigenschaften erweitert, fur die sie bisher nicht anwendbar war. Auflerdem
wird gezeigt, dass eine Annahme, die in bisherigen Arbeiten gemacht wurde (ndmlich, dass
unwinding-Relationen Aquivalenzrelationen sein miissen), fiir die Korrektheit der unwinding-
Technik unwesentlich ist und somit fallengelassen werden kann. Dadurch wird die Verifikation
der unwinding-Bedingungen vereinfacht. Fiir die Verifikation komplexer Systeme kann der un-
winding-Ansatz in Verbindung mit einem divide-and-conquer-Ansatz verwendet werden. Zu
diesem Zweck werden in Kapitel 6 mehrere Kompositionalitatsresultate hergeleitet, die die
Verifikation eines Gesamtsystems auf die (konzeptionell einfachere) Verifikation der einzel-
nen Systemkomponenten zuriickfithren. Weiterhin wird eine Taxonomie entwickelt, um eine
einheitliche und strukturierte Sicht auf die vorgestellten Kompositionalitatsresultate zu erhal-
ten. AuBerdem wird eine neue Informationsflusseigenschaft (weakened forward correctability)
vorgeschlagen, die generell unter Komposition erhalten bleibt, und die, wie wir zeigen wer-
den, eine Verbesserung gegeniiber bestehenden Eigenschaften darstellt. Alle diese Verifika-
tionstechniken werden in einer einheitlichen Weise unter Ausnutzung von MAKS hergeleitet,
d.h. die jeweilige Technik wird zunéichst fiir die einzelnen BSPs entwickelt und dann wird
daraus die entsprechende Verifikationstechnik fiir die verschiedenen Informationsflusseigen-
schaften abgeleitet. Ein positiver Nebeneffekt dieser Vorgehensweise ist es, dass die Her-
leitung von Verifikationstechniken fiir neue Informationsflusseigenschaften recht einfach wird,

ix

was wiederum die Verwendung neuer Eigenschaften in formalen Entwicklungen wesentlich
erleichtert.

Die praktische Verwendung der vorgestellten Resultate und vorgeschlagenen Konzepte
wird in vielen Beispielen illustriert und auflerdem in Kapitel 7 an einer komplexen Fallstudie
aus dem Bereich der statischen Programmanalyse im Detail gezeigt. Im Verlauf der Fallstudie
werden auch Leitlinien fur eine allgemeinere Verwendung unserer Resultate gegeben.

Publications

We have published excerpts from this thesis as follows:

An early version of MAKS was presented in [Man0Oc]. This version was less expressive
and less generic than the one described in Chapter 3. Nevertheless, several information flow
properties from the literature could be represented in this version already. These properties
were also ordered by implication based on this representation. More recent versions of our
framework and of the taxonomy were described as preliminaries in [Man02] and brief overviews
on MAKS were given in [Man00a, Man00b].

Preliminary versions of our unwinding results were described in [Man00d]. These results
were based on more restrictive assumptions than those in Chapter 5. Moreover, the rela-
tionship between information flow properties and refinement statements was pointed out,
providing a basis for using simulation techniques to verify information flow properties. Ap-
pendix C elaborates these aspects in much more detail.

An earlier version of our compositionality results was published in [Man02]. Chapter 6
describes these results in more detail and, in particular, presents the complete proofs.

The case study in Chapter 7 is based on joint work with Andrei Sabelfeld. Previous
versions of this case study have been presented in [MS01, MS03a]. These versions differ
slightly from the one presented here (see Section 7.7).

Additional publications during my PhD studies have not been incorporated into this thesis
for reasons of space and time. They are concerned with intransitive information flow [Man01al,
refinement of secure systems [Man01b], language-based security [SM02], other applications of
information flow properties [MSK*01, HMS03], tool support for information flow properties
and, more generally, for formal methods [HMR 98, AHMS99, AHMS00, AHL*00, MS03b],
formal methods for fault tolerance [MG00a, MGOOb], and theorem proving [KMOS97, AM9S,
AMS98, Man98, MK98, M99, KMO03]. The contributions most closely related to this thesis
are briefly discussed in Chapter 8.

xi

Acknowledgments

First of all, I would like to thank my supervisor Jorg Siekmann for his support during my
PhD studies. He offered critical advice and made many useful suggestions that helped me
with my research and with writing this thesis. Moreover, the excellent infrastructure that he
provided in his research group has been very beneficial during my work. I also thank him for
his encouraging enthusiasm and for his support of my research stays abroad.

I am very grateful that David Basin accepted to serve on my PhD committee. He con-
tributed his time and energy during a period of time when he was very busy with moving
from Freiburg to Ziirich and with establishing his new chair at ETH Ziirich.

I thank John McLean for serving on my PhD committee and for many interesting discus-
sions at various places. He motivated me to investigate the compositionality of information
flow properties and made numerous other useful suggestions for improving this thesis. His
articles had a major share in attracting me to the area of information flow security.

Beyond my PhD committee, my special thanks go to Dieter Hutter, Michael Kohlhase, and
Christoph Kreitz, who also provided advice and guidance during my studies. Their opinions
helped me to navigate. Moreover, I wish to thank Felix Géartner, Alexandra Heidger, Dieter
Hutter, and Axel Schairer for very useful comments on earlier versions of this thesis.

For fruitful collaborations, I am indebted to several colleagues. In particular, I thank
Andrei Sabelfeld for a very efficient collaboration on language-based security that lead to
the case study presented in Chapter 7. Many thanks to Dieter Hutter and Axel Schairer
for collaborating on the application of my work to the security of multi-agent systems and
mobile devices. For productive cooperations that also led to joint papers, I thank my co-
authors Serge Autexier, Michael Balser, Felix Gartner, Klaus P. Jantke, Matthias Kabatnik,
Michael Kreutzer, Christoph Kreitz, Bruno Langenstein, Jens Otten, Wolfgang Reif, Georg
Rock, Enno Sandner, Gerhard Schellhorn, Stephan Schmitt, Kurt Stenzel, Werner Stephan,
Roland Vogt, Andreas Wolpers, and Alf Zuggenmaier.

I wish to thank all of my colleagues in the formal methods group at DFKI for a productive
working atmosphere. In particular, I would like to thank Serge Autexier, Dieter Hutter, Axel
Schairer, and Werner Stephan for many interesting discussions. Thanks to Axel also for being
a very pleasant office mate. My research stays at Cornell University, Chalmers University,
and Carnegie Mellon University contributed much to the success of my research. I would
like to thank Bob Constable, Christoph Kreitz, Frank Pfenning, Andrei Sabelfeld, and David
Sands for inviting me to these places and for providing an inspiring working environment.

There are numerous other people I am thankful to, e.g., for interesting discussions and
for providing useful background information. Unfortunately, I cannot name all of them here.
As representatives, I would like to explicitly mention Michael Backes, Christoph Benzmiiller,
Alexander Buchmann, Frédéric Cuppens, Riccardo Focardi, Harald Gorl, Joshua Guttman,
Fabio Martinelli, Jonathan Millen, Birgit Pfitzmann, John Rushby, Peter Ryan, Fred Schnei-
der, and Steve Schneider.

Last but not least, I would like to thank my friends and my family for their support
and encouragement during the last years. Above all, I thank Alexandra for her support that
helped me to get through the rough times as well as for being part of the good times.

Contents

Abstract
Deutsche Kurzzusammenfassung
Extended Abstract
Ausfiihrliche Zusammenfassung

Publications Lo e
Acknowledgments
1 Introduction
1.1 A Formal Methods Approach to Security Engineering
1.1.1 Formal Security Models
1.1.2 A Trace-Based System Model
1.1.3 Modeling Security Requirements
1.1.4 Specifying Security Requirements with Noninterference
1.1.5 Noninterference Definitions L.
1.1.6 Related Work on Noninterference
1.2 MAKS: A Framework for Information Flow Properties
1.3 Verification Techniques L L
1.4 Compositionality Results
1.5 Case Study L
1.6 Overview oL e e
2 Notions and Notation
2.1 System Model L e
2.1.1 Traces e e e e e e e e e e
2.1.2 Event Systems
2.1.3 State-Event Systems L
2.2 Specifying System Properties o Lo oo,
2.2.1 Properties of Traces o e
2.2.2 Properties of Sets of Traces oo,
2.2.3 Closure Properties of Sets of Traces
2.2.4 Specifying Secure Information Flow,
2.3 Using Other Specification Formalisms
24 SUMMATY . . . c o e e e e e e e e e e e e e e e e e
3 MAKS: A Modular Framework for Information Flow Properties
3.1 Imtroduction. e
3.2 Assembling Information Flow Properties

iii
iv

vii

X1

[S —
W N O© OO O I W N -

—_
S

17
17
17
18
20
21
21
22
23
24
26
26

xiv CONTENTS

321 VIewso e e e e e e e e e 28

3.2.2 Security Predicates 29

3.2.3 Information Flow Properties 30

3.3 From Abstract to Concrete Security Requirements 30
3.3.1 Flow Policies e 30

3.3.2 Domain Assignments oL 34

3.3.3 Deriving Sets of Views from Flow Policies 34

3.4 A Collection of Basic Security Predicates 35
3.4.1 Preventing Deductions about Occurrences of Events 37

3.4.2 Preventing Deductions about Nonoccurrences of Events 40

3.4.3 Compatibility with Confidential Computations 43
3.4.4 Backwards-Strict Basic Security Predicates 48

3.4.5 Forward-Correctable Basic Security Predicates 50
3.4.6 Strict Basic Security Predicateso, 51
3.4.7 Other Basic Security Predicates. 51

3.5 Basic Security Predicates in Comparison 51
3.5.1 First Dimension of Basic Security Predicates 52
3.5.2 Second Dimension of Basic Security Predicates 55

3.6 Summary e e e e e e e e 60
4 A Comparison of Information Flow Properties 63
4.1 Introduction. L e 63
4.2 Assembling Known Information Flow Properties 64
4.2.1 Generalized Noninterference 65
4.2.2 Forward Correctability oo, 70
4.2.3 Nondeducibility for Outputs o, 71
4.2.4 Noninference e 74
4.2.5 Generalized Noninference 75
4.2.6 Separability e 76
4.2.7 Perfect Security Property oo, 78

4.3 Information Flow Properties in Comparison 79
4.3.1 Information Flow Properties with the View H 79
4.3.2 Information Flow Properties with the View HZ 82
4.3.3 Information Flow Properties with Different Views 84
4.3.4 A Taxonomy of Information Flow Properties 87

4.4 Summary and Comparison to Prior Frameworks 88
5 Verification Techniques for Information Flow Properties 93
51 Introduction. L e 93
5.2 On the Derivation of Unwinding Results 95
5.3 Unwinding Theorem for Basic Security Predicates 98
5.4 Unwinding Conditions and Proof of Unwinding Theorem 99
5.4.1 Unwinding Condition osc 100
5.4.2 Unwinding Conditions Irfand Irb 101
5.4.3 Unwinding Conditions ferfand ferb. 102
5.4.4 Unwinding Conditions Irbe and ferbe 104

5.4.5 On Completeness e 106

CONTENTS

XV

5.5 Unwinding Theorems for Information Flow Properties
5.5.1 Generalized Noninterferenceo,
5.5.2 Forward Correctability Lo
5.5.3 Nondeducibility for Qutputs
5.5.4 Nominference L o e
5.5.5 Generalized Noninference,
5.5.6 Separability
5.5.7 Perfect Security Property o0,

5.6 Verifying Unwinding Conditions.
5.6.1 Verification by Unwinding: An Example
5.6.2 Advantages of Unwinding with Arbitrary Unwinding Relations

5.7 Summary and Comparison to Prior Frameworks

Compositionality Results for Information Flow Properties
6.1 Introduction. Lo
6.2 Composition of Event Systems
6.3 Towards Compositionality Results,
6.4 Compositionality of BSPs o o o
6.4.1 Compositionality Theorems,
6.4.2 Generalized Zipping Lemma, o o000,
6.4.3 Proof of the Compositionality Theorems for BSPs
6.5 Compositionality of Information Flow Properties
6.5.1 Generalized Noninterference
6.5.2 Forward Correctability
6.5.3 Nondeducibility for Qutputs.
6.5.4 Nominference e
6.5.5 Generalized Noninference
6.5.6 Separability e e e e
6.5.7 Perfect Security Property oo,
6.6 A Classification of Compositionality Results
6.7 A Novel Composable Information Flow Property
6.7.1 Weakened Forward Correctability,
6.7.2 Integration into Taxonomy, .
6.7.3 Unwinding Theorem
6.7.4 Compositionality Theorem
6.8 Summary and Comparison to Prior Frameworks

Case Study

7.1 Introduction L e

7.2 Preliminaries on the Running Example
7.2.1 Syntax and Semanticsof DMWL
7.2.2 Security Condition for DMWL
7.2.3 Security Type System for DMWL

7.3 Specifying System Behavior L Lo
731 HowtoProceed.
7.3.2 The Running Example L.

7.4 Specifying Security Requirementso 000000,

125
125
126
129
134
134
135
136
138
139
140
141
142
143
144
144
145
149
149
150
151
152
152

xvi

CONTENTS

741 HowtoProceed.
7.4.2 The Running Example 0oL,
7.5 Verifying Security Requirements
7.5.1 HowtoProceed.
7.5.2 The Running Example 0oL
7.6 Composing Systems
7.6.1 How to Proceed during System Composition
7.6.2 The Running Example 0oL
7.7 History of this Case Study
7.8 Summaryo e e e e e e e e

8 Conclusion and Outlook
8.1 Conclusions e e e e e e e e
8.2 Further Work and Outlook

References
Index

A Details on the Representation of Known Information Flow Properties
A.1 Representation Lemma for IBGNI
A.2 Representation Lemma for FC'
A.3 Representation Lemma for NDO
A.4 Representation Lemma for NF
A.5 Representation Lemma for GNF
A.6 Representation Lemma for SEP
A.7 Representation Lemma for PSP

197
197
199

203

213

B The Relationship between MAKS and the Framework of Selective Inter-

leaving Functions

B.1 McLean’s Framework of Selective Interleaving Functions
B.2 Expressing Closure under Set of Sifs in MAKS
B.3 Lessons Learned
B.4 Proofs of all Theorems in this Appendix

C Verifying Information Flow Properties by Simulation
C.1 Preliminaries on Simulation Techniques
C.2 Correspondence to Trace Refinement
C.3 Verifying BSPs by Simulation 00000,
C.d Summary e e e e e

D Proofs of Compositionality Results
D.1 Detailed Proof of the Generalized Zipping Lemma
D.2 Detailed Proof of Compositionality Theorems for BSPs.

231
231
234
234
236

241
241
245
247
249

251

CONTENTS xvii

E Further Details of the Case Study 257
E.1 PP-Statementso 257
E.2 Examples for the Strong Security Condition 259
E.3 Adequateness of the System Specification 260

E3.1 BasicNotions L e 260
E.3.2 Adequateness Theorems 261
E.3.3 Proofs of the Adequateness Theorems 263
E.4 Lemmas used in the Proof by Unwinding 269

E.5 Differences to Prior Versions of the Case Study 274

xviii CONTENTS

Chapter 1

Introduction

The important and still growing role information systems play in many aspects of todays life
requires systems that can be trusted. However, the development of trustworthy systems is
not an easy task. There are numerous examples of failures of computer systems and in many
situations users have even become used to the fact that their computers do not work properly.
Given that failures of computer systems can put life, liberty, and property at tremendous risk
(cf. [Neu95]), there is a desperate need for improvements in the current situation.

Malfunctions of information systems can be attributed either to conceptual errors or to
flaws in the implementation. In either case, the application of formal methods appears to be
most promising for avoiding such errors during system development [Jon01]. The construction
of formal models enforces that system requirements have been thoroughly understood when
a system is built, formal notions are helpful to avoid ambiguities in requirement descriptions,
and, moreover, they provide a basis for the verification of critical requirements.

Of course, the intended application determines which of the requirements are of criti-
cal importance for a given system. Besides functional correctness, i.e. proper outputs are
produced for all inputs, at least four main classes of critical system properties can be dis-
tinguished: safety properties, real-time properties, fault-tolerance properties, and security
properties [Rus94]. While safe or real-time systems usually operate in relatively benign en-
vironments, fault-tolerant or secure systems have to be reliable even if the environment is
hostile. In fault tolerance, this hostility can be attributed to random events like, e.g., a pro-
cessor crash or the notorious cosmic ray that flips a bit in memory. However, in security, the
hostility of the environment is not accidental. Rather, pest programs like, e.g., Trojan horses
or computer viruses, are hostile on purpose and countermeasures against attacks are being
outmaneuvered in a goal-directed and increasingly sophisticated fashion.

Security engineering is the area of computer science that tackles the challenge to construct
information systems that are reliable even if they operate in these hostile environments. When
engineering secure systems, difficulties arise not only from possible attacks but also from the
complexity of those systems. For example, it must be taken into account that the widespread
interconnection of information systems, in particular by the Internet, allows various forms
of almost borderless communication. Moreover, the information exchanged increasingly itself
consists of software and it is very difficult, often practically impossible, for a user to fully assess
what this software will do on their systems [Sch99]. This complexity makes it particularly
important to have precise criteria for the security of systems as well as the possibility to
rigorously check whether these criteria are fulfilled by a given system.

CHAPTER 1: Introduction

The aim of this thesis is to improve formal development techniques for secure systems.
More precisely, the focus is on the formal specification and verification of a special class of
security properties, namely restrictions on the information flow within a system. This class of
security properties can express confidentiality as well as integrity requirements. Historically,
this approach to specifying and verifying security requirements has evolved from Goguen
and Meseguer’s well known noninterference [GM82, GM84]. Based on the ideas underlying
noninterference, numerous other information flow properties have been proposed in order to
cope with issues like, e.g., nondeterministic system behavior or compositional system design.
By providing a unified perspective on the various information flow properties, this thesis
contributes to a deeper understanding of these properties. Beyond this, the state-of-the-art
in the area of information flow security is advanced in several directions. In particular, we
propose new information flow properties, derive compositionality results, and present novel
unwinding theorems that ease the verification of information flow properties during formal
developments in practice.

We propose a modular framework, MAKS, for the uniform representation of information
flow properties. This framework supports the comparison of already known information flow
properties and also the goal-directed development of new ones. This has led us to several
novel information flow properties that turn out to be improvements of previously proposed
properties. Based on the concepts of MAKS, we propose verification techniques that simplify
the verification of information flow properties by reducing the overall verification task to the
verification of simpler local conditions (unwinding technique) or by reducing the verification of
the overall system to the verification of individual system components (compositional verifica-
tion). The unwinding techniques presented are applicable for every information flow property
represented in our framework, i.e. by representing an information flow property in MAKS,
one obtains unwinding techniques without any further effort. Hence, the tedious derivation
of unwinding techniques for every individual information flow property has become obsolete.
The derivation of compositionality results is simplified in a similar way. Using our techniques,
compositionality results for a given information flow property can be easily derived based on
its representation in MAKS. The applicability of our results is demonstrated in a case study
from the area of language-based security. More precisely, we show that a particular language-
based analysis technique is sound wrt. some information flow property in our framework and
apply our unwinding techniques and compositionality results in this process. This case study
is also interesting in its own right because it establishes a rigorous connection between two
different areas of computer security: language-based and specification-based information flow
control. Further contributions, including results on refinement, intransitive information flow,
language-based security, tool support, and further case studies are briefly summarized at the
end of the thesis. We have published these results elsewhere in more detail (see page x).

In the remainder of this introduction, we will briefly review the state-of-the-art (in Sec-
tion 1.1) in order to put our main contributions into perspective (in Sections 1.2-1.5). An
overview of the structure of the thesis will be given in Section 1.6.

1.1 A Formal Methods Approach to Security Engineering

In this thesis, we pursue a formal methods approach. Using formal methods, the behavior of
systems as well as properties of these systems can be modeled in precise terms. This makes it
possible to specify requirements without ambiguities and to verify critical requirements with

1.1 A Formal Methods Approach to Security Engineering

mathematical rigor. More generally, it has been argued that formal methods can provide the
thinking tools for the future of computer science [Jon01].

1.1.1 Formal Security Models

The formal specification of a system’s security requirements is referred to as a formal security
model. As depicted in Figure 1.1, a formal security model usually comprises: a system com-
ponent, a security component, a satisfaction relation between the first two components, and
a proof in some calculus that this satisfaction relation holds (e.g. [GM82]). While the system
component specifies how the system operates, the security component specifies what secu-
rity properties are required, and the verified satisfaction relation ensures that these security
requirements are, indeed, fulfilled by the system.

system security
—>

behavior saisfies properties

system mode / specification formalism

Figure 1.1: Structure of a formal security model

Security models can be constructed at different levels of detail. However, in general, a
security model incorporates a “model” of the system, rather than the “real” system, and a
“model” of the security properties, rather than the “real” properties. Simplifying from reality
is done in model building, in particular, because the objective is to obtain representations
that are easier to reason about than the real systems or real properties themselves. In model
building, the two fundamental concepts used for simplification are abstraction (in order to
leave out technical details) and decomposition (in order to distinguish different parts and
then to focus on the particularly critical ones). The inverse operations for abstraction and
decomposition, i.e. refinement and composition, are necessary in order to map the insights
gained from a simplified model back to reality.

From a different perspective, refinement and composition provide a basis for a formal
stepwise development process for critical systems. Starting from an abstract specification
of a system’s requirements, one refines the specification, e.g. by making design decisions or
by adding technical details, and decomposes it into simpler specifications such that imple-
mentations of the component specifications can be composed to a suitable overall system
(divide-and-conquer approach). This stepwise approach allows one to accompany different
phases of system development by formal methods like, e.g. the definition phase, the design
phase or the implementation phase, and to ensure that critical system properties that have
been established in one phase are preserved when moving to the next phase. In particu-
lar, this allows one to apply formal methods already before system development has been
completed. Applying formal methods during system development has the advantage that
conceptual errors can be detected before they result in costly misdevelopments. It is widely
accepted that constructing a formal model of a system’s requirements, its architecture, and
its behavior results in a deeper understanding of the system at the respective level. A positive
side effect of the modeling process is that flaws like, e.g., requirements errors or omissions are
often detected at this stage [Som96, p. 160]. Further confidence in the system is gained from
a formal verification process, which usually reveals further flaws. To date, formal methods
have become an integral part of the software engineering process for very critical systems.

CHAPTER 1: Introduction

For example, evaluation criteria like ITSEC [ITS91] or CC [CC99] require the construction
of formal security models during early development phases (for E4/EAL 5 or higher).

1.1.2 A Trace-Based System Model

Usually, all components of a security model are based on a common (semantic) system model
or a common (syntactic) specification formalism. The system model that we employ through-
out this thesis is a trace-based model, i.e. the behavior of a system is modeled by a set of
traces where every trace models a possible execution sequence of the system. Formally, a
trace is a sequence of events where every event models an atomic action like, e.g. sending
a message or receiving a message. Nondeterministic behavior is modeled by the possibility
of different execution sequences, i.e. we employ a possibilistic system model (rather than a
probabilistic one). Probabilities with which the different possible execution sequences will
occur need not be specified in a possibilistic specification. This considerably simplifies the
construction of system specifications, which, nevertheless, often remains a nontrivial task.

Similarly, system properties can be distinguished depending on whether they are only
concerned with possible executions (possibilistic properties) or also with the probability of
these executions (probabilistic properties). In this thesis, we focus on possibilistic properties,
i.e. properties that are expressed in terms of possible executions and that do not depend on
probabilities of these executions. For simplicity, we refer by “properties” always to “possi-
bilistic properties” in the following. In a trace-based system model, many system properties,
including safety (e.g. invariants) and liveness properties (e.g. termination), can be modeled
by sets of traces. Properties of this kind are referred to as properties of traces because they
are satisfied if every possible trace of the given system is contained in the set that specifies
the property (cf. e.g. [AS85]). However, not every critical system property can be modeled by
a set of traces. For example, many security properties are properties of sets of traces, i.e. they
need to be modeled by sets of sets of traces. In particular, this is true for information flow
properties [McL94b], i.e. the security properties investigated in this thesis.

The particular trace-based system model that we employ is that of event systems. This
system model has been quite popular for the investigation of information flow properties (e.g.
[McC87, GN88, JT88, Mil94, Z1L97]). Using event systems, a given system is specified not
only by a set of traces (modeling the system’s behavior) but also by sets of input events
and output events (modeling the system’s interface). Event systems provide a suitable basis
for the specification of complex systems, e.g. by composing a system from components that
operate concurrently and communicate with each other via their interfaces. Nevertheless, this
system model is conceptually quite simple and easy to apply.

1.1.3 Modeling Security Requirements

It is not trivial to specify the security requirements for a given system correctly. Let us give
an example in order to illustrate the kind of mistakes that can easily be made.

The confidentiality of some value within a system might naively be expressed by the
requirement that this value must never leave the system. For example, if you have $5,342 in
your bank account then confidentiality of your balance would be expressed by the requirement
that the number 5,342 must not leave your PC (e.g. as part of an e-mail). In particular, this
implies that a program that helps you to administer your bank account does not send your
balance to the supplier of the program. However, this naive approach has serious deficiencies.

1.1 A Formal Methods Approach to Security Engineering

Firstly, it is too restrictive: e.g. if 5,342 happens to be the registration number of your software
license then it would be impossible to e-mail a license agreement (containing the registration
number) to the supplier of the program. Nevertheless, it is quite obvious that this would
not reveal your balance. Secondly, the naive approach is too liberal: e.g. the program might
increment the confidential value, then send 5,343 (instead of 5,342) to its supplier, and the
supplier would obtain the balance by decrementing the received number.

This illustrates that the critical issue is not whether any output of the system contains
confidential values but rather whether it depends on confidential information. Hence, confi-
dentiality should be expressed as the lack of dependencies on confidential information. This
approach is taken by the security properties considered in this thesis. More specifically, infor-
mation flow properties are investigated that are based on the idea of noninterference, which
is the topic of the following section.

1.1.4 Specifying Security Requirements with Noninterference

Numerous different information flow properties have been proposed, including noninterference
[GM82], nondeducibility [Sut86], restrictiveness [McC87], separability [McL94a|, and many
others. These properties differ in their formal definitions, sometimes in quite subtle ways.
Nevertheless, they share the following common intuitive understanding of noninterference:

A group of processes is noninterfering with another group of processes if the
actions of the first group have no effect on the observations of the second group.

Hence, if a group of processes is noninterfering with another group then there is no information
flow from the first group to the second group (the observations do not depend on the actions).
This means, on the one hand, that processes in the first group cannot reveal any secrets
(e.g. passwords, encryption keys, classified data, or private information like your balance) to
processes in the second group and, on the other hand, that processes in the second group
cannot be corrupted by processes in the first group. These observations provide the basis for
modeling confidentiality requirements as well as integrity requirements between processes.

However, noninterference is not limited to specifying security requirements between pro-
cesses. Namely, restrictions on the flow of information between any subjects (e.g. processes,
threads, or users) can be specified. Moreover, noninterference can also be used to specify
restrictions on the flow of information within processes or within threads. For example, this is
necessary to specify security requirements for a process that accesses confidential information,
that also communicates with untrusted users, but that must not communicate any confidential
information to these untrusted users. In order to express security requirements with this fine
granularity, it must be possible to require noninterference between individual atomic actions.
However, it would be quite inconvenient to specify for every pair of events whether they may
interfere with each other or not. Therefore, the concept of security domains is introduced.
Related events are grouped into security domains and noninterference is specified in terms of
security domains rather than in terms of individual events. Giving names (D1, Dy, ...) to
security domains allows one to specify security requirements abstractly (e.g. by the statement
Dy + Ds) without having to consider the specific sets of events.

Note that the only difference between confidentiality requirements and integrity require-
ments (when expressed in terms of noninterference) is the direction in which security domains
must not interfere. In case of confidentiality, the protected security domains must not inter-
fere with the environment and, in case of integrity, the environment must not interfere with

CHAPTER 1: Introduction

the protected security domains. Therefore, the integrity problem is the dual of the confiden-
tiality problem. Throughout this thesis, we will take the viewpoint of confidentiality, i.e. we
interprete a noninterference statement D o+ Do as “the activities in domain Dq are confi-
dential for domain Dy”. However, most of our explanations can be translated to integrity by
exploiting the duality between confidentiality and integrity. Since we focus on confidentiality
in the presentation, we will use the term “security” synonymously with “confidentiality”.

1.1.5 Noninterference Definitions

In Section 1.1.4, we have informally introduced noninterference but in order to verify that
noninterference statements like Dy 4 Dy are actually satisfied by a given system we need a
formal definition.

The system model underlying Goguen and Meseguer’s definition of noninterference is that
of deterministic state machines. In this model, a system accepts commands from its various
users as input, processes these commands according to a deterministic transition function,
and returns outputs to the users according to a deterministic output function. For a given
system, noninterference holds between two users U; and U, (expressed by Uy + Us) if the
output given to Us does not depend on whether U; provides input to the system or not. More
precisely, Uy +» Uj holds if for every sequence of commands the output to Us after execution
of this sequence is identical to the output to Us after execution of the purged sequence, i.e. the
sequence that results after removing all commands issued by U;.! Intuitively, the idea is: if
U,’s output does not depend on whether U; inputs any commands then there cannot be any
information flow from U; to Us. In particular, it is not possible that confidential information
flows from U; to Us.

There are many other formal definitions of noninterference. Even the noninterference
definition by Goguen and Meseguer [GM82] is predated by earlier work in this direction
[FLR77, Rus81b]. Numerous further variants of noninterference have been proposed over the
last 20 years (e.g. [Sut86, McC87, Fol87, Jac88, JT88, GN88, McL90, WJ90, O’H90, Gra9l,
Rya91, BC92, MC92, Rus92, McL94a, FG95, Ros95, ZL97, RG99, Sch01, FR02]). In order to
avoid confusion with Goguen and Meseguer’s notion of noninterference, these later variants
were given different names like, e.g., nondeducibility, generalized noninterference, restrictive-
ness, or noninference. Nevertheless, all of these information flow properties intuitively share
the same underlying idea, namely the one of noninterference.

1.1.6 Related Work on Noninterference

This section focuses just on the main developments on noninterference that are relevant for
the contributions of this thesis. It is not intended as a complete overview on all work in this
area. Further discussions of related work are contained in the introductions and summaries
of the various chapters in this thesis. For a general overview on noninterference and other
security models, we refer to [McL94b]. More specific overviews on intransitive information
flow and on refinement of information flow properties can be found in the related work sections
of our articles on these topics [Man0Ola, Man01b].

Noninterference-like Information Flow Properties for Nondeterministic Systems.
One major line of research has been concerned with finding formal definitions of noninterfer-

'Formally: Vt € C*. output(ezecute(t), Us) = output(ezecute(purge(t,Ur)), Us)

1.1 A Formal Methods Approach to Security Engineering

ence that are appropriate for deterministic systems as well as for nondeterministic systems.

Goguen and Meseguer’s definition of noninterference is only adequate for deterministic
systems because the underlying system model, i.e. that of deterministic state machines, is not
well suited for modeling nondeterministic systems. Historically, Sutherland’s nondeducibility
[Sut86] was the first information flow property suitable for nondeterministic systems. Subse-
quently, many other information flow properties that are also suitable for deterministic as well
as for nondeterministic systems followed, e.g., generalized noninterference [McC87], noninfer-
ence [O’H90], or separability [McL94a]. Typical motivations for proposing a new property
were examples of systems that are intuitively insecure although they satisfy a previously pro-
posed information flow property (motivating the definition of a more restrictive property),
examples of systems that violate a previously proposed information flow property although
they are intuitively secure (motivating the definition of a less restrictive property), or the
choice of a system model for which previously no information flow property had been pro-
posed. As a consequence of this line of research, to date, multiple information flow properties
co-exist, none of them being superior to all others, in general.

The confusing diversity of information flow properties has made comparisons necessary
because it is sometimes hard to see the similarities and differences of these properties. In
particular, it is hardly possible to compare two properties directly if the underlying system
models differ considerably. System models used in the context of information flow security
include event systems [McC87, JT88, Mil94, ZL97], other trace-based models [McL94a], non-
deterministic state machines [McC90, WJ90], the process algebra CSP [Hoa85] with different
semantics [RS99] (trace semantics [Jac89, Sch01], ready sets semantics [Rya91], and failure
divergence semantics [Ros95]), the process algebra SPA [FG95], and probabilistic models
[McL90, WJ90, Gra91l]. Therefore, before comparing information flow properties that are
based on different system models, their definitions need to be translated into a common sys-
tem model. This means, rather than comparing information flow properties directly, their
translations are compared. For example, McLean translated information flow properties into
a trace-based model before comparing them to each other [McL94a, McL96]. In contrast
to this, Focardi/Gorrieri based their comparison of information flow properties on labeled
transition systems and the process algebra SPA [FG95] and Zakinthinos/Lee used event sys-
tems [Zak96, Z197]. Common to all these comparisons is that they focus on possibilistic
information flow properties rather than probabilistic ones.? As we also focus on possibilistic
properties in this thesis, we use the term “information flow property” synonymously with
“possibilistic information flow property” in the following.

The previous comparisons of information flow properties have led to a better understand-
ing of these properties. In particular, taxonomies have been derived that show which infor-
mation flow properties are more restrictive than others. Moreover, uniform representations of
information flow properties from the literature revealed similarities between properties that
look very different in their original definitions. It has even become possible to derive general

2Possibilistic information flow properties are conceptually simpler than probabilistic information flow prop-
erties. Moreover, possibilistic properties do not require the construction of a probabilistic system specification
(a possibilistic system specification suffices) and, hence, they are easier to apply in formal developments. The
price paid for these advantages is that probabilistic covert channels (ones that could be exploited based on
Shannon’s information theory [Sha48]) cannot be ruled out by possibilistic information flow properties [WJ90].
For a description of probabilistic information flow properties like the (applied) flow model [McL90, Gra91] or
probabilistic noninterference [Gra91] and a discussion of the trade-off between possibilistic information flow
properties and probabilistic ones, we refer to [WJ90, McL94b].

CHAPTER 1: Introduction

results concerning compositionality that hold for whole classes of information flow proper-
ties rather than only for individual properties. However, none of the previous comparisons
covers all the important information flow properties from the literature. Moreover, a clear
identification of the kinds of systems for which the various properties are good for is missing.
Finally, there seems to be a trade-off between expressiveness and uniformity in the underly-
ing frameworks. While the uniform framework (selective interleaving functions) underlying
McLean’s comparison [McL94a, McL96] provides a basis for deriving general compositionality
results for classes of information flow properties, this framework is not expressive enough to
represent all properties that are of interest. In contrast to this, the frameworks underlying the
comparisons by Focardi/Gorrieri [FG95], Peri/Wulf/Kienzle [PWK96], and Zakinthinos/Lee
[Zak96, Z1.97] are, in principle, quite expressive but they lack uniform concepts for the rep-
resentation of information flow properties that could be used to show general results about
classes of properties.

Verification Techniques. Another line of research has been concerned with the develop-
ment of techniques that simplify the verification of information flow properties. Although a
direct verification of information flow properties is also possible (cf. [McL92]), this is usually a
complex task. The key observation for the development of verification techniques for informa-
tion flow properties was that the global requirement imposed by an information flow property
can be reduced to more local conditions that involve only individual transitions [GM84] and,
hence, are easier to handle during verification. The proof that the local conditions imply the
given information flow property involves an inductive argument and, therefore, this approach
is known under the name unwinding. The local verification conditions are called unwinding
conditions and the theorem ensuring the implication of the information flow property is called
the unwinding theorem.

Traditionally, unwinding assumes that system states can be grouped into classes such
that states in the same class are indistinguishable from each other for a potential attacker. If
actions that involve confidential information (like, e.g., the receipt of a secret message) always
cause a transition from a state in one class to another state in the same class then, intuitively,
these actions do not interfere with the observations of the attacker. This is because the states
before and after these actions are indistinguishable for him. Another typical unwinding
condition is that the classification of states must be preserved under stepwise execution,
a requirement that bears similarities to the requirement imposed on congruence relations.
Formally, the grouping of states into classes is usually given by a relation, the so called
unwinding relation that must be specified before the unwinding conditions can be proven.

Starting with an unwinding theorem for noninterference [GM84], unwinding theorems for
various other information flow properties have been proposed [HY87, Jac90, GCS91, Rya91,
MC92, Rus92, Mil94, Pin95, Zak96, RS99]. Each of these unwinding theorems aims at the
verification of one particular information flow property. Examples of properties for which
unwinding theorems have been developed are noninterference, generalized noninterference,
forward correctability, and the perfect security property.

However, unwinding results do not exist for all information flow properties of interest.
Moreover, it is somewhat annoying that unwinding theorems for different properties are de-
rived separately although the proofs of different unwinding theorems often have a lot in
common. One might hope that these similarities provide a basis for more general results on
unwinding. However, no such general results have been proposed so far.

1.2 MAKS: A Framework for Information Flow Properties

Preservation under Composition. The development of large and complex systems is
only feasible if a divide-and-conquer approach is applied: Requirements for the overall system
are divided into subtasks, these subtasks are assigned to system components, and, after the
specification of component interfaces, components can be developed independently. Upon
composing the system, the satisfaction of the overall requirements should follow from the fact
that all components fulfill their specifications. Any need to inspect implementation details of
system components in this process would not only violate the idea of the divide-and-conquer
approach, but it would also lead to an undesired increase of complexity. Moreover, since
vendors are often unwilling to reveal details about their products, implementation details
about some components might simply not be available.

Unfortunately, information flow properties are not preserved under composition, in general
[McC87]. However, certain information flow properties are known to be preserved under
composition. For example, McCullough’s restrictiveness is, in general, composable [McC87].
In fact, historically, restrictiveness was the first composable information flow property. Other
information flow properties that are preserved under arbitrary composition are, e.g., forward
correctability [JT88], separability [McL94a], and the perfect security property [ZL97]. For
certain information flow properties that are not preserved under composition in general,
restrictions are known under which these properties are preserved [McL94a, McL96, ZL96].
For example, generalized noninterference is preserved if components are composed sequentially
in the form of a cascade such that communication occurs only in one direction. There are
many other studies that have investigated the compositionality of information flow properties
(e.g. [GN88, Mil90, O’H92, BCCY4, RW95, Jiir00, Sch01]).

Nevertheless, a couple of important problems have remained unsolved. In particular, a
uniform theory of composition for secure systems is still missing. To date, the various compo-
sitionality results are only loosely connected. Deeper insights, on how these results are related,
would be desirable. It would also be helpful to more deeply understand why some properties
are composable while others are not. Moreover, the derivation of compositionality results is
often a quite difficult task and one might wish to have techniques that simplify the derivation
of such results. McLean’s framework of selective interleaving functions [McL94a, McL96] is
certainly a step towards a uniform theory of composition for secure systems. This framework
also simplifies the derivation of compositionality results. However, several information flow
properties cannot be represented in the framework and, hence, it obviously cannot help in
the derivation of compositionality results for such properties. An example for a known result
that cannot be derived in that framework is the compositionality of forward correctability.

1.2 MAKS: A Framework for Information Flow Properties

In this thesis, we propose the Modular Assembly Kit for Security Properties (abbreviated by

MAKS in the following), a uniform framework for information flow properties. The main ob-

jective of our framework is to serve as a basis for reasoning about information flow properties.

This means, MAKS is intended as a thinking tool for a particular class of security properties.
The three main features of MAKS are:

Expressiveness The well known information flow properties can be represented in our frame-
work including generalized noninterference [McC87, McL94a, ZL97], forward correctabil-
ity [JT88], nondeducibility for outputs [GN88], noninference [O’H90], generalized non-
inference [McL94a], separability [McL94a], the perfect security property [ZL97], and

10

CHAPTER 1: Introduction

several further novel properties that we propose in this thesis.

Uniformity Information flow properties are represented in a uniform way as they are speci-
fied by pairs consisting of a set of views and a security predicate. The set of views defines
the application-specific security requirements where each view roughly corresponds to a
noninterference statement. The security predicate provides a formal definition of non-
interference. Security predicates are assembled from so-called basic security predicates
(abbreviated by BSPs in the following), the basic building blocks of MAKS. This modu-
lar representation of information flow properties is the reason why we call our framework
an assembly kit. Intuitively, each BSP from which a given information flow property is
assembled can be regarded as a “basic ingredient” of that property. Formally, a BSP is
a very primitive information flow property.

Simplification The modular representation of information flow properties in MAKS allows
one to reduce reasoning about complex information flow properties to reasoning about
BSPs. For example, information flow properties can be compared to each other by
identifying common BSPs in their respective representations and then comparing the
BSPs in which they differ. Similarly, an information flow property can be verified by
verifying each BSP from which it is assembled. Moreover, proving compositionality
results for information flow properties can be reduced to proving compositionality re-
sults for BSPs. These reductions simplify reasoning about information flow properties
considerably. Moreover, after a result has been proven for a given BSP, this result can
be exploited during the investigation of multiple information flow properties.

Other frameworks either emphasize expressiveness (at the cost of uniformity) or uniformity
(at the cost of expressiveness). For example, the frameworks by Focardi/Gorrieri [FG95]
and by Peri/Wulf/Kienzle [PWK96] are, in principle, expressive enough to represent most
information flow properties. However, these frameworks lack concepts that are specifically
targeted at a uniform representation of information flow properties. In contrast to this, the
framework by McLean [McL94a, McL96] provides concepts for the uniform representation of
information flow properties. However, these concepts are not expressive enough to represent
all information flow properties that are of interest.

Among the previously proposed frameworks, McLean’s framework of selective interleaving
functions is the only one that considerably simplifies the investigation of information flow
properties. In particular, it provides a basis for deriving general compositionality results
for classes of information flow properties. In this respect, it is the only framework that is
comparable to MAKS. However, the limited expressiveness of McLean’s framework implies
that the number of properties that can be investigated is quite restricted. Moreover, the
derivation of unwinding theorems appears to be outside the scope of that framework. In
other words, using MAKS more results can be derived for a greater number of properties.

The concepts for the uniform representation of information flow properties in MAKS differ
considerably from the concepts used in the prior frameworks [McL94a, McL96, Zak96, Z197].
A key novelty of MAKS is that information flow properties are represented in a modular
way. To find basic concepts that are sufficiently general to represent the most important
information flow properties as well as sufficiently specific to simplify reasoning about the
represented properties was one of the main difficulties in the development of MAKS. After
these concepts had been defined, another difficulty was to identify suitable building blocks
that resemble “basic ingredients” of known information flow properties, i.e. the various BSPs.

1.3 Verification Techniques

11

The benefit of our modular representation based on these concepts is that reasoning about
complex information flow properties can be reduced to reasoning about simpler BSPs. Follow-
ing this approach, we derive several results with the objective of deepening our understanding
of information flow properties. For example, we present a tazonomy of known information
flow properties. Based on the insights gained from our investigations, we derive nowvel infor-
mation flow properties with the objective of overcoming certain deficiencies of known ones.
For example, we derive weakened forward correctability from forward correctability [JT88]
because the latter property is unnecessarily restrictive. Other examples of novel information
flow properties that we propose are GNI*, IBGNI*, NDO*, and FC* (see Chapter 4).

1.3 Verification Techniques

The verification techniques that we propose in this thesis follow the unwinding approach
[GM84]. We introduce a collection of unwinding conditions and prove corresponding unwind-
ing theorems, each of which states that some combination of unwinding conditions implies
some information flow property. Unwinding a given information flow property requires one
to choose an unwinding theorem for this property, to prove all unwinding conditions named
in this theorem, and then to apply the unwinding theorem in order to complete the proof.
In comparison to verifying an information flow property directly, the advantage of unwinding
is that unwinding conditions are easier to handle during verification. This is because un-
winding conditions are expressed in terms of individual actions and, hence, are conceptually
simpler than information flow properties, which are expressed in terms of complete execution
sequences. Like in most other approaches to unwinding, we use so called unwinding relations
(i.e. binary relations between states) in the definition of our unwinding conditions. Typi-
cal requirements are that the states before and after certain actions must be related by the
unwinding relation or that the unwinding relation is preserved under stepwise execution.

In unwinding theorems, the unwinding relation is existentially quantified. Hence, an un-
winding relation must be chosen before the unwinding conditions can be proven. In practice,
constructing an appropriate unwinding relation is often more difficult than the actual proof
of the unwinding conditions. Therefore, it is quite unfortunate that prior approaches to un-
winding further complicate this construction by imposing additional side conditions on the
unwinding relation, namely that it must be an equivalence relation (e.g. in [HY87, Rya91,
GCS91, MC92, Rus92, Mil94, Zak96, RS99]). An interesting improvement of our approach is
that we do not impose any such side conditions and, in particular, do not require that unwind-
ing relations are reflexive, transitive or symmetric. Having no side conditions is convenient in
practice because it permits more freedom in the construction of unwinding relations. Elimi-
nating the need for side conditions has also more fundamental advantages. Namely, there are
cases where suitable unwinding relations exist but none of them is an equivalence relation. In
these cases, proof attempts with the known unwinding techniques would be doomed to fail
while the proof can be completed with our techniques.

Our approach is not targeted at verifying a particular information flow property. Rather,
we present unwinding techniques that can be used for all information flow properties repre-
sented in MAKS. This includes not only properties known today but also further properties
that might be proposed in the future. This general applicability of our unwinding techniques
has become possible by the modular representation of information flow properties. Since
BSPs are assembled by conjunction, an information flow property can be verified by verifying

12

CHAPTER 1: Introduction

each BSP from which it is assembled. The unwinding conditions and unwinding theorems
that we propose aim at the verification of BSPs and, hence, can be exploited during the ver-
ification of all information flow properties that are assembled from these BSPs. This means,
by representing an information flow property in MAKS, one obtains unwinding techniques
“for free”. In particular, our verification techniques can be applied to nondeducibility for
outputs [GN88], separability [McL94a], and many other information flow properties for which
previously no unwinding techniques existed. Previous unwinding results do not offer this gen-
erality because they aim at the verification of some specific information flow property only.
For example, the unwinding result in [GM84] is only applicable to the original definition of
noninterference [GM82]; the respective unwinding results in [HY87, Rus92, Pin95] each aim
at the verification of a particular variant of intransitive noninterference; the unwinding results
in [Rya91] aim at verifying CSP-noninterference; and the unwinding result in [Mil94] aims
at verifying forward correctability [JT88]. Zakinthinos suggested a more uniform approach
and used this approach to derive unwinding theorems for generalized noninterference, forward
correctability, the perfect security property, and generalized noninference. However, he still
had to derive these theorems separately for each information flow property [Zak96].
Summarizing, our main improvements are:

No side conditions on the unwinding relation We do not require that unwinding rela-
tions must be reflexive, transitive, or symmetric. The unwinding techniques in this thesis
improve on our earlier attempt, in which we showed that the symmetry requirement for
unwinding relations is unnecessary [Man00d].

General applicability We present unwinding theorems (for BSPs) that can be exploited
during the verification of all information flow properties represented in MAKS, including
several properties for which previously no unwinding results were available. That is, we
do not have to derive unwinding theorems for each individual property from scratch.

In addition to our results on unwinding, we also show that various forms of simulation tech-
niques can be used in the verification of information flow properties. In other words, we
propose verification techniques that provide alternatives to the unwinding approach. Simula-
tion techniques like, e.g., forward simulation or backward simulation were originally developed
in order to show that one specification refines another specification rather than for the veri-
fication of information flow properties.

1.4 Compositionality Results

In this thesis, we propose several compositionality results that provide a basis for a modular
verification of large and complex systems. Rather than verifying directly that a complex
system is “secure”, one verifies that each of its components is “secure” (e.g. by unwinding)
and then applies a compositionality result in order to conclude the “security” of the overall
system from the “security” of the components.

The various information flow properties behave quite differently under composition. Some
information flow properties are preserved under composition in general while others are only
preserved if certain, sometimes quite restrictive, conditions are satisfied. An example of a
novel compositionality result that we derive is: if two systems each satisfy weakened forward
correctability then their composition also satisfies weakened forward correctability. Weak-
ened forward correctability, i.e. our novel information flow property, is an improvement of

1.5 Case Study

13

Johnson and Thayer’s forward correctability [JT88]. This is very interesting because forward
correctability itself is an improvement of McCullough’s restrictiveness [McC87] (a quite com-
plicated property), which historically was the first information flow property with a general
compositionality result. The possibility to further improve this line of composable information
flow properties had remained undetected for the last fifteen years.

However, our objective is not only to present a collection of novel compositionality results
but rather to provide a basis for deriving such results in a uniform and systematic way.
We reduce the problem of preserving a given property under composition to the problem of
preserving all BSPs from which it is assembled. This is possible because BSPs are assembled
by conjunction. To this end, we derive compositionality results for various BSPs from which
compositionality results for more complex information flow properties can be obtained easily.

Previous work on compositionality of information flow properties often focused on one
particular property only (like e.g. in [McC87, JT88, GN88, Mil90, BCC94, ZL97]). Moreover,
if different information flow properties were considered then compositionality results were
derived separately for each of these properties from scratch (like e.g. in [FG95, Zak96]). Prior
to our work, the only positive exception to this was McLean’s work on compositionality in
the context of his framework of selective interleaving functions [McL94a, McL96]. However,
several information flow properties for which we derive compositionality results in this thesis
could not be investigated by McLean because of the limited expressiveness of his framework.

We also use MAKS to re-justify several already known compositionality results in order
to illustrate that our uniform approach works rather generally. As a side effect of these re-
justifications, we deepened our understanding of the known compositionality results. The
insights that we gained also led to a classification of compositionality results. This classi-
fication groups compositionality results that hold for the same reasons into the same class.
McLean [McL94a] grouped compositionality results depending on whether they can be applied
in similar settings.? These two classifications complement each other: while we put more em-
phasis on understanding the reasons why the various results are valid, McLean puts more
emphasis on explaining in which settings these results can be applied.

Summarizing, two main features of our approach to deriving compositionality results are:

Uniformity We derive compositionality results in a uniform way. Namely, we reduce the
problem of preserving a given information flow property under composition to the prob-
lem of preserving all BSPs from which this property is assembled.

General applicability We present compositionality results for BSPs that can be used dur-
ing the derivation of compositionality results for more complex information flow prop-
erties. That is, our approach is not targeted to only a single information flow property.
Rather, it is applicable to all information flow properties that can be represented in
MAKS. We demonstrate by numerous examples that it, indeed, provides a suitable
basis for the derivation of a wide range of compositionality results.

1.5 Case Study

In order to illustrate how our results can be applied in a concrete setting, we perform a
case study of considerable size and complexity. This case study is concerned with a rigorous

8More specifically, results are grouped together if they impose the same restriction on the composition
operation. Possible restrictions are product, cascade, and general composition.

14

CHAPTER 1: Introduction

justification of Sabelfeld and Sands’s approach to language-based security [SS00].

Sabelfeld and Sands proposed a security type system that can be used to check mechan-
ically whether a given program is “secure”. For this type system, they derived a sound-
ness result, stating that every type-correct program satisfies the strong security condition.
However, the strong security condition is somewhat non-standard and has been derived by
Sabelfeld and Sands in an ad hoc fashion. In the case study, we show that every program
that is strongly secure also satisfies a particular information flow property in MAKS. An
immediate consequence of this implication is that the security type system is sound wrt. this
information flow property. This is a more convincing soundness result than the original one
because it relates the security type system to a security condition from a well established
class of information flow properties.

The programming language that we consider is DMWL, an imperative language with
features for multi-threaded as well as for distributed programming. This language is an
extension of the language originally considered by Sabelfeld and Sands. We start the case
study by specifying the behavior of DMWL programs in an event-based formalism. Rather
than specifying the behavior of a particular program, we specify the behaviors of all DMWL
programs. In other words, we specify the operational semantics of DMWL by an event system.
This (generic) specification is the system component of our security model. We proceed
in the case study by expressing the security requirements for DMWL programs with an
information flow property. In this process, we show how a suitable information flow property
can be constructed in a goal-directed and application-driven way with the help of MAKS.
Interestingly, the information flow property at which we arrive is completely novel. With
the help of our taxonomy of information flow properties, we obtain a basic understanding of
this novel property and its relation to known properties. The specification of the information
flow property constitutes the security component of our security model. Finally, we verify
that this information flow property holds for all strongly secure programs. For this purpose,
we firstly prove that the property holds for primitive system components (i.e. for individual,
strongly secure processes) with the help of our unwinding techniques. Secondly, we prove that
the information flow property holds for more complex systems (i.e. for distributed systems
consisting of multiple, strongly secure processes) by exploiting a compositionality result that
is derived using our uniform approach to deriving compositionality results.

Summarizing, the case study encompasses all areas to which we contribute in this thesis.
Namely, we use MAKS to derive a suitable information flow property; we use the taxonomy
in order to deepen our understanding of this property; we apply our unwinding techniques
to verify this property for individual processes; and we exploit our approach to deriving
compositionality results for verifying that the property holds for distributed programs.

1.6 Overview

After this introductory chapter and the description of preliminaries in Chapter 2, the thesis
is structured as follows:

The presentation of our own contributions begins in Chapter 3 with the description of
MAKS. We formally define all basic concepts of MAKS and propose a collection of BSPs.
These BSPs will be used to assemble information flow properties throughout this thesis. We
also derive a taxonomy of our BSPs that can be used to compare BSPs with each other.

In Chapter 4, we show how the information flow properties from the literature can be

1.6 Overview

15

represented with MAKS in a modular way. Thereby, we demonstrate that MAKS is expressive
enough to serve as a basis for the investigation of information flow properties. Based on the
modular representation, we clarify several issues about the represented properties and, in
particular, present a taxonomy of known information flow properties.

Unwinding techniques are proposed in Chapter 5. We present unwinding conditions and
unwinding theorems for our BSPs. We also show how these unwinding results for BSPs can be
exploited during the verification of more complex information flow properties. This chapter
is complemented by Appendix C in which we propose further verification techniques.

In Chapter 6, we show how compositionality results can be derived following a uniform
approach. This approach builds on the modular representation of information flow properties
in MAKS. We apply our approach in order to re-justify several already known compositionality
results, which culminates in a classification of compositionality results. We also derive several
novel compositionality results and propose a novel composable information flow property.

In Chapter 7, the applicability of the results presented in Chapters 3—6 is demonstrated
in a concrete case study from the area of language-based security. In the case study, we show
how to derive a suitable information flow property in MAKS, make use of our taxonomy of
information flow properties, apply our unwinding techniques, derive a compositionality result
following our uniform approach to derive such results, and then apply the compositional-
ity result in order to verify the information flow property for complex distributed systems.
Besides illustrating the applicability of our results, this case study is also interesting from
the perspective of language-based security and it already inspired some improvements of the
language-based techniques.

A summary of the contributions of this thesis, a brief description of ongoing work, and a
list of interesting directions for future research is given in Chapter 8.

16 CHAPTER 1: Introduction

Chapter 2

Notions and Notation

In this chapter, we introduce basic notions and formal notation to be used in later chapters. In
particular, we introduce a trace-based system model, namely the model of event systems, that
will provide the common semantic basis of our investigations throughout this thesis. Event
systems have been quite popular for the investigation of information flow properties (e.g.
[McC87, GN88, JT88, Mil94, ZL97]) because they are suitable for modeling deterministic as
well as nondeterministic systems but, nevertheless, are conceptually quite simple and easy to
apply. A second system model, namely that of state-event systems, is introduced because its
use will simplify the presentation in some parts of this thesis. Event systems and state-event
systems are closely related. A state-event system can be obtained from an event system by
enriching it with a notion of system state.

We will also present abstract definitions of classes of system properties, namely of prop-
erties of traces and of properties of sets of traces. The security properties that we investi-
gate in this thesis, i.e. information flow properties, belong to the second class of properties.
More specifically, they are closure properties of sets of traces. In order to illustrate the wide
spectrum of information flow properties, we briefly review three concrete information flow
properties from the literature, further information flow properties follow in later chapters.

Overview. Event systems and state-event systems are defined in Section 2.1. Section 2.2
describes how system properties can be specified. In Section 2.3, it is explained how system
models, other than event systems or state-event systems, can be adopted.

2.1 System Model

2.1.1 Traces

The behavior of a system can often be adequately specified by a set of traces where each
trace in this set models a possible execution sequence of the given system. Formally, traces
are defined as sequences of events where an event models an atomic action like, e.g., sending
a message, receiving a message, or performing a computation step. Every occurrence of an
event in a trace models the occurrence of the respective atomic action.

Definition 2.1.1 (Trace). Let E be a set of events. A trace over E is a (possibly empty)
finite sequence of events in F. <

18

CHAPTER 2: Notions and Notation

In this thesis, we focus on finite traces. The set of all finite traces over some set F is denoted
by E*. For simplicity, we use “trace” as synonym for “finite trace” in the following.

As a notational convention, we separate adjacent events in a trace by dots and surround
traces by angle brackets. For example, () denotes the empty trace, (e1) denotes the trace in
which a single event e; occurs, and (e;.es.e3) denotes the trace in which ej, e, eg occur (in
this order). Concatenation of traces is also denoted by dots, i.e. (e1.e2).(e3) = (e1.e2.e3). We
use the letters 7 and ¢ (possibly with indices or primes) to denote traces where the Greek letter
7 is only used for traces that model possible behaviors of the system under consideration.

Example 2.1.2. Let Epyp = {term} U {out(n) | n € IN} be a set of events where the event
term models that the system terminates and an event out(n) models that the natural number
n is output. The behavior of a random generator that outputs a sequence of random natural
numbers and then terminates can be modeled by the smallest set Trayp C Eryp” satisfying:

1. <> € ﬂRND,
2. (term) € Trgyp, and

3. if 7 € Trrap then (out(n)).7 € Trayp.

The traces (term), (out(42)), (out(42).0ut(13).term), and (out(1).out(2).out(3).out(4)) are ex-
amples of possible traces in Trgyp- The last two of these traces are also illustrated in Figure 2.1
using a graphical notation where events are viewed as arrows.

- ul(42) wp - m—0U((13) =P m—f T —-
o OUE(1) e e QUE(2) o OUE(3) e o OUE(4)
Figure 2.1: Some possible traces for the random generator (cf. Example 2.1.2)

Note that the trace (out(1).o0ut(2).o0ut(3).0ut(4)) models an incomplete run of the system
(no occurrence of event term) while (out(42).0ut(13).term) models a complete run. Typically,
a set of traces that models the possible behaviors of a system contains all traces that model
possible behaviors (including the ones that model incomplete runs). Formally, this means
that the set of traces is closed under prefixes. <

Remark 2.1.3. Specifying a system by the set of its possible traces can be seen as a semantic
approach. There are various syntactic specification languages for specifying sets of traces,
including process algebras like, e.g., CSP [Hoa85], and temporal logics like, e.g., TLA [Lam94].
The main advantage of basing our investigations on a semantic system model rather than a
specific syntactic specification language is that our results become applicable to different
specification languages (also cf. Section 2.3). <&

2.1.2 Event Systems

Using event systems, a system is modeled not only in terms of its behavior (by a set of traces)
but also in terms of its interface (i.e. by sets of input events and output events).

Definition 2.1.4 (Event system). An event system ES is a tuple (F, I, O, Tr) where E is
a set of events, I C E, O C FE are the sets of input events and output events, respectively,
and Tr C E* is the set of possible traces. I and O must be disjoint, i.e. TN O = (), and Tr
must be closed under prefixes, i.e. every prefix of a trace in 7r must also be in TT. <

2.1 System Model

19

Example 2.1.5. Let Fgyp and Trgyp be defined like in Example 2.1.2. Moreover, let Izyp = ()
and ORND = {out(n) | n €]N} The event system RND = (ERNDaIRNDaORNDa TTRND) provides
a more detailed specification of the random generator than the one in Example 2.1.2. RND
makes explicit that term is an internal event (term ¢ I UQO) and out(n) is an output event. &

Example 2.1.5 illustrates how nondeterministic systems can be modeled by event systems.
After a trace 7 (without occurrences of event term) has occurred, any of the events out(0),
out(1), out(2), ... can occur. That is, nondeterministic behavior is reflected in the specification
by the possibility that different (output) events can occur.

Let us introduce a few more notions for traces that we need at various points of this thesis.

Definition 2.1.6 (Totality in a set of events). ES= (E, 1,0, Tr) is total in a subset E'
of E, denoted by total(ES, E'), iff' 7.{e) € Tr holds for all 7 € Trand all e € E'. O

Definition 2.1.7 (Input totality). ES = (E,I,0, Tr) is input total iff total(ES,I). O

Definition 2.1.8 (Projection). The projection t|g of a trace t € E* to a subset E' of E
results from ¢ by deleting all events not in E', i.e. ()|gr = (), if e ¢ E' then (t.(e))|pr = t|gr,
and if e € E' then (t(e))|Ez = t|EI<€> O

Example 2.1.9. The projections of ¢ = (out(1).o0ut(2).0ut(3).0ut(4)) to output events that
involve, respectively, only odd or only even numbers are

t|{out(n)|n mod 2=1} — (out(1).0ut(3))
tl{out(n) |n mod 2=0y = (out(2).out(4)) o

Definition 2.1.10 (Interleaving). The set of all interleavings of two traces t1,ty € E* is
defined inductively by

interleaving(t1,()) = {ti}
interleaving((),t2) = {t2}
interleaving({e1).t1, (e2).t2) = {(e1).t' | ' € interleaving(ty, (e2).t2)}
U{(e2).t' | t' € interleaving({e1).t1,t2)} O

Example 2.1.11. Let ¢t; = (out(1).0ut(3)) and t2 = (out(2).out(4)). There are 6 possible
interleavings of ¢; and #2. In each of these interleavings, out(1) occurs before out(3) and
out(2) occurs before out(4). For example, (out(1).out(2).0ut(3).out(4)) € interleaving(ti,t2),
but (out(4).out(3).0ut(2).0ut(1)) ¢ interleaving(ty,ts). <&

Remark 2.1.12. Historically, event systems can be regarded as a descendent of the trace-
based semantics of Hoare’s CSP [Hoa85]. According to these semantics, every process corre-
sponds semantically to a pair consisting of an alphabet, i.e. a set of events, and a set of possible
traces. McCullough further refined this trace-based model by distinguishing input events and
output events from internal events [McC87]. The intuition behind this distinction was that
input events are controlled by the environment while output events as well as internal events
are controlled by the system. The sets of input events and output events also specify the
interface that shall be used for interacting with the system.

In many publications, the definition of event systems incorporates the assumption of input
totality (cf. e.g. [JT88, ZL97]). We refrain from making input totality a general assumption

! As usual, we abbreviate “if and only if” by “iff”.

20

CHAPTER 2: Notions and Notation

because this is often an unnecessary restriction. According to Definition 2.1.4, an event
system may be, but need not to be, input total. Consequently, all results that we derive for
our definition of event systems are also valid for event systems that are input total. <

2.1.3 State-Event Systems

State-event systems result from enriching event systems with a notion of state. Using states,
the set of possible traces can be specified in an inductive manner by a transition relation.

Definition 2.1.13 (State-event system). A state-event system? SES is a tuple (S, so, E,
I,0,T) where S is a set of states3, sq € S is the initial state, E is a set of events, I, O C E are
the sets of input events and output events, respectively, and T'C § x E x S is the transition
relation. I and O must be disjoint and T must correspond to a (partial) function of type
SXxE < S,ie. forall s € S and e € E, there is at most one s’ € S with (s,e,s') e T. <

Despite our assumptions (i.e. that there is only one initial state sy and that for every s € S
and every e € E there is at most one s’ € S with (s,e,s’) € T), state-event systems are
suitable for the specification of nondeterministic systems. The reason for this is that the
output is not completely determined by the state: if a given system is in some state s then
different sequences of output events might be possible. Hence, nondeterminism arises from
the choice between different enabled events (rather than from a nondeterministic choice of
the state after an event has occurred). This is illustrated by the following example.

Example 2.1.14. Let Egyp, Iz, Oryp and let Trgyp be defined like in Example 2.1.5. More-
over, let Sgpnp = {0, st} be a set of states and Taup = {(s0, out(n), so) | n € IN}U{(s0, term, s¢)}
be a transition relation. The random generator can be specified by the state-event system
SESRND = (SRND, S0, ERND, IRND, ORND, TRND)- Note that all events in E are enabled in the initial
state sg. The state remains unaffected if a natural number is output in state so. After an
occurrence of the event term, the system moves to the terminal state s;, in which no events
are enabled. This means that the same traces are possible for SESgyp and for RND. O

Let us introduce a few further notions and some notation for state-event systems.

Instead of (s,e,s’) € T we sometimes use the notation s —5r s where s, s’ € S are states
and e € F is an event. If the transition relation 7" is obvious from the context then we omit
the index and write s —» s instead of s —»7 s’. To abbreviate sequences of transitions, we
use the notation s == ' (or s =Ly §'if T is obvious) where ¢t € E* is a trace. For a state

event system SES = (S, so, E,I,0,T), the relation =4 is defined by:

s % s Lifs=4s

PRCRN L if 35" € 8. (s -5 8" A 8" =55 §)
Definition 2.1.15 (Reachable). A state s € S is reachable for SES = (S, s, E,1,0,T),
denoted by reachable(SES, s), if there is a trace t € E* such that s =L s holds. &

%We use the term “state-event system” rather than the term “state machine” (e.g. used in [McC90]). The
term “state machine”, in this contert, often leads to misunderstandings because it emphasizes states over
events despite the fact that communication with the environment is assumed to occur by synchronization on
the occurrence of shared events rather than by sharing part of the state space (cf. Definition 7.3.6).

%It is possible to view states as mappings from state variables to values. However, also other notions are
possible because the notion of state is left transparent in Definition 2.1.13.

2.2 Specifying System Properties

21

Definition 2.1.16 (Enabled). For SES = (S, s, F,I,0,T), a trace t € E* is enabled in a
state s € S, denoted by enabled(SES, s,t), if there is a state s’ € S such that s =L ¢ holds. ©

Definition 2.1.17 (Possible trace). For SES = (S, s, E,I1,0,T), a trace t € E* is possible
if ¢ is enabled in sg. The set of all possible traces for SES is denoted by Trggs. O

Definition 2.1.18 (Induced event system). The event system ESgsgs that is induced by
the state-event system SES = (S, s0,E,I,0,T) is defined by ESsgs = (E, I, O, Trsgs). o

Remark 2.1.19. It is easy to check that the set of traces Trsgs,, generated by the state-
event system SESgyp from Example 2.1.14 is identical to the set Trgyp in Example 2.1.5. Recall
that, in Example 2.1.5, Trgyp had to be specified by a meta-level induction (in the text). In
contrast to this, state-event systems incorporate a transition relation that can be used for an
inductive specification of the set of possible traces on the object level. <

Remark 2.1.20. Many syntactic specification formalisms, including most programming lan-
guages, are based on a state-transition model. Hence, one often obtains the information nec-
essary for defining a state-event system (rather than an event system) for free. O

2.2 Specifying System Properties

While a system specification expresses how a system behaves, the specification of system
properties expresses what the system’s requirements are. In order to formally verify that a
system satisfies its requirements, it is necessary to specify system properties in precise terms
and to state formally what it means for a system specification to satisfy a given system

property (also cf. Figure 2.2).
— m——

2 —— A
behavior saisfies properties

event systems

Figure 2.2: Structure of a formal specification

In this section, we present abstract definitions of classes of system properties and define
corresponding satisfaction relations. Concrete property specifications are special instances of
these abstract definitions, just like concrete system specifications are special instances of the
abstract definition of event systems.

2.2.1 Properties of Traces

System requirements can often be specified by properties of traces, i.e. properties that are
satisfied by an event system if they are satisfied by every possible trace of the event system.
Examples for properties of traces are, e.g., that a particular invariant holds during program
execution or that a program will eventually terminate.

22

CHAPTER 2: Notions and Notation

Definition 2.2.1 (Property of traces). A property of traces over a set E of events is a
predicate P : E* — Bool* An event system ES = (E,I,0, Tr) satisfies P : E* — Bool iff
P(7) holds for all 7 € Tr. &

Example 2.2.2. For the random generator from Example 2.1.5, no events are enabled after
an occurrence of term. This statement can be formalized by the property of traces Pierm
defined by: Pierm(7) & Va,8 € E*. (1 = (B.(term).a) = a = ()). The event system ESpup
defined in Example 2.1.5 fulfills Pjepqp. This is shown by induction on the length of possible
traces and a case distinction according to the definition of Trayp: In the base case Piepyp, holds
for the traces () and (term); in the step case, Pierm(7) obviously implies Piepp({out(n)).7). &

Remark 2.2.3. The property Py, is an example of a safety property because it ensures that
nothing bad happens, i.e. after an occurrence of the event term no other events will occur.
This means that the system has terminated after an occurrence of term rather than that it
will eventually terminate. Properties of the latter kind are different from safety properties
because they ensure that eventually something good will happen. Properties of this kind are
referred to as liveness properties.® <

2.2.2 Properties of Sets of Traces

There are system requirements that cannot be specified by properties of traces. Let us consider
the following simple example: Assume a system that takes a request as input, processes the
request, outputs a response, and then terminates. A critical requirement of such a system
might be that the average response time is below a certain time limit ¢. Obviously, the
validity of this requirement depends on the set of all possible system executions. Therefore,
this requirement is no property of traces. Rather it is a property of sets of traces.

Definition 2.2.4 (Property of sets of traces). A property of sets of traces over a set E
of events is a predicate Q : P(E*) — Bool.5 An event system ES = (E,I,0, Tr) satisfies a
property Q : P(E*) — Bool of sets of traces iff Q(Tr) holds. O

The class of properties of sets of traces subsumes the class of properties of traces in the sense
that each property of traces can be expressed by an equivalent property of sets of traces.”
Moreover, there are properties of sets of traces for which there is no equivalent property of
traces. As an interesting side note, the following remark elaborates in more detail which
properties of sets of traces can be expressed by equivalent properties of traces.

4 Bool = { True, False} is the set of truth values. A predicate P : E* — Bool holds for t € E* iff P(t) = True.

SInterestingly, safety and liveness properties are fundamental for properties of traces because every property
of traces can be expressed as the conjunction of a safety and a liveness property. This was shown in [AS85] for
infinite traces that are state-based. The two classes of properties of traces can be characterized as follows: If a
safety property holds for every finite prefix of a given infinite trace then it must also hold for the complete trace
and for every finite trace t there must be an infinite trace with prefix ¢ for which the liveness property holds. In
particular, this means that liveness properties cannot distinguish between different finite traces. Hence, they
cannot be investigated in a system model that permits only finite traces (like our definition of event systems).
However, this does not matter because we are interested in a different class of system properties.

5As usual, P denotes the powerset construction, i.e. P(E*) denotes the set of all subsets of E*.

"Every property of traces P : E* — Bool induces a property of sets of traces Qp : P(E*) — Bool defined
by Qp(Tr) = V7 € Tr. P(1). The property Qp is equivalent to P in the sense that Qp is satisfied for a given
event system iff P is satisfied for that event system.

2.2 Specifying System Properties

23

Remark 2.2.5 (Relating properties of sets of traces and properties of traces).
Let us investigate more closely, which properties of sets of traces are induced by properties of
traces. The characteristic set I'p of a property of traces P is defined by I'p = {7 € E* | P(7)}.
The characteristic set I'g of a property of sets of traces @ is defined by I'p = {Tr C E* |
Q(Tr)}. For each property of traces P, the characteristic set I'g, of the property of sets
of traces Qp (i.e. the property induced by P) is the set of all subsets of I'p, i.e. g, =
{Tr | Tr C Tp}. Clearly, I'g, is closed under subsets and has a maximal element (namely
Ip). Likewise, every property of sets of traces Q with a characteristic set that is closed
under subsets and that contains a maximal element induces an equivalent property of traces
Pg. The characteristic set I'p,, is simply the maximal element of I'g. Consequently, the set
of all properties of traces is isomorphic to the set of all properties of sets of traces with a
characteristic set that is closed under subsets and that contains a maximal element. O

The following remark illustrates that some properties of sets of traces that cannot be expressed
by equivalent properties of traces can at least be conservatively approximated.

Remark 2.2.6 (Approximating properties of sets of traces). According to Remark
2.2.5, properties of sets of traces with a characteristic set that is not closed under subsets or
that has no maximal element cannot be expressed by an equivalent property of traces. Nev-
ertheless, some of these properties can be approzimated by properties of traces. For example,
the average-response-time property (a property of sets of traces) can be approximated by a
worst-response-time property (a property of traces) in the sense that if the worst response
time of a system is below a time limit ¢ then the average response time is also below this
time limit. Hence, the worst-response-time property is a conservative approximation of the
average-response-time property. <o

Almost all properties of sets of traces can be conservatively approximated by properties of
traces.®. However, the approximation often results in such a restrictive requirement that it
is not appropriate for replacing the original property.” In particular, the information flow
properties that we investigate in this thesis are closure properties of sets of traces [McL94a]
and, hence, no good approximations by properties of traces are known for them.!?

2.2.3 Closure Properties of Sets of Traces

Intuitively, a closure property requires for a given set that whenever certain elements are
members of the set then certain other elements also must be members of the set.

Definition 2.2.7 (Closure property of sets of traces). A property of sets of traces
Q : P(E*) — Bool is a closure property of sets of traces iff for all Tr C E* there is a set
Tr C E* with Tr D Trand Q(1r). %

8The property INCONS : E — Bool defined by V7 € E*. INCONS(t) < False, i.e. the property that does
not hold for any trace, is a conservative approximation of all properties of sets of traces except for the property
Q : P(E*) — Bool defined by VTr € P(E*).Q(Tr) < False. The reason why @ cannot be approximated is
that Q(0) does not hold while every property of sets of traces induced by a property of traces holds for §.

9The inappropriateness of approximating a given property of sets of traces becomes most obvious if INCONS
is the only possible conservative approximation. However, even if there are approximations different from
INCONS then using the approximations is often inappropriate. For example, one usually wants to enforce
tighter bounds on the average response time than on the worst response time.

10 Access control provides a means to implement the security requirements expressed by information flow
properties. As access control models correspond to safety properties [Sch00a], they are, in general, not suitable
alternatives for expressing the abstract security requirements.

24

CHAPTER 2: Notions and Notation

Note that for each set of traces there is a superset for which a given closure property holds.
In other words, a closure property can always be made true by adding elements to a given
set of traces. Let us consider a simple example of a closure property of sets of traces.

Example 2.2.8. The random generator behaves chaotically until the event term has oc-
curred. This can be formalized by the following closure property of sets of traces:

Q chaotic(Tr) < Y7 € Tr. (T|term = () = Ve € E.7.(e) € Tr)

The property Q chqotic requires: If 7 is in 7 and does not contain occurrences of term then for
all e € F, the trace 7.(e) must also be in Tr. For instance, Q cpaotic(Trayp) holds (for system
RND from Example 2.1.5) because every event in Egyp can occur until term has occurred. <

2.2.4 Specifying Secure Information Flow

Now we are ready to give a more formal introduction to information flow properties than in
Chapter 1. To this end, we present the specification of a simple example system and then
illustrate using three different information flow properties from the literature how a formal
analysis reveals that this system is insecure.

Example 2.2.9. Consider a system that receives confidential input from some trusted user
(the so called high-level user) and that also outputs data to some untrusted user (the so called
low-level user) who should not obtain the confidential information. We model that the high-
level user inputs a secret number n € IN by the event A4, and model that a number n’ € IN is
output to the low-level user by lo,,. The sets of all high-level events and all low-level events
are denoted by H and L, respectively (i.e. H = {hi, | n € IN} and L = {lo, | n € IN}).
Define the event system LEAK = (ELEAKa ILEAK, OLEAK; T”‘LEAK) where ILEAK = {hzn | n e]N},
Oreax = {lon, | n € IN}, Eppax = Irrak U Orrak, and Tripax C Eppax™ is the smallest set with:

1. <) S TTLEAK;
2. if n € IN then <h’tn> S WLEAK, and
3. if n € IN and 7 € Trigax then (hiy.loy).7 € Trigax.

According to this specification, LEAK receives a number n as high-level input (event hi,) and
immediately outputs this number to the low-level (event lo,). This means that if the low-
level user receives, e.g., the sequence (42).(13) from the system then he can deduce that the
high-level user has previously input (42).(13). Clearly, this is a security violation.

More formally, the low-level user observes the sequence (los2.lo13) and deduces from this
observation and his knowledge of the system specification!! that some trace in

{(hi42.1042.hi13.1013>.7' | T = <) VidneIN.7T = (hm)} (2.1)

must have occurred (cf. Figure 2.3). All traces in this set have a common prefix, namely
(hig2.lo42.hir3.1013) and, thus, the low-level user can deduce that (42).(13) has been input by
the high-level user. O

11n investigations of secure information flow, it is commonly assumed that untrusted users might have
complete knowledge of the system specification. This is a worst case assumption.

2.2 Specifying System Properties

25

T: < —ige . —0 1 P m—i13 .01z =p-.==? mp-. trace that has occurred
T|L: —_— 04 =P —_—l013 = - observation of low-level user
T|g: -==—hisy = — hi13 = ==-7==p. actions of high-level user

Figure 2.3: A trace and its projections to low-level and high-level events (cf. Example 2.2.9)

The problem with system LEAK is that the low-level user can narrow down the traces that
could possibly have generated his observation (los2.l013) to a set of traces that is small enough
such that he can infer confidential information. In other words, the problem with system LEAK
is that the set of possible traces Trpgpx is too small. If, e.g., the trace (logs.lo13) (modeling
that (42).(13) is output to the low-level user although no input has been provided by the high-
level user) also would be possible then the low-level user could not tell from his observation
(loga.l013) whether some trace in the set (2.1) or the trace (loss.l013) has actually occurred.
This means, he would not know if the sequence that he obtains corresponds to confidential
information from the high-level user or if it is some arbitrary sequence that has been invented
by the system. Hence, there is no security violation.

More generally, a given system can be made “secure” by adding possible behaviors. In
other words “security” is a closure property of sets of traces (also cf. Definition 2.2.7).

Let us now briefly review three information flow properties from the literature, namely
noninference, separability, and generalized noninterference. For these properties, we will
illustrate with system LEAK how insecurities can be detected in a formal analysis. Let us first
provide the formal definitions of these properties.

Noninference [O’H90, McL94a, Z197] is formally defined as follows:

NF(ES) = VreTr.rlp € Tr

This means, noninference holds for a given event system ES iff the projection of each possible
trace to the set of low-level events also is a possible trace.
Separability [McL94a, Z1L97] is formally defined as follows:

SEP(ES) = Vm,7, € Tr.interleaving(tp|m,m|r) C Tr

That is, separability holds iff each interleaving of the high-level sequence in one possible trace
with the low-level sequence in another possible trace is also a possible trace.
Generalized noninterference [McC87] is formally defined as follows:

GNI(ES) = Viy,t9,13 € B*.
((t1-t2 € Tr At3|p\(anr) = tolB\(BND)
= Jt4 € E*. (t1.t4 € Tr Ata|punn = tslounn))

Hence, generalized noninterference holds iff for every trace ¢1.t3 that differs from a possible

trace t1.t3 only in occurrences of high-level input events there is a possible trace t1.t4 that

differs from ¢1.t3 only in occurrences of high-level internal events and high-level output events.
Let us now illustrate how system LEAK can be analyzed with these properties.

26

CHAPTER 2: Notions and Notation

Example 2.2.10. NF(LEAK) does not hold. This is because 7 = (hig2.logz.hir3.l013) is a
possible trace but its projection to L, i.e. 7|, = (log2.lo13) is not a possible trace.)

Example 2.2.11. SEP(LEAK) does not hold. This is because 7; = (hiso.lo4o.hii3.l013) and
Th, = () are possible traces but (loss.lo13) € interleaving(y |, T|L) is not a possible trace. <

Example 2.2.12. Let tl = <), tg = <hi42.1042.hi13.l013>, and t3 = <l042.l013). The trace tl.tQ
is a possible trace of LEAK and t3 differs from ¢5 only in occurrences of high-level input events.
There are no high-level internal events or high-level output events and, hence, the only trace
that differs from 3 at most in high-level internal events or high-level output events is t4 = t3.
For these choices, generalized noninterference requires that 1.t4 is a possible trace. However,
this is not the case and, consequently, GNI(LEAK) does not hold. &

Examples 2.2.10-2.2.12 show that noninference, separability, and generalized noninterference
all detect the insecurity of the system LEAK in Example 2.2.9, i.e. neither NF(LEAK) nor
SEP(LEAK) nor GNI(LEAK) holds. Hence, wrt. this particular example, the three information
flow properties are equivalent in the sense that they yield the same result. However, in
general, these three information flow properties are not equivalent. A deeper understanding
of information flow properties (including NF, SEP, GNI, and many others) as well as an
identification of their precise differences and similarities is one of the main objectives of this
thesis. This objective will be pursued in Chapter 4.

2.3 Using Other Specification Formalisms

The model of event systems provides the common semantic basis of our investigation, however,
this does not exclude the specification of a system’s behavior with other (semantic) system
models or (syntactic) specification formalisms. The only condition is that there must be a
mapping from that system model or specification formalism to event systems such that each
specification is mapped to a unique event system. We say that a given system property is
satisfied by such a specification if it is satisfied by the induced event system.

Example 2.3.1. Let SES = (S, so, E,I,0,T) be a state-event system, P : E* — Bool be a
property of traces, and @ : P(E*) — Bool be a property of sets of traces. The property P is
satisfied by SES iff P is satisfied by ESsgs (formally: V7 € Trsgs. P(7)). The property @ is
satisfied by SES iff Q is satisfied by ESsgg (formally: Q(Trsgs)). O

In Chapter 5, we shall adopt the model of state-event systems when we elaborate verification
techniques for information flow properties. Moreover, we will use state-event systems in our
case study in Chapter 7 where we also introduce a convenient syntax for specifying concrete
state-event systems.

2.4 Summary

In this chapter, we have introduced basic notions and some notation and we are now ready
to move to the first central chapter of this thesis: the introduction of the MAKS framework.

Chapter 3

MAKS: A Modular Framework for
Information Flow Properties

3.1 Introduction

The overwhelming variety of known information flow properties (e.g. [Sut86, McC87, GN88,
JT88, O'H90, WJ90, McL94a, FG95, ZL97, Sch01]) and the rather subtle technical differences
in their respective formal definitions makes it difficult to achieve a thorough understanding
of all these properties. Hence, there is a need to analyze these properties, to compare them
to each other, and to classify them wrt. their applicability.

In this chapter, we propose MAKS, the Modular Assembly Kit for Security Properties.
MAKS provides a framework in which information flow properties can be represented in a
uniform way, which is helpful in understanding the differences and similarities of the various
properties. Besides simplifying comparisons, it also provides a suitable basis for other inves-
tigations of information flow properties. Examples are the derivation of unwinding theorems
and of compositionality results to be presented in later chapters of this thesis.

In MAKS, an information flow property is defined by two elements: a set of views and a
security predicate. The set of views defines where the flow of information is restricted. This
means, a view demands that some set of confidential events (modeling the actions involving
confidential information) does not interfere with some other set of visible events (modeling
the observations by a potential attacker). The security predicate defines formally what non-
interference means in this context. This means, an information flow property is satisfied by
a given system if the security predicate holds for every view in the set.

The main novelty of our framework is its modular structure. Security predicates are as-
sembled from simpler basic security predicates (abbreviated by BSPs in the following). These
BSPs are primitive security predicates that constitute the building blocks of our assembly kit
MAKS. A key step in the development of this modular representation was the observation
that, for some information flow properties, noninterference means that an observer cannot
deduce that confidential events have occurred while, for other properties, it also means that
he cannot deduce that confidential events have not occurred. Separating these two aspects
helped us to elaborate further differences between known information flow properties. Ulti-
mately, our investigation led to the identification of “basic ingredients” of known information
flow properties, i.e. the BSPs. These BSPs can be used to assemble known properties. How-
ever, they can also be used to assemble new information flow properties.

28

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

Overall, this results in security models with the structure depicted in Figure 3.1. Note that
this structure is a specialization of the general structure of a security model (cf. Figure 1.1).

i f assembled
system information flow property from BSPs
. security predicate
benavior satisfies set of views
system mode / specification formalism

Figure 3.1: Structure of a security model based on MAKS

The representation of an information flow property in MAKS makes it very clear where
the property requires noninterference (expressed by the set of views) and what the under-
lying definition of noninterference is (expressed by the security predicate). Moreover, the
modular representation of security predicates allows one to reduce reasoning about complex
information flow properties to reasoning about the much simpler BSPs.

Overview. In Section 3.2, the concepts for representing information flow properties in
MAKS are defined, including views and security predicates. In Section 3.3, the notion of
flow policies is introduced as a means to specify sets of views in an intuitive way based on
a graphical notation. A collection of BSPs from which security predicates can be assembled
is proposed in Section 3.4. In Section 3.5, these BSPs are compared to each other, and the
main results of this chapter are summarized in Section 3.6.

Notational Conventions. FE denotes a set of events, I and O are disjoint subsets of F,
and Tr C E* is a set of traces. Let ES = (E,I,O, Tr) be the resulting event system.

3.2 Assembling Information Flow Properties

Security requirements like confidentiality or integrity can be expressed as restrictions on the
information flow within a system. As stated before, an information flow property is defined
in MAKS by two elements: a set of views and a security predicate. While the former specifies
where the flow of information is restricted, the latter defines what these restrictions mean.

3.2.1 Views
A wview specifies concrete restrictions on the permitted flow of information within a system.

Definition 3.2.1 (View). A view V = (V,N,C) in FE is a triple such that V, N, C forms a
disjoint partition of FE. O

Intuitively, a view describes the perspective of a (potentially malicious) observer of the system.
For a given view V = (V, N, C), the set V specifies the events that are visible for the observer.
For example, a user can observe the input that he provides to a system (i.e. occurrences of all
input events he can engage in) and the output that he obtains from the system (i.e. occurrences
of all output events he can engage in). Internal events might also be observable, e.g., if the
user is located within the system (as an insider) or if he has some possibility to circumvent
the system’s interface. This means, all events in which an observer can engage are visible

3.2 Assembling Information Flow Properties

29

to him. Events in V' can be directly observed when they occur. Occurrences of all other
events (i.e. events in N U C) are not directly observable. Hence, if a trace 7 € Tr occurs
then the observer only sees the projection 7|y. The set C specifies the set of events that are
confidential for the observer, i.e. the observer must not be able to deduce if events in C' have
or have not occurred (based on his observations and other knowledge he might have about
the system).! Occurrences of all other events (i.e. events in VUN) are not confidential. Since
the sets V, N, C are a disjoint partition of F, a view is completely determined by the sets V'
and C. The remaining events are collected in the set N. Intuitively, these events are neither
visible nor confidential for the observer. The sets V, N, C cover all sensible combinations of
visibility and confidentiality because, if some event were visible as well as confidential then
this would result in an immediate security breach (cf. Figure 3.2).

e invisible for observer | e visible for observer

e confidential for observer eecC —

e not confidential for observer ee N ecV

Figure 3.2: Relating events wrt. confidentiality and visibility

Example 3.2.2. Let us investigate a two-level security policy where a low-level user must
not be able to obtain high-level information. We divide the events of ES into two disjoint
sets L, H C E (L for low level, H for high level) such that L contains the events that are
visible for a given observer when they occur and H contains events that are invisible for him.
The view H, = (L, 0, H) intuitively specifies the following security requirement: no high-level
information must flow to the low-level user under the assumption that occurrences of events
in L are visible and occurrences of events in H are invisible for this user. <

The security requirements specified by a view are specific for a particular event system (more
precisely: for its set of events). A graphical notation for specifying restrictions on the infor-
mation flow in a more abstract and generic way will be introduced in Section 3.3.

3.2.2 Security Predicates

A security predicate defines what it means for the restrictions of a given view V = (V, N, C)
to be satisfied, i.e. under which conditions can we say that no information about occurrences
or nonoccurrences of events in C' can be deduced from observations of events in V. Hence, a
security predicate can be understood as a definition of what critical information flow means:
there is critical information flow for a view if the security predicate does not hold for this
view and there is no critical information flow otherwise.

In MAKS, security predicates are specified in a modular fashion by assembling them from
basic security predicates where a basic security predicate defines a closure property on sets
of traces. This modular representation of security predicates is one of the key novelties of
MAKS that distinguishes it from all other frameworks for information flow properties.

Definition 3.2.3 (Basic security predicate). A basic security predicate BSPs is a prop-
erty of sets of traces that is parametric in a view. Moreover, for every set E of events and
every view V in E, BSPy, : P(E*) — Bool must be a closure property. <

! As usual in investigations of secure information flow, we assume that the observer has complete knowledge
of the system specification. This is a worst-case assumption.

30

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

This definition of basic security predicates is somewhat abstract. A collection of concrete
basic security predicates will be introduced in Section 3.4.

Definition 3.2.4 (Security predicate). A security predicate SP is defined by a set {BSP/ |
j € J} of basic security predicates where J is a nonempty index set. A security predicate SP
holds for a view V in a set E of events and a set of traces Tr C E* (denoted by SPy(Tr)) iff
BSP{,(Tr) holds for all j € J. O

Note that the BSPs from which a security predicate is assembled are conjoined, i.e. a given
security predicate holds if all BSPs hold from which it is assembled. Therefore, we also use
the notation /\;., BSP/ instead of {BSP7| j € J} for security predicates.

Theorem 3.2.5. Let SP be a security predicate. For every view V in E, SPy, : P(E*) — Bool
is a closure property of sets of traces. <

Proof. According to Definition 3.2.3, BSPs are closure properties of sets of traces. From
Definition 2.2.7, we obtain that all BSPs hold for the set of all traces over E (i.e. E*). Since
BSPs are conjunctively connected, SPy(E*) holds. From Definitions 2.2.7, we obtain that
SPy, is a closure property (E* is a superset of any other set of traces over E). O

3.2.3 Information Flow Properties
In MAKS, an information flow property consists of a set of views and a security predicate.

Definition 3.2.6 (Information flow property). An information flow property is a pair
(VS, SP) where VS is a set of views and SP is a security predicate. <

An information flow property is satisfied by a system if for all views the security predicate is
satisfied by the set of possible traces.

Definition 3.2.7 (Satisfaction). Let (VS, SP) be an information flow property. ES sat-
isfies (VS, SP) iff SPy(Tr) holds for every view V € VS. <&

3.3 From Abstract to Concrete Security Requirements

The restrictions on the permitted flow of information specified by a set of views are rather
concrete as they are formulated in terms of the events of a specific system. In this section,
we introduce the notion of flow policies, which can be used to specify restrictions on the
permitted flow of information in a more abstract way. A graphical notation for flow policies
provides the basis for an intuitive description of such restrictions. Using flow policies, the
concrete set of views of an information flow property need not be specified explicitly but is
rather generated from the flow policy using some additional information, the so called domain
assignment.

3.3.1 Flow Policies

In a flow policy, restrictions on the permitted flow of information are expressed in terms
of security domains. Typical security domains are, e.g., groups of users, sets of processes,
collections of files, or memory sections. The benefit of expressing restrictions in terms of
security domains, rather than in terms of the events of a specific event system (like it is done
in a view), is that flow policies can be defined independently of the particular event system.

3.3 From Abstract to Concrete Security Requirements

31

After the set of security domains D has been determined, the information flow between
domains is specified by three binary relations ~»y,~»p,% over D. The noninterference rela-
tion +» specifies where information flow is forbidden. For two security domains Dy, Dy € D,
Dy +6 Do expresses that information must not flow from D; to Dy. Rather than leaving it
implicit where information flow is not forbidden, allowed information flow is specified explic-
itly by two relations ~»y,~n. The relations ~y and ~»n differ in whether the activities
of one domain are directly visible for another domain or not. The interference relation ~»y
specifies that the activities of certain security domains are directly visible for other security
domains. This means: Dy ~»y Dy expresses that occurrences of events in Dy are visible for
D,. The relation ~ y specifies between which domains (limited) indirect information flow is
permitted although direct information flow is impossible (in contrast to ~»y/). In other words,
D1 ~»n Dy expresses that occurrences of events in Dy are invisible for Dy and that we do not
care whether these occurrences can be deduced by Ds.

Since activities cannot be confidential and visible at the same time for a security domain,
there are no other sensible possibilities to relate two security domains in terms of visibility
and confidentiality. Therefore, any two domains should be related by exactly one of ~»y/,
~»n, and 7. Note the similarity to the classification of events in a view (cf. Figure 3.2).

Definition 3.3.1 (Flow policy). Let D be a set of security domains. A flow policy Pol is
a quadruple (D,~y,~sn,9) where ~y,~r N, 96 C D X D. ~»y must be a reflexive relation
and ~»y,~» N, 76 must form a disjoint partition of D x D. O

Definition 3.3.2. A flow policy Pol = (D,~v,~n,7%) is called transitive if ~>y is a tran-
sitive relation and, otherwise, intransitive.

Flow policies can be depicted as graphs where every node corresponds to a security domain.
The relations ~y, ~ y, and +» are, respectively, depicted as solid, dashed, and crossed arrows.
For the sake of readability, the reflexive sub-relation of ~»y, is usually omitted. This graphical
representation is illustrated in Figure 3.3 for the flow policies Poly, Polyrs, Polp, and Polyy
that are discussed in the following examples.

Poly Polyrs @ Polp ° Polyy
(v (&)

Figure 3.3: Example flow policies

Example 3.3.3. As depicted in Figure 3.3, the flow policy Poly consists of two security
domains L (low-level events) and H (high-level events). According to this flow policy, occur-
rences of low-level events are visible for the high-level domain (L ~»y H) and no information
about occurrences of high-level events must be deducible for the low-level domain (H - L).

32

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

The flow policy Poly is a very simple example of a multi-level security policy (often abbre-
viated by MLS-policy) that is suitable for systems operating at two levels of confidentiality.
For example, Poly could be used to specify the confidentiality requirements for a personal
computer that on the one hand is used to process private data like, e.g., information about
the financial assets of its user, and on the other hand is connected to the Internet. In this
example, the main confidentiality requirement is that the private data cannot be communi-
cated into the Internet (neither accidentally nor on purpose by some Trojan horse program).
In order to express the informal security requirement correctly, it is necessary that all events
concerned with processing of private data are associated with domain H and that all events
involving accesses to the Internet are associated with domain L. If a system fulfills Poly then
every adversary, who observes only occurrences of events in L (e.g. only Internet accesses),
cannot deduce any information about the private data of the user. O

The 2-level flow policy Poly is well known in the literature on secure information flow
(e.g. [GN88, McL94a, Z197]).2 There are two reasons for the popularity of Poly: firstly,
it is a very simple flow policy and, secondly, reasoning about arbitrary transitive flow policies
(with ~»y= () can be reduced to reasoning about Poly. Let us explain the latter using the
example of a three-level security policy.

Example 3.3.4. The flow policy Polyrs (cf. Figure 3.3) has three domains U (“unclassi-
fied”), S (“secret”), and TS (“top secret”). The restrictions are that no information must
flow from secret to unclassified (S % U) and no information must flow from top secret to
secret or unclassified (TS S, TS+ U).

The requirements described by Polyrs can, alternatively, also be expressed by multiple
instances of the flow policy Poly. For this purpose, we put ourselves successively in the
perspective of a top secret user, in the perspective of a secret user, and in the perspective of
an unclassified user who operate in the security domains TS, S, and U, respectively. For the top
secret user, no confidentiality requirements exist because this user may observe occurrences
of events in all three domains. The secret user must not be able to deduce any information
about occurrences of events in T'S. This user can only observe occurrences of events that are
in domain S or U. Consequently, the security requirements for the secret user can be expressed
by an instance of the flow policy Poly (associating H with all events that are associated with
domain TS in Polyys and associating L with all events that are associated with one of the
domains S or Uin Polyys). The unclassified user must not be able to deduce any information
about occurrences of events in S or 7'S. This user only observes occurrences of events that are
in domain U. Consequently, the requirements for the unclassified user can be expressed by
another instance of the flow policy Poly (associating H with all events that are associated with
TS or S in Polyrs and associating L with all events that are associated with U in Polyyg).

Since every user operates in one security domain, it is equivalent to enforce either Polyrg
or to enforce the two instances of Polp. &

The reduction to the two-level flow policy is only possible for flow policies that are transitive.
Let us provide a simple example of an intransitive flow policy.

Example 3.3.5. The flow policy Polp (cf. Figure 3.3) has three domains P (for “printer”),
L (for “labeler”), and F' (for “file system”). The restrictions on the information flow are

2To be precise, in the literature the 2-level flow policy is defined using only two relations ~» and -£> where
~» roughly corresponds to the union of our relations 76 and ~» . Our definition of flow policies based on three
relations ~v, ~n, and 76 is novel (cf. Remark 3.3.7).

3.3 From Abstract to Concrete Security Requirements

33

similar to the ones in Polyrs (if one identifies TS with P, S with L, and U with F'). The only
important difference between the two flow policies is that no information must flow from F
to P according to Polp while information may flow from U to TS according to Polyrs.

Polp is an intransitive flow policy because F ~»y L and L~y Pbut F -6 P. At first sight,
it might appear somewhat counterintuitive to restrict information flow from F to P but to
allow information flow from F to P via the communication channel L. However, intransitive
policies are often very useful in practice in order to express exceptions to restrictions on
the information flow. For example, for a system that consists of a file system with multiple
security levels (domain F'), a labeler (domain L), and a printing service (domain P), the flow
policy Polp imposes the restriction that the contents of files must pass the labeler before being
printed. If the labeler operates correctly, i.e. if any data that passes the labeler is augmented
by a label with security information on the respective data, then Polp enforces that all files
have been labeled before being printed. <

In this thesis, we focus on transitive flow policies. Nevertheless, intransitive flow policies can
be integrated into MAKS. We refer to [Man0la] for a description of how this can be done.

The following example illustrates the motivation of our distinction between three relations
Yy N, and ’)@

Example 3.3.6. In order to ensure confidentiality, we have the following: If a system does
not generate any secret data and also does not increase the secrecy of input that it receives
then it suffices to rule out that information about occurrences of high-level input events
can be deduced [MC92]. Under these conditions, it is not necessary to explicitly prevent
deductions about occurrences of high-level internal or output events because if any confidential
information is deduced then something about the occurrence of high-level input events is also
deduced. The underlying line of thought has been nicely explained by Guttman and Nadel
(for systems that do not make any nondeterministic choices that are secret):

“High-level output is attributable partly to high-level input, partly to low-level
input, and partly to the basic working of the system. A low-level user has access to
information of the second and third kind anyway. Thus, if the user could determine
something significant about high-level output, he would be able to atiribute it to
something about high-level input. Consequently, if we know that the user is unable
to deduce anything about high-level input, it should follow that he cannot deduce
anything [critical] about high-level output.” [GN8S, page 37]

These assumption might hold, e.g., for a crypto-component that is used to encrypt secret
data. The data is secret when it is input into the crypto-component and encrypting it does
not make it more secret. Here, we assume that the encrypted data is only send to the high-
level users as we are not concerned with issues of downgrading® and, therefore, the security
requirement can be captured by the flow policy Poly; (cf. Figure 3.3).4 Polgy consists of three
domains HI, L, and H\ I. All high-level input events (events in H N I) are associated with
domain HI (in particular, events that model receiving secret data). All high-level internal
and output events (including computations of encryptions and sending of encrypted data)
are associated with domain H\ I All low-level events (whatever activities of the system that

3We refer to [Man0la] for how to integrate downgrading into MAKS.
4This security requirement could also be expressed by Poly. However, Poly is more restrictive than necessary
and, therefore, Poly; is more appropriate under our assumptions.

34

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

are visible to potential adversaries) are associated with domain L. Consequently, according
to Polgy, occurrences of low-level events are visible for both high-level domains (L ~y HI,
L ~>y H\I). Information about occurrences of high-level input events must not be deducible
for the low-level domain (HI 7 L). Occurrences of other high-level events are invisible for the
low-level domain but information about such occurrences may be deduced (due to H\I~»y L)
if they do not reveal any information about occurrences of high-level inputs. <

Remark 3.3.7. Traditionally, two relations, ~+» and 4, have been used to specify information
flow policies. However, with only two relations it is not possible to distinguish all three
possibilities to relate security domains. Rather, one either has to focus on visibility or on
confidentiality. If one focuses on confidentiality then ~»y and ~» fall together. If one focuses
on visibility then ~»x and % fall together. Note that the latter possibility corresponds to
the traditional viewpoint, i.e. the traditional ~» corresponds to our relation ~»y and the
traditional % corresponds to the union of our relations ~»n and -4. The benefit of our
approach with three relations over the traditional approach is a more precise specification of
which events are confidential and which events are visible. <

3.3.2 Domain Assignments

Flow policies are generic in the sense that they can be applied to different event systems.
In order to relate a flow policy to a given event system, all events must be associated with
security domains in the flow policy. This is the purpose of domain assignments.

Definition 3.3.8 (Domain assignment). Let D be a set of security domains. A domain
assignment is a function dom : E — D that assigns a security domain to every event. &

For a given security domain D € D, we denote the subset of events that have this domain,
also by the name of the domain, i.e. we use D to denote {e € E | dom(e) = D}. Moreover,
we use that name in lower case, possibly with indices or primes, e.g., di, da, ..., to denote
events in that domain.

3.3.3 Deriving Sets of Views from Flow Policies

For defining what it means that the restrictions of a flow policy are satisfied, we consider
every domain separately. Like in Example 3.3.4, we put ourselves in the perspective of a user
who operates in one particular domain and distinguish events depending on visibility and
confidentiality. The result is the view of that domain.

Definition 3.3.9 (View of domain). Let Pol = (D,~vy,~n,7%) be a flow policy and
dom : E — D be a domain assignment. The view Vp = (Vp, Np,Cp) of a security domain
D € D in Pol under dom is defined by

Vb = {e€ E|dom(e) ~y D}
Np = {e€ E|dom(e) ~y D}
Cp = {e€ FE|dom(e) D} O

Example 3.3.10. The views of all security domains in the flow policies Poly, Polyr, Polyrs,
and Polp from Figure 3.3 are depicted in Figure 3.4 where the domain assignment is left
implicit. For example, for domain L in Poly; occurrences of events in L are visible. Occur-
rences of events in H \ I and HI are not observable for L. While information about events

3.4 A Collection of Basic Security Predicates

35

in H\ I may be deduced, no information about occurrences of events in HI may be deduced.

Consequently, the view of L in Polysis HZp = (L, H\ I, HI). O

Hu Hy,

Poly (E,0,0) (L,0,H)
HIur HI;, HL 1

Polyr | (E,0,0) (L,H\ LHI) |(E,(,0)
MLS 75 MLSg MLSy

Polys | (E,0,0) (SUUD,TS) | (U0, TSUS)
Pp PL Pr

Polp | (PUL,),F) | (LUF,0,P) | (F,0,LUP)

Figure 3.4: Views for all domains in flow policies from Figure 3.3

The view of a given domain expresses what the restrictions on the information flow are for
this domain. The views of all domains in a flow policy under a given domain assignment are
collected in a basic scene.

Definition 3.3.11 (Basic scene). Let Pol = (D,~vy,~n,9) be a flow policy and dom :
E — D be a domain assignment. The basic scene BS for Pol and dom is the set of the views
of all domains in D, i.e. BS = {Vp | D € D} where Vp is the view of D in Pol under dom. ¢

Example 3.3.12. All views in the basic scenes for the flow policies Poly, Polyy, Polyrs, and
Polp from Figure 3.3 are depicted in Figure 3.4. O

Rather than specifying the set of views of an information flow property directly, flow policies
and domain assignments can be used for this purpose. Given a flow policy and a domain
assignment a set of views is uniquely determined, i.e. the basic scene (cf. Definition 3.3.11).

We now turn our attention to the other ingredient of information flow properties, i.e. the
security predicate or, more specifically, the BSPs from which it can be assembled.

3.4 A Collection of Basic Security Predicates

In this section, we present a collection of concrete basic security predicates. Each of these
BSPs is a closure property of sets of traces that is parametric in a view. In other words,
the BSPs defined in this section comply with Definition 3.2.3. Given a view V = (V, N, C)
and a possible trace 7, a BSP requires that a particular perturbation of T can be corrected
to another possible trace 7/. Perturbing a possible trace 7 means to modify occurrences of
confidential events (i.e. events in C) in this trace. Examples of perturbations are the deletion
of the last confidential event in a trace or the insertion of a confidential event at a point where
no other occurrences of confidential events follow. In general, the sequence ¢ that results from
perturbing 7 needs not to be a possible trace of the given system. However, the requirement
imposed by a BSP is that ¢ can be corrected in some way to a sequence 7’ that is a possible
trace of the system. Correcting a sequence ¢t means to modify occurrences of invisible events
that are not confidential (i.e. events in N). Note that the sequences 7, ¢, and 7’ are all

36

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

indistinguishable from each other for an observer with the view V because 7|y = t|y = 7’|y
holds. If a BSP holds then the observation of the sequence 7|y does not reveal whether
7 or 7' has occurred (both traces are possible and could have generated this observation).
More generally, if a BSP holds then there are sufficiently many possible traces that could
have generated a given observation such that an adversary cannot deduce any information
of a particular kind (depending on the respective BSP). For example, if a BSP holds that
perturbs traces by deleting the last occurrence of a confidential event then the adversary
cannot tell whether a trace with an occurrence of some confidential event or a trace without
this occurrence has generated the given observation. The BSP ensures that for every possible
trace with an occurrence of the confidential event there is another possible trace without this
occurrence that yields the same observation. Hence, an adversary cannot deduce from his
observation that the confidential event must have occurred.

The various BSPs that we define differ in the particular perturbation that they require
and/or in the corrections that they permit. The structure underlying all definitions of BSPs
in this section is viewed in Figure 3.5.

required perturbation permitted corrections
TE ——————— ——— — - teEFff ———————— — —— — 7' eTr
affecting occurrences affecting occurrences
of events in C' of events in N

Figure 3.5: Pattern underlying the definition of all BSPs

For names of BSPs, we employ a uniform scheme. The name of each BSP that we define
is a word according to the following regular expression:

(SI1BSIFC)Y (RIDII|IA)

The terminal symbols R, D, I, and IA4 in the name of a BSP indicate what kind of perturbation
is required by that BSP. The (optional) terminal symbols §, BS, and FC indicate that the
permitted corrections are restricted in some way. The syntactic expansions of all terminal
symbols are listed in Figure 3.6, e.g., S stands for “Strict” and BS for “Backwards Strict”.
For example, a BSP with the name BSIA would be read as “Backwards-Strict Insertion
of Admissible events”. What it means for a BSP, e.g., to permit only “backwards-strict”
corrections or to perturb a trace by “inserting admissible events” will be explained at different
places of this section. Figure 3.7 gives an overview on where the concepts corresponding to
each of these terminal symbols will be explained. A number next to each node in the diagram
points to the respective section. The syntax diagram in the figure also specifies more precisely
which words of the previously introduced grammar will be used as names of BSPs.

S Strict R | Removal of confidential events
BS | Backwards Strict D | Deletion of confidential events
FC | Forward Correctable || I | Insertion of confidential events
IA | Insertion of Admissible confidential events

Figure 3.6: Abbreviations used in names of BSPs

Simple BSPs (R, D, I) that perturb a possible trace by removing all confidential events
or by either deleting or inserting a single occurrence of a confidential event will be introduced

3.4 A Collection of Basic Security Predicates

37

L > >

3.4.6 3.4.1

B, IR =
3.4.4 /{4.1

i - -

—=(69)— ~(D) -
3.4.5 3.4.2

>< : : :>> I -
3.4.3

1A -

Figure 3.7: Syntax diagram for names of BSPs and pointers to sections

in Sections 3.4.1 and 3.4.2. These BSPs permit arbitrary corrections of perturbed traces. All
other BSPs that we introduce (in Sections 3.4.3-3.4.6) are modifications of R, D, and I that
result from relaxing the required perturbations or by restricting the permitted corrections.
The different BSPs that we define will be compared to each other in Section 3.5.

3.4.1 Preventing Deductions about Occurrences of Events

We introduce two BSPs, R (for Removal) and D (for Deletion) that perturb a given trace,
respectively, by removing all confidential events or by deleting the last occurrence of a confi-
dential event. As we will show, these BSPs can be used to specify that an observer must not
be able to deduce information about occurrences of confidential events.

Removal of Events. Given a view V = (V,N,C), Ry(Tr) perturbs a trace 7 € Tr by
removing all occurrences of events in C' and requires that this perturbation can be corrected
by adapting occurrences of events in N to a possible trace 7/ € Tr. Other corrections are not
permitted. This means, no confidential events may occur in 7’ (7'|¢ = ()) and 7" must yield
the same observation as 7 (7'|y = 7]y’). In summary, we obtain the following definition.

Definition 3.4.1. Let V = (V, N, C) be a view in E. The BSP R (Removal) is defined by:

Ry(Tr) = VreTr.ar e Tr.(r'lc =) ATlv =T1l|v) <O

The intuitive idea underlying the definition of R is as follows: If for every possible trace 7
there is another possible trace 7/ that does not contain any confidential events and that yields
the same observation as 7 then an adversary who observes 7|y cannot tell whether 7 or 7/
has occurred. Both traces are possible and could have generated his observation.? Therefore,
if Ry(Tr) holds then every observation (in V') can be generated by a possible trace without
any confidential events. This means, for an adversary who observes occurrences of events in
V, it is impossible to deduce any information about occurrences of confidential events (in C)
from his observations. We illustrate the use of this BSP by the following two examples.

Example 3.4.2. Let us revisit the system from Example 2.2.9 that transmits high-level
inputs directly to the low level. This system is intuitively insecure. Recall that LEAK =
(Peak, Iieax, Oveak, Trieax) where Ergax = {hin, loy, | n € IN}, Ipax = {hin | n € IN}, Orpax =
{lo,, | n € IN}, and Trigax C Eppax™ is the smallest set satisfying:

5More generally, he can deduce from his observation 7|y and his knowledge of Tr that some trace from the
V-equivalence set of 7,1i.e. {7’ € Tr| 7’|v = 7|v}, has occurred but cannot narrow down the trace any further.

38

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

1. () € Troeax,
2. if n € IN then (hi,) € Trigax, and
3. if n € IN and 7 € Trigpx then (hi,.lo,).7 € Tripax.

In this example, occurrences of high-level inputs are confidential and occurrences of low-level
outputs are visible. The resulting view V= (V, N, C) is defined by V ={lo, |n € IN}, N=0,
C ={hi,|n € IN}. Note that no corrections are permitted for this view because N = () holds.
Hence, Ry(Trieax) requires that removing all occurrences of events in C' from a possible trace
results again in a possible trace. For example, the perturbation of (higs) is (). Since () € Trigax
holds, the requirements of R are satisfied for this trace. However, the perturbation of the
trace (higa.loga), i.e. (log2), is not a possible trace. Consequently, Ry (Trieax) does not hold,
i.e. the insecurity of system LEAK is correctly detected by R. <

Let us now illustrate how the insecurity of the system can be repaired by enlarging the set of
possible traces.

Example 3.4.3. Let LEAK = (Fprgax, [Leak, OLeak, Trieax) be defined like in Example 3.4.2 and
let LEAKp = (FEveak, ILeak, Oreax, Trr) be defined by Trg = Trpgax U {T‘{lon\ne]N} | 7 € Tripax}-
That is, Trg results from Trigxx by adding the projections of all traces in Trigax to low-level
outputs. The difference in the behavior of LEAK and LEAKg is that LEAKp may also output
sequences of random numbers to the low level without receiving any high-level input while
LEAK only outputs numbers that it has received before from the high level. This means, a
low-level observer of system LEAK cannot distinguish whether he has received a (confidential)
sequence from the high level or a (non-confidential) random sequence. Therefore, he cannot
deduce anything about occurrences of high-level inputs, i.e. the insecurity has been repaired.

Since the set {7[(o,/neN} | 7 € Trieax} contains all traces that result from removing all
confidential events from possible traces in Trg, Ry(Trg) also holds for the repaired system. <

Let us proceed with the introduction of the next BSP.

Stepwise Deletion of Events. Given a view V = (V, N, C), Dy(Tr) perturbs a possible
trace 7 € Tr by deleting the last occurrence of an event in C' and requires that this pertur-
bation can be corrected by adapting occurrences of events in N to a possible trace 7/ € Tr.
Hence, for a possible trace (.(c).ac (where 8 € E* is arbitrary, « € E* contains no occurrences
of events in C, and ¢ € C), another trace must be possible that can be represented by .o/
(with o/, 8" € E*) where the projection of o/ and ' to V U C must, respectively, equal the
projections of o and 8. In summary, we obtain the following definition.

Definition 3.4.4. Let V = (V,N,C) be a view in E. The BSP D (Deletion) is defined by:

Dy(Tr) =
Va,B € E*.Nc e C.
[(B-(c).a € TrAalc =)
= 30/,,8/ € k>, (ﬂ’.a' € TrA a’|V = OA|V A Oél|c = <> A ﬂI|VUC = ,B|VUC)] O

The intuitive idea underlying the definition of D is as follows: If for every possible trace
B.{c).a there is another possible trace .o/ that yields the same observation as (.{c).a then
an adversary who observes (5.(c).«)|y cannot tell whether 8.(c).« or f'.c/ has occurred. Both

3.4 A Collection of Basic Security Predicates

39

traces are possible and could have generated his observation. In particular, he cannot deduce
that the confidential event ¢ must have occurred.

Note that D perturbs a trace by deleting only a single occurrence of a confidential event
rather than removing all occurrences of confidential events. This is the difference between the
BSPs D and R. However, Definition 3.4.4 can be applied recursively: If 8;.(c).82.(c).ac € Tr
(with ¢, € C, al¢ = (), B2lc = () then Dy(Tr) implies that there are 37,05, € E*
with 81.(c').85.c/ € Tr, Bilvuc = Bilvue, Bslvue = Balvue, and o/ |yuc = alvuc. Since
B1-(c).Bh.o' € Tr (with ¢ € C, (B5.d)|c =()), Dy(Tr) implies that there are 87,35, a" € E*
with 87.65.0" € Tr, p{|lvuc = Bilvue, Bslvue = Balvuc, and &"|yue = lvue. Tf B
contains further occurrences of confidential events then D can be applied again and so on.
A consequence of this recursive applicability is that, if Dy(7Tr) holds then an adversary is
prevented not only from deducing information about the last occurrence of a confidential
event but also from deducing that any confidential events have occurred at all.

We illustrate the use of this BSP with the following examples.

Example 3.4.5. Let LEAK, Trigk, and V be defined like in Example 3.4.2. Matching the
pattern (.(c).a with the trace (his.log2) yields = (), ¢ = hig, and a = (loge). The
preconditions of Definition 3.4.4 are satisfied because 5.(c).c € Trigx and alc = () hold.
Since N = () holds, no corrections are permitted and, hence, Dy(Trigax) demands that 5.«
again is a possible trace. However, deleting hiso in (hise.loss) results in f.a = (los2), a trace
that is not contained in Trygpk. Consequently, Dy (Trigax) does not hold, i.e. the insecurity of
system LEAK is correctly detected by D. &

Let us now illustrate how the system can be modified in order to satisfy D.

Example 3.4.6. Let LEAKR, Trg, and V be defined like in Example 3.4.3. Matching the
pattern S.(c).c with the trace (hiso.loso.hii3.lo13) yields 8 = (hisa.loas), ¢ = hiiz, a = (loys).
The preconditions of Definition 3.4.4 are satisfied because .(c).a € Trg and a|c = () hold.
However, deleting ¢ from f.(c).a results in S.a = (hisa.los2.l013), a trace that is not contained
in Trg. Consequently, Dy, (Trg) does not hold (although Ry (Trg) holds for this system).

In order to satisfy D it is necessary to add further traces to Trigax. Let LEAKp =
(EvLeak, ILEak, Orrak, Trp) where Trp C Efgp« is defined to be the smallest set satisfying:

1. If 7 € Trigax then 7 € Trp and
2. if B.{c).a € Trp, c € C, and a|¢ = () then f.a € Trp.

This means, for a low-level observer it is impossible to tell whether a particular confidential
event has occurred or not. There always is a possible trace without this event that could
have generated the given observation. Therefore, he cannot deduce any information about
occurrences of confidential events, i.e. the insecurity has been repaired.

Since Trp contains all traces that result from deleting the last occurrence of a confidential
event in a possible trace in Trp, Dy(Trp) also holds for the repaired system. <

Obviously, D requires more possible traces to be added for repairing LEAK than R does
(Trepaxk € Trr C Trp holds). However, this seems not to have any important advantages
for preventing deductions about occurrences of confidential events. LEAKg and LEAKp both
are intuitively “secure” in this sense. The main advantage of D over R is that its recursive
definition makes various useful modifications possible (i.e. further BSPs to be introduced in
Sections 3.4.4 and 3.4.5) that resemble basic ingredients of known information flow properties

40

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

(to be shown in Chapter 4). Let us illustrate the BSPs R and D with a few further very
simple examples, which are illustrated also in Figure 3.8.

Example 3.4.7. Let ES; = (E1,I1,01, Tr1) be an event system where E; = {l1,h1} and
Trl = {<), <ll), <ll.h1), <llh111>} Let Vl = (W,Nl,cl) be the view with ‘/1 = {ll}, N1 = (D,
and C; = {h1}. The trace (l;.h;.l;) yields the observation (l1.l;). However, no trace is
possible that also yields this observation and in which no confidential events occur. Therefore,
neither Ry, (Tr;) nor Dy, (Tr;) hold for this system. However, for the event system ES; =
(B, 11,01, Try) with Try = Tri U{(l1.l1)}, Ry, (Tr2) and Dy, (Try) are both satisfied.

‘ ‘ Removal ‘ Deletion ‘
ES| | -— U =»—hy»—1 - ETry | =1L =»-=—hy =1 = € Tn
—1 > —l - ¢ Try | =11 =»- —l > ¢ Trq
ESy | -—l1 == h1 =1 =>- €Try | -—l =»-—hi ».— 1l > € Tro
=l > —l > € Try | o —11L = —l > € Tro
ES3] === h) == h] =] =>. C T’[‘3 v === h] == h] =] =>. T’]‘3
s— - . — - C T’I"3 s = am—hy > s— - ¢ T’]"3
ES4 i] = —) =] P —] - Tf‘4] == =Tl P — - T’]‘4
— - . =l € Try | =11 =>- . —li=>- cTry

Figure 3.8: Tllustration of Example 3.4.7

Let us illustrate the difference between R and D with another example. Define ES; =
(E1,I1,01, T’r‘g) and Tr3 = {(), (ll), <l1.h1), <l1.h1.h1), <l1.h1.h1.l1), <l1.l1)}. While RVI(T’I“g)
holds, Dy, (Trs) does not hold because (I;.h;1.hi.l1) € Try and (l1.hy.l;) ¢ Trs.

Let us now investigate R and D in the context of a view for which N # () holds. Define
ES4 = (E4, Il, 01, T’I‘4), E4 = {ll, hl,’l’Ll}, TI"4 = {<), <ll), <ll.h1), <ll.h1.n1>, <11.h1.n1.ll), <lll1>}
(i.e. after h; has occurred an event n; must occur before /; becomes enabled again) and
Vi = ({l1},{n1},{h1}). For this system, Ry, (Trs) as well as Dy, (Trs) hold. When checking
that Dy, (Tr4) holds, e.g., the trace (l1.h1.n1.l1) is matched with §.(c).a, resulting in 8 = (1),
¢ = h1, and @ = (ni1.0;). For the choices 8’ = 8 and « = (l;), the requirements f'.a’ € T,
dly = aly, d|c = (), and B'|lvuc = Blvuc of Definition 3.4.4 are, indeed, satisfied. Note
that, in this example, it is crucial to correct the perturbation because the perturbation itself
(i.e. (l1.n1.l1)) is not a possible trace of the system. O

3.4.2 Preventing Deductions about Nonoccurrences of Events

The BSPs R and D that we defined in the preceeding section prevent that information about
occurrences of confidential events can be deduced. However, they do not rule out that it can
be deduced that a particular confidential event has not occurred.

Example 3.4.8. Let LEAKp, Trp, and V be defined like in Example 3.4.6. An adversary
who observes (lo4o.l013) can deduce that a trace from the V-equivalence set of (logs.l013), i.e.

{<ZO42.1013>, <hi42.1042.1013>, <hi42.1042.h7;13.l013)} U {(hi42.l042.hi13.l013.hin>| nc IN}

3.4 A Collection of Basic Security Predicates

41

must have occurred. From this set, he can conclude, e.g., that hi; has not occurred before
the occurrence of los9 and that hise has not occurred in between the occurrence of losy and
lo13. Many further deductions about nonoccurrences of confidential events are possible. This
means, although Ry (Trp) and Dy(Trp) hold, the adversary can deduce information about
nonoccurrences of confidential events. <

If an adversary can deduce that certain confidential events have not occurred then this may
be problematic for the security of a system. In particular, it is possible to establish a covert
channel from a high-level Trojan horse to a low-level adversary by exploiting deductions about
nonoccurrences of events. Let us illustrate the problem with two examples.

Example 3.4.9. Assume that LEAKp is used by a high-level Trojan horse that is capable
of providing input to the system faster than LEAKp can send output to the low-level user
(the adversary). The Trojan horse can transmit a sequence of natural numbers as follows:
It inputs the first number n; (occurrence of event hiy,) before the system has output any
number to the low-level user, it waits until the system has output a number to the low-level
user that, according to Trp, must be n; (occurrence of event lo,,), inputs the next number
ngy (occurrence of event hiy,), etc. The low-level user observes a trace (lo,,.lo,, ...). From
this observation and the knowledge of the set Trp of possible traces for LEAKp, the adversary
can deduce that high-level events other than hi,, cannot have occurred before lo,,, that high-
level events other than hi,, cannot have occurred in between lo,, and lo,,, and so on. This
information about nonoccurrences of events together with the knowledge of the protocol used
by the Trojan horse is already enough to deduce the sequence that has been input by the
Trojan horse. It is precisely the sequence that the adversary has received. <

Example 3.4.10. Another example, where deductions about nonoccurrences of events are
problematic is a system that logs the actions of low-level users in order to discourage undesired
actions. However, logs are not created permanently but only upon request. Clearly, low-level
users should not know if their actions are logged or not and, consequently, the request to
log the actions of a particular low-level user is a confidential event. If a low-level user could
deduce from his observations that this event has not occurred then he would know when his
actions definitely are not logged (no log-request has been issued). Deductions about occur-
rences of confidential events are not so problematic in this example: If the user deduces that
the confidential event has occurred then he only learns that his actions definitely are logged.
Consequently, in this setting a malicious low-level user is more interested in deducing nonoc-
currences of confidential events than in deducing occurrences of these events. Conversely, for
the security of the system it is more important to prevent deductions about nonoccurrences
of confidential events than to prevent deductions about occurrences. <

We now introduce the BSP I (for Insertion) that perturbs a possible trace by inserting occur-
rences of confidential events. As we will show, this BSP can be used to prevent information
about nonoccurrences of confidential events from being deduced.

Insertion of Events. Given a view V = (V,N,C), L(Tr) perturbs a trace 7 € Tr by
ingserting an event in C at a position where it is not followed by other confidential events and
demands that this perturbation can be corrected by adapting occurrences of events in N to a
possible trace 7/ € Tr. Hence, for a possible trace 8.« (where 8 € E* is arbitrary and o € E*
contains no occurrences of events in C) and an event ¢ € C, another trace must be possible

42

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

that can be represented by '.(c).a’ where the projection of o’ and 8’ to V U C must equal
the projections of o and 3, respectively. In summary, we obtain the following definition.

Definition 3.4.11. Let V = (V, N,C) be a view in E. The BSP I (Insertion) is defined by:

L(Tr) =
Va,B € E*.Vc e C.

[(B.a € TrAalc =)
= 3d,p € E*. (' {c).d € TrAd|y = aly ANd|c =) ANB'|vue = Blvue)] O

The intuitive idea underlying the definition of I is the following: If for every possible trace
B.a there is another possible trace 3'.(c).c/ that yields the same observation as $.a then an
adversary who observes (5.a)|y cannot tell whether B.a or 5'.(c).a’ has occurred. Both traces
are possible and could have generated his observation. In particular, he cannot deduce that
the confidential event ¢ has not occurred.

Note that Definition 3.4.11 can be applied recursively: If f.a1.a0 € Tr (with a1|c = (),
aslc = () and ¢ € C then Iy(Tr) implies that there are 8/, o}, of, € E* with 8'.(c).o.d}, € Tr,
B'lvue = Blvue, dilvue = ailvue, and dhlyvue = aslyvue. Since f'.{c).a.of, € Tr (where
ayle = (), Iy(Tr) implies for ¢ € C that there are 8", oY, o € E* with g".(c).of.(c).d} €
Tr, 8" lvue = B'lvue, & lvue = &) |lvue, and of|vue = ab|vue- To insert further occurrences
of confidential events, I can be applied again and so on.

Remark 3.4.12. The recursive application of [is similar to the recursive application of D.
However, a difference is that, for I, the resulting trace 3'.(c).o/ always satisfies the precondition
of the definition such that the process of stepwise insertion of occurrences of confidential events
does not terminate. This is not the case for the definition of D. Consequently, sets of traces

that satisfy I are of infinite size, unless C = () holds, while sets of traces that satisfy D may
be finite even if C' # 0. <&

In Example 3.4.9, we explained how a Trojan horse could transmit information across the
system LEAKp. The BSPs R and D did not detect this possibility for information leakage.
Let us now check whether the newly introduced BSP I detects this insecurity.

Example 3.4.13. Let LEAKp, Trp, and V be defined like in Example 3.4.8. For f =
(hig2.log2.hi13) and o = (loi3), the preconditions of Definition 3.4.11 are satisfied because
B.a € Trp and a|¢ = () hold. However, inserting the confidential event ¢ = hi7 into S.« re-
sults in B.(c).a = (hisg.loaz.hi13.hiz.lo13), a trace that is not contained in Trp. Consequently,
Ly(Trp) does not hold, i.e. the insecurity of the system is detected by L O

Again, we show how the insecurity of the system can be repaired by adding possible traces.

Example 3.4.14. Let LEAK[= (ELEAKaILEAKa OLEAK; T’f‘]) where T’f‘[g ELEAK* is defined to be
the smallest set satisfying:

1. If 7 € Trp then 7 € Tr; and
2. if B.a € Trr, c€ C, and a|¢ = () then B.(c).ac € Try.

That is, for a low-level observer it is impossible to deduce that a particular confidential event
cannot have occurred. For each observation, there is a possible trace that could have generated
the observation and in which this event occurs. Therefore, the observer cannot deduce any
information about nonoccurrences of confidential events. The insecurity has been repaired.

3.4 A Collection of Basic Security Predicates

43

Since Try contains all traces that result from inserting a confidential event into a possible
trace at a point where it is not followed by other confidential events, I,,(Try) also holds for
the repaired system. O

3.4.3 Compatibility with Confidential Computations

If)(Tr) holds for a given system then occurrences of visible events do not depend on non-
occurrences of confidential events. Therefore, an adversary cannot deduce from his observa-
tions that some confidential event has not occurred. To prevent such deductions from being
possible is the whole purpose of the BSP I. Moreover, if Iy,(Tr) holds for V = (V, N, C) then
the enabledness of events in C' does not depend on the history, i.e. I requires that confidential
events can be inserted at any point of a trace (where no other occurrences of confidential events
follow). Consequently, a necessary condition for the satisfaction of I, (Tr) is that all sequences
of events in C* are possible for the system under consideration, i.e. {7|c | 7 € Tr} = C*
must hold (recall that § € Tr because Tr is closed under prefixes). While this might be no
problem with systems like LEAK; in Example 3.4.14 because all confidential events are also
input events, it poses a major problem with other systems. If {r|c | 7 € Tr} = C* holds
for a system then it behaves chaotically in its confidential events. Conversely, if meaningful
(non-chaotic) computations are modeled by sequences of events in C' then 5,(Tr) is unlikely
to hold. Let us investigate a simple example.

Example 3.4.15. Define PIPE = (Ep1pe, Iptpe, Op1pe, Tretee), Eptee = {hin, hon | n € IN},
IpIpE = {th | nc IN}, and OpIpE = {hOn | n ec IN} Let T’I"pIpE g EpIpE* be the smallest set
satisfying:

1. () € Trprpe,
2. if n € IN then (hi,) € Trprpe, and

3. if n €INand 1 € T’I‘pIpE then <h7,nh0n>7' € fpr'pIpE.

According to this specification, PIPE receives a number n as high-level input (event hi,) and
immediately outputs this number to the high level (event ho,). Hence, the difference from the
system LEAK is that PIPE outputs the number to the high level rather than to the low level.
For the view V = (V,N,C) with V =0, N = 0, C = E, intuitively the security of PIPE is
obvious. In particular, it is clear that information about nonoccurrences of confidential events
cannot be deduced because the only observation possible is () (there are no visible events).
Nevertheless, PIPE does not satisfy I (Trprpe). Moreover, repairing PIPE by adding possible
traces results in CHAOS = (FEp1pg, Ip1pe, Op1pE, TTcuaos) where Trepaos = Eppe” is the set of all
traces over Eprpg. Hence, with respect to the intended functionality of PIPE, CHAQS is not a
very useful system. Summarizing, the BSP I rejects the system PIPE although it intuitively
is secure and the only repair of this system that satisfies I is not very useful. O

The previous example has shown that the requirement I(7r) is sometimes too strong. Al-
though the deduction of information about nonoccurrences of confidential events is impossible
across a given system this system might not satisfy I,(7r). The problem is that in order
to satisfy I,(7Tr), all sequences of confidential events must be possible for the given sys-
tem. However, this implies that sequences of confidential events cannot model meaningful
computations.

44

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

A straightforward solution to this problem would be to insert the formula
Iy € E*.(7.{c) € TrAqlc = Blo) (3.1)
as an additional assumption into the definition of I, which results in:
Va,B € E*.Nce C. (3.2)
[(B.ae Traale =) A3y € B (v.4e) € TrAvle = Blo))

= 3d,6' € E*.(f'{c).d' € TrAd |y =aly Ad|c =) AB|vue = [3|VU(;)]

Adding Condition (3.1) as an assumption weakens I in the sense that fewer perturbations are
required. Confidential events only need to be insertable at a given position of a possible trace
if they are enabled at this position in some possible trace. More precisely, an event ¢ € C need
only be insertable after 8 in 5.« if (8|¢).(c) is a possible sequence of confidential events, i.e. if
there is a possible trace 7.(c) such that (y.(c))|c = (B|c¢)-(c) holds. The positive effect of this
relaxation is that occurrences of confidential events may depend on which confidential events
have occurred so far. This means that (3.2) does not rule out meaningful confidential compu-
tations and, e.g., is satisfied for the intuitively secure system PIPE. However, unfortunately
(3.2) does not ensure that deductions about nonoccurrences of confidential events are com-
pletely impossible and, hence, some insecurities might remain undetected (unless additional
BSPs are enforced). This is illustrated by the following example.

Example 3.4.16. The system LEAKONCE is a modified version of system LEAK that stops after
exactly one number has been leaked to the low level. That is, LEAKONCE = (Fyrgax, [reak, OLEak,
T”"LEAKONCE) where Frpix = {hzn, lo, | n ec]N}, Tipax = {h’ln | n ec]N}, Oreax = {lOn | n e]N},
and Trigaxonce = {()} U {(hin) | n € IN} U {(hiy.lo,) | n € IN}. For example, after observing
(lo1), an adversary can deduce that hiy cannot have occurred and after observing (lo) he can
deduce that hi; cannot have occurred. Consequently, it is possible for him to deduce some
information about nonoccurrences of confidential events with system LEAKONCE. Nevertheless,
LEAKONCE satisfies (3.2). &

The reason why deductions of information about nonoccurrences of confidential events are
possible in the previous example is that the low-level observation reveals enough information
in order to infer whether Condition (3.1) holds or not. This problem can be avoided if R
or D is enforced in addition to (32) Note that neither RV(T""LEAKONCE) nor DV(T""LEAKONCE)
hold for LEAKONCE. In general, if Ry(7Tr) or Dy(Tr) as well as (3.2) are satisfied for a view
YV =(V,N,C) in E and a set Tr C E* then the following equation holds for all 7,7" € Tr:

{t‘c ‘ te TrA t|V = T|V} = {t"c ‘ te TrA tl|V = 7"|V} . (33)

Consequently, all sequences of confidential events that are possible with some observation
(here: 7|y) are also possible with every other observation (here: 7'|y). This means, an
observer might be able to deduce that certain sequences of confidential events cannot have
occurred. However, which sequences can be excluded does not depend at all on observations
of the dynamic system behavior but only on 7T, i.e. the specification of the system. Hence,
the information that can be deduced is quite limited.

Moreover, if Ry(Tr) (or Dy(Tr)) and (3.2) hold then for every 7 € Tr and every possible
sequence t. € C* (i.e. 37" € Tr.7'|¢c = t.) we have:

Vt € E*.[(tlec =t ANtly =7lv) = ' € Tr.t'|vuc = tlvuc] - (3.4)

3.4 A Collection of Basic Security Predicates

45

Consequently, every interleaving (here: t) of a possible sequence of confidential events (here:
t.) with an observation (here: 7|y) can be corrected to a possible trace (here: ¢') by adapt-
ing occurrences of events in N. This means, an observer cannot narrow down the possible
interleaving (of occurrences of confidential events and occurrences of visible events) that has
generated his observation. That no information about the interleaving can be deduced is very
important for security, as Guttman and Nadel have shown [GN88|.

In summary, if (3.2) is required for a system then one of Ry, (1r) or Dy(Tr) should be
required in addition. If this advice is respected then an observer (of occurrences of events in
V') cannot narrow down the behavior that has occurred with the help of his observations. All
the information about nonoccurrences of confidential events that he obtains can already be
obtained statically from the system specification. More specifically, he can only deduce that
sequences of confidential events not in {7|c | 7 € Tr} cannot occur. With most systems, the
possibility of such deductions will not be problematic. However, there might also be systems
for which this is not true. Therefore, when requiring (3.2) instead of Iy(Tr) then one should
justify that these deductions are not problematic for the system under consideration.

A more serious problem is that (3.2) is still too restrictive in the sense that this condition
does not hold for some systems although they are intuitively secure. The problem is that
Condition (3.1) only permits that confidential events depend on previous occurrences of con-
fidential events in C' but not on previous occurrences of events in V. However, information
flow from V to C' is noncritical and, hence, need not be prevented. The following example
illustrates that (3.2) is too restrictive for some intuitively secure systems.

Example 3.4.17. Let UP = (EUPaIUPaOUPa Tll"up) with EUP = {lzn,hon | n €]N}, IUP = {lzn |
n € IN}, Oyp = {ho, | n € IN}, and Tryp C Eyp* be defined as the smallest set satisfying:

1. <) S T’I‘UP,
2. if n € IN and 7 € Trgp then (li,).7 € Tryp, and
3. if n € IN and 7 € Tryp then (lin.hop).7 € Tryp.

According to this specification, UP receives a number n as low-level input (event i) and
either immediately outputs this number to the high level (event ho,) and waits for the next
low-level input or waits for the next input without outputting anything. The main difference
to the system PIPE is that UP receives the input from the low level rather than from the high
level. Hence, UP creates a partial log of the low-level operations. For the view V = (V, N, C)
with V = {li, |n€IN}, N = 0, C = {ho, | n € IN}, intuitively no critical information about
nonoccurrences of confidential events can be deduced because the system simply upgrades
information that it receives from the low level. Nevertheless, UP does not satisfy (3.2).

Let us now try to repair the system by adding possible traces. Let Trp,,, C Eyp”* be the
smallest set satisfying:

L. <) € TTIMOD’
2. if n € IN and 7 € Try,,, then (lip).7 € Try,,,, and
3. ift€Oyp*and 7 € Trisep then t.7 € Triyop-

Obviously, (3.2) holds for Try,,, (and Ry(Try,,,), Dv(Tr,,,) hold also). However, the
resulting system is not very useful wrt. the intended functionality. The sequence of high-level

46

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

outputs is not a recording of low-level inputs any more (not even an incomplete one). Rather,
a possible trace in Try,,, may contain spurious high-level outputs. When investigating the
high-level output, e.g. the log, it is completely unclear whether a particular event ho, records
some low-level input that actually has occurred or not. &

The previous example has demonstrated that our first modification of the BSP I is still too
restrictive for some secure systems. The problem is that information flow from V to C is
ruled out although such information flow is not security critical. A straightforward solution
to permit noncritical information flow would be to replace Condition (3.1) in (3.2) by the
following stronger condition:%

Iy e B (y-(c) € TrAv|e = flr) (3-5)

It is easy to check that the resulting (weaker) modification of I is satisfied, e.g., for the
intuitively secure system UP from Example 3.4.17.

However, this modified version must be applied with care. Replacing Condition (3.1)
by Condition (3.5) results in a property that might be fulfilled for a given system although
information about nonoccurrences of confidential events can be deduced. For instance, for the
system UP in Example 3.4.17 it can be deduced from the observation (li;3) that the next event
cannot be hoy or hoso (rather it must be either hoi3 or some arbitrary low-level event). Hence,
our second modification of I does not prevent that information about future nonoccurrences
of confidential events can be deduced. Such deductions are possible even if R or D is enforced
in addition (e.g. UP satisfies Ry (Tryp) as well as Dy(Tryp)). Depending on the particular
application these deductions might be problematic or not. Therefore, when requiring our
second modification of I one needs to justify that the permitted deductions do no pose a
problem for security of the system under consideration.

Note that Conditions (3.1) and (3.5) differ only in the set for which the projection is
constructed (set C in (3.1) and set E in (3.5)). This set is used to construct the projection.
The following definition generalizes these two conditions by leaving the set for which the
projection is constructed parametric. More specifically, the parameter is a function that
takes a view as parameter and returns a set of events.

Definition 3.4.18 (p-admissibility). Let p be a function from views in E to subsets of E.
An event e € E is p-admissible in Tr after a possible trace 8 € Tr for a view V = (V, N, C)
in E if Adm/)(Tr,$,e) holds. Adm is defined as follows:

Adm{,’(Tr,ﬂ, e) =dy € E*. (’y.(@) € TrA 'y|p(v) = ﬂ'p(V)) <&

Hence, Adm{,(Tr, S, c) holds if there is a possible trace v.(c) € Tr that coincides with £.(c) in
all occurrences of events in p(V).
We are now ready to introduce the general version of our modification of the BSP L

Insertion of p-Admissible Events. Inserting p-admissibility as an additional assumption
in the definition of I results in IA. [A is not only parametric in the view but also in the
function p. Hence, we obtain a family TA?, TA? | IA? | ...of BSPs.

Definition 3.4.19. Let p be a function from views in F to subsets of £ and V = (V, N, C)
be a view in E. The BSP IA? (Insertion of p-Admissible events) is formally defined by:

5Note that Condition (3.5) is equivalent to 8.(c) € Tr.

3.4 A Collection of Basic Security Predicates

47

IA(Tr) =
Vo, B € E*.Ve € C.
[(B.a € Tr A ac = () A Adm{(Tr, B, c))
= 3,0 € E*. (B {c).d' € TrAd |y =aly ANd|c =) AB'|vue = Blvue)] O

The intuitive idea underlying the definition of IA? is like the one underlying the definition of
I. However, IA? requires for a given view V = (V, N, C) only that one cannot deduce from
observations in V that a p-admissible event in C has not occurred. Let us illustrate the use
of IA? with an example, which illustrates also the effects of using different parameters p.

Example 3.4.20. Let p¢ and pg be functions from views in F to subsets of E that, respec-
tively, are defined by pc(V, N,C) = C and pg(V,N,C) = VUNUC = E. For the system PIPE
from Example 3.4.15 and the view V = (V, N,C) with V =0, N = 0, C = {hiy,, ho, | n € IN},
IA{;C(TrpIpE) and IA{;E (Trprpe) both hold. However, for the system UP from Example 3.4.17
and the view V = (V, N, C) with V = {li, | n € IN}, N =0, C = {hop, | n € IN}, AP (Tryp)
holds but TA[°(Tryp) does not hold. O

This example suggests that the set returned by p should be as large as possible in order to avoid
secure systems from being ruled out (e.g. IA{°(Tryp) does not hold for UP but IAJ” (Tryp)
holds). However, there is a trade-off in the choice of this set because if it is too large then
it might remain undetected that deductions about nonoccurrences of confidential events are
possible. Apparently, it can be quite difficult to comprehend the impact of a particular choice
of p on the extent of possible deductions and the consequences for security. The following
remark summarizes our previous discussions on this aspect.

Remark 3.4.21 (Impact of p-admissibility assumption). Let p be a function from views
in E to subsets of E. If ES satisfies TAJ(Tr) for a view V = (V, N, C) then some information
about the nonoccurrence of events in C' might still be deducible.

In particular, if JA[(7r) holds then it is possible to deduce that the subsequence of
events in C for any given possible trace is in the set {r|¢c | 7 € Tr}. If p(V) C C, Ry(Tr)
(or Dy(Tr)), and IAL(Tr) hold then no other information about nonoccurrences of events
in C can be deduced (cf. the discussion after Example 3.4.16). However, unlike for ,(Tr),
{rl¢ | 7 € Tr} = C* is not implied by TA[(Tr). This means, one can deduce that certain
sequences of confidential events cannot occur.

If R and D are not required or p(V) C C does not hold then IA(Tr) does not prevent
observations of the dynamic system behavior from being exploited to deduce additional infor-
mation about nonoccurrences of confidential events (cf. the discussion after Example 3.4.17).
For example, if p(V) € C then an observer might be able to learn that some event ¢ € C
cannot occur although IAS(Tr), Ry(Tr), and Dy(Tr) hold. The reason for this is that an
observation in V' could reveal information about occurrences of events in p(V) \ C (e.g. that
an event e € p(V) \ C must have occurred), which together with the knowledge of the specifi-
cation Tr might be enough (e.g. if each trace 7 € Tr only contains occurrences of either e or
¢) to deduce that ¢ is not enabled. <&

If this is problematic or not heavily depends on the system under consideration. Therefore,
when applying TA” instead of I one should justify carefully that no critical deductions about
nonoccurrences of confidential events can be made despite TA” holding. In particular, one
should choose the parameter p with care.

48

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

3.4.4 Backwards-Strict Basic Security Predicates

While the BSPs R, D, I, and IA? differ in the perturbations that they require, they all permit
the same corrections, i.e. the corrected trace may differ from the perturbed trace arbitrarily
in occurrences of events in V. The following example demonstrates that permitting arbitrary
corrections of occurrences of events in N sometimes is too liberal.

Example 3.4.22. The system NOISYLEAK is a modified version of LEAK that is defined by
the state-event system NOISYLEAK = (Syorsvreak, Snorsvieax, Enorsvieak, Jeax, Oreak, Thorsyieak)
where SNOISYLEAK = {flag : BOOL, var :]N}, SNOISYLEAK — {flag — ﬂ; var — 0} and ENOISYLEAK =
Iigax U Oppax U {r, | n € IN}. Hence, NOISYLEAK consists of two state objects: a boolean
flag flag (initially ff, for “false”) and a variable var (initially 0). For every n € IN, there
are three events hi,, lo,, and r,. An occurrence of hi, models that number n is input to
the system from the high-level environment. An occurrence of lo, models that the number
n is output to the low-level environment. An occurrence of event r, models that a random
number n has been chosen internally. The transition relation Tygrsyreax is defined as follows
(also cf. Figure 3.9): hiy, is always enabled (no preconditions). If hi, occurs then flag remains
unaffected and var is set to n. The event 7, is only enabled if flag = ff holds. If r, occurs
then flag is set to ¢t (for “true”) and war is set to n. lo, is only enabled if flag = tt and
var = n hold. If lo, occurs then flag is reset to ff and var remains unaffected.

hin, hin

hiy By

Figure 3.9: The transition relation TygrsyLrax in Example 3.4.22

According to this specification, NOISYLEAK accepts high-level inputs at any time. If the
flag is not set (flag = ff) then the high-level input can be overwritten by some random number.
However, this happens exactly once before a low-level output because an occurrence of the
random event 7, sets the flag (flag = tt). The internal variable can only be output if the flag
is set (flag = tt) and, hence, the variable must have been overwritten by a random number at
some prior point of time (after the last output of a number). The occurrence of a low-level
output resets the flag (flag = ff) in order to enable the random event again and so on.

Let the view V = (V,N,C) be defined by V = {lo, |n € IN}, N = {r, | n € IN}, and
C = {hin| n€ IN}. Let Tryorsyreak € Fnorsvieax™ be the set of possible traces that is induced
by Tno1SYLEAK- DV(TTNOISYLEAK)a RV(T'FNOISYLEAK)a IV(TTNOISYLEAK); and IA{;’ (TTNOISYLEAK) are all
satisfied (where p is arbitrary). Nevertheless a Trojan horse that is part of the high-level
environment can transmit information to the low-level environment.

3.4 A Collection of Basic Security Predicates

49

For this purpose, the Trojan horse simply waits for the occurrence of the random event
ro before it inputs a value to the system (event hi,) and thereby rules out that the value
is overwritten before it is output to the low-level environment. By repeatedly applying this
procedure, the Trojan horse can easily transmit a sequence of natural numbers. For example,
the transmission of the sequence (42.13.7) would result in a trace of the following form: (every
occurrence of 7, is a place-holder for r,, where m € IN is arbitrary)

<’I"*.h’l;42.1042.’I"*.hilg.1013.’1"*.hi7.107) .

Note that the sequence of numbers that is observed on the low level is identical to the sequence
that the Trojan horse wanted to transmit. <

The above example demonstrates that a Trojan horse might be able to abuse a system for
leaking information although this system satisfies Dy/(Tr), Ry(Tr), hy(Tr), and TAS(Tr) (for
arbitrary p). Let us investigate more closely at the example of the BSP I why this possibility
to leak information remains undetected.

Example 3.4.23. For example, (rg.log) is a possible trace of NOISYLEAK (i.e. (rg.log) €
Trvorsyieax)- The trace (rg.hiy.log) is a perturbation of (rg.log) that results from inserting
hi1. This trace is not possible for system NOISYLEAK. However, it can be corrected to the
trace (hii.rg.log), which is a possible trace (i.e. (hii.ro.log) € Tryorsyieax). Note that the
correction involves the deletion of 7y before the occurrence of hi; (a change in the past) and
the insertion of 7 after the occurrence of hi; (a change in the future). This correction is not
causal in the sense that it affects events that occur before the perturbation (deletion of 7
before hiy). Correcting occurrences of events before a perturbation corresponds to changing
the past, which is not possible without making time warps. This is what the Trojan horse in
Example 3.4.22 exploits in order to leak information to the low-level environment. It waits
until a random event has occurred before it inputs a number and thereby makes sure that no
correction is possible (the random event has already occurred and, hence, cannot be changed
any more). O

The reason why the insecurity of system NOISYLEAK is not detected is that arbitrary correc-
tions (including noncausal ones) are permitted by the BSP. Note that the BSPs R, D, and
IA? also do not detect this insecurity because they hold for NOISYLEAK.”

In general, in order to prevent information leakage like in Example 3.4.22, it is necessary
to restrict the permitted corrections. Corrections that are not causal, i.e. that affect events
that occur before the perturbation in a trace (changes in the past), should be ruled out. This
is the purpose of the basic security predicates BSD, BSI, and BSIA? that result, respectively,
from D, I, and IA” by restricting the permitted corrections to causal ones. An additional
BS (for Backwards Strict) in the name of these BSPs indicates that noncausal corrections
(i.e. corrections that affect the past) are forbidden by these BSPs.

Definition 3.4.24. Let p be a function from views in E to subsets of E and V = (V, N, C) be
a view in E. The basic security predicates BSD (Backwards-Strict Deletion), BST (Backwards

Strict Insertion), and BSIA? (Backwards-Strict Insertion of Admissible events) are formally
defined by:

"For example, (r1.loo) is a D-perturbation that results from the possible trace (ri.hig.loo) by deleting hio.
The perturbation can be corrected to the possible trace (ro.loo).

50 CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

BSDy(Tr)

Va,B € E*.Nc € C.

[(B(c)-a € TrAalc =)

= 3Jd/ € E*. (B.d/ € TrAd|y = aly Ad|c = ()]
Va,B € E*.Nc € C.

[(B-a € Tr A afo = ()
= 3o’ € E*. (B.(c).dl € TrAd |y = aly Ad|c = ()]

Va,B € E*.Nc € C.
[(B.a€ TrAalc=()A Adm{;(Tr,ﬂ,C))
= 3o/ € E*. (B.{c).d € TrAd |y = aly Ad|c = ()] o

BSI,(Tr)

BSIAL(Tr)

The above definition disallows any adaptations in 3, and, in this respect, it differs from the
definitions of D, I, and IA? (on the right hand side of the implications: 8 rather than g’
occurs). This means, corrections can only occur after the perturbation (i.e. all corrections
are causal). All of these BSPs reject the intuitively insecure system NOISYLEAK. We leave the
detailed check to the reader.

Let us proceed with the definition of further BSPs.

3.4.5 Forward-Correctable Basic Security Predicates

We obtain FCD'', FCI', FCIAP" from BSD, BSI, BSIA® by further restricting the permitted
corrections and by relaxing the required perturbations. These BSPs are parametric in I' €
P(E)3, a triple of sets of events that we denote by V, A, and Y, respectively. Hence, we obtain
three families of BSPs: FCD', FCD"', ...; FCI, FCI"', ...; and FCIAP', FCIAPY |
These BSPs perturb possible traces only immediately before the occurrence of visible events.

Definition 3.4.25. Let p be a function from views in E to subsets of E, V = (V, N, C) be a
view in E, and I' = (V, A, T) be a triple where V, A, T are subsets of E. The basic security
predicates FOD' (Forward-Correctable Deletion), FCI' (Forward-Correctable Insertion),
and FCIA?" (Forward-Correctable Insertion of p-Admissible events) are formally defined by:

FCDy,(Tr) =

Ya, € E*.Yce CNYT.Vo e VNV.

[(B-(cv).c € TrAale = ()

= 3o’ € E*.3§' € (NNA)*.(8.8".(v).d € TrA |y = aly Ad'|c = ()]
FCI(Tr) =

Vo, € E*.Nce CNY.Yv e VNV.

[(B-(v).cc € Tr N alo =)
= 3o/ € E*. 30" € (NN A)*.(B.(c).0' (v).dl € TrAd |y = aly Ad|c = ()]

FCIALT (Tr) =
Ya, € E*.YNce CNYTNYveVNV.
[(,8.(1)).04 eTrhalc= A Admlg(Tr,ﬂ,c))
= 3o/ € E*.30' € (NN A)*. (B.(c).0' (v).dl € TrAd |y = aly Ad|c = ()] O
Let us point out the technical differences between the forward-correctable BSPs and their
backwards-strict counterparts using BSD and FCD' as an example. Unlike BSDy(Tr),

FCDY;(Tr) only requires that confidential events in C' N Y that occur immediately before
a visible event in V' NV can be deleted (assumptions c€e CNY,v € VNV, B.(cv).a € Tr).

3.5 Basic Security Predicates in Comparison

51

Like BSD, FCD' disallows corrections in 8 but permits corrections after the perturbation.
However, corrections in between 8 and v may only involve the insertion of events from NN A
(6" € (NN A, B.8.(v).o! € Tr). Summarizing, FCD" requires fewer perturbations and
permits fewer adaptations than BSD. The other pairs of corresponding BSPs, i.e. BSI and
FCI' as well as BSIA? and FCIAP' , are related to each other like BSD and FCD'. Forward-
correctable BSPs are mainly of interest for issues of compositionality. Compositionality of
information flow properties will be investigated in Chapter 6.

3.4.6 Strict Basic Security Predicates

All BSPs that we have defined so far permit perturbations to be corrected by adapting
occurrences of events in N in some way. We now introduce BSPs that do not permit any
corrections. These BSPs are very restrictive because they require that every perturbation of
a possible trace is again a possible trace (without corrections). An additional S (for Strict)
in the name of these BSPs indicates that corrections are completely forbidden.

Definition 3.4.26. Let p be a function from views in E to subsets of E and V = (V| N, C)
be a view in E. The basic security predicates SR (Strict Removal), SD (Strict Deletion), ST
(Strict Insertion), and STA? (Strict Insertion of p-Admissible events) are formally defined by:

SRy(Tr) = Vre Trr|pc€ Tr
SDy(Tr) = Va,Be E*.Nce C.[(B.(c).a€ TrAalc =) = B.a € Tr]
Sh(Tr) = VYa,Be E*.VceC.[(f.ac TrAalc =) = B.(c).a € Tr]
SIA{(Tr) = Va,B € E*.VceC.
[(B.a € TrAalc = () AN Adm{ (T, B,¢)) = B.(c).«c € Tr] O

Since strict BSPs are very restrictive (neither corrections in « nor in § are permitted), they
are mostly of theoretical interest.

3.4.7 Other Basic Security Predicates

We have proposed a collection of BSPs that constitute the basic building blocks of MAKS.
They suffice for the purposes of this thesis. In particular, they suffice for the representation
of various known information flow properties. Nevertheless, it might be that further BSPs
will be added in the future (for convenience or for theoretical reasons). MAKS is defined as
an open framework that permits such additions.

3.5 Basic Security Predicates in Comparison

In the previous section, we have introduced a collection of BSPs that can be used to assemble
security predicates. Two dimensions of BSPs can be distinguished in this collection. BSPs
in the first dimension perturb a trace by remowving or deleting occurrences of confidential
events. These BSPs can be used to specify that deductions about occurrences of confidential
events must not be possible. BSPs in the second dimension perturb a trace by inserting
occurrences of confidential events. These BSPs can be used to specify that deductions about
nonoccurrences of confidential events must not be possible.

When specifying an information flow property, one needs to decide whether it is neces-
sary to rule out that information about occurrences of confidential events can be deduced

52

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

and whether it is necessary to rule out that information about nonoccurrences of confiden-
tial events can be deduced. Depending on this decision, the security predicate needs to be
assembled only from BSPs in the first dimension, only from BSPs in the second dimension,
or from BSPs in both dimensions. In this section, we compare the various BSPs that we have
proposed to each other and derive a taxonomy of BSPs for each dimension. We start with
the comparison of BSPs in the first dimension.

3.5.1 First Dimension of Basic Security Predicates

The BSPs R, D, BSD, SR, $D, and FCD" constitute the first dimension in our collection
of BSPs. All of these BSPs perturb a given trace by removing or by deleting occurrences of
confidential events. Let us now review these BSPs in more detail.

From the perspective of security, the BSPs R and D are equally well suited to rule out that
critical information about occurrences of confidential events can be deduced. Therefore, if the
choice is between these two BSPs then one can safely select the less restrictive BSP (i.e. R).
However, R and D cannot detect certain possibilities for information leakage, as has been
demonstrated by Example 3.4.22. This problem occurs because both of these BSPs permit
arbitrary corrections of occurrences of events in N. The culprit is that noncausal corrections
are permitted, i.e. corrections that may affect occurrences of events in a given trace before
the point where the actual perturbation occurs. The BSPs BSD, SR, and SD do not permit
noncausal corrections and, hence, they do not suffer from the problem pointed out in Exam-
ple 3.4.22. The strict BSPs SR and SD do not even permit any corrections at all. However,
forbidding corrections completely is quite restrictive and causal corrections do not cause any
problems wrt. undetected possibilities of information leakage (at least no such problems are
known to date). Therefore, if the choice is between BSD, SR, and SD then one can safely
select the BSP that permits at least some corrections (i.e. BSD). Forward correctable BSPs
should only be used in combination with another BSP from the same dimension. The moti-
vation of using a forward correctable BSP in the definition of an information flow property
is to obtain a composable property. Compositionality of information flow properties will be
discussed in Chapter 6.

In summary, BSD appears to be superior to all other BSPs in the first dimension. R and
D are too liberal for certain applications. SR and SD are unnecessarily restrictive. However,
this does not mean that, when specifying an information flow property, BSD is the only
sensible choice of a BSP in the first dimension. For example, if information leakage like in
Example 3.4.22 cannot occur with the system under consideration® then R or D could be
used instead of BSD. Moreover, as we will show in Chapter 4, all of R, D, BSD, SR, SD, and
FCD' correspond to basic ingredients of previously proposed information flow properties.

In our discussion, we stated that some BSPs are more restrictive than others. Let us now
justify these statements by deriving a taxonomy of BSPs in the first dimension.

Theorem 3.5.1 (Ordering BSPs). Let V = (V,N,C) be a view in E. The following
implications are valid:

1. Dy(Tr) = Ry(Tr),
2. BSDv(Tr’) = Dv(TT‘),

8For instance, because no program in the high-level environment can observe occurrences of the random
events r,.

3.5 Basic Security Predicates in Comparison

53

3. SDy(Tr) = BSDy(Tr),
4. SRy(Tr) = Ry(Tr), and
5. SDv(TT) = SRv(T’r‘). &

Proof. The validity of implications 2, 3, and 4 follows immediately from the definitions of the
involved BSPs because all corrections that comply with the definition of a BSP on the left
hand side of these implications also comply with the definition of the respective BSP on the
right hand side. For proving 2, choose 8 = 3; for proving 3, choose o/ = «; for proving 4,
choose 7' = 7 in the definition of the respective BSP on the right hand side.

The validity of implications 1 and 5 can be shown by a simple inductive argument. As
an example, we prove Dy(Tr) = Ry(Tr) in detail. Assume that Dy(Tr) holds. Moreover,
assume C # () because, otherwise, Ry (7Tr) would hold trivially. Let 7 € Tr be arbitrary. By
induction on the length of 7| we prove that there is a trace 7/ € Tr for which 7'|¢ = () and
7'y = 7|y hold: In the base case, 7|c = () holds and the proposition follows with the choice
7' = 7. In the induction step, there are n > 0 occurrences of events in C in 7 and 7 can be
represented by S.(c).ac where ¢ € C and a|c = (), i.e. ¢ is the last occurrence of an event
in C. From Dy (Tr) we obtain that there are traces o', 8’ € E* with §'.c/ € Tr, d/|c = (),
dly = aly, and B'lyuc = Blvue- Since f'.¢/ has n — 1 occurrences of events in C, the
proposition follows from the induction assumption. The argument for the fifth implication is
along the same lines. O

Theorem 3.5.2 (Ordering BSPs). Let V; = (V4, N1, C1), Vo = (Va, No, Cs) be views in E
for which Vo C Vi, Cy C C1, N3 D Ni hold. The following implications are valid:

1. Ry,(Tr) = Ry,(Tr)
2. DV1(Tr) = DVQ(W)
3. BSDy,(Tr) = BSDy,(Tr) <

Proof. The validity of implication 1 follows immediately from the definition of R.

The validity of implications 2 and 3 can be shown by induction. As an example, we prove
BSDy,(Tr) = BSDy,(Tr) in detail. Assume that BSDy, (Tr) holds. Moreover, assume that
C2 # 0 because, otherwise, BSDy, (Tr) would hold trivially. Let 8.(c).c € Tr be arbitrary
with the restriction that ¢ € C2 and a|c, = () hold. By induction on the length of «|c,
we prove that there is a trace o/ € E* with .o/ € Tr, d/|c, = () (implies o/|c, = ()),
oy, = aly; (implies o'y, = aly,): In the base case, a|c, = () holds and we obtain from
BSDy, (Tr) that there is a trace o € E* with .o/ € Tr, d'|¢, = (), and |y, = aly;, (c € Cy
holds because Cy C C7). Thus, the proposition holds in the base case. In the step case, there
are n > 0 occurrences of events from C; in . Thus, a can be represented by «.(c').d such
that ¢’ € Cy and 6|c, = (). We obtain from BSDy, (Tr) that there is a trace &' € E* such
that 8.(c).y.8" € Tr, &'|¢, = (), and &'|y; = d|v,. Since (B.(c).7.0)|v; = (B-(c).a)|y; and since
B.{c).y.0" has n — 1 occurrences of events in C;, the proposition follows from the induction
assumption. The argument for implication 2 is along the same lines. |

Theorems 3.5.1 and 3.5.2 give rise to the following theorem, which establishes a taxonomy
of BSPs in the first dimension. Together with the corresponding theorem for the second
dimension (Theorem 3.5.12), it constitutes the main contribution of the current section.

54

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

Theorem 3.5.3 (Taxonomy first dimension). Let V; = (V1,N1,C4), Vo = (Va, N2, Co)
be views in E for which V5 C Vi, Cy C C1, Ny D Nj hold. The BSPs in the first dimension
are ordered by implication like depicted in Figure 3.10. <

Proof. The proposition follows from Theorems 3.5.1 and 3.5.2. O

SDy, (Tr)
— L

| — j BSDy, (Tr)
e L

BSDV2 (TT)

s
Y /

Ry, (1) Dy, (Tr)

V/

sz (TT)

Figure 3.10: Ordering BSPs in first dimension according to Theorem 3.5.3

The following two theorems show how FCDT can be integrated into the taxonomy.

Theorem 3.5.4 (Ordering BSPs). Let V = (V,N,C) be a view in E. Let I' = (V,A,T)
where V, A, T are subsets of F.
If SDy(Tr) then FCD;(Tr) holds. <o

Proof. The implication follows immediately from the definitions of SD and FCD'. m

Theorem 3.5.5 (Ordering BSPs). Let V; = (V1, N1, C4), Vo = (Va, No, C5) be views in E
for which VQ g V1, C2 = C1, NQ 2 N1 hold. Let Fl = (Vl,A1,T1) and FQ = (VQ,AQ,TQ)
where V1, A1, Y1, Vg, Ag, T are subsets of E for which VNV, C V1NV, CoNYTy C C1NTY,
and No N Ay D Ny N A7 hold.

If FCD,!(Tr) then FCD,,?(Tr) holds. &

Proof. Assume FCD%;;(Tr), Bcv).a € Tr,c € CaN Yo, v € Vo N Vg, and a|¢, = (). From
ConNYTy CCyNTq, weobtain ¢ € C1 NYq. From V5, NVy C V3NV, we obtain v € V3 N V4.
From Cy = (1, we obtain a|c, = (). Hence, FCD;II(TT) is applicable and an application
yields that there are o,§ € E* for which 8.8'.(v). € Tr, |y, = aly, |, = (), and
0" € (N1 NAy)*. From V, C Vi, we obtain /|y, = a|y,. From Cy = C4, we obtain o'|¢, = ().
From Ny N Ay O Ny N Aj, we obtain §' € (Ny N Ay)*. Consequently, FCD%(TT) holds. O

Let us now investigate the effects of specific views on the validity of BSPs in the first dimen-
sion. Firstly, let us assume that N =) holds. Under this assumption there is no difference
between the strict version, the backwards-strict version, and the non-strict version of a BSP.
This is generalized by the following theorem.

Theorem 3.5.6. Let V; = (V4, N1, C1) and V, = (V;, No, C2) be views in E. If Vo = V1 U Ny,
Ny =, and Cy = C; hold then the following equivalences are valid:

3.5 Basic Security Predicates in Comparison

55

1. SRy, (Tr) < Ry,(Tr)
2. SDy,(Tr) < BSDy, (Tr)
3. BSDy,(Tr) < Dy,(Tr) O

Proof. All equivalences follow immediately from the definitions of the respective BSPs. O

If there are no confidential events or no visible events in the given view then most BSPs in
the first dimension are trivially fulfilled. This is summarized by the following theorem.

Theorem 3.5.7 (Trivially-fulfilled BSPs). Let V = (V,N,C) be a view in E. The fol-

lowing statements are valid:

1. If C = 0 then Ry(Tr), Dy(Tr), BSDy(Tr), SRy(Tr), SDy(Tr), and FCD5,(Tr) hold.
2. If V = () then Ry(Tr), Dy(Tr), BSDy(Tr), and FCD;(Tr) hold.

Proof. All propositions follow immediately from the definitions of the respective BSPs. O

For certain choices of parameters, FCDT holds trivially or follows from BSD. These facts
about the forward correctable BSP will be of interest in Chapter 6.

Theorem 3.5.8 (Trivially-fulfilled BSPs). Let V = (V,N,C) be a view in F and I =
(V,A,T) where V, A, T are subsets of E. The following statements are valid:

1. fV =0or T =0 then FCD}(Tr) holds.
2. If N C A then BSDy(Tr) implies FCD+, (Tr). o

Proof. Both propositions follow immediately from the definitions of the respective BSPs. O

3.5.2 Second Dimension of Basic Security Predicates

The BSPs I, BSI, SI, FCI', IA?, BSIA? SIA*, and FCIA®" constitute the second dimension
of our collection of BSPs. All of these BSPs perturb a given trace by inserting occurrences
of confidential events. Thus, they prevent deductions about nonoccurrences of confidential
events. Let us now review these BSPs in more detail.

The BSPs I, BSI, SI, and FCI are related to each other similarly to how D, BSD, SD, and
FCDPT are related to each other (in the first dimension). Hence, I permits arbitrary corrections
and, hence, information leakage like in Example 3.4.22 cannot be detected by this BSP. BSI
and SI do not suffer from this problem because they do not permit noncausal corrections. SI
does not even permit any corrections at all. However, forbidding corrections completely is
quite restrictive and causal corrections do not cause any problems wrt. undetected possibilities
of information leakage (at least no such problems are known to date). Therefore, if the choice
is between BSTand SIthen one can safely select the BSP that permits at least some corrections
(i.e. BSI). The forward correctable BSP, i.e. FCI', should always be used in combination
with another BSP. This is like in the first dimension.

One shortcoming of I, BSI, and S1 is that these BSPs only hold for systems for which all
sequences of confidential events are possible. This is a very restrictive requirement because
it implies that systems must behave chaotically in the confidential events and, hence, the
sequences of confidential events cannot model meaningful computations. Obviously, there are

56

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

systems that do not satisfy this requirement although they are intuitively secure (e.g. system
PIPE in Example 3.4.15 or system UP in Example 3.4.17). To overcome this shortcoming
was the motivation for introducing the BSPs IA”, BSIA?, SIA?, and FCIA”", which do not
require that all sequences of confidential events must be possible but, otherwise, are identical
to I, BSI, SI, and FCI', respectively.

IAP, BSIAP, SIAP, and FCIAPT only require the insertion of confidential events at points
in a trace where their occurrence “makes sense”. What it means to “make sense” is defined
by the functional parameter p that, given a view V, returns some set of events. Examples
are the function pc that returns the set of confidential events (i.e. pc(V,N,C) = C) or the
function pg that returns the set of all events (i.e. pg(V,N,C) = VUNUC = E). For a
trace f.a € Tr (with of¢ = ()), e.g., SIAJ(Tr) only requires that an event ¢ € C can be
inserted in between 8 and « if there is a trace v.(c) € Tr such that 7|,y = S|, holds.
That +.(c) is a possible trace shows that the sequence 7|,).(c) “makes sense” and, hence,
also fB|,y-(c) “makes sense” (y|,) = B|yv) holds). If there is no such sequence, i.e. the
occurrence of ¢ does not “make sense” at this point, then SIAJ(Tr) does not require the
ingsertion of this event at this point. For example, for the parameter pc, the event ¢ need
only be insertable in between § and « if the sequence (|c.(c) makes sense, i.e. if there is
some possible trace that has the same projection to C like 8.(c). This means, although
SIA{C(Tr) holds, the enabledness of confidential events may depend on previous occurrences
of confidential events. Having dependencies between occurrences of events in C implies that
there might be information flow from C to C. Obviously, information flow within C' is not
problematic. If the parameter pg is chosen instead then the enabledness of events in C' may
also depend on previous occurrences of events in V' and N. Having information flow from V'
and N to C is also non-critical. We only want to prevent that information flows from C to
V but do not want to limit information flow in the other direction. In general, the larger the
set p(V) is, the more non-critical information flow is permitted.

Unfortunately, the side effect of permitting non-critical information flow is that also some
information leakage from C' to V becomes possible. This means, IA?, BSIA?, and SIA’
may fail to detect that it is possible to deduce information about nonoccurrences although I,
BSI, and SI would detect this possibility. This has been illustrated by the system LEAKONCE
in Example 3.4.16. Moreover, IA”, BSIA?, and SIA® may fail to detect a possibility to
leak information for one choice of the parameter p that they would detect with a different
choice of this parameter. In general, the smaller the set p(V) is, the fewer possibilities for
information leakage will remain undetected. However, even if the parameter p; (defined
by pp(V) = 0) is chosen, an observer can deduce that certain confidential events cannot
have occurred (i.e. the confidential events that are never enabled).® Usually, this possibility
to deduce information about nonoccurrences of confidential events will not be problematic.
However, this depends on the system under consideration. If the parameter po is chosen
instead of py then even more information can be deduced about nonoccurrences of confidential
events (cf. Example 3.4.16). However, if a corresponding BSP from the first dimension is
enforced in addition to IA?, BSIA?, or SIA? then the possibility to deduce information is
quite limited. In this case, an observer can only deduce that certain sequences of confidential
events cannot occur (i.e. the sequences of confidential events that are impossible, in general).
Again, this possibility to deduce information about nonoccurrences of confidential events

9Note that I, BSI, and ST do not hold for systems where some confidential events are never enabled while
IA?, BSIA®, and STA® may hold for such systems.

3.5 Basic Security Predicates in Comparison

57

usually will not be problematic. In both of these cases (i.e. parameter py or parameter p¢ in
combination with a corresponding BSP from the first dimension), an observer does not obtain
additional information when the system runs. The information that he can obtain is limited
to what can already be deduced statically from the system specification. For a different choice
of the parameter p, this is not true anymore. More specifically, if p(V) contains events in N or
V then the observer might be capable to deduce additional information from his observations
of the dynamic system behavior (cf. Remark 3.4.21). To what extent deductions are possible
and whether they are problematic or not depends on the system under consideration.

In summary, the backwards-strict BSPs BSI and BSIAP appear superior to all other
BSPs in the second dimension. The non-strict BSPs I and IA? are too liberal for certain
applications. The strict BSPs ST and SIA” are unnecessarily restrictive. However, this does
not mean that all BSPs except for BST and BSIA? are useless. As we will show in Chapter 4,
I, IA®, and SIA? also correspond to basic ingredients of previously proposed information flow
properties. When choosing between BSI and BSIA® the only choice that definitely prevents
all deductions about nonoccurrences of confidential events is BSI. In other words, preferring
BSI over BSIA? is always safe. However, for certain systems that intuitively are secure, BSI
is a too restrictive requirement. In these cases, one has to choose BSIA?. However, if BSIA’
is chosen, one has to be very careful that no possibility to deduce critical information about
nonoccurrences of confidential events remains undetected. In order to limit the deductions
that are not detected by BSIA?, it is advisable to enforce a corresponding BSP from the first
dimension in addition (i.e. BSD). Moreover, when choosing the parameter p, one has to pay
attention to the trade-off between permitting non-critical information flow from V, N, and C
to C (favoring a large set p(V)) and ruling out potentially critical information flow (favoring
a small set p(V)). In general, there is no choice of p that is best for all purposes.

Let us now derive a taxonomy of BSPs in the second dimension.

Theorem 3.5.9 (Ordering BSPs). Let V = (V, N, C) be a view in E and p be a function
from views in F to subsets of E. The following implications are valid:

. SKy(Tr) = BSK,(Tr),

BSKy/(Tr) = Ly/(Tr),

SIA{(Tr) = BSIAL(Tr),

BSIAL(Tr) = IAS(Tr),

Sh(Tr) = SIA(Tr),

BSIy(Tr) = BSIA{(Tr), and

L(Tr) = TAJ(Tr). &

NS oo e wo

Proof. The validity of implications 1-4 follows immediately from the definitions of the involved
BSPs because all corrections that comply with the definition of a BSP on the left hand side
of these implications also comply with the definition of the respective BSP on the right hand
side. For proving 1 or 3, choose o = «; for proving 2 or 4, choose ' = /8 in the definition of
the respective BSP on the right hand side.

Implications 5-7 hold because the BSPs on the right hand side of these implications
differ from the ones on the left hand side only in that they have an additional assumption,
ie. Adm{(Tr, B, ¢). O

58

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

Theorem 3.5.10 (Ordering BSPs). Let V; = (V1, N1, C1), Vo = (Va, N2, C3) be views in
FE for which V;, C Vq, Cy = C1, Ny DO Nj hold and p1, p2 be functions from views in F to
subsets of E for which p; (V1) C p2(V2) holds. The following implications are valid:

1. hy(Tr)= L,(Tr),

2. BSk, (Tr) = BSky,(Tr),

3. Shy, (Tr) = Sh,(Tr),

4. IAJH(Tr) = TAJ(Tr),

5. BSIAJ!(Tr) = BSIAJ(Tr), and

6. SIAD (Tr) = SIAL(Tr). o

Before proving Theorem 3.5.10, let us introduce a lemma that is helpful in that proof.

Lemma 3.5.11. Let V; = (V1,N1,C1), Vo = (Vo, Ny, Cs) be views in E, e € E, and 8 € Tr.
For any two functions pi, po from views in E to subsets of E with p; (V1) C p2(V2) holds
Adm{; (Tr, B,e) = Adm{) (Tr, B,). O

Proof. 1f Admlg;(Tr,ﬁ, e) and B8 € Tr then, according to Definition 3.4.18, there is a trace
v € E* for which ~y.(e) € Tr and 7|p,(1) = Blps(vs) hold. From p; (V1) C p2(V2), we obtain
Ylprv1) = Blpi(vy)- Consequently, Ade:(Tr,ﬂ, e) holds. O

Proof (of Theorem 3.5.10). Implications 1-3 hold because the only requirements concerning
the sets N and V in the definitions of the involved BSPs are f'|y = S|y and o'|y = a|y;
these formulas occur only on the right hand side of the implication in each of these definitions
(positive polarity); and, hence, changing the view by moving elements from V to N cannot
make any of I, BSI, ST false. The same argument can be applied to prove implications 4-6
where Lemma 3.5.11 is used in order to deal with p-admissibility. Note that the assumption
C1 = (4 is essential for the validity of these implications. O

Theorems 3.5.9 and 3.5.10 give rise to the following theorem. This theorem establishes a
taxonomy of BSPs in the second dimension. Together with the corresponding theorem for
the first dimension (Theorem 3.5.3), it constitutes the main contribution of the current section.

Theorem 3.5.12 (Taxonomy second dimension). Let V; = (V1,N1,C1) and let Vy =
(Va, N3, C3) be views in E for which V5, C V4, Co = C1, Ny O N; hold. Let p1, p2 be functions
from views in F to subsets of E for which p;(V1) C p2(V2) holds. The BSPs in the second
dimension are ordered by implication like depicted in Figure 3.11. &

Proof. The proposition follows from Theorems 3.5.9 and 3.5.10. |

The following two theorems integrate FCI' and FCIA”" into the taxonomy.

Theorem 3.5.13 (Ordering BSPs). Let V = (V,N,C) be a view in E, p be a function
from views in E to subsets of F, and I' = (V,A,T) where V,A, T are subsets of E. The
following implications are valid:

1. Sky(Tr) = FCIy,(Tr),
2. SIAL(Tr) = FCIALY (Tr), and

3.5 Basic Security Predicates in Comparison

59

SIy, (Tr)
SIAR: (Tr) STy, (Tr) L
, ‘//t/ /P BSIy, (Tr)
SIARR (Tr) /
BSIAR} (Tr) BSky, (1) L
— Iy, (V)
BSIASZ (Tr) /
1Ay, (1) Iy, (T7)

Figure 3.11: Ordering BSPs in second dimension according to Theorem 3.5.12
3. FOI}(Tr) = FCIAL" (1Tr). o

Proof. The implications follow immediately from the definitions of SI, SIA?, FCI', and
FCIAPL, O

Theorem 3.5.14 (Ordering BSPs). Let V; = (V1, N1, C1), Vo = (V, N, C5) be views in
E for which Vo C V1, Co = C1, N2 O N hold, p1, p2 be functions from views in F to subsets
of E for which p1(V1) C p2(V2) holds, Ty = (V1,A1,71), and T'e = (Va, Ag, T2) where
Vl, Al, 'I'l, Vz, Ag, Tg are subsets of E for which ‘/2 N VQ g Vi N Vl, CZ N ‘rg g Cl N Tl, and
Ny N Ag D N;NA; hold. The following implications are valid:

1. FCI},}(Tr) = FCI.,?(Tr) and

2. FCIA{M'(Tr) = FCIAL™ (Tr). o

Proof. The implications follow from the definitions of FCI' and FCIA”*. O

Let us now investigate the effects of specific views on the validity of BSPs in the second
dimension. Firstly, let us assume that N = () holds. Under this assumption there is no
difference between the strict version, the backwards-strict version, and the non-strict version
of a BSP. This is generalized by the following theorem.

Theorem 3.5.15. Let V; = (V1,N1,C1), Vo = (Va,N3,C5) be views in E and p1,ps be
functions from views in E to subsets of E. If Vo = V1 UNy, No =, Co = Cy, and p1(V1) =
p2(V2) hold then the following equivalences are valid:

1. Sk, (Tr) < BSk,(Tr),

2. STAL!(Tr) < BSIAL (Tr),

3. BSLK, (Tr) < L, (Tr), and

4. BSIAJN(Tr) < IAJ: (Tr). <&

60

CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

Proof. All equivalences follow immediately from the definitions of the respective BSPs. O

If there are no confidential events or no visible events then most BSPs in the second dimension
are trivially fulfilled. This is summarized in the following theorem.

Theorem 3.5.16 (Trivially-fulfilled BSPs). Let p be a function from views in E to sub-
sets of £ and V = (V, N,C) be a view in E. The following statements are valid:

1. If C =0 then Ly(Tr), IA(Tr), BSL,(Tr), BSIA{(Tr), SL,(Tr), SIAS(Tr), FCI;, (1),
and FCIAS" () hold.

2. (a) If V =0 then FCI,(Tr) and FCIA{" (Tr) hold.
(b) IfV =0 and p(V) 2 CUN then IA{(Tr) and BSIA{(Tr) hold.
(c) If V = 0 and total(ES, C) then L,(Tr) and BSL,(Tr) hold.

For certain choices of parameters, FCI' and FCIAP' hold trivially or follow from BSI. These
facts about the forward correctable BSP will be of interest in Chapter 6.

Theorem 3.5.17 (Trivially-fulfilled BSPs). Let V = (V,N,C) be a view in E, p be a
function from views in F to subsets of E, and I' = (V, A, T) where V, A, T are subsets of E.
The following statements are valid:

1. f V=0 or T =0 then FOI;(Tr) and FCIAL" (Tr) hold.
2. If NCA then BSL(Tr) implies FCI, (Tr) and BSIAL(Tr) implies FCIAﬁ’F(Tr). O

Proof. These propositions follow immediately from the definitions of the respective BSPs. O

3.6 Summary

In this chapter, we have proposed MAKS, the Modular Assembly Kit for Security Properties,
which is a framework for the uniform representation of information flow properties.

In MAKS, every information flow property is represented by two components: a set of
views and a security predicate. The purpose of the set of views is to specify the security
requirements of a given application. Each view V = (V, N,C) in this set specifies a partic-
ular restriction on the permitted flow of information from the perspective of a (potentially
malicious) observer: observing occurrences of events in V' (i.e. the visible events) may not
reveal any information about which events in C (i.e. the confidential events) have or have not
occurred. Sets of views can be specified by flow policies using an intuitive graphical notation
(cf. Section 3.3). Our notion of flow policies is based on the three relations ~»y, ~»x and 7+,
which allows one to express all sensible relationships between security domains wrt. visibility
and confidentiality. This was not possible with the traditional approach to specifying flow
policies, which was based on only two relations. The purpose of the security predicate is to
define formally what it means that there is no information flow, i.e. under which conditions
does a system satisfy the restrictions specified by a given view. A key novelty of MAKS, in
comparison to prior frameworks [McL94a, FG95, McL96, Zak96, ZL97], is that information
flow properties are specified in a modular way: every security predicate is specified by a

3.6 Summary

61

conjunction of a nonempty set of BSPs. This modular representation of security predicates
provides a basis for reducing complex reasoning about information flow properties to rea-
soning about quite simple BSPs. In the following chapters, we will extensively exploit this
possibility in order to simplify our investigation of information flow properties.

Each concrete BSP has been defined by a quite simple closure condition on sets of traces:
after perturbing a possible trace (by modifying occurrences of events in C') it must be possi-
ble to correct this perturbation (by adapting occurrences of events in N) to a possible trace.
Since occurrences of visible events (i.e. events in V') are left unchanged, a BSP ensures that
so many traces possibly could have generated a given observation that it is impossible for
an adversary to deduce confidential information from his observations. The name of a BSP
indicates the required perturbation: if all occurrences of confidential events are removed then
an R occurs in the name; if the last occurrence is deleted then a D occurs in the name;
and if an occurrence of a confidential event is inserted then an I occurs in the name. If the
insertion of confidential events is only required at positions where they are p-admissible then
the I is followed by a A” (resulting in IA?). BSPs that perturb traces by removing or delet-
ing confidential events prevent the observer from deducing information about occurrences of
confidential events, and BSPs that perturb traces by inserting confidential events prevent
him from deducing information about nonoccurrences of confidential events. Hence, in our
collection of BSPs, preventing information flow amounts to preventing deductions about oc-
currences and nonoccurrences of confidential events. This suffices to represent the well known
information flow properties from the literature, as we will demonstrate in Chapter 4.

The name of a BSP also indicates whether the permitted corrections are constrained: if
none of BS, S or FC occurs in the name then arbitrary corrections are permitted; if BS (for
backwards strict) occurs in the name then only causal corrections are permitted; and if § (for
strict) occurs in the name then no corrections are permitted at all. Forward correctable BSPs
(FC occurs in the name) perturb traces only at positions that are immediately followed by a
visible event and, moreover, they only permit causal corrections where the corrections before
the visible event are constrained even further (cf. Section 3.4.5).

In order to facilitate their intuitive understanding, we have compared the various BSPs
and have derived a taxonomy that clarifies which BSPs are more restrictive than others. We
have also discussed the advantages and disadvantages of each BSP. This has resulted in quite
concrete advice regarding which BSPs should be used under which circumstances.

All BSPs that we introduced have been carefully motivated in order to avoid any “out of
the blue” definitions of BSPs.!® However, this does not exclude the addition of further BSPs
in the future if these are found to be useful. In other words, MAKS is an open framework.

MAKS will serve as the basis for our investigations throughout this thesis.

0Note that a formal justification that our BSPs are “right” for specifying security is impossible. BSPs are
used to define what security means. Hence, they constitute the formal point of reference in our considerations.
In general, it is impossible to verify this point of reference formally and, at best, its value can be justified with
appeal to our intuitive understanding by informal explanations and examples (as we have done).

62 CHAPTER 3: MAKS: A Modular Framework for Information Flow Properties

Chapter 4

A Comparison of Information Flow
Properties

4.1 Introduction

It is both tedious and expensive to verify the security of a given system. Hence, one bet-
ter makes sure that the specification of the security requirements is adequate (before the
verification begins). This means, on the one hand, that the chosen security property, in-
deed, expresses the intuitive security requirements and, on the other hand, that the security
property is not more restrictive than necessary to express these requirements.

In this chapter, we analyze well known information flow properties from the literature in
order to gain a deeper understanding of these properties. In particular, we want to clarify for
each of these properties what restrictions are imposed on the permitted flow of information
(i.e. where noninterference is demanded by a property) and under which conditions these
restrictions are satisfied by a given system (i.e. what noninterference means for this property).
Moreover, we want to show which information flow properties are more restrictive than others
and what is gained by using a particular property instead of a less restrictive one.

More specifically, we show how generalized noninterference [McC87], forward correctabil-
ity [JT88], nondeducibility for outputs [GN88], noninference [O’HI0], generalized noninfer-
ence [McL94a|, separability [McL94a], and the perfect security property [ZL97] can be rep-
resented in MAKS. Each of these information flow properties is expressed using the uniform
representation of MAKS, i.e. by specifying a set of views and a security predicate. From this
representation, we immediately obtain where noninterference is demanded by a given property
(explicated by the set of views) and what noninterference means for this property (explicated
by the security predicate). Moreover, the modular definition of the security predicate reveals
if an information flow property prevents deductions about occurrences of confidential events
(use of a BSP in the first dimension) and if it prevents deductions about nonoccurrences of
confidential events (use of a BSP in the second dimension). Although these facts are rather
obvious, given the representation of an information flow property in MAKS, they often are
not as obvious from the original definition of this property. The modular representation of
information flow properties in MAKS also allows us to reduce the comparison of information
flow properties to the comparison of simpler BSPs. This reduction considerably simplifies
the process of comparing complex information flow properties to each other. Our comparison
culminates in a taxonomy of known information flow properties.

64

CHAPTER 4: A Comparison of Information Flow Properties

In the following, we derive some interesting insights about the various known informa-
tion flow properties. For example, we show that generalized noninference [McL94a] permits
noncausal corrections and, hence, it cannot be used to rule out possibilities of information
leakage like the one explained in Example 3.4.22. Using noninference [O’H90], which is a more
restrictive property than generalized noninference, has the advantage that this possibility of
information leakage will be detected. The reason for this is that noninference does not permit
noncausal corrections. Hence, from the view point of security, noninference is preferable to
generalized noninference. These are the kind of insights that we aim for with our analysis of
known information flow properties in this chapter.

We also propose some novel information flow properties that overcome deficiencies of previ-
ously proposed ones. For example, we derive GNI* from generalized noninterference [McC87]
(abbreviated by GNI) by replacing BSI with BSIAPC. The advantage of GNI* is that it can
also be used for systems that are not input total while GNI cannot be used for such systems.

By representing the well known information flow properties in MAKS, we demonstrate
that our framework is quite expressive. Nevertheless, it is possible to exploit the uniform
representation of information flow properties in MAKS to simplify reasoning about these
properties. That is, the concepts of our framework provide enough structure for this purpose.
More specifically, reasoning about complex information flow properties can be reduced to
reasoning about simpler BSPs. In this chapter, we exploit this possibility to simplify the
comparison of information flow properties. Further exploitations of this possibility will follow
in subsequent chapters.! In summary, MAKS combines expressiveness with uniformity. As we
will show, this is a major improvement over prior frameworks because these either emphasized
expressiveness (at the cost of uniformity) or uniformity (at the cost of expressiveness).

Overview. In Section 4.2, it is shown how various information flow properties from the
literature can be represented in MAKS. Based on this representation, the properties are
compared to each other in Section 4.3. In Section 4.4, the main results of this chapter are
summarized and are put into perspective with results obtained with other frameworks.

Notational Conventions. ES= (E,I,0, Tr) denotes an event system and V = (V, N, C)
denotes a view in E. L and H denote subsets of E that are referred to as “low-level events”
and “high-level events”, respectively. Moreover, let HZ;, = (L, H\I, HNI) and H;, = (L,0, H)
denote the views of domain L in Poly; and Poly, respectively (cf. Examples 3.3.3 and 3.3.6).
For brevity, we also write HZ and H instead of HZ and 1, respectively.

4.2 Assembling Known Information Flow Properties

In this section, we demonstrate how various information flow properties from the literature
can be represented in MAKS. The known information flow properties that we investigate
include generalized noninterference [McC87, McL94a, ZL97], forward correctability [JT88],
nondeducibility for outputs [GN88], noninference [O’'H90)], generalized noninference [McL94al,
separability[McL94a], and the perfect security property [ZL97]. Although all of these proper-
ties have been originally defined for a two-level security policy that distinguishes a high level

In Chapter 5, we will use this approach to simplify the derivation of verification techniques for information
flow properties. In Chapter 6, we will use it to derive compositionality results.

4.2 Assembling Known Information Flow Properties

65

and a low level, they differ in where they require absence of information flow. For exam-
ple, separability requires that there is absolutely no information flow from the high level to
the low level while generalized noninterference requires only that no information flows from
high-level input to the low level. From the representation of these properties in MAKS that
we will present in this section, these facts are very obvious: separability enforces the view H
while generalized noninterference enforces the view HZ. More generally, each of the known
information flow properties enforces one of these two views (as we will show). The definitions
of noninterference that underly the various information flow properties are even more diverse.

4.2.1 Generalized Noninterference

We start our investigation with McCullough’s generalized noninterference [McC87]. The mo-
tivation for defining this property was to overcome deficiencies of an earlier information flow
property, namely nondeducibility [Sut86]. Historically, nondeducibility was the first general-
ization of Goguen and Meseguer’s noninterference [GM82] suitable for deterministic as well
as nondeterministic systems. However, it was found that nondeducibility is too weak as a
security property because it cannot detect various forms of information leakage. After the
proposal of generalized noninterference it had become obsolete. Generalized noninterference
has received much attention by different researchers and, to date, is one of the most investi-
gated information flow properties. In particular, there are several compositionality results for
this property, positive as well as negative ones (e.g. [McC87, McL94a, ZL95, Z1L96, Z1.98]).
Moreover, there are different variants of generalized noninterference, most notably, the orig-
inal definition [McC87] and an interleaving-based version [McL94a, ZL97]. As we will show,
these two variants are not equivalent to each other, neither in the mathematical sense nor
in their value as security properties. Let us now show how the two variants of generalized
noninterference can be represented in MAKS and what we gain from this representation.

The Original Definition of Generalized Noninterference. An event system ES satis-
fies generalized noninterference, denoted by GNI(ES), iff for every possible trace 7 € Tr and
every perturbation t € E* formed from 7 by adding and deleting high-level inputs there is a
possible trace 7' € Tr such that 7' is the same as ¢ in the constant portion and differs from ¢
in the changed portion only in high-level non-inputs. GNI can be formally defined as follows.

Definition 4.2.1 (Generalized noninterference [McC87]).

GNI(ES) = Viy,t9,t3 € E*.
((t1-t2 € Tr A t3|p\(n1) = t2lp\(anD)
= 4 € E*. (t1.t4 € Tr A ta|umnn = t3louann)) %

In this definition, £;.t3 is the perturbation of the possible trace t1.ts that is constructed by
modifying occurrences of high-level inputs in ¢, (i.e. ¢; is the constant portion of 7 = #1.t3).
The trace t;.t4 is a correction of this perturbation (i.e. 7/ = t;.t4 does not differ from 7 in
the constant portion). We refrain from trying a more intuitive explanation of generalized
noninterference at this point. In our opinion, generalized noninterference can be much easier
understood from its representation in MAKS than from its original definition. This is also
true for most other information flow properties investigated in this section.

In the following lemma, we show which BSPs are implied by GNI and, conversely, which
combination of BSPs implies GNI.

66

CHAPTER 4: A Comparison of Information Flow Properties

Lemma 4.2.2. The following implications are valid:

GNI(ES) = BSD%I(TT') (4.1)
&

Proof. For proving BSDyz(Tr) in (4.1), let a, 8 € E* and hi € HN I be arbitrary. Moreover,
assume that S.(hi).c € Tr and a|gnr = () hold. Applying Definition 4.2.1 for ¢, = p,
to = (hi).a, and t3 = « yields that there is a trace t4 € E* with ¢1.t4 € Tr and t4|LU(HﬂI) =
t3lucrnr)- Hence, for o = t4, we have .o/ € Tr, o/|L = t3]p = t2|r = |1, and '|gnr =
ts|mnr = a|lpnr = (), i.e. BSDyz(Tr) holds.

The proof of (4.2) is similar to the one of (4.1) where t; = 3, to2 = «, and t3 = (hi).«
should be chosen when applying Definition 4.2.1.

For proving (4.3), two inductive arguments are used. Let ¢1,t9,t3 € E* be arbitrary such
that £1.to € Tr and tg\E\(HnI) = t2|E\(Hm) hold. By induction on the number of occurrences
of high-level input events in ¢35, we obtain from BSDyx7(Tr) that there is a trace t' € E* with
t1.t' € Tr, t'|, = to|r, and t'|gnr = (), i-e. t1.t’ results from ¢;.to by deleting all occurrences of
high-level inputs in ¢3 in a stepwise manner (from right to left). From t3|z\(znr) = t2|p\(znn)
and t'|, = t2|1, we obtain that ¢’|;, = 3|7, holds. By applying BShyz(Tr), the occurrences of
high-level inputs in ¢3 can now be inserted into 1.t in a stepwise manner (from left to right).
By induction over the number of occurrences of high-level input events in ¢3, we obtain that
there is a trace t4 € E* with ¢1.t4 € Tr and t4|ryann) = t3louann- O

The representation of GNI in MAKS is an immediate consequence of Lemma, 4.2.2.
Theorem 4.2.3 (Assembling GNI). The following equivalence is valid:

GNI(ES) < (BSDyz(Tr) A BSIyz(Tr)) <
Proof. The equivalence follows from Lemma 4.2.2. O

Note that GNI constructs perturbations of possible traces by modifying occurrences of high-
level inputs at arbitrary positions in a trace while BSD and BSI perturb a trace only by
deleting or inserting occurrences of high-level inputs at positions where they are not followed
by other high-level inputs. Nevertheless, BSD and BSI suffice for the representation of GNI.

Interleaving-Based Generalized Noninterference. McLean proposed a variant of gen-
eralized noninterference that requires that every interleaving of a sequence of high-level inputs
with every possible observation can be corrected to a possible trace by adapting occurrences
of high-level internal events and high-level output events [McL94a]. Since this variant of
generalized noninterference is based on the construction of interleavings, we refer to it as
interleaving-based generalized noninterference (abbreviated by IBGNI). The following defi-
nition reflects the event-based formalization of IBGNI proposed in [ZL97].

Definition 4.2.4 (Interleaving-based generalized noninterference [ZL97]).

IBGNI(ES) = Vr € Tr.Viy € (HNI)*.Vi € E*.
[t € interleaving(tpi, mi|r) = 37" € Tr.7'|umnr = 1] O

4.2 Assembling Known Information Flow Properties

67

For deriving a representation of IBGNI, we proceed like for GNI: we prove a lemma that shows
which BSPs are implied by IBG NI and, conversely, which combination of BSPs implies IBGNI.
The representation theorem for IBGNI is then a simple consequence of this lemma. The same
approach will be used to derive representations of all other information flow properties in
MAKS. However, for clarity of the presentation, we only present the representation theorems
from now on. The corresponding lemmas can be found in Appendix A.

The following theorem shows how to represent IBGNI in MAKS.

Theorem 4.2.5 (Assembling IBGNI). The following equivalence is valid:

Proof. The equivalence follows from Lemma A.1.1 and Theorem 3.5.3.2 O

Insights from Representation in MAKS. Both variants of generalized noninterference,
i.e. GNI and IBGNI, require that there is no information flow from high-level inputs to the
low-level. This is an immediate consequence of the use of the view HZ in the representation
of these properties (cf. Theorems 4.2.3 and 4.2.5). Recall that HZ = (L, H \ I, H N I) holds,
which means that the high-level inputs are the confidential events (C = H NI holds) and the
low-level events are the visible events (V' = L holds). Another consequence of using HZ is
that information flow from other high-level events (internal events and output events) to the
low level is not explicitly forbidden by these properties. Therefore, neither GNI nor IBGNI
should be used as security properties for systems that generate new secrets internally.

Another immediate consequence of the representation theorems is that both properties
prevent deductions about occurrences as well as about nonoccurrences of high-level inputs.
This is because BSPs from both dimensions are used in the representation of these properties.

The representation theorems also clarify what the differences are between GNI and IBGNI.
While GNIis assembled from backwards-strict BSPs (i.e. BSD and BSI), IBGNI is assembled
from the corresponding non-strict BSPs (i.e. D and I). This implies that GNI and IBGNI are
not equivalent to each other in the mathematical sense. Moreover, they also differ in the degree
of security that they ensure. In Example 3.4.22, we have shown that non-strict BSPs fail to
detect certain possibilities for information leakage because they permit noncausal corrections.
Consequently, IBGNI also fails to detect such insecurities because it is assembled from non-
strict BSPs. However, backwards-strict BSPs can be used for detecting such insecurities and
so can GNI. Hence, from the view point of security, the original definition of generalized
noninterference is preferable to the later proposed interleaving-based variant.

Since BSI is used in the representation of GNI, a necessary condition for the satisfaction
of GNI is that all high-level inputs are always enabled. In other words, GNI(ES) implies
total(ES, H N I). IBGNI is more liberal in this respect because it does not require totality in
the set of high-level inputs, however, it is not much more liberal. Both of these information
flow properties require that all sequences of confidential events are possible. That is, if
GNI(ES) or IBGNI(ES) holds then {7|gnr | 7 € Tr} = (H N I)* must also hold. This
is because BSI and I are used, respectively, in the representations of GNI and IBGNI. If
these conditions are too restrictive for a given system then one might want to use slightly

2 Alternatively, IBGNI can also be represented by Ruz(Tr) A Iyz(Tr). The equivalence IBGNI(ES) &
Ryz(Tr) A Iyz(Tr) also follows from Lemma A.1.1 and Theorem 3.5.3.

68

CHAPTER 4: A Comparison of Information Flow Properties

more liberal variants of generalized noninterference instead. We will propose such variants in
Remark 4.2.6.

The representation of GNI and IBGNI in MAKS makes the similarities and differences
of these properties very clear. All facts that we have pointed out above could be easily
read off this representation. In our opinion, these facts are not as obvious from the original
definitions of these properties (cf. Definitions 4.2.1 and 4.2.4), and this is why we claim that
the representation in MAKS helps to understand information flow properties better.

Remark 4.2.6. In our above discussion, we pointed out that GNI and IBGNI both presume
all sequences of high-level inputs to be possible. If this assumption is not satisfied by a given
system then GNI and IBGNI reject this system as “insecure”. However, in Section 3.4.3, we
have shown that there are systems that are intuitively secure although they do not satisfy
this assumption. This was the motivation for introducing the basic security predicates IA”,
BSIA®, and SIAP?, which do not make this problematic assumption. They only require the
insertion of confidential events at points of a trace where they are p-admissible.

By replacing BSI with BSIA P in the representation of GNI and by replacing I with IAf¢
in the representation of IBGNI, we obtain the two information flow properties GNI* and
IBGNI* that do no require that all sequences of confidential events are possible. This means,
these novel information flow properties do not rule out that sequences of confidential events
model meaningful computations.? Since p(V) = C holds for every view V = (V, N, C) and also
a corresponding BSP from the first dimension is enforced in addition to the respective BSP
from the second dimension (i.e. BSD in addition to BSIAPC and D in addition to IA??), a
low-level observer cannot exploit his observations of the running system to deduce information
beyond what he knows already from the system specification (for a more detailed discussion
of these issues cf. Remark 3.4.21 and Section 3.5.2). Hence, despite GNI* and IBGNI* being
more liberal wrt. meaningful confidential computations than GNI and IBGNI, respectively,
they do not differ much wrt. the degree of security that they ensure. O

Let us summarize the definitions of our novel information flow properties GNI* and IBGNI*.

Definition 4.2.7 (GNI*). GNI*(ES) = BSDyz(Tr) A BSIALS(Tr) o
Definition 4.2.8 (IBGNT*). IBGNI*(ES) = Dyuz(Tr) A TALS(Tr) o

The most important facts about the information flow properties GNI, IBGNI, GNI*, and
IBGNI* that can be obtained from their representation in MAKS are viewed in Table 4.1.
How to read this table is explained in Remark 4.2.9. The same kind of table will also be
used for summarizing facts about all other information flow properties in this section. This
uniformity will simplify comparisons between different properties.

Remark 4.2.9 (Reading the summaries of facts). The first three columns in Table 4.1
indicate where noninterference is demanded by a given property. Depending on the set C
in the view that is used in the representation of a property, an information flow property
prevents information flow from high-level inputs to the low level (if H NI C C holds), from
high-level internals to the low level (if H \ (I UO) C C holds), or from high-level outputs
to the low level (if H N O C C holds). The fourth column indicates whether an information

3McLean’s interleaving-based variant of generalized noninterference [McL94a] neither requires systems to
be input total nor all sequences of high-level input events to be possible. In this respect, his property is more
closely resembled by our property IBGNI* than by the property IBGNI as introduced in [ZL97].

4.2 Assembling Known Information Flow Properties

69

BSPs from which dimensions strict

set C in the view and p-admissibility BSPs

1

o[qissod aq 09 podu

poluosid St mo[09
[Ul sjuoAd Jo seouonbos [[e jou

pojuoAaid St MOl 0)
sindno Y31 WoIj MOJ UOI}eULIOJUL

sindur yS1y wolj MO} UOIIeUWIOJUl
pojuvadad) Ul SIUSAD

pojuaAdId ST MO[O} STeU
JO S9OUDIINOJ0 INOQe SUOIJONPOP

-10jul Y31y WOIj MOY UOI}eULIOJUL
fipagapdwod pajuaaaud) ul

S7UDAD JO "000UOU JNOYR SUOI}INPIP
puodop Aewr) ul sULAD JO

JU99Ta 2W0S 03 pajuanaLd) ul
SSOUPOQRUD YOIYM UO SIUIAD JO 108

SJUDAD JO DI0UOU JNOYE SUOIJONPIP
POPIOAR ST SUOIDIAIIOD [RSNBIUOU
JO 9SNLIA(oTeed] UOIYRULIOJUL

abpajmouy 21p3s 03 paguuy) U
SJUDAQ JO IO0UOU NOge SuodnNpap

poaainboaz jou syndur Y3y ur £317e109

GNT || VIiv]v]v 0 | v
IBGNI || VIvI|v]v|v H\I
aNr* | v I v|v| v |Enr| v
IBGNI* | v JIvi|v| v]oHE

Table 4.1: Facts about GNI, IBGNI, GNI*, and IBGNI* in summary

flow property prevents deductions about occurrences of confidential events or, in other words,
whether a BSP from the first dimension is used in the representation of the property. The
next three columns indicate whether deductions about nonoccurrences of confidential events
are prevented and to what extent. Deductions about nonoccurrences of confidential events are
prevented completely (fifth column) if one of I, BSI, or SI occurs in the representation of an
information flow property. If IA?, BSIA®, or SIA? is used in the representation instead then
such deductions are only prevented to some extent (7th column). Depending on the choice
of the parameter p, the possible deductions are limited to information that the observer can
already deduce from the system specification without observing the dynamic behavior of the
system (i.e. his static knowledge). To prevent information beyond this static knowledge from
being deduced is desirable (sizth column). Whether this is the case or not can be easily read off
the representation of a property in MAKS (Does p(V, N,C) C C hold and is a corresponding
BSP from the first dimension enforced in addition?). Note that the entries in the fifth columns
for GNI and IBGNI differ from the ones for GNI* and IBGNI*. What is gained by giving
up that deductions about nonoccurrences of confidential events are prevented completely is
reflected in columns 8-10. Column 8 indicates whether a given property is also applicable
for systems that are not input total (true for IBGNI, GNI*, IBGNI* but not for GNI).
Column 9 indicates whether sequences of confidential events may correspond to meaningful
computations (not demanding chaotic behavior in C). Note that for the information flow
properties in Table 4.1, the entries in this column are inverse to the ones in the fifth column.
Column 10 explicates more precisely on which events the enabledness of events in C' may

70

CHAPTER 4: A Comparison of Information Flow Properties

depend. For example, GNI requires totality in H N I and, hence, the enabledness of events
in C' may not depend on any other events (entry ()). In contrast to this, GNI* permits
that the enabledness of confidential events may depend on previous occurrences of high-level
inputs (entry H NI) because BSIAPC is used in its representation and p(HZ) = H NI holds.
Information flow properties that are assembled from non-strict BSPs permit that occurrences
of events in C' also depend on previous occurrences of events in N. This is why the sets
for IBGNI and IBGNI* in the 10th column contain high-level internal events and high-level
output events (entries H \ I and H). In general, the larger the set on which the enabledness of
events in C' may depend, the more noncritical dependencies are permitted. However, if non-
strict BSPs are used then certain possibilities for information leakage may remain undetected
(as pointed out in Example 3.4.22). Whether an information flow property prevents such
insecurities is indicated by column 11. For example, GNI prevents such information leakage
because it is assembled from backwards strict BSPs while IBGNI does not because it is
assembled from non-strict BSPs.

In general, check marks in the table indicate a desirable fact about a property. <

4.2.2 Forward Correctability

The next information flow property that we investigate is Johnson and Thayer’s forward cor-
rectability [JT88]. The motivation for defining this property was to overcome a deficiency of
an earlier information flow property, namely restrictiveness [McC87]. Historically, restrictive-
ness was the first information flow property that is preserved under composition in general
(generalized noninterference is not compositional in general). However, restrictiveness im-
poses very strong requirements on a system. That these requirements can be liberalized while
retaining compositionality as well as the desired restrictions on the information flow, was
the key observation that led to the definition of forward correctability. After the proposal
of forward correctability, restrictiveness had become obsolete. Besides forward correctabil-
ity, Johnson and Thayer proposed a family of information flow properties, namely 2-forward
correctability, 3-forward correctability, All of these properties are also improvements
over restrictiveness but none of them has advantages over forward correctability (also named
1-forward correctability). If a security property is needed that prevents information leakage
from high-level input to the low level and that is also composable then forward correctability
still appears to be the best choice available to date.*

Definition 4.2.10 (Forward correctability [JT88]).5
FC(ES) = Vti,to € E*.Yhie HNI.Vlie LN1.
((t1-[(l)]-t2 € Tr Atolanr = ()
= Jtg € E*. (t1.(hi).[(li)].ts € Tr A ts|p = to|L Ats|unr = ()))
A((t1-(hi).[(li)]-t2 € Tr A to|anr = ()
= Ttz € E*. (t1.[(l)].t3 € Tr Ats|r = ta|r Ats|anr = () %

Forward correctability perturbs a possible trace t1.(li).t2 by inserting an occurrence of an
arbitrary high-level input event hi before the occurrence of the low-level input event li, which

“In Chapter 6, we will propose weakened forward correctability, a novel information flow property that
constitutes an improvement over forward correctability.

5In the definition of forward correctability, [(l3)] is a place holder that can be replaced by the empty trace
() or by (l5). Implicitly, Johnson and Thayer assume that this replacement is done consistently for every trace
when the definition is applied.

4.2 Assembling Known Information Flow Properties

71

results in the trace t1.(hi).(li).to. The requirement is that this trace can be corrected by
adapting occurrences of high-level internal events and high-level output events in ¢5 to a
possible trace t1.(hi).(li).t3 that yields the same observation. Note that forward correctability
does not permit arbitrary causal corrections of this trace but rather only permits corrections
after the occurrence of li. However, this restriction on the correction only applies if the high-
level input event is inserted at a position that is immediately followed by an occurrence of a
low-level input event. Hence, if a possible trace has the form ¢;.to where to does not start with
an occurrence of a low-level input event then arbitrary causal corrections of the perturbation
t1.(hi).ty are permitted. The second implication in Definition 4.2.10 requires that possible
traces can also be perturbed by deleting an occurrence of a high-level input event where the
constraints on the correction are like for the insertion of high-level inputs events. We refrain
from trying an intuitive explanation of forward correctability at this point because it is much
easier to understand this property given its representation in MAKS.
Let us now show how forward correctability can be represented in MAKS.

Theorem 4.2.11 (Assembling FC). For I'pro=(I,0,I), we have the following equivalence:

FC(ES) < BSDyz(Tr) A BShyz(Tr) A FCDE°(Tr) A FCL 50 (Tr) o
Proof. The equivalence follows immediately from Lemma A.2.1. m

Insights from Representation in MAKS. A comparison of the representation of for-
ward correctability (Theorem 4.2.11) with the representation of generalized noninterference
(Theorem 4.2.3) reveals that these two information flow properties are very similar to each
other. Both of them enforce the view HZ and are assembled from BSD and BSI. More gen-
erally, all facts about GNI that we have pointed out in Section 4.2.1 are also true for forward
correctability. The only difference between these two properties is that FCDT#¢ and FCITFc
are used in the representation of forward correctability but not in the representation of gener-
alized noninterference. This means that FCD'#¢ and FCIT#¢ correspond to basic ingredients
of forward correctability that generalized noninterference does not have. This difference is
responsible for the fact that forward correctability is preserved under composition in general,
while generalized noninterference is not. This is a first example for the value of forward cor-
rectable BSPs. Further will follow in Chapter 6 where we investigate the compositionality of
information flow properties in detail.

Remark 4.2.12. Like GNI, FC also requires totality in the set of high-level input events,
i.e. FC(ES) implies total(ES,H N I). By replacing BSI and FCI'F¢ with BSIA”¢ and
FCIAPcTFe in the representation of forward correctability, we arrive at a novel informa-
tion flow property (namely FC*) that does not make this totality assumption. &

Definition 4.2.13 (FC*). Let I'pc = (1,0,1).
FC*(ES) = BSDyz(Tr) A BSIALS(Tr) A FCD1EC(Tr) A FCIARS T o(Tr) o

The most important facts about the information flow properties FC and FC* that can be
obtained from their representation in MAKS are viewed in Table 4.2 (cf. Remark 4.2.9 for
how to read this kind of table).

4.2.3 Nondeducibility for Outputs

Generalized noninterference and forward correctability are not adequate security properties for
systems that generate secrets internally because they only prevent the inference of information

72

CHAPTER 4: A Comparison of Information Flow Properties

BSPs from which dimensions strict

set U in the view and p-admissibility BSPs

a1qissod oq 0} paau

poluaAaId ST MOl 09
[Ul sjuead Jo seouonbes [re jou

pojuoAaid ST mo[0)
sindno Y31 WOIj MOJ UOT)RULIOJUL

syndur Y31y wWoIj MO} UOI)RULIOJUL
pojuasdld ST mo] 0} s[eu

pojuasald) Ul sjuoAd

JO SPOULIINOD0 JNOQe SUOIJONPIP

-I9oyul YSI1Y WOI} MO[j UOI}eULIOJUl
fpagapdwod pajuaaaad) ul

SJUOAD JO "020UOU INOJE SUOIIINPIP
puodop Aewl /) Ul SIUSAD JO

JUIITI 2WOS 07 PaUInALd) Ul
SSOUPI[QRUD UDIYM UO SIUAD JO 08

abipagmouy 0uyvys 03 paguuy)) Ul
SJUDAD JO *D00UOU JNOJE SUOIINPIP
SIUDAD JO *220UOU JNOJE SUOIINPIP
poaainboaz jou syndur Y3y ur £317e109
POPIOAR SI SUOI}IIIOD [BSIBIUOU
JO 9snedaq 93exes] UoI)euLIoful

FC

<X
<
<
<
<
=

FC*

<
<
<

v v | HNI

<

Table 4.2: Facts about FC and FC* in summary

about occurrences and nonoccurrences of high-level inputs. This limitation motivated the
definition of nondeducibility for outputs by Guttman and Nadel [GN88]. In comparison to
generalized noninterference or forward correctability, nondeducibility for outputs is a more
appropriate security property for systems that generate secrets because this information flow
property prevents deductions of information about occurrences and nonoccurrences of all
high-level events, including high-level input, internal, and output events.

Nondeducibility for outputs permits noncritical information flow from the low level to the
high level to some extent. More specifically, the high-level behavior may depend on input that
is provided by low-level users (but not on any other low-level behavior). The possible user
inputs are modeled by a set UI C I of input events. Moreover, nondeducibility for outputs is
a composable information flow property.®

An event system ES satisfies nondeducibility for outputs, denoted by NDO(ES), iff every
trace t € E* is a possible trace of ES under the assumption that ¢ equals some possible trace
in its occurrences of low-level events (i.e. 37, € Tr. 7|z, = t|r,) and ¢ equals some possible trace
in its occurrences of events in HU (LN UI) (i.e. ITpui € Tr Thiil muznvn = tlauznon)- In
other words, ¢ only needs to be a possible trace if the sequence of low-level events and the
sequence of HU (LN UI)-events both make sense.

Definition 4.2.14 (Nondeducibility for outputs [GN88]). Let ES be input total. For a

set UI C I of user inputs, nondeducibility for outputs is defined as follows:

NDO(ES) = V7, Thw € TVt € E*.
(¢t = nle Atlgunvn = Thwil HuEnvn) =t € Tr] o

5To be precise, compositionality of nondeducibility for outputs is only ensured if events in UI are not used
for communicating between system components. This means, the set of user inputs of one component must
be disjoint from the sets of events of all other components.

4.2 Assembling Known Information Flow Properties

73

Nondeducibility for outputs has been introduced under the assumption of input totality,
i.e. that total(ES,I) holds. The following example illustrates that NDO is not satisfactory
from the viewpoint of security if the assumption of input totality were dropped.

Example 4.2.15. Let ESypo = (Enpo, Inpo,Onpo, Trnpo) be an event system such that
ENDO = {hl, h}, INDO = {hl, l’t}, ONDO == (D, T"'NDO = {(th’L), <h’t), <>}, and UINDO = {h}
Note that ESypo is not input total. However, for this example, let us presume that the
definition of NDO would nevertheless be applicable. Under this assumption, NDO(ESnpo)
holds (t|gu(znun = Thiuil Hu(znur) implies ¢ = Ty,; because L = LN Ulypo). Nevertheless,
one can deduce from the observation (li) that (hi.li) has occurred, i.e. there is information
leakage from the high level to the low level although NDO holds. This shows that simply
dropping the assumption of input totality in the definition of NDO is not a good idea because
one arrives at a security property that is too weak to detect some insecurities. &

Let us now show how nondeducibility for outputs can be represented in MAKS.

Theorem 4.2.16 (Assembling NDO). For a set UI C I of user inputs and the function
pur defined by py(V, N,C) = C U (V N UI) the following equivalence is valid if total(ES, I)
holds:

NDO(ES) < BSDy(Tr) A BSTAZV(Tr) o

Proof. The equivalence follows from Lemma A.3.1 and Theorems 3.5.3 and 3.5.12.7 O

Insights from Representation in MAKS. That nondeducibility for outputs prevents
deductions about occurrences as well as nonoccurrences of confidential events can be easily
read off its representation in MAKS (BSPs from both dimensions are used). Moreover, the
use of the view # (rather than of the view HZ) in this representation clarifies that NDO
indeed prevents deductions about occurrences and nonoccurrences of all high-level events
rather than only of high-level inputs (recall that C = H holds for the view). In this
respect, NDO differs from all information flow properties that we have considered so far in
this chapter. Hence, NDO is a more appropriate security property for systems that generate
secrets internally than any of GNI, IBGNI, GNI*, IBGNI*, FC, and FC*.

BSIAPUT is used in the representation of NDO and py(V,N,C) C C does not hold in
general. From this, we learn that NDO does not rule out possibilities for deductions about
nonoccurrences of confidential events completely. More specifically, despite NDO(ES) holding
an observer might be able to deduce from his observations of the running system up to some
point of time that some confidential event cannot occur in the future (because it will not be
enabled). The reasons for these kind of deductions have been discussed in detail already in
Chapter 3 (cf. Remark 3.4.21 and Section 3.5.2). Whether the possibility of such deductions
poses a problem for the security of a given system depends on the particular system and
cannot be answered in general. This means, when applying NDO one should justify carefully
that NDO is indeed an appropriate security property for the system under consideration, in
particular that the permitted deductions about the impossibility of high-level events to occur
in the future do not constitute a security breach.

"There are various alternative representations of NDO in MAKS. This is mostly due to the fact that the view
H does not permit any corrections and, hence, the non-strict, backwards-strict, and strict version of a BSP are
equivalent to each other (cf. Theorems 3.5.6 and 3.5.15). More specifically, for BSP’ € {R, SR, D, BSD, SD} and
BSP" € {IA*vI, BSTA*vi, STAPUI}, the equivalence NDO(ES) < BSP% (Tr) A BSP%(Tr) holds. All instances
of this equivalence follow from Lemma A.3.1 and Theorems 3.5.3 and 3.5.12.

74

CHAPTER 4: A Comparison of Information Flow Properties

. . BSPs from which dimensions strict
set C in the view ey ane
and p-admissibility BSPs
SE|REE|SE| S| Es|Eg|lE2S]5 23 SRS 2 g
| &2 L= 3 A, a. a. a. & e =2 =3 s B
gel|leg |8 |leg| Q| Qe | Q||| a 2 o 2 g
=g s & a Q a Q = Y 3 & Y
€5 g B B eallRRa | s || Sg|gE 5 o C?B
g S |28 TS ||af||SE|SE|SE 2|38 o B =9
S| 2P| 8F Sy & |2 5| 2 B = g B
< ||l <8BS o|lsr|Soc||lr]| S a Qo = =
gEeo|=m o gg 89| ¢ | s¢| ¢ = 2B S 58
= 2 == =+ < 2 o & w & o~ £ - '-“8 =] OST
o .| 2 ol 25 S T | T | S =R B o = an
eFlear|~c| 2 SE|§B |22 2|5 < B SR
2 g El&8|2e |32 |S2| & = &3 5 o
B | g8 & Q T5 | =0 | 32 o @ = o &
= | & =N a TS| & a = 2) & S
=. =5 ® = =0 |32 | a @ = 3 = &
e =. = = By 8 =3 Bg, &=
[=n o) @ o g o & O - E,, Q‘D" < @
= o} =) S @ @ = Q. @
= = o o o) S o Rel ¢
= — I & o
g = g & 3193|738 | & 5 =3 e
sl g £ =12 28 & =
w0 7 w0 91 w0 w0 [9)) ol Q 7))
NDO Vv Vv Vv Vv v v | HU(LNUI)
oot vl v V|V J| v U@ | v

Table 4.3: Facts about NDO and NDO™ in summary

Remark 4.2.17 (NDO*). Dropping the assumption of input totality in the definition of
NDO results in an unsatisfactory security property because insecurities like, e.g., the one in
Example 4.2.15 remain undetected. However, the representation of NDO in MAKS (cf. The-
orem 4.2.16) would detect the insecurity in Example 4.2.15. BSDy(Trypo) does not hold for
the example system. This means, the representation of NDO in MAKS is equivalent to the
original definition for systems that are input total and, for systems that are not input total,
it even is preferable to the original definition. By dropping the input totality assumption we
obtain a novel information flow property NDO*. O

Definition 4.2.18 (NDO*). NDO*(ES) = BSDy(Tr) A BSIAZV(Tr) o

The most important facts about NDO and NDO* that follow from their representation in
MAKS are summarized in Table 4.3 (cf. Remark 4.2.9 for how to read this kind of table).

4.2.4 Noninference

The information flow property that, to date, is known under the name noninference has
evolved from three different information flow properties, namely Jacob’s ignorance of progress
[Jac89], O’Halloran’s noninference [O’H90], and O’Halloran’s weak ignorance of progress
[O’H90]. All three properties prevent that some user can leak information through his “win-
dow” of the system (i.e. the part of the interface that he can access) to the “window” of
another user. However, none of them provides any protection against the collaboration of
users. That is, collaborating users might be able to leak confidential information across a
given system although this system satisfies ignorance of progress, noninference, and weak
ignorance of progress. The differences between the three properties are not very substantial
and, hence, have disappeared over time. Moreover, in order to rule out information leakage by

4.2 Assembling Known Information Flow Properties

75

collaborating users, the window-based approach to formulating restrictions on the permitted
flow of information has been replaced by multi-level security policies. This has resulted in
the property that, to date, is known under the name noninference [McL94a, ZL97].

An event system ES satisfies noninference, denoted by NF(ES), iff every trace 7/ € E* that
results by removing all occurrences of high-level events from a possible trace 7 (i.e. 7/ = 7|L)
is also a possible trace. NF can be formally defined as follows.

Definition 4.2.19 (Noninference [ZL97]).
NF(ES) = VreTr.ripeTr O

Interestingly, it has been found that two other information flow properties that were developed
independently from noninference are equivalent. Focardi and Gorrieri showed that Wittbold
and Johnson’s nondeducibility on strategies [WJ90] is equivalent to noninference in a trace-
based setting [FG95].8 Schneider showed that may-noninterference, another information flow
property, is also equivalent to noninference [Sch01].

Theorem 4.2.20 (Assembling NF). The following equivalence is valid:
NF(ES) < Ry(Tr) o

Proof. The equivalence follows from Lemma A.4.1 and Theorem 3.5.3.° O

Insights from Representation in MAKS. The most prominent difference of nonin-
ference to all other information flow properties that we have investigated so far is that its
representation involves only a single BSP. Hence, noninference is a very primitive information
flow property that prevents deductions about occurrences of confidential events but not about
nonoccurrences of confidential events (R is a BSP from the first dimension). In [McL94a], it
has been already noted that noninference does not prevent low-level observations from being
influenced by the insertion of high-level inputs. Our statement is a generalization of this ob-
servation: noninference does not prevent low-level observations from being influenced by the
insertion of arbitrary high-level events. The representation of noninference in MAKS provides
a suitable basis for deriving a modification of noninference that prevents such dependencies in
a goal-directed way. Namely, by adding some BSP from the second dimension (e.g. BSIA?C),
noninference can be strengthened such that the insertion of high-level events cannot influence
low-level observations in any essential way.

Further facts about noninference that can be easily obtained from its representation in
MAKS are viewed in Table 4.4 (cf. Remark 4.2.9 for how to read this kind of table).

4.2.5 Generalized Noninference

McLean derived generalized noninference from noninference by relaxing the restrictions on the
permitted flow of information [McL94a]. The motivation for defining generalized noninference
was the observation that noninference does not permit the enabledness of high-level outputs to

8Focardi and Gorrieri preferred the names nondeducibility on compositions (NDC) and strong nondeter-
ministic noninterference (SNNI) instead of, respectively, nondeducibility on strategies and noninference. Nev-
ertheless, there are no essential differences between these properties.

9Since the view # does not permit any corrections the non-strict and strict version of a BSP are equivalent
to each other (cf. Theorem 3.5.6). Therefore, NF can also be represented by SRy (TT).

76

CHAPTER 4: A Comparison of Information Flow Properties

depend closely on occurrences of low-level events. For example, a system where the occurrence
of some low-level input enforces that this event is recorded by some high-level output before
the next low-level input can occur would be rejected by noninference as “insecure”, even if
the system only constructs a high-level log of the low-level input that always is up-to-date
and, hence, intuitively is secure [Man0Oc]. Generalized noninference is much more liberal
wrt. dependencies between high-level outputs and low-level events and, in particular, would
not reject the example system.

Rather than preventing information flow from all high-level events to the low level, gen-
eralized noninference only prevents information flow from high-level inputs to the low level.

Definition 4.2.21 (Generalized noninference [ZL97]).
GNF(ES) = Vre Tr.ar € Tr.[v'|unr =) A 7| = 7|1] &

Generalized noninference perturbs a possible trace 7 by removing all occurrences of high-
level input events (resulting in the trace 7|p\(znr)) and requires that this perturbation can
be corrected to a possible trace 7/ by adapting occurrences of high-level internal events and
occurrences of high-level output events.

Representing GNF' in MAKS is straightforward.

Theorem 4.2.22 (Assembling GNF'). The following equivalence is valid:
GNF(ES) = RHI(TI”) <o

Proof. The equivalence follows from Lemma A.5.1. O

Insights from Representation in MAKS. The representation of generalized noninfer-
ence in MAKS reflects the similarity to noninference. The only difference to the representation
of noninference (cf. Theorem 4.2.20) is that the view HZ is used (instead of H). This also
confirms that generalized noninference is a very weak security property. It does not prevent
deductions about nonoccurrences of high-level events and it does not prevent any information
flow from high-level internal or output events to the low level.

Further facts about GNF that can be read of its representation in MAKS are summarized
in Table 4.4 (cf. Remark 4.2.9 for how to read this kind of table).

4.2.6 Separability

Separability is another information flow property that was proposed by McLean [McL94a).
The motivation for defining this property was to combine the advantages of noninference and
generalized noninference (i.e. having a simple definition) with the advantages of restrictiveness
and forward correctability (i.e. being composable and being more restrictive than generalized
noninference and noninference).

Separability is a very restrictive information flow property because it rules out information
flow between the high level and the low level in both directions. This means, if separability
holds for a given system then there is neither information flow from the high level to the low
level nor information flow from the low level to the high level. Logically, this is equivalent
to a physical separation of the high level part of the system from the low level part. In

4.2 Assembling Known Information Flow Properties

77

BSPs from which dimensions strict

set U in the view and p-admissibility BSPs

o[qissod aq 07 podu

pojuoAaid ST MO[0)
) Ul sjuoAd Jo soduenbes [[e jou

pojuoAaid s1 MO[0)
sindjno Y31y WOIj MO UOT)RULIOJUL

sindur Y31y woIj MOY UOI)RULIOJUL
pojuosdld st mo[0} S[eu

-103ul Y31y WO} MO[UOIIeULIOJUl
pojuvadId) UuI sjuoAd

JO S9OUDIINOJ0 JNOJe SUOIJINPOP
fipagapdwod pajuaaaud) ul

STUDAD JO "000UOU JNOYR SUOT)INPIP
puodop Aew ;) Ul SIUSAD JO

QU99Ta 2W0S 03 pajuanaLd) ul
SSOUPI[QRUD UDIYM UO SIUAD JO 08

SJUDAD JO DI0UOU JNOYE SUOIJONPIP
POPIOAR SI SUOIJODIIOD [BSNBIUOU
JO 9SNB9(q OFe{BO[UOIYRULIOJUT

abpapmouy 013vys 03 paguuy) Ul
SJULA9 JO "200UO0U JNOge suoljdINpap

<_ | peambou jou syndur Y3y ut £17e309

NF

<
S
C
5
<

<X
<
<
<

GNF v

<

v | HUL

Table 4.4: Facts about NF and GNF in summary

other words, separability can be used to logically simulate physical air-gaps between system
components, the same idea as in Rushby’s separation kernel [Rus81a].'°

An event system ES satisfies separability, denoted by SEP(ES), iff every interleaving of a
possible sequence of high-level events with a possible low-level observation is a possible trace.
Definition 4.2.23 (Separability [ZL97]).

SEP(ES) =V, 1, € Tr. interleaving(y |, mi|z) C{r € Tr| 7|lr = 7|r} S

Let us now show how separability can be represented in MAKS.

Theorem 4.2.24 (Assembling SEP). For the function p¢ that is defined by pc(V, N,C) =
C the following equivalence is valid:

SEP(ES) < BSDy(Tr) A BSIAY(Tr) &
Proof. The equivalence follows from Lemma A.6.1 and Theorems 3.5.3 and 3.5.12.! O

OTntuitively, the underlying idea was to build secure systems from physically separated components that
each satisfy a component-specific security policy. In such a system, the communication channels between
components would be easily identifiable because they correspond to physical connections, i.e. wires. Having
only a limited number of communication channels could then be exploited in order to simplify the proof that the
overall system satisfies its security policy under the assumption that each component satisfies its local security
policy. However, rather than implementing the chosen distributed architecture physically (in hardware) this
architecture would be simulated by the separation kernel (in software). Following this approach, the role of
information flow properties would be to specify when a particular physical distribution is simulated correctly,
thereby providing a basis for a formal verification of the simulation. More recently, these ideas have been
related to the problem of simulating the partitioning of different system modules in embedded fault-tolerant
systems in the context of Integrated Modular Avionics (IMA) [Rus99].

" There are various alternative representations of SEP in MAKS. This is mostly due to the fact that the view
H does not permit any corrections and, hence, the non-strict, backwards-strict, and strict version of a BSP are
equivalent to each other (cf. Theorems 3.5.6 and 3.5.15). More specifically, for BSP’ € {R, SR, D, BSD, SD} and
BSP" € {IA?c, BSIA*C¢, SIAC}, the equivalence SEP(ES) < BSP% (Tr) A BSP%(Tr) holds. All instances
of this equivalence follow from Lemma A.6.1 and Theorems 3.5.3 and 3.5.12.

78

CHAPTER 4: A Comparison of Information Flow Properties

Insights from Representation in MAKS. Most notably, the representation of sepa-
rability in MAKS reveals that this property has close similarities with nondeducibility for
outputs. More specifically, both properties establish the view H and they are assembled from
BSD and an instance of BSIA. The only difference between these properties is how BSIA
is instantiated (parameter py; in NDO and pe in SEP). The benefit of using po instead of
pur is that deductions about nonoccurrences are limited to what an observer could already
deduce from the system specification without observing the running system (his static knowl-
edge). This means, a system that satisfies separability is more “secure” than a system that
satisfies nondeducibility for outputs but does not satisfy separability. The price paid for being
more conservative in this respect is that noncritical information flow from the low level to the
high level is also ruled out (recall that NDO permitted at least some information flow from
low-level user inputs to the high level). Depending on what is more important for a given
application, being restrictive wrt. deductions about nonoccurrences of confidential events or
being liberal wrt. noncritical information flow, separability is preferable over nondeducibility
for outputs or vice versa.

Also note that separability is assembled from the same BSPs like GNI* (cf. Defini-
tion 4.2.7). This means, these two properties are based on the same definition of noninter-
ference. The only difference between these properties is where information flow is restricted
(views H and HZ, respectively).

Further facts about SEP that follow from its representation in MAKS are summarized in
Table 4.5 (cf. Remark 4.2.9 for how to read this kind of table).

4.2.7 Perfect Security Property

Zakinthinos and Lee derived the perfect security property [Z197] by weakening separability.
The motivation for the definition of the perfect security property was the observation that
separability prevents not only critical information flow from the high-level to the low-level
but also noncritical information flow from the low-level to the high-level. The perfect security
property was defined with the objective to have a security property that rules out critical
information flow like separability but that does not restrict noncritical information flow.

An event system ES satisfies the perfect security property, denoted by PSP(ES), iff for
every possible trace 7 € Tr the projection of 7 to low-level events is a possible trace and if a
trace t € E* is formed from a possible trace by adding a single high-level event h at a position
where h is enabled and is not followed by other high-level events then ¢ is a possible trace.
This is summarized in the following definition.

Definition 4.2.25 (Perfect security property [ZL97]).

PSP(ES) = (Vre Tr.7|p € Tr)
NV, € E*. [(B.a € Tr A alg = ()
= Vh € H.(B.(h) € Tr= [.(h).a € Tr)] O

In order to better understand this property, let us now represent it in MAKS.

Theorem 4.2.26 (Assembling PSP). For the function pg that is defined by pg(V, N, C) =
V UN U C = E the following equivalence is valid:

PSP(ES) & BSDy(Tr) A BSIALE (Tr) o

4.3 Information Flow Properties in Comparison

79

Proof. The equivalence follows from Lemma A.7.1 and Theorems 3.5.3 and 3.5.12.12 O

Insights from Representation in MAKS. Interestingly, the close similarity between
the perfect security property and separability is even more obvious from the representation
of these properties in MAKS (BSDy/(Tr) A BSIAYF (Tr) and BSDy(Tr) A BSIAL (Tr)) than
from their definitions (cf. Definitions 4.2.23 and 4.2.25). Moreover, from the representation of
the perfect security property in MAKS, it is obvious that this property is also quite similar to
nondeducibility for outputs (represented by BSDy(Tr) A BSIALY'(Tr)). All three properties
(PSP, SEP, and NDO) enforce the view H, and they are assembled from BSD and an instance
of BSIA. The parameter pg used in the representation of PSP indicates that PSP is the
most liberal of these properties wrt. noncritical information flow from the low level to the
high level'® (a desirable property). However, PSP is also more liberal than SEP or NDO
wrt. the possibility of deductions of information about future nonoccurrences of high-level
events (an undesirable property). Which of the three properties is best depends on the
particular system under consideration and cannot be answered in general (because of the
trade-off between permitting noncritical information flow and ruling out that deductions
about future nonoccurrences are possible). This means, the name perfect security property
is slightly misleading because PSP is not in general “the perfect” security property.

Further facts about PSP that follow from its representation in MAKS are summarized in
Table 4.5 (cf. Remark 4.2.9 for how to read this kind of table).

4.3 Information Flow Properties in Comparison

In the previous section, we have demonstrated how generalized noninterference, forward cor-
rectability, nondeducibility for outputs, noninference, generalized noninference, separability,
and the perfect security property can be represented in MAKS. The representation in MAKS
clarified several facts about these well known information flow properties, many of them being
not as obvious from the original definitions of these properties (cf. the summary of Tables 4.1
4.5 in Table 4.6). Moreover, for some of these properties, we have proposed modifications
that overcome limitations of the original properties. This has led to the novel information
flow properties GNI*, IBGNI*, FC*, and NDO*.

In this section, we investigate the relations between these information flow properties
more closely. In order to structure the comparison, we start with properties that enforce the
view H, then turn our attention to properties that enforce the view HZ, and, finally, relate
properties that enforce different views.

4.3.1 Information Flow Properties with the View H

The view H is used in the representation of nondeducibility for outputs (cf. Theorem 4.2.16),
of noninference (cf. Theorem 4.2.20), of separability (cf. Theorem 4.2.24), and of the perfect
security property (cf. Theorem 4.2.26). This means that each of these properties prevents

12There are various alternative representations of PSP in MAKS. This is mostly due to the fact that the view
H does not permit any corrections and, hence, the non-strict, backwards-strict, and strict version of a BSP are
equivalent to each other (cf. Theorems 3.5.6 and 3.5.15). More specifically, for BSP’ € {R, SR, D, BSD, SD} and
BSP" € {IAPE BSIA®E SIAPE}, the equivalence PSP(ES) < BSP% (Tr) A BSP%(Tr) holds. All instances
of this equivalence follow from Lemma A.7.1 and Theorems 3.5.3 and 3.5.12.

Boe(V) D pur(V) D pc(V) holds.

80

CHAPTER 4: A Comparison of Information Flow Properties

BSPs from which dimensions strict

set O in the view and p-admissibility BSPs

a[qissod aq 0} pasu

pojuoadxd st mo[0}
[Ul sjuoAd Jo seouonbes [[e jou

pojuoAaid ST mo[09
sindjno Y31y wWoIj MOF UOI}RULIOJUL

syndur Y31y WOI} MO[j UOI}eULIOJUL
pojuoaaid ST mO[0} STeu

-10jul Y31 WOIj MOJ UOI}RULIOJUL
pojudadad) Ul SIUOAD

JO S$OOUDIINIOO INOQe SUOIIONPIP
fipagopdwod pajuanaud 1) ul

SJUOAD JO "0J0UOU JNOYR SUOIJINPIP
puodop Lewr /) UI SIUSAD JO

JU99TI 2WOS 03 pajuanaLd) ul
SSOUPO[QRUD UDIYM UO SIUIAD JO J08

SJUDAD JO "DI0UOU JNOYR SUOIPINPIP
POPIOAR SI SUOI}DOIIO) [BSNBIUOU
JO 98NEBIV(Y OFe{LI] UOIYEULIOJUI

abpapmouy 21v3s 03 papw)) Ul
SIUDAD JO *O20UOU INOQge SuoLdNpPIp

SEP

<
SN

<_ | <_ | pexmbai jou syndur y3iy ur £317e309

NI
<
AU IR
<
<
<

PSP

<
<
<
<

HUL Vv

Table 4.5: Facts about SEP and PSP in summary

deductions about occurrences or nonoccurrences of all high-level events with the same rigor,
no matter whether they are input events, internal events, or output events. The difference
between the four properties lies in the BSPs from which they are assembled or, in other words,
what deductions they rule out. Noninference is assembled from a single BSP only, namely R.
Since R is a BSP from the first dimension, noninference only prevents deductions about occur-
rences of high-level events. The representations of nondeducibility for outputs, of separability,
and of the perfect security property comply with the pattern BSDy (Tr)ABSIAL (Tr). Hence,
these properties prevent deductions about occurrences of high-level events (due to BSD) and,
unlike noninference, also about nonoccurrences of high-level events (due to BSIAP). The
parameter used for instantiating BSIA differs: pyr is used for nondeducibility for outputs, pc
for separability, and pg for the perfect security property. This means, these information flow
properties differ only in the extent to which deductions about nonoccurrences of confidential
events are prevented (separability is the most rigorous among them in this respect) and in
the extent to which noncritical information flow is permitted (the perfect security property is
the most liberal among them in this respect). In Table 4.6, this is reflected by the different
entries for these properties in columns 6 and 10.

Interestingly, for nondeducibility for outputs, the representation in MAKS even is prefer-
able to the original definition because it also makes sense for systems that are not input
total while the original definition can only be applied to systems that are input total. This
observation was the motivation for using the representation of nondeducibility for outputs
as the definition of a novel information flow property, namely NDO* (also cf. column 8 of
Table 4.6). Since NDO* is preferable to NDO, we will only consider NDO* from now on and,
in particular, will use the term “nondeducibility for outputs” to refer to NDO*.

Given the representation in MAKS it becomes a straightforward task to order these in-
formation flow properties. On the left hand side of Figure 4.1 it is shown how separability,

4.3 Information Flow Properties in Comparison

81

nondeducibility for outputs, the perfect security property, and noninference can be ordered by
implication. This ordering can be easily justified given the representation of these properties
in MAKS (cf. the right hand side of Figure 4.1) and the ordering of BSPs in each dimen-
sion (cf. Theorems 3.5.3 and 3.5.12). The ordering reflects that separability requires more
perturbations than nondeducibility for outputs (because it requires the insertion of high-level
events at positions where they are pc-admissible rather than only at positions where they
are py-admissible). Moreover, the ordering reflects that nondeducibility for outputs requires
more perturbations than the perfect security property and that the perfect security property
requires more perturbations than noninference. Recall that none of these four properties
permits any corrections.

SEP(ES) BSD3(Tr) A BSIALE ()
NDO*(ES) BSD3 (Tr) A BSIASY'(Tr)
PSPl(ES) BSD3(Tr) A BSIASE (Tr)
NF(ES) Ra} Tr)

Figure 4.1: Ordering information flow properties (cf. Theorem 4.3.1)

For future reference, the ordering of these information flow properties is summarized in
the following theorem.

Theorem 4.3.1. Let UI C I be a set of user inputs. The following implications are valid:
1. SEP(ES) = NDO*(ES),
2. NDO*(ES) = PSP(ES), and
3. PSP(ES) = NF(ES). <

Proof. These implications follow from the representations of SEP, NDO*, PSP, and NF in
MAKS and the taxonomies of BSPs (cf. Theorems 3.5.3 and 3.5.12). a

Given the ordering, a natural question is why one should enforce a more restrictive infor-
mation flow property rather than a less restrictive one. What is gained by enforcing SEP
instead of NDO*; what is gained by enforcing NDO* instead of PSP; and what is gained
by enforcing PSP instead of NF'? Table 4.6 provides a good basis for answering these kind
of questions about information flow properties without having to look at the formal details
of their respective representation in MAKS (or their original definitions). While the entries
in many columns are identical for NF, PSP, NDO*, and SEP, the differences between these
properties are reflected in columns 6, 7, and 10. Column 7 indicates that by moving from
NF to the more restrictive PSP, one gains that deductions about nonoccurrences of high-level
events are prevented to some extent. NDQO* further limits the information that can be de-
duced about nonoccurrences of high-level events but it is difficult to quantify this difference
more precisely. However, for SEP the difference to PSP (or NDO*) can be easily quantified

82

CHAPTER 4: A Comparison of Information Flow Properties

because SEP limits the information about nonoccurrences of high-level events that can be
deduced by an observer to what the observer can deduce already from the system specification
without observing the running system (i.e. his static knowledge). This is what one gains when
moving from PSP or NDO* to SEP (indicated by column 6 in Table 4.6). However, there are
also disadvantages when moving to a more restrictive property and the entries in column 10
provide some evidence for this. For example, SEP rules out information flow from the low
level to the high level although such information flow is not critical wrt. security. The entry
H in column 10 shows that the enabledness of high-level events, indeed, may only depend on
previous occurrences of high-level events (but not on occurrences of low-level events). NDO*
permits some noncritical information flow from the low level to the high level, namely from
low-level user inputs to the high level (entry H U (L N UI)). Finally, PSP does not restrict
noncritical information flow at all (entry H UL). These differences between SEP, NDO*, and
PSP are due to the different parameters that are used to instantiate BSIA (respectively pc,
pul, and pg). Apparently, other choices of this parameter are also possible in combination
with the pattern BSDy(Tr) A BSIA} (Tr). However, so far no other parameters than these
three have been used to define information flow properties. It is the representation in MAKS
that has revealed this possibility. The possibility to use arbitrary parameters p allows one to
determine more precisely which deductions about nonoccurrences of confidential events are
prevented and what noncritical information flow is permitted than this would be possible by
choosing only between p¢, pyr, and pg. In other words, one obtains a finer granularity in this
decision. In particular, the parameter p can be defined such that it closely matches the needs
of a particular application (wrt. permitted noncritical information flow and wrt. preventing
deductions about nonoccurrences of high-level events).

4.3.2 Information Flow Properties with the View HZ

The view HZ is used in the representations of generalized noninterference (cf. Theorem 4.2.3),
interleaving-based generalized noninterference (cf. Theorem 4.2.5), forward correctability (cf.
Theorem 4.2.11), and generalized noninference (cf. Theorem 4.2.22). It is also used in the
definitions of GNI* (cf. Definition 4.2.7), IBGNI* (cf. Definition 4.2.8), and FC* (cf. Defini-
tion 4.2.13), the novel properties that we proposed in Section 4.2. The use of HZ means that
each of these information flow properties prevents deductions about occurrences or nonoccur-
rences of high-level inputs but not about occurrences or nonoccurrences of high-level internal
or output events. The difference between these properties lies in the BSPs from which they
are assembled or, in other words, what deductions they rule out. Generalized noninference
is assembled from a single BSP only, namely R. Since R is a BSP from the first dimension,
generalized noninference only prevents deductions about occurrences of high-level inputs. The
representations of generalized noninterference, interleaving-based generalized noninterference,
and forward correctability all involve a BSP from the second dimension (i.e. I or BSI). Hence,
these properties prevent deductions about occurrences of high-level inputs and, unlike gen-
eralized noninference, also about nonoccurrences of high-level inputs. However, these three
information flow properties differ in the corrections that they permit after the perturbation
(forward correctability is most rigorous among them in this respect).

Given the representation in MAKS it becomes a straightforward task to order these infor-
mation flow properties. In Figure 4.2 one can see how FC, GNI, IBGNI, GNF, FC*, GNI*,
and IBGNI* can be ordered by implication. This ordering can be easily justified given the
representation of these properties in MAKS (cf. Figure 4.3) and the ordering of BSPs in each

4.3 Information Flow Properties in Comparison 83

dimension (cf. Theorems 3.5.3 and 3.5.12). The ordering reflects that IBGNI requires more
perturbations than GNF (i.e. the insertion of high-level inputs), that GNT requires the same
perturbations as IBGNI but permits fewer corrections (i.e. only backwards-strict corrections),
and that FC permits even fewer corrections. Moreover, the ordering reflects that each of the
novel properties IBGNI*, GNI*, and FC* requires slightly fewer perturbations than the re-
spective property from which it has been derived (because high-level inputs are only inserted
at positions of a trace where they are pc-admissible).

FC(ES)
GNI(ES)
IBGNI(ES) FC*(ES)
.=
GNI* (ES)
DI
IB GNI'* (ES)
GNF(ES)

Figure 4.2: Ordering information flow properties (cf. Theorem 4.3.2)

BSDyz(Tr) A BShyz(Tr) A FCD £°(Tr) A FCI,5¢(Tr)
BSDyz(Tr) A BSIyz(Tr)
Dz (Tr) A Iz (Tr) BSDyz(Tr) A BSIALS(Tr) A FCD J£¢(Tr) A FCIALS PO (Tr)
BSDyz(Tr) A BSIASS, (Tr)

Dyz(Tr) N TASG(Tr)

Ruz(Tr)

Figure 4.3: Ordering the representations (cf. Theorem 4.3.2)

For future reference, the ordering of these information flow properties is summarized in
the following theorem.

Theorem 4.3.2. The following implications are valid:
1. FC(ES) = GNI(ES),
2. GNI(ES) = IBGNI(ES),
3. FCO(ES) = FC*(ES),
4. GNI(ES) = GNI*(ES),
5. IBGNI(ES) = IBGNI*(ES),
6. FC*(ES) = GNI*(ES),

84

CHAPTER 4: A Comparison of Information Flow Properties

7. GNI*(ES) = IBGNI*(ES), and

8. IBGNI*(ES) = GNF(ES). o

Proof. These implications follow from the representations of F'C, GNI, IBGNI, and GNF in
MAKS, the definitions of FC*, GNI*, and IBGNI*, and the taxonomies of BSPs (cf. Theo-
rems 3.5.3 and 3.5.12). O

Again, we ask what is gained by enforcing a more restrictive information flow property in-
stead of a less restrictive one. Like in Section 4.3.1, we exploit Table 4.6 for answering this
question without having to look at the formal details of the representation of information
flow properties in MAKS (or the original definitions). The entries in the first four columns
are identical for FC, GNI, IBGNI, GNF, FC*, GNI*, and IBGNI* but the entries in columns
5-11 are not. Column 7 indicates that by moving from GNF to the more restrictive IBGNI*
one gains that deductions about nonoccurrences of high-level inputs are prevented to some
extent. According to column 6, IBGNI* limits the information that can be deduced about
nonoccurrences of high-level inputs to what an observer can deduce already from the system
specification without observing the running system. Column 5 reveals what is gained by
moving from IBGNI* to IBGNI, namely IBGNI prevents deductions about nonoccurrences of
confidential events (almost) completely. When IBGNI holds for a given system then the only
possibility to deduce information about occurrences or nonoccurrences of high-level inputs is
by exploiting the fact that IBGNI permits noncausal corrections (indicated by the missing
check mark in column 11). In Example 3.4.22, we have illustrated how this possibility for
deductions can be exploited by a Trojan horse for leaking information from the high level to
the low level. By moving to the more restrictive GNI, this danger of information leakage is
avoided (cf. column 11). In comparison to GNI, the advantage of F(is that it is a compos-
able information flow property.'* However, there are also disadvantages when moving to a
more restrictive property and the entries in column 10 provide some evidence for this. For
example, F'C and GNI do not permit that the enabledness of high-level inputs depend on
other occurrences of events (entry (). More specifically, FC and GNI require that high-level
input events are always enabled (column 8). IBGNI is slightly less restrictive in this respect
(entry H\I), which is achieved at the price of permitting noncausal corrections (column
11). The novel properties FC*, GNI*, and IBGNI* have the advantage that the enabledness
of high-level inputs may depend on previous occurrences of high-level inputs. Note that by
moving to these properties one trades the check mark in column 5 for the check marks in
columns 8 and 9 (together with a more liberal entry in column 10). Whether it is better to
use an information flow property that has a check mark in column 5 or one that has check
marks in columns 8 and 9 cannot be answered in general. This depends on the particular
application under consideration.

4.3.3 Information Flow Properties with Different Views

In Sections 4.3.1 and 4.3.2, we have compared information flow properties to each other that
enforce the same view (i.e. view H in Section 4.3.1 and view HZ in Section 4.3.2). In this
section, we relate these two classes of information flow properties to each other.

141n the table, this advantage of FC is not reflected. Compositionality of information flow properties will be
the topic of Chapter 6.

4.3 Information Flow Properties in Comparison

85

In general, properties in the second class (enforcing view HZ) do not imply properties in
the first class (enforcing view H) because the view HZ imposes fewer restrictions on the per-
mitted flow of information than the view H does. However, properties in the first class might
imply properties in the second class. Let us now investigate more closely which implications
are valid.

Noninference and generalized noninference are both assembled from a single BSP only,
namely R. The difference between these properties lies in the view that they enforce. Since
noninference enforces the view H, it prevents deductions about occurrences of high-level
inputs as well as about occurrences of high-level internal and output events. In contrast
to this, generalized noninference prevents only deductions about occurrences of high-level
inputs. This already suggests that noninference is a more restrictive property than generalized
noninference. The following theorem shows that this is, indeed, the case.

Theorem 4.3.3. If NF(ES) holds then GNF(ES) also holds. &

Proof. This implication follows from the representations of NF and GNF in MAKS and the
taxonomy of BSPs in the first dimension (cf. Theorem 3.5.3). O

By transitivity of logical implication, we obtain from Theorems 4.3.1 and 4.3.3 that PSP,
NDO*, and SEP also imply GNF. Let us now try to establish a relation between SEP, NDO*,
PSP, NF and our novel properties FC*, GNI*, IBGNI*. As we will show, the connection
between these two sets of properties is not very close because only the strongest property
from the first set (i.e. SEP) implies the weakest property from the second set (i.e. IBGNT).
The following example demonstrates that SEP, NDO*, PSP, NF do not imply GNI* or FC*.

Example 4.3.4. Recall the system PIPE from Example 3.4.15. For this system, we have
HZ = (0, {hop |n€IN}, {hiy|n€IN}) and H = (0,0, {hin, ho, |n€IN}). Obviously, SEP(PIPE)
holds. From Theorem 4.3.1, we obtain that NDO*(PIPE), PSP(PIPE), and NF(PIPE) also
hold. However, GNI*(PIPE) does not hold because (hi;.hiz) is a perturbation of (hi;) (result-
ing from the insertion of Aiz) but there is no causal correction of (hi;.hiz) to a possible trace
of PIPE. From Theorem 4.3.2, we obtain that FC*(PIPE) also does not hold.

The reason why SEP(PIPE) holds despite GNI*(PIPE) not holding is that pc(H) =
{hin, hop | n € IN} differs from pc(HZ) = {hi, | n € IN}. Hence, GNI* require the inser-
tion of hip immediately after hi; in the trace (hi) (his is pc-admissible after hi; wrt. the view
‘HT) but SEP does not require that hip can be inserted at this position of this trace (hiy is

not pc-admissible after hi; wrt. the view H). <
The following theorem shows that, in contrast to GNI* and FC*, IBGNI* is implied by SEP.
Theorem 4.3.5. If SEP(ES) holds then IBGNI*(ES) also holds. o

Proof. According to Theorem 4.2.24, we have SEP(ES) < (BSDy/(Tr) A BSIALS (Tr)). Ac-
cording to Definition 4.2.8, we have IBGNI*(ES) < (Dyz(Tr) A IALS(Tr)).

From Theorem 3.5.3, we obtain BSDy(Tr) = Dyz(Tr) because HNI C H holds (choose
V1 =H and V5 = HZ in Theorem 3.5.3).

It remains to be shown that (BSDy (Tr) A BSIALS (Tr)) = IALS(Tr) also holds. Assume
BSDy(Tr) and BSIALC(Tr). Let o, 8 € E* and hi € H NI such that f.oo € Tr, a|gnr =
(), and Admf (Tr, 8, hi). From BSDy(Tr), we obtain (8.a)|r € Tr (inductive argument).
Admb7(Tr, 8, hi) implies that there is a trace v € E* with ~.(hi) € Tr and v|gnr = Blanr-

86

CHAPTER 4: A Comparison of Information Flow Properties

We now insert the sequence (+y.(h%))| i into (8.c)|1, in a stepwise manner. BSIALC (Tr) implies
that there is a trace 8’ € E* with 8'| uunr) = Blouni, B'lr = v|m, and B'.(hi).(a|z) € Tr
(detailed argument is by induction over the length of (v.(hi))|g). From S'.(hi).(a|r) € Tr,
(elp)lz = alr, (alo)lanr = (s B'leu@nn = Bliunn, and Definition 3.4.11, we conclude
that TAZZ(Tr) holds (choose o/ = afz). O

Recall that NDO* and IBGNI* are defined by BSDy(Tr) A BSIALY(Tr) and Ryz(Tr) A
TASS(Tr), respectively. This means, NDO* requires the insertion of high-level events only
at positions where they are pyr-admissible (wrt. the view H) while IBGNI* requires the
insertion of high-level inputs at positions where they are pc-admissible (wrt. the view HZ).
Since pyi(H) C pc(HZI) does not hold, in general, NDO* does not imply IBGNI*. Moreover,
since PSP and NF are weaker than NDO¥, they also do not imply IBGNI*.

Let us now try to establish a relationship between SEP, NDO*, PSP, NF and FC, GNI,
IBGNI. The entries in column 9 in Table 4.6 show that F'C, GNI, and IBGNI require all
sequences of high-level inputs to be possible. Moreover, the entries in column 8 reveal that
FC and GNI even require high-level input events to be always enabled, i.e. the system under
consideration must be total in the set H N 1. The properties SEP, NDO*, PSP, and NF do
not impose such requirements. Therefore, none of SEP, NDO*, PSP, and NF implies any of
FC, GNI, and IBGNI, in general. However, if we restrict our attention to systems that are
total in H NI then PSP implies F'C. This is shown by the following theorem.

Theorem 4.3.6. If PSP(ES) and total(ES, H N I) hold then FC(ES) also holds. &

Proof. According to Theorem 4.2.26, we have PSP(ES) < (BSDy(Tr) A BSIAJF(Tr)).
From Theorem 4.2.11, we obtain FC(ES) < (BSDyz(Tr) A BSIyz(Tr) A FCD{&C(TT) A
FCL5(Tr)).

From Theorem 3.5.3, we obtain BSDy(Tr) = BSDyz(Tr) because H NI C H holds
(choose V; = H and V5 = HZ in Theorem 3.5.3).

It remains to prove the following three implications:

(BSDy(Tr) A BSIALE (Tr) A total(ES, HNT)) = BShyz(Tr) (4.4)
(BSD#(Tr) A BSIALE (Tr) A total(ES, HN 1)) = FCD,E°(Tr) (4.5)
(BSDy(Tr) A BSIALE(Tr) A total(ES, HN 1)) = FCILE(Tr) (4.6)

For proving (4.4), assume BSDy(Tr), BSIAL? (Tr), and total(ES,HN1I). Let o, B € E* and
hi € H NI such that f.a € Tr and a|gnr = (). From BSDy(Tr), we obtain S.(a|r) € Tr
(inductive argument). Adm}” (Tr, 3, hi) holds because total(ES, H N1I) and ki € H NI hold.
BSIA;LE(T’F) implies ,3(]7,2)(04[/) € Tr. From ﬁ(hz)(a|L) € Tr, (a|L)|L = OtlL, (a|L)|Hm =
(), and Definition 3.4.24, we conclude that BSIyz(Tr) holds (choose o/ = a|r).

For proving (4.5), assume BSDy (Tr), BSIALY? (Tr), and total(ES, H N1I). Let o, B € E*,
hie HN1I, and li € LN I such that B.(hi.li).cc € Tr and a|gnr = (). From BSDy(Tr), we
obtain £.(hi.li).(a|r) € Tr (inductive argument). BSDy (Tr) implies S.(li).(a|r) € Tr. From
B.(li).(a|r) € Tr, (a|p)|le = |, (a|]n)|lanr = (), and Definition 3.4.25, we conclude that
FCD;;%C(T’I") holds (choose o = al|r, and §' = ()).

For proving (4.6), assume BSDy (Tr), BSIAY? (Tr), and total(ES, H N1I). Let o, B € E*,
hie HNI,and li € LNI such that 8.(li).c € Tr and o|gnr = (). From BSDy(Tr), we obtain
B.(li).(a|r) € Tr (inductive argument). Admif (Tr, 3, hi) holds because total(ES, H N I) and

4.3 Information Flow Properties in Comparison

87

hi € HNI. BSTAYF (Tr) implies B.(ki.li).(a|r) € Tr. From B.(hi.li).(a|r) € Tr, (o|1)|z = oL,
(a|z)|anr = (), and Definition 3.4.25, we conclude that FCIL{}C(Tr) holds. O

By transitivity of logical implication, we obtain from Theorems 4.3.1, 4.3.2, and 4.3.6 that,
under the assumption that high-level input events are always enabled, each of PSP, NDO*,
and SEP implies IBGNI, GNI, and FC.

4.3.4 A Taxonomy of Information Flow Properties

We are now ready to present the main technical result of this section, i.e. the taxonomy of all
information flow properties that we have considered in this thesis so far.

Theorem 4.3.7 (Taxonomy of information flow properties). Let UI C I be a set of
user inputs. The implications depicted in Figure 4.4 are valid. <

Proof. Follows from Theorems 4.3.1, 4.3.2, 4.3.3, 4.3.5, and 4.3.6. a

SEP(ES) A total(ES, HI)

SEP(ES)

NDO*(ES) A total(ES, HI)

NDO*(ES)
PSP(ES) A total(ES, HT)

\

PSP(ES) FO(ES)
GNI(ES)
IBGNI(ES) FC*(ES)
PR
GNI* (ES)
v IBGNI*(ES)
NF(ES)
GNF(ES)

Figure 4.4: Taxonomy of information flow properties (cf. Theorem 4.4)

Remark 4.3.8. Theorem 4.3.7 subsumes the taxonomy of information flow properties in
[McL94a, McL96] that only covers GNF, IBGNI, NF, and SEP. Our taxonomy also subsumes
the taxonomy in [ZL97] that covers GNF, IBGNI, NF, SEP, PSP, and NDO (but not any of
FC, FC*, GNI, GNI*, IBGNI*). Interestingly, Zakinthinos and Lee missed that PSP implies
NF and that NDO implies NF, facts pointed out by our taxonomy.'® <

5The original definition of NDO is equivalent to the conjunction of two conditions ND1 A ND2 where ND1
prevents a low-level user from deducing that certain high-level events have or have not occurred and ND2
prevents a low-level user from deducing the interleaving of high-level and low-level events (cf. [GN88] for the
formal definition of ND1 and ND2). However, the definition in [ZL97] is equivalent to ND1 and, in general,
ND1 does not imply ND2. Consequently, the definition of NDO in [ZL97] does not properly reflect the original
definition. That the implication NDO(ES) = NF(ES) is left out in [ZL97] might be due to this fact.

88

CHAPTER 4: A Comparison of Information Flow Properties

Moreover, all facts about information flow properties that we have read off their respective
representation in MAKS are summarized in Table 4.6. Note that there are two blocks of
information flow properties in the table: firstly, the properties that enforce the view H (having
check marks in the first three columns) and, secondly, properties that enforce the view HZ
(having check marks in the first column but not in columns 2 and 3). Interestingly, all
properties are assembled from a BSP in the first dimension (check mark in column 4). For the
representation of two properties, namely NF and GNF, no BSP in the second dimension was
necessary (no check marks in columns 5-7). However, a BSP from the second dimension is used
in the representations of all other information flow properties. Hence, these properties prevent
deductions about nonoccurrences of confidential events to some extent. For three properties,
namely NDO*, NDQ and PSP, it is difficult to quantify more precisely what deductions
about nonoccurrences of confidential events are prevented (check mark in column 7 but not in
columns 5 and 6). For four properties, namely SEP, FC*, GNI* and IBGNI*, the information
that an observer can deduce about nonoccurrences of confidential events is limited to what he
can already deduce from the system specification alone without observing the running system
(check marks in columns 6 and 7 but not in column 5). Finally, there are three properties,
namely FC, GNI and IBGNI, that prevent deductions about nonoccurrences of confidential
events completely (check marks in columns 5-7).16 Note also that the entries in column 9 are
inverse to the entries in column 5. This means, when assembling an information flow property
one has to decide whether one wants either to rule out deductions about nonoccurrences of
confidential events completely (check mark in column 5) or to permit noncritical information
flow (check mark in column 9). Moreover, if there is a check mark in each of the first three
columns then there is also one in column 11. However, if there are no check marks in column
2 and 3 then nevertheless, there may be a check mark in column 11 (cf. the entries for FC).
This means, if one wants to define an information flow property with a check mark in column
11 then one should use the view or, alternatively, should assemble the security predicate
only from backwards-strict BSPs.

4.4 Summary and Comparison to Prior Frameworks

In this chapter, we have illustrated how information flow properties can be represented in
MAKS. This has revealed several interesting facts about the various properties that, in many
cases, are not as obvious from the original definitions of these properties. The representation
in MAKS has also provided a suitable basis for the comparison of information flow properties.

For each information flow property, we have showed whether it only prevents deductions
about occurrences of confidential events (only a BSP from the first dimension) or also about
nonoccurrences of confidential events (BSPs from both dimensions). We have further classified
the latter properties into ones that rule out deductions about nonoccurrences of confidential
events completely, ones that limit the information that can be deduced to what an observer
could obtain already from the system specification, and ones that are even more liberal in
this respect (depending on the particular BSP from the second dimension). We have also
clarified which information flow properties consider all high-level events as confidential (view
‘H) and which properties only consider the high-level input events as confidential (view HZ).
Moreover, we have pointed out to what extent the various information flow properties limit

16For IBGNI, this statement is softened by the missing check mark in column 11 indicating that noncausal
corrections permitted by IBGNI could be exploited for information leakage as illustrated in Example 3.4.22.

4.4 Summary and Comparison to Prior Frameworks

89

noncritical information flow (i.e. from low to high) as an undesirable side effect of preventing
critical information flow (i.e. from high to low). All these facts are summarized in Table 4.6.
In this table one can also see that permitting noncritical information flow is incompatible with
ruling out deductions about nonoccurrences of confidential events completely as the entries
in column 5 and 9 are inverse to each other. Moreover, the comparison of information flow
properties has resulted in a taxonomy of these properties (cf. Figure 4.4).

The information flow properties GNI*, IBGNI*, FC*, and NDO* are another outcome of
our investigation. We have derived them from known properties in order to overcome certain
limitations: e.g. NDO* is applicable to systems that are not input total (unlike NDO) and
FC* is applicable to systems that are not total in the high-level input events (unlike FC).

The list of known properties that we have represented in MAKS includes all (non-obsolete)
properties that have been represented in the prior frameworks for (trace-based) informa-
tion flow properties by McLean [McL94a, McL96], Focardi/Gorrieri [FG95],!” and Zakinthi-
nos/Lee [Zak96, ZL97]. However, we have also represented properties in MAKS that have not
been represented in these prior frameworks. For example, forward correctability has not been
considered in [McL94a, McL96], the perfect security property has neither been considered
in [McL94a, McL96] nor in [FG95], and the original variant of nondeducibility for outputs
has not been represented in any of these frameworks (cf. Table 4.7 for a more detailed com-
parison).'® By representing all these properties in MAKS, we have demonstrated that our
framework is quite ezpressive.'

All information flow properties have been represented in the same way, i.e. by specify-
ing a set of views and a set of BSPs (cf. Definition 3.2.6). This uniform representation has
been helpful for the comparison of the represented properties and will also simplify our in-
vestigations in subsequent chapters. This means that MAKS combines expressiveness with a
uniform representation that simplifies reasoning about information flow properties. In con-
trast to this, prior frameworks either emphasized expressiveness (at the cost of uniformity
and simplification) or uniformity (at the cost of expressiveness). For example, the frame-
work by Focardi and Gorrieri [FG95], in principle, is expressive enough to represent the well
known information flow properties. However, this framework lacks uniform concepts that
are specifically targeted at the representation of information flow properties and that would
simplify the investigation of these properties. Uniformity is limited to the use of a common
system model (labeled transition systems) and a common specification formalism (the pro-
cess algebra SPA). In [PWK96], information flow properties are represented in a many-sorted
predicate logic. Hence, the framework is quite expressive (albeit only four information flow
properties actually have been considered in that article) but provides little support for rea-
soning about the represented properties. In contrast to this, the framework by Zakinthinos
and Lee [Zak96, Z1L97] provides concepts that are specifically targeted at the representation

'"The mapping of the names used by Focardi and Gorrieri for information flow properties to the established
names is as follows: NNI corresponds to generalized noninference, SNNI and NDC correspond to noninference,
TNDI corresponds to nondeducibility, lts-RES corresponds to restrictiveness, lts-FC corresponds to forward
correctability, and NDCIT corresponds to the conjunction of generalized noninference and input totality.

18For completeness: An early comparison of information flow properties by Bieber and Cuppens covered
generalized noninference, generalized noninterference, nondeducibility, and causality [BC92]. To date, nonde-
ducibility is an obsolete security property and it is known that causality is restricted to deterministic systems.
In [PWK96], Peri, Wulf and Kienzle recast McLean’s comparison in a many-sorted predicate logic, which
seems not to reveal any interesting additional insights about the investigated properties. Focardi and Gorrieri
investigated also nondeducibility and restrictiveness in their comparison. Both properties are obsolete to date.

9However, we do not know at this stage whether it is complete in any theoretical sense.

CHAPTER 4: A Comparison of Information Flow Properties

90

information leakage because of

+~
2 & ge because S>> > > > | >
£ /M | noncausal corrections is avoided
SHES
set of events on which enabledness . S S g g < | < I =i = - g
of events in C' may depend = | = || = ol =
. D)
7 o=
2 not all sequences of events in C
%bneedtobepossible R Il gl e R Bl Bl e
g =
3 "% totality in high inputs not required | ~> >SS | > SIS S| S| >
o ®
o —
= £ | deductions ab f
< 5 |de uctions about nonocc. of events
;z in C prevented to some extent Rl gl il e Rl il gl Il Bl e
o .
& & | deductions about nonocc. of events
0o ® |in C limited to static knowledge > Rl kgl gl Il Bl e
)
M deductions about nonocc. of events
in C' prevented completely Rl gl e
deductions about occurrences of
events in C prevented Rl kgl kgl Bl Bl el Bl Bl Bl Bl B B
g | information flow from high outputs
~°;J to low is prevented Rl e e
[}
< |information flow from high inter-
8 |nals to low is prevented R I I B Be
O . . L
- | information flow from high inputs
% | to low is prevented Rl g Rl el e A Bl el Bl el Bl e
S ESEENERY SR> LR | &
N Y| = =
% CHRS 2,
S22 |8 |=|~<|S|R|R|E|2|E
~ ~

Table 4.6: Facts about information flow properties in summary

4.4 Summary and Comparison to Prior Frameworks

91

represented in represented in represented in .
framework by framevv(?rk by fram.ewofk by represented in
MecLean Focardi and Zakinthinos MAKS

Gorrieri and Lee

properties protecting occurrences and nonoccurrences of all high-level events

SEP J J

NDO X1
NDO*
PSP v

properties protecting occurrences of all high-level events

NF v I v I v]

properties protecting occurrences and nonoccurrences of high-level inputs

<

FC v v v
FC* v
GNI Y Y
GNT* J
IBGNI Vi v v
IBGNT* V2 v

properties protecting occurrences of high-level inputs

GNF v I v I v] Y

X1 A variant of nondeducibility for outputs has been considered in [ZL97] but its definition is neither equiv-

alent to the original definition nor is it a sensible security property (cf. Remark 4.3.8).
X2 In [ZL97], IBGNI has been introduced as natural adaptation of McLean’s definition of generalized nonin-

terference to the event-based setting. However, to us IBGNI™ seems at least as natural (cf. Remark 4.2.6).

Table 4.7: Information flow properties represented in the various frameworks

of information flow properties (low-level equivalence sets and a uniform schema for infor-
mation flow properties). However, these concepts seem not to provide enough structure for
general reasoning about classes of properties. Moreover, the use of these concepts is not
enforced by the framework (e.g. the representation of separability and the perfect security
property in [ZL97] do not comply with the schema). Among the previously proposed frame-
works for information flow properties, McLean’s framework of selective interleaving functions
[McL94a, McL96] seems to be the only one that considerably simplifies the investigation of
information flow properties. In that framework, information flow properties are represented
in a uniform way based on a concept of selective interleaving functions where each selective
interleaving function belongs to one or more types. These types can be used, e.g., to simplify
the comparison of information flow properties or the derivation of compositionality results.
However, selective interleaving functions are not expressive enough to represent, e.g., nond-
educibility for outputs and the perfect security property [Zak96]. More specifically, closure
under a set of selective interleaving functions of a particular type is equivalent to a statement
of the form Ry (Tr) A IAf(Tr) in MAKS. By introducing the concept of domain restrictions
(or, alternatively, the concept of range restrictions) it becomes possible to represent addi-
tional properties but the expressiveness is still quite limited. Properties that are not of the

92

CHAPTER 4: A Comparison of Information Flow Properties

form Ry(Tr) or Ry(Tr)AIA))(Tr) cannot be represented in McLean’s framework of selective
interleaving functions (in its current form).2

In our opinion, it is crucial for a framework for information flow properties to be expres-
sive, to facilitate the uniform representation of information flow properties, and to simplify
their investigation. FEzxpressiveness is important because if an information flow property of
interest cannot be expressed in a framework then it, obviously, cannot be investigated in this
framework. Uniformity is important because if the representations of different information
flow properties are completely dissimilar then their representation in the framework provides
little help for improving ones understanding of these properties. Finally, to simplify the inves-
tigation of information flow properties, apparently, is the main objective when developing a
framework for their investigation. As we have demonstrated in this chapter, MAKS combines
these three desirable properties and, in this respect, it is an improvement over all previous
frameworks for information flow properties.

20These statements are justified in Appendix B where we investigate the relationship between McLean’s
framework and MAKS in more detail.

Chapter 5

Verification Techniques for
Information Flow Properties

5.1 Introduction

Once a system’s behavior and its security requirements have been formally specified, the
security of this system can be verified with mathematical rigor. Naturally, verifying that a
system satisfies its requirements is often difficult and time consuming.

In this chapter, we propose verification techniques for information flow properties. Our
main goal is to simplify the proof that a given system satisfies a given information flow prop-
erty. We show that part of this proof can be done independently of the particular system.
To this end, we follow the unwinding approach [GM84, HY87, Jac90, Rya91, GCS91, MC92,
Rus92, Mil94, Pin95, Zak96, RS99]. However, we go one step further than the traditional un-
winding techniques by showing that most of this proof can be constructed also independently
of the particular information flow property. This simplifies the verification considerably be-
cause part of the proof that a system satisfies an information flow property can be factored
out and needs to be constructed only once for all systems and all information flow properties.
Our framework MAKS provides the uniform basis for this effort.

More specifically, we reduce the verification of an information flow property to the veri-
fication of all BSPs from which this property is assembled. Then, we divide the verification
of each BSP into two parts. To this end, we introduce unwinding conditions that serve as
an intermediate specification in this process (cf. Figure 5.1). Typical requirements imposed

unwinding

theorem
system unwinding basic security
specification rigiea| conditions TI'“&‘»» predicate

Figure 5.1: Proving a BSP by unwinding

by unwinding conditions are that the states' before and after an occurrence of a confidential
event are related by the unwinding relation, a binary relation between states, or that the un-
winding relation is preserved under stepwise execution. Unwinding theorems ensure that these

!The system model used in this chapter is that of state-event systems (cf. Definition 2.1.13).

94

CHAPTER 5: Verification Techniques for Information Flow Properties

unwinding conditions indeed imply the various BSPs by inductive arguments. This means,
our unwinding theorems reduce the verification of BSPs (i.e. global requirements expressed
in terms of sets of traces) to the verification of unwinding conditions (i.e. local requirements
expressed in terms of single transitions). In other words, part of the argument that a system
satisfies a given BSP is independent of the particular system specification. This proof is also
independent of the particular information flow property because our unwinding theorems aim
at the verification of BSPs and, hence, can be applied during the verification of all information
flow properties that can be assembled from these BSPs. Consequently, the tedious derivation
of specialized unwinding theorems for individual information flow properties is made obsolete
by our results.

However, specialized unwinding theorems for individual information flow properties also
can be derived from our unwinding theorems. We illustrate this for several properties, includ-
ing some for which no such theorems were available previously (like, e.g., for nondeducibility
for outputs and separability). For other properties (like, e.g., for the perfect security prop-
erty), our unwinding theorems constitute improvements over the known theorems. All of these
unwinding theorems are simple consequences of our unwinding theorems for BSPs. More gen-
erally, by representing an information flow property in MAKS, one obtains a corresponding
specialized unwinding result for this property (almost) ”for free”.

A technical novelty of our unwinding results is that we permit arbitrary unwinding re-
lations rather than only equivalence relations (like, e.g., in [HY87, Rya91, GCS91, Rus92,
Mil94, Zak96, RS99]). We have experienced in a case study [MSK*01] how complicated and
inconvenient the situation can be, if we are restricted to equivalence relations. However, our
relaxation has not only practical but also some more fundamental advantages because certain
information flow properties (like, e.g., noninference) can now be captured more closely by
unwinding conditions.

This chapter is complemented by Appendix C where we propose further verification tech-
niques for information flow properties as alternatives to unwinding. More specifically, we
show how simulation techniques like, e.g. forward simulation or backwards simulation, can be
employed for this purpose. These simulation techniques have been originally developed for
verifying that a specification refines another specification.

Overview. In Section 5.2, we illustrate informally the derivation of unwinding results for
BSPs. Unwinding theorems that cover all BSPs from Chapter 3 are presented in Section 5.3.
They are the main technical results of this chapter. In Section 5.4, we formally define the
various unwinding conditions and prove all cases of the unwinding theorems. Based on the
unwinding theorems for BSPs, we derive several specialized unwinding theorems for informa-
tion flow properties in Section 5.5. In Section 5.6, we illustrate how to verify that a given
system specification satisfies our unwinding conditions and thereby demonstrate the advan-
tages of being able to use arbitrary unwinding relations. The main results of this chapter are
summarized in Section 5.7.

Notational Conventions. Let ES = (E,I,0, Tr) denote an event system and SES =
(S,s0,E,I,0,T) denote a state-event system. V = (V, N, C) denotes a view in E, p denotes
a function from views in F to subsets of E, and I' = (V, A, T) is a triple where V,A, T C E.
Moreover, « and S denote finite traces, i.e. o, 8 € E*, and ¢ denotes a confidential event,
i.e. c€ C. Finally, let HZ = (L,H\LHNI), H=(L,0,H), and T'pc = (1,0, I).

5.2 On the Derivation of Unwinding Results

95

5.2 On the Derivation of Unwinding Results

We now illustrate the derivation of unwinding results for BSPs using BSD as an example. For
simplicity, we assume that N = () holds for the view V = (V, N, C), a simplifying assumption
made only in this section. From Section 5.3 on, we will investigate the general case.

Recall from Section 3.4 that BSD prevents an observer from deducing information about
occurrences of confidential events. If BSD holds then, for every possible trace with occurrences
of confidential events, there is another possible trace without confidential events that generates
the same observation. This makes it impossible for an observer to tell whether a trace with
confidential events or a trace without confidential events has generated a given observation.
In other words, he cannot conclude that confidential events have occurred.

Under the assumption N = (), BSDy(Tr) requires that if 8.(c).« is a possible trace in
Tr and «a contains no confidential events then deleting the occurrence of ¢ results in a trace,
namely 5., that is also in Tr. Consequently, BSD is a closure property of sets of traces. Since
such global conditions are not very easy to handle during verification, we would like to have
more local conditions that involve only individual transitions rather than complete traces.
For expressing these local conditions, it is convenient to have a notion of state. Therefore,
we use the system model of state-event systems throughout this chapter.? For a state-event
system, the requirements of BSD can be expressed as follows: If s is the state that results
after some trace 3 has occurred in the initial state sg, s’ is the state that results after ¢ has
occurred in s, and s}, is the state that results after some trace o without confidential events
has occurred in s’ then there must be a state s, that results after o has occurred in s. This
requirement can be viewed as follows:

So p S — - S (5.1)

=3ds, €S5. sg

In (5.1), it is implicitly assumed that o, € E*, ¢ € C, and s,s’,s!, € S are universally
quantified and that a|c = () holds. That all states in the diagram can be reached from

the initial state is expressed by the condition sg :ﬂ>T s, which occurs on both sides of the
implication. By making it an implicit assumption that all states are reachable rather than
stating it explicitly, we arrive at the following simplified diagram:

C o

S qT SI

~

n (5.2)

=ds, €85 s > Sp

Next, we split (5.2) into two conditions where one is concerned with the transition s —7 '
and the other with the transitions s’ =7 s/, and s =1 s,. To this end, we introduce a
binary relation x between states, the unwinding relation. The intuition is that if s’ x s holds
then every sequence « of visible events that is enabled in state s’ is also enabled in the state

2Using state-event systems instead of event systems is not a major change. For each state-event system
SES there is an event system that has the same set of possible traces, namely ESsgs = (E,I,0, Trsgs)
(cf. Definition 2.1.18) and for each event system ES = (E,I,O, Tr) there is a corresponding state-event
system, namely SESgs = (S, so, E,I,0,T) where S = E*, s0 = (), and T = {(s, e, s.{(e}) | s.{(e) € Tr}.

96

CHAPTER 5: Verification Techniques for Information Flow Properties

s, which can be viewed as follows:

s’ s Sh AN s'Ks (5.3)

=3ds, €S5. s > Sp

Using the unwinding relation, we can reformulate (5.2) as follows:
Cc

S — s = 5 s (5.4)

Note that (5.4) reflects the main requirement of BSD, namely that every sequence of visible
events that is enabled after a confidential event ¢ has occurred also must have been enabled
before this occurrence.

In the diagrams, we have used boldface to mark objects that are implicitly universally
quantified (e.g. s or s’ in (5.3)) and we have indicated the conditions that are assumed (on the
left hand side of the implication) by fat arrows and lines (e.g. s —7 s’ in (5.4)). In contrast
to this, existentially quantified objects have not been written in boldface (e.g. the state s,
n (5.3)) and conditions that need to be shown have been indicated by thin arrows/lines
(e.g. s =1 s, in (5.3)). By rigorously obeying these conventions, it becomes unnecessary
to state the logical connectives explicitly in the diagrams, which results in a more compact
graphical notation in which (5.4) can be represented as follows:

S e— (5.5)

o]

s/ T Sn (5.6)

S "TS'H

Note that (5.6) is trivially true if @ = () holds. The interesting case is where « # () holds or,
in other words, where there are e € E and o € E* with a = (e).a’. This assumption allows
us to split (5.6) into two diagramS'

al

s’ —)T S5 Sn (5.7)

| H :

S ”TSTL

If o/ = () holds then the condition on the right hand side of (5.7) holds trivially. If o = (e’).o
holds for some ¢’ € E and o € E* (1 e. &' # () then the diagram can be split again:

e all

s ‘ 52 52 ‘ SS ’ TSIn (58)

[T T

T 52 So H S3 S3 > Sn

5.2 On the Derivation of Unwinding Results

97

The local conditions that result from splitting (cf. the two diagrams on the left hand side of
(5.8)) are logically equivalent to each other. Hence, it does not matter how many times we
have to split the diagram on the right hand side (or, in other words, what the length of o
is). If one of the local conditions that we obtain can be proven then all of them hold. This
means, it is sufficient to prove the following condition:

S| — (5.9)

S1 GHT S92

Finally, we have derived a local verification condition that implies (5.6) and that is expressed
in terms of individual transitions rather than in terms of complete traces.

We are now ready to translate the graphical notation used for our two unwinding condi-
tions, i.e. (5.5) and (5.9), into logical formulas. The following formula expresses (5.5):

Vs,s' € S.Vc e C. (5.10)
((reachable(SES,s) A s —7 s') = s' X s)

and the following formula expresses (5.9):

Vs, 81,85 € S.Vee E\ C. (5.11)
(reachable(SES, s1) A reachable(SES, s1) A s —S57 sh A s} x 31)>

= Jsy € 8. (51 =27 59 A sh X 89)

In (5.10) and (5.11), we have underlined the expressions that correspond to parts of the
diagrams in (5.5) and (5.9). All other expressions stem from our implicit assumptions.

If (5.10) and (5.11) can be shown then (5.1) also holds, i.e. BSDy(Trsgs) holds. Hence,
instead of verifying BSDy(Trsgs), it suffices to prove these two unwinding conditions. The
unwinding conditions are much easier to handle during verification than the BSP because they
are formulated in terms of individual transitions rather than in terms of (sets of) complete
traces. This is the kind of simplification we are aiming at with our verification techniques.

The purpose of this section has been to informally introduce our verification techniques
and to illustrate the derivation of unwinding conditions. Our explanations are not meant as a
rigorous proof that the unwinding conditions, indeed, imply BSDy,(Tr). This is the purpose
of the next sections, where we derive unwinding theorems that cover not only BSD but also
all other BSPs.

Remark 5.2.1. In (5.10) and (5.11), the reachability of the states s, s1, s is stated explicitly
by assumptions. Reasoning about the reachability of states usually involves complete traces
rather than only individual transitions. However, this does not mean that it is necessary
to reason about complete traces when verifying our unwinding conditions. The reachability
of states can be approximated by local conditions, namely by invariants of the system.? In
particular the assumptions about the reachability of states can be substituted by the invariant
True, i.e. the condition that is always fulfilled. This means, the assumptions about reachability
can, but need not, be exploited in the proofs of the unwinding conditions. <

3An invariant is a property that holds in the initial state and that is preserved under all transitions.

98

CHAPTER 5: Verification Techniques for Information Flow Properties

Remark 5.2.2. According to (5.3), if s’ x s holds for two states s, s’ then every sequence of
visible events that is enabled in s’ is also enabled in s. However, this does not mean that
s’ x s must hold if every sequence of visible events enabled in s’ is also enabled in s because
there is an implication in (5.3), not an equivalence. Consequently, although “every sequence
of visible events that is enabled in __ is also enabled in __” defines a relation that is reflexive as
well as transitive, this does not mean that x also must be reflexive or transitive. Moreover,
s' X s obviously does not imply that s x s’ holds. Hence, X need not be symmetric. O

5.3 Unwinding Theorem for Basic Security Predicates

The following theorem reduces the verification of BSPs to the verification of unwinding con-
ditions.* More specifically, for each BSP, two unwinding conditions are stated that imply
this BSP. The unwinding theorem states the unwinding results for all backwards-strict BSPs
and for all forward-correctable BSPs. Corresponding unwinding results for strict BSPs and
non-strict BSPs are presented subsequently in two theorems that are immediate consequences
of the following unwinding theorem.

Theorem 5.3.1 (Unwinding theorem). Let x C S x S be an arbitrary relation. The
following implications are valid:

1. (Irfy (T, x) A oscy(T, x)) = BSDy(Trsgs)

2. (Irby(T, x) A 0scy(T, x)) = BSh(Trsgs)

3. (Irbef)(T, x) A osey (T, X)) = BSIA{(Trsgs)

4. (ferfyy (T, x) A oscy(T, x)) = FCD+,(Trsgs)

5. (ferbl (T, x) A oscy (T, x)) = FCI4, (Trsgs)

6. (ferbely" (T, x) A 0sey (T, x)) = FCIAL™ (Trsgs) <

Proof. Propositions 1 and 2 will be proven in Section 5.4.2, Propositions 4 and 5 will be
proven in Section 5.4.3, and Propositions 3 and 6 will be proven in Section 5.4.4. O

Note that, in the unwinding theorem, the first unwinding condition differs depending on the
particular BSP while the second unwinding condition is identical for all BSPs. For instance,
the first unwinding condition for BSD, namely Irf,,(T, x), is equivalent to the condition (5.10)
in Section 5.2 and the second unwinding condition for BSD, namely oscy (T,), corresponds
o (5.11). We refrain from introducing the formal definitions of the various other unwinding
conditions at this point. This will be done in Section 5.4 where we also present the proof of
the unwinding theorem. In the remainder of the current section, let us show how to unwind
other BSPs than the ones explicitly mentioned in Theorem 5.3.1.

Theorem 5.3.2 (Unwinding theorem for strict BSPs). Let x C S x S be an arbitrary
relation. The following implications are valid where V' = (V U N, 0, C) and p'(V') = p(V):

“We present the unwinding theorems in this section before defining the unwinding conditions formally in
order to clarify what we are aiming for with these conditions. The unwinding conditions used in Theorems 5.3.1,
5.3.2, and 5.3.3 (like, e.g., Irf, osc, or Irb) will be defined in Section 5.4.

5.4 Unwinding Conditions and Proof of Unwinding Theorem

99

L. (Irf (T, %) A oseyr (T, X)) = SDy(Trsgs)
2. (l’l"byl (T, I><) N oscyr (T, D()) = SIV(T’I"SES)
3. (lrbe{ji (T, I><) A OSCvl(T, D()) = SIAg(T’?"SEs)

4. (Irf (T, %) A oscyr (T, x)) = SRy(Trsgs) O

Proof. From Theorem 3.5.6(2), we obtain SDy(Tr) < BSDy/(Tr). From Theorem 5.3.1(1),
we obtain (Irfy, (T, x) A oscy/(T, x)) = BSDy(Trsgs). Hence, the first proposition holds.
The second proposition follows from Theorems 3.5.15(1) and 5.3.1(2). The third proposi-
tion follows from Theorems 3.5.15(2) and 5.3.1(3). According to Theorem 3.5.1(4), we have
SDy(Tr) = SRy(Tr). Hence, the unwinding conditions for SD also imply SR, i.e. the fourth
proposition holds. O

Theorem 5.3.3 (Unwinding theorem for non-strict BSPs). Let x C S x S be an
arbitrary relation. The following implications are valid:

1 l’l"fv(T, D() N oscy (T, D<) = DV(WSES)

2. (Ilrby(T, x) A oscy(T, X)) = Ky(Trsgs)

- ()
- ()
3. (Irbef)(T, x) A osey(T, X)) = TAY(Trsgs)
4. ()

Irfy, (T, D() N oscy (T, D() = RV(T"'SES) &

Proof. According to Theorem 3.5.1(2), we have BSDy(Tr) = Dy(Tr). Hence, the unwinding
conditions for BSD (cf. Theorem 5.3.1(1)) also imply D, i.e. the first proposition holds. The
second proposition follows from Theorems 3.5.9(2) and 5.3.1(2). The third proposition follows
from Theorems 3.5.9(4) and 5.3.1(3). According to Theorem 3.5.1(1), we have Dy(Tr) =
Ry(Tr). Hence, the unwinding conditions for D also imply R, i.e. the fourth proposition
holds. O

Note that Theorems 5.3.1-5.3.3 cover all BSPs that we have introduced in Chapter 3. This
means that it is possible to use our unwinding techniques during the verification of every in-
formation flow property that can be represented in MAKS. In particular, they can be used for
verifying the information flow properties from the literature for which we have demonstrated
in Chapter 4 how they can be represented in MAKS. They can also be used to simplify the
verification of the novel properties GNI*, IBGNI*, FC*, and NDO* proposed in Chapter 4.

5.4 Unwinding Conditions and Proof of Unwinding Theorem

We shall now define the unwinding conditions that already have been mentioned in Theo-
rems 5.3.1-5.3.3. Moreover, we complete the proof of the unwinding theorem by proving, for
each unwinding condition, that the corresponding proposition in the unwinding theorem is
valid. Thereby, we show that unwinding, as a proof technique, is sound. At the end of this sec-
tion, we discuss to what extent this proof technique is complete, i.e. under which assumptions
the unwinding conditions are also necessary conditions for the corresponding BSPs.

100 CHAPTER 5: Verification Techniques for Information Flow Properties

5.4.1 TUnwinding Condition osc

The purpose of the unwinding condition osc (for output-step consistency) is to capture the
intuitive idea of unwinding relations, namely that s’ x s implies that every observation that
is possible in s’ is also possible in s. Since this intuition is completely independent of the
particular restrictions that a given BSP imposes on the information flow, osc occurs in the
respective unwinding result for each BSP (cf. Theorems 5.3.1-5.3.3). The formal definition
of osc is similar to the condition (5.11) that we have derived in Section 5.2. The difference
between the two conditions stems from the fact that we made a simplifying assumption in
Section 5.2, namely that N =) holds for the view under consideration, and we do no longer
make this assumption here.

Definition 5.4.1 (osc). Let x C S xS be a relation. The unwinding condition osc is defined
as follows for V, T, and x:
oscy(T,x) = Vsi,s),s5€ S.Vee E\ C.
(reachable(SES, s1) A reachable(SES, s}) A 8| —s1 sy A s % s1)
= 35,€ 5.3 € (E\NC)".(Bly = (e)ly Asy =1 s9Ashxsa)) o

The unwinding condition osc is shown also in Figure 5.2 using the graphical notation that we
have introduced in Section 5.2. The difference to (5.9) is that ¢ is used in the lower part of the
diagram (instead of €). This means, if a non-confidential event e is enabled in s} and s} x s1
holds then some trace § must be enabled in s; that does not contain any confidential events
and that yields the same observation as (e). Moreover, the resulting states, i.e. s and s,
must be related by x. When proving oscy (T, X), one possible choice is to set § = (e). This
choice trivially satisfies the conditions § € (E' \ C)* and §|y = (e)|y. However, other choices
for ¢ are possible if N = () holds. Hence, oscy (T, x) is more liberal than (5.11). To point out
the differences between the two conditions, we have underlined them in Definition 5.4.1.

e
! !
Sy — S

1o

S1 :T S9
Figure 5.2: The unwinding condition osc (where e€ E\C, § € (E\C)*, é|ly =(e)|v)

The following lemma, states that osc properly captures the intuition of unwinding relations.
If s} x s1 holds for two reachable states s1, s| then for every trace @ € (E'\ C)* enabled in s
there is a trace o' € (E'\ C)* that is enabled in s; and yields the same observation as «.

Lemma 5.4.2. Let x C S xS be an arbitrary relation. If oscy (T, x) holds then the following
proposition is valid:

Vsi,s) € S.Va € (E\ C)*.
reachable(SES, s1) A reachable(SES, s}))
(enabled(SES, s,) A 8| X s1)
(= 3d € (E\ O)*. (d|v = a|]v A enabled(SES, s1, a')))

5.4 Unwinding Conditions and Proof of Unwinding Theorem

101

Proof. We prove the proposition by induction on the length of a. For a = (), it holds
trivially (choose o/ = ()). In the step case, i.e. for @ = (e1).a1, assume reachable(SES, s1),
reachable(SES, s), enabled(SES, s, (e1).a1), and s| x s1. Thus, there are states sb,s], € S
with s§ —5r sh and sh, =57 s!. Since e; € E \ C, reachable(SES, s1), reachable(SES, s}),
s) g s,) x 51, and oscy (T, x) hold, there are a state s € S and a trace § € (E \ C)*

with d|y = (e1)|v, s1 :6>T s9, and s, X s3. The induction hypothesis yields that there is a
trace o’ € (E'\ C)* with o'y = ai1]y and enabled(SES, s2,a"). For o/ = é.d”, we obtain
o € (E\C), (d)|v = ((e1).@1)|v, and enabled(SES, s1,’). 0

Remark 5.4.3. To credit a report by Rushby [Rus92] that inspired our unwinding results,
we have derived the names for our unwinding conditions from the names Rushby uses for his
unwinding conditions. For example, he proposes unwinding conditions with the names “output
consistency” and “step consistency”. The first of these conditions requires that outputs are
equal if they can be generated in states that are equivalent wrt. the unwinding relation
(Rushby presumes unwinding relations to be equivalence relations). The second condition
requires that the unwinding relation is preserved under stepwise execution. The name “output-
step consistency” of our unwinding condition shall indicate that it serves a similar purpose
as the two unwinding conditions “output consistency” and “step consistency” in Rushby’s
approach. Rushby introduced a third unwinding condition with the name “locally respects”.
This condition captures the restrictions imposed by the information flow property that he
investigated, namely Goguen and Meseguer’s noninterference (for deterministic systems). In
the following sections, we will introduce unwinding conditions with names like, e.g., “locally-
respects backwards” or locally-respects forwards, that capture the requirements of the various
BSPs in a way similar to how Rushby’s condition “locally respects” captures the requirements
of noninterference. <

The syntax diagram for the names of our unwinding conditions is shown in Figure 5.3.

5.4.1
5.4.2 5.4.2-5.4.3
- - ————————
—()— @
5.4.3 5.4.2-5.4.3
5.4.4

Figure 5.3: Syntax diagram for names of unwinding conditions and pointers to sections

5.4.2 Unwinding Conditions Irf and lrb

Having specified the intuition of unwinding relations with the unwinding condition osc, it
remains to formally capture the security requirements imposed by the various BSPs. In
Section 5.2, we have captured the requirements of BSD with the unwinding condition (5.10).
This unwinding condition, although derived under the simplifying assumption N = (), is also
appropriate for the general case. For future reference, we give this unwinding condition the
name Irf (abbreviates locally-respects forwards).

102 CHAPTER 5: Verification Techniques for Information Flow Properties

In contrast to BSD, BSI prevents deductions about nonoccurrences of confidential events.
Formally, it requires that the insertion of confidential events into possible traces results in
possible traces. This means that every sequence of non-confidential events that is enabled
before the occurrence of a confidential event must also be possible after the occurrence of
this event. Therefore, the unwinding condition for BSI, i.e. Irb (abbreviates locally-respects
backwards), requires that the state before the occurrence of a confidential event must be
related to the state after this occurrence. Moreover, Irb requires that all confidential events
must be enabled in all reachable states. This reflects that BSH(Trsgs) implies total(ES, C).

The formal definitions of Irf and Irb are as follows:

Definition 5.4.4 (Irf, Irb). Let x C S x S be a relation. The unwinding conditions Irf
(locally-respects forwards) and Irb (locally-respects backwards) are defined by:

Ify(T,x) = Vs,s' € 8.Ve € C.[(reachable(SES,s) A s —s7 8') = s’ x 5]

Irby(T, x) = Vs € S.Ve€ C.[reachable(SES,s) = s’ € S.(s =7 s' Asx s')] O

The unwinding conditions Irf and Irb are also shown in Figure 5.4.

Irf c Irb c
S — s —>»_ ¢
. J . J
X X

Figure 5.4: The unwinding conditions Irf and Irb (where c€ C)

We now prove the first two propositions of Theorem 5.3.1.

Proof (of proposition 1 and 2 in Theorem 5.5.1).

1. Let a, 8 € E* and ¢ € C be arbitrary with f.(c).acc € Trsgs and a|c = (). There are

s1,8) € S such that s :ﬂ>T s1, 81 — s}, and enabled(SES, s,). Since Irfy,(T, x),
reachable(SES, s1), and s; —7 s} hold, we have s! x s;. Since enabled(SES, s, a)
holds, we obtain from Lemma 5.4.2 that there is a trace o/ € (E'\ C)* with o/|y = a|y
and enabled(SES, s1,a’). Consequently, 8.o/ € Trsgs.

2. Let o, € E* and ¢ € C be arbitrary with f.a € Trggs and a|c = (). There is

a state s1 € S such that s :ﬁ>T s1 and enabled(SES, s1,a). Since Irby(T, x) and
reachable(SES, s1) hold, there is a state s} € S such that s; —7 s} and s1 X s/. Since
enabled(SES, s1, @) holds, we obtain from Lemma 5.4.2 that there is a trace o/ € (E\C)*
with /|y = a|y and enabled(SES, s, a'). Consequently, 8.(c).c/ € Trsgs. 0

5.4.3 Unwinding Conditions ferf and ferb

In comparison to BSD, FCD' requires fewer perturbations because occurrences of confiden-
tial events are deleted only if they are elements of T and if they occur immediately before a
visible event in V. Moreover, FCD" permits fewer corrections than BSD because corrections
in between the position where the confidential event has been deleted and the subsequent

5.4 Unwinding Conditions and Proof of Unwinding Theorem

103

visible event may only be corrected in events from N N A (cf. Definition 3.4.25). Hence, the
requirements imposed by FCD' involve two events, namely a confidential event ¢ € C N YT
and a visible event v € N N A. The unwinding condition for FCD', i.e. ferf (abbreviates
forward-correctably respects forwards), also involves these two events. This unwinding condi-
tion requires that if the trace (c.v) is enabled in some reachable state s then there must be a
sequence 0 € (N N A) such that ¢.(c) is enabled in s and the resulting states are related by
X. More specifically, if s’ is the state after the occurrence of (c.v) and s” is the state after
the occurrence of 4.(c) then s’ x s” must hold.

The unwinding condition for FCI", i.e. ferb (abbreviates forward-correctably respects back-
wards), requires that the unwinding relation holds in the other direction. More specifically,
if a visible event v is enabled in some reachable state s then for every confidential event
c € CN7Y there must be a trace § € (N N A) such that (c).d.(v) is also enabled in s and the
state after the occurrence of v is related to the state after the occurrence of (c).d.(v) by the
unwinding relation x.

Like FCD and FCI, the unwinding conditions ferf and ferb have a triple I' = (V, A, T) of
sets as parameter. The formal definitions of these unwinding conditions are as follows:

Definition 5.4.5 (ferf, fcrb). Let x C S x S be a relation. The unwinding conditions
ferf (for forward-correctably respects forwards) and ferb® (for forward-correctably respects
backwards) are defined as follows:

ferfo(T,x) = Yee CNY.Vo € VNV.Vs,s' € 8.

(reachable(SES, s) A s @:'UQT s")

= 3s" €8.36 € (NNA)*. (s &T s"Ns'x ")
ferby, (T,x) = Yee CNYT.Vo € VNV.Vs,s" €8.
((reachable(SES, s)As —p s"))

=3'e€8.36e€ (NNA)*. (s c)'égv)T s'As" x s

The unwinding conditions ferf and ferb are also viewed in Figure 5.5.

ferf {ev) ferb (c).

)-0.(v)
!
S > S
X v Ix
n
v S

Figure 5.5: The unwinding conditions ferf and ferb (where ce CNY, ve VNV, §€(NNA)*)

We now prove propositions 4 and 5 of Theorem 5.3.1.

Proof (of proposition 4 and 5 in Theorem 5.5.1).

1. Let o, € E*, c € CN T, and v € V NV be arbitrary with S.(c.v).a € Trggs and

a|c = (). There are s1, s} € S such that sg :’8>T $1, 81 @:'UQT s}, and enabled(SES, s, a).

104 CHAPTER 5: Verification Techniques for Information Flow Properties

Since ferfy (T,), reachable(SES, s1), and sy <C:'U>>T s} hold, there are a state s] € S and

d.
a sequence § € (N N A)* with s; gT s{ and s} x s. Since enabled(SES, s}, @) holds,

we obtain from Lemma 5.4.2 that there is a trace o/ € (E'\ C)* with ¢/|y = a|y and
enabled(SES, s,). Consequently, 8.6.(v).o’ € Trggs.

2. Let a, f € E*,c € CNY,and v € VNV be arbitrary with 8.(v).a € Trsgs and a|c = ().

There are states s1,s] € S such that sg :ﬂ>T s1, 81 —=7 s, and enabled(SES,s!, a).

Since ferby, (T, %), reachable(SES, s1), and s; —>7 s hold, there are a state s} € S and

0.
a sequence 6 € (NNA)* with s; (c>:<>v>T s] and s x s|. Since enabled(SES, s/, &) holds,

we obtain from Lemma 5.4.2 that there is a trace o/ € (E\ C)* with /|y = a|y and
enabled(SES, s}, a'). Consequently, 8.(c).0.(v).c € Trsgg. O

5.4.4 Unwinding Conditions Irbe and fcrbe

It remains to introduce the unwinding conditions for BSIA? and FCIA®'. Due to the simi-
larity between BSIA? and BSI, the unwinding condition Irbe? is also similar to lrb. The only
difference between these BSPs is that BSI requires the insertion of every confidential event at
every position in a trace (where it is not followed by other confidential events) while BSIA*
requires the insertion of confidential events only at positions where they are p-admissible.
This is reflected by the assumption Adm{(Tr, 8,e) in the formal definition of BSIA®. Hence,
an unwinding condition for BSTA” could be obtained by adding Adm{ (Tr, 3, e) as an assump-
tion in the unwinding condition for BSI. Unfortunately, this straightforward solution is not
very appropriate because Adm{,’(Tr, B, e) is defined in terms of complete traces rather than in
terms of states and individual transitions.

However, it is possible to derive a more appropriate condition from Adm{,(Tr, 8,¢). To
derive this condition, let us recall the definition of Adm{(Tr,3,e): An event e is p-admissible
after trace § for the view V (denoted by Adm{(Tr,f3,e)) if there is a trace vy such that
v-{e) € Trand 7|,y = Blyv) hold (also cf. Definition 3.4.18). In other words, there must be
some trace -y after which e is enabled and that equals § in its occurrences of p(V)-events. The
diagram in Figure 5.6 shows how Adm{;(Tr,3,e) can be adopted for state-event systems.

Figure 5.6: Adaptation of Adm/)(Tr,j,e) for state-event systems

Figure 5.6 provides a basis for reformulating Adm{,’(Tr, B, e) to a condition that is expressed
in terms of states and that, hence, is more appropriate for use as an assumption in the
definition of an unwinding condition. Guided by the state annotations in the above diagram,
we obtain the condition Enf (T, s, €):

Definition 5.4.6 (p-enabledness). An event e € E is p-enabled in a state s € S if
En{(T, s, e) holds where En/)(T, s, e) is defined by:

5.4 Unwinding Conditions and Proof of Unwinding Theorem 105

En{(T,s,e) = 3B,y € E*.35,5 € S.
(so %T S)/\’)’|p(y) =ﬁ|p(y)/\50 éf_p?/\? ——6—>T E’) <&

The following theorem ensures that p-enabledness (for state-event systems) is equivalent to
p-admissibility (for event systems).

Theorem 5.4.7. Let ESsgs = (E,I,0, Trsgs) be the event system that is induced by SES
and let e € FE be an arbitrary event. The following propositions are valid:

1. For all states s € S, if reachable(SES, s) and EnJ)(T,s,e) then there is a trace € E*
such that s :6>T s and Adm))(Trsgs, B, e) hold.

2. For all traces 8 € E*, if § € Trsgs and Adm{(Trsgs, 8,e) then there is a state s € S
such that s :6>T s and En)) (T, s,e) hold. O

Proof. For the first proposition, assume reachable(SES, s) and En{)(T, s, e). Since Enf)(T,s,e),

there are 8,7 € E* and 5,5 € S such that s :’B>T 5, Ylpvy = Bloovy, S0 L 5, and

5 —57 . Thus, sg @T 5'. By definition of Trggs, we have v.(e) € Trsgs and S € Trsgs.

Since § € Trsps, v-(e) € Trsms, and y|,v) = Blyv), we have Adm)(Trsgs, B, e€).
For the second proposition, assume 8 € Trsgs and Adm{,’(TrSES, B,e). Since B € Trsgs

there is a state s € S for which sg %T s holds. Adm{(Trsgs, B,) implies that there is a,
trace v € E* with v.{e) € Trsgs and 7|,) = B|yv). Since v.(e) € Trsgs, there are states
5,5 € S such that sg :’Y>T 5 and s i>T 5. s :ﬂ>T S, ’y|p(y) = ﬂ|p(y), S0 :’Y>T s, and
35— § imply Enf)(T, s,e). O

By adding EnJ(T,s,c) to the assumptions in the definitions of Irb and ferb, we obtain un-
winding conditions that are suitable for verifying BSIA? and FCIAP* .

Definition 5.4.8 (lrbe, fcrbe). Let x C S xS be arelation. The unwinding conditions irbe”
(for locally-respects backwards for enabled events) and ferbe?! (for forward-correctably re-
spects backwards for enabled events) are defined as follows:

Irbef(T,x) = VseS.VeeC.

(reachable(SES, s) A En (T, s,c))
=3’ €8 (s 7 s Asxs)

fcrbeV’F(T, X) = YeeCNY.VoeVNV.Vs,s" €8.
< (reachable(SES, s) A s =1 s" A Enf(T, s,c)) >

(c).0.(v)

=3€8.3e(NNA) (s =75 Ns" x5 <&

The conditions lrbe)(T, x) and fcrbev’F(T, x) differ from Irby (T, x) and ferby, (T,), respec-
tively, only in the assumption En{j(T, s,¢). To point out this difference, we have underlined
the additional assumption in Definition 5.4.8.

We now prove propositions 3 and 6 of Theorem 5.3.1.

106 CHAPTER 5: Verification Techniques for Information Flow Properties

Proof (of proposition 8 and 6 in Theorem 5.5.1).

1. Let o, € E* and ¢ € C be arbitrary with f.a € Trsgs and a|c = (). There is a

state s; € S such that sg :'B>T s1 and enabled(SES, s1,a). We make a case distinction
depending on En))(T, s1,c).

o Assume that Enf(T,s;,c) holds. Since Irbe) (T, x) and reachable(SES, s1) hold,
there is a state s} € S with s; —»7 s} and s; X s}. Since enabled(SES, s1,) holds,
we obtain from Lemma 5.4.2 that there is a trace o/ € (E \ C)* with /|y = a|y
and enabled(SES, s|,a’). Consequently, 8.(c).c/ € Trsgs.

e Assume that En/)(T, s1,c) does not hold. From Theorem 5.4.7(2), we obtain that
Adm{)(Trsgs, B, c) does not hold. Hence, BSIA{(Trsgs) is fulfilled trivially.

2. Let a, f € E*,c € CNY,and v € VNV be arbitrary with 8.(v).a € Trsgs and a|c = ().

There are states s1,s] € S such that s éT $1, $1 —>7 sy, and enabled(SES, s, a).
We make a case distinction depending on Enf)(T, s1,c).

e Assume that En[(T,s;,c) holds. Since fcrbeV’F(T,rx), reachable(SES, s1), and

. .0.
$1 — 1 s7 hold, there are a state s} € S and a trace § € (NNA)* with s; <C>:§U>T sy

and s| x s}. Since enabled(SES, s, a) holds, we obtain from Lemma 5.4.2 that
there is a trace o/ € (E\ C)* such that /|y = a|y and enabled(SES, s, ') hold.
Consequently, 8.(c).0.(v).o/ € Trggs.

e Assume that Enj(T,s1,c) does not hold. From Theorem 5.4.7(2) we obtain that
Adm{;(Trsgs, B, c) does not hold. Hence, FCIAg’F(TrSES) holds trivially. |

This concludes the proof of Theorem 5.3.1.

5.4.5 On Completeness

In general, backwards-strict BSPs and forward-correctable BSPs may hold although the cor-
responding unwinding conditions are not satisfied. Nevertheless, our unwinding conditions
capture the requirements of the corresponding BSPs quite closely. Moreover, under the as-
sumption that N = () holds, our unwinding conditions also are necessary conditions for the
corresponding backwards-strict BSPs and forward-correctable BSPs.

Theorem 5.4.9 (Conditional completeness).

1. If N = () and BSDy(Trsgg) then there is a relation x C S x S such that Irfy, (T, X) and
oscy (T, x) hold.

2. If N =0 and BSh)(Trsgs) then there is a relation x C S x S such that lrby (T, x) and
oscy (T, x) hold.

3. If N = 0 and BSIA{(Trsgs) then there is a relation x C S x S such that Irbes (T, x)
and oscy (T, x) hold.

4. If N =) and FCD(Trsgs) then there is a relation x C S x S such that ferfy (T, x)
and oscy (T, x) hold.

5.4 Unwinding Conditions and Proof of Unwinding Theorem 107

5. If N = § and FCI$(Trsgs) then there is a relation x C S x S such that ferb) (T,)
and oscy (T, x) hold.

6. If N =0 and FCIAS’F(TTSES) then there is a relation x C §'x .S such that fcrbev’F(T, X)
and oscy (T, x) hold. O

Let us postpone the proof of Theorem 5.4.9 to a later point of this section. First, we want to
present also completeness results for other BSPs. For the strict BSPs SD, SI, and SIA, the
corresponding unwinding conditions are necessary, in general.

Theorem 5.4.10 (Completeness). Let V' = (V UN,),C) and p' (V') = p(V).

1. If SDy(Trsgs) then there is a relation x C S x S such that Irfy, (T, x) and oscy (T, x)
hold.

2. If SIy(Trsgs) then there is a relation x C S x S such that Irby (T, x) and oscy: (T, X)
hold.

3. If SIA{(Trsgs) then there is a relation x C S x S such that lrbeﬁi (T, x) and oscy (T, X)
hold (where p'(V') = p(V)). &
Proof. The propositions follow immediately from Theorems 5.4.9(1-3), 3.5.6, and 3.5.15. O

For the non-strict BSPs D, I, and IA the corresponding unwinding conditions are necessary
under the assumption N = (.

Theorem 5.4.11 (Conditional completeness).

1. If N = 0 and Dy(Trsgs) then there is a relation x C S x S such that Irfy,(T, x) and
oscy (T, x) hold.

2. If N = () and Iy(Trsgs) then there is a relation x C S x S such that Irby (T, x) and
oscy (T, x) hold.

3. f N =0 and IA{;(TTSES) then there is a relation x C S x S such that lrbe{j (T, x) and
oscy (T, x) hold. O
Proof. The propositions follow immediately from Theorems 5.4.9(1-3), 3.5.6, and 3.5.15. O

Before proving Theorem 5.4.9, let us introduce a lemma, that is helpful in that proof. This
lemma states conditions under which oscy (T, x) holds.

Lemma 5.4.12. Let x C S x S be a relation. If N = () and the following condition holds
for all states s1,s| € S that are reachable:

st x 81 & Va € (E\ C)*. (enabled(SES, s}, a) = enabled(SES, s1,))

then oscy (T, x) holds. O

108 CHAPTER 5: Verification Techniques for Information Flow Properties

Proof. We have to prove the following formula, which results from oscy(T, x) under the
assumption N = ().

Vsi,s),85 € S.Ve € E\ C. (5.12)
((reachable(SES, s1) A reachable(SES, st) A sy 51 sh A s| x 31)>

= sy € 5. (81 —>7 89 A Sy X 53)

Assume 51,5}, 55 € S and e € E \ C with reachable(SES, s1), reachable(SES, s}), si —sr sb,
and s] x s;. Let a; € (E\ C)* be arbitrary such that enabled(SES, s}, a1) holds. There-
fore, enabled(SES, s}, (€).c1) holds and, according to our assumption about x, this implies
enabled(SES, s1, (e).c1). Hence, there is a state so € S with s; —7 55 and enabled(SES, s3, ay).
According to the construction of x, we obtain s} x s3 because a; was chosen arbitrarily (recall
that T is functional in the first two arguments). O

Now we are ready to prove Theorem 5.4.9.

Proof (of Theorem 5.4.9). We define x by
st x sy & Va€ (E\C)". (enabled(SES, s}, a)) = enabled(SES, s1,a))

According to Lemma 5.4.12, oscy (T, x) holds for this definition of x. It remains to show, for
the each BSP, that the other unwinding condition is fulfilled as well. We investigate each of
the six cases separately.

1. Assume that N = () and BSDy(Trsgs) hold. Let s,s’ € S and ¢ € C be arbitrary
such that reachable(SES,s) and s —s7 s’ hold. Thus, there is a trace § € E* with
50 :ﬂ>T s. Let @ € (E'\ C)* be arbitrary such that enabled(SES,s',a) holds. From
BSDy(Trsgs) and B.(c).a € Trsgs, we conclude that S.a € Trsgs holds. Consequently,
enabled(SES, s,) holds. According to our definition of X, this implies s’ X s because «
was chosen arbitrarily.

2. Assume that N = () and BSh(Trggs) hold. Let s € S and ¢ € C be arbitrary such that
reachable(SES, s) holds. Thus, there is a trace 8 € E* with s :ﬂ>T s. Let a € (E\C)*
be arbitrary such that enabled(SES, s, @) holds. From BSI,(Trsgs) and B.a € Trsgs,
we conclude that SB.(c).a € Trsgs holds. Consequently, there is a state s’ € S with
s —7 s' for which enabled(SES, s',a) holds. According to our definition of x, this
implies s X s'.

3. Assume that N = () and BSIA{;(TTSES) hold. Let s € S and ¢ € C be arbitrary such that

reachable(SES, s) holds. Thus, there is a trace 8 € E* with s :'8>T s. Let a € (E\C)*
be arbitrary such that enabled(SES, s, a) holds. We make a case distinction:

o Assume that Adm{(Trsgs, 8,c) holds. From BSTAY(Trsgs) and .o € Trsgs, we
conclude that §.(c).a € Trsgs holds. Consequently, there is a state s’ € S with
s —p s' for which enabled(SES,s',) holds. According to our definition of x,
this implies s x s'.

o Assume that Adm)(Trsgs,B,c) does not hold. Theorem 5.4.7(1) implies that
Enf(T, s, c) also does not hold. Hence, Irbel (T, x) is fulfilled trivially.

5.4 Unwinding Conditions and Proof of Unwinding Theorem

109

4. Assume that N = () and FCD;(TTSEs) hold. Let 5,8’ € S,c€ CNY,andv € VNV be
arbitrary such that reachable(SES, s) and s @:'UQT s’ hold. Thus, there is a trace 8 € E*

with s :ﬂ>T s. Let a € (E'\ C)* be arbitrary such that enabled(SES, s', &) holds. From
FCD(Trsgs), B-(cw).ac € Trsgs, and N = (), we conclude that £.(v).«cc € Trsgs holds
(6 = () because N =). Consequently, there is a state s” € S for which s —7 s" and
enabled(SES, s”,) holds. According to our definition of x, this implies s’ x s” because
« was chosen arbitrarily and s” is uniquely determined by s —7 s".

5. Assume that N = () and FCIY, (Trsgs) hold. Let s,5” € S,c € CNYT,andv € VNV be
arbitrary such that reachable(SES, s) and s —sp ¢" hold. Thus, there is a trace 8 € E*
with sg :ﬂ>T s. Let @ € (E\ C)* be arbitrary such that enabled(SES, s",) holds.
From FCI,(Trsgs), B-(v).a € Trsgs, and N = (), we conclude that B.(c.v).cc € Trsgs

holds. Hence, there is a state s’ € S with s (c:.ng s’ for which enabled(SES, s', &) holds.
According to our definition of X, this implies s” x s'.

6. Assume that N = @ and FCIAS" (Trsps) hold. Let s,5" € S,c€ CNY,v € VNV be
arbitrary such that reachable(SES, s) and s —7 s" hold. Thus, there is a trace § € E*

with sg :ﬂ>T s. Let a € (E'\ C)* be arbitrary such that enabled(SES,s"”,) holds. We
make a case distinction:

e Assume that AdmJ(Trsgs, 3, c) holds. From FC’IA{;’F(TTSES), B.(v).a € Trggs, and
N = 0, we conclude that 5.(c.v).c € Trggs holds. Consequently, there is a state

s’ € S for which s @T s’ and enabled(SES, s', @) hold. According to our definition
of x, this implies s” x s'.

o Assume that Adm)(7Trsgs,B,c) does not hold. Theorem 5.4.7(1) implies that
Enf)(T,s",¢) also does not hold. Hence, ferbefy" (T, x) is fulfilled trivially. m

Unwinding, as a proof technique, is not complete for backwards-strict BSPs, in general. This
is demonstrated by the following examples. The first of these examples is concerned with the
unwinding result for BSD and the second with the unwinding result for BSL.

Example 5.4.13. Let the state-event system SES; = (S, so, E,I,0,T1) be defined by

S = {so}Ufs; 1< <10)
E {C,nl,n2,01,1)2,’03}
Ty = {(s0,¢, 1), (51,v1,52), (52,02, 83), (52,3, 54), (50,71, 55),

(855 V1, 86)7 (365 V2, 87)7 (SO,TLQ, 88)7 (SS’IUI’ 59)7 (59’v3’ 510)}

and let the view V = (V, N, C) be defined by V = {v1,v2,v3}, N = {n1,n9}, and C = {c}.
The transition relation 77 is also depicted on the left hand side of Figure 5.7.

In the figure, it is easy to see that SES; fulfills BSDy(Trsgs,). Let us now try to construct
an unwinding relation x for which lrf,, (T}, x) and oscy (T,) are fulfilled. Since sy ——7, 1
holds, s1 X sp needs to hold for the satisfaction of Irfy,(T1, x). Since s; LTI 89 and s1 X 8g
hold, there must be a state s, € S and a sequence 6 € (E \ C)* for which é|y = (vy),

S0 :6>T1 sh, and sg X s hold in order to satisfy oscy(T7, x). The only two candidates for §
are (n1.v1) and (ng.v1) and the only two candidates for s}, are sg and sg. This means, sy X sg

110 CHAPTER 5: Verification Techniques for Information Flow Properties

30—6—>31—’U1 —>32—1)2 —>33 30—1)1 —>31—’U2 —S9
\ ~ \ ~
v3 v3
N N
n1 S4 ¢ S3
no \
35—111 —>36—v2 —»57 34<n1 —>35—’Ul —>S6—’112 —»57
n2
88T V1 —>S9—— U3 =819 ST V1 =859 U3 =819

Figure 5.7: Counterexamples for completeness (cf. Examples 5.4.13 and 5.4.14)

or s9 X sg must hold. However, while vy as well as v3 are enabled in s9, v3 is not enabled in
s¢ and v9 is not enabled in sg. Hence, if s9 X 8¢ or s X 89 hold then oscy (T, X) is violated.
Consequently, there cannot be an unwinding relation x for which Irfy,(T7, x) and oscy (T, x)
are fulfilled. <o

Example 5.4.14. Let the state-event system SESs = (S, so, F,I,0,Ts) be defined by

E = {c,n1,n9,v1,v2,v3}
b

{(507 vy, 81)1 (81,’02, 52)1 (81,’03, 53)7 (507 & 54)7 (347 ny, 35)7
(85,1, 86), (86, V2, 87), (84, M2, 88), (88,1, 89), (89, V3, 510) }
U{(Sj,C,Sj) | 1 S] < 10}

and let the view V = (V, N, C) be defined by V = {v1,v2,v3}, N = {n1,ns}, and C = {c}.
The transition relation 75 is also depicted on the right hand side of Figure 5.7 where the
transitions (sj,c,s;) are omitted in the diagram for better readability.

In the diagram, it is easy to see that SESs fulfills BSI)(Trsgs,). Therefore, it also fulfills
the weaker property BSIAJ(Trsgs,) for all choices of the parameter p (cf. Theorem 3.5.9 for
the ordering of these BSPs). Let us now try to construct an unwinding relation x for which
Irbef)(Ty, x) and oscy(Ty, x) are fulfilled. Since sy —7, s4 holds, so x s4 needs to hold for

the satisfaction of Irbef; (1%, X). Since sg 20, 51 and sg X s4 hold, there must be a sequence

d € (E\ C)* and a state s} for which é|y = (v1), s4 :6>T2 s}, and s; X s} hold in order to
satisfy oscy(T,x). The only two candidates for § are (ni.v1) and (ng.v1) and the only two
candidates for s| are s¢ and sg. This means, s1 X sg or s1 X sg must hold. However, while
v9 as well as v3 are enabled in s1, v is not enabled in sg and v2 is not enabled in sg9. Hence,
if s1 X sg or s1 X 89 hold then oscy(Ty, x) is violated. Consequently, there cannot be an
unwinding relation x for which Irbe) (T, x) and oscy(Ts, x) are fulfilled. Since Irby (T3,)
implies lrbe{)’(TQ, X), there also cannot be an unwinding relation x for which Irby (7>, x) and
oscy (Ts, x) hold. O

Remark 5.4.15. The proof by unwinding fails in both examples because osc cannot be
satisfied. This is the cause for the incompleteness of the unwinding proof technique: While osc
implies that an unwinding relation is properly defined,’ there are proper unwinding relations

5That is, if s x s; holds then for every trace without confidential events that is enabled in s} there is a
trace without confidential events that yields the same observation and that is enabled in s;.

5.5 Unwinding Theorems for Information Flow Properties 111

for which osc is not satisfied. This means, expressing the (global) intuition of unwinding
relations by local conditions leads to the incompleteness of the proof technique. This also
explains why Millen [Mil94] and Zakinthinos [Zak96] have been able to prove the completeness
of their unwinding techniques, namely because they specified their unwinding relations by
a global condition. The price paid for establishing completeness in this way is that a large
fraction of the verification burden remains to be shown at every application of these unwinding
results. In other words, the disadvantage is that more effort must be spent when verifying
that a given system satisfies a given information flow property.

Nevertheless, it is possible to find (other) local conditions that result in a complete proof
technique without the disadvantages of the approaches in [Mil94] and [Zak96]. In Appendix C,
we will derive such local conditions by adapting well known simulation techniques. This
provides the basis for a proof technique that is sound as well as complete. However, the
resulting verification conditions are more complex than our unwinding conditions (as they
involve relations between sets of states) and, hence, they are also more difficult to apply. <

5.5 Unwinding Theorems for Information Flow Properties

Our unwinding results for BSPs can now be used to simplify the verification of information
flow properties based on the modular representation of those properties in MAKS: Using the
representation theorem for a given information flow property, the task of verifying this prop-
erty can be reduced to the task of verifying all BSPs from which this property is assembled.
Then each of the BSPs can be proven separately with the help of our unwinding results.
That is, for each BSP, one constructs an unwinding relation and proves that the unwinding
conditions for that BSP are satisfied. Our unwinding results have been derived completely
independently of a particular information flow property. However, specialized unwinding
theorems for particular information flow properties can also be derived. In this section, we
illustrate how this can be done. To this end, we derive specialized unwinding theorems for
all information flow properties for which we have given a representation in MAKS.

5.5.1 Generalized Noninterference

Unwinding results for all variants of McCullough’s generalized noninterference [McC87] can
be derived from Theorems 5.3.1 and 5.3.3.

Theorem 5.5.1 (Unwinding theorem for GNI). If there are x1, xo C Sx S for which
Irfy7 (T, x1), oscyz(T, X1), Irbyz(T, X2), and oscyz(T, X2) hold then GNI(ESsgs). O

Proof. Let the assumptions of the theorem be satisfied. From our unwinding theorem for BSPs
(Theorem 5.3.1(1,2)), we obtain BSDyz(Trsgs) and BSIhyz(Trsgs). From the representation
theorem for GNI (Theorem 4.2.3), we obtain GNI(ESsgg)- O

The unwinding theorem for GNI demands that two unwinding relations x; and xo are con-
structed such that instances of Irf and osc are fulfilled for x; and instances of Irb and osc are
fulfilled for xo. However, it is not necessary that x; and X9 be different relations. Choosing
the same relation for x; and xo has advantages, namely osc only needs to be proven once
(rather than twice) because oscyz (T, X1) and oscyz (T, X2) are identical if X; = X9 holds.
This means, having the option of using different unwinding relations for x; and xo provides
some flexibility that can, but need not, be used.

112 CHAPTER 5: Verification Techniques for Information Flow Properties

Theorem 5.5.2 (Unwinding theorem for GNI*). If there are X1, X9 C S x S for which
Irfoz (T, 1), 0seyz (T, X1), Irbel S (T, x2), and oscyz (T, X2) hold then GNI*(ESsgs). O

Proof. Let the assumptions of the theorem be satisfied. From our unwinding theorem for BSPs
(Theorem 5.3.1(1,3)), we obtain BSDyz(Trsgs) and BSIALS (Trsgs). From the representation
of GNI* in MAKS (Definition 4.2.7), we obtain GNI*(ESsgs). O

Theorem 5.5.3 (Unwinding theorem for IBGNI). If there are X1, X9 C S x S with
Irfy7 (T, %1), oseyz(T, x1), Irbyz(T, x2), and oscyz(T, x2) then IBGNI(ESsgs) holds. <

Proof. Let the assumptions of the theorem be satisfied. From our unwinding theorem for
BSPs (Theorem 5.3.3(2,4)), we obtain Ryz(Trsgs) and Iyyz(Trsgs). From the representation
theorem for IBGNI (Theorem 4.2.5), we obtain IBGNI(ESggs). O

Theorem 5.5.4 (Unwinding theorem for IBGNI*). If there are x1,xo C S X S with
Irfarr (T, x1), oseuz(T, 1), lrbel 7 (T, X2), and oscyz(T, X2) then IBGNI*(ESsgs) holds. <

Proof. Let the assumptions of the theorem be satisfied. From our unwinding theorem for BSPs
(Theorem 5.3.3(3,4)), we obtain Ryz(Trsgs) and IALS(Trsgs). From the representation of
IBGNT* in MAKS (Definition 4.2.8), we obtain IBGNI*(ESsgs). O

Note that the difference between GNI (cf. Theorem 4.2.3 for the representation in MAKS)
and GNI* (cf. Definition 4.2.7 for the representation in MAKS) leads to a difference in the
corresponding unwinding conditions. While Irbyz (T, X2) is an unwinding condition for GNI,
GNI* has the unwinding condition Irbef7 (T, x2) instead (cf. Theorems 5.5.1 and 5.5.2). This
means, unwinding GNI*, i.e. the less restrictive information flow property, leads to weaker
unwinding conditions than unwinding GNI. In contrast to this, the unwinding conditions for
GNI and IBGNI (cf. Theorem 4.2.5 for the representation in MAKS) are identical (cf. The-
orems 5.5.1 and 5.5.3). The reason why both information flow properties have the same
unwinding conditions albeit IBGNI is less restrictive than GNT is that it is difficult to capture
the noncausal corrections permitted by IBGNI by local verification conditions. The unwind-
ing conditions for GNI* and IBGNT* (cf. Definition 4.2.8 for the representation in MAKS) are
identical for the same reasons (cf. Theorems 5.5.2 and 5.5.4). However, the difference between
IBGNI and IBGNI* is reflected by a difference in the corresponding unwinding conditions
(cf. Theorems 5.5.3 and 5.5.4).

In [Zak96], Zakinthinos also presents an unwinding theorem for GNI. The difference to
our unwinding theorem is that the unwinding condition required by Zakinthinos’s theorem is
a global condition that is expressed in terms of complete traces (more specifically, the set of
all traces enabled in a given state) rather than being expressed in terms of single transitions.
Hence, our unwinding conditions are easier to handle during verification. Moreover, the sets
of traces that occur in his unwinding condition can be regarded as the equivalence classes of
an equivalence relation while we permit the use of arbitrary relations as unwinding relations.®

5.5.2 Forward Correctability

Using Theorem 5.3.1, unwinding results can be derived for both variants of Johnson and
Thayer’s forward correctability [JT88].

5The advantages of permitting arbitrary unwinding relations will be elaborated in detail in Section 5.6.2.

5.5 Unwinding Theorems for Information Flow Properties 113

Theorem 5.5.5 (Unwinding theorem for FC). Let I' = I'pc. If there are relations
X1, X, X3, X4 C S x S for which Irfy7(T, x1), oscyz(T, x1), lrbyz(T, x2), oscyz(T, X2),
ferfr (T, x3), 0scyz(T, X3), ferbyz (T, x4), and o0scyz(T, X4) hold then FC(ESsgs). &

Proof. Let the assumptions of the theorem be satisfied. From our unwinding theorem for
BSPs (Theorem 5.3.1(1,2,4,5)), we obtain BSDyz(Trsgs), BSIyz(Trsgs), FCD{LI(TTSES),
and FCI},;(Trsgs). From the representation theorem for FC (Theorem 4.2.11), we obtain
F C(ESSEs) a

Theorem 5.5.6 (Unwinding theorem for FC*). Let I' = I'pc. If there are relations
X1, X9, X3, X4 C S xS for which Irfy7(T, x1), oseyz(T,x1), Irbef7(T, x2), oseyz(T, X2),
ferfi (T, x3), oseyz(T, x3), fcrbe%CI’F(T, X4), and oscyz (T, x4) hold then FC*(ESsgs). <

Proof. Let the assumptions of the theorem be satisfied. From our unwinding theorem for
BSPs (Theorem 5.3.1(1,3,4,6)), we obtain BSDyz(Trsgs), BSIALS(Trses), FCD 3,7 (Trsgs),
and FCIA{_;%’F(T%SES). From the representation of FC* in MAKS (Definition 4.2.13), we
obtain FC*(ESsgs). O

Note that the difference between FC and our novel property FC* leads to a difference in
the corresponding unwinding conditions. While lrbyz (T, x2) and ferby,7(T, x4) are unwind-
ing conditions for FC, FC* has the less restrictive unwinding conditions Irbe,7 (T, x2) and
fcrbefl%r(T, X4) instead.

An unwinding theorem for F'C have also been proposed by Millen [Mil94]. The difference
to our unwinding theorem is that the unwinding relation is specified by a global condition
that is formulated in terms of complete traces. Moreover, Millen’s unwinding relation is an
equivalence relation while we permit arbitrary unwinding relations.

5.5.3 Nondeducibility for Outputs

Based on Theorem 5.3.1, unwinding results can be derived for both variants of Guttman and
Nadel’s nondeducibility for outputs [GN88].

Theorem 5.5.7 (Unwinding theorem for NDO). If ESsggs is input total and there are
X1, X C 8 xS for which Irfy, (T, x1), oscy(T, x1), Irbef,V' (T, X2), and oscy (T, X2) hold then
NDO(ESsgs). o

Proof. Let the assumptions of the theorem be satisfied. From our unwinding theorem for BSPs
(Theorem 5.3.1(1,3)), we obtain BSDy(Trsgs) and BSIALY'(Trsgs). From the representation
theorem for NDO (Theorem 4.2.16), we obtain NDO(ESsgg). O

Theorem 5.5.8 (Unwinding theorem for NDQ*). If there are xi,x2 C S x S for
which Irfy (T, x1), oscy (T, x1), lrbefV'(T', X2), and oscy/(T, x2) hold then NDO*(ESsgs). <

Proof. Let the assumptions of the theorem be satisfied. From our unwinding theorem for BSPs
(Theorem 5.3.1(1,3)), we obtain BSDy(Trsgs) and BSIALY'(Trsgs). From the representation
of NDO* in MAKS (Definition 4.2.18), we obtain NDO*(ESsgs).]

Naturally, there is no difference between the unwinding conditions for NDO and NDO*. Recall
that we introduced NDO* as a generalization of NDO that is also applicable for systems that

114 CHAPTER 5: Verification Techniques for Information Flow Properties

are not input total rather than as a property that imposes entirely different restrictions on
the permitted flow of information.

To the best of our knowledge, no unwinding result for NDO had been published before
our work. This means, using our unwinding theorems for BSPs, it has been quite simple to
derive a specialized unwinding theorem for an information flow property for which no such
result existed before.

Theorem 5.5.9 (Completeness of unwinding for NDQ). If ESggs is input total
and NDO(ESsgs) holds then there are two relations 1, xo C S x S for which Irfy (T, x1),
osey (T, x1), lrbep”" (T, x2), and oscy (T, x2) hold. O

Proof. Let the assumptions of the theorem be satisfied. From the representation theo-
rem for NDO (Theorem 4.2.16), we obtain BSDy(Trsgs) and BSIAL" (Trsgs). From our
completeness theorem for unwinding BSPs (Theorem 5.4.9(1,3)), we obtain that there are
X1, X9 C 8 x S with Irfy (T, x1), oscy(T, x1), lrbef”" (T, x3), and oscy(T, X3). |

Theorem 5.5.10 (Completeness of unwinding for NDO*). If NDO(ESsgs) holds
then there are relations 1, xo C S x S for which Irfy (T, x1), oscy (T, x1), Irbel” (T, x2),
and oscy (T, X2) hold. <

Proof. Let the assumptions of the theorem be satisfied. From the representation of NDO*
in MAKS (Definition 4.2.18), we obtain BSDy(Trsgs) and BSIALY(Trsgs). From our
completeness theorem for unwinding BSPs (Theorem 5.4.9(1,3)), we obtain that there are
X1, X9 C 8 x S with Irfy (T, x1), osey (T, x1), lrbef” (T, x2), and oscy(T, x2). |

5.5.4 Noninference
Based on Theorem 5.3.3, we derive an unwinding result for O’Halloran’s noninference [O’H90].

Theorem 5.5.11 (Unwinding theorem for NF). If there is a relation x; C S x S for
which Irfy, (T, x1) and oscy (T, x1) hold then NF(ESsgs)- O

Proof. Let the assumption of the theorem be satisfied. From our unwinding theorem for
BSPs (Theorem 5.3.3(4)), we obtain Ry (Trsgs). From the representation theorem for NF
(Theorem 4.2.20), we obtain NF(ESsgs).]

Another unwinding theorem for NF' is due to Zakinthinos [Zak96]. His theorem requires an
unwinding condition that is global in the sense that it involves sets of traces (more specifically,
the set of all traces that are enabled in a given state). Interestingly, Zakinthinos’s unwind-
ing condition for NF'is much more similar to our definition of BSD than to our unwinding
conditions Irf or osc.” The progress made by our unwinding theorem is that it requires only
unwinding conditions that are local in the sense that they are expressed in terms of single
transitions rather than in terms of complete traces. Hence, our unwinding conditions are
easier to handle during verification.

"In our terminology, Zakinthinos unwinding condition can be recast as: Every trace without confidential
events that is enabled after a confidential event has occurred must have been enabled already in the state before
this occurrence (using the version explained in the text of Section 7.7 in [Zak96] rather than the formalization
in which the subset relation is obviously required in the wrong direction). This is the same requirement as in
condition (5.1) in Section 5.2, namely the condition that we took as our starting point for the derivation of
unwinding conditions rather than the result of these derivations.

5.5 Unwinding Theorems for Information Flow Properties 115

5.5.5 Generalized Noninference

We derive an unwinding result for McLean’s generalized noninference [McL94a] based on
Theorem 5.3.3.

Theorem 5.5.12 (Unwinding theorem for GNF'). If there is a relation x; C S x S for
which Irfy7(T, x1) and oscyz(T, x1) hold then GNF(ESsgs). O

Proof. Let the assumption of the theorem be satisfied. From our unwinding theorem for
BSPs (Theorem 5.3.3(4)), we obtain Ryz(Trsgs). From the representation theorem for GNF
(Theorem 4.2.22), we obtain GNF(ESsgg). O

Zakinthinos also proposed an unwinding theorem for GNF [Zak96]. The unwinding condition
required by his theorem is, again, a global condition that involves complete traces unlike our
unwinding conditions that are local conditions of individual transitions.

5.5.6 Separability
Using Theorem 5.3.1, we derive an unwinding result for McLean’s separability [McL94a).

Theorem 5.5.13 (Unwinding theorem for SEP). If there are x1, X9 C S x S for which
Irfay (T, 1), oscy (T, x1), lrbef (T, x2), and oscy (T, x2) hold then SEP(ESsgs). O

Proof. Let the assumptions of the theorem be satisfied. From our unwinding theorem for BSPs
(Theorem 5.3.1(1,3)), we obtain BSDy(Trsgs) and BSIALC (Trsgs). From the representation
theorem for SEP (Theorem 4.2.24), we obtain SEP(ESgsgg)- O

Note that the unwinding conditions for SEP are quite similar to the unwinding conditions
for NDO. The only difference is that, for SEP, the parameter pc is used to instantiate
Irbe while, for NDO, the parameter pyr is used instead (cf. Theorem 5.5.7). This is similar
to the difference between the representations of these information flow properties in MAKS
where pc¢ is used to instantiate BSIA in the representation of SEP while pyr is used in the
representation of NDQ instead.

To the best of our knowledge, no unwinding result for SEP had been published before our
work.

Theorem 5.5.14 (Completeness of unwinding for SEP). If SEP(ESggs) holds then
there are relations x1,xy C § x S for which Irfy (T, 1), oscy (T, 1), lrbefC (T, x2), and
0scy (T, X2) hold. O

Proof. Assume SEP(ESsgs). From the representation theorem for SEP (Theorem 4.2.24),
we obtain BSDy(Trsgs) and BSIALC (Trsgs). From our completeness theorem for unwind-
ing BSPs (Theorem 5.4.9(1,3)), we obtain that there are xi,x92 C S x S with Irfy (T, x1),
oscy (T, X1), lrbeftc (T, x2), and oscx (T, Xo9). O

5.5.7 Perfect Security Property

An unwinding result can be derived for the perfect security property [ZL97] as well.

Theorem 5.5.15 (Unwinding theorem for PSP). If there are X1, X9 C S xS for which
Irfy (T, x1), osey (T, X1), lrbe,’of (T, x2), and o0scy (T, x9) hold then PSP(ESsgs). <

116 CHAPTER 5: Verification Techniques for Information Flow Properties

Proof. Let the assumptions of the theorem be satisfied. From our unwinding theorem for BSPs
(Theorem 5.3.1(1,3)), we obtain BSDy(Trsgs) and BSIA,f‘E(TrSES). From the representation
theorem for PSP (Theorem 4.2.26), we obtain PSP(ESggg). O

Zakinthinos also proposed an unwinding theorem for PSP together with an (incorrect) com-
pleteness result. As in his other unwinding theorems, the unwinding condition is not a local
condition because it is expressed in terms of sets of complete traces rather than in terms
of individual transitions. Moreover, his unwinding condition is quite restrictive because it
requires that high-level events can be inserted at every position in a trace. This is in contrast
to the definition of PSP that only requires that high-level events can be inserted at positions
where they are pg-admissible. This is why his completeness result is incorrect.®

Theorem 5.5.16 (Completeness of unwinding for PSP). If PSP(ESggs) holds then
there are relations x1,xo C § x § for which Irfy (T, x1), oscy(T,x1), Irbef? (T, x2), and
0scy (T, X2) hold. O

Proof. Assume PSP(ESsgs). From the representation theorem for PSP (Theorem 4.2.26),
we obtain BSDy(Trsgs) and BSIALP (Trsgs). From our completeness theorem for unwind-
ing BSPs (Theorem 5.4.9(1,3)), we obtain that there are xi,x92 C S x S with Irfy (T, x1),
oscy (T, x1), lrbel (T, x2), and oscy (T, X2). O

5.6 Verifying Unwinding Conditions

We will now show how an information flow property can be verified with the help of our
unwinding results.

5.6.1 Verification by Unwinding: An Example

After the unwinding conditions have been determined appropriate unwinding relations need to
be constructed, and it has to be shown that the unwinding conditions hold for these relations.
In this section, we illustrate these two steps. Further examples for proofs by unwinding can
be found in Sections 6.7 and 7.5.

Example 5.6.1. Let the state-event system SES = (S, s, E,I,0,T) be defined by

= {sx|0<k<11}
= {h’t, 101, 102}
= {hi}
= {lOl,lOQ}
{ (80,101,81),(80,102,82)a(Soahi,84)a(81,102,33)a(82,101,83)a(84,101,35),}

(84,02, 86), (84, i, s8), (s6, l01, 57), (88, l02, 510), (S10, 01, S11)

N O~TWm

The transition relation 7" is also viewed in Figure 5.8.

We now illustrate how to prove that noninference holds for this system. According to
Theorem 5.5.11, we have to prove the two unwinding conditions Irfy (T, x) and oscy (T, X)
where the view H = (V, N, C) shall be defined by V = {lo1,lo2}, N =0, and C = {hi}.

8As a side node for the reader who is familiar with Zakinthinos’s notation, a corrected version of the
unwinding condition is Vz : H -Vq : Q - q/x # 0 =7'(q) = 7'(q/z) where the underlined part s the difference
to the condition in [Zak96].

5.6 Verifying Unwinding Conditions 117

S0 hi 34\ hi 38\
los los
LN N
S6 S10
loy loy

l lo1 l lo1 lo1
51 N S5 S9
loa
N

S3 S7 S11

Figure 5.8: Transition relation from Example 5.6.1

Now, let us try to construct an unwinding relation x for which these unwinding con-
ditions hold. For this purpose, we start with an empty relation and iteratively add ele-
ments to this relation in order to fulfill the unwinding conditions. Firstly, in order to fulfill

Irfy (T, %), so X s4 and s4 X sg need to hold (cf. Figure 5.9). Since sg X s4 and s4 ﬂ>T S5,
oscy (T, X) requires that s; X s5 holds. By iterating oscy (T, x), we obtain that sy X sg,
83 X 87, S¢ X S10, and s7 X s11 need to hold as well. This results in the unwinding relation
x = {(s4, S0), (85, 81), (86, 52), (s7,53), (S8, $4), ($10, 86), (S11, 87) }, which is also viewed in Fig-
ure 5.10. With the figure, it is easy to check that Irfy (T, x) and oscy (T, x), indeed, hold for
the unwinding relation x. Hence, we can conclude from our unwinding theorem for NF that
NF(ESSEs) holds. <o

O —
0 ? 4 N ? 8 N
loa lo2
N N
S6 510

l lo1 l loy loy
s1_ 85 89
lo2
N

S3 S7 S11

Figure 5.9: First step in construction of x in Example 5.6.1

X X
L Y DY
So\l hi ﬁ4\’ hi 38\
02 X 1222 X ©
N4 Y N
52 I S6 510

. S5 S9

K\ lo> « /7 l l
S3 S7 S11
T . x . 7

Figure 5.10: Final step in construction of x in Example 5.6.1

118 CHAPTER 5: Verification Techniques for Information Flow Properties

5.6.2 Advantages of Unwinding with Arbitrary Unwinding Relations

A novelty of our approach to unwinding is that we permit arbitrary unwinding relations rather
than only equivalence relations or preorders.

In a case study, we investigated a mobile device where the security requirement demanded
that the current location of this device must be kept confidential [MSK01]. We expressed
this requirement by an information flow property in MAKS and then verified this property
with the help of a previous version of our unwinding results [Man00d] that required unwinding
relations to be preorders.” We decided that the definition of the unwinding relation should
be based solely on state objects and, in particular, should not incorporate transitivity as an
explicit requirement of the form Vs, s2, 3. ((s1 X 82 A 82 X 83) = s1 X 83). Our motivation
for avoiding transitivity as an explicit requirement in this definition was that it would have
complicated the proof of the unwinding conditions, in particular, of the condition osc where
X occurs on both sides of the implication. Since we did not require transitivity explicitly, we
had to prove that our unwinding relation, indeed, was a preorder. Unfortunately, we decided
to prove the unwinding conditions first, in which we succeeded, and to prove reflexivity and
transitivity of the unwinding relation afterwards, in which we failed. Since the chosen relation
was not transitive, all of our efforts had been wasted. In a second proof attempt (with a
different unwinding relation), we succeeded to prove all conditions. However, for this it was
necessary to again prove the unwinding conditions from scratch. Using the unwinding results
proposed in this chapter, the initial proof attempt would have succeeded because transitivity
of the unwinding relation is no longer required, i.e. the resources spent in the second proof
attempt could have been saved.

However, a restriction of unwinding relations to equivalence relations is not only inconve-
nient in practice, but this restriction has also more fundamental disadvantages in the sense
that the resulting unwinding conditions are too restrictive. For example, if unwinding rela-
tions were restricted to symmetric relations in our unwinding conditions then the distinction,
e.g., between Irfy,(T, x) and lrbef,” (T, x) (or between ferfs (T,) and ferbel” (T, x)) would
disappear, i.e. Irfy,(T, x) would hold if and only if Irbe);” (T, x) holds. This means, by using
symmetric unwinding relations when unwinding noninference (unwinding conditions Irf and
osc), one essentially proves the perfect security property (unwinding conditions Irf, lrbe??,
and osc). However, the perfect security property is much more restrictive than noninference.
If arbitrary unwinding relations may be used then these pairs of unwinding conditions differ.
In particular, this difference allows us to capture the requirements of information flow proper-
ties that are assembled from a single BSP like, e.g. noninference or generalized noninference,
more closely than possible with equivalence relations.

The requirement that unwinding relations must be preorders, i.e. that they are reflexive
and transitive, has been inconvenient in our case study [MSK'01]. Nevertheless, it can be
shown that, at least in principle, such a restriction has no fundamental disadvantages in the
sense that if there is some arbitrary unwinding relation for which a set of unwinding conditions
is satisfied then there is also a preorder for which these unwinding conditions are satisfied.
This result is expressed by the following theorem.

Theorem 5.6.2. Let UC be a set of instantiations of the unwinding conditions Irf, Irb, lrbe”,
ferf', ferb', ferbe”', and osc such that all conditions in UC involve the same transition
relation 7" and the same unwinding relation x.

9A preorder on states is a binary relation on states that is reflexive and transitive.

5.6 Verifying Unwinding Conditions 119

If all unwinding conditions in UC are fulfilled for x then there is a preorder x’ C S x §
for which all unwinding conditions in A/C’ are fulfilled where UC’ is constructed from UC by
replacing X with x’ in every unwinding condition. &

Before proving Theorem 5.6.2, let us introduce three lemmas that are helpful in this proof.

Lemma 5.6.3. Let x, x’ C Sx.S be binary relations between states. If x C x’ holds then the
implications Irfy, (T, x) = Irfy, (T, x"), Irby(T, x) = Irby(T, x"), Irbel (T, x) = Irbel (T, x'),
fcrf%;(T, X) = fcrfE(T, x’), fcrb)l; (T, x) = fcrbg(T, x'), and fcrbev’r(T, X) = fcrbeV’F(T, x')
hold. &

Proof. In the definition of the respective unwinding conditions, the unwinding relation only
occurs in atomic formulas with a positive polarity (on the right hand side of the top level
implication). Therefore, enlarging the unwinding relation cannot make these unwinding con-
ditions false. O

Lemma 5.6.4. Let x,<C S x S be binary relations between states. If <C S x S is the
restriction of x to pairs of reachable states then the implications Irfy,(T, x) = Irf,(T, <),
Irby (T, x) = Irby (T, =), Irbefy(T, x) = Irbefy(T, =), ferfy (T, %) = ferfy, (T, <), ferb), (T, x) =
ferby (T, <), and fcrbeV’F(T, X) = fcrbev’r (T, <) hold. O

Proof. Since Irf, Irb, Irbe, ferf, ferb, and ferbe only require that reachable states are related,
these unwinding conditions remain valid if the unwinding relation is restricted to reachable
states. |

The unwinding condition osc is investigated separately:

Lemma 5.6.5. Let x,=<,<*C S x § where <C S x S is the restriction of X to reachable
states and <* C S x S is the reflexive and transitive closure of <.
If 0scy(T, x) then oscy (T, <*) holds. O

Proof. Assuming that oscy (T, x) holds, we prove that for all sq,s] € S the following holds

Vsh € S.vy € (E\ O)*. (5.13)
[reachable(SES, s1) A reachable(SES, s}) A s} é'}T sy A s =¥ s1)
=3s5€ 8. Iy e (E\C)" . (Y|v =7|v As1 =1 so A sh <* s59)]

By setting 7/ = (e) in (5.13), one obtains oscy (T, <*). This means that (5.13) is a general-
ization of oscy (T, <*).

Since s} =<* s1 holds, there must be a finite sequence of states @ = (ul...u7) such that
sy = ul, 51 = u?, and u¥ < uf! holds for all k& < n. The induction is by the length of the
shortest sequence i with the above properties. Note that # cannot be the empty sequence.
The proof of (5.13) proceeds by induction on the length of 4.

In the base case, @ = (u}) holds for some state u} € S. Hence, s} = u} = s; must hold.
Since X* is reflexive, (5.13) holds trivially (choose s = s and v = 7).

In the step case, @ = (u}.u?).i' holds for some states ul,u? € S and some (possible empty)
sequence of states %' € S*. Note that all states in @ are reachable because of our construction

!
of <*. Since s} == s, s} = ul, ul < u? (implies u! x u?), and 7' € (E \ C)* we obtain

from oscy (T, x) by an inductive argument (induction on length of 4') that there are a trace

120 CHAPTER 5: Verification Techniques for Information Flow Properties

§ € (E\ C)* and a state u2 € S such that u? =2 u3, 8|y = '|v, and sh x u2 hold. Since s,
and u2 are reachable, sh < u2 holds. We apply the induction hypothesis on u?, u? (u} = s1),
u3, &, and obtain that there are a state so € S and a trace v € (E \ O)* with 7|y = |y,

S1 :7>T S92, and u% <* s9. Note that the assumptions of the induction hypothesis are all

fulfilled, i.e. reachable(SES,u?), reachable(SES,u}), u? S u3, and u? <* 4 hold. From
Slv =+'|v and 7|y = 4|y, we obtain |y = +'|y. From s < u2 and u3 <* s, we obtain that
sh, <* sy holds (<* is transitive). Summarizing, we have y € (E\ C)*, 7|y = 7|y, 51 == so,
and s}, <* s9. O

Using Lemmas 5.6.3, 5.6.4, and 5.6.5, we now prove Theorem 5.6.2.

Proof (of Theorem 5.6.2). Define X' by s1 X' s9 iff 51 <* s (where <* is like in Lemma, 5.6.5).
Hence, x' is the reflexive and transitive closure of < where < is the restriction of x to
reachable states. From Lemmas 5.6.3 and 5.6.4, we obtain that all unwinding conditions in
UC' involving Irf, Irb, Irbe, ferf, ferb, and ferbe hold. From Lemma 5.6.5, we obtain that all
unwinding conditions in UC’ involving osc hold. O

Theorem 5.6.2 states that if one has proven a set of unwinding conditions for some arbitrary
unwinding relation then there is also a preorder for which these unwinding conditions are sat-
isfied. Hence, in principle, one could have used a preorder to verify the unwinding conditions.
However, Theorem 5.6.2 is mainly of theoretical interest, as it may be difficult in practice
to find a suitable unwinding relation that is reflexive as well as transitive and that is also
appropriate for verifying the unwinding conditions. Also, it may be more difficult to prove
the unwinding conditions for the preorder than for some arbitrary unwinding relation. For-
tunately, our unwinding results do not impose any such restriction. This is an improvement
of our earlier unwinding result [Man00d].

5.7 Summary and Comparison to Prior Frameworks

In this chapter, we have proposed novel unwinding results that simplify the verification of
information flow properties. These results can be applied no matter what the particular
system or information flow property is. The only prerequisites are that the system must be
specified by a state-event system and that the property must be represented in MAKS.

Following our approach to unwinding, the task of verifying that a given system satisfies a
given information flow property is reduced to the task of verifying the individual BSPs from
which the property is assembled. Then, the verification of BSPs is reduced to the verification
of unwinding conditions and, finally, all unwinding conditions are verified for the system under
consideration. In the first of these three steps, our representation of information flow proper-
ties in MAKS from Chapter 4 can be exploited. The second step is completely independent
of the particular information flow property and, hence, we could perform this step once and
for all. For each BSP, we stated two unwinding conditions (as summarized in Table 5.1) and
showed that these unwinding conditions imply the given BSP (cf. Theorems 5.3.1-5.3.3). The
only part of the proof that is dependent on the particular system is the third step, i.e. the
verification of the unwinding conditions. We have illustrated this step using noninference as
an example (cf. Section 5.6.1). Further examples for proofs by unwinding will be presented
in Sections 6.7 and 7.5.

Prior approaches to unwinding aimed at the verification of specific information flow prop-
erties (rather than being generic in the property). For example, the unwinding result in

5.7 Summary and Comparison to Prior Frameworks 121

BSP | params | view || unwinding | params | view | unwinding | view
condition 1 condition 2
BSD % Irf 1% osc 1%
BSI % Irb 1% osc %
BSIA | p 1% Irbe p 1% osc 1%
FCD | T 1% ferf r 1% osc 1%
FCI | T 1% ferb r 1% osc 1%
FCIA | p,T % ferbe p,T V osc)%
SD % Irf V' osc V'
ST)% Irb V' osc V!
SIA |p)% Irbe o V' osc V'
SR vV Irf V' osc V!
D 1% Irf 1% osc 1%
1 1% Irb 1% osc 1%
1A p \% Irbe p 1% osc 1%
R 1% Irf % osc %

where V = (V, N, C), V' = (VUN,@,C), pl(vl) =p(V),and T = (V,A,T)

Table 5.1: The unwinding conditions for each BSP

[GM84] is only applicable to the original definition of noninterference [GM82]; the result
in [Mil94] aims at verifying forward correctability [JT88]; and the five unwinding results in
[Zak96] aim at the verification of generalized noninterference, forward correctability, nonin-
ference, generalized noninference, and the perfect security property, respectively. In contrast,
our unwinding results aim at the verification of BSPs and, hence, can be applied during the
verification of every information flow property assembled from these BSPs. The advantage
is that the tedious derivation of specialized unwinding results becomes unnecessary. This
means, after a new information flow property has been developed (like, e.g., our novel prop-
erties GNI*, IBGNI*, NDO*, and FC*), one can immediately use this property in formal
developments without having to worry about the existence of suitable unwinding techniques.

However, if desired, our unwinding theorems for BSPs can also be employed for simplify-
ing the derivation of unwinding results for specific information flow properties. To illustrate
this, we have derived unwinding theorems for all information flow properties that we have
represented in MAKS in Chapter 4. Interestingly, we have been able to derive unwinding
theorems for some properties for which no such results had been published so far, e.g. for
nondeducibility for outputs, separability, and also our novel information flow properties. For
other properties, our specialized unwinding theorems improve previous results. For example,
our unwinding theorem for forward correctability is an improvement of a result by Millen
[Mil94] in the sense that our unwinding conditions involve only single transitions while Millen
specified the unwinding relation in terms of complete traces. In the same sense, our unwind-
ing theorems for generalized noninterference, noninference, generalized noninference, and the
perfect security property constitute improvements of earlier unwinding results by Zakinthi-
nos [Zak96]. During our investigations, we have also detected a flaw in [Zak96] where it has
been claimed that a given unwinding condition would be a necessary condition for the perfect

122 CHAPTER 5: Verification Techniques for Information Flow Properties

security property, which is not the case (cf. Section 5.5.7). We have corrected this flaw by
presenting unwinding conditions that are, both, sufficient and necessary. All specialized un-
winding results for information flow properties that we have derived in Theorems 5.5.1-5.5.8,

5.5.11-5.5.13, and 5.5.15 are listed in Table 5.2.1°

unwinding conditions for unwinding conditions for
BSPs from 1st dimension | BSPs from 2nd dimension
GNI(ES) Irfy7 (T, %1), oseyz (T, x1) | lrbyz(T, X2), oscyz(T, X2)
IBGNI(ES) | lrfy7(T,%1), 08¢z (T, 1) | lrbyz(T, X2), 0scyz (T, X2)
GNI*(ES) Irfor (T, x1), 0seyz (T, %1) | lrbef (T, x2), 0scyz (T, X2)
IBGNT*(ES) | Irfyz (T, x1), 0seyz (T, x1) | lrbef, (T, x2), 0seyz (T, X2)
FC(ES) Irfoy7 (T, x1), oseyz (T, %1) | Irbyz(T, %2), oscyz (T, X2)
ferfrr (T, x3), 0scuz (T, x3) | ferby,z (T, x4), 0scyz (T, X4)
FC*(ES) Irfay7 (T, x1), oseyz (T, X1) lrbef&(T X9), 0scyz (T, X2)
ferfr,z (T, x3), 0scyz (T, x3) fcrbepo’ (T, x4), 0scyz(T, X4)
NDO(ES) Irfy (T, 1), osey (T, X 1) lrbe%U’(T, X9), 0scy (T, X2)
NDO*(ES) | lrfy(T, x1), 0scy (T, X1) Irbey " (T, %2), 0scy (T, X2)
NF(ES) Irfy (T, x1), osey (T, x1)
GNF(ES) Irfy 7 (T, x1), 0seyz (T, X1)
SEP(ES) Irfy (T, 1), 0scy (T, X1) Irbel? (T, x2), oscy (T, X3)
PSP(ES) Irfy (T, x1), osey (T, X1) Irbel” (T, x2), osey (T, X2)

where X1, X2, X3,Xx4 CS xS and ' =Trc = (1,0,1)

Table 5.2: Unwinding conditions for known information flow properties

Another novelty of our approach to unwinding is that we permit arbitrary unwinding
relations. Other authors have required that unwinding relations must be equivalence rela-
tions (e.g. in [HY87, Rya91, GCS91, MC92, Rus92, Mil94, Zak96, RS99])!! and our previous
approach [Man00d] required that they must be preorders. The advantage of using arbitrary
unwinding relations is that some information flow properties can be captured more closely. A
prominent example for this is noninference because proving the unwinding conditions of non-
inference with an equivalence relation would amount to proving the perfect security property,
i.e. a property that is much more restrictive than noninference. Another information flow
property where a restriction to equivalence relations has similar disadvantages is generalized
noninference. However, even if a suitable equivalence relation exists, it is sometimes difficult
to find this relation, in practice (cf. Section 5.6.2). Hence, our innovation of using arbitrary

10Some of these theorems involve multiple unwinding relations. It is not necessary that all of these relations
are defined differently. If two unwinding relations are identical then the corresponding instances of osc are also
identical. That is, this condition needs to be proven only once.

176 be precise some of these approaches are based on equivalence classes rather than on equivalence relations
(e-g. in [Zak96]). However, logically this is equivalent.

5.7 Summary and Comparison to Prior Frameworks 123

unwinding relations has advantages in theory as well as in practice.

The framework by Zakinthinos and Lee is the only one among the prior frameworks
in which unwinding results have been derived. In his thesis [Zak96], Zakinthinos presents
unwinding theorems for five information flow properties (cf. Table 5.3 for the detailed list),
and he aimed at deriving each of them along the same lines. Nevertheless, he had to prove each
of these theorems from scratch. In particular, there are no generic results that could be used in
the proofs of the unwinding theorems for different properties. That is, the uniformity achieved
is much more limited than in our work. Moreover, as pointed out before, Zakinthinos’s
unwinding conditions are global conditions on sets of traces and, hence, they are more difficult
to handle during verification than our local unwinding conditions.

.o unwinding unwinding
unwinding o1
theorem theorem unwinding
theorem
. . derived in derived in theorem
derived in . .
framework b framework by framework by derived in
worE by Focardi and Zakinthinos MAKS
McLean . .
Gorrieri and Lee
properties protecting occurrences and nonoccurrences of all high-level events
SEP V4
NDO V4
NDO* V4
PSP 4
properties protecting occurrences of all high-level events
NF L v 11 v
properties protecting occurrences and nonoccurrences of high-level inputs
FC v v
FC* V4
GNI Vv Vv
GNI* V4
IBGNI 4
IBGNI* Vv
properties protecting occurrences of high-level inputs
GNF I [V

Table 5.3: Unwinding theorems derived in prior frameworks

The approach to verifying information flow properties proposed in this chapter exploits
the uniform representation of these properties in MAKS. Rather than developing unwinding
results for complex information flow properties, we have presented unwinding results for
conceptually quite simple BSPs; rather than developing unwinding results for each property
from scratch, we have presented unwinding results for basic ingredients of such properties.
Hence, after representing an information flow property in MAKS, one obtains unwinding
techniques for this property without spending any further effort. This is a very appealing
feature of MAKS that distinguishes our framework from the ones proposed previously.

124 CHAPTER 5: Verification Techniques for Information Flow Properties

Chapter 6

Compositionality Results for
Information Flow Properties

6.1 Introduction

A modular system architecture is usually chosen for the construction of large and complex
systems. Thereby, a complex task, namely the development of the overall system, is reduced
to a simpler development task, namely the development of the individual system components.
A modular architecture can also be exploited to simplify the verification of information flow
properties. Rather than verifying directly that the overall system satisfies a given property,
one first verifies the property for each component and then applies a compositionality result
to conclude that the overall system also satisfies this property. The existence of a suitable
compositionality result is a prerequisite for applying this divide-and-conquer approach. Hence,
it is unfortunate that the derivation of compositionality results is often nontrivial.

In this chapter, our main goal is to simplify the verification of compositionality results for
information flow properties. For this purpose, we propose a uniform approach for deriving such
results. The proposed approach is general enough for re-justifying several compositionality
results from the literature as well as for deriving novel ones. It is also uniform enough for
revealing similarities between compositionality results that were previously unrelated. This
led to a deeper understanding of these results, which inspired the derivation of weakened
forward correctability, a novel composable information flow property.

More specifically, we derive compositionality results for BSPs. These results can be ap-
plied during the derivation of compositionality theorems for more complex information flow
properties according to the following observation: If all BSPs from which an information
flow property is assembled are preserved under a given form of composition then the infor-
mation flow property is also preserved under this form of composition. That is, deriving a
compositionality theorem for a given information flow property amounts to collecting all side
conditions of the compositionality results for the BSPs from which the property is assembled.
Accordingly, verifying a given compositionality theorem amounts to checking that all of these
side conditions are fulfilled. As we will show, this uniform approach simplifies the deriva-
tion as well as the verification of compositionality theorems considerably. This simplification
does not come at the cost of the quality of the obtained results, as we will demonstrate by
re-proving several results from the literature and by deriving novel compositionality results
for GNI*, FC*, and NDO*. Our uniform justifications of these results show that some hold

126 CHAPTER 6: Compositionality Results for Information Flow Properties

for similar reasons, which will lead to a classification of compositionality theorems.

While re-justifying the compositionality theorem for Johnson and Thayer’s forward cor-
rectability [JT88], we observe that forward correctability is more restrictive than necessary
for obtaining a general compositionality theorem. Based on this observation, we derive a
novel information flow property, weakened forward correctability, that is composable although
it is less restrictive than forward correctability. That is, weakened forward correctability is
an improvement of forward correctability. From a historical perspective, this is a very inter-
esting result because it constitutes after more than fifteen years a new improvement in one
of the main traditions of information flow properties (incorporating forward correctability,
restrictiveness, generalized noninterference, and nondeducibility).

Interestingly, we also derive our compositionality results for BSPs, which provide the
basis of the above approach, in a uniform way. This uniformity is achieved by a lemma, the
generalized zipping lemma, that is applied in the derivation of each of these compositionality
results. The name of this lemma is motivated by the fact that in its proof, a possible trace
of the composed system is constructed by composing traces of the components in a stepwise
manner that resembles closing a zipper.

Overview. In Section 6.2, we present some basics about the composition of event-based
systems. In Section 6.3, we illustrate the problem of preserving information flow properties
under composition with an example. In Section 6.4, we present compositionality theorems for
BSPs, introduce the generalized zipping lemma, and prove the theorems with the help of this
lemma. In Section 6.5, we explain our approach to verifying compositionality theorems for
more complex information flow properties and illustrate this approach with several examples.
Based on these results, we present a classification of compositionality theorems in Section 6.6.
In Section 6.7, we propose weakened forward correctability, a novel information flow property,
and derive a compositionality theorem as well as an unwinding theorem for this property. In
Section 6.8, the main results of this chapter are summarized and are put into perspective with
results obtained with other frameworks.

6.2 Composition of Event Systems

In event-based system models, communication between two components is modeled by the
occurrence of shared events. We employ the usual notion of composition for event systems
(e.g. [JT88, ZLI7]), i.e. a given communication event can occur only if it is enabled in both
components and, when the event occurs, the behavior of the components is synchronized by
this occurrence. When composing event systems, communication events have to be output
events of one component and input events of the other component. For the composed system,
communication between system components is assumed to occur internally (cf. Figure 6.1).
The following definitions specify more precisely what it means to compose two event systems.

Definition 6.2.1 (Composable). Let ESl = (El,Il,Ol, Trl) and ESQ = (EQ,IQ,OQ, TI‘Q)
be event systems. ES; and ES; are composable iff E1 N Ey C (01 N 1) U (O2N 1) holds. <

Definition 6.2.2 (Composition of event systems). Let ES; = (Fy,I;,01, Tr;) and
ES, = (Ey, 15,04, Try) be composable event systems. The composition of ES; and ES; is
the event system ES = (F,I,0, Tr) (denoted by ES; || ES2) where E, I, O, and Tr are

6.2 Composition of Event Systems 127

L \ Os I \ o
i ESE5% 4
ES 0Nk ES
1 - 2
OsNI
01\ I 02\ Ih

\ y

Figure 6.1: Composition of two event systems

defined as follows:

E = FEi UE,

I = (L\O2)U(I2\Oy)

O = (01\L)U(02\ 1)

Tr = {Tt€E*|7|g € Tri ANT|g, € Tra} O

The operator || is associative as well as commutative.

Theorem 6.2.3 (Associativity). Let ES; = (E1, 11,01, Tr1), ESy = (E2, I, 02, Try), and
ES5 = (E3,13,03, Tr3) be event systems that are pairwise composable.

Then (ES; || ES2) || ESs = ES1 || (ES2 || ES3) holds. <

O

Proof. Follows immediately from Definition 6.2.2.

Theorem 6.2.4 (Commutativity). Let ES| = (El, 1,04, T’I“l) and ESy = (EQ, 15,09, Tr‘g)
be composable event systems. Then ES; | ESe = ESs || ES: holds.

&

Proof. Follows immediately from Definition 6.2.2. O

Definition 6.2.2 introduces the composition of event systems in its general form. Namely, both
components may communicate with each other and with the environment. In particular,
feedback between components is possible, i.e. they may communicate with each other in
both directions. The components have to synchronize on occurrences of events in £ N Fs.
These events are called communication events. Besides general composition, we distinguish
three restricted forms of composition in this chapter (as suggested in [McL94a]): product,
proper cascade, and general cascade. These are formally defined in the following and are also
illustrated in Figure 6.2.

Definition 6.2.5 (Product). Let ES; = (El,Il,Ol, T‘T‘1) and ESy = (EQ,IQ,OQ, T’I‘Q) be
composable event systems. The composition of ES; and ESs is a product if ES; and ESy do
not communicate with each other, i.e. if F; N Ey = () holds. <

Definition 6.2.6 (Proper cascade). Let ES) = (FE1, 11,01, Tri) and ESy = (Fs, I, 0o, Trs)
be composable event systems. The composition of ES; and ES, is a proper cascade if all output
events of ES; and all input events of ESy are communication events of the composed system
and, moreover, neither input events of ES; nor output events of ES, are communication
events, ie. if 01 = E1 N E2 = I2 holds. <&

128 CHAPTER 6: Compositionality Results for Information Flow Properties

product proper cascade
I I I
ES1 || ES» ES: || ES
ES: ES, ES, O1nl ES,
01 O2 O3
\ \i \i
general cascade general composition
I 12\01 11\02 12\01
ES: || ES: ES: || ES:
ES: Onk ES, ES: Onlh ES,
OsNIy
01\ I 02 O1\ I O2\ I1
\ \i \i \i

Figure 6.2: Different forms of composition

Definition 6.2.7 (General cascade). Let ESl = (El, Il, Ol,Trl) and ESQ = (EQ, IQ, 02, T7‘2)
be composable event systems. The composition of ES; and ES; is a general cascade if neither
input events of ES7 nor output events of ESy are communication events, i.e. if F1NFEy C 01N,

holds. <&
Theorem 6.2.8. Every product is also a general cascade and every proper cascade is also a
general cascade. &
Proof. Follows immediately from Definitions 6.2.5-6.2.7. O

Here, composition is defined as the binary operation || on event systems. The definition of an
n-ary composition operator is straightforward.

Definition 6.2.9 (n-ary Composition of event systems). Let J = {j € IN | j < n} and,
for each j € J, let ES; = (Ej, I;,0j, Tr;) be an event system. Assume that no event belongs
to more than two components and that events that are shared by two components are input
events of the one component and output events of the other.

The n-ary composition of (ES;);cr is the event system ES = (E,I,0, Tr) (denoted by
I ic ;ES;) where E, I, O, and Tr are defined as follows:

E = UjeJ E;

I = UjEJ I\ UjeJ 0j

0 = UjeJ 05\ UjeJ I;

Tr = {re€k*|VjeJ|g € Trj} %

6.3 Towards Compositionality Results 129

6.3 Towards Compositionality Results

In this section, we motivate the need for compositionality results by an example that illustrates
why information flow properties are not preserved under composition, in general. Based on
this example, we introduce conditions under which the investigated property is preserved.

Example 6.3.1. Let the event system ES4 = (E4, 14,04, Tra) model a system that accepts
natural numbers as (confidential) input from the high-level environment (events hy), that
outputs natural numbers to the high-level environment (events h!,), and that also outputs
natural numbers to the low-level environment (events). This means, 4 = {h, | n € IN},
Oy = {hl,ll, | n € IN}, and E4 = I4 U O4. In the possible traces of ESy, occurrences of
high-level events and low-level events alternate. More formally, Try C F4* is defined as the

smallest set satisfying:
L. () € Tra,
2. if n € IN then (h,) € Try and (h],) € Try, and
3. if n € IN and 7 € Try then (hy.ll).7 € Tra and (hl.l}).7 € Tra.

This means, ES4 records its high-level input (modeled by events of the form h,) in its
low-level output where the recording is polluted by numbers that the system has generated
at random (modeled by events of the form hl). The purpose of these random numbers
is to prevent a low-level observer from deducing that certain high-level input events have
occurred. Namely, if the observer receives a number n then he does not know whether this
number corresponds to a (confidential) high-level input or to a (non-confidential) random
number. In other words, it is impossible to tell that a particular high-level input has occurred
because there is always a possible trace without this event that could have generated a given
observation.! Obviously, BSDy,(Trs) holds for the view V4 = (Va,Na,Ca) defined by
Va=A{l;, | n € N}, Ny = {h], | n € IN}, and C4 = {h,, | n € IN} because a perturbation
that results from a possible trace by deleting the last occurrence of a confidential event h,
can be corrected to a possible trace by inserting an occurrence of h!, at the position where hy,
has been deleted.

Let the event system ESp = (FEp,Ip,0Op, Trg) model a system that accepts natural
numbers as input from the high-level environment (events k!), that accepts natural numbers
as input from the low-level environment (events I},), and that outputs natural numbers to the
low-level environment (events [//). This means, I = {h! Il | n € IN}, Op = {I!! | n € IN},
and Ep = IgUOp. System ESp records low-level input that it receives in its low-level output.
However, the low-level output need not be a complete recording of the low-level input because
the system may nondeterministically swallow low-level input. Moreover, if a high-level input
is received by the system then the next low-level input is not forwarded. More formally,
Trg C Ep* is defined as the smallest set satisfying:

1. () € Trp,

2. if n € N then (h], | n € IN) € Trp,

LES 4 is very similar to the system LEAKp in Example 3.4.6, i.e. the system that we introduced to illustrate
the BSP D. The only essential difference between the two systems (except for differences in the names of
events) is that LEAKp does not record in its high-level outputs which numbers it has invented.

130 CHAPTER 6: Compositionality Results for Information Flow Properties

3. if n € IN and 7 € Trp then (I]).7 € Trp and (I},.I").7 € Trp, and

4. if n,n’ € IN and 7 € Trp then (h..l',).T € Trp.

n-‘n’

Obviously, BSDy,(Trg) holds for the view Vg = (Vp, Np,Cp) defined by Vi = {I;,,1! | n €
IN}, Ng =0, and Cp = {h], | n € IN} because every trace that results from a possible trace
by deleting the last occurrence of a confidential event h!, is also a possible trace of the system.

Let ES = (E,I,0, Tr) be defined by ES4 || ESp (cf. Figure 6.3) and let the view V =
(V',N,C) be defined by V= VAUVB, N = NAUNB, and C = (CA\NB) U (CB\NA) This
means that V = {l/,I! | n € IN}, N ={h!, | n € IN}, and C = {h,, | n € IN} hold.

I h
— = L " e
ES4 I ESp 1
B B

Figure 6.3: Composition of ES4 and ESp

We show that BSDy(Tr) does not hold by the following counterexample. The trace
7 = (ha2.l}5.l5) is a possible trace of ES because 7|g, = (ha2.l)5) is a possible trace of ES4
and 7|g, = (l5-l}5) is a possible trace of ESg. BSDy(Tr) requires that it must be possible
to correct the perturbation ¢ = (l4,.l},) that results by deleting h4o in 7. Let us now try
to construct a correction for this perturbation: The perturbation only has an effect on the
first component (because hyy ¢ Ep). Namely, the perturbation ¢|g, = (l},) results from
7|g, = (ha2.l}y) by deleting hyo. Since BSDy,(Tr4) holds, it must be possible to correct this
perturbation to a possible trace of ES4. According to the system specification, hl, occurs
before I}, in all of these corrections and, e.g., 71 = (h/5.l}5) is one of these corrections. For the
overall system, this means that correcting the perturbation for the first component results in
the trace t' = (h/y.l}5.l},). For the second component, the correction for the first component
leads to the trace t'|g, = (h}s.lys-l)5), which results from 7|g, = (l}5.l}5) by inserting hl},.
Unfortunately, t’|g, is neither a possible trace of ESp nor can it be corrected to a possible
trace (because Ng = () holds). The same problem occurs with all other corrections of ¢|g,.
For the overall system, this means that the perturbation ¢ of the possible trace 7 is neither a
possible trace nor can it be corrected to a possible trace. Hence, BSDy(Tr) does not hold. ¢

Before we discuss in more detail the reasons why BSD is not preserved under composition in
the above example, let us introduce the notion of a proper separation of a view.

When reducing the verification of BSD for a complex system ES = (E,I,0, Tr) that is
composed from two event systems ES; = (Eq, I1,01, Tr1) and ESy = (Fs, I, 02, Trs) to the
verification of BSD for each of these components, the view V = (V, N, C) for the overall system
has to be decomposed in a suitable manner into views V; = (V3, N1, C1) and Vo = (Va, N, Cs)
for ES; and ESs, respectively. Obviously, events that are confidential for the overall system
must also be considered confidential when verifying BSD for a component (i.e. CN E; C Cy
and C N Ey C Cy must hold). Similarly, events that are visible wrt. the overall system must
also be considered visible when analyzing the components (i.e. VN E; =V; and VN E, = Vs
must hold). Moreover, it must be ensured that changes made when correcting perturbations
in one component do not reveal any secrets to the other component. This means, events that
are in N7 should be considered as confidential by ES; and events in Ny should be considered

6.3 Towards Compositionality Results 131

as confidential by ES; (i.e. Ny N Ny = () must hold). Otherwise, corrections in one component
would need to be synchronized with corrections in the other component, a severe restriction
for compositional information flow analysis. This results in the following definition of a proper
separation of a view.

Definition 6.3.2 (Proper separation of a view). Let F, E;, and Es be sets of events
such that £ = Ey U E3 holds. Let V = (V, N, C), V1 = (V41, N1,C1), and Vo = (Va, Ny, C2) be
views in E, Fq, and FE,, respectively. The views V) and V, constitute a proper separation of
Vit VNEL =V, VNEy=V,, CNE; CCi,CNEy CCo and N1 N Ny = hold. o

Example 6.3.3. The views H; = (L1,0, Hy) and Hy = (Lg, 0, Hy) constitute a proper sepa-
ration of H= (L,(, H) because LN FE1= L1, LN Ey= Ly, HN E;= Hy, and HN Ey= Hy. <

Example 6.3.4. The views HZI; = (Ll,Hl \ IL,,H N I1) and HI, = (LQ,HQ \ I,,Hy N IQ)
constitute a proper separation of HZ = (L, H \ I, HNI) because LN Ey; = L1, LN Ey = Ly,
HNINE, = HININE; C HiNI, HNINEy = HoNINEy; C HoNIo, and (H1\I1)N(H\ 1) C
(E1 \ Il) N (E2 \ IQ) - (E1 N E2) \ (I1 U I2) =0 (recall that F1 N Ey C (I1 N 02) U (I2 N 01)
holds). <&

In the following, let ES, = (E1,I1,01, Tr1) and ESy; = (E3, 12,02, Trz) be two composable
event systems. Define ES = (E, 1,0, Tr) by ES = ES; || ES;. Moreover, let V = (V, N, C),
Vi = (Wi, N1, C1), and Vo = (Va, Ny, Cs) be views in E, E1, and E,, respectively, such that
V1 and Vs, constitute a proper separation of V.

In Example 6.3.1, we have shown that BSD is not preserved under composition, in general.
More specifically, the preservation of BSD under composition is not even ensured if compo-
sition is restricted to proper cascade. However, there are many special cases where BSD is
preserved under composition. The reason why BSD is not preserved in the given example is
that corrections in one component cause a perturbation for the second component (because
NAoNEp # () and that the second component cannot correct these perturbations.? These
two conditions are indeed the reason why BSD is not preserved under composition in the
example. In the following, we generalize this observation.

For simplicity let us assume for the beginning that corrections in the second component
have no effect on the first component (like in the example), i.e. Ny N E; = (should hold.
Note that, these assumptions do not imply that BSD is preserved under composition because
corrections in the first component may cause perturbations in the second component and
it might not be possible to correct these perturbations for the second component (as we
demonstrated in Example 6.3.1). However, if

e NiNEy=0or
. BSIAgi(T’Fz) and total(ESQ, Co N Nl)

hold then BSD is preserved under composition. That is, if the first of these conditions holds
then corrections in ES; cannot have any effects on ES;. Alternatively, if the second condition
holds then the perturbations caused by ES; can be corrected for ESs.

The case where Ny N E; = () does not hold but where N; N E5 = () holds instead can be
handled similarly because it is symmetric. This means, if Ny N Ey = (, BSIA{E(Trl), and
total(ES1,C1 N N3) hold then BSD is preserved under composition.

2That BSDy,(Trg) holds does not help in the example because it is needed to correct the insertion of
confidential events rather than their deletion.

132 CHAPTER 6: Compositionality Results for Information Flow Properties

However, if neither N1 N F5 = () nor Ny N E; = () holds then the situation becomes more
complicated. This is because corrections in the first component may cause perturbations for
the second component (like in our example composition of ES4 and ESg) and corrections in
the second component may also cause perturbations for the first component (unlike in the
example). Hence, one must not only ensure that the second component can deal with pertur-
bations caused by corrections in the first component (e.g. by demanding that BSIA{(Trs)
and total(ES2,Cy N N1) hold for some function p) but also that the first component can
deal with perturbations caused by corrections in the second component (e.g. by demanding
that BSIA{;II(Trl) and total(ES;,C1 N N3) hold for some function p;). However, this is still
not sufficient because correcting a perturbation for the first component might lead to per-
turbations for the second component, whose corrections might lead to perturbations for the
first component, and so on. This means, one must ensure that the process of correcting the
initial perturbation terminates. This is what our forward correctable BSPs are good for:
Instead of only demanding that instances of BSIA* hold for each component, we also require
that instances of FCIAPT hold. Intuitively, this additional requirement ensures that there
is enough distance between the point in a trace where the perturbation has caused a change
and the points in the trace where changes have been made in the process of correcting the
perturbation.? More specifically, we require that there is a function p; from views in E; to
subsets of E1, a function py from views in Fs to subsets of Es, and triples T'y = (Vy1, A1, T1)
and PQ == (Vg, AQ, ’rg) (where Vl,Al,'I‘l g E1 and VQ,AQ, TQ Q EQ) such that

e BSIA&I(TH), BSIAlg;(TI’Q), total(ESl, cCin NQ), total(E'Sg, Con Nl),

o FCIALV"Y(Try), FCIAL ™ (Try),

VinV, C ViUV,

CiNNy CTq,CoN Ny C 7Ty, and

N1HA10E2:®, NQﬂAQﬂElzmhold.

The following remark shall provide the reader with a first understanding of the above five
conditions. The detailed argument why these conditions suffice for the preservation of BSPs
like BSD will be presented in Section 6.4.

Remark 6.3.5. The set T contains all communication events that are confidential for ES;
but not for ES; (condition C1N Ny C T1). Hence, BSIAJ! (Tr1) and total(ES1,C1NNa) ensure
that every perturbation that is constructed by inserting a communication event e € C; N Ny
into a possible trace of ES; can be corrected to a possible trace of ES;. If the event e is
inserted at a position where it is immediately followed by a visible event v € V4 N Vy then
FCIA{E’FI(Tﬁ) and Ny N AN Ey; = () ensure that correcting the perturbation for ES; has no
effects on ESy at points of the trace before the occurrence of v. In other words, correcting the
perturbation for ES; can affect ES; only at points of the trace after the occurrence of v. Sim-
ilarly, CoN Ny C To, BSIAsj(T’I“Q), total(ESQ, Cy ﬂNl), FCIAlg;’P2(T’I‘2), and NoNA9NE; =0
ensure that confidential communication events can be inserted into possible traces of ESs and

3Recall from Definition 3.4.25 that for I' = (V, A, T), FCIA®T perturbs a trace by inserting a confidential
event ¢ € CNY at a position where it is p-admissible and where it is immediately followed by an occurrence
of a visible event v € V' N V. Corrections must be causal, i.e. changes may only be made after the position
where ¢ has been inserted. Moreover, changes before the occurrence of v are limited to events in N N A.

6.3 Towards Compositionality Results 133

that correcting this insertion, if it occurs at a position where it is immediately followed by
a visible event v € V5, N Vo, has no effects on ES; except for after the occurrence of v. The
condition V3 NV, C V1 U V4 ensures that before each occurrence of a visible communication
event v € V3 N V; at least one of FCIA{,’II’FI(TH) and FCIA{;’;’M(WQ) is applicable. This
means, e.g., that if a communication event e € C; N Ny is inserted before a visible event
v € V1 NV; that is not in V; then, although FCIAJ! L't (Try) cannot be applied for inserting e
(BSIA; (Tr;) must be used instead), this perturbation can cause only finitely many correc-
tions before the occurrence of v. The reason why there is no danger of nontermination is that
the changes before the occurrence of v that are caused by the corrections in ES; can only
lead to perturbations for ES; that can be corrected without inserting communication events
before the occurrence of v (namely by applying FCIAlg;’Fz(Trg)). Overall, this means that
there can be only finitely many corrections before a given occurrence of a visible communi-
cation event. Since there are only finitely many visible communication events in any given
trace, this implies that the process of correcting perturbations also terminates for the overall
trace. <

In summary, the conditions for the preservation of BSD lead to the following definition.

Definition 6.3.6 (Well-behaved composition). Let ES; = (E1,I1,01, Tr1) and ES; =
(B9, I5,04, Try) be composable event systems. Let V; = (Vi,N1,C1) be a view in E; and
Vo = (V2, N2, C3) be a view in Ey such that V; and Vs constitute a proper separation of V.

The composition of ES; and ES, is a well-behaved composition wrt. Vi and Vs, if one of
the following four conditions holds:

1. NN Ey =0 and Ny N E; = (hold.

2. NiNEy =0, total(ES1,C1NNy), and BSIAQ (Tr1) hold for some function p; from views
in F; to subsets of F;.

3. NoNE; =0, total(ESy, CoN Ny), and BSIAC; (Trz) hold for some function py from views
in F5 to subsets of Fs.

4. There are a function p; from views in E; to subsets of E1, a function py from views
in Ey to subsets of Ey, and triples I’y = (V1,A1,T1) and T'y = (Va, Ay, To) (where
Vl, Al, T1 Q E1 and VQ, AQ, TQ g EQ) such that

(a) BSIA{!(Try), BSTIA{:(Try), total(ESy, C1 N Na), total(ESy,Cy N Ny),
(b) FCIA{P"*(Try), FCIAD" (1),
(c) ViNVa C ViU Vs,

(d) C1 NNy C Yy, CoN Ny C 7Yy, and

() NiNA1NEy =0, NyNAyN E; = hold. <

Conditions 1-4 in Definition 6.3.6 can be read as a case distinction on the truth values of
NiNE; =0 and NoNE; = (. If NyNE5 = () holds then all communication events between the
components are either visible or confidential (according to the view of the first component)
and, consequently, changes made in the process of correcting a perturbation for the first
component (only affect events in N7) cannot disturb the behavior of the second component.
Similarly, if NoNE; = () holds then performing permitted corrections for the second component

134 CHAPTER 6: Compositionality Results for Information Flow Properties

cannot disturb the behavior of the first component. Hence, the four conditions in the definition
differ in whether corrections in one component can have effects on the other component or
not (1: no effects, 2 and 3: only in one direction, 4: in both directions).

Notational Conventions. Throughout the rest of this chapter, we assume that ES; =
(E1, 11,01, Try) and ESy = (Es, I, 02, Try) denote two composable event systems. Let ES =
(E,I,0,Tr) denote the composition of ES; and ES5, i.e. ES = ES; | ES2. Moreover,
Y = (V,N,C) denotes a view in E, p denotes a function from views in E to subsets of E,
and I" denotes a triple (V, A, T) of subsets of E. For j € {1,2}, V; = (V},N;,C;) denotes a
view in Ej, p; denotes a function from views in E; to subsets of E;, and I'; denotes a triple
(Vj,A4,T;) of subsets of F;.

6.4 Compositionality of BSPs

We have shown with an example that BSPs like BSD are not preserved under composition,
in general. However, BSPs like BSD are preserved under composition if certain conditions
are fulfilled. We now demonstrate this by deriving compositionality theorems for our BSPs.
The basis for proving these theorems is provided by a single lemma, the generalized zipping
lemma. The use of this lemma simplifies the justification of the compositionality results that
we present and also leads to uniform proofs. In our presentation, we proceed as follows:
In Section 6.4.1, we present the compositionality theorems for BSPs. Then we derive the
generalized zipping lemma in Section 6.4.2. Finally, we prove the compositionality theorems
for BSPs with the help of this lemma in Section 6.4.3.

6.4.1 Compositionality Theorems

In the following theorem, we present compositionality results for backwards-strict BSPs and
forward-correctable BSPs.

Theorem 6.4.1 (Compositionality). If V; and V, constitute a proper separation of V and
the composition of ES; and ESs is well behaved wrt. V; and Vs then the following propositions
are valid:

1. BSDy,(Tr1) A BSDy,(Trs) = BSDy(Tr).
2. If BSDy,(Tr;) for all j € {1,2} then BSLy, (Tr1) A BSLy,(Try) = BSL)(Tr).

3. If BSDy,(Tr;) and p;(V;) C p(V) N E; for all j € {1,2} then
BSIA{! (Tr1) A BSIA? (Try) = BSIA{(Tr).

4. Assume BSDy,(Tr;), VN E; C Vj, and TN E; C Y; hold for all j € {1,2}. If
AD ((AlﬂNl)U(AgﬂNg)), NlﬂAlﬂEQZ(b, and NoNAg N Ey = () then
FCDy,}(Try) A FCDy2(Try) = FCDy(Tr).

5. Assume total(ES;, C; N'Y;), BSDy, (Tr)), BSIAS;(TTJ-), VNE; CV,and TNE; CY;
hold for all j € {1,2}. If A D ((N1 NA;) U(N2N Ag)) and

e NNNAINEy=0and NoNAsNE; C YTy, or
® NQﬂAQﬂEl :Q)a,nleﬂAlﬂEg QTQ

6.4 Compositionality of BSPs 135

then FCI,,!(Tri) A FCI,,?(Try) = FCIS(Tr).

6. Assume BSDy,(Tr;), pj(V;) € p(V) N Ej, BSIA{Z(T’FJ’), VNE; CV,,and TNE; C T,
hold for all j € {1,2}. If total(ES1,Cy N T1 N Ny Ay), total(ES2,Ca N Yo N N1 NAY),
A D (N1 NA1)U(N2NAy)), and

° NlﬂAlﬂEQZQanszﬂAgﬂElng,OI'
e oNAsNEi=0and NNNA;NEy; C Yy

then FCTA{" (Try) A FCIALP™(Try) = FCIAT (7). <
In the following theorem, we present a compositionality result for the non-strict BSP R.

Theorem 6.4.2 (Compositionality). If V; and Vs constitute a proper separation of V and
the composition of ES; and ES, is well behaved wrt. V; and V, then

1. RVI(T’I‘l)/\Ryz(T’I‘Q) = Ry(Tr). <&
In the following theorem, we present compositionality results for strict BSPs.

Theorem 6.4.3 (Compositionality). If V; and Vs constitute a proper separation of V, the
composition of ES; and ES; is well behaved wrt. Vi and V,, and N N E; = N; holds for all
J € {1,2} then the following propositions are valid:

1. SRy, (Tr1) A SRy,(Tre) = SRy(Tr).
2. SDy,(Tr1) A SDy,(Tr2) = SDy(Tr).
3. If Sva(T’I“j) for all j € {1,2} then ShKy, (Tr1) A Shy,(Tr2) = SK/(Tr).

4. If SDVJ(TI‘]) and pj(Vj) Cp(V)N Ej for all j € {1,2} then
STAGH(Tr1) A STALZ (Tro) = SIAQ(Tr). o

6.4.2 Generalized Zipping Lemma

Johnson and Thayer pioneered the technique of proving compositionality results with the
help of a zipping lemma [JT88]. They used this technique to prove that forward correctabil-
ity is preserved under arbitrary compositions. For this purpose, they introduced a zipping
lemma that is tailored to forward correctability and, hence, cannot be used for proving com-
positionality results for other information flow properties. However, the idea underlying this
proof technique is not limited to forward correctability. In the following, we will introduce a
generalized zipping lemma that can be used to prove compositionality results for a variety of
information flow properties (including, but not limited to, forward correctability).

Our generalized zipping lemma ensures that possible traces of system components can
be merged to possible traces of the overall system. If one views the visible events and the
confidential events in the component traces as the teeth of a zipper then merging the compo-
nent traces (i.e. the two sides of the zipper) corresponds to closing the zipper. For example,
if 7 € Tris a possible trace of the composed system and 7|g,.t; € Try, T|g,.t2 € Try are
possible traces of the components then 7 can be viewed as the part of a zipper that has been
closed already while ¢; and o can be viewed as the two sides of the part that is still open.
The generalized zipping lemma states sufficient conditions for merging ¢; and 2 to a trace
t € E* such that 7.t € Tr holds where 7.t can be viewed as the completely closed zipper.

136 CHAPTER 6: Compositionality Results for Information Flow Properties

Lemma 6.4.4 (Generalized zipping lemma). Let 7€ E*, A€ V*, t; € E}, and o€ EJ.

If T|E1.t1 € Try, T|E2.t2 € Tro,)\|E1 = t1|V, A‘EQ = t2|V, t1|c'1 = <>, t2|02 = <>, V; and
V, constitute a proper separation of V, and the composition of ES; and ES, is well behaved
then there is a trace t € E* with 7.t € Tr, t|y = A, and t|¢ = (). O

We only sketch the proof of the generalized zipping lemma, here. The detailed proof can be
found in Appendix D.1.

Proof Sketch (of Lemma 6.4.4). The proof starts with a case distinction on the four conditions
in the definition of a well-behaved composition (Definition 6.3.6).

Let condition 1 in Definition 6.3.6 be true. In this case, the two component traces ¢; and
to have only visible events in common, i.e. t1|g, = A|g,nE, = t2|r,- Hence, it is possible to
construct a trace t € E* by merging ¢; and o such that t|g, = t1, t|g, = t2, t|y = A, and
t|c = (). It follows from the definition of the composition operator that 7.t € Tr holds.

Let condition 2 in Definition 6.3.6 be true. In this case, the common subsequences of the
two component traces, i.e. t1|g, and t2|g,, differ only in events from Ny N E;. We construct a
trace ¢ by inserting the sequence t2|n,nc, into ¢ in a stepwise manner from left to right such
that ¢}|m, = to|m, and 7|g, .t} € Tr (applying BSIAJ!(Tr1) and total(ES,C1 N No) in the
process). Now, a trace t € E* can be constructed by merging t| and ts such that t|g, = t],
t|g, = to, tly = A, and t|c = () hold. It follows that 7.t € Tr also holds.

Let condition 3 in Definition 6.3.6 be true. The proof proceeds like in the previous case.

Let condition 4 in Definition 6.3.6 be true. In this case, the common subsequences of the
two component traces, i.e. t1|g, and t2|g,, might differ in events from (No N E1) U (N1 N Ey).
The proof proceeds by induction on the length of A where the base case follows immediately
from the assumptions. The step case is proved by a case distinction on the first event v in A:

1. veVinl¥h,nNV,y 2. veViNnVanVs, 3. veVi\ Ey 4. veVo\ Ey

In the first case, FCIA{)’I“FI(T'rl), total(ES1, C1 N Na), BSIAJE(Try), and total(ESy,Cy N Ni)
are applied in order to construct two component traces that can be merged to a trace t € E*
with 7.t € Tr, tjy = A, and t|c = (). The second case is symmetric to the first case. In
the third case, BSIA{,’;(Trg) and total(ESs, Co N Ny) are applied in order to construct a trace
t € E* with 7.t € Tr, t|y = A, and t|c = (). The fourth case is symmetric to the third case. O

The generalized zipping lemma provides a means to construct a possible trace of a composed
system from possible traces of its components. The construction leaves visible events and
confidential events (i.e. the teeth of the zipper) intact. In the lemma the trace A € V* can
be viewed as a specification of how visible events shall be ordered after the zipper has been
closed completely. Naturally, this specification must comply with the ordering of visible events
and confidential events in the component traces (expressed by the assumptions A|g, = t1]v
and A|g, = t2|y). The conclusion 7.t € Tr expresses that the zipper can, indeed, be closed
completely and the conclusion ¢y = A ensures that the ordering of visible events in ¢ is as
prescribed by A. That the teeth of the zipper (and their ordering) remain intact is ensured by
the conditions t|y = A\, Mg, = ti|v, A|lg, = ta|v, tlc = (), t1|c, = (), and t2|¢, = (). Overall,
this means ¢ can be viewed as the result of “closing” ¢; and ¢ without damaging the zipper.

6.4.3 Proof of the Compositionality Theorems for BSPs

We are now ready to prove our compositionality results for BSPs with the help of the general-
ized zipping lemma. Here, most of the proofs are only sketched. The corresponding detailed
proofs can be found in Appendix D.2.

6.4 Compositionality of BSPs 137

We first sketch the proofs of the compositionality results for backwards strict BSPs.

Proof Sketch (of Theorem 6.4.1). Each proposition is proved with the help of Lemma 6.4.4.
Proposition 1: Let B.(c).a € Tr be arbitrary. BSD is applied repeatedly on each compo-
nent trace in order to delete all confidential events in «a|g; (from right to left) and ¢. Then,
the generalized zipping lemma is applied to construct from these component traces a possible
trace B.a’ of the overall system that constitutes a correction of the perturbed trace .a.

Proposition 2: Let ¢ € C and B.a € Tr be arbitrary. BSD is applied repeatedly on
each component trace in order to make BSI applicable (deleting all confidential events in
a|g;). Then, BSI is applied on the resulting component traces in order to insert c. Finally,
the generalized zipping lemma is applied to construct from these component traces a possible
trace (3.(c).c of the overall system that constitutes a correction of the perturbed trace 3.(c).c.

Proposition 8: The proof proceeds like for proposition 2 where BSIA instead of BSI is
used to insert ¢ and the p-admissibility of ¢ is shown before applying BSIA.

Proposition 4: Let B.(c).(v).cc € Tr be arbitrary. BSD is applied repeatedly on each
component trace until all occurrences of confidential events on the right of v are removed. If
c is an event of the respective component then either BSD or FCD is applied (depending on
whether v is an event of the component) in order to delete ¢. Finally, the generalized zipping
lemma is applied to construct from these component traces a possible trace $.4.(v).o/ of the
overall system that constitutes a correction of the perturbed trace g.(v).c.

Proposition 5: Let ¢ € C and f.(v).a € Tr be arbitrary. BSD is applied repeatedly on
each component trace until all occurrences of confidential events on the right of v are removed.
If ¢ is an event of the respective component then either BSI or FCI is applied (depending on
whether v is an event of the component) in order to insert ¢. Finally, the generalized zipping
lemma is applied to construct from these component traces a possible trace S.(c).d.(v).a/ of
the overall system that constitutes a correction of the perturbed trace S.(v).c.

Proposition 6: The proof proceeds like for proposition 5 where BSIA (FCIA) instead of
BSI (FCI) is used to insert ¢ and it is explicitly shown that ¢ is p-admissible. O

Next, we sketch the proof of the compositionality result for the non-strict BSP R.

Proof Sketch (of Theorem 6.4.2). Let 7 € Tr be arbitrary. R is applied on each component
trace in order to remove all confidential events. Then, the generalized zipping lemma, is
applied to construct from these component traces a possible trace 7’ of the overall system
that constitutes a correction of the perturbed trace 7|yyun- O

Finally, we prove the compositionality results for strict BSPs in detail.

Proof (of Theorem 6.4.3). We prove each of the four propositions:

Proposition 1: Assume SRy, (Tr;) holds for j € {1,2}. From Theorem 3.5.6(1), we obtain
that Ry.un; 9,c; (1) holds. From Theorem 6.4.2(1), we obtain that Ry g c(7r) holds. The
preconditions of the theorem are satisfied because (VUN)NE;=(VNE;)U(NNE;)=V;UN;
holds. From Theorem 3.5.6(1), we conclude that SRy (7Tr) holds.

Proposition 2: Assume SDy, (Tr;) holds for j € {1,2}. From Theorem 3.5.6(2), we obtain
that BSDy,un,,c;(Trj) holds for all j € {1,2}. From Theorem 6.4.1(1), we obtain that
BSDynp,c(Tr) holds. From Theorem 3.5.6(2), we conclude that SDy(Tr) holds.

Proposition 3: Assume that SDy,(Trj) and Sk, (7Tr;) hold for j € {1,2}. From Theo-
rems 3.5.6(2) and 3.5.15(1), we obtain that BSDy.un;, ¢,c,(Tr;) and BSIy,,n; g.c; (Trj) hold.
From Theorem 6.4.1(2), we obtain that BSIyy g ¢(Tr) holds. From Theorem 3.5.15(1), we
conclude that STy (7Tr) holds.

138 CHAPTER 6: Compositionality Results for Information Flow Properties

Proposition 4: Assume SDy,(Trj) and SIA{Z(Trj) hold for j € {1,2}. From Theo-

. p; .
rems 3.5.6(2) and 3.5.15(2), we obtain BSDy,un; 9,c,(Tr;) and BSIAI/?UNj,(Z),Cj(TrJ') if p;(V; U
Nj,0,Cj) = pj(V;) holds. From Theorem 6.4.1(3), we obtain BSIAY ., (Tr) if p'(V U
N,0,C)=p(V) holds. Note that p};(V; U N;,0,Cj)=p;(V;) C p(V)NE;=p (VUN,0,C)NE;
holds for j € {1,2}. From Theorem 3.5.15(2), we conclude that SIAJ(Tr) holds. O

6.5 Compositionality of Information Flow Properties

Information flow properties are not preserved under composition, in general [McC87]. How-
ever, some are preserved under certain conditions. To know precisely which properties are
preserved under which conditions is a prerequisite for a modular information flow analysis of
complex systems. To this end, we present several compositionality theorems that each state
sufficient conditions for the preservation of some information flow property.

Based on the modular representation of information flow properties in MAKS (from Chap-
ter 4) and the compositionality theorems for BSPs (from Section 6.4), the wverification of
compositionality theorems for more complex information flow properties becomes a straight-
forward task. Firstly, one proves that the views for the components constitute a proper
separation of the view for the overall system (cf. Definition 6.3.2). Secondly, one verifies that
the composition of the components is well behaved wrt. these views (cf. Definition 6.3.6).
Thirdly, one verifies that the preconditions of the compositionality results for all BSPs from
which the information flow property is assembled are satisfied. Finally, one applies the com-
positionality results in order to conclude that all BSPs are preserved. Since all BSPs from
which the information flow property is assembled are preserved under composition, the prop-
erty itself is also preserved. This approach considerably simplifies the, otherwise, often quite
involved verification of compositionality results. We illustrate this simplicity by re-proving
several known compositionality results from the literature in this section.

From a different perspective, the representation of information flow properties in MAKS
and our compositionality theorems for BSPs, together, provide a basis for the derivation of
compositionality theorems for more complex information flow properties. To this end, one
collects the preconditions of the compositionality results for all BSPs from which the given
information flow property is assembled. Then one eliminates all conditions that follow from
the BSPs and the chosen form of composition. The remaining conditions become preconditions
of the derived compositionality theorem. We illustrate this possibility by deriving some novel
compositionality theorems in this section.

Proving known as well as novel compositionality results with our uniform approach also
leads to a classification of these results to be presented in Section 6.6.

Notational Conventions. In the rest of this chapter, we assume that L, L1, and Lo
denote the set of low-level events in F, Ey, and FE,, respectively (LN FEy = Ly and LN Ey =
Ly hold). We assume that H, H;, and Hy denote the set of high-level events in E, Ej,
and FE,, respectively (H N Ey = Hy; and H N E5 = Hy hold). Moreover, H = (L,0,H),
Hi = (L1,®, H), Ho = (LQ,@,HQ), HI = (L,H\ LHN I), HI; = (Ll,Hl\Il,Hl NI),
HIQ == (LQ, HQ\IQ, HQ N IQ), and PFC == (I,@,I) shall hold.

6.5 Compositionality of Information Flow Properties

139

6.5.1 Generalized Noninterference

Zakinthinos and Lee showed that, albeit GNI is not preserved under composition in general
[McC87], it is preserved if one restricts composition to a general cascade [ZL95].* Let us now
illustrate how easily this result can be verified with the help of MAKS and our composition-
ality results for BSPs.

Theorem 6.5.1. If GNI(ES,), GNI(ES;), and ES; is composed with ES; by a general cas-
cade then GNI(ES) holds. O

Proof. Let N; = H;\I; and C; = H;NI,; for i € {1,2}. Assume GNI(ES;), GNI(ES>), and E1N
E5; C O1 N Iz (general cascade). From the representation theorem for GNI (Theorem 4.2.3),
we obtain BSDyz,(Tr;) and BSIyz,(Tr;) for all i € {1,2}. From Example 6.3.4, we know that
the views HZ; and HZ, constitute a proper separation of the view HZ. The composition of
ES; and ES, is well behaved wrt. HZ; and HZ, (condition 3 in Definition 6.3.6) because

e NN Ey =0 follows from E; N Fy C O1 NIy and Ny NIy =0,
e total(ESy, Cy N Ny) follows from BSIyz,(Trs), and
e BSIAL (Trp) follows from BSIyz,(Trs) and Theorem 3.5.9

for an arbitrary function ps from views in F» to subsets of E5. Hence our compositionality the-
orem for BSPs (Theorem 6.4.1(1,2)) is applicable, and we obtain BSDyz(Tr) and BSIyz(Tr).
From the representation theorem for GNI (Theorem 4.2.3), we obtain GNI(ES). O

Inspired by the compositionality theorem for GNI, we now derive a corresponding compo-
sitionality theorem for our novel property GNI* that we introduced in order to avoid a
restriction to systems that are total in the set of high-level input events. Recall from Defini-
tion 4.2.7 that the difference between GNI* and GNI is that GNI* is assembled from BSD
and BSIAP¢ while GNI is assembled from BSD and BSI. Due to this difference, the condition
total(ES2,Co N N1) cannot be eliminated like in the proof of Theorem 6.5.1. Therefore, we
add the condition total(ES2,Is N Hy) (equivalent to total(ESy,Cy N Np)) as a precondition
to the derived theorem. This means, the second component in the cascade must be total in
the set of all high-level inputs that are also communication events. Thereby, we arrive at the
following novel compositionality theorem for GNT*.

Theorem 6.5.2. If GNI*(ES,), GNI*(ES,), total(ESy,I, N Hy), and ES; is composed with
ES5 by a general cascade then GNI*(ES) holds. O

Proof. Let N; = H;\ I; and C; = H; N I; for i € {1,2}. Assume GNI*(ES:), GNI*(ES2),
total(ESy, Is N Hy), and E; N Ey C O1 N I, (general cascade). From the representation of
GNI* in MAKS (Definition 4.2.7), we obtain that BSDyz,(Tr;) and BSIA;Z (Tr;) hold for
all 7 € {1,2}. From Example 6.3.4, we know that the views HZ; and HZ, constitute a proper
separation of the view HZ. The composition of ES; and ESs is well behaved wrt. HZ; and
‘HZ5 (condition 3 in Definition 6.3.6) because

e Ny N E; =0 follows from F1 N Ey C O1 N1y and Ny N Iy = (),

“For a state-based system model and an interleaving-based variant of generalized noninterference, this has
been shown in [McL94a)].

140 CHAPTER 6: Compositionality Results for Information Flow Properties

o total(ESy, Cy N N1) holds by assumption, and
o BSIALZ (Tra).

Hence, our compositionality theorem for BSPs (Theorem 6.4.1(1,3)) is applicable, and we
obtain BSDyz(Tr) and BSIALS(Tr). From the representation of GNI* in MAKS (Defini-
tion 4.2.7), we obtain GNI*(ES). O
The following two corollaries are immediate consequences of Theorem 6.5.2.

Corollary 6.5.3. If GNI*(ES,), GNI*(ES;), ESs is input total, and ES; is composed with

ES5 by a general cascade then GNI*(ES) holds. O
Corollary 6.5.4. If GNI*(ES;), GNI(ESs), and ES; is composed with ES; by a general
cascade then GNI*(ES) holds. O

6.5.2 Forward Correctability

Johnson and Thayer showed that FC is preserved under composition, in general [JT88].> Re-
strictiveness [McC87], which historically was the first composable information flow property,
thereby became obsolete because forward correctability is strictly superior to restrictiveness
in the sense that it is composable, logically less restrictive, and also easier to apply than
restrictiveness (cf. Section 4.2.2). We now demonstrate how this compositionality result can
be verified using our approach.

Theorem 6.5.5. If FC(ES;) and FC(ES;) then FC(ES) holds. <

Proof. For i € {1,2}, let V; = L;, N; = H;\ I;, C; = H;N I;, and T'; = (V;,A;,Y;) where
Vi=1I,A; =0 and T; = I;. Assume FC(ES;) and FC(ES5). From the representation
theorem for FC (Theorem 4.2.11), we obtain that BSDyz,(Tr;), BSIyz,(Tr:), FCD;}L(TW),
and FCI,};Z'IZ,(T”) hold for all ¢ € {1,2}. From Example 6.3.4, we know that the views HZ;
and HZ, constitute a proper separation of the view HZ. The composition of ES; and ES, is
well behaved wrt. HZ; and HZ, (condition 4 in Definition 6.3.6) because

o BSIAJY (Tri) and BSIAJ? (Trp) follow from BSIyz, (Tri), BSIyz,(Trz), Theorem 3.5.9;

total(ES1,C1 N Na) and total(ESy, Co N Ny) follow from BSIyz,(Tri) and BSIyz,(Tra);

FCIA{_’LII’I;I (Try) and FCIA?TI’I;2 (Tre) follow from FCI;}I1 (Try), FC’I{LQI2 (Try) and The-
orem 3.5.13;

ViNV, C ViUV, follows from Ey N Ey C (Il N 02) U (IQ ﬂ01), Vi=1; and Vy = Iy;
e C1N Ny C Ty and CoN Ny C Yy follow from Cy CI; =11 and Cy C Iy = To; and
e NNNANEy=0and NaNAsNE; =0 follow from A; =0 and Ay = 0

for arbitrary functions p; and ps from views in Ej to subsets of E; and from views in Es to
subsets of Fs, respectively. The remaining side conditions of our compositionality theorem
for BSPs (Theorem 6.4.1(4,5)) are also fulfilled, and we obtain BSDyz(Tr), BShyz(Tr),
F CD;%C(TT), and FCI ;gC(Tr). From the representation theorem for FC (Theorem 4.2.11),
we obtain FC(ES). O

5In [FG95], Focardi and Gorrieri show that lts-FC, i.e. their variant of forward correctability, is composable.

6.5 Compositionality of Information Flow Properties 141

Inspired by the compositionality theorem for F'C, let us derive a corresponding compositional-
ity theorem for our novel property FC*. Recall that FC* is more liberal than FC in the sense
that it does not require that systems must be input total. In the representation of FC*, this
is reflected by the use of BSIAPC¢ and FCIAPC ¢ instead of BSI and FCITF¢, respectively.
Due to this difference in the representation, there are two conditions that cannot be elimi-
nated like in the proof of Theorem 6.5.5, namely total(ES;,C1 N N2) and total(ESa, Co N Ny).
Therefore, we add the conditions total(ES1, Iy N Hs) and total(ESs, Io N Hy) as preconditions
to the derived theorem. We arrive at the following novel compositionality theorem.

Theorem 6.5.6. If FC*(ESl), FC*(ESQ), tOtG,l(ESl,Il N HQ), and tOtal(ESQ,IQ N Hl) then
FC*(ES) holds. <&

Proof. For i € {1,2}, let V; = L;, N; = H; \ I;, and C; = H; N I;, and T; = (V;,4;,7T,)
where V; = I;, A; = 0 and T; = I;. Assume FC*(ES,), FC*(ESs), total(ESy,I; N Hy), and
total(ESy, I N Hy). From the representation of FC* in MAKS (Definition 4.2.13), we obtain
that BSD'HIi(Tf‘i), BSIA,ZCL(T’I‘Z), FCD,]I_‘L?Z—Z(T’I‘Z), and FCIA;_)L%’ZD (Tri) hold for all 7 € {1,2}.
From Example 6.3.4, we know that the views HZ; and HZ> constitute a proper separation
of the view HZ. The composition of ES; and ES; is also well behaved wrt. HZ; and HZs
(condition 4 in Definition 6.3.6) because

o BSIAJS (Tr) and BSIALS (Trs) hold;

total(ESy,C1 N N3) and total(ESz,Co N N1) hold by assumption;

o FCIALG! (Tr) and FCIASS!? (Try) hold;

ViNV, C ViUV, follows from Ey N Ey C (Il N 02) U (IQ N 01), Vi=1; and Vy = Iy;
e 1NNy CYy and Cy NNy C Yy follow from C7 C I; = Y7 and Co C I = To; and
e NiNAINEy=0and NoNAyN E; =0 follow from Ay = 0 and Ay = 0.

The remaining side conditions of our compositionality theorem for BSPs (Theorem 6.4.1(4,6))
are also fulfilled, and we obtain BSDyz(Tr), BSIALS(Tr), FOD,5°(Tr) and FCIA;O{CI’PF °(Tr).
From the representation of FC* in MAKS (Definition 4.2.13), we obtain FC*(ES). O

6.5.3 Nondeducibility for Outputs

Guttman and Nadel showed that NDO is preserved under composition if low-level user inputs
are not connected [GN88|. Since NDO considers all high-level events as confidential (rather
than only high-level inputs), the (original) proof of its compositionality result is of a different
flavor than the ones for generalized noninterference or for forward correctability. We now
show how this theorem can be verified using our uniform approach.

Theorem 6.5.7. Let UIC I, Ul C I, and Ul C I5 be the sets of user inputs for ES, ES;,
and ES,, respectively (Ul = UL U UL holds). Moreover, let ES, ES;, and ESs be input total.
If NDO(ES,), NDO(ES3), UL N Ey = (), and UL N Ey = () then NDO(ES) holds. <

142 CHAPTER 6: Compositionality Results for Information Flow Properties

Proof. Let N; = () for i € {1,2}. Assume NDO(ES,), NDO(ES;), ULNEs =, and ULNE; =
(. From the representation theorem for NDO (Theorem 4.2.16), we obtain that BSDy, (Tr;)
and BSIA;:Z% (Tr;) hold for all 7 € {1,2}. From Example 6.3.3, we know that the views H;
and Hy constitute a proper separation of the view H. The composition of ES; and ES; is well
behaved wrt. H; and 5 (condition 1 in Definition 6.3.6) because NyNFEy =) and NoNE; = ()
follow from N; = () and Ny = (. The side conditions of Theorem 6.4.1(3) are also fulfilled:
pun (Hl) = H1U(Llﬂ UIl) = (HﬂEl)U(Lﬂ UIﬂEl) = (HU(Lﬂ U]))ﬂEl = pU](H)ﬂEl (where
UIN E, = UL follows from the assumption UL N E; = 0) and pyg, (H2) = HoU(Le N UL) =
(HNE)U(LNUINEy) = (HU (LN UD)NEy = pyi(H) N Eo (where UIN By = Ul
follows from the assumption UL} N E; = (). Hence, our compositionality theorem for BSPs
(Theorem 6.4.1(1,3)) is applicable, and we obtain BSDy(Tr) and BSIAL"(Tr). From the
representation theorem for NDO (Theorem 4.2.16), we obtain NDO(ES). a

The derivation of a corresponding compositionality theorem for our novel property NDO*
is quite straightforward. Recall that the representation of NDO* in MAKS is identical to
the one for NDQO. The only difference between the two properties is that NDO requires that
systems are input total while NDO* does not. Since the input totality assumption is not used
in the proof of Theorem 6.5.7, this proof also justifies the following theorem.

Theorem 6.5.8. Let UIC I, UL C I, and Ul C I5 be the sets of user inputs for ES, ES;,
and ESs, respectively (UI = UL U UL holds).
If NDO*(ES;), NDO*(ESs), UL N Ey =, and UL N E5 = () then NDO*(ES) holds. <

Proof. This proof is along the same lines as the proof of Theorem 6.5.7. m

6.5.4 Noninference

For a state-based system model, McLean showed that noninference is preserved under com-
position [McL94a].6 The following theorem recasts this result for the system model of event
systems. We verify the theorem based on the representation of NF in MAKS and our com-
positionality theorems for BSPs.

Theorem 6.5.9. If NF(ES;) and NF(ES2) then NF(ES) holds. &

Proof. Let N; = () for ¢ € {1,2}. Assume NF(ES;) and NF(ES;). From the representation
theorem for NF (Theorem 4.2.20), we obtain that Ry, (7r;) holds for all i € {1,2}. From
Example 6.3.3, we know that the views #; and Ho constitute a proper separation of the
view H. The composition of ES; and ES, is well behaved wrt. H; and Hs (condition 1 in
Definition 6.3.6) because Ny N Ey = () and Ny N E; =) follow from Ny = () and Ny = (). We
obtain from our compositionality theorem for BSPs (Theorem 6.4.2(1)) that Ry (7r) holds.
From the representation theorem for NF' (Theorem 4.2.20), we obtain NF(ES). 0

50’Halloran already presented a compositionality result for noninference [O’H90]. However, his definition
of noninference differs from the one used to date (cf. Section 4.2.4). Moreover, given that nondeducibility on
strategies, SNNI, and may-noninterference are equivalent to noninference (cf. Section 4.2.4), Millen’s compo-
sitionality result for nondeducibility on strategies [Mil90], Focardi and Gorrieri’s compositionality result for
SNNI, and Schneider’s compositionality result for may-noninterference [Sch01] are also related.

6.5 Compositionality of Information Flow Properties 143

6.5.5 Generalized Noninference

For a state-based system model, McLean derived a theorem that implies that generalized
noninference is preserved under product [McL94a, Theorem 3.2]. The following theorem
recasts this result for the system model of event systems.

Theorem 6.5.10. If GNF(ES,), GNF(ES,), and ES; is composed with ES; by a product
then GNF(ES) holds. o

Proof. Assume GNF(ES,), GNF(ES;), and E1 N E5 = () (product). From the representation
theorem for GNF' (Theorem 4.2.22), we obtain that Ryz,(Tr;) holds for all ¢ € {1,2}. From
Example 6.3.4, we know that the views HZ; and HZ, constitute a proper separation of the
view HZ. The composition of ES; and ES; is well behaved wrt. HZ; and HZ, (condition 1 in
Definition 6.3.6) because Ny N Ey = () and Ny N Ey = () follow from E; N E = (). We obtain
from our compositionality theorem for BSPs (Theorem 6.4.2(1)) that Ryz(7r) holds. From
the representation theorem for GNF (Theorem 4.2.22), we obtain GNF(ES). O

A limitation to product (as in Theorem 6.5.10 above) is a severe restriction because the
components cannot communicate with each other. McLean proposed two alternative com-
positionality results for generalized noninference that are more liberal wrt. inter-component
communication, namely that generalized noninference is preserved under cascade if the first
component satisfies noninference and that generalized noninference is preserved under cascade
if the second component satisfies generalized noninterference. The following two theorems re-
cast these results for event systems.

Theorem 6.5.11. If GNF(ES;), GNF(ESs2), NF(ES;), and ES; is composed with ES; by a
general cascade then GNF(ES) holds. O

Proof. Let Vi = Ly, N1 = @, Ci. = H, V, = Ly, Np, = Hy \ Iy, and Cy = Hy N Is.
Assume GNF(ES;), GNF(ES,), NF(ES;), and E1 N E; C O1 N Iz (general cascade). From
the representation theorems for NF' (Theorem 4.2.20) and GNF (Theorem 4.2.22), we obtain
Ry, (Tr1) and Ryz,(Tre). The views H; and HZ, constitute a proper separation of HZ
because LﬂEl = Ll, LﬂEQ = LQ, HﬂIﬂEl = HlﬂI g Hl, HﬂIﬂEQ = HQﬂIﬂEQ g HQﬂIQ,
and) N (Hy \ Iz) = 0. The composition of ES; and ES; is well behaved wrt. H; and HZ,
(condition 1 in Definition 6.3.6) because N1 NEy = () and NoNE; = () follow from Ny = () and
E\NEy C O1N1I;. We obtain from our compositionality theorem for BSPs (Theorem 6.4.2(1))
that Ryz(Tr) holds. From the representation theorem for GNF (Theorem 4.2.22), we obtain
GNF(ES). O

Theorem 6.5.12. If GNF(ES;), GNF(ES;), GNI(ESs), and ES; is composed with ESs by
a general cascade then GNF(ES) holds. O

Proof. Let N; = H; \ I; and C; = H; N I; for 1 € {1,2}. Assume GNF(ES,), GNF(ES,),
GNI(ES,), and E1NEy C O1NI;, (general cascade). From the representation theorems for GNF'
(Theorem 4.2.22) and GNI (Theorem 4.2.3), we obtain Ryz, (Tr1), Ryz,(Tr2), BSDyz,(Trs),
and BSIyz,(Tr2). From Example 6.3.4, we know that the views HZ; and HZ, constitute a
proper separation of the view HZ. The composition of ES; and ES; is well behaved wrt. HZ;
and HZ, (condition 3 in Definition 6.3.6) because

L] N2 ﬂEl = @ follows from E1 ﬂEQ g 01 ﬂIQ and N2 ﬂIQ = @,

144 CHAPTER 6: Compositionality Results for Information Flow Properties

o total(ESy, Cy N Ny) follows from BSIyz,(Tr2), and
e BSIALG (Try) follows from BSkyz,(Tr;) and Theorem 3.5.9

for an arbitrary function ps from views in Ey to subsets of F;. Hence, our compositionality
theorem for BSPs (Theorem 6.4.2(1)) is applicable, and we obtain Ryz(Tr). From the rep-
resentation theorem for GNF (Theorem 4.2.22), we obtain GNF(ES). O

Note that Theorem 6.5.11 holds for similar reasons as Theorem 6.5.10, namely, corrections in
one component cannot have an effect on the other component and vice versa (i.e. Ny N Ey =
() = NoNE; holds). However, this is ensured by different means: by restricting composition to
product (in Theorem 6.5.10) and by restricting composition to general cascade in combination
with requiring NF' to hold for the first component (in Theorem 6.5.11). In contrast to this,
Theorem 6.5.12 holds for a different reason. Namely, corrections in the first component of a
cascade can cause perturbations for the second component (i.e. NyNEy # ()) and it is possible
to correct these perturbations (i.e. NoNE; = 0, total(ESz, CyNN1), and BSTA}? (Trp) hold).
Differences and similarities of this kind will be investigated in more detail in Section 6.6, where
we also present a classification of compositionality results.

6.5.6 Separability

McLean showed that separability is preserved under composition, in general [McL94a]. Sepa-
rability is a pretty restrictive property because it prevents information flow between the high
level and the low level in both directions. In other words, it logically simulates a physical air-
gap between the two levels (cf. Section 4.2.6). Hence, it is quite natural that this property is
preserved under composition. Let us recast this result for the system model of event systems
and let us demonstrate how it can be verified with our approach.

Theorem 6.5.13. If SEP(ES;) and SEP(ES) then SEP(ES') holds. <O

Proof. Let N; = 0 for i € {1,2}. Assume SEP(ES;), and SEP(ESs). From the representation
theorem for SEP (Theorem 4.2.24), we obtain that BSDy,(Tr;) and BSIA77(Tr;) hold for
all 7 € {1,2}. From Example 6.3.3, we know that the views 7{; and #s constitute a proper
separation of the view H. The composition of ES; and ES> is well behaved wrt. H1 and Ho
(condition 1 in Definition 6.3.6) because N1 N Ey = () and NoNE; = () follow from Ny = () and
N2 = (. The side conditions of Theorem 6.4.1(3) are also fulfilled: pc(H1) = H1 = HNE; =
pc(H)NE; and pc(He) = Hy = HNEy = pc(H) N Es. Hence, our compositionality theorem
for BSPs (Theorem 6.4.1(1,3)) is applicable, and we obtain BSDy(Tr) and BSIALC(Tr).
From the representation theorem for SEP (Theorem 4.2.24), we obtain SEP(ES). 0

6.5.7 Perfect Security Property

Zakinthinos and Lee [ZL97] introduced the perfect security property as an alternative to
separability that is less restrictive wrt. non-critical information flow from the low level to
the high level (cf. Section 4.2.7). They also showed that the perfect security property is a
composable property. We now show how easily this result can be verified using our approach.

Theorem 6.5.14. If PSP(ES;) and PSP(ES;) then PSP(ES) holds. O

6.6 A Classification of Compositionality Results

145

Proof. Let N; = 0 for i € {1,2}. Assume PSP(ES;), and PSP(ESs). From the representation
theorem for PSP (Theorem 4.2.26), we obtain that BSDy, (Tr;) and BSIA;_’L’?(T)”Z-) hold for
all 7 € {1,2}. From Example 6.3.3, we know that the views H; and #s constitute a proper
separation of the view H. The composition of ES; and ESs is well behaved wrt. Hq and Ho
(condition 1 in Definition 6.3.6) because N1 N Ey = () and NoNE; = § follow from Ny = () and
Ny = (). The side conditions of Theorem 6.4.1(3) are also fulfilled: pg(H1) = E1 = ENE; =
pe(H)NEy and pg(He) = Ey = ENEy = pr(H) N Ey. Hence, our compositionality theorem
for BSPs (Theorem 6.4.1(1,3)) is applicable, and we obtain BSDy(Tr) and BSIALF(Tr).
From the representation theorem for PSP (Theorem 4.2.26), we obtain PSP(ES). O

This concludes the illustration of our approach to verifying compositionality theorems for
information flow properties. We are now ready to elaborate a more structured perspective on
the derived results.

6.6 A Classification of Compositionality Results

Verifying a given information flow property means showing that every modification of a pos-
sible trace resulting from a perturbation can be corrected to a possible trace as permitted
by this property. During the analysis of complex systems, perturbations of the overall traces
are reduced to perturbations of the component traces, these local perturbations are corrected
independently for each component, and a possible trace of the overall system is constructed
from the corrected component traces such that it constitutes a correction of the initial per-
turbation. The key problem in this process is that local corrections of a perturbation for
one component may have an effect on other components. This can make it difficult, or even
impossible, to construct a valid trace of the overall system from the component traces. For
example, if two systems ES; and ESs that each satisfy generalized noninference are composed
by a proper cascade then correcting the removal of all high-level inputs in the trace of the
first component may involve the insertion of high-level outputs. Since high-level outputs of
ES; are high-level inputs of ESs, this means that the trace of ESs is perturbed by insert-
ing high-level inputs and it is not ensured that this perturbation can be corrected because
generalized noninference ensures only that the remowval of high-level inputs can be corrected.
Hence, generalized noninference is not amenable to a modular information flow analysis.”
There are three solutions to the problem that inter-component communication might in-
terfere with a modular information flow analysis. The first solution is to ensure for each
component that local corrections do not cause perturbations for the respective other com-
ponent or, in other words, that both components are polite to each other. This means that
the local corrections in each component are restricted to events not used for inter-component
communication or, more formally, that Ny N Fs = () and Ny N F; = () hold. The second solu-
tion is to tackle the problem of inter-component communication in the local information flow
analysis of a single component. More specifically, this means that corrections in this compo-
nent do not cause perturbations for the other component (like in the first solution) and that
this component can correct all perturbations that are caused by the other component (unlike
in the first solution). In other words, there is a component that is polite as well as tolerant to
the other component. Formally, this means that either Ny N Ey = () or NoN E; = () must hold
in addition to conditions that ensure the possibility to locally correct perturbations caused by

"In fact, generalized noninference is not preserved under cascade, in general [Zak96].

146 CHAPTER 6: Compositionality Results for Information Flow Properties

the other component. The third solution is to not constrain the local corrections permitted in
the components (neither Ny N Fy = @ nor Ny N E; = () holds) but rather to ensure that each
component can correct all perturbations caused by the respective other component. In other
words, each component is tolerant wrt. the effects of corrections in the other component.

Interestingly, the justification for each compositionality theorem that we have presented
in Section 6.5 is based on one of these three solutions. This leads to three classes of composi-
tionality theorems where theorems in the same class can be justified with the same argument,
which means that they hold for a similar reason. In the remainder of this section, we classify
all compositionality theorems from Section 6.5 and discuss the similarities and differences
between the theorems within each class.

Theorems for the Composition of Polite Components (p/p). Compositionality the-
orems in this class avoid interferences of inter-component communication with a modular
information flow analysis by restricting the permitted corrections in both components. That
is, both components are forced to be polite to each other wrt. their connections. Preventing
local corrections in one component from affecting the other component ensures that the local
information flow analyses of the components do not interfere with each other.

We have identified three approaches to ensure that Ny N Ey = () and No N E; = () hold.

The first approach is to restrict composition to product. Since Ey N Ey = () holds for
composition by product, Ny N Fy =) and Ny N E; = () also hold. An example for a theorem
based on this approach is the preservation of GNF under product (cf. Theorem 6.5.10).

The second approach is to choose local views for the components that consider each event
either as visible or as confidential (i.e. Ny = () = Ny holds). For a two-level security policy, this
means that all high-level events are confidential (and not, e.g., only high-level input events)
or, in other words, the view H = (L,(, H) must be used. The compositionality results for
NDO (cf. Theorem 6.5.7), for NDO* (cf. Theorem 6.5.8), for NF' (cf. Theorem 6.5.9), for SEP
(cf. Theorem 6.5.13), and for PSP (cf. Theorem 6.5.14) all follow this approach.

The third approach is to ensure one of Ny N Ey =) and No N E; = () by restricting
composition and to ensure the other condition by restricting the view of one component. For
example, the result that GNF'is preserved under general cascade if the first component satisfies
NF (cf. Theorem 6.5.11) follows this approach. Namely, the restriction to general cascade
ensures that NoNE; = () holds (follows from E1NEy C O1NIy and HZy = (Lo, Ho\ Iz, HoNIy))
and NF(ES;) ensures that N1 N Ey = () holds (follows from H1 = (L1, 0, Hy)).

Compositionality Theorems for a Component that is Polite and Tolerant (pt).
Compositionality theorems that belong to this class reduce the global problem that inter-
component communication might interfere with a modular information flow analysis to the
following local problem of a single component: firstly, corrections in this component may not
cause perturbations for the other component and, secondly, it must be possible to correct
all perturbations that are caused by the other component, i.e. Ny N Fy =0 or NoNE; = ()
must hold. That is, this component must be polite to the other component wrt. its own
corrections and, at the same time, it must be tolerant wrt. the effects of corrections in the
other component. To simplify the presentation, let us focus on the case No N E; = (.

The condition NoNE; = () can be established by restricting composition to general cascade
(implies 3 N Ey C O1 N I,) and to choose a view for the second component such that Ny
contains no input events, i.e. I;N Ny = (). That it is possible to correct all perturbations in ESs

6.6 A Classification of Compositionality Results 147

that are caused by corrections in ES] is ensured by requiring an appropriate information flow
property for ES5. Since corrections in FES; may involve the deletion of occurrences of events
in Ny as well as their insertion, this information flow property must ensure that it is possible
to correct the insertion as well as the deletion of events in N1 N Cy for ESy. This is the case
if BSDy,(Trs), total(ESz, Co N N1), and BSIAJ?(Trp) hold. Examples for compositionality
theorems that are based on this approach are the preservation of GNI under general cascade
(cf. Theorem 6.5.1) and the preservation of GNI* under general cascade (cf. Theorem 6.5.2).
Another compositionality result based on this approach is that GNF'is preserved under general
cascade if GNI(ES;) holds (cf. Theorem 6.5.12).

In analogy to the first class of compositionality theorems, a natural alternative to satisfy
No N E; = () would be to limit the view of FES such that Ny = () holds. In our presentation,
this possibility is quite obvious but we are not aware of any known compositionality results
that follow these lines. However, using our approach, the derivation of a compositionality
theorem that can be justified along these lines becomes a straightforward task.

Theorem 6.6.1. If GNI(ES;), SEP(ES>), and total(ESy, Hy) then GNI(ES) holds. O

PT‘OOf. Let N1 = Hl\Il, 01 == H1 ﬂIl, N2 == @, and C2 == HQ. Assume GNI(ESl), SEP(ESQ),
and total(ES2, Hz). From the representation theorems for GNI (Theorem 4.2.3) and SEP
(Theorem 4.2.24), we obtain BSDuz,(Tr1), BSkyz,(Tr1), BSDy,(Trs), and BSIALS (Try).
From the proof of Theorem 6.5.11, we know that the views HZ; and Ho constitute a proper
separation of the view HZ. The composition of ES; and ESy is well behaved wrt. HZ; and
Ho (condition 3 in Definition 6.3.6) because

e Ny N E; = () follows from Ny = (),
e total(ESy, Cy N N7) holds by assumption, and
o BSIAJZ (Try) follows from BSDy,(Trp) and BSIALS (Trs).

BSDyy, (Try) implies BSDyz,(Trs) (cf. Theorem 3.5.2) and BSIA,S (Trp) and total(ESs, Hy)
imply BSIyz,(Tr2). Hence, our compositionality theorem for BSPs (Theorem 6.4.1(1,2)) is
applicable, and we obtain BSDy7(Tr) and BSIyz(Tr). From the representation theorem for
GNI (Theorem 4.2.3), we obtain GNI(ES). O

Theorems for the Composition of Tolerant Components (t/t). Compositionality
theorems in this class require that it is possible to correct for each component the perturbation
caused by the respective other component. That is, each component must be tolerant wrt. the
effects of corrections in the other component. For a two-level security policy, this means, on
the one hand, that it must be possible to locally correct the insertion and deletion of high-level
communication events in traces of ES, that are caused by local corrections in ES; and, on the
other hand, that it must be possible to locally correct the insertion and deletion of high-level
communication events in traces of ES; that are caused by local corrections in ESs. Moreover,
it must be ensured that the overall process of locally correcting perturbations terminates.

This can be achieved by requiring suitable instances of BSD, BSIA?, and FCIA?" for
each component. The compositionality theorems for FC (cf. Theorem 6.5.5) and for FC*
(cf. Theorem 6.5.6) are based on this approach.

148 CHAPTER 6: Compositionality Results for Information Flow Properties

Insights and Implications. Note that compositionality theorems may belong to the same
class although they impose different restrictions on the form of composition. For example, the
class (p/p) contains compositionality theorems that restrict composition to product, theorems
that restrict composition to general cascade, and theorems that permit general composition.
Our classification differs from previous ones (e.g. the one in [McL94a]) as we do not classify
merely according to restrictions on the form of composition but rather according to the effect
of all constraints (including restricted forms of composition, the choice of views with N = (),
and the use of restrictive information flow properties). This reveals similarities between
previously unrelated compositionality results: for example, GNF is preserved under product
(cf. Theorem 6.5.10) for reasons similar to why the perfect security property is preserved
under general composition (cf. Theorem 6.5.14).
Our classification of compositionality theorems is summarized in Table 6.1.

class | ? reserved side conditions theorem
property
(p/p) NDO low-level user inputs must not be connected 6.5.7
(p/p) | NDO* | low-level user inputs must not be connected 6.5.8
(p/p) NF none 6.5.9
(p/p) GNF composition restricted to product 6.5.10
(p/p) GNF composition restricted to general cascade, ES; satisfies NF | 6.5.11
(p/p) SEP none 6.5.13
(p/p) PSP none 6.5.14

(pt) GNI composition restricted to general cascade 6.5.1
(pt) GNI ES, satisfies SEP, total(ES2, C?) 6.6.1
(pt) GNTI* composition restricted to general cascade, total(ESy, I;NHy) | 6.5.2
(pt) GNF composition restricted to general cascade, ES; satisfies GNI | 6.5.12

/t) FC none 6.5.5
/t) FC* total(E'Sl, Il N HQ), total(E'Sg, I2 N Hl) 6.5.6

Table 6.1: Classification of known compositionality results

Alternative Approaches to Derive Compositionality Theorems. In Section 6.5, we
have verified compositionality theorems for complex information flow properties with the help
of the modular representations of these properties in MAKS and our compositionality theo-
rems for BSPs. Based on these theorems, further compositionality theorems can be derived
by exploiting the taxonomy of information flow properties (cf. Section 4.3). For example,
since GNI is preserved under general cascade and since SEP(ESs) and total(ESy, Ho N Io)
together imply GNI(ES,), we obtain the following corollary.

Corollary 6.6.2. If GNI(ES,), SEP(ES,), and total(ES2, HyN I5) hold and ES; and ESs are
composed by general cascade then GNI(ES) holds. <

Obviously, numerous further compositionality theorems could be obtained along these lines.

8 A similar result has also been presented in [McL94a).

6.7 A Novel Composable Information Flow Property

149

Another possibility is to replace the form of composition in a compositionality theorem
by a more restrictive form of composition. Since every product is also a general cascade
(cf. Theorem 6.2.8), we obtain, for example, the following corollary.

Corollary 6.6.3. If GNI(ES;), SEP(ESs), and total(ESy, Hy N I2) hold and ES; and ES; are
composed by product then GNI(ES) holds. O

Given the results of the current chapter and of Chapter 4, the above results are not very
surprising. In the next section, we obtain a more interesting novel compositionality theorem.

6.7 A Novel Composable Information Flow Property

In this section, we show that there is an information flow property that implies general-
ized noninterference, that is less restrictive than Johnson and Thayer’s forward correctabil-
ity [JT88], and that is preserved under arbitrary compositions. The existence of such an
information flow property comes somewhat at a surprise because the possibility to further
improve this line of composable information flow properties had remained unnoticed since
the advent of forward correctability? and also because a statement by Zakinthinos and Lee
suggested that no further improvement in this line of properties would be possible [ZL96]
(cf. Remark 6.7.7).

6.7.1 Weakened Forward Correctability

Let us recall the representation of forward correctability in MAKS from Theorem 4.2.11:
FC(ES) < BSDyz(Tr) A BShyz(Tr) A FCD5°(Tr) A FCIL5C(Tr) .

Based on this modular representation, we analyze how the restrictions of FC can be re-
laxed while retaining compositionality as well as the implication of GNI. Since GNIT implies
BSDyz(Tr) and BSIyz(Tr) (cf. Theorem 4.2.5), the first two conjuncts in the representa-
tion of FC cannot be discarded. However, the conjunction BSDyz(Tr) and BSIyz(Tr) does
not constitute an information flow property that is composable in general and, therefore,
additional BSPs must be added. Let us re-investigate the proof of Theorem 6.5.5 (compo-
sitionality of FC) in order to determine which other BSPs are needed. In this proof, the
fact that the third conjunct in the representation of F'C holds for each of the components
(ie. FCD,% (Tri) and FCD,2 (Try) holds for T'y = (I1,0,1;) and Ty = (I3,0, I)) is only
used in the argument that F C’D;_EC(T) holds for the overall system (where I'rc = (1,0,1)).
This means, the third conjunct is not needed for the preservation of BSD, BSI, or FCI'#c
and, consequently, it can be discarded without loosing compositionality. In contrast to this,
the fourth conjunct (namely FCI ;EC(Tr)) cannot be discarded. This conjunct is used in the
argument that the composition of ES; and ES; is well behaved wrt. HZ; and HZs (cf. Def-
inition 6.3.6). However, it is possible to relax the parameters of FCI'F¢ without loosing
compositionality. More specifically, A = @) can safely be relaxed to A = E \ (I U O). This
is because condition 5(e) in the definition of a well-behaved composition does not imply that

“Recall that forward correctability itself is an improvement of McCullough’s restrictiveness [McC87] in the
sense that it is less restrictive, that restrictiveness is an improvement of generalized noninterference [McC87]
in the sense that it is composable, and that generalized noninterference is an improvement of Sutherland’s
nondeducibility [Sut86] in the sense that it is a better security property (also cf. Sections 4.2.1 and 4.2.2).

150 CHAPTER 6: Compositionality Results for Information Flow Properties

the sets A1 and Ay must be empty. Rather, only NyNA;NFy = 0 and NoNAsNE; = () need

to hold. These conditions are satisfied, e.g., if A; and Ay contain only internal events, i.e. if

Ay =E;\ ([1U01) and Ay = Ey \ (I2U O2) hold. This means FCI Fc(Tr)) can be replaced

by FCI;%VF °(Tr)) (where T'wre = (I, E\ (I UO),I)) without loosing compositionality.'’
This results in the following definition of weakened forward correctability.

Definition 6.7.1 (Weakened forward correctability). Let I'yre= (I[,E\ (IUO),I).
WFC(ES) = BSDyz(Tr) A BShyz(Tr) A FCIL¥°(Tr) . <

6.7.2 Integration into Taxonomy

In comparison to forward correctability, weakened forward correctability does not require any
instance of FCD. Moreover, it requires FCI {&V FC(Tr) instead of FCI ;%C(Tr).

The following theorem shows that weakened forward correctability implies generalized
noninterference and that weakened forward correctability is implied by forward correctability.

Theorem 6.7.2 (Ordering information flow properties). The following implications
are valid for every event system ES:

e WFC(ES) = GNI(ES)
e FC(ES) = WFC(ES) o

Proof. The two implications follow immediately from Definition 6.7.1 and Theorems 4.2.3,
4.2.11, and 3.5.14. O

The following example demonstrates that weakened forward correctability is indeed strictly
less restrictive than forward correctability in the sense that there are systems for which
weakened forward correctability holds but for which forward correctability does not hold.

Example 6.7.3. Let SESwrc = (Swre, S0, Ewre, Iwrc, Owre, Twre) be the state-event
system with Swrc = {so, s1, 52, 53,54}, Iwrc = {hi, li}, Owrc = {ho,lo}, Ewpc = Iwrc U
prc, and

(so, hi, $1), (80, ho, 81), (S0, li, $4),
(s1, hi, s1), (s1, ho, s1), (s1, li, s2),
Twre = (s2, hi, s2), (82, ho, s2), (s2, li, s2), (s2, lo, s3),
(83, hi, s3), (3,1, s3),
(84, hi, 84), (84, ho, 84), (84, li, 84)

The transition relation T'ywre is also viewed in Figure 6.4. For notational convenience we use
ES and Tr as abbreviations of ESsgs,, .. and Trsgs,, .., respectively (i.e. the event system
and the set of traces induced by SESwrc)-

Let H = {hi,ho} and L = {li,lo}. For HZ = ({li,lo},{ho},{hi}), we have BSDyz(Tr),
BSIyz(Tr) and FCI 751”’ FO(Tr) (as will be demonstrated in Example 6.7.5). Hence, WFC(ES)
holds. However, we do not have FC(ES) because FCD;%C(T’I“) does not hold (where I'p¢ =
(I1,0,1)): For 7 = (hi.li.lo), we have 7 € Tr but, after deleting ki in 7, the only possible
correction to a possible trace in Tr that yields the same observation is (ho.li.lo). However,

this correction requires the insertion of ho before li, a correction that does not comply with
the requirements of FCD ., r xe(Tr). O

""Recall from Theorem 3.5.14(1) that FCI FFc(Tr) implies FC’IFWFC(Tr).

6.7 A Novel Composable Information Flow Property 151

s s i 52 \34
OO ©

Figure 6.4: Transition relation from Example 6.7.3

6.7.3 Unwinding Theorem

Since less restrictive properties are easier to verify, weakened forward correctability seems
to be, in general, preferable to forward correctability. Verification techniques for weakened
forward correctability can be easily obtained by following the approach proposed in Chapter 5.

Theorem 6.7.4 (Unwinding theorem). Let SES = (S,s¢, E,I,0,T) and X1, X9, X3 C
S x S. If Irfyz(T, x1), lrbyz(T, x2), fcerWFC(T,xg), oscyz(T, X1), oseyuz(T, X2), and
oscyz(T, X3) hold then WFC(ESsgs) also holds. &

Proof. The theorem follows from Definition 6.7.1 and Theorem 5.3.1(1,2,5). O

Unlike in the unwinding theorem for forward correctability (cf. Theorem 5.5.5), the unwinding
condition ferf is not required to hold and, moreover, instead of fcrbqgfc(T, X4), the less restric-
tive condition fcrb{IW FC(T, x3) is required. Consequently, weakened forward correctability is
not only a strictly less restrictive information flow property than forward correctability but
also has less restrictive unwinding conditions.

Example 6.7.5. Based on Theorem 6.7.4, we are now ready to prove our claim from Exam-
ple 6.7.3, i.e. that WFC(ES) holds. For notational convenience, we abbreviate Swre, Ewrc,
Iwrc, Owre, and Twre in this example by S, E, I, O, and T, respectively.

Let x,x’ C S x S be two relations that are defined as the smallest reflexive relations
satisfying s1 X sg, so X' s1, and s4 X' s9. For these relations, Irfy7(T, x), lrbyz(T,x’),
ferb PWFC(T x'), oscyz(T, X), as well as oscyz (T, x') hold.

To prove that Irfy (T, x) and Irbyz(T, x') hold is a straightforward task because hi is
the only confidential event and, except for (s, hi,s1) € T, occurrences of hi leave the state

unchanged (i, x' are reflexive). For ferb,, } L wre(T '), only two transitions in T' require special

. li li . (hi.l3) (hi.lg)
attention, namely sg — s4 and s; — so. However, since sg = s9, 84 X' 89, 51 = $o,

and so X' s9 hold, the condition fcerWFC(T x') also holds. For proving osc%I(T x) and
oscyz (T, X'), special attention is only required for s; X sq, sg X’ 51, and s4 X' s5. The only

transition involving a visible event that is possible in s; is $1 —> s9. The requirements of

osc are satisfied for s; X sy because sg <:>> so and S92 X so. The only transition involving

a visible event that is possible in sqg is sg —) s4. The requirements of osc are satisfied for
so X' s1 because s1 g so and s4 X' s3. The only transition involving a visible event that is

possible in sy is s4 i) s4. The requirements of osc are satisfied for s4 x’ so because so % S9
and s4 X' s. From Theorem 6.7.4, we obtain that WFC(ES') holds. O

152 CHAPTER 6: Compositionality Results for Information Flow Properties

6.7.4 Compositionality Theorem
We now show that weakened forward correctability is preserved under general composition.

Theorem 6.7.6 (Compositionality of weakened forward correctability). If ES;
and ES;, both, satisfy weakened forward correctability then ES = ES; || ES, also satisfies
weakened forward correctability. <

Proof. For i€{1,2}, let HZ;=(V;, N;,C;) where V; = L;, N; = H; \ I;, and C; = H; N I;. Let
Cwre = (A, V,YT) where V=1, A=FE\(IUO), and T =1. Moreover, let I'; = (V;,A;, ;)
where V;=1I;, A;=E;\(L;U0;), and Y;=1; for i € {1,2}. Assume WFC(ES;) and WFC(ES,).
From the representation of WFC in MAKS (Definition 6.7.1), we obtain that BSDyz,(Tr;),
BSIyz,(Tr;), and FCI;iIi(Tri) hold for all 7 € {1,2}. From Example 6.3.4, we know that the
views HZ1 and HZ, constitute a proper separation of the view HZ. The composition of ES;
and ES; is well behaved wrt. HZ; and HZ, (condition 4 in Definition 6.3.6) because

e BSIAJ) (Tri) and BSIAJ} (Trp) follow from BSIyz, (Tr1), BShyz,(Trz), Theorem 3.5.9;
e total(ESi,C1 N Ny) and total(ESs, Co N Ny) follow from BSIyz, (Tr1) and BSIyz,(Trs);

. FCIAfllz’l:l(Trl) and FCIA?p{ZI’?(TTQ) follow from FCI,};III(TH), FCI:;I_;%Z(T’I"Q) and The-
orem 3.5.13;

e V1NVy C ViUV, follows from E1 N Ey C (Il N 02) U (IQ N 01), V1 =1; and Vy = Iy;
[] Cl N N2 Q Tl and 02 N N1 Q TQ follow from Cl g I1 = Tl and C2 Q I2 = TQ; and
e NiNAINEy = @ and NoNAsNE] = 0 follow from A = El\(Ionl), Ay = EQ\(IQUOQ)

for arbitrary functions p; and ps from views in E; to subsets of E; and from views in Fo
to subsets of Fy, respectively. Moreover, (N1 N A1) U (Na N Ag) C A follows from N; N
A = (H;\L)N(E; \ (L U0;) € H;\ (IUO). The remaining side conditions of our
compositionality theorem for BSPs (Theorem 6.4.1(1,2,5)) are also fulfilled, and we obtain
BSDyz(Tr), BSIyz(Tr), and FC’I;%VFC(TT). From the representation of WFC in MAKS
(Definition 6.7.1), we obtain WFC(ES). O

Hence, weakened forward correctability is a composable security property that is strictly less
restrictive than forward correctability.

Remark 6.7.7. Our results are in contrast to a statement by Zakinthinos and Lee that sug-
gests that it would be impossible to relax the requirements of forward correctability without
loosing compositionality [ZL96]. The precise statement is: “forward correctability is the weak-
est condition of any [composable] property that solely eliminates the possible [sic!] of there
being a condition on a low-level input event” [ZL96, page 100]. Note that weakened forward
correctability satisfies this conditions because it only eliminates the possibility of a condition
on a low-level input event (in Zakinthinos and Lee’s terminology) because VNV C I holds. ¢

6.8 Summary and Comparison to Prior Frameworks

In this chapter, we have proposed a uniform approach to deriving compositionality theorems
for information flow properties. This approach simplifies the derivation of compositionality

6.8 Summary and Comparison to Prior Frameworks

153

theorems considerably, and the only prerequisite for applying it is that the information flow
property under consideration must be represented in MAKS.

Rather than verifying compositionality theorems for every information flow property sep-
arately from scratch, our approach reduces the proof that a given information flow property
is preserved under some form of composition to the proof that each basic ingredient of this
property (i.e. each BSP from which it is assembled) is preserved under this form of composi-
tion. Using our approach, a given compositionality theorem is verified in four steps: firstly,
one shows that the views for the components are a proper separation of the view for the
overall system; secondly, one shows that the composition of the components is well behaved
wrt. these views; thirdly, one proves the preconditions of the compositionality theorems for
all BSPs from which the property is assembled; and, fourthly, one shows that the BSPs
are preserved by applying these compositionality theorems. Given the representation of the
information flow property in MAKS, this implies that the property is also preserved. The
backbone of our approach to deriving compositionality theorems is the collection of composi-
tionality results for BSPs that we have derived with the help of our generalized zipping lemma
(cf. Section 6.4).

Using our uniform approach, we have derived several compositionality theorems for in-
formation flow properties. In particular, we have re-justified various known compositionality
theorems from the literature. Thereby, we have demonstrated the generality of our approach.
That the derived theorems are no more restrictive than the original ones means that the
uniformity and generality of our approach does not come at the cost of the quality of the
derived compositionality theorems. In addition to the re-justification of already known the-
orems, we have also derived novel compositionality theorems, namely for GNI*, FC*, and
NDO*. Moreover, we have discovered weakened forward correctability, a novel composable
information flow property that constitutes an improvement of Johnson and Thayer’s forward
correctability [JT88], which itself is an improvement of McCullough’s restrictiveness [McC87].
This contribution is not only interesting because the possibility to further improve this line
of information flow properties has remained undetected for some time and because a state-
ment by Zakinthinos and Lee suggested that such an improvement would not be possible
(cf. Remark 6.7.7) but also because it provides evidence that our uniform approach to de-
riving compositionality theorems offers a new perspective on such results that is helpful in
exploring new directions.!!

Another outcome of our investigations is a classification of compositionality theorems.
This classification is based on the observation that there are three approaches to avoiding
inter-component communication from interfering with a modular information flow analysis.
Namely, one ensures either that no such interferences can be caused by the local information
flow analysis of any component, or one tackles the problem of inter-component interaction in
the local information flow analysis of a single component, or one ensures that each component
can cope with the interferences caused by the respective other component. The justification
of each compositionality theorem that we have presented in this chapter follows one of these
three approaches. This led us to three classes of compositionality theorems: (p/p) i.e. both
components are polite, (pt) i.e. one component is polite as well as tolerant, and (t/t) i.e. both
components are tolerant. Interestingly, compositionality theorems that impose different re-
strictions on the form of composition may belong to the same class because we regard re-

"Recall from Section 6.7 that the development of weakened forward correctability was motivated by our
re-justification of Johnson and Thayer’s compositionality theorem for forward correctability.

154 CHAPTER 6: Compositionality Results for Information Flow Properties

stricting the form of composition only as one option for satisfying the conditions essential for
the preservation of information flow properties under composition.'> This distinguishes our
classification from McLean’s classification that grouped compositionality theorems depending
on which form of composition is assumed [McL94a, McL96]. The two classifications com-
plement each other because McLean’s classification clarifies better which compositionality
theorems are applicable for a given system architecture while our classification clarifies better
the reasons why a given compositionality theorem is valid.

Compositionality theorems have also been derived in the frameworks by McLean, by
Focardi and Gorrieri, and by Zakinthinos and Lee. Focardi and Gorrieri derived composition-
ality theorems for noninference and forward correctability [FG95].!3 During the verification
of these results, Focardi and Gorrieri applied rules of the process algebra SPA but, other-
wise, could not exploit their representation of the investigated properties. The reason for this
is that their framework lacks uniform concepts that are specifically targeted at representing
information flow properties (cf. Section 4.4). In his thesis, Zakinthinos presents compositional-
ity theorems for interleaving-based generalized noninterference, for noninference, generalized
noninference, and the perfect security property [Zak96]. Unfortunately, the representation
of these properties in the framework provides little support for simplifying the verification
of these theorems. Except, for a simple (and somewhat straightforward) lemma that is used
in the proofs of three compositionality theorems, each proof is constructed from scratch. In
contrast to this, McLean’s framework provides much more support for verifying composition-
ality theorems [McL94a, McL96]. The uniform concepts for representing information flow
properties in his framework (selective interleaving functions) provide a basis for expressing
general compositionality theorems that, once proven, can be instantiated for individual in-
formation flow properties. In this respect, McLean’s approach to deriving compositionality
theorems is closest to ours. However, technically it differs substantially. The main restric-
tion of McLean’s approach stems from the limited expressiveness of his framework (cf. Sec-
tion 4.4 and Appendix B), which restricted him to the derivation of compositionality theorems
for noninference, separability, interleaving-based generalized noninterference, and generalized
noninference. Table 6.2 summarizes the compositionality theorems that have been derived in
each of these frameworks. The entries in the table show that we have derived compositionality
theorems for more properties than this has been done based on any other framework.'4

Summarizing, the approach to deriving compositionality results proposed in this chapter
exploits the uniform representation of information flow properties in MAKS. Rather than
verifying compositionality results for technically complex information flow properties directly,
we verify them with the help of compositionality theorems for BSPs, which simplifies the

120Qther options are to use a restrictive view during the local information flow analysis of a component or to
use a restrictive security predicate during the local information flow analysis.

'3Here, we refer to the compositionality theorems for the operator || of SPA, which corresponds to our
notion of composition. For completeness: Focardi and Gorrieri also presented a compositionality theorem for
restrictiveness, i.e. an information flow property that is obsolete by now. In Focardi and Gorrieri’s terminology,
noninference, forward correctability, and restrictiveness are called strong nondeterministic noninterference, lts-
forward correctability, and lts-restrictiveness, respectively.

14We have not derived compositionality results for IBGNI and IBGNI* because these properties are as-
sembled from the non-strict BSPs D, I, and IA?¢. Our generalized zipping lemma does not apply to these
BSPs because it is tailored for causal BSPs (the definition of a well-behaved composition involves instances
of BSIA® and FCIA”"). However, we are confident that compositionality results for these non-strict BSPs
can be derived (using a different proof technique) such that compositionality results for IBGNI and IBGNI*
(corresponding to the ones in [McL94a]) could also be re-justified based on MAKS, if desired.

6.8 Summary and Comparison to Prior Frameworks 155

. . compositionality compositionality
compositionality . . .- .
. theorem derived theorem derived compositionality
theorem derived . . .
in framework by in framework by in framework by theorem derived
Focardi and Zakinthinos and in MAKS
McLean ..
Gorrieri Lee
properties protecting occurrences and nonoccurrences of all high-level events
SEP Vv 4
NDO J
NDO* Vv
PSP Vv v
properties protecting occurrences of all high-level events
NF v [] Y [Y L v

properties protecting occurrences and nonoccurrences of high-level inputs
FC Vv
FC*
GNI
GNI*

IBGNI v J
v

NN

IBGNI*
WFC

<

properties protecting occurrences of high-level inputs

GNF v [[v L v

Table 6.2: Compositionality theorems derived in prior frameworks

verification considerably. We have demonstrated the applicability of our approach by verifying
compositionality results for several information flow properties. The only prerequisite for
applying this approach is that the information flow property under consideration must be
represented in MAKS. This general applicability is an appealing feature of our approach.

The compositionality results presented in this chapter and the unwinding results in Chap-
ter 5, together, provide a basis for the modular verification of secure systems: Primitive
system components are explicitly verified to be secure with the help of an unwinding theorem
(from Chapter 5 and Section 6.7.3) and, when these components are composed, the security
of the resulting system is ensured by applying a compositionality result (from the current
chapter). How this approach can be applied during the verification of a complex system will
be illustrated in detail in the case study to be presented in the following chapter.

156 CHAPTER 6: Compositionality Results for Information Flow Properties

Chapter 7

Case Study

7.1 Introduction

So far, we have applied our framework MAKS for deriving results about information flow
properties: In Chapter 4, we have analyzed well known information flow properties from the
literature and have compared them based on their representation in MAKS; in Chapter 5, we
have developed unwinding techniques that exploit the modular representation of information
flow properties in MAKS; and in Chapter 6, we have derived compositionality theorems also
by exploiting the modularity of the representation. In this chapter, we want to go a step
further by illustrating how our results can be used in concrete applications.

In the following sections, we explain how the various tasks during the construction of
a formal security model can be performed. More specifically, we illustrate how a system’s
behavior can be specified in an event-based setting, how a system’s security requirements can
be expressed by information flow properties, how these security requirements can be verified
for system components using our unwinding techniques, and how the security of the overall
system can be verified with the help of our compositionality results. For each of these tasks,
we briefly outline which subtasks must be addressed and then demonstrate how this can be
done with a running example.

Our running example comes from the area of language-based security. A typical appli-
cation scenario for language-based security techniques has been described by Sabelfeld and
Sands [SS00]: Given you have confidential data as well as public data on your computer
and you want to run an untrusted program (e.g. obtained from the Internet). The application
(e.g. a spreadsheet) might require legitimate access to the confidential data in order to perform
its task as well as legitimate communication with the supplier of the code (e.g. a registration
process for all users). Nevertheless, you want to be sure that the program does not reveal any
confidential data to the supplier of the code. After the program has been checked using some
program analysis technique you know that it is “secure” (in some sense) to run this program.
The objective of language-based security techniques is to check whether it is secure to execute
a given program. These techniques do not aim at supporting the software engineer during the
development of secure systems because they can only be applied to a system after it has been
implemented. In this respect, program analysis techniques differ from the specification-based
techniques considered in Chapters 3—6. To embed a particular program analysis technique
into a more general specification-based framework is the objective of our case study.

Historically, the use of program analysis to rule out information leakage has been pioneered

158 CHAPTER 7: Case Study

by Denning [Den76, DD77]. More recent research in this direction has resulted in security type
systems for Denning-style program analysis [VSI96].! Security type systems can be used to
mechanically check whether untrusted programs are “secure” in some sense. In other words,
security analysis for a given program boils down to a fully automatic type check. Lately, it has
become common practice that security type systems are accompanied by a formal soundness
proof. These proofs increase the confidence in a type system by showing that if a program
passes the type check then it also satisfies some more abstract security definition. This means,
a soundness proof exemplifies in what sense a type-correct program is “secure”. Given that
early program analysis techniques did not feature formal soundness proofs, this is a desirable
movement. However, one shortcoming is that the underlying security definitions lack a formal
comparison to more established security properties and, therefore, often appear somewhat ad
hoc. In particular, the relation of language-based security techniques and information flow
properties in the spirit of noninterference had not been formally elaborated (although such a
connection has often been conjectured [SV98, SS00]). To establish such a rigorous connection
was the main motivation for performing our case study.

In this case study, we investigate an extension of Sabelfeld and Sands’s approach to
language-based security [SS00] for a programming language that incorporates features for
multi-threaded and distributed programming. We presume (from [SS00, SM02, MS03a]): the
multi-threaded and distributed programming language DMWL, the language-based security
definition strong security, a security type system, and a proof that all type-correct programs
are also strongly secure. Using event systems, we model the behavior of DMWL processes and
express their security requirements by an information flow property in MAKS. Finally, we
show that this information flow property is implied by strong security. By relating strong se-
curity to a more established class of security definitions, our result adds to the understanding
of strong security. Thereby, we further increase the confidence in this particular language-
based security definition and the corresponding program analysis techniques (i.e. the security
type system) for checking it.

Although the relation established by our case study is interesting in its own right, the
focus in the current chapter is not on this original contribution. Rather, we use this case
study to illustrate the various steps necessary in the construction of a formal security model
and to point out how the results presented in previous chapters can be applied in the process.

Besides the domain of language-based security, i.e. the domain of the case study presented
in the rest of this chapter, many other application domains for information flow properties
can benefit from our results. Examples are the analysis of access control models [Rus92],
the analysis of security protocols [FGG97, FGM99, FGM00, DFGO00], the construction of
formal security models for operating systems [SRST00], the security analysis of mobile devices
[MSK*01], and the specification of security requirements of multi-agent systems [HMS03,
Sch03].

Overview. Section 7.2 provides some preliminaries on the language-based security tech-
niques. A specification of DMWL processes with state-event systems is presented in Sec-
tion 7.3. This specification models the semantics of DMWL. In Section 7.4, we demonstrate
how the security requirements for a DMWL process can be expressed by an information flow
property that we define in MAKS. In Section 7.5, we illustrate how our verification techniques

!For recent work on static analysis for security also cf. [HR98, SV98, Aga00, SS00, Lau01, ZM02, BN02,
PHWO02]. We refer to [SMO03] to an up-to-date overview on language-based security.

7.2 Preliminaries on the Running Example 159

can be exploited in a soundness proof for strong security and the security type system (for
individual processes). The application of our compositionality results is demonstrated in Sec-
tion 7.6 where we lift the soundness result to distributed programs (collections of processes).
The case study presented in this chapter has also been performed in slightly different settings
(in [MSO01, SM02, MS03a]) that we review in Section 7.7. The main results of this Chapter
are summarized in Section 7.8. This chapter is accompanied by an appendix that contains
further details of the case study (cf. Appendix E).

7.2 Preliminaries on the Running Example

Sabelfeld and Sands’s investigated language-based security in the context of a simple multi-
threaded programming language, the MWL language [SS00]. The MWL language is an im-
perative programming language that incorporates commands for assignments (var:= FEzp),
conditional branching (if B then C; else C3), while loops (while B do C), and dynamic thread
creation (fork(C' D)).2 Concurrent threads communicate with each other via shared memory,
i.e. via variables. Variables are classified either as high or low with the intuitive understand-
ing that high variables initially contain private data while low variables only contain public
data. The contents of high variables is not observable by adversaries (the ones who must
not learn your private data) while the contents of low variables is (potentially) observable
during program execution. In summary, the security requirement is: the initial value of high
variables must not be leaked into low variables.

Before presenting more details, let us illustrate with examples the subtle possibilities
for leaking information. For simplicity we assume in the following that there are only two
variables: a high variable h and a low variable .3

[:= h The value of h is simply copied into /. This is an example of a so called ezplicit flow.

if h=1then[:=1 else [:= 0 Depending on the value of h either the first or the second
branch of the conditional is chosen and this fact is recorded in [. In particular, if [=1
holds after program execution then A = 1 did hold before program execution. This
exemplifies a so called implicit flow.

[:= 0; (while h # 1 do skip);/ := 1 Depending on the value of h, the program either termi-
nates or not. If [= 1 holds then the program has terminated and the adversary knows
that h = 1 did hold before program execution. This is an example for an information
leak wvia termination behavior.

[:=0;if h =1 then sleep 10000;! := 1 An attacker with a stop-watch can learn whether h =
1 or h # 1 holds by measuring the duration between the two assignments to /. This is an
example for an information leak via externally observable timing. Sabelfeld and Sands
do not try to detect this kind of information leakage.* However, they are interested in
detecting the following more subtle possibility for information leakage.

2The command fork(C 5) creates a vector D of threads that run concurrently with the current thread that
continues by executing the command C.

3 A restriction to only two variables h and [has also been made in [SS00]. However, this is only assumed
for clarity of the presentation. It is not a principal limitation of the approach.

“Information leakage via externally observable timing can be prevented, for example, by denying untrusted
programs access to high precision clocks.

160 CHAPTER 7: Case Study

=1
fork ((if h =1 then while h < 10000 do h := h + 1);1 := 0)

After execution of the fork-command, two threads run concurrently (i.e. [:= 1 and
if h =1 then ...;l:=0). The first thread sets / to 1 and the second thread sets to 0
(possibly after consuming some time in the while loop). Apparently, the duration for
executing the overall program depends on the initial value of h. Hence, there is a danger
of information leakage via externally observable timing. However, unlike in the previous
example, information leakage is possible even if no clock is available. Obviously, the
final value of [depends on whether [:= 1 is executed before or after [:= 0. With many
schedulers (the likelihood of) the order in which these two commands are executed will
depend on whether the loop is executed or not. If the loop is executed then it becomes
more likely that the first thread executes its only command before the second thread
executes its final command. Consequently, if h = 1 holds initially then it is more likely
that I = 0 holds after program execution in comparison to the case where h # 1 holds
initially. This is an example for an information leak via internally observable timing.

Note that the danger of information leakage via internally observable timing heavily depends
on the particular scheduler. For example, with a round-robin scheduler that deterministi-
cally selects the first thread after execution of a fork-command there would be no information
leakage (I := 1 is always executed first). However, information leakage is possible, for in-
stance, if the scheduler is a uniform probabilistic scheduler or a round-robin scheduler that
deterministically selects the second thread after execution of a fork-command. However, the
scheduler is typically not specified by the language definition (and therefore may vary from
one implementation to another). In particular, the precise scheduler might not be known at
the time of program analysis. In a worst-case scenario, the scheduler may even be chosen by
the adversary. Therefore, it is desirable to have a security condition that does not depend
on a particular scheduler. The strong security definition proposed by Sabelfeld and Sands’s
is such a condition, i.e. it is scheduler independent wrt. a large class of schedulers including
deterministic schedulers (e.g. round robin) as well as probabilistic schedulers (e.g. uniform).
Although the class of schedulers covered by strong security includes probabilistic schedulers,
the strong security condition is a possibilistic property. This has been elaborated in [SS00],
and a security type system for MWL has also been proposed. This type system is sound
wrt. strong security in the sense that if a program passes a type check then it also satisfies
strong security. A soundness result wrt. a different security condition that stems from a more
established class of security properties, namely that of noninterference-like information flow
properties has been elaborated in joint work by Sabelfeld and myself [MS01].

Extension of MWL to DMWL. Sabelfeld and Sands’s results for MWL (including the
definition of strong security, the security type system and the soundness proof) have been
generalized in joint work by Sabelfeld and myself to the language DMWL [MS03a, SM02].
DMWL is an extension of MWL with (message-passing) communication primitives and a
DMWL program may execute as multiple processes (each of which may have multiple threads).
The (extended) program analysis techniques for DMWL constitute the starting point of our
case study and are briefly introduced in the following.

7.2 Preliminaries on the Running Example 161

7.2.1 Syntax and Semantics of DMWL

The language DMWL results from extending MWL with a non-blocking send command
(send(cid, Ezp)) and two receive commands, a blocking version (receive(cid, var)) and a non-
blocking one (if-receive(cid, var, C1,Cs)). The syntax of DMWL commands is specified by
the grammar in Figure 7.1. As usual, boolean expressions B range over BOOL and arith-
metic expressions Ezp range over EXP. Let C,D (possibly with indices and primes) range
over commands CMD (the DMWL-threads), and C,D range over vectors of commands
CMD = Unpemy CMD™. VAR denotes the set of variables (for simplicity VAR = {h,1}), VAL
denotes a set of (not further specified) values, and CID denotes a set of channel identifiers.
Moreover, var denotes a variable in VAR and cid denotes a channel identifier in CID.

C == skip | var := Ezp | C1;Cy | if B then C else Cy | while B do C | fork(C D)

| send(cid, Ezp) | receive(cid, var) | if-receive(cid, var, C1, C2)

Figure 7.1: Command syntax

The operational semantics of DMWL processes is defined in terms of local configurations.

Definition 7.2.1 (Local conﬁguratlon) A local configuration for a process is a triple
(C, mem, o) where C' € CMD, mem : VAR — VAL, and o : CID — VAL*. &

The command vector C in a local configuration models the state of all threads of the pro-
cess. For C = C1C,. ..Cp,% the command C; is to be executed by the ith thread of the
process. The memory-status function mem models the state of the process, i.e. the values
of all local variables. For example, mem(l) denotes the value of the variable [. The threads
of a process communicate with each other via these variables. However, variables are not
intended for inter-process communication. Rather, inter-process communication follows the
message-passing paradigm, i.e. messages are exchanged between processes via communication
channels that can be thought of as links between processes. The channel-status function o
models the state of all communication channels of the overall system. For example o(cid)
denotes the sequence of messages that have been sent on the channel with identifier cid but
that have not yet been delivered.

Example 7.2.2. Let mem(h) = 1, mem(l) =0, o(cid) = () (for all cid € CID), and

= =1
C =
((ifh =1 then while & < 10000 do h := h +1);1 := 0)

Then dé , mem, o)) is a local configuration that incorporates two concurrent threads, the mem-
ory (1,0), and a bunch of empty channels. &

The deterministic part of the semantics is defined by transition rules between local config-
urations in Figure 7.2. Arithmetic and boolean expressions are executed atomically by |
transitions. FExzp ™™ yal denotes that Ezp € EXP evaluates to val € VAL where the mem-
ory mem in the index is only important if Ezp contains variables. Similarly, B |™¢™ tt and
B ™™ {f denote that B € BOOL evaluates to “true” and “false”, respectively.

5For better readability, we usually omit angle brackets for command vectors.

162 CHAPTER 7: Case Study

commands with local effects only

[Skip] (skip, mem, o) — {(), mem, o)
. Ezp ™ val
[Assign] (var := Exp, mem, o) — {(), mem[var — wval], o)
t (if B then C} else Co, mem, o) — {C1, mem, o))
[Tf7] (if B then C} else Co, mem, o) — {Ca, mem, o))
. B [™em 4
[Whiley] {(while B do C, mem, o)) — {C;while B do C, mem, o)
5 B imem .ﬁ'
[Whileg] (while B do C, mem, o) — {(), mem, o)
[Fork] (fork(CD), mem, o) — (CD, mem, o)
communication commands
[Send] Exp " val
(send(cid, Exp), mem, o) — {(), mem,o[cid — (val).c(cid)])
[Receive] o(cid) = vals.(val)
(receive(cid, var), mem, o) — {(), mem[var — val], o[cid — wvals])
a(cid) = ()
[IfRevg] (if-receive(cid, var, C1, C), mem, o) — {Co, mem, o)
o(cid) = vals.(val)
[fRev] (if-receive(cid, var, C1, Cy), mem, o) — (C1, mem[var — wval], o[cid — vals])
sequencing
4017 mem, UD - 4<>7 memla UID
[Sear] (C1;Co, mem, o) — {Co, mem/,o’)
[Seqs)] (C1, mem, o) — (C'D, mem’, o)

(C1; Cy, mem, o) — ((C1; Co) D, mem’, ')

Figure 7.2: Small-step deterministic semantics of commands

7.2 Preliminaries on the Running Example 163

A —-transition is deterministic and either has the form (C,mem,o) — {(), mem', o'},
which means termination of the thread with the final memory mem’ and channel status o', or
(C, mem,o) — 40'5, mem',c’), where D is possibly empty. Here, one step of computation
starting with command C in a memory mem and with channel status o gives a new main
thread C', a (possibly empty) vector D of spawned threads, a new memory mem/, and a new
channel status ¢’. For example, the rule [Assign] in Figure 7.2 applies to configurations that
incorporate a single command var := Ezp. According to this rule, the assignment command is
removed from the configuration after its execution, the memory is updated (mem[var — vall
maps var to val and maps all other variables like mem), and the channel status remains
unchanged. If a configuration incorporates a single command if B then C) else Cy then either
the [If;]- or the [Ifg]-rule applies. Which of the two rules is applicable depends on whether B
evaluates to #t or ff in the current memory. The rule for the command fork(C' D), where D is
required to be nonempty, dynamically creates a new vector D of threads that, afterwards, run
in parallel with the main thread C (sequentially composed with the commands following the
fork-command according to rule [Seqz]). This has the effect of adding D to the configuration.
The rules [Send], [Receive], [IfRcvg], and [IfRcvy| specify the semantics of commands for
inter-process communication. Executing a send-command adds a message to a communication
channel (o[cid — (val).o(cid)] maps cid to (val).o(cid) and maps all other channels like o)
and executing a receive-command removes a message. A receive-command is only enabled if the
given channel is nonempty. Besides this blocking version, which waits until there is a value
on the channel, there also is a non-blocking version, the if-receive-command, which is always
enabled. Depending on whether the given channel is empty or not, either the rule [IfRcvg] or
the rule [IfRcvy| applies for this command. We assume that communication channels obey
the FIFO-principle, i.e. messages sent first are received first.%

The rule [Pick] in Figure 7.3 defines the concurrent semantics of DMWL. Whenever the
scheduler (nondeterministically) picks a thread C; in a process for execution, then a —-
transition takes place updating the command, the memory, and the channel status according
to a (small) computation step of C; (i.e. a —-transition). It is assumed that the scheduler
can decide to schedule a new thread after the execution of every single command.

(Cs, mem, o) — {C, mem’, o’)

[Pick] = —
(Cy...Cp,mem,o) = {C1...C;—1CCitq...Cp,mem',0')
Figure 7.3: Local concurrent semantics of programs
A distributed program is a collection C_"l, cen C?n of programs. The operational semantics

of distributed DMWL programs is defined in terms of global configurations. A global con-
figuration incorporates a pair (C;, mem;) for each process. However, there is only a single
channel status function for all processes.

Definition 7.2.3 (Global configuration). A global configuration is a tuple

A(Cy, memy), ..., (C,, memy); o>
where (C1, memy), ..., (C,,, memy,) is a finite sequence of command vector/memory pairs and
o : CID — VAL" is a finite mapping from channel identifiers to sequences of values. &

5This assumption is not essential. For example, in [SM02] we did not assume the FIFO-principle.

164 CHAPTER 7: Case Study

The rule [Step] in Figure 7.4, defines the global semantics of DMWL programs. This rule
ensures that a global transition (a —»-transition) takes place whenever a local transition (a
—-transition) occurs in some process.

QC_";C, memy, o) — QC—",'C, memy,, o'}

[Step] = = =
<(Cr,memq), ..., (Ck, memy),...,(Cy, memy);od>

—» 4(61,mem1),...,(C,’c,mem;c),...,(C_’;L,memn);a'b

Figure 7.4: Global concurrent semantics of programs

The reflexive and transitive closures of — and — are denoted by —* and —*, respectively.

Remark 7.2.4. Note that the rule [Pick] is possibilistic (involving no probabilities). Al-
though, it is, in general, important to explicitly model the scheduler for addressing flows that
result from scheduling policies (possibly probabilistic), there is no reason to introduce explicit
schedulers in the semantics here. This is because the security condition that we consider is
scheduler independent (demonstrated in [SS00]). &

7.2.2 Security Condition for DMWL

The definition of strong security is based on the notion of low-bisimilarity. A low-bisimulation
~7 is a binary relation between DMWL commands. Intuitively, C ~p D expresses that, for
the adversary, the behavior of C is indistinguishable from the behavior of D.

Two states are indistinguishable for an adversary if they are equal in their low parts, i.e. if
the values of low variables and low channels are identical in both states. In the following
definitions, let level : (VAR U CID) — {high, low} be a function that associates security levels
with variables and channel identifiers such that level(h) = high and level(l) = low. The
intuition behind this association is that the values of high variables and the contents of high
channels are not visible to the attacker while the values of low variables and the contents of
low channels are fully observable.

Definition 7.2.5 (Low-equality on memory). Two mappings mem;, memy : VAR —
VAL are low-equal, denoted by memy =1 memsq, iff memy(var) = memso(var) holds for all
var € VAR with level(var) = low (i.e. if mem(l) = mems(l) holds). O

Definition 7.2.6 (Low-equality on channel status). Two mappings o1,09 : CID —
VAL* are low-equal, denoted by o1 =f, o9, iff 01(cid) = o2(cid) holds for all cid € CID with
level(cid) = low. O

Two possible behaviors of (nondeterministic) programs are indistinguishable for a low-level
observer if all corresponding states in the two behaviors are pairwise low-equal.

Definition 7.2.7 (Low-bisimulation). A low-bisimulation ~;C CMD x CMD is a sym-
metric relation between command vectors of equal size such that whenever (C;...C,) ~p,

7.2 Preliminaries on the Running Example 165

(D; ...D,) then
Vmeml,memg,al,@.vc_’",mem’l,ai.Vi €{1,...,n}.
({C;, memy,o1) — dé”,mem'l,o'lb A memy =1 memg N\ 01 =[, 09)

=3D', mem}, ob.
({D;, memsg, a3) — (D', mems,a5) A mem} =1 memy Aoy = o5 AC' ~p D') <O

Low-bisimilarity requires not only the low-observable parts of corresponding states to be equal
but also individual —-transitions to correspond. This is the basis for a timing-sensitive and
scheduler-independent security condition.

Definition 7.2.8 (Strong low-bisimulation). Define strong low-bisimulation = C CMD x
CMD to be the union of all low-bisimulations. <

Note that = is not a reflexive relation. In particular, a program that shows differences in its
low-observable behavior for different low-equal starting states is not strongly low-bisimilar to
itself. If a program shows differences in its low-observable behavior for states that differ only
in values of high variables and high channels then there is a danger of information leakage.
This means, a program that is not strongly low-bisimilar to itself may be insecure. This is
the intuition underlying the definition of strong security.

Definition 7.2.9 (Strong security). A DMWL program C is strongly secure if and only
if C' =y, C holds. O

Let us illustrate how strong security can be used to detect dangerous information leakage. In
the following example, let o be some arbitrary channel status function.

Example 7.2.10 (Explicit flow). The program [:= h is not strongly secure. Choose
memy = (0,0) (denotes memy(h) = 0, memy(l) = 0) and memy = (1,0) (i.e. mema(h) = 1,
mema(l) = 0). Since {l := h,(0,0),0) — {(),(0,0),0) and (I := h,(1,0),0) — ({),(1,1),0)
hold, the resulting memories are not low-equal, i.e. (0,0) #. (1,1) (although the initial
memories are low-equal, i.e. (0,0) =1, (1,0)). &

More subtle examples of programs that are insecure according to Definition 7.2.9 can be found
in Appendix E.2. The following example is an instance of a strongly secure program.

Example 7.2.11 (Strongly secure program). The program if h = 1 then h := h+1 else skip
is strongly secure. Indeed, the timing behavior is independent of the value of h, as well as
the low variable I.” A suitable symmetric relation that makes this program low-bisimilar to
itself is, e.g., the relation

(if h =1 then h := h + 1 else skip,if h = 1 then h := h + 1 else skip),
(h:= h+1,skip), (skip,h:=h+1), (h:=h+1,h:=h+1),
(skip, skip), ((), () o

For further examples, including algorithms for searching, sorting, and a simple file server, we
refer to [SS00, AS01, SM02].

Definition 7.2.9 introduces strong security for programs consisting of a single vector of
commands. Such programs are executed in a single (multi-threaded) process. The definition
of strong security is extended to the distributed case in a straightforward way.

"An implicit assumption underlying the definition of strong security is that differences in the duration
of —»-transitions do not have any impact on the scheduling behavior. This is, e.g., the case if there are no
differences in the duration of different —-transitions.

166 CHAPTER 7: Case Study

Definition 7.2.12 (Strong security for distributed programs). A distributed program,
i.e. a collection Cy, ..., C, of programs, is strongly secure if for all i € {1,...,n} the program
C; is strongly secure. <

To justify that Definition 7.2.12 is, indeed, a sensible definition of security for distributed
programs is one of the main objectives of our case study.

7.2.3 Security Type System for DMWL

A security type system for program analysis of DMWL programs is presented in Figure 7.5.
According to the typing rules, any expression may be typed high. On the other hand, only
expressions that have no occurrences of h are typed low (i.e. expressions that can be safely
used in assignments to [).

The type of a (secure) DMWL program C (also referred to as its low slice) is a DMWL
program that models the timing behavior of C and in which no high variables occur. A type
check of a given program either fails (program is insecure), succeeds directly (program is
secure), or succeeds after transformmg the program (1nto a secure one). The transformation
rules in Figure 7.5 have the form CoC: Sl where C is a program, C" is the result of its
transformation, and Sl is the low slice of C'. The objective of transforming a program by
these rules is to make an insecure program strongly secure without changing its behavior in
any essential way (assignment of values to variables and communication commands remain
unaffected). More precisely, the transformation is capable of eliminating certain timing leaks.

For example, according to rule [Set;y,| in Figure 7.5, a command [:= FEzp can be type
checked (for type [:= Ezp) under the condition that no high variables occur in Ezp. Other-
wise, the program is rejected as insecure (identifying a potential explicit flow). In rule [Ify;gs],
the effect of the transformation can be observed. For the security of a conditional with a high
guard, it is essential that both branches make the same assignments to low variables/low
channels and that their timing behavior is identical. In order to enforce identical timing
behavior, the transformation sequentially composes the program in each branch with the low
slice of the respective other branch. Namely, C] is sequentially composed with the low slice
Sly of CY in the if-branch and the low slice Si; of C is sequentially composed with C% in the
else-branch (cf. rule [Ify;gs]). Cross copying the low slices results in identical timing behavior
of both branches. The condition al(Sl1) = al(Sl2) = ff on the low slices that are cross copied
ensures that no assignments to low variables and no communications on low channels are
performed (preventing the introduction of implicit leaks in a conservative way). In order to
avoid that the transformation introduces differences in the behavior on high variables, we
employ the notation var (where [= I and h = _) to indicate the case that h is not updated
after a reception (in rules [Ry,y], [IRiow]). Type checking of composed programs is purely
compositional (cf. rules [Seq] and [Par]).

A successful type check of a given program in the presented security type system implies
that the (possibly transformed) program is strongly secure, i.e. the type system is sound in
this respect. The following soundness theorem is a specialization of a result in [SM02].

Theorem 7.2.13 ([SMO02]). If C < C' : Sl is derivable then C" is strongly secure. o

In this section, we have briefly introduced the preliminaries for our case study. Now we are
ready to move to the core of our case study in the next section.

7.2 Preliminaries on the Running Example 167

expressions

h ¢ Vars(Ezp)

[Exp] Ezp : high Frp - low

commands with local effects

[Skip] skip < skip : skip

Exp : low
l:==FExp—1l:=Fzp:1l:=FExp

[Setlow]
[Setpign] h := Exp — h := Exp : skip
B:low C;—Ci:5h Cy — C4 : Sly

if B then C else Cy — if B then C{ else Cé :if B then Sl else Sl
B: hlgh Cl — C{ : Sll 02 — Cé : SlQ al(Sll) = al(Slg) = ﬁ
if B then C else Cy — if B then C7; Sly else Sly; C4 : skip; Sl1; Slo
. B:low C<=C':8l
(While] e B do C < while B do C": while B do S
Cl‘—)C{:Sll (72<—>C_‘.é:5_l'2
fork(C1 Cy) < fork(C!CY) : fork(S1; Sla)

[Iflow]

[Lfhign]

[Fork]

communication commands where cid is high
[Shign] send(cid, Exp) — send(cid, Ezp) : skip

Cl — C{ : Sll 02 — Cé : Slg al(Sll) = al(Slg) = ﬁ
if-receive(cid, h, Cy, Cy) — if-receive(cid, h, C1; Sla, Sly; C4) : skip; Sly; Slo

communication commands where cid is low

[IRhigh]

[Stou] Exp : low
lowl send(cid, Ezp) — send(cid, Exp) : send(cid, Exp)

[Ripw] receive(cid, var) < receive(cid, var) : receive(cid, var)

Cl‘—>01:Sll CQC—)Cé:SZQ

TRiou] if-receive(cid, var, Cy, Cy) < if-receive(cid, var, C}, C3) : if-receive(cid, var, Sy, Sls)
composed programs
[Seq] 01 — C{ : Sll CQ — Cé : Slg
C1;CQ — Ci;Cé : Sll;Slg
[Par] Cr—=C{:80; ... C, > Cy :8l,

(C1...Cp) = (C]...Cy: (Sl; ... Sly)

al(Sly) is true whenever there is a syntactic occurrence of either an assignment to [
or a communication primitive on low channels in the low slice Si;.

Figure 7.5: Security typing of expressions and commands

168 CHAPTER 7: Case Study

7.3 Specifying System Behavior

We first briefly outline how the behavior of a system can be modeled by an event-based
specification. Then we illustrate in detail how this can be done for our example. More
precisely, we specify the behavior of DMWL processes by state-event systems.

7.3.1 How to Proceed

1. Select a formalism for specifying the system. If you model the system with event systems
then proceed with 2. Otherwise, proceed with 3.

2. Specifying a system by an event system:

(a) Model the interface of the system by two disjoint sets I and O of input events and
output events, respectively.

(b) Determine the set of all other events the system can engage in, i.e. the internal
events. Define F to be the union of I, O, and this set of internal events.

¢) Model the possible behaviors of the system under consideration by a set Tr C E*
y y
of traces. The set Tr must be non-empty and must be closed under prefixes.

3. Specifying system behavior with some other specification formalism:

(a) Define a suitable mapping from the chosen specification formalism to event systems.

(b) Specify the system in the specification formalism. The event system corresponding
to this specification can be obtained by applying the previously defined mapping.

7.3.2 The Running Example

We follow the second approach in our case study, i.e. we perform steps 1 and 3(a,b).

Specification Formalism. We model the operational semantics of DMWL by a state-event
system (cf. Definition 2.1.13).

Mapping into Event Systems. We use the mapping from state-event systems to event
systems as specified in Definition 2.1.18.

System Specification. We proceed as follows: firstly, we model the interface, secondly,

we model the internal actions, thirdly, we define the state space, fourthly, we specify the

initial state, and finally, we model the possible behaviors by a transition relation. Each of

these steps is performed for single processes and then it is explained how distributed systems

with multiple processes are specified by composing specifications of individual processes. The

resulting specification is an adequate model of DMWL programs as is shown in Appendix E.3.
Types used in the specification are summarized in Figure 7.6.

7.3 Specifying System Behavior 169

abbreviation | description comment

PID set of process identifiers | not further specified

TID set of thread identifiers | TID = IN*

CID set of channel identifiers | not further specified

VAR set of variables for simplicity: VAR = {h,l} is assumed
VAL set of values not further specified

THREAD state of a thread THREAD = CMD

INFO scheduling information | INFO = (INU {—1}) x VAL x P(TID)

Figure 7.6: Types used in the specification

Interface Specification. The interface of a single DMWL process is shown in Figure 7.7.
The events schedule and yield model the actions of the scheduler. Since the scheduler is outside
the language definition of DMWL (as usual for programming languages), the specification of
the precise scheduler is not part of the process specification. An event scheduley(tid) models
that the (external) scheduler selects the thread with identifier tid € TID for execution in
process p. An event yieldp(z’nfo) models that an active thread that has used up its time slice
gives up control of the process. The parameter info € INFO models information that is passed
to the scheduler for determining the next thread. It includes information about the status of
the previously active thread (terminated/not terminated/number of threads spawned), the
value of the low variable, and information about which threads are blocked because they are
waiting for a message on an empty incoming channel. This information is expected by the
class of schedulers that is covered by the scheduler-independent program analysis for DMWL.

High-Level Environment

setvar—H outvar

DMWL Process

| inbuf outbuf pending |

trans | . trans
»| | mem atid executed ! -
- | [———

| thread ainfo initializedJ

Low-Level Environment
Figure 7.7: DMWL process with interface events and state objects

In DMWL, the value of the low variable [can be observed by low-level adversaries while
h is only observable by the high-level environment. This means, [is part of the interface to
the low-level environment and h is part of the interface to the high-level environment. In
an event-based setting, the possibility to observe values of variables is explicitly modeled by
corresponding interface events because the interface consists of events (and not of variables).
Therefore, we have to introduce interface events that model the observation or modification of
the variables [and h. An event outvary(var, val) models that it is observed that variable var of

170 CHAPTER 7: Case Study

process p has value val. In a similar fashion, setting the (initial) value of variables is explicitly
modeled by events setvary(var, val). Values of variables can only be altered by setvar-events
before program execution begins (setvar-events model the initialization of variables). The
event start models that the initialization phase has been completed and program execution
begins. After start has occurred, setvar-events are disabled.

Inter-process communication is performed in DMWL via communication channels. An
event trans(cid, val) models the transmission of a value val on a channel cid € CID. Since
trans-events belong to more than one process, they are not tagged with a process identifier.
Throughout this chapter, we assume that a process cannot send messages to itself directly
(intra-process communication occurs via shared variables), i.e. Vcid € CID. sender(cid) #
receiver(cid) holds where the functions sender, receiver : CID — PID model which processes
may communicate on a communication channel. For a given channel cid, sender(cid) is the
identifier of the process that may send on cid and receiver(cid) is the identifier of the process
that may receive on cid. This means, {cid | sender(cid) = p} and {cid | receiver(cid) = p} are
the sets of channels that the process p may use for sending and receiving, respectively.

The interface specification is summarized in Figure 7.8 where, for improving readability,
the index p is omitted for all events.

[schedule(tid), tid : TID,
o= setvar(wvar, val), var: VAR, val: VAL,
N start, cid : CID,
| trans(cid, val) receiver(cid) = p
(. info : INFO,
yield(info), var: VAR, val: VAL,
OP = (¢ outvar(var,val), .
trans(cid, val) cid : CID,
{ ’ sender(cid) = p

Figure 7.8: Interface specification of a DMWL process

Specification of Internal Actions. For every rule of the operational semantics of DMWL
(cf. Figure 7.2) that reduces a command, we specify a corresponding event. For example, the
event skip, models that a command skip is being executed by the active thread in process p
(corresponding to rule [Skip]). The event assign,,(var, val) models that a command var := Ezp
is being executed by the active thread in process p where Ezp evaluates to val under the
current memory of the process (corresponding to rule [Assign]). The event itef (B, C1, Cy)
models that a command if B then C; else C5 is being executed by the active thread in process
p where B evaluates to t¢ under the current memory (corresponding to rule [Ify]). The set
ElI:)cal of all events that model the execution of DMWL commands in process p is given in
Figure 7.9 where, for improving readability, the index p is omitted for all events.

Definition 7.3.1. The set of events for a DMWL-thread pool with identifier p is specified
by EP =T1?PUOPUE? . (cf. Figures 7.8, 7.9 for definitions of I?, O?, and E¥). O

local local

Specification of State Space. The memory in the local configuration of a process with
identifier p is modeled by a (functional) state object mem? : VAR — VAL. For a given

7.3 Specifying System Behavior 171

\

[skip, assign(var, val), var: VAR, wval: VAL,
ite(B, C1,Co), itel(B,Cy,Cy), B : BOOL,
while(B,C), while’(B,C), C,C1,Cy : CMD,

B o= fork(C, D), D : CMD,
local send(cid, val), cid, cid' € CID,

receive(cid’, var, val), C1,Cy € CMD,
ite-rcv'(cid’, var, val, Cy, Ca), sender(cid) = p,

{ ite-revl(cid’ var, val, Cy, Cy) receiver(cid') = p)

Figure 7.9: Specification of internal events for a DMWL process

program variable var, memP?(var) denotes the current value of var. The command vector in
the local configuration of a process is modeled by a functional state object thread® : TID —
(THREAD U {1, T,()}). For a given thread tid, thread®(tid) denotes the command to be
executed by this thread (if thread?(tid) € THREAD). The values L, T, () have a special
meaning. Here (and below) L stands for “undefined”. The value T models that a thread
with identifier #id has performed a fork command at some point in the past. This is a
technical peculiarity of our assignments of thread identifiers: after a thread with identifier tid
has performed a fork this thread continues execution with the new identifier tid.(0) and the
spawned threads are assigned identifier tid.(1), tid.(2), ..., respectively. The value () models
that the thread has terminated at some point in the past.

The state objects inbuf?, pending?, and outbuf’ model (parts of) the contents of com-
munication channels that are adjacent to the process. More specifically, inbuf?, pending?® :
CID — VAL* are functional state objects where inbuf?(cid) models the sequence of messages
that have been received over channel cid but which are not yet ready for processing and
pending®(cid) models the sequence of messages that have been received over channel cid and
that are ready for processing. The state object outbuf? : (CID x VAL) U {()} stores outgoing
messages until they have been sent over a communication channel. The value () models that
the output buffer is empty and a value (cid, val) models that message val shall be sent over
channel cid. There is at most one message in the output buffer of a given process.

The state objects atid? : TID U {L}, ainfo? : INU{—-1} U {L}, executed? : BOOL, and
initialized? : BOOL store status information. The identifier of the currently active thread is
stored in atid? (if there is any — otherwise: undefined). Information that shall be passed
to the scheduler as parameter of the next yield-event is stored in ainfo? (if there is any).
That the active thread has terminated is indicated by ainfo? = —1. Otherwise, ainfo? equals
the number of threads spawned after execution of a DMWL-command. The flag ezecuted?
indicates whether the currently active thread has already performed a step (value tf) or not
(value ff). The flag initialized? indicates whether the initialization of variables has been
finished (value tt) or not (value ff).

The specification of the state space is summarized in Figure 7.10 where, for improving
readability, the index p is omitted for all state objects.

Specification of the Initial State. For the initial state s§ (initthread), we assume that all
program variables are initialized with some (not further specified) value initval. The thread
with identifier (0) contains the program initthread that is to be executed, i.e. thread? ((0)) =
initthread. For all other thread identifiers, thread} returns L. Initially, all communication

172 CHAPTER 7: Case Study

SP = {(mem, thread, inbuf, pending, outbuf, atid, ainfo, executed, initialized)}
mem : VAR — VAL , current local shared memory
thread : TID - THREAD U {1, T,()} , current local state of threads
inbuf : CID - VAL* , buffer for incoming messages
pending : CID — VAL* , buffer for incoming messages
outbuf : (CID x VAL)U{()} , buffer for outgoing messages
atid : TIDU{Ll} , identifier of active thread
ainfo : INU{-1}U{L} , actual scheduler information
erecuted : BOOL , has just a step been executed?
initialized : BOOL , has the initialization been finished?

Figure 7.10: Specification of state space for a DMWL process

buffers (inbuff, pendingl , outbufl) are empty, no thread is active, there is no scheduler
information, and the flags ezecuted? and initialized! are set to ff.
The specification of the initial state sf (initthread) for a process with identifier p is given

in Figure 7.11 where, for better readability, the index p is omitted for state objects.

sf(initthread) = (mems,, threads,, inbuf; , pending, , outbuf;
atids,, ainfo, , evecuteds,, initialized,)
mems, (var) = initval , for all var € VAR
threads,((0)) = initthread
threads,(tid) = L , for all tid € TID with tid # (0)
inbufs (cid) = () , for all cid € CID
pending, (cid) = () , for all cid € CID
outbufy = ()
atids, = L,

ainfos, = L,
ezecuteds, = ff,
initializedg, = ff

Figure 7.11: Specification of initial state of a DMWL process

Specification of System Behavior. In the following, we omit the index p when it can
be concluded from the context. During the initialization phase (indicated by initialized = ff),
the values of variables may be changed arbitrarily by setvar-events. Threads are not executed
in this phase (schedule-events are disabled). The initialization phase is completed by the
occurrence of the event start. After the initialization, setvar-events are disabled and thread
execution proceeds as follows:

e If no thread is active (indicated by atid = L) then schedule-events are enabled. After
an occurrence of schedule(tid), atid is set to tid, the thread with local state thread(tid)
becomes active, and all incoming messages are prepared for processing (moving them
from inbuf to pending). An event schedule(tid) is only enabled if the thread tid is alive

7.3 Specifying System Behavior 173

(thread(tid) ¢ {L,T,()}) and not blocked (i.e. trying to receive on an empty channel).

o If there is an active thread (indicated by atid # L A ezecuted = ff) then this thread
can run. Thread execution is formally modeled by the occurrence of events that are
internal to the thread pool. During execution, a thread affects the state objects mem,
thread, pending, and outbuf depending on the particular command that is executed.
Additionally, status information for the scheduler is stored in ainfo. Eventually, the
active thread stops executing (indicated by ezecuted = tt).

e After the active thread has stopped (ezecuted = tt), any outgoing message in the output
buffer is sent on the respective channel.

e After the active thread has stopped and the output buffer is empty, the scheduler
can be informed about this by a yield-event. The event yield(info) is only enabled
if info corresponds to the actual scheduler information combined with the value of
the low variable and information about which threads are blocked on empty channels
(i.e. info = (ainfo, mem(l), blocked-set)). A yield-event resets the ezecuted-flag, atid, and
ainfo.

For the formal specification of the transition relation (in Figures 7.12, 7.13, and 7.14), we
employ a notation based on preconditions and postconditions. In brief, a transition (s, e, s') €
S x E x S complies with a pre/postcondition statement (abbreviated by PP-statement in
the following) if all variables not mentioned in the affects-slot have the same value in s
and in s’ (frame axioms), the precondition holds for the values of variables given by s, and
the postcondition holds for the values of unprimed and primed variables given by s and s’,
respectively.

Let us explain this notation in more detail with the example of the PP-statement for
schedule-events in Figure 7.12. According to this PP-statement, an event scheduley(tid) leaves
all state variables except for atid?, inbuf?, pending®? unchanged. The precondition for this
event is that no thread is currently active (atid = L), that a thread with identifier ¢id is defined
(thread(tid) ¢ {L,T,()}), that if the first command of this thread is a blocking receive then
the corresponding channel is nonempty, and that the initialization phase has been finished.
The postcondition ensures that tid becomes the new active thread (atid?' = tid) and that, for
all channels, the messages received are prepared for processing (moving them from inbuf? to
pending?).

A more detailed explanation of PP-statements, including a definition of the formal seman-
tics via a translation into second-order formulas, is contained in Appendix E.1.

The behavior of interface events is specified in Figure 7.12, the behavior of local compu-
tation events in Figure 7.13, and the behavior of local communication events in Figure 7.14.

Definition 7.3.2. Let T? C SP X E? X S? be a transition relation such that (s,e,s’) € T if
and only if (s,e,s’) complies with all PP-statements for e in Figures 7.12, 7.13, and 7.14. ¢

Process Specification. The overall specification of a DMWL process by a state-event
system is summarized in the following definition.

Definition 7.3.3 (DMWL process). Let p € P and initthread € CMD. We define

DMWLProcess(p, initthread) = (S?, s (initthread), E?,I?,OP,T?) <&

174 CHAPTER 7: Case Study

scheduling events

schedule(tid) affects atid, inbuf, pending
Pre : atid = L A thread(tid) ¢ {L, T, ()} A tid ¢ blocked-set
A initialized = tt
Post: atid' = tid AVcid : CID. inbuf'(cid) = ()
AVcid : CID. pending’(cid) = inbuf(cid).pending(cid)
yield(info) affects ezecuted, atid, ainfo
Pre : executed = tt A info = (ainfo, mem(l), blocked-set) N\ outbuf = ()
Post: ezecuted' = ffA atid' = L A ainfo' = L

variable accesses/initialization

outvar(var, val) affects —
Pre : mem(var) = val
Post: it
setvar(var, val) affects mem(var)
Pre : initialized = [f
Post: mem/(var) = val
start affects initialized
Pre : initialized = [f
Post: initialized' = tt
message transmissions

trans(cid, val) (case receiver(cid) = p) affects inbuf{ cid)
Pre: it
Post: inbuf'(cid) = (val).inbuf(cid)

trans(cid, val) (case sender(cid) = p) affects outbuf
Pre : outbuf = (cid, val)
Post: outbuf’ = ()

where blocked-set = {tid | first(thread(tid)) = receive(cid, var) A pending(cid) = ()}

Figure 7.12: Preconditions and postconditions of interface events

Definition 7.3.4 (sender,receiver). A process DMWLProcess(p, initthread) complies with
the functions sender, receiver : CID — PID if for every command send(cid, Ezp), which is a
subcommand of initthread, holds sender(cid) = p and for every command receive(cid, var) or
if-receive(cid, var, C1, Cs), which is a subcommand of initthread, holds receiver(cid) = p. o

In the following, we implicitly assume all DMWL processes to comply with sender and receiver.
Moreover, we assume sender(cid) # receiver(cid) for all cid € CID.

Specification of Distributed Programs. Distributed programs can be specified by com-
posing process specifications (cf. Figure 7.15). The composition of state-event systems is
defined along the same lines as the composition of event systems.

Definition 7.3.5 (Composable). Two state-event systems SES; = (S1, so,, E1,I1,01,11)
and SESQ = (SQ, 802,E2, IQ, 02, T2) are CO’mpOSGblC iff E1 N E2 g (01 N IQ) U (02 N Il) holds. &

7.3 Specifying System Behavior 175

computation events

skip affects thread(atid), executed, ainfo
Pre : ready A first(thread(atid)) = skip
Post: thread’(atid) = rest(thread(atid)) A done
Aainfo' = terminates(thread(atid))

assign(var, val) affects mem(var), thread(atid), ezecuted, ainfo
Pre : ready A Ezp [™™ val A first(thread(atid)) = var := Ezp
Post: mem/(var) = val A thread'(atid) = rest(thread(atid)) A done
Aainfo' = terminates(thread(atid))

ite®(B, O, Cy) affects thread(atid), executed, ainfo
Pre : ready A B ™™ tt A first(thread(atid)) = if B then C else Co
Post: thread’(atid) = Cy; rest(thread(atid)) A done A ainfo' =0

itel” (B, C1,C3) affects thread(atid), executed, ainfo
Pre : ready A B ™™ [f A first(thread(atid)) = if B then C else Cy
Post: thread’(atid) = Co; rest(thread(atid)) A done A ainfo' = 0

while®*(B, C,) affects thread(atid), ezecuted, ainfo
Pre : ready A B ™™ tt A first(thread(atid)) = while B do C
Post: thread’(atid) = Cy;while B do Cy; rest(thread(atid)) A done A ainfo' =0

while¥ (B, Cy) affects thread(atid), ezecuted, ainfo
Pre : ready A B ™™ [fA first(thread(atid)) = while B do C}
Post: thread’(atid) = rest(thread(atid)) A done
Aainfo' = terminates(thread(atid))

fork(C, Dy ...D,) affects thread(atid), thread(atid.(0)) ... thread(atid.(n)),

erecuted, ainfo
Pre : ready A first(thread(atid)) = fork(CD; ... Dy,)
Post: thread’(atid) = T A thread’(atid.(0)) = C; rest(thread(atid))
AVi:{1,...,n}.thread'(atid.(i)) = D; A done A ainfo' =n

where
first(thread(atid)) denotes the first command in thread(atid),
rest(thread(atid)) results from thread(atid) by removing the first command,
and the following abbreviations are used:
ready < (executed = [f A atid # 1)
done & (ezecuted' = tt)
terminates(thread(atid)) equals —1 if rest(thread(atid)) = () and 0 otherwise.

Figure 7.13: Preconditions and postconditions of local events (1)

176 CHAPTER 7: Case Study

communication events

send(cid, val) affects thread(atid), executed, ainfo, outbuf
Pre : ready A Ezp [™™ val A first(thread(atid)) = send(cid, Ezp)
Post: outbuf’ = (cid, val) A thread'(atid) = rest(thread(atid)) A done
Aainfo' = terminates(thread(atid))

receive(cid, var, val) affects thread(atid), executed, ainfo, mem(var), pending(cid)
Pre : ready A pending(cid) # () A last(pending(cid)) = val
Nfirst(thread(atid)) = receive(cid, var)
Post: mem/(var) = val A pending’(cid) = butlast(pending(cid))
Athread’(atid) = rest(thread(atid)) A done A ainfo' = terminates(thread(atid))

ite-rcv™(cid, var, val,C1, Cy) affects thread(atid), executed, ainfo, mem(var), pending(cid)
Pre : ready A pending(cid) # () A last(pending(cid)) = val
Nfirst(thread(atid)) = if-receive(cid, var, C1, Cs)
Post: mem/(var) = val A pending’(cid) = butlast(pending(cid))
Athread'(atid) = Cy; rest(thread(atid)) A done A ainfo' = 0

ite-rcv?(cid, var, val, C,, Cy) affects thread(atid), ezecuted, ainfo
Pre : ready A pending(cid) = () A first(thread(atid)) = if-receive(cid, var, C1, Ca)
Post: thread’(atid) = Co; rest(thread(atid)) A done A ainfo' =0

where
first(thread(atid)) denotes the first command in thread(atid),
rest(thread(atid)) results from thread(atid) by removing the first command,
last(pending(cid)) denotes the last message in pending(cid),
butlast(pending(cid)) results from pending(cid) by removing the last message,
and the following abbreviations are used:
ready < (executed = [fA atid # 1)
done & (ezecuted' = tt)
terminates(thread(atid)) equals —1 if rest(thread(atid)) = () and 0 otherwise.

Figure 7.14: Preconditions and postconditions of local events (2)

Definition 7.3.6 (Composition state-event systems). Let SES; =(S1, so,, E1,11,01,T1)
and SESs = (S2, so,, E2, I2,02,T5) be composable.

The composition of SES; and SESs (denoted by SES; || SESs) is the state-event system
SES = (S,s0,E,I,0,T) where S, s, E, I, O, and T are defined as follows:

S = 51 X SQ
S0 = (301a502)
E = E1 UE2
T = (\0)U(L\Oy)
O = (01\L)U(02\ 1)
T = {((s1,82),6e (s1,85) € SxExS
(e ¢ BELA S, =s1)V(e€EA(s1,e58)) €Th))
A((e ¢ Ea Ash=59) V(e € EyA(sg,¢e,5) € Tn))} o

7.4 Specifying Security Requirements 177

High—Level Environment

setvar-H outvar setvar H outvar
DMWL Process DMWL Process
- - - - - - - = = Y — - - - - - - - = = Y
inbuf tbuf pendi inbuf tbuf pendi
trans : inbu ou' uf pending | trans | inl og pending 1 | e
3 mem atid executed !] | mem atid executed | [
I— ‘L thread ainfo initializedJ ~ ‘L thread ainfo initializedJ I —

Low-Level Environment

Figure 7.15: Composition of processes with interface events and state objects

The following theorem shows that our definition of a composition operator for state-event
system is compatible with the notion of an induced event system.

Theorem 7.3.7. Let SESl = (Sl,SOI,El,Il,Ol,Tl) and SESQ = (SQ,SOz,EQ,IQ,OQ,TQ) be
composable. Then ESgps,|sps, = ESsus, || ESsps, holds. o

Proof. Follows from Definitions 2.1.18, 6.2.2, and 7.3.6. O

Note in Definition 7.3.6, that the state space of the composed system is the product of the
component’s state spaces. This means that state-event systems do not communicate via their
state space (e.g. by shared variables). They communicate, like event systems, by synchronizing
on occurrences of shared events. Hence, restricted forms of composition (product, proper
cascade, and general cascade) could be defined just like for event systems.

We are now ready to present the event-based specification of distributed DMWL programs.

Definition 7.3.8 (DMWL process pool). Let p;,...,p, € PID be a collection of process
identifiers and initthready, ..., initthread, € CMD be a collection of DMWL commands. We
define

DMWLProcPool((p, initthread,), . . ., (p,, initthread,,))
= DMWLProcess(py, initthread;) | ... || DMWLProcess(p,,, initthread,,) &

The state-event system specified in Definition 7.3.8 is an adequate model of DMWL process
pools. This is demonstrated formally in Appendix E.3.

In Definitions 7.3.3 and 7.3.8, we have presented event-based system specifications of
DMWL programs (for the non-distributed case and the distributed case, respectively). We
are now ready to analyze the security of DMWL programs based on these specifications.

7.4 Specifying Security Requirements

We shall now outline how one can specify the security requirements of a given system with
information flow properties in MAKS, and then we illustrate in detail how this can be done
for our example. More precisely, we formalize the security requirements of individual DMWL
processes by defining a set of views and by assembling a security predicate from appropriate
BSPs.

178 CHAPTER 7: Case Study

7.4.1 How to Proceed

1. Determine all confidentiality requirements for the given system.
2. Determine all integrity requirements for the given system.

3. Select a formalism for specifying the restrictions on the information flow. If you specify
the restrictions directly by a set of views then proceed with 3(a). If you use flow policies
for this purpose (cf. Section 3.3.1), proceed with 3(b).

(a) Define a set VS of views to express the security requirements for the given system
and then proceed with step 4.

(b) Define a flow policy that expresses the security requirements for the given sys-
tem abstractly and specialize these abstract requirements by defining a domain
assignment. The set VS of views can be calculated according to Definition 3.3.11.

4. For each view V € VS, define a suitable security predicate SP:

(a) Decide if deductions about occurrences of confidential events must be prevented.
If yes, choose one or more BSPs from the first dimension (i.e. from R, D, BSD,
SR, SD, F CDF). Justify that this choice is appropriate. In particular, ensure that
the typical pitfalls (illustrated for the various BSPs in the respective subsections
of Section 3.4) are avoided.

(b) Decide if deductions about nonoccurrences of confidential events must be pre-
vented. If yes, choose one or more BSPs from the second dimension (i.e. from I,
IA?, BSI, BSIAP, SI, SIAP, FCI', FCIAPT). Justify that this choice is appropri-
ate. In particular, ensure that the typical pitfalls (illustrated for the various BSPs
in the respective subsections of Section 3.4) are avoided. If one of IA”, BSIA?,
SIAP, FCIAPT is chosen, then choose an admissibility function p and justify that
p is appropriate (in particular, avoid the pitfalls pointed out in Remark 3.4.21).

(c) Define SP to be the conjunction of all BSPs selected under 4(a) and 4(b).

5. Collect the set of resulting information flow properties. For each security predicate SP
defined in step 4, one obtains a pair (VSgp, SP) where VSgp is the set of all views for
which the security predicate SP has been chosen.

Remark 7.4.1. Often, the same security predicate can be used for all views in VS. This
greatly simplifies the steps 4 and 5 above. O

7.4.2 The Running Example

In our case study, we perform steps 1, 2, 3(a), 4(a~c), and 5.

Confidentiality Requirements. The central confidentiality requirement for a DMWL
process is that the initial values of high variables are not leaked to the low level. In other
words, occurrences of events observable by the low level must not depend on the occurrence
of events setvar(h,val) (modeling the initialization of high variables).

Values of high variables may be communicated on high channels from one process to
another. This means, messages transmitted on high channels may contain confidential infor-
mation. Therefore, the receiving process must handle messages on high channels with the

7.4 Specifying Security Requirements 179

same care as the initial value of its local high variable. In particular, the contents of messages
received on high channels must not be leaked to the low level. Moreover, it must not be leaked
whether messages are present on a high channel or not. Otherwise, it might be possible that
confidential information is leaked to the low level. For example, if a process sends a message
on a particular high channel only under the condition that its high (boolean) variable is true
(h = tt) then the information whether a message is present on this channel or not is all the
attacker needs to deduce the value of h. Therefore, the number of messages on a high chan-
nel as well as the contents of these messages must be kept confidential. In other words, the
occurrence of low-level events must not depend on the occurrence of events trans(cidpy, val)
(where cidy is an incoming high channel) that model the receival of high messages.

Integrity Requirements. There are no integrity requirements in this case study.

Specification of Security Requirements by Flow Restrictions. We specify the secu-
rity requirements directly by a set of views.

We have three different classes of events for a given process p. Firstly, there are events
whose occurrences are observable for the low-level environment. These include scheduling
events (scheduley(tid), yield,(info)), the completion of the initialization phase (event start,),
read events and write events on low variables (outvary(l, val), setvary(l,val)), and transmis-
sions on low channels (trans(cid;, val) where level(cid;)) = low). Secondly, there are events
whose occurrences are not observable for the low-level environment and that are confiden-
tial. As pointed out before, these include write events on high variables (setvary(h,val))
and transmissions on incoming high channels (trans(cidp, val) where level(cidy) = high and
receiver(cidy) = p). Finally, there are events whose occurrences are not observable and that
are also not confidential. These include all internal events (events in E]), read events on
high variables (outvar,(h, val)), and transmissions on outgoing high channels (trans(cidy, val)
where level(cidy) = high and sender(cidy) = p). Output events that may involve high-level
variables (outvary(h, val)) or high-level messages (trans(cidy,, val)) need not to be classified as
confidential. Confidential aspects of such output events are completely attributable to high-
level input events (setvar-events on high variables and ingoing ¢rans-events on high channels)
and the confidentiality of high-level input events is already explicitly demanded. Note that
this argument is along the same lines as the explanation given by Guttman and Nadel for
the idea underlying the definition of generalized noninterference (cf. Example 3.3.6). The
resulting sets of events constitute a view.

Definition 7.4.2 (HZ?). We define the view HZ? = (VP, NP CP) as follows:

scheduley(tid), yield,(info),
Ve = outvary(l,val), setvary(l,val), | level(cid)) = low
starty, trans(cid;, val)

outvary(h, val),

local trans(cidy, val)

N? = Ej u{

level(cidy) = high,
sender(cidy) = p

or — setvary(h, val),
N trans(cidpy, val)

level(cidy) = high,
receiver(cidp) = p

180 CHAPTER 7: Case Study

Security Predicate. A low-level adversary should neither be able to deduce that a high
variable has been set to a particular value nor be able to deduce that a high variable has not
been set to some particular value. Similarly, the adversary should not be able to learn whether
messages have or have not been received on some high channel. Note that it is not enough
to prevent him from learning which particular messages are on a channel (cf. paragraph on
confidentiality requirements earlier in this section). Consequently, we need to prevent deduc-
tions about occurrences as well as about nonoccurrences of confidential events. Therefore, we
choose BSPs from both dimensions when constructing the security predicate.

From the BSPs in the first dimension, we select BSD. Choosing a backwards strict BSP
has the advantage (in comparison to choosing a non-strict BSP like R or D) that information
leakage like in Example 3.4.22 is ruled out. Strict BSPs or forward correctable BSPs are no
suitable alternatives. Strict BSPs (like SR or SD) are overrestrictive in the sense that they
permit no corrections and that this does not offer any advantages wrt. the degree of security
provided (in comparison to the respective backwards strict BSPs). Forward correctable BSPs
are usually used in addition to other BSPs from the same dimension (rather than instead
of these) with the objective to arrive at a composable security predicate. Here, we do not
explicitly require that a forward correctable BSP must hold, however, we will return to issues
of compositionality and forward correctable BSPs in Section 7.6.2.

From the BSPs in the second dimension, we select BSTA?”. The argument for choosing a
backwards strict BSP (rather than strict or non-strict BSPs) is like for the first dimension.

The reason why we prefer BSIA?" over BSI is that we want to permit that visible events
influence the possibility of confidential events (but not vice versa). More specifically, we want
to express that the enabledness of setvar-events may depend on whether a start-event has
previously occurred or not. Namely, before start has occurred, setvar-events are enabled and
after start has occurred they are disabled. Hence, BSI would be a too restrictive BSP in our
setting because it requires that confidential events (including setvar-events on high variables)
can be inserted at every point of a trace. In contrast to this, BSIA?" requires only that
confidential events can be inserted at points of a trace where they are pP-admissible.

We define p? by pP(HIP) = {start,}. With this choice, the possibility of setvar-events
may depend on start-events (but not on any other events). More precisely, BSIA,Z;-p(TTSESP)
requires that the event setvar(h, val) can be inserted into a possible trace (.« after 8 if start
does not occur in 3 (i.e. if B|{5qrp = () holds). In other words, setvar-events on high variables
need not to be insertable after start has occurred. Incoming trans-events are not affected by
the p-admissibility assumption of BSIA because they are always enabled.

It remains to be shown that BSIA?” is not too liberal in the sense that it permits leakage
of confidential information. Recall from Remark 3.4.21 that this, in principle, might be the
case for our choice p? because p?(HZP) C C'? does not hold. However, in our setting the only
difference between BSIA?" and BSI (which would rule out deductions about nonoccurrences
of confidential events completely) is that a low-level adversary can deduce that no setvar-event
can occur after he has observed an occurrence of the event start. Since only the setting of
high variables during the initialization phase is confidential, this possibility for the adversary
is not problematic. Note that incoming trans-events do not depend on start (they are always
enabled). Consequently, the adversary cannot deduce any information about the occurrence
or nonoccurrence of transmissions from observing a start-event (if BSD and BSIA?" hold).

Definition 7.4.3. We define the security predicate SP? by SP? = BSD A BSIA?" where
pP(HILP) = {start,}. O

7.5 Verifying Security Requirements 181

Information Flow Property.

Definition 7.4.4. We define the information flow property IFP? = ({HZ?}, SPP?). o

Remark 7.4.5. Note that IFP? is not equivalent to any of the known information flow
properties that we investigated in Chapter 4. While the view HZP? is like the one in the
MAKS-representations of GNF, GNI, or FC, i.e. high-level inputs are confidential, the security
predicate differs substantially (cf. Theorems 4.2.22, 4.2.3, and 4.2.11). The shape of the
security predicate BSD A BSIA? is rather like in the MAKS-representation for NDO, SEP,
or PSP (cf. Theorem 4.2.16, 4.2.24, and 4.2.26). However, these information flow properties
assume a different view (i.e. that all high-level events are confidential). Hence, IFP? is a
novel information flow property.

Based on the modular representation of information flow properties in MAKS, it is an easy
task to relate this novel property to the known information flow properties. In particular,
we obtain that IFP? is more restrictive than GNF (i.e. IFP? implies GNF') and that GNI
is more restrictive than IFP? (i.e. GNI implies IFP?). Further implications (like, e.g., that
FC is more restrictive than IFP?) can be easily obtained with the help of our taxonomy of
known information flow properties (cf. Figure 4.4).

Note that “inventing” a novel information flow property “on demand” with the uniform
concepts provided by MAKS (i.e. views and BSPs) did not pose a major intellectual challenge.
However, without MAKS, we believe it would have been much more difficult to find an
appropriate information flow property. For example, it is not possible to represent IFP? by
selective interleaving functions (cf. Theorem B.2.1). <&

This concludes the specification of the security requirements for DMWL processes. We are
now ready to prove that every process that executes a strongly secure DMWL program satisfies
its security requirements.

7.5 Verifying Security Requirements

To illustrate the verification of information flow properties with the unwinding techniques
proposed in Chapter 5 is the purpose of this section. We outline how to proceed in the
verification and then illustrate this for the running example by showing that every DMWL
process with a strongly secure program satisfies IFP? and, for simplifying this proof, we apply
our unwinding techniques.

7.5.1 How to Proceed

Let ES = (E,I,0, Tr) be a specification of the system under consideration. Moreover, let
VS be a set of views in F and SP be a security predicate. In order to verify that ES
satisfies the information flow property (VS, SP), one has to verify that BSPy(7r) holds for
every view V in VS and for every basic security predicate BSP from which SP is assembled
(cf. Definitions 3.2.4 and 3.2.7). For verifying BSPy,(Tr), one can proceed as follows:

1. Select a verification technique for proving BSPy,(7r). For unwinding (cf. Chapter 5),
proceed with 2. For simulation (cf. Appendix C), proceed with 3.8

8Obviously, it is also possible to prove BSPy(Tr) without the help of specialized verification techniques.
An example for how to prove noninterference directly can be found, e.g., in [McL92].

182 CHAPTER 7: Case Study

2. Proving BSPy(Tr) by unwinding;:

(a) If an unwinding result (cf. Theorems 5.3.1, 5.3.2, and 5.3.3) is applicable then
determine the unwinding conditions that are appropriate for BSP (7r).

(b) If no unwinding result is applicable for this BSP then retrieve a more restrictive
BSP for which an unwinding result is applicable by traversing the ordering of BSPs
in reverse direction. Figure 7.16 summarizes the results of Theorems 3.5.3, 3.5.4,
3.5.12, and 3.5.13 that are relevant for this purpose. In the figure, BSPs for which
we have presented unwinding results in Section 5.3 are marked by surrounding
boxes. Afterwards, determine the unwinding conditions appropriate for verifying
the more restrictive BSP using Theorems 5.3.1, 5.3.2, and 5.3.3.

(c) Construct an unwinding relation x C S x S.

(d) Verify all previously determined unwinding conditions for this unwinding relation.

Figure 7.16: Ordering BSPs with and without local verification conditions

3. Proving BSPy(7r) by simulation:

(a) If Theorem C.2.1 or Theorem C.2.2 is applicable for this BSP then determine the
appropriate refinement statements from these theorems.

(b) If Theorems C.2.1 and C.2.2 are not applicable for this BSP then retrieve a stronger
BSP for which one of these theorems is applicable by traversing the ordering of
BSPs in reverse direction.” Afterwards, determine the refinement statements ap-
propriate for the stronger BSP using Theorems C.2.1 and C.2.2.

(c) For every refinement statement that has been determined, proceed as follows:
i. Select one of the four simulation techniques, i.e. forward, backward, forward-
backward, or backward-forward simulation.

ii. Determine local verification conditions appropriate for verifying the refinement
statement from Definitions C.1.3 (for forward simulation), C.1.5 (for backward
simulation), C.1.8 (for forward-backward simulation), and C.1.9 (for backward-
forward simulation).

iii. Construct a simulation relation.

iv. Verify all previously determined local verification conditions for this relation.

°The BSPs reformulated by refinement statements in Section C.2 are the same as the ones for which we
have derived unwinding results (marked by surrounding boxes in Figure 7.16).

7.5 Verifying Security Requirements

183

7.5.2 The Running Example

In our case study, we follow the unwinding approach (steps 1 and 2(a-d)). More specifically,
unwinding is used in the proof of the following theorem, which shows that, for single processes,
strong security implies IFP?.

Theorem 7.5.1 (Satisfaction of security requirements for single processes). Let
C € CMD be a DMWL command, p € PID be a process identifier, and ES be the event system
that is induced by the state-event system DM WL Process(p,C).

If C is strongly secure then ES satisfies IFPP. <

Proof. In the proof, we abbreviate the state-event system DM WL Process(p,C) by SES? =
(SP,sf(C),EP, I?,07,T?). For better readability, we omit the index p from state objects
and events. We proceed like outlined in Section 7.5.1.

Selection of a Verification Technique. We prove the theorem by unwinding.

Unwinding Conditions. According to Theorem 5.3.1, the unwinding conditions for BSD
are Irf and osc while the unwinding conditions for BSIA?” are Irbe?” and osc. That is, we have
to prove that Irfy7»(T?, x1), oscyze (TP, X1), lrbeqpfﬂ(Tf’, X9), and oscyzr» (TP, X9) hold.

Unwinding Relation. We define x; =X and x; =X where the (symmetric) unwinding
relation X C S? x S? is defined as follows (where s, s’ € S? are reachable states):
s X s’ holds if and only if the following conditions are all true:

1. initializeds = initializedy

2. executed; = erecutedy

3. ainfo, = ainfoy

4. atids = atidgy

5. inbuf, =, inbuf, A pending, =1, pendingg

6. Vcidy € CID.Vvale VAL. (level(cidy) = low = (outbuf, = (cid;, val) < outbufy = (cidy, val)))
7. memgs =1, memy

8. Vtid € TID.(threads(tid) = L = thready (tid) V threads(tid) = T = thready (tid)
V threads(tid) = () = thready (tid) V threads(tid) =y, thready (tid))

9. blocked-sets = blocked-sety

Verification of Unwinding Conditions. According to Theorem 5.3.1, we have to prove
that Irfy7»(T?,X), lrbe;.p{pI,,(Tp, X), and oscyz»(T'P,X) hold. As an example, we prove the
first of these unwinding conditions here. The other two unwinding conditions are proven in
Appendix E. 4.

184 CHAPTER 7: Case Study

Lemma 7.5.2. Let C € CMD, p € PID, and SES? = (S?,s},E?P,I?,07,T?), be defined
by SESP = DMWLProcess(p,C). Moreover, let X C S x S be defined like in the proof of
Theorem 7.5.1. If C is strongly secure then Irfy7»(T'?, X) holds. <

Proof. Let s,s' € SP and ¢ € C? be arbitrary. Assume reachable(SES?,s) and s —7p '
hold. According to the definition of C?, either ¢ = setvar(h, val) or ¢ = trans(cidp, val) holds
(where val € VAL, cidp, € CID with receiver(cidy) = p and level(cidy) = high). We make a
case distinction on these two possibilities.

Firstly, assume ¢ = setvar(h, val). According to Figure 7.12, an occurrence of this event
only affects the value of mem(h). Hence, memy =1, mems. Conditions 1-9 are true for s’ and
s (Condition 8 is ensured by Lemma E.4.2). Consequently, s’ X s holds.

Secondly, assume ¢ = trans(cidy, val). According to Figure 7.12, an occurrence of this
event only affects the value of inbuf(cidy). Since level(cidy) = high, we have inbuf, =r, inbuf,.
Conditions 1-9 are true for s’ and s (Condition 8 is ensured by Lemma E.4.2). Consequently,
s' X s holds. O

From Lemma E.4.1 in the appendix, we obtain that lrbe;fzp(T P X) and oscyz»(TP,X) hold.
From Theorem 5.3.1, we obtain that ES satisfies IF/P?.
This concludes the proof of Theorem 7.5.1. O

The following theorem shows that if a DMWL process executes a program that is the result
of a successful type check with the type system from Figure 7.5 then the process satisfies its
security requirements. This theorem provides a basis for checking IF'P? mechanically.

Theorem 7.5.3. Let C,C’ € CMD be DMWL commands, p € PID be a process identifier,
and ES be the event system induced by the state-event system DM WL Process(p, C").
If C — C": Sl is derivable then ES satisfies [FP?. <

Proof. Follows immediately from Theorems 7.2.13 and 7.5.1. O

This concludes the security analysis of individual processes. We have shown that every process
that executes a strongly secure program satisfies its security requirements (in Theorem 7.5.1)
and that these security requirements can be checked with the type system in Figure 7.5.

7.6 Composing Systems

Let us now outline how information flow properties can be verified for complex systems
that are composed of multiple components by exploiting a compositionality theorem. In
the running example, we investigate distributed systems that are composed of one or more
DMWTL processes, each of which is strongly secure. We identify the security requirements
for such a system along the same lines as for single processes. Then we verify that the
composed system satisfies its security requirements. In order to simplify this proof, we employ
a compositionality theorem.

7.6.1 How to Proceed during System Composition

In the following, we assume that each system component has already been specified by an
event system, i.e. there is a finite set £S of event systems where each ES’ € £S specifies one
system component. Moreover, we assume that the security requirements of each component

7.6 Composing Systems 185

have been specified by a set of information flow properties that have already been verified.

More precisely, we assume that, for each component ES' € £S, a finite set of information

flow properties {IFPy,...,IFP, ., } has been verified.

A formal security model for the composed system can be constructed as follows:

1. Specify the overall system by the event system ES = (E,I,0, Tr) that is defined by
ES = ||ggrcesES'. This means, ES is the event system that results when composing the
event systems for the system components.

2. Specify the security requirements for the composed system by a set of information flow
properties {IFP1,...,IFP,;}. This can be done like explained in Section 7.4.

3. For each information flow property IF'P; specified in step 2, proceed as follows:

(a) Check whether a known compositionality theorem is applicable in the sense that it
entails that ES satisfies IFP; and all of its preconditions are fulfilled. For example,
the compositionality theorems in Sections 6.5-6.7 are possible candidates. If a
known compositionality theorem is applicable then conclude that ES satisfies IFP;.

(b) If none of the known compositionality theorems is applicable then try to derive a
compositionality theorem (e.g. along the lines described in Section 6.5). If you have
been successful and the derived result is applicable then conclude that ES satisfies
IFP; (and add the theorem to your collection for use in future verifications).

(c) If the attempts under 3(a) and 3(b) are not successful then do one of the following;:

i. Choose an information flow property IFP;' that is more restrictive and return
to step 3(a) in order to verify that ES satisfies IFP;'.

ii. Prove IFP; without the help of a compositionality theorem (like described in
Section 7.5).

7.6.2 The Running Example

In our running example, we proceed as follows. After performing steps 1, 2, 3(a-b), we will
detect that no suitable compositionality theorem can be derived for IFPT. Therefore, we
will move to a more restrictive information flow property (step 3(c)i). After performing step
3(a,b) for this strengthened property, we will succeed with our verification effort.

In the following, let PID be a set of process identifiers and, for each p € PID, let
initthread, € CMD be a DMWL-command.

System Specification. In this section, we employ the system model of event systems
(rather than that of state-event systems). In the following two definitions, we specify DMWL
processes and DMWL process pools, respectively, by event systems.

Definition 7.6.1 (ESP?). For p € PID, we define ES? = (EP,I?, 0P, Tr?) as the event
system that is induced by the state-event system DMWLProcess(p, initthread,). &

Definition 7.6.2 (ESY). Let P = {p,,...,p,} C PID be finite and nonempty. We define
ESP = (EP,IP,0F, 1rF) by EST = ESP1 | ... || ESP~. o

The following theorem shows that EST is the event system that is induced by the state-
event system DMWLProcPool((p,, initthread,), . . ., (p,,, initthread,)), i.e. the state-event sys-
tem that models the DMWL process pool.

186 CHAPTER 7: Case Study

Theorem 7.6.3. Let P = {p;,...,p,} C PID be finite and nonempty. The event system
induced by DMWLProcPool((p,, initthread,), . .., (p,, initthread,,)) and EST are equal. O

Proof. Follows from Theorem 7.3.7 and Definitions 7.3.8, 7.6.1, and 7.6.2. O

Security Specification. The security requirements for DMWL process pools can be de-
termined along the same lines as for individual DMWL processes (cf. the paragraphs on
confidentiality requirements and integrity requirements in Section 7.5.2).

The resulting security requirement is that initial values of high variables must not be leaked
to the low level. In other words, occurrences of events observable for the low-level environment
must not depend on the occurrence of events setvary(h, val) (modeling the initialization of the
high variable in some process p € P). Values of high variables may be communicated on high
channels between processes and process pools. Therefore, a process pool must handle messages
on incoming high channels with the same care as the initial value of high variables in any of
its processes. Moreover, it must not be leaked how many messages are present on incoming
high channels. The resulting security requirements are captured in the following definition
of the view HZ ¥, which is very similar to the specification of the security requirements of a
single DMWL process by the view HZ? (cf. Definition 7.4.2).

Definition 7.6.4. For a finite and nonempty set P C PID, the view HZ? = (VE NP CF)
is defined as follows:

scheduley(tid), yield,(info),
vP = outvary(l, val), setvary(l,val),
start,, trans(cidy, val)

pEP,
level(cidy) = low

pEP,
level(cidy) = high,
sender(cidy) € P
p € P, level(cidy) = high,
recetver(cidy) € P,
sender(cidy) ¢ P O

P » outvary(h, val),
N= = Uper Ploca Y trans(cidy,, val)
oF _ setvary(h, val),
trans(cidp, val)
According to the above definition, V' = UpepV'? and NP = Upep N7 hold.

The security predicate for DMWL process pools can be determined along the same lines as
for individual processes (cf. the corresponding paragraph in Section 7.5.2). Like for individual
processes, this leads to the selection of BSD and an instance of BSIAP. The admissibility
function p ¥ that is used to instantiate BSIA” returns the set of all start-events of processes
in the process pool, i.e. p¥'(HIT) = {start, | p € P}. It is important that all start-events are
contained in this set because the set C'* of confidential events contains events setvary(h, val)
for all processes in the process pool.

Definition 7.6.5. Let P C PID be finite and nonempty. Define SP¥ = BSDABSIA?" where
pP(HI?)={start,|p€ P}. O

This results in the following information flow property for process pools.

Definition 7.6.6. Let P C PID be finite and nonempty. Define the information flow property
IFPY = ({HZ '}, SPT). o

7.6 Composing Systems 187

Obviously, the event system that specifies a process pool that consists of a single process only
equals the event system that specifies this process (i.e. ES {r} — ggr holds). The specification
of the security requirements for a process pool that consists of a single process should also
equal the specification of the security requirements of that process. The following three
theorems demonstrate that this is, indeed, the case.

Theorem 7.6.7. For each p € PID, we have HZ{P} = HTP, O
Proof. The equations V{#} = v N{r} = NP and C{P} = C? follow immediately from
Definitions 7.4.2 and 7.6.4. O
Theorem 7.6.8. For each p € PID, we have SP{?} = §P?. O
Proof. Follows immediately from Definitions 7.4.3 and 7.6.5. O
Theorem 7.6.9. For each p € PID, we have IFP{?} = [FP?, o
Proof. Follows from Definitions 7.4.4 and 7.6.6 and Theorems 7.6.7 and 7.6.8. O

Verification of Security Requirements. The following theorem states that, for arbitrary
collections of DMWTL processes, strong security implies that IFPF holds. In other words, if
every program in a distributed system is strongly secure then the overall system satisfies its
security requirements.

Theorem 7.6.10 (Satisfaction of security requirements for DMWL process pools).
Let P C PID be finite and nonempty. If, for each p € P, initthread, is strongly secure then
ES? satisfies IFPY. o

Rather than proving from scratch that IFPY holds for EST, which would be quite tedious,
we want to exploit the fact that IFPP holds for each individual process ES? (follows from
Theorem 7.5.1) by applying a compositionality theorem.

The following theorem permits us to view ES! as the composition of two event systems.

Theorem 7.6.11. Let P, P', P" C PID be finite and nonempty. If P’NP” =) and P'UP" =
P hold then EST = EST" || EST" holds. o

Proof. Follows immediately from Definition 7.6.2 and the associativity /commutativity of the
composition operator || (cf. Theorems 6.2.3 and 6.2.4). O

For proving Theorem 7.6.10, we proceed like outlined in Section 7.6.1 (steps 3(a)-3(c)).

Check for Known Compositionality Theorems. Since IFP? is a novel information
flow property, no compositionality theorem is known for it.

Derive a Compositionality Theorem. Unfortunately, we cannot derive a general com-
positionality theorem for IFPY. Let us illustrate the reasons for this at the example of a
system EST that is composed of two components ESY "and EST" that satisfy IFPF " and
IFPY ”, respectively. Since output events of EST ’ may be input events of ESY " and output
events of ES" may be input events of ESP', NP NEP" £paswellas NY"NEY # () may
hold. In other words, corrections made during the local information flow analysis of ESY '

188 CHAPTER 7: Case Study

may cause perturbations for ES? " and corrections made during the local information flow
analysis of EST ! may cause perturbations for EST " Since the BSPs BSD and BSIA*" are
ingredients of IFPF, it is possible to locally correct for each component the perturbations
caused by the respective other component. However, there is no guarantee that the overall
process of locally correcting perturbations terminates because correcting a perturbation for
the first component may lead to perturbations for the second component, whose corrections
for the second component may lead to perturbations for the first component, and so on. In
other words, we cannot conclude that the composition of ESY " and EST" is well behaved
wrt. the views HZ”' and HZT" (cf. Definition 6.3.6). This is the reason why we cannot
derive a compositionality theorem for IFPY,

Since we cannot derive a compositionality theorem for IFPF, we move to a more restrictive
information flow property.

Strengthening the Information Flow Property. Our above observations together with
the definition of a well-behaved composition (cf. Definition 6.3.6) suggest two possibilities
for strengthening IFPY. Firstly, we could modify the definition of HZF (aiming at making
condition 1, 2, or 3 in Definition 6.3.6 true) and, secondly, we could change the definition of
SPY (aiming at making condition 4 in Definition 6.3.6 true). We choose the second possibil-
ity.'® More specifically, we strengthen the securit}y predicate by adding an instance of FCI'.
Adding an instance of FCI' to BSD and BSIA? has the effect that more perturbations are
demanded and that fewer corrections are permitted. Namely, for ' = (V,A,Y), events in
C N'Y must be insertable at every point of a trace where some event in V NV is enabled
(rather than only at points where they are p-admissible) and the permitted corrections are
constrained when an event in C N'Y is inserted at a point where it is immediately followed
by an occurrence of some event in VNV (cf. Section 3.4.5 for how forward-correctable BSPs
restrict the permitted corrections). Let us define appropriate parameters for FCI' .11

Definition 7.6.12. Let P C PID be finite and nonempty. We define 'Y = (VX AP TP)

by:
VP = {trans(cid,val) | receiver(cid) € P, sender(cid) ¢ P}
AP = 0
TP = vP ©

This results in the following modified security predicate and information flow property.

Definition 7.6.13 (CSP?T). Let P C PID be finite and nonempty. We define the security
predicate CSPT = BSD A BSIA?" A FCTT . o

Definition 7.6.14 (CIFPT). Let P C PID be finite and nonempty. We define the informa-
tion flow property CIFPY = ({HZF}, CSPT).12 <O

Since we have constructed CSPY from SP¥ by adding FCI PP, it is quite obvious that CIFPF
implies IFPF. For future references, this is stated in the following theorem.

0Choosing the first possibility would result in a quite essential change of the information flow property and
there is little hope that a composable property derived along these lines would be implied by strong security.
"' The parameter I'” = (V" A" T %) is chosen such that the conditions demanded by Definition 6.3.6 and
Theorem 6.4.1 are satisfied. That this is indeed the case will be shown in Lemmas 7.6.17, 7.6.18, and 7.6.19.
12The “C” in CSP and CIFP stands for “composable”.

7.6 Composing Systems 189

Theorem 7.6.15. Let P C PID be finite and nonempty. If ES” satisfies CIFPF then EST
also satisfies IFPF. <&

Proof. Follows immediately from Definitions 7.6.6, 7.6.5, 7.6.14, and 7.6.13. |

In general, BSIA® " does not imply FCI" ? (i.e. for arbitrary systems). Hence, CIFPT is more
restrictive than IFPF. Fortunately, for the special case of DMWL processes, the satisfaction
of IFP? implies the satisfaction of CIFP {r},

Theorem 7.6.16. Let p € PID. If ES? satisfies IFPP then ES? satisfies CIFP{P}. O

Proof. We show that if BSIAf,(Tr?) holds then FCIT, ', (TrP) holds.

Assume o, 8 € E*, c € C1PInT P} and v € VPNV P} with B.(v).a € TrP and o]y =
(). Hence, ¢ = trans(cid, val) where level(cid) = high and receiver(cid) = p. Moreover, we
have v = trans(cid’, val’) with level(cid') = low and receiver(cid') = p.

BSIAQPI o(Tr?), total(ES?, {trans(cid, val) | receiver(cid) = p}), and Theorem 7.6.7 ensure
that o € EP* exists with B.(v.c).o/ € TrP, /|y, 5y = |y 15y, & |y = (). The event ¢ has
no preconditions and affects only inbuf,(cid) (where p = receiver(cid)). Since cid’ # cid, the
occurrence of trans(cid’, val’) neither depends on inbuf,(cid) nor does it affect inbuf,(cid).
Hence, ¢ and v can be exchanged in the trace. This means 5.(c.v).a/ € Tr? holds. O

We are now ready to return to step 3(a) with the strengthened information flow property.

Check for Known Compositionality Theorem. Since CIFPF is a novel information
flow property, no compositionality theorem is known for it.

Try to Derive a Compositionality Theorem. We proceed like described in Section 6.5:
Firstly, we show that the views for the system components constitute a proper separation of
the view for the composed system. Secondly, we show that the composition of the components
is well behaved wrt. the views for the components. Thirdly, we verify the preconditions of
the compositionality results for all BSPs from which CSPF is assembled. Finally, we apply
these compositionality results and conclude that CIFPT holds for the composed system.
The following lemma shows that #Z ¥ "and HZ'" constitute a proper separation of HZ ¥ .

Lemma 7.6.17 (Proper separation). Let P, P’ P"” C PID be finite, nonempty sets such
that P'N P"”" =@ and P = P'"U P"” hold. The following propositions are valid:

L. VNEY =vP and VNEF" =V " hold.

2. CNEY cC? and CNEF" C CP" hold.

3. NP NnNP" = holds. O
Proof. Follows immediately from Definition 7.6.4. O

We show that the composition of EST "and EST" is well behaved wrt. HZF' and HTF".

Lemma 7.6.18 (Well-behaved composition). Let P, P! P"” C PID be finite and nonempty
sets with P'NP" =0 and P= P'UP". If ESY' and EST" satisfy CIFPF' and CIFPY",
respectively, then the composition of ESY' and EST" is well behaved wrt. HZ ' and HZF".

<

190 CHAPTER 7: Case Study

Proof. We show that condition 4 in Definition 6.3.6 is fulfilled.

BSIA ?p{ ; o (TrF ’) and BSIA 71-;1 ; o (TrP ”) hold by assumption. Since trans-events that are

input events of ES”’ and ES'" are always enabled, we have total(EST e nr”? ") and
total(EST",CP" nTP"). Hence, condition 4(a) holds.

FCIAPP’F,P TrP"Y follows from FCIFPI F’ , and FCIA”P ’1:,P TrP"Y follows from
HIP H HIP

P
FCr F;;,,(Trp "). Hence, condition 4(b) holds.

]Sﬁ\/[WL process pools that are composed may only have trans-events in common. More-
over, the shared events must be input events of one process pool and output events of the
other. Since V¥’ and V*" contain all trans-events that are input events for ES” "and EST ”,
respectively, we have VF' NV F" ¢ VP UV F". Hence, condition 4(c) holds.

Since the components may only have trans-events in common, all events in C' ¥ "and C ¥
are input events of EST "and ES? ”, respectively, and T 7' and T 7" contains all ¢rans-events
that are input events for ESY " and EST ”, respectively, we have C ¥ "NNFP" CT? and
CF"'NnNP CYP". Hence, condition 4(d) holds.

From AP =@ and AP" = 0, we obtain that N’ NAFP' ' NnEP" =@and NP' NnAP" N
EP" = { hold. Hence, condition 4(e) holds.]

Let us show that the remaining preconditions of Theorem 6.4.1(1,3,5) are satisfied.

Lemma 7.6.19. Let P, P', P"” C PID be finite, nonempty sets such that P’ N P"” = () and
P = P'UP" hold. If EST" and EST" satisfy CIFPT' and CIFPT", respectively, then the
following propositions are valid:

1 pP"(HZPY CpPHIP)NEF and pP" (HIP") C pP(HIP)NEP" hold.

2. total(EST',CF' N Y P") and total(BST",CP" N YT P") hold.

3. VPNEFP c VP and VPNEP" € VP hold.

4. YPAEP CcYP and YPNEF" C TP" hold.

5 AP (NP nAP)YUINP" nAP")) holds.

6. NP NAP NEP =9and NP'NnAP" " nEP C T hold. &

Proof. We have p?' (HZ"') = {start, | p € P'} = {start, | pe PYNE" = pP(HI)NEP".
That pP" (HZ'") C pP(HZ?) N EP" holds can be shown along the same lines.

Proposition 2 has already been shown in the proof of Lemma 7.6.18.

Since V¥ and V¥’ contain only trans-events that are input events of ESY and ESY ’,
respectively, VZ N EF’ equals V' minus the set of trans-events on channels that become
communication events when composing the components. Hence, V¥ N E¥ " C V* holds.
That VPN EP” C VF” holds can be shown along the same lines.

Proposition 4 can be shown like proposition 2 (T = V¥ holds).

Propositions 5 and 6 follow immediately from A" =@ and A" = 0. O

We are now ready to derive a compositionality theorem for CIFPF.

Theorem 7.6.20. Let P, P', P" C PID be finite, nonempty sets such that P’ N P"” = () and
P = P'UP" hold. If ES?' and ES*" satisfy CIFP"' and CIFP'", respectively, then ES”
satisfies CIFPT. &

7.6 Composing Systems 191

Proof. EST satisfies CIFP” iff and only if BSD,,;»(TrF) A BSIA;_’LIP(rE) A FCIHIP(TrP)

(cf. Definition 7.6.14). By assumption, BSD IP,(TrP’) BSD, ., »n (TrF"), BSIA!, P,(TrP’)

BSIA? P,,(TrP”) FC’IHIP,(TrP'), and FC’IHIP,,(
7.6. 18 and 7.6.19 that Theorem 6.4.1(1,3,5) is applicable.
BSDHI »(Tr?) follows from Theorem 6.4.1(1), BSD

) We obtain from Lemmas 7.6.17,

P'y and BSD "),

’HIP'(HIP”(

BSIA;;IP(Tr¥) follows from Theorem 6.4.1(3), BSIAY P,(TrP’) BSIAY P,,(:n,«P”)
FCIHIP(TrT) follows from Theorem 6.4.1(5), FCI?I;P,(TIHP), and FCI p//(T’I"P”). -

We are now ready to prove that a DMWL process pool ES P that executes programs that are
strongly secure satisfies CIFPY. In the proof of the following theorem, we exploit the fact
that if a DMWL Process ES? is strongly secure then it satisfies CIFP{?} and the fact that
CIFP? is preserved when composing DMWL process pools.

Theorem 7.6.21. Let PC PID be finite and nonempty.
If, for each p € P, initthread, is strongly secure then ES P satisfies CIFPF. <&

Proof. We prove the theorem by induction on the size of P.

In the base case P = {p} holds for some p € PID. Since initthread, is strongly secure,
Theorem 7.5.1 implies that ES? satisfies IFPP. From Theorems 7.6.9 and 7.6.16, we obtain
that ES{P} satisfies CIFP{P}. This concludes the proof of the base case.

In the step case, let P’ P" C PID be finite, nonempty sets such that P’ N P" = () and
P = P'"UP" hold. Since P’ and P" each contain strictly fewer process identifiers than P, the
induction hypothesis is applicable. We obtain from the induction hypothesis that ESF " and
ESP" satisfy CIFPP " and CIFPT ", respectively. From Theorem 7.6.20, we obtain that EST
satisfies CIFPY. O

Now we are ready to prove Theorem 7.6.10, which is the main result of this section

Proof (of Theorem 7.6.10). According to Theorem 7.6.21, ES? satisfies CIFPY. From The-
orem 7.6.15, we obtain that ES* satisfies IFP”. O

We have finally shown that a DMWTL process pool ESY that executes strongly secure programs
fulfills its security requirements (modeled by the information flow property IFPT).

The following theorem shows that if a DMWL process pool executes programs that are
the result of a successful type check with the type system from Figure 7.5 then the process
pool satisfies its security requirements. This theorem provides the basis for checking IFP”
mechanically.

Theorem 7.6.22. Let PCPID be finite and nonempty. For each pe P, let C) € CMD.
If, for each p € P, C}) < initthread, : Sl is derivable then ES P satisfies IFPF. <

Proof. Follows immediately from Theorems 7.2.13 and 7.6.10.

Note that, by following the approach proposed in Section 6.5, the derivation of a composi-
tionality theorem for CIFPY has been quite straightforward (cf. proof of Theorem 7.6.20). In
other words, we have demonstrated by our case study that it is feasible to use novel infor-
mation flow properties (for which no unwinding theorems or compositionality theorems are
known) in the construction of a formal security model and to derive unwinding theorems and
compositionality theorems for this property when they are needed.

192 CHAPTER 7: Case Study

Remark 7.6.23. In Theorem 7.5.1 we have shown that every strongly secure process (with
identifier p) satisfies the information flow property IFPP. This theorem has been applied in
the base case of the proof of Theorem 7.6.21. A comparison of the proofs of Theorems 7.5.1
and 7.6.21 shows how much simpler it is to prove the satisfaction of an information flow
property with a compositionality theorem than to prove it with the help of unwinding. For
a fair comparison of the two proofs, the proof of Lemmas 7.5.2, E.4.1, and E.4.2 should be
counted as being part of the proof of Theorem 7.5.1. Note also that Theorem 7.6.21 involves
a more complex system than Theorem 7.5.1 (process pools rather than individual processes).

The obvious advice that follows from this is: if possible, prove security requirements with
the help of a compositionality theorem. In particular, for complex systems, this is preferable
to proving security requirements directly (with or without unwinding). O

7.7 History of this Case Study

Sabelfeld and Sands investigated language-based security in the context of a simple imperative
programming language, the MWL language [SS00]. This language incorporates features for
multi-threaded programming but does not provide the commands for inter-process communi-
cation that are essential for distributed programming (cf. the beginning of Section 7.2). The
version of the strong security condition that Sabelfeld and Sands proposed for MWL can be
obtained from Definition 7.2.9 by dropping all requirements for channel status functions (in
particular, in Definition 7.2.7). Channel status functions are not needed in a non-distributed
setting. For checking the strong security condition for MWL programs, Sabelfeld and Sands’s
proposed a security type system. Their type system can be obtained from the one in Figure 7.5
by dropping the rules for communication commands. Sabelfeld and Sands proved formally
that their type system is sound in the sense that if the type check succeeds then a strongly
secure program results from the transformation. Moreover, they showed that strong security
is a scheduler-independent security condition (deriving it from a scheduler-dependent security
condition by universally quantifying over all schedulers from a large class). That is, programs
that are strongly secure can be securely executed on systems with arbitrary schedulers. In
particular, this covers the case where the adversary chooses the scheduler. However, strong
security has not been formally compared to more established security properties. The main
motivation for a first version of this case study (presented in [MSO01]) was to establish such
a connection in a rigorous way and, thereby to increase the confidence in the strong security
condition. This first version covered the scheduler-independent language-based techniques for
MWL as described in [SS00].

The first version of our case study inspired an extension of the language-based techniques
to a distributed programming language with commands for inter-process communication. In
[MS03a], the extended language DMWL is described and a suitable modification of strong
security is defined. A type system for checking the modified strong security condition is
presented in [SMO02]. This extension of Sabelfeld and Sands’s approach to language-based
security constituted the starting point of our case study in this chapter.

In a second version of our case study (also presented in [MS03al]), we have lifted the
results of the first version to DMWL. We defined an information flow property SecProp,
proved that every strongly secure process satisfies Sec Prop, and then verified with the help of a
compositionality result that collections of strongly secure processes (i.e. distributed programs)
also satisfy SecProp. This second version of our case study has the same scope as the one

7.8 Summary 193

presented in this chapter but, nevertheless, there are a few noteworthy differences.

One difference is how the information flow properties have been verified. While we have
verified them without using any verification technique in [MS03a], we have applied the un-
winding technique here in order to simplify the proof. For lifting this result to distributed
programs, a compositionality theorem has been derived from scratch in [MS03a]. In contrast
to this, we here have employed the approach proposed in Chapter 6 for deriving a suitable
compositionality theorem. In particular, we have exploited our compositionality results for
BSPs in this process. This considerably simplified the proof of the compositionality result
(both in length and complexity).

The presentation in [MS03a] (or [MS01]) has a peculiarity that we have omitted in this
chapter. This is that the system specification is constructed in two steps. Firstly, a generic
specification of processes is defined that is independent from the particular programming
language. Secondly, this generic specification is specialized for DMWL (or MWL). The infor-
mation flow property is defined using terms only from the generic specification. The objective
of this approach was to make possible an extension to other programming languages besides
DMWL (MWL). Having the option to use different languages for different processes in a dis-
tributed program but, nevertheless, having a uniform notion of security for all processes is an
appealing perspective. However, this possibility is an option for the future that has not been
exploited so far.

For completeness, Appendix E.5 lists the remaining differences between the second version
of our case study and the version in this chapter.

7.8 Summary

In this chapter, we have demonstrated how our framework MAKS (Chapter 3) and the results
about information flow properties that we derived with the help of MAKS (in Chapters 4-6)
can be successfully applied in the context of a concrete case study. The case study that we
have investigated stems from the area of language-based security.

We have presented preliminaries on language-based security to the extent necessary for
understanding the case study (cf. Section 7.2). In particular, we have defined syntax and se-
mantics of the DMWL language, a simple imperative language offering features for distributed
and multi-threaded programming. We have also presented the definition of strong security,
a language-based security condition, and a sound security type system for checking strong
security mechanically. The particular variant of language-based security that we investigated
is an extension of the approach by Sabelfeld and Sands [SS00] to a distributed setting. This
extension is a joint work by Sabelfeld and myself [MS03a, SM02], which, interestingly, was
motivated by a previous version of our case study [MS01].

We have specified DMWL processes in an event-based specification formalism (cf. Sec-
tion 7.3). This specification captures the operational semantics of DMWL in an adequate
way (cf. Theorems E.3.5-E.3.8). The specification of DMWL processes constitutes the sys-
tem component of our security model (cf. Figure 3.1), which is a prerequisite for applying
information flow properties in a concrete setting.'3

The demonstration of how our results can be applied in the context of the case study

13Recall that, in Chapters 3-6, we have left the system specification parametric (except for in examples)
and only committed ourselves to a particular system model, namely event systems. This means, our results in
these chapters can be applied for all systems specified by event systems.

194 CHAPTER 7: Case Study

started in Section 7.4. In that section, we have specified the security requirements for a
single DMWL process by an information flow property. This information flow property was
defined using the concepts of MAKS (introduced in Chapter 3), i.e. we defined a view (HZ?)
and assembled a security predicate (SP?) from two BSPs (BSD and BSIA?"). The result-
ing property specification (IFP?) constitutes the security component of our security model
(cf. Figure 3.1). The information flow property IFP? differs from previously proposed ones,
i.e., while performing the case study we have discovered a new information flow property. By
this example, we have illustrated how easily information flow properties can be constructed
in a goal-directed and application-driven way with the help of MAKS. By incorporating the
newly discovered information flow property into our taxonomy (from Chapter 4), we have
clarified the relations between this property and the known ones (cf. Remark 7.4.5).

The main result of our case study (Theorem 7.6.10) establishes a rigorous relation between
strong security and the defined information flow property. More precisely, it states that if
every program in a given collection is strongly secure then the resulting system satisfies IFP?
(the straightforward extension of IFP? to sets of processes). In the proof of this result, we
have exploited the techniques proposed in Chapters 5 and 6. Rather than verifying IFPF for
distributed programs directly (i.e. by investigating the set of possible traces), we have ap-
plied a compositionality theorem in this process. Since no suitable compositionality theorem
existed (IFPP is novel), we had to derive a new one. Following the approach from Chapter 6
greatly simplified this derivation (in comparison to the proof of Theorem 10 in [MS03a] that
does not make use of these generic techniques). However, for deriving a suitable composi-
tionality theorem, we had to strengthen IFPY resulting in CIFPY (another novel information
flow property). Without this modification, the derivation of the theorem would not have
been possible. Apparently, strengthening an information flow property for deriving a com-
positionality result bears similarities, in spirit, with inductive theorem proving where it is
often necessary to strengthen an induction formula for proving the step case. A prerequisite
for applying a compositionality result is that all system components are known to satisfy the
information flow property under consideration. Therefore, we verified that IFP? holds for
each strongly secure process with identifier p (cf. Theorem 7.5.1). Applying the unwinding
techniques (from Chapter 5) simplified the proof of this result considerably (in comparison
to the proof of Theorem 4 in [MS03a] which does not make use of unwinding). Note that we
could easily apply unwinding although IFP? is a new information flow property (and, hence,
obviously no specialized unwinding results were known for it prior to our case study). By this
example, we have illustrated the strengths of the approach that we proposed in Chapter 5: By
representing IFP? in MAKS, we have obtained an unwinding result “for free”. After showing
that IFP? implies CIFP? for DMWL processes (cf. Theorem 7.6.16), we obtained from the
fact that every strongly secure process satisfies IFP? and our compositionality result that
CIFPY holds for DMWL process pools that execute strongly secure programs. This was the
result for which we were aiming with our case study because it increases the confidence in the
strong security condition by relating it to a more established class of security properties. At
this point, the reader is invited to go back to Definitions 7.2.5-7.2.9 in order to compare the
definition of strong security with the information flow property IFPF (cf. Definition 7.6.6). In
our opinion, the information flow property is more intuitive and also reveals aspects that can-
not be easily obtained from the definition of strong security. In particular, it is more amenable
to comparisons with other security properties (cf. Remark 7.4.5). This is the benefit gained
by our case study.

From a different perspective, our results establish a basis for mechanically verifying IFP*

7.8 Summary 195

by applying the security type system (cf. Figure 7.5) to each program. If all programs are
type correct then the overall system satisfies ITFPY (cf. Theorem 7.6.22).

The version of our case study in this chapter is complemented by two slightly different
versions (due to Sabelfeld and myself) [MS01, MS03a]. Each of these versions emphasizes
a different aspect. For example, the first version [MS01] established a rigorous connection
between two independent approaches to security that were not “made to fit”, i.e. MAKS and
the original strong security condition for MWL [SS00] (cf. Section 7.7).

Although our case study is quite recent, the insights gained from it had already an impact
on the area of language-based security. Namely, an earlier version of the case study inspired
the extension of Sabelfeld and Sands’s approach to a distributed setting [MS03a]. Moreover,
a comparison of various combinations of communication primitives with different types of
communication channels has clarified the advantages and disadvantages of these combinations
wrt. security of the resulting programs. This has culminated in quite concrete advice for
system architects (where to protect communication, e.g., by encryption or firewalls) and
programmers (which primitives to use for secure communication on a given channel) [SM02].14

Summarizing, the case study that we have presented in this chapter demonstrates the
applicability and usefulness of our results. This includes the construction of a suitable in-
formation flow property driven by the demands of a particular application (using MAKS as
described in Chapter 3). It also includes the elaboration of a basic understanding of the con-
structed information flow property by relating it to more established ones (using the taxonomy
in Chapter 4). Moreover, the verification of the information flow property for simple systems
(individual processes) by unwinding illustrates the application of our unwinding techniques
(from Chapter 5). Finally, the verification of the information flow property for more complex,
distributed systems (collections of processes) illustrates the value of a compositionality result
(derived using the approach proposed in Chapter 6). In short, we have shown that MAKS
eases the application of information flow properties in concrete applications. In particular,
MAKS provides a suitable basis for defining new information flow properties when they are
needed and for easily building up the infrastructure (unwinding theorems and composition-
ality theorems), which is crucial for applying these properties in formal developments.

In this chapter, we have applied our results in the domain of language-based security.
Many other application areas are possible like, e.g., access control mechanisms, security pro-
tocols, database security, operating system security, and multi-agent system security. We
refer to the literature for other successful applications of noninterference-like information
flow properties. For example, in [Rus92], noninterference has been used for the analysis of
Bell/La Padula-like access control, including the precise identification of the so called ref-
erence monitor assumption. Another example is the use of information flow properties to
express the requirements of security protocols [FGG97, FGM99, FGM00, DFG00]. Moreover,
in [SRS100] noninterference is used to specify the main security requirements of an operating
system in a formal security model and the unwinding technique is used to verify that these re-
quirements are satisfied. The application of the results presented in this thesis in the context
of secure multi-agent systems is underway [HMS03, Sch03].

14Besides the communication primitives considered in this chapter, there is also a primitive for synchronous
send in [SM02]. Moreover, besides low channels or high channels, which can be viewed as channels that are,
respectively, openly accessible or not accessible at all (e.g. protected by a firewall), channels for encrypted
communication are investigated in that article. The extension of the case study in this respect is a task for
future work.

196 CHAPTER 7: Case Study

Chapter 8

Conclusion and Outlook

8.1 Conclusions

This thesis has been motivated by the observation that specifying and verifying security
requirements is a highly nontrivial task in practice. Our experience from real-world projects
and various case studies is that the main difficulty lies in getting the specification right.
The systems involved are often quite complex and one has to take into account that secure
systems have to operate correctly even if the environment is hostile. This setting leads to a
high complexity of the specification task and, due to this complexity, ad hoc approaches to
specify security requirements are too error prone. Hence, the elaboration and improvement
of more general approaches is crucial. This thesis is a contribution in this direction.

The approach that we have pursued is that of information flow security. Information
flow properties provide a very elegant basis for the specification of security requirements
concerning confidentiality and integrity. In the past, numerous information flow properties
had been proposed that are based on the same intuitive idea (namely that of noninterference)
but, nevertheless, differ in quite subtle ways. The desire to understand the various information
flow properties, their similarities, their differences, and the consequences of these differences
more deeply has been a driving force in our studies. Another driving force has been the aim
to ease the application of information flow properties in practice. In this respect, it was of
crucial importance to construct a framework that supports a specifier in defining appropriate
information flow properties when they are needed.

By splitting the well known information flow properties into more primitive pieces and
then generalizing these pieces, we have obtained a collection of building blocks for information
flow properties (i.e. the BSPs). This collection constitutes the core of our framework MAKS.
In MAKS, information flow properties are represented by a pair consisting of a set of views
(specifying the application-specific restrictions on the flow of information) and a security
predicate (giving a meaning to these restrictions) where the security predicate is assembled
from BSPs by logical conjunction. This modular representation provides the basis for a
divide-and-conquer approach to the investigation of information flow properties: complex
information flow properties are investigated by, firstly, investigating all BSPs from which they
are assembled and, secondly, lifting the results for the BSPs over the assembling operation.

This divide-and-conquer approach has been applied for various purposes: Based on a
taxonomy for BSPs, we have derived a taxonomy of information flow properties that clarifies
the relationship between different properties. Moreover, based on unwinding results for BSPs,

198 CHAPTER 8: Conclusion and Outlook

we have derived unwinding theorems for more complex information flow properties. These
theorems can be applied to simplify the verification of information flow properties (i.e. global
requirements on sets of traces) by reducing the overall verification task to the verification
of unwinding conditions (i.e. local requirements on individual transitions). Finally, based
on compositionality results for BSPs, we have derived several compositionality theorems for
information flow properties. These compositionality theorems can be applied to reduce the
verification of the overall system to the verification of each system component, thereby making
the verification of large and complex systems feasible. In each of these cases, the divide-and-
conquer approach has simplified the derivation of our results considerably.

Another important advantage of our divide-and-conquer approach is that our results for
known properties can be easily extended to novel properties: After representing a novel infor-
mation flow property in MAKS, the integration of this property into our taxonomy becomes
straightforward, an unwinding theorem for this property can be obtained easily, and composi-
tionality theorems for this property can be derived by exploiting the corresponding results for
BSPs. We have illustrated these advantages by several examples (e.g. for the novel properties
WFC, GNI*, and FC*). In practice, this means that one may use the information flow prop-
erty that is most suitable for the given application in the construction of a formal security
model (rather than being restricted to properties for which an infrastructure consisting of
unwinding theorems and compositionality theorems already exists). In particular, the use of
novel information flow properties for this purpose has become feasible because, based on our
contributions, the necessary infrastructure can be obtained with almost no effort.

The basic concepts of MAKS (views and BSPs) are, on the one hand, sufficiently specific
for deriving useful results about them and, on the other hand, sufficiently general for represent-
ing the well known information flow properties. This combination distinguishes our framework
from those previously proposed. The concepts underlying the frameworks of Focardi/Gorrieri
[FG95] and Zakinthinos/Lee [Zak96, ZL97] are not specific enough to derive interesting re-
sults about them. As a consequence, unwinding theorems and compositionality theorems
have to be derived from scratch and for each information flow property independently, which
can become quite tedious. In contrast to this, the concepts underlying the framework by
McLean [McL94a, McL96] are specific enough to derive compositionality results, but they are
not expressive enough to represent all properties of interest (cf. Appendix B). For example,
forward correctability, the perfect security property, and the information flow property that
we used in the case study cannot be represented in this framework. Table 8.1 highlights how
the various frameworks compare in these respects and Table 8.2 compares the results about
information flow properties that have been obtained in these frameworks.

In a case study, we have applied our framework MAKS for deriving an information
flow property that is adequate for modeling the security requirements of distributed, multi-
threaded, imperative programs. We have elaborated a basic understanding of the derived
property by relating it to the well-established information flow properties with the help of
our taxonomy. Moreover, we have employed our unwinding techniques to simplify the proof
that every process (executing a program that is strongly secure in the sense of Sabelfeld and
Sands) satisfies the information flow property. Finally, we have presented a compositionality
theorem that allowed us to conclude the security of distributed systems consisting of multiple
processes from the security of each individual process. In summary, we have successfully
applied results from all areas to which we have contributed in this thesis. Based on our expe-
riences, we are confident that this case study can serve as a guideline for future applications
of our results, also in other application domains than that of language-based security (also

8.2 Further Work and Outlook 199

cf. the paragraph on applications in the next section).

8.2 Further Work and Outlook

During our studies, we have noticed several open issues in the area of information flow security.
Naturally, we have not tackled all of them, for reasons of time. Moreover, we have not
described all of our contributions in the main chapters of this thesis. However, many of these
results have been documented elsewhere in detail [Man00c, Man0la, Man01b, SM02, MS03b,
HMSO03]. In the remainder of this conclusion, we briefly sketch these contributions and also
point out areas for future work that we think are important.

Refinement. Refining a specification means moving from an abstract specification to a
more concrete one, e.g., by making design decisions or by adding technical details. Unfor-
tunately, information flow properties are not preserved under trace refinement, in general.
This fact, also known as the refinement paradoz [Ros95], is a consequence of the fact that
information flow properties are properties of sets of traces rather than properties of traces
[McL94a]. Hence, after refining a given specification that has been verified to satisfy some
information flow property, one has to make sure that this property still holds after the re-
finement. However, re-verifying information flow properties after each refinement step would
lead to a tremendous overhead thereby rendering the use of refinement during stepwise de-
velopment impractical. Therefore, it is desirable to have restricted forms of refinement under
which information flow properties are preserved.

Building on previous work by Jacob [Jac88, Jac89], McLean [McL92, McL94a], and Roscoe
et alter [RWW94, Ros95], we have proposed operators that can be used to refine specifica-
tions while preserving the information flow properties of interest [Man0Oc, ManO1b]. These
refinement operators take an abstract specification, the desired trace refinement (cf. Defini-
tion C.1.1), and information about the proof of the information flow property at the abstract
level as parameters and return a refined specification. Our refinement operators are sound in
the sense that they ensure that the given information flow property is indeed preserved. The
basic idea is to exploit the proof at the abstract level in order to construct the refinement in a
way that preserves the given property. For example, if the perfect security property has been
verified for the abstract system specification by unwinding then the unwinding relation can
be used to ensure that the perfect security property is preserved under refinement [Man01b].
Obviously, the refined specification cannot be equal to the desired refinement in all cases (due
to the refinement paradox), which means that the refinement operators have to construct an
approximation of the desired trace refinement. These approximations are quite close to the
desired refinements and we have been able, in some cases, to show that the constructed re-
finements are optimal approximations. The integration of refinement operators into MAKS is
underway but has not yet been entirely completed. Another valuable direction for the future
is to extend refinement operators to other notions of refinement than trace refinement like,
e.g., action refinement or data refinement (building on work in [GCS91]).

Intransitive Information Flow Policies. Rather than interpreting a noninterference
statement F' o P by “information must not flow from F to P” (as we have done in this
thesis), one sometimes might want to interprete it more liberally by “information must not
flow from F' to P directly”. The difference between the two interpretations becomes apparent

200 CHAPTER 8: Conclusion and Outlook

if there is a security domain L with F ~sy L and L ~»y P. Under the more liberal interpre-
tation, information may flow from F to P via L while this is forbidden under the rigorous
interpretation. The liberal interpretation is useful to model some form of downgrading or san-
itizing of information (as we have illustrated in Example 3.3.5). Information flow properties
that assume this interpretation are known as intransitive noninterference.'

Historically, the development of intransitive noninterference occurred independently from
the extension of noninterference to nondeterministic systems. As a result of this, the proposed
notions of intransitive noninterference either were applicable only to deterministic systems
[HY87, Rus92, Pin95] or permitted only very limited nondeterminism [RG99]. In [ManO1b],
we have proposed an approach to deal with intransitive information flow that overcomes
this limitation in the sense that it can be applied to arbitrary nondeterministic systems.
A corresponding extension of MAKS has already been developed and it has been shown
that unwinding theorems for the resulting (intransitive) information flow properties can be
obtained from unwinding results for BSPs like in the transitive case (cf. Chapter 5). We think
that a similar extension of our approach to derive compositionality results (Chapter 6) to the
intransitive case will be possible — but this remains to be elaborated.

Other Variants of Information Flow Security. So far, we have assumed a possibilistic,
trace-based system model. However, information flow properties have also been investigated
in other system models, possibilistic ones as well as probabilistic ones.

Probabilistic information flow properties like the flow model in [McL90] or probabilistic
noninterference as in [Gra91] aim at the detection of covert channels that, otherwise, could
be exploited using concepts from information theory [WJ90, Sha48]. Sabelfeld and Sands
have demonstrated how a probabilistic security property can be approximated by a possibilis-
tic property [SS00] that constitutes a sound abstraction of the probabilistic property. How
to abstract from the peculiarities of cryptographic primitives in a cryptographically-sound
way has been elaborated by Pfitzmann, Schunter, Waidner, Steiner, and Backes [PSW00,
Sch00b, PW01, Ste02, Bac02]. Heisel, Pfitzmann, and Santen have introduced the notion of
confidentiality-preserving refinement [HPS01, SHP02] and have used it to abstract away from
the probabilities in a model of encrypted communication (where the probability distributions
come from the choice of the cryptographic keys). Abstracting from probabilities and the
peculiarities of cryptographic primitives is quite attractive because the resulting possibilistic
properties and systems are conceptually much simpler than the real ones. What the possi-
bilities and limits of such abstractions are is a question that deserves further investigation.
Another interesting question is to what extent these abstractions can be combined with the
possibilistic information flow properties investigated in this thesis.

The notion of equality underlying Sabelfeld and Sands’s system model is strong bisimu-
lation. Other possibilistic semantics that have been used are ready sets semantics (by Ryan
in [Rya91]), failure divergence semantics (by Roscoe et al. in [RWW94, Ros95]), and weak
bisimulation (by Focardi/Gorrieri in [FG95]). We think that the concepts of MAKS could be
adapted to these other semantics as well — but this remains to be shown. Another interesting
direction is to identify mappings to move from one semantics to another. A first step has been

!Unfortunately, the term “intransitive noninterference” is misleading. Firstly, it is the interference relation
~»y that is not transitive rather than the noninterference relation 7>. Secondly, the important issue is how the
noninterference relation is interpreted (liberally or rigorously) rather than whether the interference relation is
transitive or not. However, for historic reasons, we stick to these established terms.

8.2 Further Work and Outlook

201

made in [MS01] where we have shown how a security property based on strong bisimulation
can be expressed by an equivalent information flow property in a trace-based system model.

Tool Support. For applying formal methods in real world developments, the availability of
mature tool support is essential. For example, editors that support the preferred specification
languages are needed for constructing specifications, and theorem provers with a high degree
of automation are needed for making formal verification feasible.

Rather than developing specialized tool support for information flow properties from
scratch, our approach is to tailor general-purpose tools for formal methods to this setting. The
tool on which we build is the Verification Support Environment (abbreviated by VSE) that
has been developed at DFKI [HLS™96, HMR 798, AHL"00]. The integrated tool support pro-
vided by VSE includes editors, a graphical front end to navigate in structured specifications,
an automatic static type checker for specifications, a generator that automatically determines
the proof obligations for a given specification, theorem provers, and a management of change
that ensures that formal developments always remain in a consistent state. In particular,
VSE provides tool support for large-scale formal developments and it has been demonstrated
in various case studies as well as real-world projects that VSE, indeed, is very suitable for this
purpose. For simplifying the use of information flow properties in VSE, a front end to VSE
is being built that simplifies the specification of event systems. Moreover, VSE-specifications
for many building blocks and their unwinding conditions are provided in a library-like fashion
such that the specifier can simply use the fundamental notions of MAKS without having to
type in their VSE specifications [MS03b]. A prototypical implementation of this tool support
has been successfully applied in a case study already [MSK'01]. To build a similar front end
for the MAYA-system [AHMS00, AHO3], a tool for the application of formal methods that
is also developed at DFKI and that (in combination with the INKA system [AHMS99]) has
a similar scope like VSE but is of a more experimental nature, would be a valuable goal for
the future. To increase the degree of automation during the verification of information flow
properties is the main objective of an ongoing cooperation with members of the (dmega group
at Saarland University. In this cooperation, it is investigated to what extent SAT-solvers
and theorem provers, developed in the context of the Calculemus network, are suitable for
the automatic verification of unwinding conditions with promising results in first experiments
[Ben03].

Further Application Domains. Information flow properties have been successfully ap-
plied for several purposes, e.g., as a foundation for Bell/La Padula-like access control [Rus92],
as a foundation for the verification of security protocols [FGG97, FGM99, FGM00, DFGO00],
and in formal security models for operating systems [SRST00]. Our case study on language-
based security has opened up another area of application for information flow properties,
namely as a foundation for language-based security techniques. This application has already
inspired extensions of the language-based techniques, for example, to distributed systems
[MS03a, SM02]. This direction deserves further investigation. Another case study based on
MAKS has been concerned with the protection of location information in cellular phones
[MSK™*01]. The application of MAKS in other application domains, including operating sys-
tems security and secure multi-agent systems is being investigated [HMS03, Sch03]. There
are many exciting possibilities to apply our results and their exploitation has only just begun.

202 CHAPTER 8: Conclusion and Outlook

framework by || SEENELE | ikiinoy | MAKS
Gorrieri and Lee
sufficiently expressive Vv Vv Vv
uniform system model Vv Vv v Vv
specific uniform concepts enforced provided enforced
interesting and useful results J J
about uniform concepts

Table 8.1: Comparison of expressiveness and uniformity

properties protecting occurrences of all high-level events

M Vv VIV I VIIVIVIVIY]

properties protecting occurrences and nonoccurrences of high-level i

FC v VIV IV
FcC*

GNI VARV
GNI*
v v v
v

framework b framework by framework by
MeLean y Focardi and Zakinthinos MAKS
Gorrieri and Lee
> > > >
B lw |8 B lw |8 B lw |8 B lew |8
g |TE|'g g |TE|'% g |TE|'g g |TE|l g
g 22| &= g | EE| a2 8 | EE| axs g | EE| ax
= 3 Q E [=] b= 3 Qo E [=] = =3 @] E [=} = 3] E [=}
Qt g < w2 9-4 q [w2 Qq g [wn Qq g o wn
2|3l 8¢8 2| 3| 8¢ 2|22 8¢ 2|22 88
properties protecting occurrences and nonoccurrences of all high-level events
SEP | v v v VIV]V
NDO NV
NDO* NV
PSP VARV VA i VAR

=y

U B R

pu

IBGNI

IBGNT*
WFC
IFPP

<X

SN NN
SO

<

properties protecting occurrences of high-level inputs

evr | v [VvI[vI | JIVIVIVIIVIVI]V

Table 8.2: Comparison of derived results about information flow properties. This table sum-
marizes Tables 4.7, 5.3, and 6.2. The entries are explained in Sections 4.4, 5.7, and 6.8.

References

[Aga00]

[AHO3]

[AHL*00]

[AHMS99]

[AHMS00]

[AMYS]

[AMS98]

[AS85)

[AS01]

[Bac02]

J. Agat. Transforming out Timing Leaks. In Proceedings of the 27th ACM Sym-
posium on Principles of Programming Languages, pages 40-53, 2000.

S. Autexier and D. Hutter. Formal Software Development in MAYA. In Festschrift
in honour of Jorg H. Siekmann. Springer, 2003. to appear.

S. Autexier, D. Hutter, B. Langenstein, H. Mantel, G. Rock, A. Schairer, W.
Stephan, R. Vogt, and A. Wolpers. VSE: Formal Methods Meet Industrial Needs.
Special Issue on Mechanized Theorem Proving for Technology Transfer of the
STTT-Springer International Journal on Software Tools for Technology Trans-

fer, 3(1):66-77, 2000.

S. Autexier, D. Hutter, H. Mantel, and A. Schairer. System Description: INKA
5.0 — A Logic Voyager. In Proceedings of the 16th International Conference on
Automated Deduction, CADE-16, volume 1632 of LNAI pages 207-211, Trento,
Ttaly, 1999.

S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards an Evolutionary
Formal Software-Development Using CASL. In 14th International Workshop on
Algebraic Development Techniques, WADT’99, Selected Papers, volume 1827 of
LNCS, pages 73-88, 2000.

S. Autexier and H. Mantel. Semantical Investigation of Simultaneous Skolemiza-
tion for First-Order Sequent Calculus. Technical Report SEKI Report SR-98-05,
Saarland University, Germany, 1998.

S. Autexier, H. Mantel, and W. Stephan. Simultaneous Quantifier Elimination.
In Proceedings of KI-98: Advances in Artificial Intelligence, 22nd Annual Ger-
man Conference on Artificial Intelligence, volume 1504 of LNAI pages 141-152,
Bremen, Germany, 1998.

B. Alpern and F. B. Schneider. Defining Liveness. Information Processing Letters,
21:181-185, 1985. North-Holland.

J. Agat and D. Sands. On Confidentiality and Algorithms. In Proceedings of
the IEEE Symposium on Security and Privacy, pages 64-77, Oakland, CA, USA,
2001.

M. Backes. Cryptographically Sound Analysis of Security Protocols. PhD thesis,
Technische Fakultat, Universitit des Saarlandes, 2002.

204 REFERENCES

[BCY2]

[BCCY4]

[Ben03]

[BNO2]

[CC99]

[DD77]

[Den76]

[DFGO0]

[FG95)

[FGGY7]

[FGM99)

[FGMOO]

[FLR77]

[Fol87]

P. Bieber and F. Cuppens. A Logical View of Secure Dependencies. Journal of
Computer Security, 1(1):99-129, 1992.

N. Boulahia-Cuppens and F. Cuppens. Asynchronous Composition and Required
Security Conditions. In Proceedings of the IEEE Symposium on Research in Se-
curity and Privacy, pages 68—78, Oakland, CA, USA, 1994.

C. Benzmiiller, editor. CALCULEMUS Project Report. SEKI Report, Saarland
University, 2003. to appear.

A. Banerjee and D. A. Naumann. Secure Information Flow and Pointer Confine-
ment in a Java-like Language. In Proceedings of the 15th IEEE Computer Security
Foundations Workshop, pages 253-270, Cape Breton, Nova Scotia, Canada, 2002.

Common Criteria version for Information Technology and Security Evaluation,
Version 2.1, August 1999. (aligned with ISO/IEC International Standard (IS)
15408).

D. E. Denning and P. J. Denning. Certification of Programs for Secure Information
Flow. Communications of the ACM, 20(7):504-513, 1977.

D. E. Denning. A Lattice Model of Secure Information Flow. Communications of
the ACM, 19(5):236—243, 1976.

A. Durante, R. Focardi, and R. Gorrieri. A Compiler for Analysing Cryptographic
Protocols Using Non-Interference. ACM Transactions on Software Engineering
and Methodology, 9(4):488-528, 2000.

R. Focardi and R. Gorrieri. A Classification of Security Properties for Process
Algebras. Journal of Computer Security, 3(1):5-33, 1995.

R. Focardi, A. Ghelli, and R. Gorrieri. Using Non Interference for the Analysis
of Security Protocols. In Proceedings of the DIMACS Workshop on Design and
Formal Verification of Security Protocols. DIMACS Center, Rutgers University,
1997.

R. Focardi, R. Gorrieri, and F. Martinelli. Secrecy in Security Protocols as Non
Interference. In Proceedings of DERA/RHUL Workshop on Secure Architectures
and Information Flow, ENTCS, volume 32, 1999.

R. Focardi, R. Gorrieri, and F. Martinelli. Non Interference for the Analysis of
Cryptographic Protocols. In Proceedings of the 27th International Colloguium on
Automata, Languages and Programming, volume 1853 of LNCS, pages 354-372,
Geneve, Switzerland, 2000.

R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving Multilevel Security of
a System Design. In Proceedings of the Sizth ACM Symposium on Operating
Systems Principles, pages b7—65, 1977.

S. N. Foley. A Universal Theory of Information Flow. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 116-122, Oakland, CA, USA, 1987.

REFERENCES

205

[FRO2]

[GCS91]

[GM82]

[GM84]

[GNSS]

[Gra91]

[He89]

[HHS87]

[HLS'96]

[HMR*98]

[HMS03]

[Hoa85]

[HPS01]

R. Focardi and S. Rossi. Information Flow Security in Dynamic Contexts. In
Proceedings of the 15th IEEE Computer Security Foundations Workshop, pages
307-319, Cape Breton, Nova Scotia, Canada, 2002.

J. Graham-Cumming and J. W. Sanders. On the Refinement of Non-interference.
In Proceedings of the 4th IEEE Computer Security Foundations Workshop, pages
35-42, Franconia, NH, USA, 1991.

J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, pages 11-20, Oakland,
CA, USA, 1982.

J. A. Goguen and J. Meseguer. Inference Control and Unwinding. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 75-86, Oakland, CA,
USA, 1984.

J. D. Guttman and M. E. Nadel. “What Needs Securing?”. In Proceedings of the
IEEE Computer Security Foundations Workshop, pages 34-57, 1988.

J. W. Gray. Toward a Mathematical Foundation for Information Flow Security.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 21-34,
Oakland, CA, USA, 1991.

J. He. Process Simulation and Refinement. Journal of Formal Aspects of Com-
puting Science, 1:229-241, 1989.

C. A. R. Hoare, J. He, and J. W. Sanders. Prespecification in Data Refinement.
Information Processing Letters, 25:71-76, 1987.

D. Hutter, B. Langenstein, C. Sengler, J. Siekmann, W. Stephan, and A. Wolpers.
Verification Support Environment (VSE). Journal of High Integrity Systems,
1(6):523-530, 1996.

D. Hutter, H. Mantel, G. Rock, W. Stephan, A. Wolpers, M. Balser, W. Reif,
G. Schellhorn, and K. Stenzel. VSE: Controlling the Complexity in Formal Soft-
ware Developments. In Proceedings of International Workshop on Applied Formal
Methods - FM-Trends, volume 1641 of LNCS, pages 351-358, Boppard, Germany,
1998.

D. Hutter, H. Mantel, and A. Schairer. Informationsflusskontrolle als Grundlage
fur die Sicherheit von Multiagentensystemen. PIK, Prazis der Informationsver-
arbeitung und Kommunikation, 26(1):39-47, 2003.

C. A. R. Hoare. Communicating Sequential Processes. International Series in
Computer Science. Prentice-Hall, 1985.

M. Heisel, A. Pfitzmann, and T. Santen. Confidentiality-Preserving Refinement.
In Proceedings of the 14th IEEE Computer Security Foundations Workshop, pages
295-305, Cape Breton, Nova Scotia, Canada, 2001.

206 REFERENCES

[HR98]

[HY87]

[ITS91]

[Jac88]

[Jac89]

[Jac90]

[Jon89]

[Jon91]

[Jon01]

[Jos88]

[JT88]

[Jiir00]

[KMO3]

[KMOS97]

[KS93]

N. Heintze and J. G. Riecke. The SLam Calculus: Programming with Secrecy
and Integrity. In Proceedings of the 25th ACM Symposium on Principles of Pro-
gramming Languages, pages 365-377, 1998.

J. T. Haigh and W. D. Young. Extending the Noninterference Version of MLS for
SAT. IEEE Transactions on Software Engineering, SE-13(2):141-150, 1987.

Information Technology Security Evaluation Criteria, Version 1.2, June 1991. Of-
fice for Official Publications of the European Communities.

J. Jacob. Security Specifications. In Proceedings of the IEEE Symposium on
Security and Privacy, pages 14-23, Oakland, CA, USA, 1988.

J. Jacob. On the Derivation of Secure Components. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 242-247, Oakland, CA, USA, 1989.

J. Jacob. Categorising Non-interference. In Proceedings of the Computer Security
Workshop, pages 44-50, Franconia, NH, USA, 1990.

B. Jonsson. On Decomposing and Refining Specifications of Distributed Systems.
In Proceedings of the REX Workshop on Stepwise Refinement of Distributed Sys-
tems: Models, Formalism, Correctness, volume 430 of LNCS, pages 361-387,
Mook, The Netherlands, 1989.

B. Jonsson. Simulations between Specifications of Distributed Systems. In Pro-
ceedings of CONCUR’91, volume 527 of LNCS, pages 346-360, Amsterdam, The
Netherlands, 1991.

C. B. Jones. Thinking Tools for the Future of Computer Science. In Informatics,
10 Years Back. 10 Years Ahead, volume 2000 of LNCS, pages 112-130, 2001.

M. B. Josephs. A State-Based Approach to Communicating Processes. Distributed
Computing, 3:9-18, 1988.

D. M. Johnson and F. J. Thayer. Security and the Composition of Machines.
In Proceedings of the Computer Security Foundations Workshop, pages 72-89,
Franconia, NH, USA, 1988.

J. Jiirjens. Secure Information Flow for Concurrent Processes. In Proceedings of
the International Conference on Concurrency Theory, Concur 2000, volume 1877
of LNCS, pages 395-409, 2000.

C. Kreitz and H. Mantel. A Matrix Characterization for Multiplicative Exponen-
tial Linear Logic. Journal of Automated Reasoning, 2003. accepted for publication.

C. Kreitz, H. Mantel, J. Otten, and S. Schmitt. Connection-Based Proof Construc-
tion in Linear Logic. In Proceedings of the 14th International Conference on Au-
tomated Deduction, CADE-1/, volume 1249 of LNAI, pages 207-221, Townsville,
Australia, 1997.

N. Klarlund and F. B. Schneider. Proving Nondeterministically Specified Safety
Properties using Progress Measures. Information and Computation, 107(1):151-
170, 1993.

REFERENCES 207

[Lam94] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, 16(3):872-923, 1994.

[Lau01] P. Laud. Semantics and Program Analysis of Computationally Secure Information
Flow. In Proceedings of European Symposium on Programming, volume 2028 of
LNCS, pages 77-91, Genova, Italy, 2001.

[LV95] N. Lynch and F. Vaandrager. Forward and Backward Simulations, Part I: Untimed
Systems. Information and Computation, 121(2):214-233, 1995. Also, Technical
Memo, MIT/LCS/TM-486.b, Laboratory for Computer Science, Massachusetts
Institute of Technology, August 1994.

[Man98] H. Mantel. Developing a Matrix Characterization for MELL. Technical Report
DFKI Report RR-98-03, DFKI, Kaiserslautern, Germany, 1998.

[Man00a] H. Mantel. A New Framework for Possibilistic Security - A Summary. Abstract
presented at IEEE Symposium on Security and Privacy, May 14-17 2000.

[Man0Ob] H. Mantel. An Approach to Information Flow Control. Abstract presented at
Dagstuhl Seminar 00501, Security through Analysis and Verification, Dagstuhl
Report No. 294, December 10-15 2000.

[Man00c] H. Mantel. Possibilistic Definitions of Security — An Assembly Kit. In Pro-
ceedings of the IEEE Computer Security Foundations Workshop, pages 185-199,
Cambridge, UK, 2000.

[Man00d] H. Mantel. Unwinding Possibilistic Security Properties. In Proceedings of the Eu-
ropean Symposium on Research in Computer Security (ESORICS), volume 1895
of LNCS, pages 238254, Toulouse, France, 2000.

[Man0la] H. Mantel. Information Flow Control and Applications — Bridging a Gap. In
Proceedings of FME 2001: Formal Methods for Increasing Software Productivity,
volume 2021 of LNCS, pages 153-172, Berlin, Germany, 2001.

[ManO1lb] H. Mantel. Preserving Information Flow Properties under Refinement. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, pages 78-91, Oakland,
CA, USA, 2001.

[Man02] H. Mantel. On the Composition of Secure Systems. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 88-104, Berkeley, CA, USA, 2002.

[MC92] I. S. Moskowitz and O. L. Costich. A classical Automata Approach to Nonin-
terference Type Problems. In Proceedings of the 5th IEEE Computer Security
Foundations Workshop, pages 2—-8, Franconia, NH, USA, 1992.

[McC87] D. McCullough. Specifications for Multi-Level Security and a Hook-Up Property.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 161-166,
Oakland, CA, USA, 1987.

[McC90] D. McCullough. A Hookup Theorem for Multilevel Security. IEEE Transactions
on Software Engineering, 16(6), 1990.

208 REFERENCES

[McL90]

[McL92]

[McL94a]

[McL94b)

[McL96]

[MGO00a]

[MGOOb]

[Mil90]

[Mil94]

[MK98]

[MO99]

[MS01]

[MS03a]

J. D. McLean. Security Models and Information Flow. In Proceedings of the IEEE
Symposium on Research in Security and Privacy, pages 180-187, Oakland, CA,
USA, 1990.

J. D. McLean. Proving Noninterference and Functional Correctness using Traces.
Journal of Computer Security, 1(1):37-57, 1992.

J. D. McLean. A General Theory of Composition for Trace Sets Closed under Se-
lective Interleaving Functions. In Proceedings of the IEEE Symposium on Research
in Security and Privacy, pages 79-93, Oakland, CA, USA, 1994.

J. D. McLean. Security Models. In John Marciniak, editor, Encyclopedia of
Software Engineering. John Wiley & Sons, Inc., 1994.

J. D. McLean. A General Theory of Composition for a Class of “Possibilistic”
Security Properties. IEEE Transaction on Software Engineering, 22(1):53-67,
1996.

H. Mantel and F. Gartner. A Case Study in the Mechanical Verification of Fault
Tolerance. In Proceedings of Special Track on Verification, Validation and System
Certification at 13th International Florida Artificial Intelligence Research Society
Conference 2000, FLAIRS-2000, pages 341-345, Orlando, Florida, US, 2000.

H. Mantel and F. Gartner. A Case Study in the Mechanical Verification of Fault
Tolerance. Journal of Ezperimental and Theoretical Artificial Intelligence (JE-
TAI), 12(4):473-488, 2000.

J. K. Millen. Hookup Security for Synchronous Machines. In Proceedings of the
IEEE Symposium on Research in Security and Privacy, pages 84-90, Oakland,
CA, USA, 1990.

J. K. Millen. Unwinding Forward Correctability. In Proceedings of the 7th IEEE
Computer Security Foundations Workshop, pages 2-10, Franconia, NH, USA,
1994.

H. Mantel and C. Kreitz. A Matrix Characterization for MELL. In Proceedings
of Logics in Artificial Intelligence, Furopean Workshop, JELIA 98, volume 1489
of LNAI pages 169-183, Dagstuhl, Germany, 1998.

H. Mantel and J. Otten. linTAP: A Tableau Prover for Linear Logic. In Pro-
ceedings of Automated Reasoning with Analytic Tableauzr and Related Methods,
International Conference (TABLEAUX’99), volume 1617 of LNAI pages 217-
231, Saratoga Springs, NY, USA, 1999.

H. Mantel and A. Sabelfeld. A Generic Approach to the Security of Multi-threaded
Programs. In Proceedings of the 14th IEEE Computer Security Foundations Work-
shop, pages 126-142, Cape Breton, Nova Scotia, Canada, 2001.

H. Mantel and A. Sabelfeld. A Unifying Approach to the Security of Distributed
and Multi-threaded Programs. Journal of Computer Security, 2003. to appear.

REFERENCES

209

[MS03b]

[MSK+01]

[Neu95]
[O’HY0]

[0’H92]

[PHW02]

[Pin95]

[PSWOO]

[PW01]

[PWKY6]

[RG99)

[Ros95]

[RS99]

[Rus81a]

H. Mantel and A. Schairer. Exploiting Generic Aspects of Security Models in
Formal Developments. In Festschrift in honour of Jorg H. Siekmann. Springer,
2003. to appear.

H. Mantel, A. Schairer, M. Kabatnik, M. Kreutzer, and A. Zugenmaier. Using
Information Flow Control to Evaluate Access Protection of Location Information
in Mobile Communication Networks. Technical Report 159, Computer Science
Department, University of Freiburg, August 2001.

P. G. Neumann. Computer Related Risks. Addison-Wesley, ACM Press, 1995.

C. O’Halloran. A Calculus of Information Flow. In Proceedings of the Euro-
pean Symposium on Research in Computer Security (ESORICS), pages 147-159,
Toulouse, France, 1990.

C. O’Halloran. Refinement and Confidentiality. In Proceedings of the 5th Refine-
ment Workshop, Workshops in Computing, pages 119-139, London, 1992.

A Di Pierro, C. Hankin, and H. Wiklicky. Approximate Non-Interference. In
Proceedings of the 15th IEEE Computer Security Foundations Workshop, pages
3-17, Cape Breton, Nova Scotia, Canada, 2002.

S. Pinsky. Absorbing Covers and Intransitive Non-Interference. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 102-113, Oakland, CA,
USA, 1995.

B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic Security of Reactive
Systems. FElectronic Notes in Theoretical Computer Science (ENTCS), 32, 2000.

B. Pfitzmann and M. Waidner. A Model for Asynchronous Reactive Systems
and its Application to Secure Message Transmission. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 184-200, Oakland, CA, USA, 2001.

R. V. Peri, W. A. Wulf, and D. M. Kienzle. A Logic of Composition for In-
formation Flow Predicates. In Proceedings of the 9th IEEE Computer Security
Foundations Workshop, pages 82-93, Kenmare, County Kerry, Ireland, 1996.

A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterference? In
Proceedings of the 12th IEEE Computer Security Foundations Workshop, pages
228-238, Mordano, Italy, 1999.

A. W. Roscoe. CSP and Determinism in Security Modelling. In Proceedings of the
IEEE Symposium on Security and Privacy, pages 114-127, Oakland, CA, USA,
1995.

P. Y. A. Ryan and S. A. Schneider. Process Algebra and Non-interference. In
Proceedings of the 12th IEEE Computer Security Foundations Workshop, pages
214-227, Mordano, Italy, 1999.

J. M. Rushby. Design and Verification of Secure Systems. In Proceedings of the
Eighth ACM Symposium on Operating System Principles, pages 12-21, Asimolar,
CA, USA, 1981.

210 REFERENCES

[Rus81b]

[Rus92]

[Rus94]

[Rus99]

[RW95]

[RWW94]

[Rya91]

[Sch99]

[Sch00a]

[Sch00b)

[SchO1]

[Sch03]

[Sha48]

[SHP02]

[SM02]

J. M. Rushby. Verification of Secure Systems. Technical Report 166, University
of Newcastle upon Tyne, UK, August 1981.

J. M. Rushby. Noninterference, Transitivity, and Channel-Control Security Poli-
cies. Technical Report CSL-92-02, SRI International, 1992.

J. M. Rushby. Critical System Properties: Survey and Taxonomy. Reliability
Engineering and System Safety, 43(2):189-219, 1994.

J. M. Rushby. Partitioning in Avionics Architectures: Requirements, Mechanisms,
and Assurance. Technical report, SRI International, Menlo Park, CS, USA, March
1999.

A. W. Roscoe and L. Wulf. Composing and Decomposing Systems under Secu-
rity Properties. In Proceedings of the 8th IEEE Computer Security Foundations
Workshop, pages 9-15, Kenmare, Ireland, 1995.

A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-interference through De-
terminism. In Proceedings of the Furopean Symposium on Research in Computer
Security (ESORICS), volume 875 of LNCS, pages 33-53, Brighton, UK, 1994.

P. Y. A. Ryan. A CSP Formulation of Non-Interference and Unwinding. Cipher,
pages 19-30, Winter 1991. presented at CSFW’90.

F. B. Schneider, editor. Trust in Cyberspace. National Academy Press, Wash-
ington, D.C., USA, 1999. Comittee on Information Systems Trustworthyness,
Computer Science Telecommunications Board, Commission on Physical Sciences,
Mathematics, and Applications, National Research Council.

F. B. Schneider. Enforceable security policies. Information and System Security,
3(1):30-50, 2000.

M. Schunter. Optimistic Fair Exchange. PhD thesis, Technische Fakultit, Uni-
versitat des Saarlandes, 2000.

S. A. Schneider. May Testing, Non-interference, and Compositionality. Technical
Report CSD-TR-00-02, Royal Holloway, University of London, January 2001.

A. Schairer. Towards Using Possibilistic Information Flow Control to Design
Secure Multiagent Systems. In Proceedings of the First International Conference
on Security in Pervasive Computing, 2003. to appear.

C. E. Shannon. The Mathematical Theory of Communication. Bell Systems
Technical Journal, 27:379-423, 1948.

T. Santen, M. Heisel, and A. Pfitzmann. Confidentiality-Preserving Refinement
is Compositional — Sometimes. In Proceedings of the FEuropean Symposium on
Research in Computer Security (ESORICS), volume 20502 of LNCS, pages 194
211, Zurich, Switzerland, 2002.

A. Sabelfeld and H. Mantel. Static Confidentiality Enforcement for Distributed
Programs. In Proceedings of the 9th International Static Analysis Symposium,
SAS°02, volume 2477 of LNCS, pages 376-394, Madrid, Spain, 2002.

REFERENCES

211

[SM03]

[Som96]
[SRST00]

[SS00]

[Ste02]

[Sut86]

[SV98]

[VSI96]

[WJ90]

[Zak96]

[Z1.95]

[Z1.96]

[Z1.97]

[ZL1.98]

[ZM02]

A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security. IEEE
Journal on Selected Areas in Communication, 21(1):5-19, 2003.

I. Sommerville. Software Engineering. Addison-Wesley, 5th edition, 1996.

G. Schellhorn, W. Reif, A. Schairer, P. Karger, V. Austel, and D. Toll. Verification
of a Formal Security Model for Multiapplicative Smart Cards. In Proceedings of
the European Symposium on Research in Computer Security (ESORICS), volume
1895 of LNCS, pages 17-36, Toulouse, France, 2000.

A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Pro-
grams. In Proceedings of the 13th IEEE Computer Security Foundations Work-
shop, pages 200215, Cambridge, UK, 2000.

M. Steiner. Secure Group Key Exchange. PhD thesis, Technische Fakultat, Uni-
versitdt des Saarlandes, 2002.

D. Sutherland. A Model of Information. In Proceedings of the 9th National
Computer Security Conference, 1986.

G. Smith and D. Volpano. Secure Information Flow in a Multi-threaded Imper-
ative Language. In Proceedings of the 27th ACM Symposium on Principles of
Programming Languages, pages 355-364, San Diego, California, 1998.

D. Volpano, G. Smith, and C. Irvine. A Sound Type System for Secure Flow
Analysis. Journal of Computer Security, 4(3):1-21, 1996.

J. T. Wittbold and D. M. Johnson. Information Flow in Nondeterministic Sys-
tems. In Proceedings of the IEEE Symposium on Research in Security and Privacy,
pages 144-161, Oakland, CA, USA, 1990.

A. Zakinthinos. On the Composition of Security Properties. PhD thesis, Graduate
Department of Electrical and Computer Engineering, University of Toronto, 1996.

A. Zakinthinos and E. S. Lee. The Composability of Non-Interference. In Pro-
ceedings of the 8th IEEE Computer Security Foundations Workshop, pages 2-8,
Kenmare, Ireland, 1995.

A. Zakinthinos and E. S. Lee. How and Why Feedback Composition Fails. In
Proceedings of the 9th IEEE Computer Security Foundations Workshop, pages
95-101, Kenmare, County Kerry, Ireland, 1996.

A. Zakinthinos and E. S. Lee. A General Theory of Security Properties. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, pages 94-102, Oakland,
CA, USA, 1997.

A. Zakinthinos and E. S. Lee. Composing Secure Systems that have Emergent
Properties. In Proceedings of the 11th IEEE Computer Security Foundations
Workshop, pages 117-122, Rockport, Massachusetts, 1998.

S. Zdancewic and A. C. Myers. Secure Information Flow via Linear Continuations.
Higher Order and Symbolic Computation, 15(2-3):209-234, 2002.

212 REFERENCES

Index

=, 159, 163, 166

<>, 163

(-, - -), 161

A, 94,134, 241

AT 188

A, 134

Ay, 134

I, 50, 94, 134, 241

r'r 188

r;, 134

Iy, 134

Lre, 71, 71, 94, 138

I'p, 23

T, 23

I'wre, 150

T, 94, 134, 241

TP 188

Ty, 134

Ty, 134

a, 94, 241

B, 94, 241

4, 100

KGNF, 233

KIBGNI*> 233

KNF, 233

KSEP, 232

V, 94, 134, 241

v 188

Vi, 134

Vo, 134

p, 46, 94, 134, 241

p-admissibility, 46
assumption

impact of, 47

equivalence to p-enabledness, 105

p-enabled, 104
p-enabledness, 104

equivalence to p-admissibility, 105

pc, 47,77, 78, 80

pc-admissibility assumption, 235

o, 47, 78-80

pre-admissibility assumption, 236

PUI, 78-80
p1, 134
p2, 134
pf, 186
pP, 180
o, 161
(), 18
(1), 18
(), 18
()-(), 18
-|., 19, 260
I
event systems, 126, 128
associativity, 127
commutativity, 127
state-event systems, 176
_lmem 161
~n, 31, 33, 34, 60
~vy, 31, 33, 34, 60
~, 34
4, 31, 33, 34, 34, 60
<or, 242
<, 242
<Br, 244
=B, 243, 248
<rB, 244
<r, 242
<r1, 248
<Fg, 248
=r, 164
~r, 165
reflexivity of, 165
~r, 164, 164
—, 166, 166
L7, 20

214 INDEX

=t 20

57, 20

5,20

M, 183, 269

X, 95, 248
1,171

(), 171

T,171
—>-transition, 163
—-transition, 163, 164
—»-transition, 164

abstraction, 3
access control, 158, 195, 201
adequateness, 177, 260—-269, 275
theorems, 261-263
proofs of, 263—269
Adm, 46, 104
equivalence to En, 105
affects, 257
ainfo, 171
air-gaps
simulating, 77
al, 166
application domains, 15, 158, 195, 198, 201
assign, 170
atid, 171

B, 161
backwards-strict, see basic security predi-
cates, backwards-strict
basic scenes, 35
basic security predicates, 10, 27, 29, 29,
35-51
advantages and disadvantages of, 61
assembling, 11, 30
backwards-strict, 48—50, 88
compositionality, see compositionality,
of basic security predicates
dimensions of, 51
forward-correctable, 50—-51
in comparison, 51—60
names of, 36
ordering of, 52-54, 57-59
strict, 51
taxonomy of, see taxonomy, of basic
security predicates

trivially-fulfilled, 55, 60
unwinding, see unwinding, of basic se-
curity predicates
verification of, 95, 182
blocked-set, 174
BOOL, 161
Bool, 22
BS, 35
BSD, 49, 66, 68, 71, 73, 74, 77, 78, 129,
180, 194, 228, 236
compositionality of, 129-131
compositionality result for, 134
reformulation by refinement, 245
unwinding of, 101
completeness, 106
unwinding result for, 98
BSI, 49, 66, 68, 71, 228
compositionality result for, 134
reformulation by refinement, 245
unwinding of, 102
completeness, 106
unwinding result for, 98
BSIA, 49, 131, 133
compositionality result for, 134
reformulation by refinement, 245
unwinding of, 104
completeness, 106
unwinding result for, 98
with parameter p?, 189
with parameter p?, 180, 194
with parameter pc, 68, 71, 77, 236
with parameter pyr, 73, 74
with parameter pg, 78
BSPs, see basic security predicates
butlast, 176

C, 29, 134, 161
C, 161

c, 94, 241

C?, 186

CP, 179, 187
Ci, 134

C,, 134

C, 129

Cg, 130

Cp, 34

cascade, see composition, cascade

INDEX 215

CC, 4
channel, 260
channel-status function, 161
CHADS, 43
characteristic sets, 23
CID, 161, 168
cid, 161, 170
CIFPF, 188, 194
closed systems, 262
closure properties of sets of traces, 17, 23,
23-24, 29, 30
CMD, 161
CMD, 161
communication
between components, 126
between DMWL processes, 161
between DMWL threads, 161
communication events, 126, 127
composable, 126, 174
composition, 3
general cascade, 128
of event systems, 126
associativity, 127
commutativity, 127
n-ary, 128
of state-event systems, 176
preservation under, see compositional-
ity
product, 127
proper cascade, 127
well-behaved, 133, 153, 189
compositionality
of basic security predicates, 134—-138
of information flow properties, 9, 12,
129, 138, 188
compositionality results for basic security
predicates, 134-135
derivation of, 126
proofs of, 136-138
compositionality results for information flow
properties, 8, 12-13, 138-155, 157
application of, 14, 125, 153, 193, 194,
198
classification of, 13, 145-149, 153
(p/p), 146
(pt), 146-147
(t/t), 147

third class, 147
derivation of, 13, 125, 187-188, 198
approach to, 125, 138, 152, 153, 194
verification of, 153
approach to, 138
compositionality theorems for basic secu-
rity predicates, see compositionality
results for basic security predicates
compositionality theorems for information
flow properties, see composition-
ality results for information flow
properties
computer viruses, 1
confidentiality, 4, 5, 197
duality to integrity, 6
confidentiality-preserving refinement, 200
confidentiality requirements
determination of, 178, 178—-179
confidential events, 29
config, 260
corrections, 35
noncausal, 49
covert channels, 7, 41, 200
cryptographic primitives
abstraction from, 200
cseq, 261
cSeqyyx, 261
CSP, 7, 18
CSP-noninterference
unwinding of, 12
csPFf, 188

D, 38, 67, 68, 227

unwinding of
completeness, 107

unwinding result for, 99

D, 161

D, 34

D, 161

database security, 195

decomposition, 3

deterministic state machines, 6

development process
stepwise, 3

distributed programs, 163

divide-and-conquer, 3, 9

DMWL, 14, 158, 160, 161

216 INDEX

concurrent semantics of, 163 FEprpg, 43
global semantics of, 164 FEryp, 18
small-step semantics of, 161 E*, 18
DMWL commands FEyp, 45
assignment, 159 Ewrc, 150, 151
blocking receive, 161 EAL 5, 4
conditional branching, 159 En, 104
dynamic thread creation, 159 equivalence to Adm, 105
non-blocking receive, 161 enabled, 21
non-blocking send, 161 enabled events, see events, enabledness of
semantics of, 161 ES, 18, 28, 64, 94, 134
syntax of, 161 ES®, 241
vectors of, 161 ES°, 241
while loops, 159 ESt 185
DMWL processes ES?, 185
behavior of ESi, 134
specification of, 172—-173 ES;, 134
confidentiality requirements for, 178 ESy, 129
security requirements for relation to LEAKp, 129
satisfaction of, 183 ESg, 129
specification of, 173 ESNpo, T3
DMWL process pools, 177 ESsgs, 21, 95
behavior of ESsEsyres 150, 151
specification of, 174-177 events, 17
security requirements for communication, 126, 127
satisfaction of, 187 confidential, 29
specification of, 177, 260 deletion of, 38—40
DMWL programs enabledness of, 21
types of, 166 input, 4, 18, 19
DMWL threads, 161 insertion of, 41-43
dom, 34 p-admissible, 46—47
domain, 243 internal, 19, 19
domain assignment, 30, 34, 178 occurrence of, 17
domain restrictions, see selective interleav- output, 4, 18, 19
ing functions, domain restrictions removal of, 37-38
done, 175 visible, 28
downgrading, 200 event systems, 4, 7, 18, 17-20, 168
composition of, 126
E, 17, 28, 64, 94, 241, 260 associativity, 127
E4, 4 commutativity, 127
EP 170, 260 n-ary, 128
EP ., 170,170 induced by state-event system, 21
Ey4, 129 ezecuted, 171
Ep, 129 ezecutedf , 172
Ereax, 24 EXP, 161
Enpo, 73 Ezp, 161

Enorsyreak, 48 expressiveness

INDEX 217

vs. uniformity, 8, 10

F, 32
F, 232
F., 231
failure divergence semantics, 7, 200
False, 22
FC, 70, 84, 86, 181, 228
compositionality theorem for, 140
representation in MAKS, 71, 228
unwinding result for, 113
FCD, 50
compositionality result for, 134
reformulation by refinement, 246
unwinding of, 102
completeness, 106
unwinding result for, 98
with parameters (I,0, 1), 71, 228
FCI, 50, 188
compositionality result for, 135
reformulation by refinement, 246
unwinding of, 103
completeness, 107
unwinding result for, 98
with parameters (VZ, AP TF), 189
with parameters (I,0,1), 71, 228
with parameters (I, E\ (IUO),I), 150
FCIA, 50, 132, 133
compositionality result for, 135
reformulation by refinement, 246
unwinding of, 104
completeness, 107
unwinding result for, 98
with parameters (pc, (I,0,1)), 71
ferb, 103, 102-104
ferbe, 105, 104-106
ferf, 103, 102-104
FC*, 11, 71, 82, 84, 85, 89, 153, 198
compositionality of, 125
compositionality theorem for, 141
representation in MAKS, 71
unwinding result for, 113
1, 48
FIFO-principle, 163
first, 175
flag, 48
flow model, 200

flow policies, 31, 30-35, 178
graphical notation for, 30
intransitive, 31, 32, 33
transitive, 31, 33
fork, 159, 163
formal methods, 2
formal security models, 3
construction of, 158
structure of, 3, 28
formal verification, 3
forward-correctable, see basic security pred-
icates, forward-correctable
forward-correctably respects backwards, 103,
102-104
forward-correctably respects backwards for
enabled events, 105, 104-106
forward-correctably respects forwards, 103,
102-104
forward correctability, 13, 70, 70-71, 82,
89, 126, 135, 153
compositionality of, 9, 135, 140-141
compositionality theorem for, 140, 141
representation in MAKS, 9, 71, 228
unwinding of, 8, 12, 112-113, 121
unwinding result for, 113, 121
frame axioms, 257

general cascade, see composition, general
cascade
generalized noninference, 64, 75, 75-76, 85
compositionality of, 143-144
compositionality theorem for, 143
representation in framework of selec-
tive interleaving functions, 233
representation in MAKS, 9, 76, 229
unwinding of, 115
unwinding result for, 115, 121
generalized noninterference, 6, 7, 25, 65—
70, 82
compositionality of, 9, 139-140
compositionality theorem for, 65, 139
interleaving-based variant of, 66, 82
compositionality result for, 154
representation in framework of selec-
tive interleaving functions, 233
representation in MAKS, 67, 68, 227
unwinding result for, 112

218 INDEX

original definition of, 65
representation in MAKS, 9, 66, 68
unwinding of, 8, 111-112
unwinding result for, 111, 112, 121
variants of, 65

generalized zipping lemma, 126, 134, 135,

136

correspondence to zipper, 135
proof of, 251-254
proof sketch of, 136

generic specification
of processes, 193

global configuration, 163

GNF, 76, 84, 85, 181, 229, 233
compositionality theorem for, 143
representation in framework of selec-

tive interleaving functions, 233

representation in MAKS, 76, 229
unwinding result for, 115

GNI, 25, 26, 65, 66, 84, 143, 181
compositionality of, 139
compositionality theorem for, 139
representation in MAKS, 66
unwinding result for, 111

GNI*, 11, 64, 68, 82, 84, 85, 89, 153, 198
compositionality of, 125, 140
compositionality theorem for, 139
representation in MAKS, 68
unwinding result for, 112

H, 29, 31, 64, 138
H, 64,79, 88, 94, 138
h, 159

Hy, 138

M1, 138

H,, 138

Ho, 138

Hp, 35

Hr, 29, 35, 64

hy, 129

h!, 129

H\HI, 33

HI, 33

HT, 64, 82, 94, 138
HIT, 186

HIP, 179, 187, 194
NI, 138

HI,, 138

HILp\ur 35

HZ g1, 35

HZIp, 35,64

hipn, 24, 48
high-level events, 29

I, 42, 67, 68, 227, 235
unwinding of
completeness, 107
unwinding result for, 99
1, 18, 28, 64, 94, 241, 260
I? 170, 260
14,129
Ig, 129
ILEAK, 24
Inpo, 73
Ip1pe, 43
IRNDa 19
IUPa 45
ITwre, 150, 151
1A, 46, 47
unwinding of
completeness, 107
unwinding result for, 99
with parameter pc, 68, 229, 234, 235
with parameter pyy, 228
with parameter pg, 230, 236
IBGNI, 66, 67, 84, 227
compositionality result for, 154
representation in MAKS, 67, 227
unwinding result for, 112
IBGNI*, 11, 68, 82, 84, 85, 89, 233
compositionality result for, 154
representation in framework of selec-
tive interleaving functions, 233
representation in MAKS, 68
unwinding result for, 112
if-receive, 161, 163
if _ then _else _, 159, 163
iff, 19
IFP? 186, 189, 194
compositionality of, 187
IFP? 181, 187, 194
unwinding of, 183
ignorance of progress, 74
IMA, 77

INDEX 219

inbuf, 171
inbuff , 172
INCONS, 23
INFO, 168
info, 169
information flow
critical
meaning of, 29
information flow analysis
for complex systems, 145
modular, 145
information flow properties, 7, 27, 30, 197
comparison of, 7, 63—92
compositionality of, see compositional-
ity, of information flow properties
compositionality results for, see com-
positionality results for information
flow properties
construction of, 14, 178, 181
facts about, 79
for deterministic systems, 7
for nondeterministic systems, 6-8
frameworks for, 7—8
comparison of, 60, 89, 123, 154, 198
investigation of
divide-and-conquer approach to, 64,
197
possibilistic, 7, 200
probabilistic, 7, 200
approximation by possibilistic prop-
erties, 200
representation in MAKS, 10, 64-79
satisfaction of, 27, 30
schema for representation of, 91
taxonomy of, see taxonomy of informa-
tion flow properties
unwinding of, see unwinding of infor-
mation flow properties
verification techniques for, see verifi-
cation techniques, for information
flow properties
information leakage
via communication behavior, 259
via, explicit flow, 159, 165
via externally observable timing, 159
via implicit flow, 159, 259
via internally observable timing, 160

via termination behavior, 159, 259
via timing behavior, 259
information theory, 200
initialization phase, 170, 172, 275
initialized, 171
initialized} , 172
initial state
specification of, 171-172
initthread, 171
initthread?, 260
initval, 171
INKA, 201
input events, 4, 18, 19
input totality, 19, 72
Integrated Modular Avionics, 77
integrity, 5, 197
duality to confidentiality, 6
integrity requirements
determination of, 178, 179
interface
specification of, 169—-170
interference relation, 31
interleaving, 19, 66, 77, 232
internal events, 19, 19
specification of, 170
intransitive information flow, 31, 199-200
intransitive noninterference, 12, 200
unwinding of, 12
invariants, 97
ite'!, 170
ITSEC, 4

L, 32

L, 29, 31, 33, 64, 138

l[,159

L, 138

Lo, 138

I, 129

" 129

labeled transition systems, 89

language-based security, 14, 157, 201
applications of, 157

last, 176

LEAK, 24, 37-39, 43

LEAKp, 39, 40-42
relation to ES4, 129

LEAK;, 42

220 INDEX

LEAKR, 38
LEAKONCE, 44
liveness properties, 4, 22
lo,, 24, 48
locally-respects backwards, 102, 101-102
locally-respects backwards for enabled e-
vents, 105, 104-106
locally-respects forwards, 102, 101-102
locally respects, 101
local configuration
of a process, 161
low-bisimilarity, 164
low-bisimulation, 164, 164
low-equality
on channel status, 164
on memory, 164
low-level equivalence sets, 91
low-level events, 29
low slice, 166
Irb, 102, 101-102
Irbe, 105, 104-106, 269
Irf, 102, 101-102, 184
lts-FC, 89
lts-RES, 89

MAKS, 9, 9-11, 27-61, 93, 99, 123, 198
as an open framework, 51, 61
building blocks of, 10, 27
comparison to prior frameworks, 60, 89,

123, 154, 198
expressiveness of, 9, 64, 89
modular structure of, 27
simplification of investigations, 10, 64,
89, 197
uniformity of, 10, 64, 89

many-sorted predicate logic, 89

MAYA, 201

mem, 161

memP, 170

memory-status function, 161

message-passing paradigm, 161

MLSs, 35

MLS 75, 35

MLSy, 35

mobile devices
security analysis of, 158

model building, 3

Modular Assembly Kit for Security Prop-
erties, see MAKS

multi-agent-systems security, 158, 195, 201
multi-level security policies, 32
multi-threaded programming languages, 159
MWL commands

assignment, 159

conditional branching, 159

dynamic thread creation, 159

while loops, 159
MWL language, 159, 160, 192

security requirements of, 159

N, 29, 134

N, 244

n-forward correctability, 70

NP 186

NP 179, 187

N1, 134

N, 134

Ny, 129

Ng, 130

Np, 34

NDC, 75, 89

NDCIT, 89

NDO, 72, 78, 80, 181, 228
compositionality theorem for, 141
representation in MAKS, 73, 228
unwinding of

completeness, 114

unwinding result for, 113

NDO™, 11, 74, 80, 81, 85, 89, 153
compositionality of, 125
compositionality theorem for, 142
representation in MAKS, 74
unwinding of

completeness, 114

unwinding result for, 113

NF, 25, 26, 75, 81, 85, 143, 229, 233
compositionality theorem for, 142
representation in framework of selec-

tive interleaving functions, 233

representation in MAKS, 75, 229
unwinding result for, 114

NNI, 89

NOISYLEAK, 48, 49

INDEX 221

non-strict, see basic security predicates, non-
strict
nondeducibility, 5-7, 65
nondeducibility for outputs, 72, 71-74, 79
compositionality of, 141-142
compositionality theorem for, 141, 142
representation in MAKS, 9, 73, 74,
228
unwinding of, 12, 113-114
completeness, 114
unwinding result for, 94, 113
nondeterministic behavior, 4
nondeterministic state machines, 7
nondeterministic systems
modeling of, 19, 20
noninference, 6, 7, 25, 64, 74, 74-75, 79,
85
compositionality of, 142
compositionality theorems for, 142
representation in framework of selec-
tive interleaving functions, 233
representation in MAKS, 9, 75, 229
unwinding of, 114
unwinding result for, 114, 121
noninterference, 5, 6, 197
unwinding of, 8, 8, 12, 121
noninterference relation, 31

0, 18, 28, 64, 94, 241, 260
0P, 170, 260
Oa, 129
Op, 129
Oreax, 24
Onpo, 73
Op1eg, 43
Orp, 19
Ovyp, 45
Owrc, 150, 151
observational trace refinement, 242
operating systems
formal security model for, 158, 201
security of, 195, 201
osc, 100, 100-101, 269
out, 18, 258
outbuf, 171
as function, 260
outbufP , 172

507

output-step consistency, 100, 100-101
output consistency, 101

output events, 4, 18, 19

outvar, 169

outvar-events, 169

P, 22, 32

P, 244

p, 169

Pr, 35

Pr, 35

Pp, 35

P, term» 22

pending, 171

pending? , 172

perfect security property, 78, 78-79, 89
compositionality of, 9, 144-145
compositionality theorem for, 144
representation in MAKS, 9, 78, 230
unwinding of, 8, 115-116

completeness, 116

unwinding result for, 115, 121

perturbation, 35

PID, 168

P, 260

PIPE, 43, 45, 47, 85

Pol, 31

Poly, 31, 32, 64

Pol HI 33, 64

Pol MLS, 32

Polp, 32

polite, 145

possible traces, see traces, possible

Post, 257

powerset, 244

PP-specifications, 258
semantics of, 258

PP-statements, 173, 257
affects-slot, 257

dash in, 259

notation for, 257
parametric, 258
postcondition-slot, 257
precondition-slot, 257
semantics of, 257

Pre, 257

pre/postcondition-specifications, 258

222 INDEX

semantics of, 258
pre/postcondition-statements, 173, 257

affects-slot, 257

dash in, 259

notation for, 257

parametric, 258

postcondition-slot, 257

precondition-slot, 257
preorders, 118
probabilistic noninterference, 200
process algebras

CSP, 7, 18

SPA, 7, 89
product, see composition, product
programming languages

leaking information on the level of, 159

program analysis

scheduler-independent, 160, 165, 169

techniques, 157
projection, 19

proper cascade, see composition, proper cas-

cade
properties, 4, 21-26

closure properties of sets of traces, 17,

23, 23-24, 29, 30
of sets of traces, 4, 17, 22, 22-23
approximating, 23
characteristic sets of, 23
satisfaction of, 22
of traces, 4, 17, 22, 21-23
characteristic sets of, 23
satisfaction of, 22
possibilistic, 4
probabilistic, 4
proper separation, 130, 131, 153, 189
PSP, 78, 81, 85, 86, 181, 230
compositionality theorem for, 144
representation in MAKS, 78, 230
unwinding of
completeness, 116
unwinding result for, 115

Q, 22
Qchaotia 24
Qp, 22

R, 37, 75, 76, 227-230, 234

compositionality result for, 135
unwinding result for, 99

T, 48

random generator
specification of, 258

range restrictions, see selective interleaving

functions, range restrictions
reachable, 20
reachable states, see states, reachable
ready, 175
ready sets semantics, 7, 200
receive, 161, 163
receiver, 170
complies with, 174
refinement, 3, 94, 199, 241
refinement operators, 199
soundness of, 199
refinement paradox, 199
refinement statements, 242, 245
determination of, 182
rest, 175
restrictiveness, 5, 6, 13, 70
compositionality of, 9, 70, 140
RND, 19

S, 20, 32, 94, 241, 260
SP 171, 260
s0, 20, 94, 241, 260
sy, 260
s (initthread), 171
ShorsvLEak, 48
SNOISYLEAK, 48
s|p, 260
Srwp, 20
Swrc, 150, 151
safety properties, 4, 22
sanitizing, 200
SAT-solvers, 201
satisfaction relation
of formal security model, 3
schedule, 169
schedule-events, 172
schedulers, 160, 163
deterministic, 160
probabilistic, 160
round robin, 160
uniform probabilistic, 160

INDEX 223

SD, 51, 228-230
compositionality result for, 135
unwinding of
completeness, 107
unwinding result for, 99
SecProp, 192
security component
of formal security model, 3
security domains, 5, 30, 34
security engineering, 1
security models, see formal security models
security predicates, 10, 27, 29, 30, 60
selection of, 178, 180
SP, 30
security protocols, 158, 195, 201
security requirements
for DMWL process, see DMWL pro-
cesses, confidentiality requirements
for
specification of, 4, 157, 177-181, 185,
186187
ad hoc approaches to, 197
by flow restrictions, 178, 179
in practice, 197
verification of, 157, 185, 187-191, 192
in practice, 197
with compositionality result, 184—192
with unwinding result, 181-184
security type systems, 14, 158
soundness of, 158
soundness results, 14
type check, 158
security type system for DMWL, 166
application of, 195
soundness result for, 184, 191
transformation
effect of, 166
objective of, 166
rules for, 166
type check
possible results of, 166
security type system for MWL
soundness of, 160
selective interleaving functions, 8-10, 13,
231
closure under set of, 232
coverage, 232

covering sets of, 232
closed under, 234

framework of, 91, 231-234
domain restrictions, 91, 233
range restrictions, 91, 233, 233
relation to MAKS, 234—236

types of, 91, 231

send, 161, 163
sender, 170

complies with, 174

SEP, 25, 26, 77, 78, 81, 85, 181, 229, 232

compositionality theorem for, 144, 147
representation in framework of selec-
tive interleaving functions, 232
representation in MAKS, 77, 229

unwinding of
completeness, 115
unwinding results for, 115

separability, 5, 7, 25, 76, 76-79

compositionality of, 9, 144
compositionality theorem for, 144, 147
representation in framework of selec-
tive interleaving functions, 232

representation in MAKS, 9, 77, 229
unwinding of, 12, 115

completeness, 115
unwinding result for, 94, 115

separation kernel, 77
SES, 20, 94, 241, 260
SES?®, 242

SES¢, 242

SES?, 260

SESEs, 95

SESpyp, 20

SESwrc, 150

setvar, 170, 178
setvar-events, 170, 172, 262
shared memory, 159
SI, 51

compositionality result for, 135
unwinding of

completeness, 107
unwinding result for, 99

SIA, 51

compositionality result for, 135
unwinding of
completeness, 107

224 INDEX

unwinding result for, 99 Stat, 257
with parameter pc, 229 state, 257
with parameter pyy, 228 state-event systems, 17, 20, 20-21, 95
with parameter pg, 230 composition of, 176
sifs, see selective interleaving functions states, 20
simulation relations initial, 20
construction of, 182 reachable, 20
simulation techniques, 12, 94, 111, 241, state machines, 20
242 state space
backward, 94, 243 specification of, 170-171
relation to forward simulation, 243 state variables
soundness, 243 primed, 257
verification conditions, 243 unprimed, 257
backward-forward, 244 step consistency, 101
completeness, 244 strict, see basic security predicates, strict
soundness, 244 strong bisimulation, 200
combining forward and backward, 243 strong low-bisimulation, 165
forward, 94, 242 strong security condition, 14, 158, 160, 165
relation to backward simulation, 243 examples for, 259
similarity to unwinding, 248 for distributed programs, 166
soundness, 242 system architecture
verification conditions, 242 modular, 125
forward-backward, 244 system behavior
completeness, 244 specification of, 157, 168—177, 185, 185—
soundness, 244 186
hybrid, 243 with event systems, 168
completeness, 244 system component
soundness, 244 of formal security model, 3
selection of, 182 system models, 4, 6, 7, 17, 17-21, 26
verification conditions possibilistic, 4
determination of, 182 probabilistic, 4, 7
verification of, 182 trace-based, 7
skip, 170
skip, 170 T, 20, 94, 241
SNNI, 75, 89 tid, 169
SP, see security predicates, SP TP, 260
SPf 186 t|gr, 19
SPP 180, 187, 194 TyorsyLeak, 48
SPA, 7, 154 Tgnp, 20
Spec, 258 Tspec, 258
specification formalisms, 4, 26 Tstat, 257
choice of, 168 Twrc, 151
SR, 51, 229 taxonomy of basic security predicates, 54,
compositionality result for, 135 58, 61
unwinding result for, 99 taxonomy of information flow properties, 7,
start, 170 87, 181

start-events, 170, 172, 262 application of, 14, 193, 198

INDEX 225

integration of properties, 150, 194

temporal logics, 18
term, 18, 258
terminates, 175
THREAD, 168
thread, 171
threadf , 171
threads
blocked, 169
main, 163
spawned, 163
TID, 168
TLA, 18
TNDI, 89
tolerant, 145
tool support, 201
total, 19, 86, 102, 131, 133
total relations, 243
totality, 19, 86
Tr, 18, 28, 64, 94, 260
Tre, 241
Tr¢, 241
Tra, 129
Trp, 129
Treuaos, 43
Trp, 39, 39
Trr, 42
T"'LEAK, 24, 39
Trypo, 73
Tretee, 43
Trg, 38, 39
Tryp, 18
Trsgs, 21
TrsEsypes 150
Tryp, 45
traces, 4, 17
interleaving of, 19
over sets of events, 17
possible, 21
sets of, 18
sets of
specification of, 18
trace refinement, 199, 242
observational, 242
trace semantics, 7
trans, 170, 179
trans-events, 170

transition relations, 20
specifying, 257
Trojan horses, 1
True, 22
TS, 32
type
high, 166
low, 166
of an expression, 166
of a program, 166
type check, see security type systems, type
check
type systems, see security type systems
type system for DMWL, see security type
system for DMWL
type system for MWL, see security type
system for MWL

U, 32
uc, 118
Ulypo, 73
uniformity
vs. expressiveness, 8, 10
unwinding conditions, 8§, 11, 93, 99-111
determination of, 182, 183
for basic security predicates, 120
verification of, 116—-120, 182, 183—-184
automated, 201
unwinding of basic security predicates, 183—
184
completeness, 106—111
unwinding of information flow properties,
8, 11, 93, 157, 241
independence from property, 111, 120,
121
prior approaches to, 120
unwinding relations, 8, 11, 93
arbitrary, 94, 118-120, 122
construction of, 11, 182, 183
equivalence relations as, 11, 98, 122
intuition of, 95
preorders as, 122
reflexivity of, 98, 118
side conditions for, 11, 12
symmetry of, 98, 118
transitivity of, 98, 118

226 INDEX

unwinding results for basic security predi-
cates, 93, 95, 98-99, 120
application of, 198
derivation of, 95—98
proof of, 99—-111
unwinding results for information flow prop-
erties, 8, 11, 94, 111-116, 151
application of, 14, 116-118, 151, 193,
194, 198
derivation of, 111, 121
Rushby’s, 101
unwinding theorems, see unwinding results
UP, 45, 47
users
high-level, 24
low-level, 24
secret, 32
top secret, 32
unclassified, 32

V, 28,134
V, 28, 64, 94, 134, 241
VP 186
VP 179, 187
Vi, 134
Vi, 134
Vs, 134
Vs, 134
Va, 129
Va, 129
Vg, 130
Vg, 130
Vb, 34
Vb, 34
VAL, 161, 168
VAR, 161, 168
var, 166
var, 48, 161
variables
high, 159
low, 159
verification of information flow properties,
111
for complex systems, 12, 125, 157
modular, 12, 145
verification techniques

for information flow properties, 8, 11—
12, 93—-123, 241-250
selection of, 181, 183
views, 10, 27, 34, 60
in sets of events, 28
of domains, 34
proper separation of, 130, 131, 153,
189
visible events, 28
VS, 30
VSE, 201

weakened forward correctability, 11, 12, 126,
150, 149-153

compositionality of, 12
compositionality theorem for, 152
representation in MAKS, 150
unwinding theorem for, 151

weak bisimulation, 200

weak ignorance of progress, 74

well-behaved composition, 133, 153, 189

WFC, 150, 198
compositionality theorem for, 152
representation in MAKS, 150
unwinding theorem for, 151

while _do _, 159

yield, 169, 169

zipping lemma, 135
correspondence to zipper, 135
generalized, see generalized zipping lem-
ma

Appendix A

Details on the Representation of
Known Information Flow Properties

A.1 Representation Lemma for IBGNI

Lemma A.1.1. We have the following implications:

IBGNI(ES) = Dyz(Tr) (A.1)
IBGNI(ES) = Dyz(Tr) (A.2)
(Ryz(Tr) A Iyz(Tr)) = IBGNI(ES) (A.3)
<&

Proof. For proving Dyz(Tr) in (A.1), let a, 8 € E* and hi € H NI be arbitrary such that
B.(hi).c € Tr and a|gnr = (). Applying Definition 4.2.4 with 7, = B.(hi).c, tp; = Blunr,
and t = (B.a)|Luanr) yields that there is a trace 7' € Tr with 7'| Ly gnr = (B-@)|Luann -
The trace 7 can be split into two subsequences o/, 8’ € E* such that 8./ = 7/, /| = o],
o|unr = (), and B'|Luann) = Blruanr)- Consequently, Dyz(Tr) holds.

For proving I;z(Tr) (A.2), let o, € E* and hi € H N I be arbitrary such that S.a € Tr
and a|gnr = (). Applying Definition 4.2.4 with 7, = B.«, tp; = (B.(hi))|mn1, and t =
(B-(hi).a)|Lucnr) yields that there is a trace 7/ € Tr with 7'|pymnry = (B-(h)-@)|Lumn)-
The trace 7' can be split into subsequences o/, 3’ € E* such that '.(hi).c/ =7, | = oL,
o'|unr = (), and B'|ucann = Blruann- Consequently, Iz (Tr) holds.

For proving (A.3), assume Ryz(Tr) and Iyz(Tr). We prove IBGNI(ES) by induction on
the length of ¢;. In the base case, we have tp; = (). The implication in the definition of
IBGNI holds because of Ryz(Tr) (t = 7|1 is the only choice possible). In the step case, we
assume that the implication (in Definition 4.2.4) holds for all ¢}, with length smaller than n
and show that it also holds for t;; with length n. Let t;; = «y.(hi) where v € (H N I)* and
hi € HN I are arbitrary. Let 7, € Tr and t € E* be arbitrary with ¢ € interleaving(ts;, 7|L)-
Choose t1,ta € E* such that t = ¢1.(hi).t2 and t2|pnr = (). According to our induction
assumption, there are traces o, € E* such that f.a € Tr, a| = to|L, alunr = (), and
Blruanr = tilouann (use Definition 4.2.4 with 7, as is, t; = <, and the appropriate
interleaving). Since Iyz(Tr) holds, there are o', 8’ € E* such that f'.(hi).o/ € Tr, &'| = o],
o|anr = (), and 8’| ucann = Blouann- With the choice 7/ = §'.(hi).a’ the proposition holds
(7' Lunny = (B (k4).o') | Lucann) = t1-(hi).ta = t). Consequently, IBGNI(ES) holds. 0

228 APPENDIX A: Details on the Representation of Known Information Flow Properties

A.2 Representation Lemma for FC

Lemma A.2.1. For I'p¢ = (1,0, 1), we have the following implications:

FC(ES) = BSDyz(Tr) (A.4)
FC(ES) = BShy(Tr) (A.5)
FO(ES) = FCD5°(Tr) (A.6)
FO(ES) = FCL°(Tr) (A7)
(BSD?I(TT)ABSIHi(Tr) > L FOES) A8
ANFCD5¢(Tr) A FCIL e (Tr) o

Proof. Implications (A.4) and (A.5) follow, respectively, from the second and first conjunct
in Definition 4.2.10 if [(/i)] is replaced by () (t1 = 3, t2 = a, o/ =13).

Implications (A.6) and (A.7) follow, respectively, from the second and first conjunct in
Definition 4.2.10 if [(/5)] is replaced by (li) (t1 = B, t2 = «a, &' = t3).

For proving FC(ES) in (A.8), assume t1,to € E*, hi € HI, and li € LN 1. The first
conjunct in the definition of FC follows from BSIyz(Tr) (for [(li)] = ()) and FCI 7%C(Tr) (for
[(li)] = (li)). The second conjunct follows from BSDyz(Tr) (for [(li)] = ()) and FCD;,E%C(TI')

(for [(l)] = (1)) 0

A.3 Representation Lemma for NDO

Lemma A.3.1. For aset UI CI of user inputs and the function pyr defined by pyi(V, N, C) =
C U (V N UI), we have the following implications:

NDO(ES) = SDy(Tr) (A.9)
NDO(ES) = SIALY(Tr) (A.10)

Ry(Tr) ANTALY(Tr) = NDO(ES) (A.11)
o

Proof. For proving SDy(Tr) in (A.9), let «,8 € E* and h € H be arbitrary such that
B.(h).a € Tr and a|g = () (cf. Definition 3.4.26). From 8 € Tr and total(ES,I), we obtain
that B.(a|nyr) € Tr holds. By applying the definition of NDO for 7, = 8.(h).« and 7py; =
B.(a|rnur), we obtain that S.a € Trholds because 7, € Tr, Ty € T, (B.0) |1, = (B-(h).a)|r, =
7|, and (B.0)|guwnvn = (B-¢lvavn)|gu@nun = Thiwil unor- Hence, SDy(Tr) holds.

For proving SIAL”/(Tr) in (A.10), let o, 8,y € E* and h € H be arbitrary such that 8.a €
Tr, a|ug = (), v-(h) € Tr,and vy|gunvn = Blauwnor (cf. Definition 3.4.26). From v.(h) € Tr
and total(ES,I), we obtain that v.(h).(a|rnyr) € Tr holds. By applying the definition of
NDO for 7 = B.a and Thyy; = 7v.h.(a|Lnyr), we obtain that S.(h).a € Tr because 7, € Tr,
Thiwi € T, (B.(h).0)|L = (B.0)|L = 7|, and (B.(h).0)|runvn = (v-(h)-elrnun)lru@nvn =
Thiuil Hu(Lnvn- Consequently, SIALY'(Tr) holds.

We prove NDO(ES) in (A.11) by induction on the length of ¢| . In the base case, t|g = ()
holds. Let Ty Thiui € Tr be arbitrary with t|L = Tl|L and t|HU(LﬂUI) = Thlui'HU(LﬂUI)- From
t|lg = (), we obtain that ¢ = 7|1 holds and ¢ € Tr follows from Ry (7Tr). In the step case,
t|g has length n > 0. The induction assumption is that the implication in Definition 4.2.14
holds for all t* € E* for which the length of ¢*|gy is smaller than n. We have to show

A.4 Representation Lemma for NF' 229

that the implication also holds for ¢. Let 7, Tpp; € Tr be arbitrary with 7| = ¢|r and
Thlm'|HU(LnU]) = t|HU(LﬂUI)- Let t1,to € E* be the subsequences of ¢, respectively, before
and after the last occurrences of a high-level event h and let v,§ € E* be the corresponding
subsequences of Ty, i.e. t = t1.(h).ta, to|g = (), Thiwi = 7-(h).0, and d|g = (). We apply the
induction hypothesis with 7" = 7, 757, = 7.(8|Lnvr), t* = t1.t2 and obtain ¢1.t, € Tr because
7 € Tr, 15, € Tr (follows from v € Tr and total(ES, I)), t*|1 = 7|1, and t*|punuvn =
Thwil HuLnon- Since t1.t2 € T, tolg = (), v-(h) € Tr, Y|guwnun = tilauwnvr (follows from
(7-(h).0) | Hu(Lnun = Thiil Hu(Lnon), and TAZY'(Tr), we obtain t1.(h).tz € Tr (view H permits
no corrections), which means ¢t € Tr (t = t1.(h).t2). Consequently, NDO(ES) holds. O

A.4 Representation Lemma for NF

Lemma A.4.1. We have the following implications:

NF(ES) = SRyu(Tr)

Ry(Tr) = NF(ES) o
Proof. The implications follow immediately from the definitions of SR, R, and NF (Defini-
tions 3.4.26, 3.4.1, and 4.2.19). O

A.5 Representation Lemma for GNF

Lemma A.5.1. We have the following implications:

GNF(ES) = RHI(T’I‘)
R’HI(TT‘) = GNF(ES)

Proof. The implications follow immediately from Definitions 3.4.1 and 4.2.21. O

A.6 Representation Lemma for SEP

Lemma A.6.1. For the function pc defined by pc(V, N, C) = C, we have the following im-
plications:

SEP(ES) = SDyu(Tr) (A.12)
SEP(ES) = SIALC(Tr) (A.13)

Ry (Tr) A TALC(Tr) = SEP(ES) (A.14)
o

Proof. For proving SDy(Tr) in (A.12), let «,8 € E* and h € H be arbitrary such that
B.(h).a € Tr and a|g = (). B.a is an interleaving of S|y and (B.(h).a)|r. Applying the
definition of SEP for 7, = $.(h).a and 7, = 3 yields 5.« € Tr. Consequently, SDy(Tr) holds.

For proving SIAftC(Tr) in (A.13), let a,B8,7 € E* and h € H be arbitrary such that
B.a € Tr, a|g = (), v.(h) € Tr, and y|g = B|g. B.(h).a is an interleaving of (vy.(h))|y and
(B.@)|r. Applying the definition of SEP (for 7, = f.a and 7, = 7y.(h)) yields SB.(h).a € Tr.
Consequently, SIALC (Tr) holds.

We prove SEP(ES) in (A.14) by induction on the length of 7,|y. In the base case,
Th|lg = () holds. Let 7, € Tr and t € interleaving(y| g, 7|) be arbitrary. From 7,|g = (),
we obtain that ¢ = 7|z, holds. ¢ € Tr follows from Ry(Tr). Thus, t € {r € Tr| 7| = 7|}

230 APPENDIX A: Details on the Representation of Known Information Flow Properties

holds. In the step case, 7,|p has length n > 0 and we assume that the subset relation
(in Definition 4.2.23) holds for all 7; for which the length of 7;|y is smaller than n. We
show that the relation also holds for 7,. Let 7, € Tr and t € interleaving(th|m, 7|) be
arbitrary. Let t1,t3 € E* be the subsequences of ¢, respectively, before and after the last
occurrences of a high-level event h and let y,d € E* be the corresponding subsequences of 73,
ie. t = t1.(h).ta, to|lg = (), 7» = ~v.(h).4, and 6|z = (). We apply the induction hypothesis
with 7 = 7, 77 = v, t* = t1.to and obtain t;.to € Tr because 7 € Tr, 7, € Tr, and
t1.t € interleaving(t)|m,7;|r) hold. Since ti.ty € Tr, to|g = (), v.(h) € Tr, v|g = t1|m, and
IAJC (Tr), we obtain t.(h).t; € Tr (view H permits no corrections), which means t € Tr
(t = t1.(h).t2). Consequently, SEP(ES) holds. O

A.7 Representation Lemma for PSP

Lemma A.7.1. For the function pg defined by pg(V,N,C) = E, we have the following

implications:
PSP(ES) = SDy(Tr) (A.15)
PSP(ES) = SIALP(Tr) (A.16)
Ry (Tr) NIAYP(Tr) = PSP(ES) (A.17)
<&

Proof. For proving SDy(7Tr) in (A.15), we define an auxiliary predicate S-deletable. Let
7 € Tr be a possible trace and n € IN be a natural number. S-deletabley(Tr,,n) holds
if deleting all occurrences of events in H from 7 at once, with the exception of the n left-
most occurrences (if they exist), yields, again, a possible trace in Tr. According to this
construction, SDy(Tr) holds if and only if V7 € Tr. S-deletabley (Tr, 7, |(7|m)| — 1). Assume
now that PSP(ES) holds. We prove that Vn € IN.V7 € Tr. S-deletabley(Tr,7,n) holds by
induction on n. In the base case holds n = 0. That V7 € Tr. S-deletabler(Tr,7,0) holds
follows immediately from the first conjunct in Definition 4.2.25. In the step case, let n € IN
be arbitrary with n > 0 and we assume that V7 € Tr. S-deletableg(Tr,7,n*) holds for all
n* € IN with n* < n. We prove that V7 € Tr. S-deletableg (Tr,7,n) holds. Let 7 € Tr be
arbitrary. If the length of 7|y is smaller than n, then the proposition follows immediately from
the induction assumption. Thus, we assume that the length of 7| is at least n. We split 7 into
subsequences before and after the nth high-level event. Choose §,y € E* and h € H such that
the length of §| 7 isn—1 and d.(h).y = 7 (7|w = () need not hold). According to the induction
assumption, d.(y|z) € Tr holds. That d§.(h).(y|) € Tr holds follows immediately from the
second conjunct in Definition 4.2.25 (choose @ = |, and 8 = §). This concludes the proof
of the step case, i.e. we have successfully shown that Vn € IN.V7 € Tr. S-deletabley (Tr, 7,n)
holds. This implies that SDy (7r) holds.

Implication (A.16) follows immediately from the second conjunct in Definition 4.2.25.

For proving PSP(ES) in (A.17), assume that Ry (Tr) and TA}?(Tr) hold. The first and
second conjunct in the definition of PSP (Definition 4.2.25) follow, respectively, from Ry (1r)
and TALP (Tr). Thus, PSP(ES) holds. O

Appendix B

The Relationship between MAKS
and the Framework of Selective
Interleaving Functions

Among the previously proposed frameworks for information flow properties, McLean’s frame-
work of selective interleaving functions [McL94a, McL96] is closest to MAKS in the sense that
it also allows for the investigation of classes of properties. In this appendix, we elaborate a
rigorous relationship between the representation of information flow properties in McLean’s
framework and the representation in our framework.

We will proceed as follows: In Section B.1, we will show how the concepts used for repre-
senting information flow properties in McLean’s framework can be defined in an event-based
setting.! In Section B.2, we will show how the condition that a set of traces is closed under
a set of selective interleaving functions of a particular type (i.e. the main condition for repre-
senting properties in McLean’s framework) can be formulated in MAKS. The main outcome
of our investigation will be that every property represented in the framework of selective
interleaving functions can also be represented in MAKS and that there are information flow
properties that can be represented in MAKS but not in the framework of selective interleaving
functions (in its current form). In Section B.3, we point out the extensions of the framework
of selective interleaving functions that are necessary for representing these information flow
properties. The proofs of all theorems that we present are contained in Section B.4.

B.1 McLean’s Framework of Selective Interleaving Functions

Selective interleaving functions are introduced in [McL94a, McL96] for a state-based system
model. In an event-based system model, they can be defined as follows.

Definition B.1.1 (Selective interleaving function). Let FE be a set of events, x : £ —
{0,1,2} be a function, and Ey, E;, E2 be subsets of E defined by Ey = {e € E | k(e) = 0},
E,={e€ E|k(e) =1}, and E; = {e € E | k(e) = 2}.

A function f: (E* x E*) — E* is a selective interleaving function (abbreviated by sif) of
type Fy if and only if for all ¢1,t, € E* holds

fti,t2) =t = (t|g, = ti|p, NtlEy, = t2|E,) - %

! Originally, this framework has been introduced in a state-based setting. Recasting the basic definitions of
the framework in an event-based setting is necessary for formally relating it to our framework.

232 APPENDIX B: Relationship to the Framework of Selective Interleaving Functions

Hence, a sif f of type F}; takes two traces as arguments and returns a trace that equals the first
trace in its occurrences of events in E; and the second trace in its occurrences of events in Fs.
If E5 contains all events whose occurrences are visible to an observer and E contains all events
whose occurrences and nonoccurrences are confidential for him then closure under f means
that every possible observation (¢|g,) can occur in combination with every possible confidential
behavior (¢|z,). Intuitively, this requirement means: an observer cannot deduce from a given
observation that some confidential behavior cannot have occurred. This requirement is closely
related to Sutherland’s nondeducibility [Sut86]? and, hence, requiring closure under a single
interleaving function does not result in very satisfactory security properties because this
requirement shares the deficiencies of nondeducibility (cf. Section 4.2.1). In order to avoid
the shortcomings of nondeducibility, McLean requires that the set of possible traces of a given
system is closed under a set of sifs (rather than under a single sif).

Definition B.1.2 (Closure under set of sifs). Let E be a set of events, x : E — {0, 1,2}
be a function, and F be a set of sifs of type Fi. ES is closed under F if and only if

VfeF.Vr,m € T’r'.f(Tl,TQ) e Tr. &

In a state-based setting, the requirement that a set of possible traces is closed under a set of
sifs of a particular type results in sensible security properties. However, in an event-based
setting, this requirement alone is not satisfactory for expressing sensible security properties
because it does not prevent that the interleavings of visible and confidential events can be
narrowed down by an observer, a pitfall pointed out in [GN88]. In order to avoid this pitfall,
we introduce an additional concept.

Definition B.1.3 (Covering). Let F be a set of events, x : E — {0,1,2} be a function,
and F be a set of sifs of type F,.. Let E; = {e € E' | k(e) = j} for j € {0,1,2}. F covers type
F.2 if and only if

Vi1, to € E*.Vt € interleaving(t1|g,,t2|g,). 3f € F. f(t1,t2)|E0E, =T - O

To cover a type F), means for a set of sifs that for every interleaving of a possible F-sequence
with a possible Es-sequence there is a sif in the set that constructs this interleaving. Hence, if
a set of possible traces is closed under a set of sifs that covers a type F; then an observer cannot
narrow down the interleavings of Fj-sequences and Es-sequences because every interleaving
of these sequences is possible. Also note that if F covers F,, then F must be nonempty
because E* is nonempty (() € E* holds) and, for ¢;,t2 € E*, interleaving(ti|g,,t2|E,) is
also nonempty ((¢1|g,)-(t2|E,) € interleaving(t1|g,, t2|g,) holds). Moreover, for every type Fy
there is a covering set of sifs (e.g. the set of all sifs of type F covers Fy).

We are now ready to express the key notion for representing information flow properties
in the framework of selective interleaving functions in an event-based setting, namely:

A set of traces is closed under a covering set of sifs of some type Fy. (B.1)

Let us now illustrate how condition (B.1) can be used to express information flow properties.
Theorem B.1.4 (SEP). Let ES= (E,I,0, Tr) be an event system. Define kggp by:

ksgp(e) = 1 if e is a high-level event
ksep(e) = 2 ifeis a low-level event

2If E; contains all high-level inputs and E5 contains all low-level events (for a given 2-level security policy)
then the two requirements are equivalent.
3For brevity, we also say that F is a covering set of sifs of type F,. if F is a set of sifs that covers F.

B.1 McLean’s Framework of Selective Interleaving Functions 233

SEP(ES) holds if and only if there is a covering set F of sifs of type Fj,, such that Tr is

SEP

closed under F. o
Theorem B.1.5 (IBGNI*). Let ES= (E,I,O, Tr) be an event system. Define x;pans*
by:

kipgni=(e) = 0 if e is a high-level internal or output event

kipgni=(e) = 1 if e is a high-level input event

kiponr<(e) = 2 if e is a low-level event
IBGNI*(ES) holds if and only if there is a covering set F of sifs of type Fj ., . such that
Tr is closed under F. O

The proofs of Theorems B.1.4 and B.1.5 will be presented in Section B.4.

For the representation of NF' and GNF, condition (B.1) does not suffice. For representing
these properties, it is necessary to introduce an additional notion, which can be used to
constrain the values that sifs may return. An example for such a range restriction is that
no events from Fy must occur in the trace returned by a sif. This condition can be used for
representing NF.

Theorem B.1.6 (NF). Let ES= (F,I,0, Tr) be an event system. Define kyp by:

knr(e) = 0 if e is a high-level event
knr(e) = 2 ifeis a low-level event

NF(ES) holds if and only if there is a covering set F of sifs of type Fj,, such that Tr is
closed under F and f(71,72)|r, = () holds for all f € F and all 7,72 € E*. O

Another example for a range restriction is that no events from FyN I must occur in the trace
returned by a sif. This condition can be used for representing GNF.

Theorem B.1.7 (GNF). Let ES= (E,I,O, Tr) be an event system. Define kgyr by:

kenr(e) = 0 if e is a high-level event
kenr(e) = 2 ifeis a low-level event

GNF(ES) holds if and only if there is a covering set F of sifs of type Fj . such that Tr is
closed under F and f(71,72)|g,nr = () holds for all f € F and all 71,79 € E*. O

Theorem B.1.4-B.1.7 show how to represent separability, (interleaving-based) generalized
noninterference, noninference, and generalized noninference in our reformulation of McLean’s
framework of selective interleaving functions for the event-based setting. These properties
also have been investigated in [McL94a, McL96]. To the best of our knowledge, so far,
no other information flow properties have been represented in the framework of selective
interleaving functions. Interestingly, all of these properties can also be represented in MAKS
(cf. Definition 4.2.8 and Theorems 4.2.20, 4.2.22, and 4.2.24).

Remark B.1.8. In [McL96], two alternative notions are suggested that both suffice to rep-
resent NF and GNF. The approach described by footnote 7 in that article corresponds to
the approach that we have pursued, namely to restrict the range of sifs. The other approach
(described in the body of that article) constrains the domains of sifs rather than their range.
The effects are the same in both approaches [McL96]. &

234 APPENDIX B: Relationship to the Framework of Selective Interleaving Functions

Remark B.1.9. Another reformulation of McLean’s framework of selective interleaving func-
tions has been proposed by Zakinthinos [Zak96]. We found that this reformulation has serious
shortcomings. For example, Zakinthinos requires that a set of possible traces is closed under
a single sif of a particular type (rather than under a covering set of sifs). This means that
deductions about the interleaving of occurrences of confidential events and occurrences of
visible events are not ruled out. However, preventing such deductions is a critical issue in an
event-based setting, as pointed out by Guttman and Nadel [GN88]. An even more serious
problem results from the way in which sifs are defined in [Zak96]. E.g., rather than de-
manding that f(t1,%2)|g, = ti|, holds, Zakinthinos require that f(¢1,%2)|g,nr = t1|E,n1 and
f(t1,t2)|E,no = ti|E,no hold. Unfortunately, these two conditions do not ensure that input
and output events in E; occur in the right order in f(¢1,t2). In particular, f(t1,%2)|s, = t1|g,
need not hold (even if there are no internal events). As a result of this, for example, the
representation of separability in Zakinthinos’s reformulation of the framework of selective in-
terleaving functions (cf. Section 6.2 in [Zak96]) is not equivalent to the original definition of

separability.
Motivated by these shortcomings, we have developed the reformulation of the framework
of selective interleaving functions for an event-based setting presented in this section. <

B.2 Expressing Closure under Set of Sifs in MAKS

The following theorem shows that a set of possible traces Tr is closed under some covering
set of sifs of a particular type F if and only if Ry(7Tr) and TA{°(Tr) hold for some choice
of V. The choices of F); and V closely depend on each other. If one of F,; or V is given then
the other one can be calculated.

Theorem B.2.1. Let E be a set of events, V = (V,N,C) be a view in E, and pc be a
function from views in E to subsets of E with pc(V) = C. Moreover, let k : E — {0,1,2} be
a function. If Vv € V.k(v) = 2, ¥n € N.k(n) = 0, and V¢ € C.k(c) = 1 then the following
two propositions are equivalent:

1. Ry(Tr) and IA[°(Tr) hold.

2. Tris closed under some covering set of sifs of type Fj. O

Theorem B.2.1 implies that every information flow property representable in the framework
of selective interleaving functions (by the requirement that the set of traces is closed under a
covering set of sifs) can also be represented in MAKS. The somewhat involved proof of this
theorem will be presented in Section B.4.

B.3 Lessons Learned

Theorem B.2.1 is the main technical result of this appendix. It shows that the requirement for
a set of traces to be closed under a covering set is equivalent to an instance of the (schematic)
statement Ry (Tr) A IA{°(Tr) where the particular instance (i.e. the choice of V) depends on
the type of the selective interleaving functions.

As simple consequences of this theorem (and our results in Section 4.2), we obtain that
SEP and IBGNI* can be represented in the framework of selective interleaving functions

B.3 Lessons Learned 235

(thereby proving Theorems B.1.4 and B.1.5). This is because SEP can be represented in
MAKS by Ry (Tr) A TALS (Tr) and IBGNT* by Ryz(Tr) A IALS(Tr). That is, both prop-
erties can be represented by instances of the pattern Ry (7Tr) A TAJC(Tr) (cf. the proofs of
Theorems B.1.4 and B.1.5 in Section B.4 for the detailed argument).

Another consequence of Theorem B.2.1 is that GNI, IBGNI, GNI*, FC, FC*, NDO,
NDO*, NF, GNF, and PSP cannot be easily represented in the framework of selective in-
terleaving functions. This is because their representations in MAKS do not comply with
the pattern Ry (Tr) A IAJ°(Tr). However, by introducing the notion of range restrictions it
becomes possible to represent (at least) NF and GNF in this framework.*

Unfortunately, adding the notion of a range restriction does not suffice for representing
GNI, IBGNI, GNI*, FC, FC*, NDO, NDO*, or PSP. In order to represent any of these
properties, it appears necessary to enrich the framework of selective interleaving functions
with further concepts. Based on the representation of these properties in MAKS (from Sec-
tion 4.2), we will now elaborate more closely what kind of concepts are missing. For each
of GNI, IBGNI, GNI*, FC, FC*, NDO, NDO*, and PSP, Table B.1 gives a representation
of this property in MAKS and lists the concepts used in this representation that have no
corresponding counterparts in the framework of selective interleaving functions.

‘ property ‘ modular representation ‘ needed additional concepts
lack of admissibility assumption
IBGNI(ES) R’HI(TT), I’HI(TT‘) (Iinstead of IA)X
lack of admissibility assumption™
GNI(ES BSDy,;7z(Tr), BSIyz(T y p g
(E5) wz(Th) wz(Tr) backwards strictness
GNI*(ES) BSDy7(Tr), BSIALS (Tr backwards strictness
) HI
BSDyz(Tr), BShyz(Tr), lack of admissibility ‘assumptionx,
FC(ES) FCD I‘pc(Tr), FCI ch(Tr) backwards strictness,
HI ’ HI forward correctability
FC* (ES) BSDy1(Tr), BSIA}G(Tr) backwards strictness,
FCD5¢(Tr), FCIALS ™ (Tr) forward correctability
NDO(ES),
NDO*(ES) Ry (Tr), IAL"'(Tr) different choice of p (pys instead of p¢)
PSP(ES) Ry (Tr), IALP (Tr) different choice of p (pg instead of p¢)

* presence or lack of the admissibility assumption is irrelevant for systems total in high-level inputs

1_‘FC: (I,@,I)

Table B.1: Additional concepts that would be necessary in the framework of selective inter-
leaving functions to represent certain information flow properties

For example, I;;7(Tr) occurs in the representation of IBGNI but this requirement cannot
be expressed in the framework of selective interleaving functions. The closest requirement that
can be expressed is IA%CI(T’I‘). Hence, in order to represent I;z(7r) one needs to introduce
a notion that corresponds to dropping the assumption of pc-admissibility in the definition

4Separability, (interleaving-based) generalized nonminterference, noninference, and generalized noninference
can be represented in the framework of selective interleaving functions. This has been demonstrated in
[McL94a, McL96]. The novel aspect of our result is that it is concerned with our reformulation of this framework
for an event-based system model.

236 APPENDIX B: Relationship to the Framework of Selective Interleaving Functions

of TAYZ(Tr). The gain of such an extension would be that IBGNI could be represented
(also cf. first row in Table B.1). Moreover, the representation of GNI* involves backwards-
strict BSPs, i.e. BSD and BSIA”C, but the concepts provided by the framework of selective
interleaving functions can only express the non-strict BSPs R and IAP°¢. Hence, in order to
express this property one would have to find a way to limit corrections to causal ones in this
framework. Furthermore, IA”Z occurs in the representation of PSP but only IA”¢ can be
expressed in the framework of selective interleaving functions. In order to represent PSP in
this framework one would have to find a way to replace the po-admissibility assumption made
by IAP¢ with a pg-admissibility assumption (made by IA?F).

For each of IBGNI, GNI, GNI*, FC, FC*, NDO, NDO* and PSP, Table B.1 points out
what kinds of concepts are missing in the framework of selective interleaving functions in order
to represent this information flow property. The entries of the table can also be regarded as
hints of how the framework of selective interleaving functions should be extended. However,
to elaborate such extensions in detail goes beyond the objectives of this appendix (i.e. to
rigorously relate the framework of selective interleaving functions with MAKS). This remains
an open task for future work.

B.4 Proofs of all Theorems in this Appendix

Proof (of Theorem B.1.4). SEP(ES) is equivalent to Ry (Tr) A TAL (Tr) (cf. Lemma A.6.1
and Theorems 3.5.3 and 3.5.12). According to Theorem B.2.1, this statement is equivalent

to the requirement that Tr is closed under some covering set of sifs of type F,,. O

Proof (of Theorem B.1.5). IBGNI*(ES) holds iff Dyz(Tr) A IAS(Tr) (cf. Definition 4.2.8).
This statement is logically equivalent to the statement Ryz(Tr) A IALS(Tr). According to
Theorem B.2.1, the latter statement is logically equivalent to the requirement that 7ris closed

under some covering set of sifs of type Fy ;... O

Proof (of Theorem B.1.6). Firstly, assume that there is a covering set F of sifs of type Fj,,
such that 77 is closed under F and f(11,72)|g, = () holds for all f € F and all 71,70 € E*.
From this, we will show that NF(ES) holds.

Let 7 € Tr (if Tr = () then the statement holds trivially) and f € F (F is nonempty
because it covers Fy,.) be arbitrary. Since f is a sif and Ey = L, we have f({),7)|r, =
T|r. Since Ey = H, we have f((),7)|g = () according to our assumptions about F. From
O, = I, f(O,7)|g = (), and E; = 0, we obtain f((),7) = 7|r. Since Tr is closed
under F, 7|z, holds. Since 7 was chosen arbitrarily, NF(ES) holds.

Secondly, assume that NF(ES) holds. From this, we will show that there is a covering set
F of sifs of type Fy,, such that Tris closed under F and f(71,72)|g, = () holds for all f € F
and all 7,7 € E*. We define F = {f is a sif of type Fy,, | V71,72 € E*. f(11,72)|8, = ()}

We have to show that Tris closed under F. Let f € F and 7,70 € Tr be arbitrary. Since
f(r1,72) = 7|1 (follows from E; = () and our definition of F) and 7|, € Tr (follows from
NF(ES)), we have f(71,72) € Tr. Since f, 71, and 79 are arbitrary, Tr is closed under F.

It remains to show that F covers Fy,,. Let t1,to € E* and t € interleaving(ti|g,, t2|E,)
be arbitrary. Since E; = (), we have ¢t = t9|g,. Define f by: Vt|,th € E*. f(#},t,) = th|g,.
Obviously, f € F and f(t1,12) = t2|g, =t hold. Hence, F covers F .. O
Proof (of Theorem B.1.7). Firstly, assume that there is a covering set F of sifs of type F

GNF

B.4 Proofs of all Theorems in this Appendix 237

such that 7t is closed under F and f(71,72)|g,nr = () holds for all f € F and all 7,72 € E*.
From this, we will show that GNF(ES) holds.

Let 7 € Trand f € F be arbitrary. Since f is a sif and Ey = L, we have f({),7)|r = 7|L.
Since Ey = H, f({),7)|mnr = () follows from our assumptions about F. Since Tr is closed
under F, f({),7) € Tr holds. For 7" = f((),7), we have 7' € Tr, 7’|, = 7|1, and 7’| gnr = ()-
Hence, GNF(ES) holds.

Secondly, assume that GNF(ES) holds. From this, we will show that there is a covering
set F of sifs of type Fy,, such that Tris closed under F and f(71,72)|g,nr = () holds for
all f € F and all 7,79 € E*. We define F = {f} where f is defined by

t2|E2 lf t2 ¢ T’I“

_)t if to € Tr, where t, € E* is some trace with t, € Tr,
f(ti,te) = ¢ *2 2 2

tylL = t2|1, and 5| gar = ()
(t, with these properties exists because GNF(ES) holds)

That Tris closed under F follows immediately from the definition of f. It remains to show that
F covers Fy ... Let t1,t0 € E* and t € interleaving(t1|g, ,t2|g,) be arbitrary. Since E; = 0,
we have t = tg|g,. Since f(t1,t2)|r,uE, = t2|E, = t and t1,12,t were chosen arbitrarily, we

conclude that F covers Fy . O

The following lemma states that if Ry(7r) and TAS?(Tr) hold then there is a set F™ of
functions that has three properties:

1. Each function in F™ interleaves a trace that has at most length n with another trace
that may have arbitrary (finite) length. Intuitively, this can be understood as: Every
function in F™ approximates a sif (for the restricted domain (U, E™) x E*).

2. The set of possible traces is closed under all functions in F™.

3. For each possibility to construct interleavings of E;-sequences (of at most length n)
with Fs-sequences (of arbitrary length) there is a function f in F" that performs this
construction. More precisely, for every function ¢ that takes a trace t| (of at most
length n) and a trace t, (of arbitrary length) and that returns an interleaving of the
E;-sequence in t] with the Es-sequence in ¢}, there is a function f in F" such that
F@,)| Byue, = o(t),t5) holds. This requirement can be understood as: The set F™
approximates the coverage requirement (for the restricted domain (|, ., E™) x E*).

This lemma will be helpful in the proof of Theorem B.2.1.

Lemma B.4.1. Let E be a set of events, V = (V, N, C) be a view in E, and p¢ be a function
from views in E to subsets of E with pc(V) = C. Moreover, let k : E — {0,1,2} be defined
by Vv € V.k(v) =2, Vn € N.k(n) =0, and Vc € C.k(c) = 1. For j € {0,1,2} the set E;
shall be defined by E; = {e € E | k(e) = j}.

If Ry(Tr) A IA{C(Tr) holds then, for every n € IN, there is a set F™ C ((U,<p E™) x
E*) — E* of functions for which the following three propositions hold:

1. Every f € F" approximates a sif, i.e.

Vf e F* Vit € Uy, B" Vi € E*. (B.2)
[(f(t1,22)) By = taly A (f(E1,82)) | B2 = t2E,]

238 APPENDIX B: Relationship to the Framework of Selective Interleaving Functions

2. Tris closed under every f € F", i.e.

Vf € F".Vt1 € Upe, E™ . Vty € E°. (B.3)
[(t1 € TrAty € T'r) = f(t1,t2) S T’l“]

3. F" approximates the coverage requirement, i.e.

Vi € (Up<n B™) X E*) = (EL U By)*. (B.4)
[(Vt] € Unr<n E™ Vth € E*.u(t),th) € interleaving(t!| g, , th|5,))
= 3f € F".Vt1 € Upcy BV Vg € E*. f(t1,12) | Byums = (b1, 12)]

<

Proof. The proof proceeds by induction on n.
Base case: n = 0 holds. Since n = 0, we have |J,,/ ., E" = {()}. We construct F° by

FO = {f°) where f° is defined as follows for ¢; € [, <, E™ and ty € E*:

t2|E2 if t9 ¢ Tr
. o th if t5 € Tr, where), € E* is some trace
f (tl,tQ) = .f (<>1t2) = with tl2 € Tr, té|E2 = t2|E2, and
thlm, = () (¢, with these properties exists
because Ry (7Tr) holds)

For n = 0, (B.2) and (B.3) hold according to the construction of f°.

The only function 1* € ((U,/<o E”) x E*) — (E1 U Ey)* with ¥t € {J,,, E".Vt' €
E*..0(t,t") € interleaving(t|p,,t'|r,) can be defined by (#],t)) = t3|p,. According to our
construction of f°,

Ot t2) o, = P, t2)lBus, = tol, = (1, t2)

holds for all t; € EY and ¢, € E*. Hence, (B.4) holds for n = 0.
Step case: n > 0 holds. We construct F” as follows:

7

n (At (Up<n B") X B*) = (E1 U Ep)*
YA (VEL € EFLu(t), th) € interleaving(t) | g, , th|E,))

Fr=

where Deff» defines f" as follows for t1 € U, <, E" and ty € E*:

L(tl,tg) if t1 ¢ Tr or t2 ¢ Tr
Defn = [t te) = 1 to if t1,%2 € Tr, where t;, ;, € E* is some trace
with Lt 10 € Tr and ttl,t2|E1UE2 = L(tl,tg)

The validity of (B.2), (B.3), and (B.4) follows immediately from this construction. It only
remains to prove that f*(t1,t2) is well defined, i.e. that there always is a trace t;, 4, € E*

B.4 Proofs of all Theorems in this Appendix 239

such that ¢, 4, € Tr and t;, 4,|E,uE, = t(t1,t2) hold. For proving the existence of #;, 4,, we
make a case distinction on #;: either (1) t1 € U, ., E™ or (2) t; € E" holds.

Case 1: t; € U<, E™ holds. There is a function ¢/ : (U, E") x E*) = (B U BEy)*
that equals + on the restricted domain (|, ., E™) x E*, i.e. i(t3,ts) = 1(t3,%4) holds for
all t3 € Upicn E" and all t, € E*. According to the induction assumption, there is a
function f77' € F*! such that f77'(ts,t4)|mum, = ¢(t3,ts) holds for all t3 € U, E"
and all ¢4 € E* and such that if t3,t4 € Tr then fﬁ_l(tg,t4) € Tr holds. We choose t;, 4, =

" 1(t1,t2). Consequently, t;, ¢, € Tr holds. Moreover, t;, +,|5,uE, = t(t1,t2) holds because
tey x| BrUB, = V' (t1,12) and o/ equals ¢ for the restricted domain (U, ., E") x E*.

Case 2: t; € E™ holds. Let t) € E" ! and e € E be defined by t; = t;.(e). We make
another case distinction on e: (2a) e ¢ E; and (2b) e € Ej.

Case 2a: e ¢ E1 holds. There is a function ' : (U, <, E") x E*) — (E; U E,)* such that
V(t),t2) = 1(t1,t2) holds and ' (t3,t4) € interleaving(ts| g, ,ta|p,) holds for all t3 € J,,, B™
and all ¢4 € E*. According to the induction assumption, there is a function fZ,L_1 e Fr—t
such that f[,“l(tg,,1,L4)|EILJE2 = 1/(t3,14) holds for all t3 € U, E"™ and all t, € E* and such
that if ¢3,t4 € Tr then fZ;L_l(tg,t4) € Tr holds. We choose t;, 1, = f[,‘_l({,t2) and obtain
ttl,tz € Tr and ttl,t2|E1UE2 = Ll(tll,tg) = L(tl,tQ).

Case 2b: e € E1 holds. Let «, 3 € E* be defined by «(t}.(€),t2) = B.(e).c and a|g, = ().
There is a function ¢' : (U, <, E") x E*) — (E1 U Ey)* such that ¢/(},t3) = .« holds and
t(t3,t1) € interleaving(t3|g,,t4|E,) holds for all t3 € U, ., E™ and all t, € E*. According
to the induction assumption, there is a function f7~' € "1 such that f7~"(t3,%4)|pum, =
V'(t3,t4) holds for all t3 € U/, E" and all ¢4 € E* and such that if ¢5,¢4 € Tr then

" 1(ts,ta) € Tr holds. Since f7 (1, t2)|mum, = V' (t],t2) = B.a, there are traces o, ' €
E* with g'.a/ = 7' (t),t2), Blmum, = Blmum, s, = alr,, and /|5, = (). Since
s, = B'|p, and t].(e) € Tr hold, we obtain that Admf{Y (Tr, 8', e) holds. From IA°(Tr) we
conclude that there are o', 8" € E* with 8".(e).o” € Tr, "|g,uE, = B'|E,uE,, "B, = ¢|B,,
and o"|g, = (). We choose 4,1, = (".(e).@” and obtain t;, 4, € Tr and t, 4,|E,uE, =
(8" (e-0") s = (B'-(€).0") gy = (B-{e)-0)lmums = bt o). 0

Note in the proof of Lemma B.4.1 that Ry (7Tr) is applied only in the base case (for defining
f0) and that TAJ°(Tr) is applied only in Case 2b of the step case (for proving the existence
of a particular trace t;, +, if t1 € E", t; = t|.(e), and e € Ey).

We are now ready to prove the main theorem of this appendix.

Proof (of Theorem B.2.1). Firstly, assume that Ry (Tr) and IAJ°(Tr) hold. We have to show
that Tris closed under some covering set F of sifs of type Fj.

We choose F = J,, .y F" where F" is defined like in the proof of Lemma B.4.1. Hence,
Tr is closed under F. It remains to prove that F covers Fy. Let t1,to € E* and t €
interleaving(t1|g, ,t2|g,) be arbitrary. There is a number n € IN with ¢; € E™ (n is the length
of t1). Choose a function ¢ € (U<, E™) x E*) — (E1 U Ey)* with V#; € J,,.,, E" .Vt) €
E*. (), th) € interleaving(t)|g,, t5|E,) and ¢(t1,t2) = t. According to Lemma B.4.1 there is a
function f € F with f(t1,%2)|g,uE, = t(t1,t2) = t. Since t1, to, t were chosen arbitrarily and
f €F (F™ C F holds), we conclude that F covers Fj.

Secondly, assume that Tt is closed under some covering set F of sifs of type F,. We have
to show that Ry(7r) and TA[°(Tr) hold.

For proving that Ry (7r) holds, let 7 € Tr be arbitrary (if 7r = () then the proposition
holds trivially). We choose 7" = f((),7) where f € F is arbitrary. 7/ € Tr holds because

240 APPENDIX B: Relationship to the Framework of Selective Interleaving Functions

Tr is closed under F and (),7 € Tr holds ({) € Tr because Tr is closed under prefixes).
o =75, = f((),7)|e; = () and 7’|y = 7|5, = f((),7)|E. = T|E, = 7|V because f is a sif
of type Fy. Thus, Ry(Tr) holds.

For proving that TAJ¢(Tr) holds, let o, 8 € E* and ¢ € C be arbitrary. Assume .o € Tr,
alc = (), and Adml{Y (Tr, 8,c). Hence g, = () and ¢ € E;. Since Admi°(Tr, 3, c) there is
a trace v € E* such that v.(c) € Tr and 7|g, = B|g, hold. Consequently, (5.(c).a)|r,uE, €
interleaving((7y.(c))|g, , (B-@)|r,) holds. Since F covers Fj, there is a sif f € F such that
(f (y-c), B-@))|B,uE, = (B-(c).a)|E,uE,- Let B',a’ € E* be the subsequences of f(v.(c), 8.a),
respectively, before and after the last occurrence of ¢, i.e. f(v.(c),8.a) = f'.(c).c/ and /|, =
(). Since Tr is closed under F, we obtain £'.(c)./ € Tr. From f'.(c).c/ € Tr, o|c = (), and
(B'(c).")lvue = (B-(¢).a)|vuc we conclude that TASC(Tr) holds. O

Appendix C

Veritying Information Flow
Properties by Simulation

Simulation techniques are similar in spirit to unwinding in the sense that they reduce the
verification of a global property to the verification of local conditions. However, an essen-
tial difference between these two techniques is that they have been developed for different
properties. While the unwinding technique has been developed to simplify the verification
of information flow properties, simulation techniques have been developed to simplify the
verification that some system refines another.

However, we discovered a possibility to apply simulation techniques also for verifying in-
formation flow properties. The key observation is that BSPs can be expressed by refinement
statements. After reformulating BSPs by refinement statements, simulation techniques be-
come immediately applicable for their verification. Thereby, we obtain verification techniques
for information flow properties that provide alternatives to the unwinding technique. The re-
sulting verification techniques are sound. Moreover, some of them, namely forward-backward
simulation and backward-forward simulation, are also complete.

Overview. In Section C.1, we recall four well known simulation techniques from the litera-
ture. In Section C.2, we show how backwards-strict BSPs and forward-correctable BSPs can
be expressed in terms of refinement statements. In Section C.3, we illustrate by a concrete
example how the simulation techniques can be employed during the verification of information
flow properties. We conclude in Section C.4 with a brief summary of our main results.

Conventions. ES°=(E,I,0,Tr¢) and ES*= (E,I,0, Tr®) denote event systems. SES® =
(S%,s3,E,1,0,T%), SES® = (S¢,s, E.I,0,T¢), and SES = (S, s0, E,I,0,T) denote state-
event systems. Let V = (V, N, C) denote a view in E, let p denote a function from views in
E to subsets of E, and let I denote a triple (V, A, T) of subsets of E. Moreover, let o and
[denote finite traces, i.e. a, 8 € E*, and let ¢ denote a confidential event, i.e. c € C.

C.1 Preliminaries on Simulation Techniques

Various simulation techniques have been proposed for proving that one system specification is
a trace refinement of another one [LV95]. We refer to the particular notion of trace refinement
considered in this setting by observational trace refinement.

242 APPENDIX C: Verifying Information Flow Properties by Simulation

Definition C.1.1 (Trace refinement). The event system ES€ is a trace refinement of ES®
(denoted by ES¢ <p ES?) iff Tr¢ C Tr® holds. <&

Definition C.1.2 (Observational trace refinement). The event system ES€ is an obser-
vational trace refinement of ES® (denoted by ES¢ <or ES?) iff Tr¢|juo C Tr®iuo holds
where Tr¢|juo = {rlrvo | 7 € Tr°} and Tr®|juo = {7|ivo | 7 € Tr®} are the observable
traces of, respectively, ES¢ and ES°.

The state-event system SES€ is an observational trace refinement of SES® (denoted by
SES® SOT SESa) iff ESSESC SOT ESSES“ holds. O

If ES¢ <or ES® holds then all observations that are possible at the interface of ES¢ must
also be possible at the interface of ES®.

Various simulation techniques have been developed to prove that one system is an obser-
vational trace refinement of another system. These simulation techniques have in common
that they reduce the verification of (global) refinement statements that involve the sets of all
possible traces of both systems to more local conditions. However, they differ in which local
verification conditions are used.

Below, we briefly recall four well known simulation techniques from the literature as well as
corresponding soundness and completeness results. Our presentation is based on the overview
article [LV95] with only a few minor changes in technical details.

Forward Simulation. The following definition is derived from Section 3.2 in [LV95].

Definition C.1.3 (Forward simulation). A relation <p C S¢x S® is a forward simulation
from SES® to SES® (denoted by SES¢ <p SES?) if it satisfies the following two conditions:
1. 55 2F 8§
2. Vs1 € §°.Vs!, s, € S Ve € E.
(s) —S1e shA S| <p s1)
(= dsg € §%.36 € E*. (0|ruo = (€)|ruo A s1 :6>Ta So A sy <F 32)) O

The conditions in Definition C.1.3 are also viewed by the two diagrams in Figure C.1 where
we use the same conventions like in Chapter 5.

! !
58 s] ‘TC So
AI (BN IA
ol ol o]
6
sg S1 ﬁj‘a S9

where e € E, § € E*, and é|1u0 = (e)|1uo
Figure C.1: Verification conditions for forward simulation

Theorem C.1.4 (Soundness of forward simulation). If <pC S¢ x S§% is a forward
simulation from SES¢ to SES? then SES¢ <or SES® holds. <&

Proof. Follows from Theorem 3.10 in [LV95]. O

Forward simulation is a sound proof technique but it is, in general, not complete. For a
conditional completeness result, we refer to Theorem 3.11 in [LV95].

C.1 Preliminaries on Simulation Techniques 243

Backward Simulation. The following definition of backward simulation is derived from
Section 3.3 in [LV95]. Because of our assumption on state-event systems, i.e. that there is
only one initial state and that 7' is functional in its first two arguments, the soundness result
that we present is a specialization of the one in that article.

Definition C.1.5 (Backward simulation). A relation <p C S¢ x S% is a backward simu-
lation from SES to SES® (denoted by SES¢ <p SES®) if it is total' and if

1. Vs' € 8% (s§ <p &' = s’ = s§)

2. Vsy € §%. Vs, s, € S Ve € E.
(8] —S37e sh A sh <p s9)
= 381 (S S“.EI(S € E*. (6|IUO = <e)|[U0 /\81 :6>Ta S92 A 811 jB 81)

[! !
So Sy m—rc S3
%
A IA A
o o s
4
SS |—|: s’ S1 :Ta So

where e € E, § € E*, and d|v = {e)|v
Figure C.2: Verification conditions for backward simulation

Unlike forward simulation, backward simulation requires that the simulation relation is total
in S¢. The two conditions of Definition C.1.5 are also shown in Figure C.2. Note that the
diagram on the right hand side has the same shape like the one in Figure C.1.3. However, it
differs in which parts are fat or thin, e.g., the quantification of s; and sy differs.

Theorem C.1.6 (Soundness of backward simulation). If <5 C §¢ x S* is a backward
simulation from SES¢ to SES? then SES¢ <or SES® holds. <&

Proof. Follows from Theorem 3.17 in [LV95]. O

Backward simulation is, in general, not complete. For a conditional completeness result, we
refer to Theorem 3.18 in [LV95].

Remark C.1.7. Although forward simulation and backward simulation are, in general, not
complete it is possible to obtain a complete verification technique by combining them. Theo-
rem 3.22 in [LV95] states that if there are specifications A and B such that A <p7 B then there
is a specification C, a forward simulation <z, and a backward simulation <p such that A <p
C and C <p B. Similar results can be found in [HHS87, He89, Jon89, Jon91, Jos88, KS93]. &

Hybrid Simulations. Simulation techniques that are sound as well as complete, without
having to construct an intermediate system specification (cf. Remark C.1.7), have been con-
structed by merging forward simulation with backward simulation. The following definitions
are derived from Section 4 in [LV95].

LA relation R C X x Y is total over X if domain(R) = X where domain(R) = {r€ X | IyeY. (z,y) € R}.

244 APPENDIX C: Verifying Information Flow Properties by Simulation

One technical difference of these hybrid simulation techniques to forward simulation or
backward simulation is that the simulation relation relates a state of the concrete system with
a set of states of the abstract system (rather than with a single state of the abstract system).

Definition C.1.8 (Forward-backward simulation). A relation <pp C S¢ x N (5§%)? is a
forward-backward simulation from SES® to SES® (denoted by SES¢ <pp SES?) if it satisfies
the following two conditions.

1. 88 jFB {88}

2. VS; € N(5%).Vs), s, € S.Ve € E.
(8’1 i)Tc 8,2 A 8’1 <FB Sl) =38, € N(Sa).VSQ € So. 3y € E*. s € 51.
(s <rB S2 Avliuo = (€)]1uo A s1 =274 82) O

Definition C.1.9 (Backward-forward simulation). A relation <gp C S¢ x P(S%)3 is a
backward-forward simulation from SES¢ to SES® (denoted by SES¢ <gp SES?®) if it is total
in S§¢ and if it satisfies the following two conditions.

1. VS € P(S9). (s <pr S = s& €)

2. VSy € P(S%).Vs!, s € S¢.Ve € E.
(8’1 i)Tc 3’2 A 8’2 <Br S2) =351 € P(5%).Vs; € S1.Fy € E*.Jsy € So.
(st <Br S1 Avluo = (€)|1uo A s1 =274 82) o

Theorem C.1.10 (Soundness of hybrid simulations). Let <ppC S¢ x N(S%) and
<Br C 8¢ X P(S%) be two relations.

o If SES® <pp SES® then SES° <or SES® holds.

o If SES® <pr SES® then SES° <or SES® holds. <

Proof. Follows from Theorems 4.5 and 4.13 in [LV95]. O

Unlike forward simulation or backward simulation, which are only complete under certain
assumptions, forward-backward simulation and backward-forward simulation are both, in
general, complete verification techniques for observational trace refinement.

Theorem C.1.11 (Completeness of hybrid simulations).

o If SES® <or SES® then SES® <pp SES® holds for some relation <pp C 5S¢ x N (S5).

o If SES® <or SES® then SES¢ <pr SES® holds for some relation <pp C S§¢ x P(5%).

Proof. Follows from Theorems 4.5 and 4.13 in [LV95]. O

2Given a set X, N(X) denotes the powerset of X without @, i.e. N(X) ={X' | X' C X A X' # 0}.
3Given a set X, P(X) denotes the powerset of X, i.e. P(X)={X'| X' C X}.

C.2 Correspondence to Trace Refinement 245

C.2 Correspondence to Trace Refinement

We now elaborate the correspondence between BSPs and observational trace refinement.

The following theorem shows how our backwards-strict BSPs can be reformulated by
refinement statements. This theorem provides the basis for employing simulation techniques
in the verification of BSPs.

Theorem C.2.1. Let ESsgs = (E, I, 0, Trsgs) be the event system for SES. The following
equivalences are valid where T" = {(s,e,s') € T | e ¢ C}:

BSDy(Trsps) <= VB € E*.NVce C.Vs,s' € 8S. (C.1)
(so :ﬁ>T SAs —Ssp s")
= (S, Sla E, Qa V, TI) SOT (Sa S, Ea @, V’ TI)

BSK(Trsgs) < VB e E*.Vce C.Vs€S. (C.2)
S0 :ﬂ>T S

=35'€S. (s 7 s'A
(S,S,E,@,V, TI) SOT (S, S’,E,@,V, Tl))

BSIAlg(TTSES) <~ V@€ E*Nce C.Vs e S. (03)
(so :ﬁ>T s\ Enf)(T,s,c))
=35 €8 (s S s'A
(S,S,E,@,V,TI) <or (S,SlaanavaTl)) <
Proof. We only prove (C.1) in detail.
=—: Assume that BSDy(Trsgs) holds. Let 8 € E*, c € C, and s, s’ € S be arbitrary such

that sg :’8>T sand s ——7 s' hold. Let o € (E'\ C)* be arbitrary such that there is a state s"
with s’ == s”, i.e. a is a possible trace of (S, s', E,0,V,T'). Consequently, 5.(c).ac € Trsgs
holds. From BSDy(Trsgs) we obtain that there is a trace o € (E \ C)* with .o/ € Trsgs
and o/|y = aly. Hence, there must be a state s” € S for which s == s holds, i.e. o/ is a
possible trace of (S, s, E,0,V, T') that yields the same observation like a.

<—: Assume that, for all 8 € E* ¢ € C, s, € S with s :ﬂ>T s and s —p &,
(S,s',E,0,V,T") <or (S,s,E,0,V,T'") holds. Let 8 € E* and ¢ € C be arbitrary such
that S.(c) € Trsgs holds. Hence, there are states s,s’ € S with sg :'B>T sand s —7p &
According to our assumption (S,s', E,0,V,T") <or (S, s, E,0,V,T") holds. Let a € (E'\ C)*
be arbitrary such that 3.(c).a € Trsgs holds. Hence, there is a state s” € S with s’ =1 s".
Consequently, « is a possible trace of (S,s', E,(,V,T"). From the refinement statement, we
obtain that there is a possible trace o/ € (E \ C)* of (S,s, E,0,V,T') that yields the same
observation like o, i.e. there is a state s € S with s é'>T/ s" (implies B.o/ € Trsgg) and
d'|y = aly. Consequently, BSDy(Trsgs) holds.

The proofs of (C.2) and (C.3) are along the same lines. In the proof of (C.3), Theorem 5.4.7
needs to be applied in order to move between p-enabledness and p-admissibility. O

Note that the two state-event systems in each refinement statement of Theorem C.2.1 differ
only in their initial state (either s or s’). In the refinement statements, the classification of

246 APPENDIX C: Verifying Information Flow Properties by Simulation

events as external or internal events and the choice of T" are crucial. For example, in the
equivalence for BSDy(Trsgs), events in NUC become internal events and events in V' become
external events according to (S, s, E,0,V,T') <or (S,s', E,0,V,T').* This reflects that o and
o/ in Definition 3.4.24 must be equal in events from V but may differ in events from N U C.
However, in order to prevent that they differ in events from C, it is crucial that events from
C are disabled in T". This also ensures « € (E'\ C)* and o € (E \ C)*.

The following theorem shows how our forward-correctable BSPs can be reformulated based
on observational trace refinement.

Theorem C.2.2. Let ESsgs = (E, I, O, Trsgs) be the event system for SES. The following
implications are valid where T" = {(s,e,s') € T | e ¢ C}:
FCDY(Trsps) < VB € E*.Nce CNY.Yv e VNV.Vs,5 € 8. (C.4)

(so :’6>T sSAs @:.ng s')

=3s"€S5.35€ (N N A)*.

(8 JZ@QT 5” /\ (57 811 E, @7 ‘/:T,) SOT (S’ 5”1 E’ ®’ ‘/’T,))

FCI(Trsgs) < VB € E*.Nec CNY.Yo € VNV.Vs,s" € S. (C.5)
(so éT sAs —sp s
=3s'€8.36€(NNA)™.
(s ‘L) o A (S, 8" B,0,V,T') <or (S,¢', E,0,V,T"))

FCIALT (Trsps) < VB € E*.¥ce CNY.Yo € VNV.Vs,s" € 8. (C.6)

(so :ﬂ>T sAs —p s" AN Enf)(T,s,c))
=3s'€S.35e(N NA)*.
(s ‘L2 g A (S, 8", B,0,V,T') <or (S, E,0,V,T'))) ©
Proof. We only prove (C.4) in detail.

Assume that for all B € E*, ce CNYT,v € VNV, s,s € S with s :’3>T s and

. .
s QT s’ there are a state s” € S and a sequence § € (N N A)* such that s QT s" and

(S,s',E,0,V,T") <or (S,s",E,0,V,T') hold. Let 8 € E*, c € CNTY,and v € VNV be
arbitrary such that 8.(c.v) € Trsgs holds. Hence, there are states s, s’ € S with sg :’3>T s and
S (c:'ng s'. According to our assumption there are a state s” € S and a sequence § € (NN A)*

such that s @T s" and (S,s',E,0,V,T") <or (S,s", E,0,V,T') hold. Let a € (E \ C)* be
arbitrary such that 8.(c.v).a € Trsgs holds. Hence, there is a state s € S with s’ == 5.
Consequently, « is a possible trace of the state-event system (S,s',E,0,V,T"). From the
refinement statement, we obtain that there is a possible trace o’ € (E\ C)* of the state-event
system (S,s”, E, (0, V,T') that yields the same observation like o, i.e. there is a state s € S

with s” é’mﬁ s"" (implies B.0.(v).c/ € Trsgs) and o' |y = aly.

The proofs of (C.5) and (C.6) are along the same lines. In the proof of (C.6), Theorem 5.4.7
needs to be applied in order to move between p-admissibility and p-enabledness.]

4However, it does not matter whether events in V are viewed as input events or as output events. We view
these events as output events (cf. Theorem C.2.1).

C.3 Verifying BSPs by Simulation

247

Remark C.2.3. According to Theorem C.2.1, the backwards-strict BSPs are equivalent to
their respective reformulations by refinement statements. In contrast to this, our reformu-
lations of forward-correctable BSPs are not equivalent to the respective BSPs (cf. Theo-
rem C.2.2), i.e. these BSPs are implied by the respective reformulation but they do not imply
this reformulation. This is due to the quantifier structure, i.e. Va....3d ... in the definitions
of FCD, FCI, or FCIA and the quantifier structure ...3d...Va... in the reformulations (uni-
versal quantification of « is implicit in the refinement statement). <

C.3 Verifying BSPs by Simulation

In Theorems C.2.1 and C.2.2, we have shown how backwards-strict BSPs and forward-
correctable BSPs can be expressed by refinement statements. The benefit of having these
reformulations is that simulation techniques are applicable to them. This means, we can
employ any of the simulation techniques in Section C.1 for proving these reformulations.
According to the soundness theorems (Theorems C.1.4, C.1.6, and C.1.10), the application
of forward simulation, backward simulation, forward-backward simulation, and backward-
forward simulation during the verification of information flow properties is, indeed, sound.
Interestingly, after having shown Theorems C.2.1 and C.2.2, we obtain these soundness results
“for free” from [LV95]. Moreover, simulation techniques that are complete proof techniques
for refinement statements are also complete proof techniques for our backwards-strict BSPs
(because these BSPs are equivalent to their respective reformulations).

Let us now illustrate by a concrete example how simulation techniques can be applied
during the verification of BSPs. We start with forward simulation and then present an
example for backward simulation. For both examples, we employ the same system that we
have also used to illustrate the application of our unwinding results in Section 5.6.1.

Example C.3.1. Let SES = (S,s0,F,1,0,T) and V = (V, N,C) be defined like in Exam-
ple 5.6.1. The transition relation 7' is also viewed in Figure C.3. Let us now verify that
BSDy(Trsgs) holds with the help of forward simulation.

S0 hi S84 hi S8

loa lo2
N N
S6 510
lo1 lo1

l lo1 l loy loy
S1 . S5 S9
lo2
N

S3 S7 S11

Figure C.3: Transition relation from Example C.3.1

According to Theorem C.2.1, we have to prove two refinement statements, namely

(Sas4aE7®auT,) SOT (S,S(),E,(b,V,TI)
(S,SS,E,(Z),V',T’) SOT (S,S4,E,®,V,Tl)

where T" is defined by T" = {(s,e,s’) € T | e # hi}. We now construct a forward simulation
=r1 € xS for the first of these statements by starting with the empty relation and iteratively

248 APPENDIX C: Verifying Information Flow Properties by Simulation

adding elements to this relation in order to satisfy the requirements of a forward simulation.
The first condition in the definition of forward simulations (cf. Definition C.1.3) requires
84=F180.- Since (s4,lo1,85) € T' and s4=<F15g, the second condition in Definition C.1.3
requires s5=<r;S1. By repeatedly applying this second condition, we obtain that sg<r;s2 and
s7=r153 have to hold as well. It is easy to check that <p= {(s4, s0), (S5, 51), (s6, $2), (57, $3) }
indeed, is a forward simulation for the first of the two refinement statements above. A forward
simulation <py C § X S for the second refinement statement can be constructed along the
same lines. The forward simulations <p; and <p9 are depicted in Figure C.4. O

[ZF1 Y ZFo _

hi hi
80\ % 34\ 1 38\
loa >F1 ZFo lo
N N \X
52 S6 510
loy loy |
l lo1 l lo1 lo1
S S S
{\ loo > J-s l ’ l
aNY ~
83 ST S11
N >F1 A ZFs J

Figure C.4: Construction of a forward simulation in Example C.3.1

The difference between the above example and our example for the unwinding technique
(Example 5.6.1) is that there are two simulation relations <p; and <ps but only a single
unwinding relation . Interestingly, the forward simulations selected in the example are not
the only ones that are suitable. For example, the verification of the conditions for forward
simulations would have also succeeded for the choices <p; = X and <py = X (where x is
like in Example 5.6.1).

While the construction of a forward simulation is similar to the construction of an unwind-
ing relation, the construction of a backward simulation is quite different. The main reason
for this difference is the requirement that a backward simulation must be total in the states
of the concrete system, i.e. that every state of the concrete system must be related to some
state of the abstract system.

Example C.3.2. Let SES = (S,s0,F,1,0,T) and V = (V, N,C) be defined like in Exam-
ple 5.6.1. Let us now verify that BSDy(Trsgs) holds with the help of backward simulation.
Like in Example C.3.1, we have to prove the following two refinement statements:

(Sa 341E’®5KT,) SOT (Sa So,E,Q),V,TI)
(S,Sg,E,@,V',TI) SOT (S,S4,E,®,V,T’)

where 7" is defined by 7" = {(s, e, s') € T' | e # hi}. We now construct a backward simulation
=<p € § x § for the first of these refinement statements by starting with the empty relation
and iteratively adding elements to this relation in order to satisfy the requirements of a
backward simulation. Since <p must be total in S, s4 (the initial state of the concrete
system) must be related to some state. According to the first condition in the definition
of backward simulation (cf. Definition C.1.5), sq is the only possibility, i.e. s4 <p s¢ must
hold. Since sy <p s¢, (s4,l01,85) € T', and (sg,lo1,s1) € T', the second condition in the
definition of backward simulation is satisfied if we demand that s5 <p s; must hold. By

C.4 Summary 249

repeatedly, extending the relation, we obtain that s¢ <p so and sy <p s3 hold also. So far,
the constructed relation is identical to the forward simulation <r. However, the requirements
of a backward simulation are not yet satisfied because the relation constructed so far is not
total in S, i.e. the states sg, s1, 9, S3, Sg, S9, S10, S11 are not related to any other states. We
relate sg, 19,811 like in <pg (cf. Example C.3.1), i.e. sg <p s4, S10 =B S6, S11 =B S7 and
relate sg, s1, S92, S3, S9 to themselves, i.e. sg =<p Sg, S1 =B S1, S2 =B S2, S3 =B 83, Sg =B S9. It
is easy to check that the resulting relation (depicted in Figure C.5) is a backward simulation
for the first refinement statement. Moreover, it is also a backward simulation for the second

refinement statement. <
=B B
14 . Y . Y
- S0 < l) S4 Y) S8 N ’
02 [— >B 1—“27 B +6
N)
S9 S6 510
lo1 @il lo1 |
l loy l loy lo1
lO? V tB
> S3 St S11
~B A B J

Figure C.5: Construction of a backward simulation in Example C.3.2

C.4 Summary

As an alternative to unwinding for the verification of information flow properties, we have
adopted simulation techniques. Simulation techniques can be applied for this purpose despite
they have been originally developed for a different purpose, i.e. for proving that one system
refines another system. The adoptation of simulation techniques like, e.g., forward simulation
or backward simulation has become possible after we identified a close relationship between
our BSPs and a particular variant of trace refinement (referred to by observational trace
refinement). The discovery of this correspondence and the adoptation of simulation techniques
for verifying information flow properties are original contributions of our work.

Using simulation techniques, the verification of information flow properties proceeds as
follows: First, the verification of information flow properties is reduced to the verification
of BSPs (based on the modular representation in MAKS). Then, the BSPs are reformulated
by refinement statements and, finally, they can be verified with the help of the simulation
techniques explained in this chapter.

The simulation techniques considered here are already established for verifying trace re-
finement and our definitions of these techniques are simple re-formulations (in our formalism)
of definitions from the literature [LV95]. The benefit of our adaptation of these simulation
techniques is that we obtained alternatives to the unwinding technique for verifying BSPs.
Since simulation techniques have been thoroughly investigated in the context of trace refine-
ment, we could obtain soundness and completeness results for these verification techniques
“for free”. Concerning completeness, there seems to be a trade-off with the complexity of the
local verification conditions. On the one hand, forward simulation and backward simulation

250

APPENDIX C: Verifying Information Flow Properties by Simulation

are based on relatively simple local conditions that are easy to handle during verification
but these techniques are not complete, in general. On the other hand, forward-backward
simulation and backward-forward simulation are complete verification techniques but the
corresponding local verification conditions are quite complex (e.g. they involve relations be-
tween sets of states) and, hence, they are more difficult to handle during verification than the
verification conditions for forward simulation or backward simulation.

Appendix D

Proofs of Compositionality Results

D.1 Detailed Proof of the Generalized Zipping Lemma

This section contains the detailed proof of the generalized zipping lemma (Lemma 6.4.4) that
has been sketched in Section 6.4.2 already.

Proof (of Lemma 6.4.4). According to our assumptions, the composition of ES; and ES; is
well behaved wrt. V; and V. We make a case distinction on conditions 1-4 in Definition 6.3.6
and prove each of the resulting cases. However, first, note the following facts:

e NiNVy=0and N, NV; =0 hold because
Nlﬂng(NlﬂEl)ﬂ(VﬂEg):(NlﬁVl)ﬂEQZQ)and
Nzﬂvlz(NzﬂEz)ﬁ(VﬁEl):(NQQVQ)QElz(Z).

o If Ny N Ey =0 then t1|g, = A|g,nE, holds because
ti|m, = ti|mne, = tliunue)ne = tilving, = MEing, (tile, = () holds).

e If Ny N Ey = () then t2|g, = A\|E,nE, holds because
tol B, = tolBinE, = tolBin(vaunsucy) = t2lEinve = AlEinE, (t2|lc, = () holds).

Let us, firstly, assume that condition 1 in Definition 6.3.6 holds, i.e. that NN Fy = () and
NoNE; =0 hold. According to the above facts, t1|g, =A|g,nE, =t2|p, holds. From #1|¢, = (),
ta|lc, = (), CNEy CCy, and CNEy C Oy, we obtain that ¢1|c = () and t2|¢c = () hold. Since
ti|lg, = to|Ey, tilv = AEy, tolv = Algy, tile = (), and t2|c = () there is a trace ¢t € E* such
that t|g, =t1, t|g, =t2, t|y = A, and t|c =(). This means, ¢ results from A by inserting the
sequences t1|y, and t2|n,. According to the definition of the composition operator, 7.t € Tr
holds because t|E1 =11, t|E2 = 19, 7'|E1 .41 € Try, and T|E2.t2 € Try hold.

Let us, secondly, assume that condition 2 in Definition 6.3.6 holds, i.e. that NyNFEy =10,
BSIA{?:(TQ), and total(ES1,C1 N N3) hold. From NiNE; =0, we obtain t1|g, = A|g,nE,-
The projections ¢;|g, and t3|g, differ only in events from NoNE; because ti|g, = A g;nE,,
t2 S (va U N2 U 02)*, t2|02 = <), and t2|V2 =)\|E2- Since N2 n N1 = @, N2 N V1 = @, and
Ey=V1 U Ny UCY, we have No N E1 = Ny N Cy. By an inductive argument on the length of
to| Nyney, We obtain from BSIAﬁi(Trl), total(ESy,C1 N Ny) and NyNEy =0 that there is a
trace ¢ € Ef with 7|g, .t} € Try, ¢\ vy, =t1|w, tilc, € (C1 N No)*, and t}|g, =t2|r, (events in
to| nonc, are inserted from left to right into ¢1). From ¢/ |, € (C1NN2)*, t2|c, =(), CNE; CCY,
and CNE; C Cy, we obtain that t}|c =() and t2|c =() hold. Since t!|g, =to|g,, ti|v =g,
(follows from t||y, = t1]y, and t1|y = Alg,), tolv = A&, tilc =), and to|c = () there is a

252 APPENDIX D: Proofs of Compositionality Results

trace t € E* with t|g, =1}, t|g, =t2, t|ly = A, and t|c = (). According to the definition of the
composition operator, 7.t € Tr holds (7|g, .t} € Tri, 7|g,-t2 € Try, t|g, =1}, and t|g, =t2).

Let us, thirdly, assume that condition 3 in Definition 6.3.6 holds, i.e. that NoNE; = (),
BSTA}(Try), and total(ESy, Co N N1) hold. These assumptions are symmetric to the one in
the second case (where we assumed that condition 2 holds). Hence, this case can be handled
like the second case (where indices 1 and 2 have to be exchanged).

Let us, fourthly, assume that condition 4 in Definition 6.3.6 holds, i.e. that there are a
function p; from views in F; to subsets of Fi, a function ps from views in Fs to subsets
Of EQ, and triples Fl = (Vl,Al,Tl) and PQ = (VQ,AQ,TQ) (where Vl,Al,Tl g E1 and
Vi, A9, Ty C Ey) such that BSTAJ!(Try), BSIA](Try), total(ESy, C1 N Na), total(ES;, Cy N
Ny), FCIAJY ™ (Try), FCIAJ? ™ (Try), ViNVa C V1 UV, CiN Ny C Ty, ConN Ny C Yo,
NiNA{NE, :(b, and No N Ay N E; = 0 hold.

We prove the lemma by induction on the length of A\. This induction resembles the process
of closing a zipper in a stepwise manner if the events in A are viewed as the teeth of the zipper.

In the base case (A = ()), 7.t € Tr, t|y = A, and t|c = () hold for ¢ = ().

In the step case (A = (v).\ for some v € V, X' € V*), we make a case distinction on v.

1. veVinVhanNV, 2. veEVINVoNV, 3. veVi\ By 4. veVo\ Ey

This is a complete case distinction because v € V, V = ViUVy = (ViNVo)U (Vi \ V2)U(Va\ V1),
Vi\ Vo = V1 \ Es (follows from VN E; = V) and VN Ey = V3), Vo \ Vi = Vo \ Ey (follows from
VNE;=Viand VN E, :VQ), and VNV, C ViU V.

Case 1: veViNVonNVy

e We split #; into subsequences before and after v (recall that #1]y = A|g,). Choose
r1,81 € Ef such that t; = r1.(v).s1 and 71|y, = () hold.

e r1|c, = () holds because t1|c, = (). Hence, 7 € Ny holds (follows from r; € Ef and
rilv, = (). r1|m, € (N1 N C2)* holds because Ny NV, =) and N1 N Ny = (. From
Cy N N1 C Ty we obtain that r1|g, € (N1 N Cy N T3)* holds.

o We insert r1|g, into 7|g,.ts € Tre after 7|g,. By an inductive argument, we obtain
from BSIAJ?(Trz) and total(ESy,C2 N N1) that ¢y € E3 exists with (1.71)|g,.t5 € Try,
thlv, = t|v,, and th|c, = () (events in r;|g, are inserted from left to right into 7|g,.t2).

e We split ¢/ into subsequences before and after v (recall that A|g, = ta|v = th|y). Choose
rh, sh € E5 such that t) = r}.(v).s}, and 7|y, = () hold. r}|c, = () and sb|c, = () hold
because th|c, = ().

e Since rh|c, = () we have r) € NJ (recall that v, € EJ and rb|y, = (). r4|g, € (N2NCy)*
holds because No NV = () and No N Ny = (. Since C; N Ny C Yy, we have rb|g, €
(NQ NnNCi N Tl)*.

e We insert r)|g, into 7|g,.r1.(v).s1 € Try after 7|g,.r1. By an inductive argument on the
length of 74|k, , we obtain from FCIA{?:’FI(Trl) and total(ES1,C1 N Ny) that there are
sy € Ef and ¢} € ((C1NYT1)U(N1NAL))* with 7|g, .r1.¢1-(v).s| € Tri, ¢i|cynry, = 5|5,
silv; = s1lvi, and s)|¢, = () (events in r)|g, are inserted from left to right). Note that
¢} need not be identical to r4|g, , however, it may differ only in events from Ny N A;.

D.1 Detailed Proof of the Generalized Zipping Lemma 253

e From 75, € Nj and C N Ey C Cy, we obtain r)|c = (). ¢}|c = () follows from ¢} €
((Cl N Tl) U (N1 N Al))*, qI1|ClﬂT1 = TIQ‘EI, ’I'é € N5, and CN Ey C Cy.

* ¢i|E, = r3|E, holds because qi|r, = ¢1 (1T YUV NAN)NE, = Gil(CinT)NE = ThlE1NE, =
rh|g, (follows from ¢} € (C1 N Y1) U (N1 NA1))*, NyNA1NEy =0, rh € E3). Since
d\|\ e, = 5|8, qilv = () (follows from VN E; = V; and ¢f € ((C1 NT1) U (N1 NAY))*),
rhlv = () (follows from V N Ey = V3 and by, = (), ¢ilc = (), and r|c = () there is a
trace q, € E* with qI|E1 = qll ; qI|E2 = TIQa qI|V = <)a and qllc = <>

e The preconditions of the induction hypothesis are satisfied for 7.r1.¢".(v), X, s}, sh:
— (1.r1.¢ .(v))|E, -8} € Try and (1.71.¢'.(v))|E,-sh € Try hold because r; € Ef, ¢'|g, =
qy, 7|g,-r1.91.(v).s} € Tri, ¢'|g, = 1%, (1.11)|E,.Th.(v).85 € Try, and v € E; N Es.
-)\I|E1 = 8'1|V and)\I|E2 = 8'2|V hold because (<’U).)\I)‘E1 = t1|v = (T1.<’l)).81)|v,
rilv =), silv = silv, ((0)-N)|g, = talv = t3lv = (r5-(v).s5)|v, and 3]y = ().
— sh]e, = () and sh|c, = () hold.
e From the induction hypothesis, we obtain that there is a trace ' € E* for which
r.r1.q (v).t' € Tr, t'|y = XN, and ¢'|¢c = ().

e We now show that the conclusion of the lemma holds for t = r1.¢".(v).t":

— 7.t € Tr holds because 7.r1.¢'.(v).t' € Tr.

— tly = X because r1|y = (), ¢'|lv = (), t'|lv = X, and A = (v).\.

— tlo = () because r1lc = (), ¢'lc = (), (v)lc = (), and t|c = ().
Case 2 (v € V1 NVyN V3) can be shown like case 1 (with indices 1 and 2 exchanged).
Case 3: v € V1 \ Ey

e We split t; into subsequences before and after v (recall that ¢;1|y = A|g,). Choose
r1,81 € Ef such that ¢t; = r1.(v).s1 and r1|y; = () hold.

e 71|lcy; = () and s1]¢, = () hold because t1|¢;, = (). Hence, r; € N7 holds (follows from
r1 € Ef and |y, = (). 11|, € (N1 NC2)* holds because Ny NV, = and Ny NNy = 0.
Since Co N Ny C Y9, we have r1|g, € (N1 N Cy N To)*.

o We insert r1|g, into 7|g,.ta € Try after 7|g,. By an inductive argument on the length
of 71|g,, we obtain from BSIA{?(Try) and total(ES;,C2 N Ny) that t), € E; exists with
(1.11)| B, -ty € Tra, thlv, = ta|vy, and th|c, = () (events in r1|g, are inserted from left to
right into 7|g,.t2).

e The preconditions of the induction hypothesis are satisfied for 7.r1.(v), X, s1, th:

— (1.r1.(v))| g, -1 € Tr1 and (7.71.(v))| g, -ty € Try hold (recall (v)|g, = ().

= XNlg;, = s1lv and X[, = ty|v because ((v).X)|g, = ti|lv = (r1.(v).s1)lv, rilv = (),
((0).AN)|Ey, =ty = th|y, and v ¢ Es.

— s1]o, = () and th|c, = () hold.

254 APPENDIX D: Proofs of Compositionality Results

e From the induction hypothesis, we obtain that there is a trace ' € E* for which
7.r1.(v).t' € Tr, t'|y = X, and t'|¢ = () hold.

e We now show that the conclusion of the lemma holds for ¢ = 71.(v).t'":

— 7.t € Tr holds because 7.r1.(v).t" € Tr.
— tly = A because 1|y = (), |y = N, and A = (v).\.
— tlo = () because ri|c = (), (v)lc = (), and t'|c = ().

Case 4 (v € Vo \ E1) can be shown like case 3 (with indices 1 and 2 exchanged). O

D.2 Detailed Proof of Compositionality Theorems for BSPs

This section contains the detailed proofs of Theorems 6.4.1 and 6.4.2 (i.e. the compositionality
results for BSPs) that have been sketched in Section 6.4.3 already.

Proof (of Theorem 6.4.1). We prove each of the propositions with the help of Lemma 6.4.4.

Proposition 1: Let o, € E* and ¢ € C be arbitrary with f.(c).a € Tr and o|c = (). We
have (B.(c).a)|g, € Tr1 and (B.(c).a)|r, € Tre. By an inductive argument on the length of
({c).a)|¢,, we obtain from BSDy, (Try) that there is a trace o € Ef with (8)|g,.cf € Try,
ailv, = aly;, and of|c, = (). By an inductive argument on the length of ({c).a)|c,, we
obtain from BSDy,(Tr;) that there is a trace of, € E5 with (8)|g,.c € Try, ablv, =alv,, and
ahle, = (). Lemma 6.4.4 yields for 7=, A=a|y, t1 =], and t2 = &}, that there is a trace
te E* with f.te Tr, t|y =aly, and t|c = (). Thus, BSDy(Tr) holds.

Proposition 2: Let a, 8 € E* and c€ C be arbitrary with . € Tr and a|c =(). We have
(B.a)|g, € Try and (B.a)|g, € Trs. By an inductive argument on the length of a|¢,, we obtain
from BSDy, (Tr) that there is a trace o/ € ET with 8|g, .o} € Try, |y, = aly,, and o |c, = ().
By an inductive argument on the length of «|¢,, we obtain from BSDy,(Tr;) that there is a
trace aIQ € E; with /8|E2'O‘12 € Try, O‘IQ‘Vz :a|V2a and af‘2|02 = <> It <C>|E1 # <> (OI‘ <C>|E2 # <)) then
an application of BSIy, (Try) (or BSIy,(Try), respectively) yields that there are traces of € EY,
aIQI € E; with (/6<C>)|E1a’11 € T, O/ll‘Vl = a|V17 alll|C'1 = <>7 (/8<c>)|E2aIQI € Try, aIQI|V2 = a|V2a
and o |c, = () (if (¢)|g, = (), or (c)|g, = () then choose of = o, or of = af, respectively).
Lemma 6.4.4 yields for 7=0.(c), A=al|y, t1 =0/, and to=a4 that there is a trace t € E* with
B.(c).t€ Tr, t|y =aly, and t|c = (). Thus, BSL,(Tr) holds.

Proposition 3: Let a,f € E* and ¢ € C be arbitrary with f.a € Tr, a|c = (), and
Admf,(Tr, B, c). Like in the proof of proposition 2, we obtain from BSDy, (Tr;) and BSDy, (Tr,)
that there are traces o € E}, ofy € B3 with B|g, .o/, € Try, & |v, =alv;, & |cy, =), Blr,.0b € Tra,
ahlv, = alv,, and dh|c, = (). Admf,(Tr,3,c) implies that there is a trace vy € E* with
Vo) = Blo(v) and v.(c) € Tr. We have (v[g,)|pv) = (BlE:)|pv) and (V[z,)lpv) = (BlE2)|p(v)-
Since p1(V1) C p(V) N Ey and p2(V2) C p(V) N By, also (V]E)lp 1) = (BlE1)|p) and
(71E2)|pa(va) = (BIE,) | p(v2) hold. Consequently, if ce E1 (or c€ Ep) then, Admf}: (Tr1, B, ,)
(or Adm{’,i(Trz, Blg,,c), respectively) holds. The remainder of this proof is along the same
lines like the proof of proposition 2.

Proposition 4: Let a, B€ E*, ce CNY, and v € VNV be arbitrary with 5.(c.v).a € Tr and
alc=(). We have (f.(c.v).a)|g, € Tr; and (B.(c.v).a)|g, € Tre. Like in the proof of proposition
2, we obtain from BSDy, (Tr1) and BSDy,(Tr;) that there are traces o) € E, of € E} such
that (B.(c.v))|p, .01 € Tri, oy, = alv, aile, = (), (B-(cv))|B,-o € Tra, asly, = afy,, and

D.2 Detailed Proof of Compositionality Theorems for BSPs 255

a4|c, = () hold. Note that c€ E; (or c € Ey) implies c€ C1NT (or ¢ € C2NTy, respectively)
because c€ CNY, CNE; CCj, and TNE; CT; hold. Similarly, v € E; (or v € Ey) implies
v€eVINVy (or v € VoNVy, respectively) because ve VNV, VNE; =V;, and VNE; CV; hold
(for je{1,2}).

In order to show that, for j € {1,2}, there are traces o € E} and d; € (N;NA;)* such
that f|g; .0} -(v)| g, -« € Trj, &f|v; = aflv;, and of|c; = () hold, we make a case distinction
on c€ Ej and v € Ej;: Firstly, assume that c¢ E; holds. In this case, f|g;.0].(v)|g; .o € Try,
ajlv; = ajly;, and of|c; = () hold for o = and 07 = (). Secondly, assume that c € E; and
v ¢ Ej hold. Since c€ Ej, we have c€ Cj1Y;. An application of BSDy, (Tr;) yields that there is
a trace o € E} with B|g;.c € Trj, of|v; =aj|v;, and of|c; =(). Hence, B|g; .67 .(v)|g; .o € Tr;
holds for 5;—’ = (). Thirdly, assume that c € E; and v € E; hold. Since c€ E; and v € E;, we

have ce C;NY; and v € V;NV;. An application of FCD};;(TTJ-) yields that there are traces
g;.’lj E} and 0] € (N;NA;)* such that f|g;.07.(v)|g;-of € Try, oy, = ofv;, and of|c; = ()
old.

Since (5{' € (N1 ﬂAl)*, NiNAINE; = (b, (55 € (NQﬂAQ)*, and NoNAsNE; = @, we have
0 |g,=() and 85|, =(). Consequently, (8.07.05.(v))|g,.cf € Try and (B.67.65.(v))|g,.0f € Try
hold. Lemma 6.4.4 yields for 7=.67.85.(v), A=aly, t; =af, and to =} that there is a trace
t € E* with B.6Y.64.(v).t € Tr, tly = a|y, and t|c = (). Since §7.05 € (NNA)* holds (follows
from AD(A1NN;)U(A2NN,) and N D N;UN3), we have FCD | (Tr).

Proposition 5: Let o, € E*, c€ CNY, and v € VNV be arbitrary with .(v).a € Tr and
alc=(). We have (f.(v).a)|g, € Tr; and (B.(v).c)|g, € Try. Like in the proof of proposition 2,
we obtain from BSDy, (Tri1) and BSDy,(Tr2) that there are traces o) € Ef, o) € E4 such that
(B-(v))| B, -0 € Tr1, oilv, =alw, edle, =(), (B-(v)|B,-0 € Tra, 5|y, = aly,, and aglc, = ()
hold. Note that ¢ € E; (or ¢ € Ey) implies ¢ € C1NT; (or ¢ € CoNTq, respectively) because
ceCNY, CNE;CCj, and YNE; CY; hold. Similarly, v€ E; (or v€ Ey) implies v e ViNV; (or
v € VaNVy, respectively) because ve VNV, VNE; =V}, and VNE; CV; hold (for je{1,2}).

Without loss of generality, we assume NyNA{NEy=0 and NoNAsNE; CTy. The case
NoNAsNE; =0 and NyNA{NF3C Ty can be handled similarly because it is symmetric.

In order to show that there are o} € E3, 65 € (NoNA2)* such that 8|g,.(c)|r,-05-(v)|g,.0f €
Try, ably, = ably,, and af|c, = () hold, we make a case distinction on ¢ € Ey and v € Ej:
Firstly, assume that c ¢ Ey holds. In this case, 8|g,-(c)|g,.05.(v)|5,-0b € Tra, o]y, = ab|vs,
and of|c, = () hold for o =} and 6§ = (). Secondly, assume that ¢ € E5 and v ¢ E5 hold.
Since ¢ € Ey, we have ¢ € CoNTy. An application of BSIAg;(Trg) (recall that ES, is total
in CoNY9) yields that there is a trace of € Ef with f|g,.(c).af € Try, |y, = ably,, and
aylc, = (). Hence, B|g,.(c)|E,-05-(v)|E,.¢ € Try holds for 65 = (). Thirdly, assume that
¢ € Ey and v € Es hold. Since ¢ € Fo and v € Es, we have c€ CoNTy and v € VoNVa. An
application of FCI%;;(CFTQ) yields that there are traces of € E5 and 04 € (NoNAg)* such that
BlEs-()|By-05 (V)| B, -0 € Tra, o lv, = |y, and ag|c, =() hold.

Note that (c)|g, € (C1NT1)* holds because ¢ € E; implies ¢ € C1NY;. Moreover, & |z, €
(Clﬂ’rl)* holds because (Sge (NQHAQ)*, NgnAgﬂEl ng, NQﬂNl :@, and NQﬂVl :Q)

In order to show that there are traces of € Ef, 67 € (N1 NA1)U(C1NT1NN2NA2))* such
that 8|g,.(c)| g, .07 (V)| g, .&f € T, & |v, = |vy, &f|c, =), and 87| g, =04 | B, , we make a case
distinction on v € E;: Firstly, assume that v ¢ E; holds. By an inductive argument on the
length of ({c).05)|m;, we obtain from BSIAJ!(Tr1) (insert ({c).0y)|r, into B|g,-a] after f|g,
from left to right; recall that ES; is total in C;NY;) that there is a trace of € Ef such that
Ble, ()|, -02 |, -0ff € Tri, of |y, =4 |vy, and of ¢, =(). Hence, B|g,.(c)|p, .07 (v} |k, .of € T,

256

APPENDIX D: Proofs of Compositionality Results

o1 e ((N1NA)U(CI1NT1NN2NAR))*, 6] |r, =85| g, hold for 8! =05 |g,. Secondly, assume that
v € F; holds. Since v € E7, we have v € V1NV;. By an inductive argument on the length of
((¢).04) |k, , we obtain from FCIll;ll(Trl) (insert ((c).04)|m, into B|g,.(v)|E, . after B|g, and
before v from left to right) that there are traces off € Ef and 67 € ((N1NA1)U(C1NT1NNoNAg))*
such that B|g, .(c)| g, -0] . (V)|E, - € Try, v, = }|v;, &f|c, =), and 67 |c,nr, = 05|k, hold.
Mg, = 04|g, follows from &!|c,ny, = 05|my, 67 € (N1 NA)U(CiNYT1NNaNAg))*, and
NiNA{NEy;= 0.

Summarizing, there are off € EY, o) € E3, 6] € (N1NA1)U(C1NT1NNNAS))*, 85 € (NaNA)*
such that | g, ()| g, -07-(v)| B, -0 € Tr1, BB, -(c)| B, -03 (V)| By -3 € Tr2, o |y, = vy, & |, =),
0/2’|V2 :a|V2, a'2'|02 = <>, and 5£I‘E2 2(5/2’|E1 hold. Since (5£I|E2 :5121|E1 and ((NlﬂAl)U(NgﬂAg)) -
(NNA), there is a trace ¢’ € (NNA)* such that ¢'|g, =07 and ¢'|g, =08). B.(c).0'.(v) € Tr
follows from | g, .(¢)| g, -01 . (V)| B, - € Tr1, BlE,-(€)|Ey-05 (V)| B, -0y € Tro, and the definition of
Tr (constructed by composition). From Lemma 6.4.4, we obtain for 7= .(c).8'.(v), A=aly,
t1 =af, and to = f that there is a trace t € E* such that £.(c).d’.(v).t € Tr, t|y = a|y, and
t|c=() hold. Thus, FCI}(Tr) holds.

Proposition 6: Let a,8 € E*, ce CNT, and v € VNV be arbitrary with §.(v).a € T,
alc = (), and Admf,(Tr, 8,c). We have (B.(v).c)|g, € Try and (B.(v).c)|g, € Try. Like in
the proof of proposition 2, we obtain from BSDy, (Tr;) and BSDy,(Tr;) that there are traces
o € F, ay € F such that (B.(0))\s, 0/, € Tri, allv, =aly, ahloy = (), (5.{0)) |- € T,
v, = aly, and ahlc, = () hold. That Admf,(Tr,p,c) implies Adm)): (Tr1,B|g,,c) and
Adm@Z(Trg, B|g,,c) can be shown like in the proof of proposition 3.

The remainder of this proof is along the same lines like the proof of proposition 5. The
only differences are that BSIAJ(Trp) is applicable (for inserting ¢ into (8.(v))|r,-b) be-
cause Admi; (Trz, B|E,,c) holds rather than because total(ESa, C2 N YT3), that FCIA{C};’Fz (Try)
is applied to insert ¢ into (8.(v))|g,.4 (applicable because Admj; (Try, B|E,,c) holds) rather
than FCI%(TTQ), that BSIA{)! (Tr) is applicable (for inserting ((c).05)|r, into S|, .c}) be-
cause Admf}l(Trl,mEl,c) and total(ES;,C1 N Y1 N Ny N Ay) (rather than because ES; is
total in C;NYy), and that FCIA{,’;’FI(Trl) is applied to insert ((c).d%)|g, into B|g,-(v)|E, .o}
(applicable because Adm4} (Tr1, B|g,,c) and total(ESy,C1 N T1 N Ny N Ag) hold) rather than
FCI,!(Try). O

Proof (of Theorem 6.4.2). Let 7' € Tr be arbitrary. We have 7'|g, € Tr and 7’|, € Tr.
From Ry, (Tri) and Ry,(Tr:), we obtain that there are traces 71 € Try and 74 € Try with
v =7giv, Tile, =), mlv =7 |Env, T9lc, =(). Lemma 6.4.4 yields for 7= (), A=7"|y,
t1 =7, and to = 74 that there is a trace t € E* with ¢t € Tr, t|y = 7’|y, and t|¢ = (). Thus,
Ry,(Tr) holds. O

Appendix E

Further Details of the Case Study

E.1 PP-Statements

Pre/postcondition-statements (abbreviated by PP-statements) can be used to specify the
transition relation of a state-event system. PP-statements presume a specific notion of state,
i.e. that a state is a mapping from state variables to values. Given a set E of events and a set
VAR = {wary,...,vary,} of n distinct variables, a PP-statement Stat restricts the possible
transitions for some event e; € F based on the notation

e; affects varj,, ..., varj, (E.1)
Pre : P(vary,...,var,)
Post : Q(vary,...,var,,var, ..., var,)

where 1 < j; <n (1 <1< k). The affects slot specifies that an occurrence of e; may only
affect the value of state variables in varj,,...,var;,. The values of all other state variables
remain unchanged when e; occurs. The precondition slot of the PP-statement specifies that
e; is only enabled in states for which the condition P is satisfied. P must be a first-order logic
formula that contains no primed state variables and the postcondition () must be a first-order
logic formula that may contain primed as well as unprimed state variables. Using primed
variables other than var;,,...,varj, in () is not ruled out but should be avoided for reasons
to be explained later.

The semantics of PP-statements is given by a translation into higher-order formulas. The
above PP-statement Stat translates into the following formula where the free variables s, e,
s' are implicitly universally quantified:

(s,6,8") € Tstay < [e=e€; = (Vvar ¢ {var;,,...,var; }. s(var) = s'(var)
A P(s(vary),...,s(vary))
A Q(s(vary),. .., s(vary),s' (vary), ..., s (vary))]

Hence, each PP-statement Stat in a specification specifies a transition relation Tgzaz C
SxExS. According to the above formula, a transition (s, e;, s') complies with Ty, if and only
if all frame axioms hold for s, s’ (values of variables not in var;,, ..., var;, remain unchanged),
the precondition P holds for s, and the postcondition @ holds for s, s’. For all events besides
€i, Tstay permits arbitrary transitions, i.e. Ve € E.Vs,s' € S.(e # ¢; = (s,e,5') € Tssat)-
Note that using primed state variables other than var;,, ..., varj, in the postcondition) may

258 APPENDIX E: Further Details of the Case Study

lead to a contradiction with the frame axioms. This is the reason why all primed variables
that occur in @) should be listed in the affects slot.

The pre/postcondition-specification (abbreviated by PP-specification in the following) of
a transition relation consists of a set Spec of PP-statements. In practice, a PP-specification
usually contains exactly one PP-statement for every event in E.! The semantics of a PP-
specification Spec is given by the following translation into a higher-order formula:

(3, €, 3,) € TSpec = /\ (Sa €, sl) € TStat
Stat€&Spec

This means, a transition (s, e, s’) complies with the transition relation Tspec specified by a
PP-specification Spec if and only if it complies with each transition relation Ts¢ay specified
by some PP-statement Stat in Spec.

Remark E.1.1. For notational convenience, we permit the use of place holders in PP-
statements. A parametric PP-statement for a list z1,...,z,, of (typed) place holders has
the following form:

ei(t1,-..,oy) affects vary, ..., varj,
Pre : Py . g.(vary,..., vary,)
Post : Qu,. . (var:,...,var,,vary,. .., var,) .

As usual, parametric PP-statements denote the set of all grounded PP-statements that are
(type correct) instantiations of these parametric statements. O

Example E.1.2. In Fig. E.1, it is illustrated how to specify a transition relation with para-
metric PP-statements. The state-event system denoted by this specification models a random

| S = {(state) — (s) | s € {r,t}} , running/terminated |
‘ so(r) = (state)— (1) ‘
| E = {out(n) | n € IN} U {term} ‘
I =10 |
‘ O = {out(n) | n € IN} ‘
T C SxExS
term affects state
Pre : state=r
Post : state=1t
out(n) affects —
Pre : state=r
Post : tt

Figure E.1: Specification of the random generator by preconditions and postconditions

generator that can output any sequence of natural numbers (events out(n)) before it termi-
nates (event term). Possible traces of this system have the form (out(n,) ... out(ny)).(term)

'If there are multiple PP-statement for some event e € E then these PP-statements can be merged by
(1) conjoining the preconditions by conjunction, (2) conjoining the postconditions by conjunction, and (3)
intersecting the lists in the affects-slots. In order to avoid chaotic behavior, a PP-specification should contain
at least one PP-statement for each event e € E because, otherwise, this event would be always enabled and
could lead to arbitrary successor states.

E.2 Examples for the Strong Security Condition 259

or (out(ni)...out(ny)) (respectively models that the sequence n;..... N, has been output
and that the system has or has not terminated). The dash in the affects slot of the PP-
statement for out indicates the empty list of state variables, i.e. occurrences of out do not
affect any state variables. <

E.2 Examples for the Strong Security Condition

The following four examples illustrate the strong security condition (cf. Definition 7.2.9)

Example E.2.1 (Implicit flow). The program if h = 1 then [:= 1 else [:= 0 is not
strongly secure. Choose mem; = (0,0) and memg = (1,0). If the computation starts with
mem; then, after two computation steps, one arrives at the memory (0,0) because (if h =
1 then ! :=1else [l :=0,(0,0),0) — {l := 0,(0,0),0) and (I := 0,(0,0),0) — (), (0,0),0)
hold. If computation starts with mems then, after two computation steps, one arrives at the
memory (1,1) because (if h = 1 then | := 1 else [:= 0,(1,0),0) — (I := 1,(1,0),0) and
(l:=1,(1,0),0) — {(),(1,1),0) hold. This shows that executing the given program with two
low-equal memories may lead to memories that are not low equal. <

Example E.2.2 (Termination leak). The program [:= 0; (while b # 1 do skip);/ := 1 is
not strongly secure. Choose mem; = (0,0) and memy = (1,0). If the computation starts with
mem, then, after three computation steps (assignment of 0 to [, test of condition h # 1, and
execution of skip), one arrives at the memory (0, 0). If the computation starts with memg then,
after three computation steps (assignment of 0 to [, test of condition h # 1, and assignment
of 1 to), one arrives at the memory (1, 1), which is not low equal to (0,0). o

Example E.2.3 (Timing leak). The program fork((! := 1) ((if » = 1 then (while h <
10000 do h := h + 1));1 := 0)) is not strongly secure. Choose mem; = (0,0) and memy =
(1,0). Assume a scheduler that re-schedules immediately after executing a fork-command
and that re-schedules after two computation steps if no fork-command has been executed.
If the computation starts with mem; then, after three computation steps (execution of fork-
command, test of condition h = 1, assignment of 0 to /), one arrives at the configuration
(!l :=1,(0,0),0). If the computation starts with memsy then, after three computation steps
(execution of fork-command, test of condition h = 1, test of condition A < 10000), one arrives
at the configuration {(! :=1), (h:= h+ 1;(while h < 10000 do h := h +1);1:=0), (1,0),0).
After another computation step (assignment of 1 to [in both cases), the memories in both
computations are still low equal. However, the first computation has already terminated
(with memory (0,1)) while the second has not terminated. After the second computation has
terminated, the resulting memory is (1,0). This shows that executing the given program with
two low-equal memories may lead to differences in the timing behavior and also to memories
that are not low equal. <

Example E.2.4 (Communication leak). The program if h = 1 then send(cidj, val) else skip
is not strongly secure (assuming level(cid;) = low). If the computation starts with the memory
(0,0) then the contents of the low channel cid; does not change after two computation steps
but if the computation starts with the memory (1,0) then a value is sent on cid;. This means,
executing the program with two low-equal memories (and identical channel-status functions)
may result in channel-status functions that are not low equal. &

260 APPENDIX E: Further Details of the Case Study

E.3 Adequateness of the System Specification

In this section, we verify that our specification of DMWL process pools (cf. Definition 7.3.8)
provides an adequate model of DMWL programs and their behavior. In the following, we
show that every behavior that is possible for the specified state-event system also complies
with the operational semantics of DMWL and that every behavior that complies with these
semantics is possible for the specified state-event system.

Notational Conventions. Let DMWLProcPool((p;, initthready), ..., (p,, initthread,)) be
a DMWL process pool that we abbreviate by SES = (S, so, F,1,0,T). Let P= {py,...,p,}-
For all p € P, let initthread? € THREAD and define SES? = (S?,sf, E?,I?,OP,T?) by
SES? = DMWLProcess(p, initthread”). Note that SES =||,cp SES? holds. We use outbuf(cid)
to denote the function that returns () in case outbuf is empty or contains an entry with an
identifier different from cid and that returns the second element of outbuf otherwise, i.e.,
outbuf(cid) = (val) if outbuf = (cid, val). Recall also from Section 7.3.2 that no process can
send to itself, i.e., sender(cid) # receiver(cid) holds for all cid € CID and that we expect all
processes in a process pool to comply with sender and receiver.

E.3.1 Basic Notions

In order to relate the transition relation of DMWL processes to the semantics of DMWL
programs, it is necessary to construct a translation from one syntax to the other. For this
purpose, we define two functions channel and config that extract the channel status function
and the configuration of a single process, respectively, from a state of the DMWL process
pool.

Definition E.3.1. Let p;, p, € PID with p; = sender(cid) and p, = receiver(cid).
The function channel : S — (CID — VAL*) is defined by:

outbufs"* (cid). inbufs’" (cid). pendings’™ (cid) , if p;, p, € P

y outbufspi(cz'd) ,ifp, € Pyp. ¢ P
channel(s) : cid — inbuf,” (cid). pendings™" (cid) ifp, ¢ P, p, €P
<> aifpi¢Pap'r¢P

&

That is, channel(s)(cid) denotes the sequence of messages that are on channel cid in state
s€S.

Definition E.3.2. config: § — PID — [(CMD x (VAR — VAL)) U {L}] is defined by:

1 ,if p¢ P
(cseq(threads), memy), if p€ P and s|, = (memg, thread,, . . .)

cont(s)(p)= |

where s|, extracts the local state of process p from the global state s. <

That is, config(s)(p) denotes the pair consisting of the command vector and the memory
in the local configuration of process p. The auxiliary function cseq translates a function
thread : TID — (CMD U {L, T,()}) into a corresponding vector of DMWL commands.

E.3 Adequateness of the System Specification 261

Definition E.3.3. The function cseq: (TID — (CMDU{L, T,()})) — CMD returns a vector
of DMWL commands for each function thread : TID — (CMD U {L, T,()}). It is defined by

cseq(thread) = cseqyyux((0), thread) %
Definition E.3.4. cseq,,y : TID — (TID — (CMD U {L, T,{)})) — CMD is defined by

cseqaux(tid, thread) = () , if thread(tid) € {L, ()}
csequux(tid, thread) = (thread(tid)) , if thread(tid) € CMD

cseqqux(tid, thread) = csequyux(tid.(0), thread) . .. csequux(tid.(n), thread),
if thread(tid) = T, n € IN is chosen maximal such that thread(tid.(n)) # L %

For a thread with identifier ¢id that has already terminated (or has never existed), cseqz,x
returns the empty command vector. However, if the thread is still running and has not
spawned any child threads so far then cseq,,;x returns the command of that thread. Finally,
if the thread has spawned child threads during its execution then the result of cseq,,x is
determined by a recursive application of cseq,,x to the continuing parent thread (identifier
t1d.(0)) and to all child threads (identifier tid.(i) with ¢ > 0). In the latter case, it is exploited
that thread identifiers are chosen incrementally by fork-events and that thread(tid) = () holds
after termination of a thread with identifier tid (rather than thread(tid) = 1). Summarizing,
csequux(tid, thread) denotes the vector consisting of the command of the thread with identi-
fier tid and the commands of all threads spawned by this thread and its children. Finally,
cseq(thread) denotes the command vector for all threads that resulted from the initial thread.

E.3.2 Adequateness Theorems

We are now ready to argue for the adequateness of our specification by the following four
theorems. The somewhat involved proofs of these theorems are contained in Section E.3.3.

Theorem E.3.5. Let s,s’ be reachable states for the composed SES, p € P, and e €
EP . such that s —“37 s' holds. Assume that if e = z'te—rcvgr (cid, var, val,C1,C3) then
channel(s)(cid) = ().

1. If e # fork,(C, D1 ... Dy) then
(thread? (atid?), mem?, channel(s)) — (thread (atid}), mem}, channel(s')).

2. If e = fork,(C, Dy ... Dy) then
(thread?! (atid?), mem?, channel(s))
— (threadl; (atid?.(0)) ... thread] (atid?.(n)), mem}, channel(s")). <O

Theorem E.3.6. Let s, s’ be reachable states for the composed SES and v € E*. If s =L ¢
and v contains no setvar-events or start-events and for all trans-events on a channel cid both,
receiver(cid) as well as sender(cid) are in P then

config(s, py), - - - , config(s, p,,); channel(s)>
—* config(s', py),. .., config(s', p,); channel(s') > . o

Theorem E.3.5 shows that the occurrence of a local event in EF (modeling the execution of
a DMWL command), indeed, corresponds to the behavior of the respective command in the

sense that it results in a state with the same command vector/memory and the same channel

262 APPENDIX E: Further Details of the Case Study

status like the configuration reached by the command. Theorem E.3.6 extends this result
to traces. It shows that, for every behavior that is possible for the state-event system, the
semantics of DMWL allow for an equivalent behavior of the corresponding DMWL program.
Note that this theorem holds for arbitrary reachable starting states (rather than only for sg).
In the theorem, setvar-events and start-events are excluded because they do not correspond
to any DMWL-commands. For DMWL programs, the setting of initial values is implicitly
assumed to occur before program execution. In the event-based specification, this is made
explicit by the occurrence of setvar- and start-events. Also excluded are trans-events on open
channels, i.e. channels for which at most one of sender(cid) or receiver(cid) is in P. The
reason for this restriction is that, firstly , if sender(cid) ¢ P then every event trans(cid, val)
would be always enabled (messages can be supplied by the environment at any point of time
on such channels) and, secondly, if receiver(cid) ¢ P then an event trans(cid, val) deletes a
message from a channel without moving it into the input buffer of some process (messages from
such channels have to be consumed by the environment). In contrast to this, the semantics of
DMWL do not permit changes to the channel status function by the environment and message
transmission on channels is instantaneously in the semantics. Consequently, adequateness can
only be established for closed systems, i.e. systems without open channels, or for open systems
where the open channels are not used.

Theorem E.3.7. Let C,C' € CMD, D;...D; € CMD, mem,mem' : VAR — VAL, and
o,0' : CID — VAL*. Let p € P and s € S be a reachable state for the composed SES
with initialized? = tt, evecuted? = ff, atid? # L, thread?(atid?) = C, mem? = mem, and
channel(s) = o. If first(thread?(atid?)) € {receive,(cid,...),if-receive,(cid',...) | cid" € CID}
and pending?(cid') = () then channel(s)(cid') = () shall hold.

1. If (C, mem,c) — (C', mem’, o’} then there are e € E¥ and s’ € S such that s s d,

thread} (atidh) = C', mem!, = mem/, and channel(s") = o' hold.

2. If {C,mem,o) — (C'D;...Dy, mem/,c') (with k& > 1) then there are e € Ef and

loca,

s' € S such that s —r §', mem!, = mem', and channel(s’) = o' hold. Moreover,
thread} (atid?) = T, threadl (atid?.(0)) = C’, and thread?; (atid?.(i)) = D; hold for all
ie{l,...,k}. O

Theorem E.3.8. Let (Cy, mem,). .. (C,, mem,) and (6{, mem,). .. (C!, meml,) be sequences
of pairs, each consisting of a command vector and a memory such that none of the commands
involves sending on an open channel. Let 0,0’ be channel status functions. Moreover, let
s € S be a reachable state for the composed SES such that channel(s) = o and, for all p; € P,
initialized? = tt, exzecuted?’ = ff, atid? = 1, and config(s)(p;) = (Ci, mem;) hold.

If Q(Cy, memy),...,(Cp, memy,);ol> —* <l((;{, mem), ..., (C’_;’z, mem,,); o't> then there is
a reachable state s’ € S and a sequence v € E* that contains no setvar-events, start-events,
or trans-events on open channels such that s == s, channel(s') = o' and, for all p, € P,
config(s', p;) = (6’;, mem;) hold. O

Theorem E.3.7 shows that executing a single DMWL command corresponds to the occurrence
of a local event (modeling that command). That is, if a local configuration (C’, mem/,o’)
(or {C'Dy ... Dy, mem’,c')) can be reached from a configuration {C, mem, o) by a single —»-
transition (execution of a single DMWL command) then for all states s corresponding to
the configuration (C, mem,o) (i.e. C is the active thread of process p in s, mem is the lo-
cal memory of process p in s, and o equals channel(s)) there is a local event e (modeling

E.3 Adequateness of the System Specification

263

the respective command) and a state s’ (corresponding to the configuration (C', mem/,o’)
or {C'D; ... Dy, mem',c')) such that e is enabled in s and its occurrence results in the state
s'. Theorem E.3.8 extends this result to the execution of distributed programs (i.e. —»*-

transitions). It shows that if the configuration <1(C’p , mem,), .. L (C p,» Mmemy,);o'> can

be reached from <I(Cp1, memyp,), ..., (Cpn, memy,_); o> then for every state s € S that cor-
responds to the second configuration there is a state s’ € S that corresponds to the first
configuration and there is a trace v € E* (without setvar-events, start-events, and trans-
events on open channels) such that v is enabled in state s and results in state s'.

E.3.3 Proofs of the Adequateness Theorems

In this section, we present the proofs of Theorems E.3.5, E.3.6, E.3.7, and E.3.8.
Theorems E.3.5 and E.3.6 ensure that every trace of a DMWL process pool models a
behavior that complies with the semantics of DMWL.

Proof (of Theorem E.3.5). In the proof, we are only concerned with values of state objects
and events for the single process p. For better readability, we omit the index p from state
objects and events.

We make a case distinction on the event e.

skip The PP-statement for skip implies first(threads(atids)) = skip, memy = mems, atidy =
atids, thready (atidy) = rest(threads(atids)), and channel(s') = channel(s). Rules [Skip]
and [Seq] of the semantics (cf. Figure 7.2) ensure that (thread;(atids), mems, channel(s))
— (threadg (atidg), memg , channel(s')) holds.

assign(var,val) We have first(threads(atids)) = var := Ezp for Ezp with Ezp |[™¢™s val,
memg = memg[var — wval], atidg = atids, thready (atidgy) = rest(threads(atidy)), and
channel(s') = channel(s). [Assign] and [Seq:] ensure (threads(atids), mems, channel(s)) —
(thready (atidg), memg , channel(s')).

ite’(B, Cy,Cy) We have first(thread,(atids)) = if B then C; else Co, B [™™s tt, memy =
memy, atidg = atids, thready (atidg) = Cy; rest(threads(atids)), channel(s') = channel(s).
From the rules [Ify;] and [Seq;] we obtain that (threads(atids), mems, channel(s)) —
(thready (atidg), memg , channel(s')) holds.

ite(B, C1, Cy) We have first(thread,(atid,)) = if B then C) else Cy, B ™™ ff, memy =
mems, atidg = atids, thready (atidy) = Ca; rest(threads(atidy)), channel(s') = channel(s).
From the rules [Ify] and [Seq;] we obtain that (thread(atids), mems,channel(s)) —»
(thready (atids), memsg , channel(s')) holds.

while®*(B,C,) We have first(thread,(atids)) = while B do Cy, B [™™s tt, memy = mems,
atidg = atids, thready (atidy) = C1;while B do Ch; rest(threads(atids)), and channel(s') =
channel(s). The rules [Whiley] and [Seq:] ensure (threads(atids), mems, channel(s)) —
(thready (atidg), memg , channel(s")).

while (B, C)) We have first(thread,(atid;)) = while B do Cy, B [™™: ff, memy = mems,
atidgy = atids, thready (atidy) = rest(threads(atids)), channel(s') = channel(s). [Whileg],
[Seq:1] ensure (threads(atids), mems, channel(s)) — (thready (atidy), memg , channel(s')).

264 APPENDIX E: Further Details of the Case Study

fork(C, D) We have first(threads(atids)) = fork(CD; ... D), memgy = mems, atidg = atid,,
thready (atids) =T, thready (atids.(0)) = C; rest(thread(atids)), and channel(s") = channel(s).
For all i € {1,...,n} holds thready (atids.(i)) = D;. The rules [Fork] and [Seqs| ensure
(threads(atids), mems, channel(s))
—> (thready (atidy .(0)) . .. thready (atidy .(n)), memg , channel(s')) .

send(cid,val) We have first(threads(atids)) = send(cid, Exp) for some expression Ezp with
Ezp [™¢™s yal, memg = mems, atidy = atids, thready (atidg) = rest(threads(atidy)),
and outbufy =(cid, val). Since the occurrence of e only affects the values of thread;(atids),
ezecuteds, ainfo,, outbuf, we have channel(s') = channel(s)[cid — (val).channel(s)(cid)].
From the rules [Send] and [Seq;| we obtain that (thread,(atids), mems, channel(s)) —»
(thready (atids), memsg , channel(s')) holds.

receive(cid,var,val) We have first(threads(atids)) = receive(cid, var), pending,(cid) = vals.(val),
memg = memg[var — wval|, atidy = atids, thready (atidy) = rest(threads(atids)), and
pendingg (cid) = vals. Since the occurrence of e only affects the values of thread,(atids),
executeds, ainfo,, mems(var), and pending,(cid), we have channel(s') = channel(s)[cid —
butlast(channel(s)(cid))]. [Receive] and [Seq;] ensure (thread,(atids),mems, channel(s)) —
(thready (atids), memg , channel(s")).

ite-rcv(cid, var, val, Cy, Cy) first(thread,(atids)) =if-receive(cid, var, C1, Cs), pending,(cid) =
vals.(val), memg =memg[var—wal], atidgy = atids, threads (atidg)= Cy;rest(threads(atids)),
and pendingy (cid) = vals. The occurrence of e only affects the values of thread;(atids),
ezecuteds, ainfo,, mems(var), pending,(cid), i.e. we have channel(s') = channel(s)[cid —
butlast(channel(s)(cid))]. [IfRcvy] and [Seq:] ensure (threads(atids), mems, channel(s)) —
(thready (atids), memg , channel(s")).

ite-rcv? (cid, var, val, Cy, Cy) first(threads(atid,)) = if-receive(cid, var, Cy, Cy), pending,(cid) =
(), memg = mems, atidg = atids, and thready (atidg) = Cy; rest(threads(atids)). By
assumption, we have channel(s)(cid) = (). Since e only affects threads(atids), executeds,
and ainfo;, we have channel(s') = channel(s). The rules [IfRcvg] and [Seq;] ensure
(threads(atids), mems, channel(s)) — (thready (atidy), memg , channel(s')). O

Before proving Theorem E.3.6, we present a lemma that is helpful in this proof.
Lemma E.3.9. If s is a reachable state for the composed SES and p € P then

o initialized? = tt A\ ezecuted? = [fA atid? # L A thread? (atid?) ¢ {L,T,()}
Noutbuf? = (),

o initialized? = tt \ ezecuted? = tt A\ atid? # L A outbuff #

);
2
)
)

{
o initialized? = tt A\ ezecuted? = tt A atid? # L A outbuff = (
o initialized? = tt A executed? = ff A atid? = L A outbuf? = (

(

, OT

o initialized? = [f A executed? = [fA atid? = L A outbuff = () hold. &

Proof. In the proof, we are only concerned with values of state objects and events for the
single process p. For better readability, we omit the index p from state objects and events.
Choose v € E* with sg =L 5. The proof is by induction on v.

E.3 Adequateness of the System Specification 265

Base case (y = ()): initializeds = ff, executeds, = ff, atids, = L, and outbuf, = () follow
from Figure 7.11.

Step case (y = d.(e)): There is a state s; € S with sq N s; and s; — 5. The induction
hypothesis ensures that the proposition holds in s;. If e is a setvar-, outvar, input trans-event,
or e ¢ EP then the proposition follows directly because these events do not affect the values of
initialized, executed, atid, thread, and outbuf in process p. In the rest of the proof, we assume
e € EP and that e is no setvar-, outvar, or input trans-event. According to the induction
hypothesis, we distinguish five cases.

o Assume initializeds, = tt, ezecuteds, = [f, atids;, # L, threads,(atids;) ¢ {L,T,()}, and
outbuf,, = (). This implies e € E? .- The PP-statement for e ensures initialized, = tt,
erecuteds = tt, and atids # L.

o Assume initializeds, = tt, ezecuteds, = tt, atids; # 1, and outbuf,, # (). This implies
e = trans(cid, val) for some cid € CID and val € VAL with sender(cid) = p. The
PP-statement ensures initializeds = tt, executeds = tt, atids # L, and outbuf, = ().

o Assume initializeds, = tt, ezecuteds, = tt, atids; # 1, and outbuf;, = (). This implies
e = yield(info) for some info € INFO. The PP-statement ensures initializeds; = fit,
ezecuteds = ff, atid; = L, and outbuf, = ().

o Assume initializeds; = tt, evecuteds;, = ff, atid;, = 1, and outbuf,, = (). This implies
e = schedule(tid) for some tid € TID. The PP-statement ensures initialized; = tt,
executeds = ff, atids # L, threads(atids) ¢ {L,T,()}, and outbuf, = ().

o Assume initialized;; = [f, executeds, = ff, atids, = L1, and outbuf,, = (). This implies
e = start. The PP-statement ensures initializeds; = tt, executeds; = ff, atids = 1, and
outbuf, = (). O

According to Lemma E.3.9, it suffices to consider the five given cases when analyzing the
possible behaviors of DMWL process pools.
We are now ready to prove Theorem E.3.6.

Proof (of Theorem E.3.6). First, we establish a few restrictions on . Observe that the
following properties are satisfied for all cid € CID, all val,val € VAL, all p,,p, € P with
P, # P, and all scheduley (...), z'te—rcvﬁpr(cid, ...), sendy, (cid, val')-events:

o If v = v1.(schedule, (.. .)).72.(2'156—7"01)’7% (cid,...)).y3
and vo|ger € {trans(cid,val) | cid € CID, receiver(cid) = p,, sender(cid') # p, }*
then s == s’ where v/ = v1.(scheduley, (...).ite-rcvly, (cid, ...)).y2.73.
o If v = y1.(sendp, (cid, val)).yo.(scheduley, (...).ite-rcvl, (cid,...)).vs
and Yo|gr: € {trans(cid,val) | cid € CID, cid # cid}*
then s == s’ where

7' = y1.72-(schedule,, (.. .).ite—rcvﬁm (cid, ...).sendy, (cid, val)).v3.

Both of these properties can be proven by a simple induction over «s. According to the
above properties we may make the following assumptions about y. These assumptions will
be helpful for applying Theorem E.3.5.

266 APPENDIX E: Further Details of the Case Study

1. If v = y1.(scheduley, (...)).yo-(ite-rcol, (cid,...)).v3
and yo|gr. € {trans(cid,val) | cid € CID, receiver(cid) = p, A sender(cid) # p, }*
then vy, = ().

2. If v = y1.(sendy, (cid, val)).yo.(scheduley, (...).ite-rcvl, (cid,...)).y3
then an event trans(cid, val) occurs in -yp. Together with the precondition of ite-reull,
this implies that there must be a receive- or ite-rcv'-event in ~, that consumes the
message val on cid.

Moreover, we assume that 7 contains no setvar-, start-, or outvar-events. That -y contains
neither setvar- nor start-events is an assumption of the theorem. Since outvar-events have no
effect on the state they can safely be removed.

The proof of the theorem proceeds by induction on the length of +.

Base case (v = ()): The proposition holds because s’ = s and —* is reflexive.

Step case (y = (€).6): There exists s; € S with s — s; and s; =%, &/, We make a case
distinction depending on if e is associated with one or more DMWL processes (at most two).

Firstly, assume that there are p;,p, € P with p; # p, and e € EPi N EPr. Hence, e =
trans(cid, val) holds. Without loss of generality, assume sender(cid) = p; and receiver(cid) =
p,. We have channel(s') = channel(s). The occurrence of e affects only inbuf and outbuf but
no other state variables. The proposition follows from the induction hypothesis.

Secondly, assume that there is exactly one p € P with e € EP. For better readability, we
omit the index p from state objects and events in the following. We make a case distinction
according to Lemma E.3.9.

o Assume initialized; = tt, ezecuteds = ff, atids # L, threads(atids) ¢ {L,T,()}, and
outbuf, = (). The proposition follows from e € E? Theorem E.3.5, the frame axioms
for events in E _,, Definition E.3.2, rule [Step], rule [Pick], and the induction hypothesis.

Note that if e = ite-rcol(cid', .. .) then channel(s)(cid') = () holds because of our initial
assumptions (1,2) on . Hence, the requirements of Theorem E.3.5 are, indeed, satisfied.

e The case initializeds = tt, ezecuteds; = tt, atids # L, and outbuf, # () leads to a
contradiction. Since e = trans(cid, val), sender(cid), receiver(cid) € P, and a process
cannot send to itself, this case contradicts our assumption that there is exactly one
p € Pwithe € EP.

o Assume initializeds = tt, executeds = tt, atids # L1, and outbuf, = (). Then e =
yield(info) holds for info = (ainfo,, mems(l), blocked-sets). The PP-statement for yield
implies config(s')(p) = config(s)(p) and channel(s') = channel(s). The proposition follows
from the induction hypothesis.

o Assume initializeds = tt, ezecuteds = ff, atids = L, and outbuf, = (). Then e =
schedule(tid) holds for some tid € TID. The PP-statement for schedule implies that
config(s', p) = config(s)(p) and channel(s') = channel(s) hold. The proposition follows
from the induction hypothesis.

e Assume initialized; = [f, executeds = [f, atids = L, and outbuf, = (). Since s is a
reachable state, initialized; = ff, and e is enabled in s, e must be a outvar-, setvar-,
start-, or trans-event. According to our assumptions, e is neither a outvar- nor a setvar-
nor a start-event. Since e belongs to a single process only, e cannot be a trans-event

E.3 Adequateness of the System Specification

267

(cf. our previous argumentation on trans-events). Hence, this case is impossible under
the assumptions made. O

Theorems E.3.7 and E.3.8 ensure that for every behavior of a distributed DMWL program
there is a trace of the corresponding DMWL process pool.

Proof (of Theorem E.3.7). Assume that D is a derivation of {C, mem,c) — (C', mem/, o).
There must be exactly one application of one of the rules [Skip], [Assign], [Ify], [Ifg], [Whiley],
[Whileg], [Send], [Receive], [IfRcvy], or [IfRcvg] in D.

We make a case distinction depending on which of these rules occurs in D. In the proof,
we are only concerned with values of state objects and events for the single process p. For
better readability, we omit the index p from state objects and events.

[Skip] and [Seqi] ensure first(C) = skip, C' = rest(C), mem' = mem, and ¢’ = 0. For
e = skip there is a state s’ € S with s —— s, thready (atidy) = rest(C), memy = mem,
and channel(s') = o.

[Assign] and [Seq;] ensure first(C) = var := Ezp with Ezp ™™ val (for some var € VAR,
val € VAL, Ezp € EXP), C' = rest(C), mem' = mem[var — wval], and ¢/ = 0. For
e = assign(var, val) there is s’ € S with s —= &', thready (atidy) = rest(C), memy =
mem|[var — val], and channel(s') = o.

[Ify] and [Seqi] ensure first(C') = if B then C; else Cy with B |™¢™ ¢t (for Cy,Cy € CMD,
B € BOOL), C'" = Cy;rest(C), mem' = mem, and o' = o. For e = ite’’(B,Cy, Cy)
there is a state s’ € S with s - ', thready (atidy) = Cy; rest(C), memy = mem, and
channel(s') = o.

[Ifg] and [Seq:] ensure first(C) = if B then Cp else Cy with B [™¢™ ff (for C1,Cy € CMD,
B € BOOL), C' = Cy;rest(C), mem’ = mem, and ¢’ = ¢. For e = itel(B,Cy,Cy)
there is a state s’ € S with s — ', thready (atidy) = Ca; rest(C), memy = mem, and
channel(s') = o.

[Whiley] and [Seqi] ensure first(C) = while B do C; with B |[™¢™ ¢t (for C; € CMD,
B € BOOL), C' = Cy;while B do Cy;rest(C), mem' = mem, and ¢/ = 0. For e =
while®™(B, C}) there is s’ € S with s —— s, thready (atidy) = Cy;while B do Ci; rest(C),
memg = mem, and channel(s') = o.

[Whileg] and [Seq;] ensure first(C) = while B do C; with B |[™¢" ff (for C; € CMD,
B € BOOL), C' = rest(C), mem' = mem, and o' = 0. For e = while’(B, C}) there is a
state s' € S with s —= ', thready (atidy) = rest(C), memy = mem, and channel(s') = o.

[Send] and [Seqi] ensure first(C) = send(cid, Exp) with Ezp ™™ val, C' = rest(C), mem' =
mem, o'(cid) = (val).o(cid), and o'(cid) = o(cid) for all cid # cid. For e =
send(cid, val) there is s' € S with s — &', thready (atidy) = rest(C), memy = mem,
channel(s')(cid) = (val).o(cid), and channel(s')(cid') = o(cid') for all cid # cid.

[Receive] and [Seq;] ensure first(C') = receive(cid, var), o(cid) = wvals.(val), C' = rest(C),
mem' = mem[var — wval], o’(cid) = wvals, and o'(cid') = o(cid’) hold for all cid # cid.
By assumption pending,(cid) = vals'.(val) holds (where vals' is a suffix of vals). For
e = receive(cid, var, val) there is a state s’ € S with s - s/, thready (atidy) = rest(C),
memg = mem[var — val], channel(s')(cid) = vals, and channel(s')(cid') = o(cid') for all

cid # cid.

268 APPENDIX E: Further Details of the Case Study

[IfRcvy] and [Seqi] ensure first(C') = if-receive(cid, var, C1, Cs), o(cid) = wvals.(val), C' =
Ci; rest(C), mem! = mem[var — wal], o'(cid) = wvals, o'(cid') = o(cid') for all cid #
cid. By assumption pending,(cid) = wvals'.(val)(where vals' is a suffix of vals). For
e = ite-rcv*(cid, var, val, C1, Cy) there is a state s' € § with s == ', thready (atidy) =
Ci; rest(C), memy = mem[var — wval], channel(s')(cid) = wvals, and channel(s")(cid') =
o(cid') for all cid # cid.

[IfRcvy] and [Seq;] ensure first(C) = if-receive(cid, var, C1, C2), o(cid) = (), C' = Ca; rest(C),
mem’! = mem, and ¢’ = 0. There is a state s' € S for e = ite-rcvf(cid, var, val, C1, C)
with s —%5 &', thready (atidg) = Cy; rest(C), memg = mem, and channel(s') = o.

Assume that D is a derivation of (C, mem,o) — (C'D; ... Dy, mem,c'). There must be
exactly one application of the rule [Fork] in D.

[Fork] and [Seqs] ensure first(C) = fork(C" Dy ...Dy) (for some C” € CMD, Dy...Dy €
CMD), C' = C"; rest(C), mem' = mem, and ¢’ = 0. For e = fork(C",D; ... D},) there
is a state s’ € S with s — s/, memy = mem, channel(s') = o, thready (atids) = T,
thready (atids.(0)) = C’, and for all 7 € {1,...,k} holds thready (atids.(i)) = D;. |

Theorem E.3.7 ensures that a small step in the operational semantics corresponds to the

occurrence of some local event in Eﬁ)cal.

Proof (of Theorem E.3.8). Let D be a derivation of

!

Q(CL, memy), ..., (Cr, memy); o> —* A(C1, mem)), ..., (Ch. meml,);0' > .

The proof proceeds by induction on m, the number of applications of the rule [Step] in D.
Base case: D contains no rule applications. Hence, ¢/ = ¢ and ((Z’, mem;) = (C_‘;, mem;)
hold for all 7 € {1,...n}. Consequently, the proposition holds for v = () and s’ = s.
Step case (m =m' 4+ 1): There is a global configuration

<(—'{', mem)), ..., (C_'Z{, mem,); o' >
such that
<1(C"1, memy),- .-, (CT,L, memy); o> —» <1(CT{', mem?), ..., (C_’ZL', mem;,); o' >
and
A(CY,memY),...,(C!, mem.); 0" > —* <(C], mem}), ..., (C!, mem)); o>

hold. Let D’ be a derivation of the former judgment and D" be a derivation of the latter
judgment. Consequently, there are m' application of rule [Step] in D" and there is one
application of this rule in D’. If there are a state s” € S and a sequence 7’/ € E* that

contains no setvar-events, start-events, or trans-events on open channels such that s é
s", channel(s") = o, initializedl; = tt, ezecuted’i = ff, atidli = L, and config(s")(p;) =
(C_';” ,mem;) hold for all p; € P then the proposition follows from the induction hypothesis.
We now show that 4" and s” with these properties indeed exist.
[Step] is applied once in D”. Let p; be the identifier of the process that is selected in this
application. [Pick] is applied once in D". Let tid be the identifier of the thread that is selected
in this application. Event e; = schedulepj (tid) is enabled in s. For s; € S with s Ly 81, we

E.4 Lemmas used in the Proof by Unwinding 269

T D; D; . 4D p; p; p; pP;
have initializeds] = tt, executeds] = ff, atids] # L, threads] = threads’, mems] = memg’,

and channel(s;) = channel(s). Moreover, config(s1)(p’) = config(s)(p') holds for all p' € P
with p' # p;. From the definitions of the rules [Step], [Pick] and Theorem E.3.7, we obtain

that there are an event ey € Ef;jcal and a state so € S with s L2 89, initializedﬁj = tt,
ezvecuteds) = tt, atide? # L, memsi = mem, cseq(threads?) = CY, channel(sy) = o", and

config(s2)(p') = config(s1)(p’) holds for all p' € P with p’ # p;. The output buffer is non-
empty if and only if ey is a send-event. If outbufi! = (cid, val) then let § = (trans(cid, val))
(recall that cid cannot be an open channel according to our assumption that none of the
commands involves sending on open channels). If outbufsy = () then let § = (). In both
cases, there is a state s3 with so 2 83, outbuffg = (), initz’alizedspg = i, e:vecutedfs" = tt,
atids? # L, memy = memy, cseq(threads!) = C}, channel(s3) = o, and config(s3)(p') =
config(s1)(p') holds for all p’ € P with p' # p;. Event ez = yz'eldpj(ainfos3) is enabled in
s3. Hence, there is a state s” € S with sy —2% s”. Thus, for v/ = (ej.e3).0.(e3), we have

"
s = s" and channel(s") = o". Moreover, initialized); = tt, ezecuted’; = ff, atid5i = 1, and

config(s", p;) = (C";, mem!’) hold for all p; € P. o

E.4 Lemmas used in the Proof by Unwinding

The following lemma, is used in the proof of Theorem 7.5.1 in Section 7.5.2.

Lemma E.4.1 (Satisfaction of unwinding conditions for single processes). Let C €
CMD, and p € PID. Moreover, let SES? = (S?,sl, EP,I?,O?,T?) be defined by SES? =
DMWLProcess(p,C). Moreover, let X C S x S be defined like in the proof of Theorem 7.5.1.

If C is strongly secure then lrbeprIp(Tp, X) and oscyzr»(TP,X) hold. <

Proof. We prove the two unwinding conditions:

lrbe;_’t;p(Tp,M) Let s € S? and ¢ € CP. Assume reachable(SES?, s) and E'nffzp(Tp,s,c).
According to the definition of C?, either ¢ = setvar(h, val) or ¢ = trans(cidy, val) holds
(where val € VAL, cidy, € CID with receiver(cidy) = p and level(cidy) = high). We make
a case distinction on these two possibilities.

Firstly, assume ¢ = setvar(h, val). Since setvar-events are only enabled if the initial-
ization phase is finished, we conclude from Enqpé »(T'?,s,¢) that initializeds = ff holds.
According to Figure 7.12, there is a state s’ € S? such that s —7, s'. Since s’ differs
from s only in the value of the high variable, we have memgy =1, mems. Conditions 1-9
are true for s and s’ (Condition 8 is ensured by Lemma E.4.2). Consequently, s X s
holds.

Secondly, assume ¢ = trans(cidy, val). According to Figure 7.12, there is a state s’ € S?
such that s —»7» s'. Since s’ differs from s only in the value of inbuf{cidy). Since
level(cidy) = high, we have inbuf, =y inbuf,. Conditions 1-9 are true for s and s
(Condition 8 is ensured by Lemma E.4.2). Consequently, s X s’ holds.

oscyrr»(TP, M) Let s1,s), sy € SPand e € VPUNP be arbitrary. Assume reachable(SES?, s1),
reachable(SES?, s3), s ——1» sh, and s} X s;. Based on Definition 7.4.2 we distinguish
the following cases for e (omitting the index p from events and state objects for better
readability):

270

APPENDIX E: Further Details of the Case Study

e = schedule(tid) Since e is enabled in s}, we have atidy = L, thready (tid) ¢ {L, T, ()},

tid ¢ blocked-sety , and initializedy, = tt. Since s; M s, we also have atid;, = L
(from Condition 4), threads, (tid) ¢ {L, T, ()} (from Condition 8), tid ¢ blocked-sets,
(from Condition 9), and initializeds, = tt (from Condition 1). Hence, e is enabled
in s{, i.e. there is a state s with s; ——7» s. We choose s = s and § = (e).

Obviously, d|cr = (), dlve = (e)|ve, and s1 =1+ 5o are all true for these choices.
It remains to show s) X so.

An occurrence of e affects only the values of atid, inbuf, and pending. According
to Figure 7.12, the value of atid and inbuf is identical in sy and s). Moreover,
pending,, =p, pendz’ngsl2 follows from inbuf,, = 7}nbufsl1 pending;, =p, pendings:1
(from Condition 5), and the way in which pending is updated by schedule-events
(cf. Figure 7.12). We conclude from s} X s; that s, X s9 holds.

e = yield(info) Since e is enabled in s}, we have that ezecutedy = tt, info = (ainfosz1 ,

e =

memy (1), blocked-sety), and outbufy, =(). Since si M s1, we also have ezecuted, =
tt (from 2) and info = (ainfo,,, mems, (1), blocked-set,,) (from 3, 7, and 9). More-
over, we have either outbuf,, = () or outbuf,, = (cidy,val) for some cid, € CID
with level(cidy,) = high and sender(cid,) = p (from 6). We make a case distinction.

If outbuf,, = () then e is enabled in sy, i.e. there is a state s with s; 575 5. We
choose sg = s and § = (e). With this choice, it only remains to show s} X so. An
occurrence of e affects only the value s of executed, atid, and ainfo. According to
Figure 7.12, the value of these state variables is identical in s, and s5. Conditions
1-9 are all satisfied for s, and so. Consequently, s, X sy holds.

If outbuf,, = (cidy, val) then e is not enabled in s1 but the event ¢’ = trans(cidp,, val)

is enabled, i.e. there is a state s with s i>T » 8. An occurrence of ¢’ affects only
the value of outbuf (sender(cidy) = p) and outbuf, = () holds. Hence, e is enabled
in s, i.e. there is a state s’ with s 7, s'. We choose so = s’ and § = (¢’.e). The
rest of the argument is along the same lines as in the previous case.

outvar(h, val) We choose sy = s1 and § = (). Since outvar-events have no effect
on the state and (e)|y» = () holds, we conclude from s} X s; that s, X sg holds.

outvar(l,val) Since e is enabled in s}, we have memy (1) = val. Since s§ X 51, we
have memg, (I) = val (from 7). Hence, e is enabled in s1, i.e. there is a state s with
$1 —7» 5. We choose so = s and § = (). Since outvar-events have no effect on
the state, we have s; = s and s} = s,. We conclude from s} X s; that s}, X so
holds.

setvar(l, val) Since e is enabled in s}, we have initialized,, = ff. Since s} X 51, we
have initialized;, = [f (from 1). Hence, e is enabled in sq, i.e. there is a state s
with s; —>75, 5. We choose sy = s and § = (e). An occurrence of e affects only
the value of mem(l). According to Figure 7.12, the value of [is identical in i, and
s9. We conclude from s} X s; that s}, X so holds.

start Since e is enabled in s/, we have initializedy, = ff. Since s1 ™ s1, we have
initializeds, = [f (from 1). Hence, e is enabled in si, i.e. there is a state s with
s1 —7» s. We choose sy = s and § = (€). An occurrence of e affects only the
value of initialized. According to Figure 7.12, the value of this state variable is
identical in s, and s2. We conclude from s} X s; that s}, X sy holds.

E.4 Lemmas used in the Proof by Unwinding 271

e = trans(cidy, val) (where sender(cidy,) = p and level(cidy,) = high) Since e is enabled
in), outbufs:1 = (cidy, val) holds. The occurrence of e only affects outbuf and
outbufy = () holds. Since s{ M s1, we have either outbufy, = () or outbuf, =
(cidj,, val') for some cid, € CID with level(cidy,) = high and sender(cidy,) = p (from
6). We make a case distinction.

If outbuf,, = () then choose sy = s; and § = (). With this choice, Conditions 1-9
are all satisfied for s, and so because s} X s; holds. Consequently, s}, X so holds.

If outbuf,, = (cidy,,val') then the event €' = trans(cidy,,val) is enabled in s,

i.e. there is a state s with s; L’>Tp s. An occurrence of ¢’ affects only the value of
outbuf (sender(cidy,) = p holds) and outbuf, = () holds. Hence, we have outbuf, =
() = outbuf,, (implies outbuf, =1 outbuf,;). We choose sz = s and § = (¢'). With
this choice, Conditions 1-9 are all satisfied for s, and sy because s} X s; holds.
Consequently, s X s9 holds.

e = trans(cid;, val) (where sender(cid;) = p and level(cid;) = low) Since e is enabled
in 1, outbufy = (cid;,val) holds. Since s M s1, we have outbuf,, = (cid;, val)

(from 6). Hence, e is enabled in s1, i.e. there is a state s with s; —“srr 5. We
choose sy = s and § = (e). The occurrence of e only affects outbuf and outbuf,, =
() = outbufy, holds. We conclude from sy X s; that s; X s5 holds.

e = trans(cid;, val) (where receiver(cidy) = p and level(cid;) = low) Event e is enabled
in s; because it has no preconditions, i.e. there is a state s with s; —>7» 5. We
choose so = s and § = (e). An occurrence of e affects only the value of inbuf(cidy).
According to Figure 7.12, the value of this state variable is identical in s and s
because inbuf, (cidi) = inbufy (cidy) holds (follows from inbuf,, =p inbufy). We
conclude from s X s; that s X so holds.

e EP ., Since s} —57p s, we have initializedy = tt, initializedy, = tt, ezecuteds, = tt,
and atidy = atidg . In order to make Theorems E.3.5 and E.3.7 applicable, we
define some auxiliary states.

Let ¢1,%],t5 € S? be states for which inbuf, (cid) = (), inbufy (cid) = (), and
inbufy (cid) = () hold for all cid € CID. Moreover, except for the value of inbuf,
the states ¢1, ¢} and t/ shall be identical to s, s} and s, respectively. In par-
ticular, we have t} 57 thy (value of inbuf neither affects the possibility of local
events nor is it affected by their occurrence), initializedy, = i, executedy = ff,
atidg. # L, and t; X t;. Note that if pendingy (cid) = () (pending,, (cid) =
()) then channel(t))(cid) = () (channel(t1)(cid) = ()) holds. In particular, if
e = ite—rcvg(cid,...) then channel(t|)(cid) = () holds (pendingy (cid) = () is im-
plied by the precondition of e). According to our construction, Theorem E.3.5
is applicable for ¢| and t,.2 We obtain (thready (atidy), memy , channel(t})) —
(cseqqux(atidy , thready,), memy, , channel(ts)). Since #; X t1, we have memy =[
memy, (from 7), channel(t]) =, channel(t;) (from 5 and 6), and thready (atidy) =y,
thready, (atidy,) (from 8). Unwinding the definition of a low bisimulation (cf. Def-

2Theorem E.3.5 presumes that the state-event system under consideration corresponds to a DMWL process
pool while the state-event system considered here, is defined as a single DMWL process. Nevertheless, the
theorem is applicable in the current context because the state-event system for a DMWL process pool consisting
of a single process only is identical to the state-event system for that process (cf. Definition 7.3.8). For the
same reason, Theorem E.3.7 can be applied in the following.

272 APPENDIX E: Further Details of the Case Study

inition 7.2.7) for =, (a strong low-bisimulation is also a low bisimulation) yields
that there are D', mem', and o' such that (thready, (atidy,), memy,, channel(t;)) —
(D', mem/, '), memy =p, mem', channel(t;) =1, o', and csequyx(atidy,, thready) =,
D' hold. Thus, we can apply Theorem E.3.7. This yields that there are an event

e € Ej . and a state ¢ with #; N t, memy = mem/, channel(t) = o', and
cseqayy(atidy, thready) = D'
Let so € S? be a state for which inbuf;,(cid) = inbufs (cid) holds for all cid €

CID. Moreover, except for the value of inbuf, the state so shall be identical to

t. This means, we have s; N S9, initializeds, = tt, evecuteds, = tt, atids, =
atids, , mems, = mem’, and cseqy,x(atids,, threads,) = ﬁ’. For all cid € CID with
receiver(cid) = p, we have channel(sy)(cid) = inbuf; (cid).o'(cid).

It remains to show that s}, X so holds. Let us investigate conditions 1-9.

1. We have already shown that initialized, = tt and initialized,, = t¢ hold.

2. We have already shown that ezecutedy, = tt and ezecuteds, = ¢¢ hold.

3. Firstly, assume that e is no fork-event. We have thready (atidy) = () =
threads, (atidy) or thready (atidy) =y, threads,(atidy) (cf. proof of condition
8 below). Hence, terminates(thready, (atidy) = terminates(threads,(atidy;)
holds.

Secondly, assume that e is a fork-event. If k child threads are spawned after
computation starts in s| then k threads are spawned after computation starts
in s1 because cseqy,x(atidy, , thready,) 2, cseqayy(atids,, threads,) (cf. proof of
condition 8 below).

Consequently, in both cases, atid, = atid holds.

4. We have that atzdfz = atidy, and atzd32 = atzds1 hold. Together with atidy =
atids, (from s} X s1), this 1mphes atidg, = atids,.

5. From mbufsz2 = mbufs1 (local events do not affect the value of inbuf), z'nbufs/1 =r
inbuf,, (s M s1), and inbufy, = inbuf,, we conclude inbufy =y, inbuf,.

6. We have that outbufy = () or outbufy = (cid', val') holds for some cid € CID
with sender(cid') = p. Moreover, outbuf,, = () or outbuf,, = (cid", val") for
some cid’ € CID with sender(cid’) = p. Finally, we have outbufy (cid) =
channel(s})(cid), channel(sy)(cid) = channel(ty)(cid), channel(t})(cid) =1 o,
o' = channel(t), channel(t) = channel(ss)(cid), channel(ss)(cid) = outbufy (cid)
for all cid € CID with sender(cid) = p. Hence, outbufy = outbuf;, holds.

7. We have that memy = memy, memy =1 mem’, and mem’ = mems, hold.
This implies that memg =7, mem,, also holds.

8. For all tid € TID, thready (tid) = thready (tid), thready (tid) = thready (tid),
threads, (tid) = thready, (tid), and threads, (tid) = thread;(tid) hold.

Firstly, assume that e is no fork-event. Then thready (tid) = thready (tid) and
thready, (tid) = thready, (tid) hold if tid # atidy, (recall that atidy = atidy and
atidy, = atidy). We obtain from s} M s; and the above that

threads, (tid) = L = thready, (tid) V threads,(tid) = T = thready (tid)
Vthreads, (tid) = () = threadg (tid) V threads,(tid) 2, thready (tid)

holds if tid # atidy . For tid = atidy , we have csequyx(tid, thready) 2p, D' and

E.4 Lemmas used in the Proof by Unwinding 273

D' = cseq,yy(tid, threads,). Consequently,
threads, (tid) = () = thready (tid) V threads, (tid) 2, thready (tid)

holds. Summarizing, Condition 8 is fulfilled for sy and s).
Secondly, assume that e is a fork-event. In this case, one has to consider
the child threads in addition to the active thread but, otherwise, this case
can be handled along the same lines as the first one (thready, (atidy) = T =
thread,, (atidsr1) holds for the active threads and the respective child threads are
pairwise bisimilar because cseq,yx(atidy, ,thready,) 2, cseqayx(atids, threads,)).
9. In general, first(C') = receive(cid, var) and C' = C' imply domech(cid) = low
because a blocking receive on high channels is not strongly secure. The con-
sumption of a value from a low channel and the blocking of a thread be-
cause of an empty incoming channel is both observable. Hence, the commands
that are strongly bisimilar must behave identically in this respect. That is,
if first(C') = receive(cid, var) and C' = C then first(C) = receive(cid, var)
must hold. Hence, two commands that are strongly bisimilar either both start
with a receive-command (on the same low channel) or both don’t start with a
receive-command.
Since atidg # L (precondition of events in Ej,), atidy = atids, (from 4
above), and

threads, (tid) = L = thready, (tid) V threads,(tid) = T = thready (tid)
Vthreads, (tid) = () = threadg (tid) V threads, (tid) =, thready (tid)

(from 8 above) we have blocked-sety, = blocked-sets,.
We conclude that sf, X s9 holds. 0

Lemma E.4.2. Let C € CMD be a DMWL command, p € PID be a process identifier,
and Tr be the set of possible traces induced by the state-event system DMWLProcess(p,C)
(abbreviated by SES? = (S?,sf, EP,I?,OP,T?)). Moreover, let s € S be a state and 7 € Tr
be a trace for which sg == s holds.

If C is strongly secure then

Vtid € TID. (threads(tid) ¢ {L, T, ()} = threads(tid) =, thread,(tid)) O

Proof. The proof is by induction on the length of 7.

In the base case (7 = ()), we have thread;({0)) = C and threads(tid) = L for all tid € TID
with tid # (0). Since C is strongly secure, we have thread;(0) = threads(0). Hence, the
proposition holds in the base case.

In the step case (7 = [.(e)), we have s Loy s (for some state s’ € SP. In order to
apply Theorem E.3.5 and E.3.7, we define two auxiliary states.

Let t,t' € S? be states for which inbuf,(cid) = () and inbufy (cid) = () hold for all cid €
CID. Moreover, except for the value of inbuf, the states ¢t and #' shall be identical to s and s/,
respectively. In particular, we have ¢ —+75 ¢ (value of inbuf neither affects the possibility of
local events nor is it affected by their occurrence), initializedy = tt, executedy = [f, atidy # L,
thready (atidy) ¢ {L,T,()}, initialized; = tt, ezecuted, = tt, and atid, = atid;. Note that if
pendingy (cid) = () (or pending,(cid) = ()) then channel(t')(cid) = () (or channel(t)(cid) = (),

274 APPENDIX E: Further Details of the Case Study

respectively) holds. In particular, if e = ite—rcvl,l)7c (cid,...) then channel(t')(cid) = () holds
(pendingy (cid) = () is implied by the precondition of e).

From the induction assumption, we obtain that thready (tid) = thready (tid) holds for
all tid € TID with threadgy (tid) ¢ {L,T,()}. If e ¢ El . then the value of thread remains
unchanged and the proposition follows directly. In the following, let us assume that e € Ef,

holds. We distinguish two cases for e:

e # fork(...) Theorem E.3.5 and t' %5 t imply that (thready (atidy), memy , channel(t')) —
(thread;(atid;), memy, channel(t)) holds. For all tid € TID with thready (tid) ¢ { L, T,{)},
we have thready (tid) =1, thready (tid) because thready (tid) =y, thready (tid) (by induc-
tion assumption) and thready = thready. Unwinding the definition of low bisimula-
tion (cf. Definition 7.2.7) for =, (a strong low-bisimulation is also a low bisimulation)
yields that there are C', mem/, and o' such that (thready (atidy), memy , channel(t')) —
(C', mem/,o') and thread;(atid;) =, C' hold. Since —-transitions are deterministic, we
also have C' = thread;(atid;). Consequently, thread;(atid;) = thread;(atid;) holds.
Together with thread; = threads, this implies that threads(atids) =i threads(atids)
holds. For all tid € TID with tid # atids, we have thread,(tid) = thready (tid) and,
hence, if threads(tid) ¢ {L, T,()} then threads(tid) =, threads(tid) holds (follows from
threadg (tid) =y, thready (tid)).

e = fork(C,D; ...D,) From Theorem E.3.5 and #' - ¢, we obtain

(thready (atidy), memy , channel(t'))
—> (thread;(atid;.(0)) ... thread;(atid;.(n)), memy, channel(t))

For all tid € TID with thready (tid) ¢ {L, T,()}, we have thready (tid) =, thready (tid)
because thready (tid) =1, thready (tid) (by induction assumption) and thready = threads .
Unwinding the definition of low bisimulation (cf. Definition 7.2.7) for =, yields that
there are Dj...D],, mem/, and o' such that (thready (atidy), memy, channel(t')) —
(Dj...D),mem!,o') and thread;(atid;.(i)) =1, D} (for all i € {0,...,n}). Moreover,
since —»-transitions are deterministic, we have thread;(atid;.(i)) = Dj. Consequently,
thread;(atidy.(i)) =1, thread,(atidy.(i)) holds. Together with thread; = threads, this im-
plies that threads(atids.(i)) = threads(atids.(i)) holds for all ¢ € {0,...,n}. For all
tid € TID with tid ¢ {atids, atids.(0), ..., atids.(n)}, we have thread,(tid) = thready (tid)
and, hence, if threads(tid) ¢ {L,T,()} then threads(tid) =1, threads(tid) holds (follows
from thready (tid) =1, thready (tid)). We also have threads(atids) = T. O

E.5 Differences to Prior Versions of the Case Study

In Section 7.7, we have explained the main differences between the second version of our case
study and the version in Chapter 7. The remaining differences are due to a slightly different
focus in the two versions.

In [MSO03a], the main goal was to find an information flow property that precisely cor-
responds to strong security (i.e. having a completeness result in addition to the soundness
result). In Chapter 7, the main goal was to illustrate the identification of security require-
ments, their specification by an information flow property, and the verification of this property
(soundness). Completeness was not so much an issue. This resulted in a minor difference of
the security predicates used in the definitions of IFP? (or IFPY) and SecProp. While BSIA*"

E.5 Differences to Prior Versions of the Case Study 275

is used in the definition of IFFP?, BSI is used in the definition of SecProp, instead. Thus,
the property SecProp is slightly stronger than IFP? (recall the ordering of these BSPs from
Theorem 3.5.12). More precisely, SecProp requires that setvar-events on high variables can
be inserted at every point of a trace (BSI) rather than only at points before a start-event
has occurred (BSIA?"). This difference in the security predicate was essential to arrive at
a completeness result in [MS03a]. However, demanding that setvar-events can be inserted
at every point of a trace does not comply with our specification of DMWL processes (or
DMWL process pools) according to Definition 7.3.3 (or Definition 7.3.8, respectively). This
is because, according to our system specification, setvar-events are only enabled before the
initialization phase has been completed (modeled by the occurrence of a start-event), which
models that the variables of a DMWL process can only be set by the environment before
program execution begins. After program execution begins, the value of variables can only
be changed by the program. The system specification in [MS03a] necessarily differs in this
respect from the one in Chapter 7 because that specification satisfies SecProp (and, hence,
also BSI). That is, in [MS03a], there is no notion of an initialization phase (no start-events)
and setvar-events are always enabled.

In general, changes to the system specification (even if they appear minor at first sight) can
have severe consequences. In particular, this is true when the set of possible traces differ. Since
the system specifications in [MS03a] and in Chapter 7 yield different sets of possible traces,
it might appear somewhat strange that both specifications are adequate models of DMWL
programs. Nevertheless, we have presented adequateness theorems for our specification in
Chapter 7 (in Appendix E.3.2) and similar adequateness theorems have been proved for the
specification of DMWL processes in [MS03a]. The reason why this is possible is that the
initialization phase (setvar-events and start-events) is not considered in the adequateness
theorems and this is the only aspect in which the two system specifications differ. What
is an adequate model of the initialization for DMWL (or MWL) is hard to say because the
initialization of variables is not part of the language definition. In Chapter 7, we have tried to
stick more closely to the intuitive meaning of “initialization” in our specification by permitting
changes to the value of variables by the environment only before program execution begins.
In [MS03a], we have taken more freedom in our interpretation and have permitted changes
to variables by the environment at any point of time. Both system specifications are sensible
in our opinion. They constitute two ends of a spectrum of possible interpretations of the
initialization of variables in DMWL (MWL). Moreover, the resulting versions of the case study
are complementary in the sense that they illuminate different aspects of the strong security
condition. The version in [MS03a] focuses on what the information flow property is that
corresponds precisely to strong security (providing a basis for comparisons with other security
definitions in MAKS). The version in Chapter 7, shows that strong security also results in a
sensible degree of security if one assumes a rigorous interpretation of the initialization phase.

