
Combining Different Proof Techniques for

Verifying Information Flow Security

Heiko Mantel, Henning Sudbrock, and Tina Kraußer

Security Engineering Group, RWTH Aachen University, Germany
{mantel,sudbrock,krausser}@cs.rwth-aachen.de

Appeared in G.Puebla (Ed.): LOPSTR 2006, LNCS 4407, pp. 94–110, 2007

c© Springer-Verlag Berlin Heidelberg 2007

Abstract. When giving a program access to secret information, one
must ensure that the program does not leak the secrets to untrusted
sinks. For reducing the complexity of such an information flow analy-
sis, one can employ compositional proof techniques. In this article, we
present a new approach to analyzing information flow security in a com-
positional manner. Instead of committing to a proof technique at the
beginning of a verification, this choice is made during verification with
the option of flexibly migrating to another proof technique. Our approach
also increases the precision of compositional reasoning in comparison to
the traditional approach. We illustrate the advantages in two exemplary
security analyses, on the semantic level and on the syntactic level.

1 Introduction

Information flow security aims at answering the question: Is a given system suf-
ficiently trustworthy to access secret information? The two main research prob-
lems are, firstly, finding adequate, formal characterizations of trustworthiness
and, secondly, developing sound and efficient verification techniques based on
these characterizations. Information flow security has been a focal research topic
in computer security for more than 30 years. Nevertheless, the problem to secure
the flow of information in systems is far from being solved. In [28], the state of
the art was surveyed for approaches to capturing and analyzing information flow
security of concrete programs. For information flow security at the level of more
abstract specifications, a broad spectrum of approaches has been developed (see,
e.g., [12, 19, 20, 11, 26, 17, 5]). The most popular verification techniques are the
unwinding technique on the level of specifications (see, e.g., [13, 24, 18, 4]), and
security type systems and program logics on the level of programs (see [28] for
a good overview). In this article, we focus on a multi-threaded programming
language.

We use the standard scenario for investigating information flow security of
imperative programs. That is, the initial values of some variables, the so called
high variables, constitute the secrets that must be protected while the remaining
variables, the low variables, initially store public data. We assume an attacker ζ

who can observe the values of low variables before and at the end of a program
run. The security requirement is that no information flows from the high variables
into low variables during program execution. We use l to denote low variables
and h to denote high variables, i.e. variables that may store secrets.

There are various possibilities for how a program could accidentally or ma-
liciously leak secrets. It could copy a secret into a low variable as, e.g., in
P1 = l:=h. Such leaks are referred to as intra-command leaks or explicit leaks
[9]. More subtly, a secret could influence the flow of control, leading to different
assignments to low variables as, e.g., in P2 = if h = 0 then l:=0 else l:=1 fi. If the
value of l is 0 at the end of the run, h = 0 must have held initially, and if l is 1
then h 6= 0 held. Such information leaks are referred to as inter-command leaks
or implicit leaks. Even more subtle leaks originate in a multi-threaded setting.

Verification techniques are often based on characterizations of information
flow security that are compositional with respect to the primitives of the pro-
gramming language. Two well known observations motivated our work:

– Compositionality is indeed helpful, both for making verification techniques
efficient and for simplifying the derivation of results at the meta level, e.g.,
for proving a soundness theorem for a syntactic, type-based analysis.

– Compositionality leads to overly restrictive characterizations of security.
Simple programs that are typically rejected include, e.g., while h ≤ 10 do h :=
h + 1 od, l:=h; l:=0, h:=0; l:=h, and if h = 0 then l := 0 else l := 0 fi (for
instance, the security type systems in [32, 29] reject all these programs).

More recent work aimed at relaxing security definitions and type systems such
that intuitively secure programs like the above examples are not rejected any-
more by a security analysis. For instance, [30] and [25] provide solutions for,
e.g, while h ≤ 10 do h := h + 1 od (possibly requiring the addition of auxiliary
commands to the program), and [15] offers a solution for, e.g., if h = 0 then l :=
0 else l := 0 fi. While this progress is promising, the approach taken requires the
incremental improvement of each individual analysis technique. In this article,
we present an alternative approach. We show that and how different analysis
techniques can be combined, effectively developing a higher-level security calcu-
lus that can be extended with existing verification techniques as plugins. This
approach applies to the semantic level, where one applies (semantic) character-
izations of security that enjoy desirable meta properties (such as, e.g., compo-
sitionality) and uses a calculus for some general-purpose logic for verification.
The approach also applies to the syntactic level, where one uses specific security
calculi (such as, e.g., security type systems) for verification. Instead of eliminat-
ing weaknesses of each individual verification technique, our approach aims at
combining the strengths of available techniques.

In summary, the contributions of this article are, firstly, a novel approach
to verifying information flow security and, secondly, the illustration of how dif-
ferent verification techniques can be beneficially combined in the information
flow analysis of a fairly realistic example program. The article constitutes an
initial step in the proposed direction, and some issues such as finding a fully
satisfactory baseline characterization will need further investigation.

2

2 Information Flow Security in an Imperative Language

To make our approach concrete, we introduce a simple, multi-threaded pro-
gramming language that includes assignments, conditionals, loops, a command
for dynamic thread creation, and a sync command. Without sync command and
arrays, this language is also used, e.g., in [29]. The set Com of commands is
defined by (where V is a command vector in Com =

⋃

n∈N
Comn)

C ::= skip | Id :=Exp | Arr[Exp1]:=Exp2 | C1; C2 | if B then C1 else C2 fi

| while B do C od | fork(CV) | sync.
We restrict program variables to Booleans, integers, and arrays. The length

of an array Arr is denoted by Arr.length and is treated like a constant. The ith
element of Arr is denoted by Arr[i] and treated like a variable. Expressions are
program variables, constants, and terms resulting from applying operators to
expressions: Exp ::= Const | Var | Arr[Exp] | Arr.length | op(Exp1, . . . ,Expn).

A state is a mapping from variables in a given set Var to values in a given
set Val . The set of states is denoted by S. We use [v = n]s to denote the state
that maps v to n and all other variables to the same values like the state s.
We treat arrays like in [8]: If an array access a[i] is out of bounds (i.e. i < 0
or i ≥ a.length) then a dummy value is returned (0 for integers and False for
Booleans), no exception is raised and no buffer overflow occurs. We use the
judgment 〈|Exp, s|〉 ↓ n for specifying that expression Exp evaluates to value n in
state s. Expression evaluation is assumed to be total and to occur atomically.

A configuration is a pair 〈|V, s|〉 where the vector V specifies the threads that
are currently active and s defines the current state of the memory.

〈|skip, s|〉 _ 〈|〈〉, s|〉

〈|Exp, s|〉 ↓ n

〈|Id :=Exp, s|〉 _ 〈|〈〉, [Id = n]s|〉

〈|Exp
′

, s|〉 ↓ i 0≤ i<Arr.length 〈|Exp, s|〉 ↓ n

〈|Arr[Exp ′]:=Exp, s|〉 _ 〈|〈〉, [Arr[i] = n]s|〉

〈|Exp
′

, s|〉 ↓ i (i<0 ∨ i≥Arr.length)

〈|Arr[Exp′]:=Exp, s|〉 _ 〈|〈〉, s|〉

〈|C1, s|〉 _ 〈|〈〉, t|〉

〈|C1; C2, s|〉 _ 〈|C2, t|〉

〈|C1, s|〉 _ 〈|〈C′

1〉V, t|〉

〈|C1; C2, s|〉 _ 〈|〈C′

1; C2〉V, t|〉 〈|fork(CV), s|〉 _ 〈|〈C〉V, s|〉

〈|B, s|〉 ↓ True

〈|if B then C1 else C2 fi, s|〉 _ 〈|C1, s|〉

〈|B, s|〉 ↓ False

〈|if B then C1 else C2 fi, s|〉 _ 〈|C2, s|〉

〈|B, s|〉 ↓ True

〈|while B do C od, s|〉 _ 〈|C; while B do C od, s|〉

〈|B, s|〉 ↓ False

〈|while B do C od, s|〉 _ 〈|〈〉, s|〉

Fig. 1. Small-step deterministic semantics

〈|Ci, s|〉 _ 〈|W, t|〉

〈|〈C0 . . . Cn−1〉, s|〉 → 〈|〈C0 . . . Ci−1〉W 〈Ci+1 . . . Cn−1〉, t|〉

∀i ∈ {0, . . . , n − 1} : (Ci = sync ∧ V
′

i = 〈〉) ∨ (Ci = sync; Di ∧ V
′

i = 〈Di〉)

〈|〈C0, . . . , Cn−1〉, s|〉 → 〈|V ′

0 . . . V ′

n−1, s|〉

Fig. 2. Small-step non-deterministic semantics

3

The operational semantics is formalized in Figures 1 and 2. Deterministic
judgments have the form 〈|C, s|〉 _ 〈|W, t|〉 expressing that command C performs
a computation step in state s, yielding a state t and a vector of commands W,

which has length zero if C terminated, length one if it has neither terminated nor
spawned any threads, and length greater than one if new threads were spawned.
That is, a command vector of length n can be viewed as a pool of n threads that
run concurrently. Non-deterministic judgments have the form 〈|V, s|〉 → 〈|V ′, t|〉
(note the new arrow), where V and V ′ are thread pools, expressing that some
thread Ci in V performs a step in state s resulting in the state t and some thread
pool W ′. The global thread pool V ′ results then by replacing Ci with W ′.

Our sync command blocks a given thread until each other thread has termi-
nated or is blocked. Executing sync unblocks all threads (see the rule in Figure 2).

The following example illustrates the subtle possibilities for leaking informa-
tion in a multi-threaded setting. It also demonstrates that the parallel composi-
tion of two secure programs can result in an insecure program.

Example 1. If P3 = h:=0; P2 (where P2 = if h = 0 then l:=0 else l:=1 fi) runs
concurrently with P4 = h:=h′ under a shared memory and a round robin sched-
uler then the final value of l is 0 (respectively, 1) given that the initial value of
h′ is 0 (respectively, not 0). This is illustrated below where (vl, vh, vh′) denotes
the state s with s(l) = vl, s(h) = vh, and s(h′) = vh′ :

〈|〈P3, P4〉, (0, 0, 0)|〉
→ 〈|〈P2, P4〉, (0, 0, 0)|〉
→ 〈|〈P2〉, (0, 0, 0)|〉
→ 〈|〈l:=0〉, (0, 0, 0)|〉 → 〈|〈〉, (0, 0, 0)|〉

〈|〈P3, P4〉, (0, 0, 1)|〉
→ 〈|〈P2, P4〉, (0, 0, 1)|〉
→ 〈|〈P2〉, (0, 1, 1)|〉
→ 〈|〈l:=1〉, (0, 1, 1)|〉 → 〈|〈〉, (1, 1, 1)|〉

That is, the final value of l equals the initial value of h′ and, hence, the attacker
is able to reconstruct the secret, initial value of h′ from his observation of l. ♦

In the following, we adopt the naming conventions used so far: s and t denote
states, Exp denotes an expression, B denotes a Boolean expression, Arr denotes
an array, C and D denote commands, and V and W denote command vectors.

2.1 Security Policy, Labelings, and Security Condition

We assume a security lattice that comprises two security domains, a high level
and a low level where the requirement is that no information flows from high
to low. This is the simplest policy for which the problem of information flow
security can be investigated. Each program variable is associated with a security
domain by means of a labeling lab : Var → {low , high}. The intuition is that
values of low variables can be observed by the attacker and, hence, should only
be used to store public data. High variables are used for storing secret data and
their content is not observable for the attacker. For a given array Arr, the content
has a security domain (denoted lab(Arr)) and the length has a security domain
(denoted lab(Arr.length)) that must be at or below the one for the content. All
elements of the array are associated with the same security domain. If Arr : high

4

then Arr[i] : high and if Arr : low and i : low then Arr[i] : low . If Arr : low and
i : high then Arr[i] has no security domain and cannot be typed (see [10]).

As before, h and l denote high and low variables, respectively. An expression
Exp has the security domain low (denoted by Exp : low) if all variables in
Exp have domain low and, otherwise, has security domain high (denoted by
Exp : high). The intuition is that values of expressions with domain high possibly
depend on secrets while values of low expressions can only depend on public data.

Definition 1. Two states s, t ∈ S are low equal (denoted by s =L t) iff

∀var ∈ Var : lab(var) = low =⇒ s(var) = t(var) .

Two expressions Exp,Exp′ are low equivalent (denoted by Exp ≡L Exp′) iff

∀s, s′ ∈ S : (s =L s′ ∧ 〈|Exp, s|〉 ↓ n ∧ 〈|Exp′, s′|〉 ↓ n′) =⇒ n = n′ .

We decided to use a possibilistic security condition (like in [31]) despite the fact
that this condition is not entirely satisfactory from a practical perspective as
it does not take scheduling into account (unlike the conditions in, e.g., [32, 30])
and, in particular, is not scheduler independent (unlike the condition in [29]).
However, possibilistic security is conceptually simple and suitable for illustrating
our verification technique, and this is our focus in this article.

Definition 2. A symmetric relation R on command vectors is a possibilistic
low indistinguishability iff for all V, W ∈ Com with V R W the following holds:

∀s, s′, t ∈ S : ((s =L t ∧ 〈|V, s|〉 →∗ 〈|〈〉, s′|〉)

⇒ ∃t′ ∈ S : (〈|W, t|〉 →∗ 〈|〈〉, t′|〉 ∧ s′ =L t′)).

The union of all possibilistic low indistinguishabilities, ∼L, is again a possibilis-
tic low indistinguishability. Note that ∼L is transitive and symmetric, but not
reflexive. For instance, l:=h ∼L l:=h does not hold. Intuitively, only programs
with secure information flow are related to themselves.

Definition 3. A program V is possibilistic low secure iff V ∼L V .

The idea of possibilistic security is that an observer without knowledge of the
scheduler cannot infer from the values of low-level variables that some high
variable did not have a particular value. That is, any low output that is possible
after the system starts in a state s is also possible when the system starts in any
other state that is low equal to s.

Example 2. It is easy to see that P1 = l:=h and P2 = if h = 0 then l:=0 else l:=1 fi,
both are not possibilistic low secure. Moreover, P3 and P4 from Example 1, each
is possibilistic low secure, but 〈P3, P4〉 is not (take s and t as in Example 1). ♦

3 Combining Calculus

In general, compositional reasoning about information flow security is not sound.
This applies, in particular, to our baseline condition, possibilistic low security,

5

which is neither preserved under parallel composition nor under sequential com-
position, in general (see Example 2 and below). For making compositional rea-
soning sound, one must strengthen the definition of secure information flow un-
til one arrives at a compositional property. This approach is taken, e.g., in the
derivation of the strong security condition [29]. However, the resulting compos-
able security definitions are over-restrictive in the sense that they are violated
by many programs that are intuitively secure.

In this section, we present an approach for deducing the security of a com-
posed program from the fact that each sub-program satisfies some notion of se-
curity that is stronger than the baseline property. We derive sufficient conditions
for sequential composition, for parallel composition, for conditional branching,
and for while loops. This leads us to four compositionality results. These consti-
tute the theoretical basis of our combining calculus, which allows one to flexibly
apply available verification techniques during an information flow analysis. We
then revisit some available verification techniques and provide plugin-rules that
enable the use of these techniques in a derivation with our combining calculus.

3.1 Compositionality Results and Basic Calculus Rules

Auxiliary concepts. If C ∼L C′ and D ∼L D′ hold then C; D ∼L C′; D′ does
not necessarily hold because threads spawned during execution of C might still
be running when D begins execution, influencing computations in D through
shared variables. For instance, the program fork(skip, P2; l:=2); l′:=l where P2 =
if h = 0 then l:=0 else l:=1 fi does not satisfy the baseline property (due to the race
between the second assignment to l and the assignment to l′) although it is the
sequential composition of two programs that both satisfy the baseline property.
If the main thread is the last thread to terminate before D (respectively D′) can
begin execution then such problems cannot occur.

Definition 4. A thread pool V is main-surviving (denoted by MS(V)), if for
arbitrary states s and t as well as for each thread pool 〈C0, . . . , Cn−1〉 with
〈|V, s|〉 →∗ 〈|〈C0, . . . , Cn−1〉, t|〉 one of the following two conditions holds:

– There is no state t′ such that 〈|C0, t|〉 _ 〈|〈〉, t′|〉.
– n = 1.

One can make a program main-surviving by adding sync statements. Consider
as an example the program fork(h := 0, h := h′), which is not main-surviving as
both conditions in Definition 4 are violated. Main-surviving programs are, e.g.,
fork(h := 0, h := h′); sync and fork(sync; h := 0, h := h′).

Parallel composition shares the problems of sequential composition: given
V ∼L V ′ and W ∼L W ′ one does not necessarily obtain V W ∼L V ′W ′. This
is caused by shared variables, which allow one thread to influence the behavior
of another thread. Even if the composed thread pools have no low variables in
common, we do not obtain a general compositionality theorem (see Example 1).
A sufficient condition for preserving low indistinguishability is the disjointness
of all variables.

6

Definition 5. We say that two thread pools V and W are variable independent
(V ≷ W) if the sets of variables occurring in V respectively W are disjoint.

Compositionality. We are now ready to present our compositionality results:

Theorem 1. Let C, C′, D, and D′ be commands and V, V ′,W, and W ′ be thread
pools such that C ∼L C′, D ∼L D′, V ∼L V ′ and W ∼L W ′. Then

1. if C and C′ are main-surviving then C; D ∼L C′; D′;
2. if V ≷ W and V ′ ≷ W ′ then V W ∼L V ′W ′;
3. if B ≡L B′ then if B then C else D fi ∼L if B′ then C′ else D′ fi; and
4. if B ≡L B′ and C and C′ are main-surviving, then while B do C od ∼L

while B′ do C′ od.

A note with the proof of Theorem 1 is available on the authors’ homepage.

Basic calculus rules. We raise the possibility for compositional reasoning about
low indistinguishability with Theorem 1 to compositional reasoning about in-
formation flow security. This results in the calculus rules depicted below. The
judgment ` bls(V) intuitively means that the program V is possibilistic low
secure. A soundness result is provided in Section 3.4.

[SEQ]
` bls(C) ` bls(D) MS(C)

` bls(C; D)
[PAR]

` bls(V) ` bls(W) V ≷ W

` bls(V W)

[ITE]
` bls(C) ` bls(D) B ≡L B

` bls(if B then C else D fi)
[FRK]

` bls(〈C〉V)

` bls(fork(CV))

[WHL]
` bls(C) MS(C) B ≡L B

` bls(while B do C od)
[SNC]

` bls(C)

` bls(C; sync)

It should be noted that it is not intended that one proves the security of a com-
plex program solely with the above rules. There are many secure programs for
which the side conditions main surviving and variable independence are too re-
strictive. For analyzing such programs with the combining calculus, one employs
plugin rules. The combining calculus is not intended as an alternative to existing
security-analysis techniques, but rather as a vehicle for using different analysis
techniques in combination. The plugins presented in the following, in particular,
allow one to analyze programs that contain races.

3.2 Plugin: Strong Security

Definition 6 ([29]). The strong low-bisimulation uL is the union of all sym-
metric relations R on command vectors V, V ′ ∈ Com of equal size, i.e. V =
〈C0, . . . , Cn−1〉 and V ′ = 〈C′

0, . . . , C
′
n−1〉, such that

∀s, s′, t∈ S : ∀i∈{0, . . . , n − 1} : ∀W ∈ Com:
[(V R V ′ ∧ s =L s′ ∧ 〈|Ci, s|〉 _ 〈|W, t|〉)
⇒ ∃W ′ ∈ Com: ∃t′ ∈ S:(〈|C′

i, s
′|〉 _ 〈|W ′, t′|〉 ∧ W R W ′ ∧ t =L t′)] .

7

Note that uL is only a partial equivalence relation, i.e. it is transitive and sym-
metric, but not reflexive. In fact, uL only relates secure programs to themselves
(note the structural similarity to the relationship between Definitions 2 and 3).

Definition 7 ([29]). A program V is strongly secure iff V uL V holds.

The strong security condition is scheduler independent and enjoys composition-
ality results that make it a suitable basis for a compositional security analysis.

Theorem 2 ([29, 22]). Let C, D and V be strongly secure programs that do not
contain sync statements. If B ≡L B then C; D, fork(CV), if B then C else D fi,
and while B do C od are strongly secure. If C uL D holds then if B then C else D fi

is also strongly secure (even for B : high).

Proof. [22] extends the proof in [29] to the language with arrays. ut

The strong security condition constitutes a conservative approximation of our
security definition as the following theorem demonstrates.

Theorem 3. If V is strongly secure and does not contain any sync statements,
then V is possibilistic low secure.

Proof. Let s =L t. If 〈|V, s|〉 →∗ 〈|〈〉, s′|〉) then one can, by applying Definition 6,
inductively construct (over the length of the computation sequence) a computa-
tion 〈|W, t|〉 →∗ 〈|〈〉, t′|〉 of the same length such that s′ =L t′. ut

While the strong security condition can be suitable for reasoning about secure
information flow, there are also situations where it is too restrictive.

Example 3. The programs l := h; l := 1, if h then skip else skip; skip fi, and
while h > 0 do h := h − 1 od all have secure information flow (according to
Definition 3). However, none of these programs is strongly secure. ♦

[PSLS]
V uL V V is sync-free

` bls(V)
The problems in Example 3 can be overcome by
applying our combining calculus, in which strong
security constitutes only one of several plugins. Its plugin rule is depicted to the
right. When this rule is applied, the premise could be proved, e.g., with a security
type system (see Section 5), or with some general-purpose theorem prover.

3.3 Plugin: Low-Deterministic Security

Roscoe pioneered a characterization of information flow security based on the
notion of low determinism. The resulting security definitions for the process
algebra CSP [23] are intuitively convincing as they ensure that the low-level
behavior of a process is deterministic, no matter what the high-level behavior
is. A disadvantage, however, is that it is unnecessarily restrictive with respect
to nondeterministic system behavior on the low level. Zdancewic and Myers
[33] argue that this disadvantage is acceptable when the approach is applied to
concrete programs. We adopt this approach to our setting.

8

Definition 8. A program V is low-deterministic secure iff

∀s, t, s′, t′ ∈ S : [(s =L t ∧ 〈|V, s|〉 →∗ 〈|〈〉, s′|〉 ∧ 〈|V, t|〉 →∗ 〈|〈〉, t′|〉) =⇒ s′ =L t′].

That is, if one runs a program that is low-deterministic secure in two arbitrary
starting states that are low equal then all final states are also low equal.

Theorem 4. Let V be a program that is low-deterministic secure. Assume fur-
ther, that if the program can terminate in some state it can terminate in each
low equal state (written PLT(V)). Then V is possibilistic low secure.

Proof. Let s, s′, t, t′ be states such that s =L t. Assume that 〈|V, s|〉 →∗ 〈|〈〉, s′|〉
for some state s′. By assumption, V can terminate in t. Hence, there exists t′ ∈ S

such that 〈|V, t|〉 →∗ 〈|〈〉, t′|〉. From Definition 8, we obtain s′ =L t′. ut

[PLDS]
|= lds(V) , PLT(V)

` bls(V)

In the plugin-rule depicted to the right, we use the
judgment |= lds(V) . This judgment captures the in-
tuition that V is low-deterministic secure. Again, first-order logic could be used
to express and prove the semantic preconditions.

3.4 Soundness and Examples

The combining calculus is sound in the following sense:

Theorem 5. Let V be a program such that ` bls(V) is derivable in the com-
bining calculus. Then V is possibilistic low secure.

Proof. The soundness of the rules [SEQ], [PAR], [ITE], and [WHL] follows di-
rectly from Theorem 1, while the soundness of rule [FRK] follows from the
soundness of [PAR], the definition of possibilistic low security, and the opera-
tional semantics. Rule [SNC] is sound since, firstly, a sync statement does not
change the state, and, secondly, the sync statement is appended at the end of
the command C and therefore does not retard the execution of subsequent com-
mands. The plugin-rules are sound by Theorems 3 and 4. ut

We illustrate the usage of the combining calculus with a simple example.
Consider the program fork(l := 0, l := 1); sync; while h ≤ 5 do h := h + 1 od.
By applying [SEQ] we obtain three new proof obligations, firstly ` bls(fork(l :=
0, l := 1); sync), secondly ` bls(while h ≤ 5 do h := h + 1 od), and thirdly
MS(fork(l := 0, l := 1); sync). The first one can be proved by the application of
[SNC] and subsequently [PSLS], followed by an analysis of strong security, while
the second one can be proved by the application of [PLDS], followed by an anal-
ysis of low-deterministic security. The third obligation is obviously true. Strong
security does not suffice to prove the program secure, since while loops with high
guards are rejected; an analysis of the whole program with low-deterministic se-
curity would also fail due to the race between l := 0 and l := 1.

9

4 Information Flow Security of a PDA Application

In this section, we illustrate how the possibility of combining proof techniques can
be exploited in a concrete security analysis. The security of the example program
can be successfully verified by combining strong security and low-deterministic
security, while none of these security definitions alone provides a suitable basis
for the analysis. The example application is a multi-threaded program for man-
aging finances on mobile devices. The program gives an overview of the current
stock portfolio, possibly illustrating profits, losses, and other trends with statis-
tics. When the user starts the application he obtains a listing of his portfolio,
revealing name and quantity for each stock. In parallel to printing, the current
rates of EuroStoxx50 entries are retrieved. When all data is available, informative
statistics can be computed. For minimizing idle time during this computation, a
background thread already incrementally prepares the printout of the statistics.
Finally the statistics is displayed, together with a pay-per-click commercial.

fork
































//getPortfolio:
esOPl:= getES50old;
ih:=0; pfNameh:=getPFNames;
pfNumh:=getPFNum;
while (ih<pfNameh.length) do
pfTabPrinth:= pfNameh[ih] + ”|”
+ pfNumh[ih];

ih:= ih+ 1 od

,

//getEuroStoxx50:
jl:=0; nwOutBufl:= getES50;
while (nwInBufl= ””) do skip od;
strArrl:= split(nwInBufl, ”:”);
while (jl<50) do
esNamel[jl] := strArrl[2*jl];
esPl[jl] := strArrl[2*jl+1];
jl:= jl+1 od;

coShortl:= strArrl[100];
coFulll:= strArrl[101]; coIdl:= strArrl[102]

































;sync;

fork






















//computeStatistics:
kl:=0;
while (kl<50) do
lPFh:= locPF(esNamel[kl], pfNameh);
//calculate profit for stock at position kl

sth[kl]:=(esOPl[kl] -esPl[kl])* pfNumh[lPFh]
kl:= kl+1 od

,

//generateOutput:
ml:=0;
while (ml<50) do
while (kl≤ml) do skip od;
outLh[ml] := ml+ ”|”
+ esNamel[ml]+ ”|”
+ esPl[ml] + ”|” + sth[ml];

ml:= ml+1 od























//displayOutputAndCommercial:
;nl:=0; stTabPrinth(”No. | Name | Price | Profit”);
while (nl<50) do stTabPrinth:= outLh[nl]; nl:= nl+ 1 od;
stTabPrinth:= coShortl+ ”Press # to get more information.”;
while (keyl= ’ ’) do skip od;
if (keyl 6= ’#’) then coDispPrinth:= coFulll; nwOutBufl:= ”shownComm:”+ coIdl

else skip fi

Fig. 3. Implementation

10

The implementation of the application (Figure 3) is divided into five blocks:
reading the portfolio from non-volatile storage (getPortfolio), retrieving current
stock rates (getEuroStoxx50), computing statistics (computeStatistics), preparing a
printout of the statistics (generateOutput), displaying the printout, advertising
the commercial by a preview, and waiting for the user’s input (displayOutputAnd-

Commercial). If the user decides to view the commercial, it is displayed in full
and a confirmation message is sent to the server.

As an example, we give a detailed description of getEuroStoxx50: After the
initialization of the loop variable jl (where the subscript l indicates that j is
a low variable), a request is sent to the network interface represented by the
variable nwOutBufl. Due to the lack of interrupts we have to do busy waiting
until the variable nwInBufl representing the incoming network stream contains
an answer. The answer is a string (sequence of ASCII numbers) containing name
and current rate of each stock listed in the EuroStoxx50, separated by colons.
To avoid a second network request, the commercial, including the preview, the
full version, and a reference ID are already included, again separated by colons.
The operation split in the third line of getEuroStoxx50 is similar to the method
split of the Java String class. It splits a single string in an atomic step into an
array of strings, which then is processed further in the subsequent loop. After
extracting the commercial data from the array its memory could be deallocated
(but this is outside our language).

We assume that the application is running in a sandbox that protects the
memory from programs outside the sandbox. The only exception is the under-
lying operating system with whom the application communicates via predefined
interface variables. Besides the two interface variables for network communi-
cation (nwInBufl, nwOutBufl), the program uses display variables (pfTabPrinth,
stTabPrinth, coDispPrinth), variables that represent parts of the non-volatile stor-
age (getES50old, getPFNames, getPFNum), and the keyboard variable (keyl). As-
signments to these variables in the program correspond to the output of the
information on the associated interface. Reading these variables corresponds to
retrieving input through the operating system.

The parallel execution of getEuroStoxx50 and getPortfolio prevents blocking
during time-consuming network activity. Concurrent programming increases effi-
ciency and also complies with programming recommendations for mobile devices
like, e.g., [14, 16]. For simplicity, computeStatistics calculates only the user’s profit
for each stock. One could easily imagine more complex statistics. The atomic op-
eration locPF in computeStatistics locates the index of the kth stock value within
the portfolio and returns −1 if the value is not present.

The secret to be protected in the given scenario is the content of the port-
folio. The sink where this information could be leaked is the network interface
(assuming that the display is only accessible for users who are permitted to read
the printouts). Both assignments to the nwOutBufl are intuitively secure. Hence,
there is no direct leakage of secrets and starting a more detailed information
flow analysis is appropriate. For the security analysis, we use a combination of
low-deterministic security and strong security. The strong security of a program

11

Fig. 4. Portfolio Tab Fig. 5. Statistics Tab Fig. 6. Commercial Screen

implies that the run-time of this program is independent of the initial value of
high variables. This is obviously not the case for the loop in getPortfolio, where the
run-time is directly influenced by the value of the high variable pfNameh.length.
However, each of the five program blocks can be successfully analyzed. The result
of this investigation is expressed by the following two theorems. Due to space
restrictions we only sketch the proof of the first one.

Theorem 6. The program getPortfolio is low-deterministic secure.

Proof. Since ih is incremented in the body of the loop, the loop will eventually
terminate. Moreover, the only assignment to a low variable, esOPl := getES50old,
does not depend on the initial high values. Hence the final value of low variables
depends deterministically on their initial values. ut

Theorem 7. The programs getEuroStoxx50, computeStatistics, generateOutput, and
displayOutputAndCommercial are strongly secure.

From these two theorems and the compositionality of strong security, we
conclude that the program fork(computeStatistics, generateOutput); displayOutput-

AndCommercial is strongly secure. From the plugin-rules [PSLS] and [PLDS], we
obtain that getPortfolio and getEuroStoxx50 both satisfy the baseline policy. The
parallel execution of these programs also satisfies the baseline policy according
to rule [PAR], since variable independence holds. After an application of [FRK],
an application of [SNC], and an application of [SEQ], we conclude that the entire
program satisfies the baseline property. Hence the program is possibilistic low
secure.

The application shows that the combining calculus is applicable for fairly
realistic programs. The advantages will become even clearer in Section 5 where
we integrate security type systems. Using a type system for the strong security
condition, one can efficiently verify four parts of the program and only the re-
maining part would require a semantic check of low-deterministic security (for
which no suitable calculus is available yet).

12

5 Plugins for Type-based Analysis Techniques

While Sections 3 and 4 presented plugin rules for semantic security definitions,
this section illustrates how syntactic, type-based analysis techniques can be in-
tegrated and beneficially exploited. We provide two additional plugins for the
combining calculus: one to integrate the security type system proposed in [6]
and one to integrate the security type system from [29]. When introducing the
second type system, we also illustrate the possibility to integrate transforming
type systems. Such type systems may generate a secure program from a given,
possibly insecure program. Additionally, we show how to combine transforming
and non-transforming analysis techniques.

5.1 Plugin : Boudol and Castellani’s Security Type System

In [6] Boudol and Castellani propose a type system that does not generally reject
programs containing loops with high guards, unlike the type systems in, e.g., [29]
or [31]. The type judgments are of the form Γ ` C : (τ, σ) cmd, where C is a
command, τ and σ are security labels, and the context Γ is a mapping from
variables to security labels. In the type judgment, τ is a lower bound for the
level of the variables to which assignments are made in C, and σ is an upper
bound for the security levels occurring in the guards of loops and conditionals
in C. After adapting the typing rules to our language, fixing a variable labeling
and the induced context Γ , we obtain the following result:

Theorem 8. Let C be a command that always terminates. If Γ ` C : (τ, σ) cmd

can be derived for some security labels τ and σ, then C is possibilistic low secure.1

[TBC]
Γ ` C : (τ, σ) cmd

` bls(C)

For programs that always terminate we obtain the
plugin rule depicted to the right. The combining cal-
culus extended by this rule is sound due to Theorem 8.

5.2 Plugin : Sabelfeld and Sand’s Security Type System

In [29] Sabelfeld and Sands propose a transforming type system approximating
the strong security condition. Its judgments are of the form V ↪→ V ′ : Sl, where
V is the program to be checked, V ′ a transformation of the program, and Sl

is the type of V ′. The type contains auxiliary information that is used for the
transformation of the program. They provide the following theorem:

Theorem 9 ([29]). Whenever V ↪→ V ′ : Sl, then V ′
uL V ′.

That is, when the type check succeeds, then the transformed program is strongly
secure. To integrate plugins for transforming type systems we extend the com-
bining calculus with the transforming rules in Figure 7. The intuition of the judg-
ment ` C ↪→ bls(C′) is that the program C is transformed into the possibilistic

13

[SEQ’]
` C ↪→ bls(C′) ` D ↪→ bls(D′) MS(C′)

` C; D ↪→ bls(C′; D′)

[PAR’]
` V ↪→ bls(V ′) ` W ↪→ bls(W ′) V

′ ≷ W
′

` V W ↪→ bls(V ′W ′)

[ITE’]
` C ↪→ bls(C′) ` D ↪→ bls(D′) B ≡L B

` if B then C else D fi ↪→ bls(if B then C′ else D′ fi)

[FRK’]
` 〈C〉V ↪→ bls(〈C′〉V ′)

` fork(CV) ↪→ bls(fork(C′V ′))
[SNC’]

` C ↪→ bls(C′)

` C; sync ↪→ bls(C′; sync)

[MIX1]
` bls(C)

` C ↪→ bls(C)
[MIX2]

` C ↪→ bls(C′)

` bls(C′)

Fig. 7. Additional rules for the combining calculus

low secure program C′. The rules [MIX1] and [MIX2] permit the combination of
transforming as well as non-transforming analysis techniques. The first one relies
on the fact that a possibilistic low secure program can be securely transformed
into itself.

[TSS]
V ↪→ V ′ : Sl V ′ is sync-free

` V ↪→ bls(V ′)

The soundness proof of the extended cal-
culus goes along the same lines as the proof
of Theorem 5. We are now ready to add a
plugin for Sabelfeld’s and Sand’s proof technique. The addition is sound due to
Theorem 9 and Theorem 3.

5.3 Exemplary Type-based Security Analysis

We exemplify the use of the plugin rules [TBC] and [TSS] with a syntactical
analysis of the program from Section 4. We already argued that some blocks
of the program are strongly secure. Hence we use the combining calculus rules
supporting transforming type systems. After applying rule [SEQ’]

1. MS(fork(getPortfolio, getEuroStoxx50)),
2. ` fork(getPortfolio, getEuroStoxx50) ↪→ bls(C), and
3. ` fork(computeStatistics, generateOutput); displayOutputAndCommercial ↪→ bls(D)

remain to be derived in the calculus. The first statement can be syntactically
shown, since the first thread, getPortfolio, does not contain any conditionals and
ends with a sync statement, while the second thread, getEuroStoxx50, does not
contain any sync statements.

For the second proof obligation we do not use transforming type systems.
We hence instantiate C with fork(getPortfolio, getEuroStoxx50) and apply rule
[MIX1], obtaining ` bls(fork(getPortfolio, getEuroStoxx50)). After applying rule
[PAR], we get three new proof obligations, namely getPortfolio ≷ getEuroStoxx50,

1 The typing rules differ slightly from the ones used in [6]. The adapted rules and the
soundness argument will be provided in a technical report.

14

` bls(getPortfolio) and ` bls(getEuroStoxx50). The first statement can be easily
verified syntactically. Since getPortfolio and getEuroStoxx50 are programs that al-
ways terminate given that the network always answers the network request and
that can be checked automatically with the type system provided by Boudol
and Castellani we apply the rule [TBC] to the other two statements and obtain
the new proof obligations Γ ` getPortfolio : (τ, σ) cmd and Γ ` getEuroStoxx50 :
(τ ′, σ′) cmd. Now we need to continue using rules of the adapted type sys-
tem from [6]. One can deduce that getPortfolio can be typed with (L, H) cmd

(getPortfolio contains assignments to low variables and high guards, but the low
assignment happens before the loop), while getEuroStoxx50 can be typed with
(L, L) cmd (getEuroStoxx50 contains assignments to low variables, but no high
guards).

For the third proof obligation we apply the rule [TSS], obtaining the obliga-
tion fork(computeStatistics, generateOutput); displayOutputAndCommercial ↪→ D : Sl.
For a deduction we use Sabelfeld’s and Sand’s transforming type system. Since
neither computeStatistics, nor generateOutput, nor displayOutputAndCommercial con-
tain high guards the type system does not perform any modification and we ob-
tain E ↪→ E : Sl for some type Sl and E = fork(computeStatistics, generateOutput);
displayOutputAndCommercial.

Due to space restrictions we omit a more detailed derivation.

6 Conclusion

Obviously, the idea of combining different proof techniques is no novelty. The
contribution of this article is the illustration of how one can benefit more con-
cretely from combining proof techniques in the information flow analysis of a
given program. To our knowledge, no such result was presented before. More-
over, we introduced the combining calculus as a deductive framework that is
based on conditional compositionality results and an extensible set of plugin-
rules for existing verification techniques. As examples, we presented plugin-rules
for restrictive security characterizations (strong security and low-determinism se-
curity), which could be verified with general-purpose logics, and plugin-rules for
typing judgments that can be derived with security type systems, i.e. special-
purpose calculi. We illustrated both possibilities in a fairly realistic example
program. The addition of further plugin-rules would be desirable, for instance,
to support verification techniques with program-logics (see, e.g., [2, 7]).

Based on the experiences gained, our impression is that a baseline charac-
terization of information flow security need not be fully compositional, which
is in contrast, e.g., to the opinion stated in [21]. Nevertheless, the baseline
characterization employed in the current article, which is a possibilistic property
(like, e.g., in [31, 6]), requires further improvements, in particular, regarding
scheduling aspects. We are currently researching a security definition that is
scheduler independent, but less restrictive than strong security or low-determi-
nism security (which are both scheduler independent). Strong security is known
to be the least restrictive security definition that is scheduler independent and

15

compositional [27]. However, as we are not requiring full compositionality, less
restrictive characterizations that can serve as a justification of our combining
calculus exist (without changing the calculus), where the disjunction of strong
security and low-determinism security is an obvious candidate.

Another direction is the migration to practically relevant languages such as
Java source code or bytecode. In this context, approaches for sequential sub-
languages are available (see, e.g., [1, 3]), and it is not obvious how to generalize
them to a multi-threaded setting. Hence, the possibility of creating a combining
calculus for Java with plugin-rules for such approaches is attractive and appears,
in principle, possible with the help of a rule like [PAR].

Acknowledgments. This work was funded in part by the German Research
Association (DFG) in the Computer Science Action Program and by the In-
formation Society Technologies program of the European Commission, Future
and Emerging Technologies under the IST- 2005-015905 MOBIUS project. This
article reflects only the authors’ views and the Commission, the DFG, and the
authors are not liable for any use that may be made of the information contained
therein.

References

1. A. Banerjee and D. A. Naumann. Using Access Control for Secure Information
Flow in a Java-like Language. In IEEE Computer Security Foundations Workshop,
pages 155–169, 2003.

2. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure Information Flow by Self-
Composition. In IEEE Computer Security Foundations Workshop, pages 100–114,
2004.

3. G. Barthe and T. Rezk. Non-Interference for a JVM-like Language. In ACM SIG-

PLAN International Workshop on Types in Languages Design and Implementation,
pages 103–112, 2005.

4. A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Unwinding in Information Flow
Security. ENTCS 99, pages 127–154, 2004.

5. A. Bossi, D. Macedonio, C. Piazza, and S. Rossi. Secure Contexts for Confidential
Data. In IEEE Computer Security Foundations Workshop, pages 14–25, 2003.

6. Gérard Boudol and Ilaria Castellani. Noninterference for Concurrent Programs
and Thread Systems. Theoretical Computer Science, 281(1-2):109–130, 2002.

7. Á. Darvas, R. Hähnle, and D. Sands. A Theorem Proving Approach to Analysis
of Secure Information Flow. In International Conference on Security in Pervasive

Computing, LNCS 3450, pages 193–209, 2005.
8. Z. Deng and G. Smith. Lenient Array Operations for Practical Secure Information

Flow. In IEEE Computer Security Foundations Workshop, pages 115–124, 2004.
9. D. E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

10. D. E. Denning and P. J. Denning. Certification of Programs for Secure Information
Flow. Communications of the ACM, 20(7):504–513, 1977.

11. R. Focardi and R. Gorrieri. A Classification of Security Properties for Process
Algebras. Journal of Computer Security, 3(1):5–33, 1995.

12. J. A. Goguen and J. Meseguer. Security Policies and Security Models. In IEEE

Symposium on Security and Privacy, pages 11–20, 1982.

16

13. J. A. Goguen and J. Meseguer. Inference Control and Unwinding. In IEEE Sym-

posium on Security and Privacy, pages 75–86, 1984.
14. J. Knudsen. Networking, User Experience, and Threads, 2002.

http://developers.sun.com/techtopics/mobility/midp/articles/threading/.
15. B. Köpf and H. Mantel. Eliminating Implicit Information Leaks by Transforma-

tional Typing and Unification. In International Workshop: Formal Aspects in Secu-

rity and Trust, Revised Selected Papers, LNCS 3866, pages 47–62. Springer-Verlag,
2006.

16. Q. H. Mahmoud. Preventing Screen Lockups of Blocking Operations, 2004.
http://developers.sun.com/techtopics/mobility/midp/ttips/screenlock/.

17. H. Mantel. Possibilistic Definitions of Security – An Assembly Kit. In IEEE

Computer Security Foundations Workshop, pages 185–199, 2000.
18. H. Mantel. Unwinding Possibilistic Security Properties. In European Symposium

on Research in Computer Security, LNCS 1895, pages 238–254, 2000.
19. D. McCullough. Specifications for Multi-Level Security and a Hook-Up Property.

In IEEE Symposium on Security and Privacy, pages 161–166, 1987.
20. J. D. McLean. A General Theory of Composition for Trace Sets Closed under

Selective Interleaving Functions. In IEEE Symposium on Research in Security and

Privacy, pages 79–93, 1994.
21. J. K. Millen. Hookup Security for Synchronous Machines. In IEEE Symposium on

Research in Security and Privacy, pages 84–90, 1990.
22. C. Pöpper. A Security Analyzer for Multi-Threaded Programs. Diploma thesis,

ETH Zurich, March 2005.
23. A. W. Roscoe. CSP and Determinism in Security Modelling. In IEEE Symposium

on Security and Privacy, pages 114–127, 1995.
24. J. M. Rushby. Noninterference, Transitivity, and Channel-Control Security Policies.

Technical Report CSL-92-02, SRI International, 1992.
25. A. Russo and A. Sabelfeld. Securing Interaction between Threads and the Sched-

uler. In IEEE Computer Security Foundations Workshop, 2006.
26. P. Y. A. Ryan and S. A. Schneider. Process Algebra and Non-interference. In

IEEE Computer Security Foundations Workshop, pages 214–227, 1999.
27. A. Sabelfeld. Confidentiality for Multithreaded Programs via Bisimulation. In

Andrei Ershov International Conference on Perspectives of System Informatics,
LNCS 2890, pages 260–274, 2003.

28. A. Sabelfeld and A. C. Myers. Language-based Information-Flow Security. IEEE

Journal on Selected Areas in Communication, 21(1):5–19, 2003.
29. A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Pro-

grams. In IEEE Computer Security Foundations Workshop, pages 200–215, 2000.
30. G. Smith. Probabilistic Noninterference through Weak Probabilistic Bisimulation.

In IEEE Computer Security Foundations Workshop, pages 3–13, 2003.
31. G. Smith and D. Volpano. Secure Information Flow in a Multi-threaded Imperative

Language. In ACM Symposium on Principles of Programming Languages, pages
355–364, 1998.

32. D. Volpano and G. Smith. Probabilistic Noninterference in a Concurrent Language.
In IEEE Computer Security Foundations Workshop, pages 34–43, 1998.

33. S. Zdancewic and A. C. Myers. Observational Determinism for Concurrent Pro-
gram Security. In IEEE Computer Security Foundations Workshop, pages 29–43,
2003.

17

