' t
Technical Repor
TiJD-CS-2008-1 103

' rocessor for
signing a COp.
:)rﬁcegupt Handling on an

|
ss, H. Mante
I H. Shao, H. Sudbrock, S. A. Hu

H. G. Molter, H.

E
TECHN ISCIj

UNIVERSITAT
DARMSTADT

ElESsgpMk

ich Informatik
Fachbereich
® TU Darmstadt, Germany
e i ™

Pb
(& T
PESgpig, .m;dlﬂ
= itrgen

n o

EDK VERsIoN
e 9.1.02
e virtexzp
GENERATEp,

chvnSoffBQsJ
Friju 1 10:07.:37 2008

Key
b SthMBoLg
DUSinterfyc, Bus ONnectigng S
St W TSe o g "

"Vlumm
i
® oy e Moy, ¥ coniaRy

T Wi,
- ave

— Monitoy , “\““&-‘r
Bus Sty « V= frsler
OLoRs oriy
dards

.nu\ .
R g, B

! ‘nen. P2P, Usey,
"USER, e
L .xu.\p,!ﬁxl o

Contents
1 Introduction 3
2 Interrupt-related Covert Channels 3
3 Coprocessor for Interrupt Handling 4
3.1 System ArchiteCture o vt it ettt e e et e e e e e e e e e e e e 4
3.1.1 XUP Virtex-II Pro Development SYStemttt ittt e e oo e 5
3.1.2 Interrupts on the XUP Virtex-II Pro Development System 5
3.2 Design Space EXploration oot i e e e e 6
3.3 Implementation o v vt e e e e e e e 8
3.3.1 Hardware COMPONENLS . . . o o vt e e e et e e e e e e e e e e e e e e 8
3.3.2 Software Applications i i it e e e e e 9
4 Evaluation by Timing Measurements 9
4.1 Hardware Design and Implementation of System without Coprocessor 10
4.2 Design and Implementation of the Evaluation Software 11
4.3 Evaluation Results e 12
5 Conclusion 13
A Source Code 15
A1 Project MeasUreMENT-SW . . . o v v v v v e et e et e et e et e e e e e e e e e e e e e e e e e 15
A1l File proCA.C . . o ot e e 15
A1.2 File ProCB.C . v v vt it e e 16
A.2 Projects powerpc-sw and microblaze-sw e e 18
A2 1 File proc_XMK.C . . v v v i i e et e e e e e e e e e 18
A2.2 File proc_MB.C. . . v ottt e e e 20

Contents 1

Contents

1 Introduction

In order to enforce system-wide information-flow control policies, one needs to control the communication chan-
nels between different system processes. Covert channels [Lam73] are information channels that pose particular
problems in this context. Such channels are means for the transmission of information, that are not intended for
that purpose and can, e.g., be established by exploiting asynchronous hardware interrupts for the transmission
of information [MS07, MS08]. Covert channels exploiting interrupt requests for covert communication are called
interrupt-related covert channels.

There are various possibilities to mitigate interrupt-related covert channels without giving up on interrupt-based
communication between hardware devices and the CPU. In our current project we explore approaches that avoid
interrupt handling performed by the CPU by transferring the task of handling asynchronous hardware interrupts
to an additional hardware component. This component contains the necessary functionality to take over the
time-critical handling of asynchronous interrupts. The non-time-critical handling is taken over by the CPU after
synchronization with the new component. We implement the additional hardware component on an FPGA.!.

In this report, we present a specialized interrupt controller that is able to take over the handling of asynchronous
interrupt requests caused by pressing push-button switches that, in our example scenario, control an array of
LEDs. The design, comprising a CPU and the interrupt controller, is implemented on a Xilinx Virtex-II Pro System
Development Board (XUP V2-Pro) [Xild]. The interrupt controller is implemented on a Xilinx MicroBlaze softcore
processor. Besides the description of the hardware architecture and the hardware and software implementation we
provide analysis results suggesting that such interrupt controllers implemented on a MicroBlaze softcore processor
can be effectively used to mitigate interrupt-related covert channels.

This report is structured as follows: In Section 2 we introduce the class of interrupt-related covert channels in
more detail. In Section 3 we describe the design of the specialized interrupt controller. In Section 4 we evaluate
the effectiveness of our design with respect to the elimination of interrupt-related covert channels. We conclude in
Section 5. The source code of the developed software is contained in Appendix A.

2 Interrupt-related Covert Channels

Using an interrupt-related covert channel, one process running on a system (the sending process) can transmit
information to a second process running on the system (the receiving process). The transmission of information is
based on operations that result in asynchronous interrupt requests. The receiving process continuously monitors
a clock during its execution. This allows the process to notice the times at which it has been preempted by an
interrupt request. For example, the observation that it was preempted at least once during a given time-slot could
be interpreted as the value 1 and that it was not preempted as the value 0. To transmit the value O over this
channel, the sending process only needs to refrain from executing operations that result in interrupt requests and,
to send a 1, it performs such operations. Such an interrupt-related channel cannot be mitigated by assigning a
constant quota of resource usage to each process [MS07], a technique that can be used to mitigate many other
types of covert channels.

One can establish interrupt-related covert channels based on different operations and hardware devices. For
example, one could use a network interface card to generate interrupt requests (see also Figure 2.1). Consider a
network interface card that requests interrupts on two occasions: after a packet has been transmitted to the network
and after a packet has been received from the network. To generate an interrupt request, the sending process could
request the transmission of a packet via the NIC, since after the transmission of the packet the network interface
card acknowledges the transmission by an interrupt request. The handling of this interrupt will occur during the
receiving process’ time-slot if the transmission request is issued at the proper time by the sending process.

Figure 2 illustrates the transmission of the bit sequence (1,1,0) from the sending process (denoted with A) to the
receiving process (denoted with B) in a simple example scenario where processes are scheduled alternately, and
the only other active process is an operating system process (denoted with 0S). In the diagram, time progresses
from left to right, and the labeled boxes represent the time quanta where the label indicates the process.

The labeled circles indicate the points in time when transmission requests occur. The sending process performs a
transmission request at a during its first quantum, and the corresponding interrupt is handled during the receiving
process’ first quantum (indicated by the shaded area in the box representing the receiving process’ first time quan-
tum). The sending process requests another transmission at time . During its third time quantum, the sending

! Field programmable gate array, an electronic components whose inner logic can be freely programmed within certain restrictions

2 Interrupt-related Covert Channels 3

Interrupt Requests

Ethernet o NIC > CPU

Connection

Y

Protocol Stack -

Figure 2.1: Typical architecture for a system containing a Network Interface Card (NIC) communicating with the
CPU via asynchronous interrupts

interrupt handler interrupt handler

(a@[B [os [a@[l8 [os[a [B [..

Figure 2.2: Exemplary transmission via an interrupt-related covert channel

process does not request any transmissions. The receiving process can then reconstruct the sequence by measuring
the delay caused by interrupts in its three time-slots.

Exploitation scenarios like the one illustrated above are realistic threats. This has been demonstrated by an
implementation of an interrupt-related covert channel exploiting interrupts from a network interface card [Gay08].

3 Coprocessor for Interrupt Handling

In this section, we present a proof-of-concept implementation for a coprocessor that handles interrupts of a simple
hardware device.

The hardware device consists of five push-buttons (4,..., E) that are connected to a five-bit port P. Each bit of
the port corresponds to one of the five push-buttons. Whenever a button is pressed down the corresponding bit of
port P is set to one, otherwise it is set to zero. Furthermore, a button press results in the generation of an interrupt
request. The corresponding interrupt handler reads port P and lights four LEDs according to the bits of P that are
asserted.

One solution to free the CPU from handling these button interrupts would be to use polling instead of interrupt-
based communication. However, depending on the polling frequency, button presses can be lost. Consider, e.g., a
polling frequency of 1 Hz. If the buttons are pressed 3 times per second, button presses are lost.

This illustrates that giving up interrupt-based communication is an obvious disadvantage. We therefore imple-
ment a coprocessor that takes away the interrupt handling from the CPU itself. The interrupts are handled by the
coprocessor which communicates them to the CPU via a shared memory.

3.1 System Architecture

In this project a custom processing system is developed and configured on an XUP! Virtex-II Pro Board [Xild]
by combining a programmable Platform FPGA with a tightly integrated embedded design environment. For the
implementation, the Embedded Development Kit (EDK, [Xila]) from Xilinx is used.

1 Xilinx University Program

4

3.1.1 XUP Virtex-ll Pro Development System

The main hard and soft components of the designed system are as follows:

Processor Cores:

* PowerPC (PPC) hard processor core (two embedded instances running at 300MHz)
* 32-bit MicroBlaze soft processor core (virtual core on the FPGA, defined by a VHDL description)

Peripheral IP? Cores:

* Parameterizable standard set of peripherals
* User defined peripherals

Interconnect Buses:

* Processor Local Bus (PLB) for fast communication with the processor

* On-Chip Peripheral Bus (OPB) for slow communication between peripheral devices

* Local Memory Bus (LMB) for communication with the local memory

* Fast Simplex Link (FSL) for uni-directional point-to-point communication between two peripheral de-

vices
Input and Output Devices:

* Universal Asynchronous Receiver-Transmitter (RS232 UART serial port)
* Four LEDs connected to IO pins
* Five Push-button Switches connected to IO pins

Memories:

* On-chip Block RAM (BRAM)

Software Platform:

* Board Support Packages: Xilinx MicroKernel (XMK)
* Drivers for peripheral devices
* Custom proof-of-concept software

3.1.2 Interrupts on the XUP Virtex-1l Pro Development System

The interrupt and exception handling on the Xilinx board is processed by a dual-level interrupt control structure
composed of interrupt registers and the interrupt controller interface [Xilb].

Interrupt Controller: The interrupt controller interface is an external interrupt controller that combines asyn-
chronous interrupt inputs from on-chip and off-chip sources and sends them to the PowerPC processor using
two interrupt signals (one for the class of critical and one for the class of non-critical interrupts). When
asserted, these signals indicate that interrupts are being requested. When deasserted, no interrupts are cur-
rently requested. In other words, the interrupt controller is responsible for collecting interrupt requests from
peripherals and presenting them as a single critical or non-critical request to the PowerPC processor block. In
addition, the interrupt controller is responsible for specifying the interrupt priorities, masking, and interrupt
handlers as well.

Interrupt Ports: While the PowerPC has two interrupt ports, one port for critical and one port for non-critical
interrupts, the MicroBlaze softcore processor has only one interrupt input port, to which a single interrupt
signal can be connected directly. In both cases, if it is possible that multiple interrupts are generated at the
same time, an interrupt controller must be present to handle the simultaneous interrupts.

2 Intellectual Property

3 Coprocessor for Interrupt Handling 5

Interrupt Handling Mechanism: An interrupt handler is also known as an Interrupt Service Routine (ISR). When
an interrupt occurs, the PowerPC respectively the MicroBlaze processor will stop executing the current code
and call the associated interrupt handler to manage the interrupts. More precisely, on the occurrence of
interrupt requests, the PowerPC processor or, respectively, the MicroBlaze softcore processor jumps firstly to
the location/address of the main ISR. Then from this main ISR the processor jumps to the ISR of the actual
interrupt source.

If the source is an interrupt controller, the controller’s ISR is responsible for managing the ISRs of the inter-
rupts connected to it. It contains the routine that determines which individual ISR should be executed. From
there, the processor jumps to the address of the individual ISR and executes the routine programmed at that
location.

For any customized peripheral that generates an interrupt, an associated user ISR might be programmed
and specified in the appropriate software application. This ISR should be registered at the interrupt vector
table of the interrupt controller with it’s function Intc_RegisterHandler afterwards. If an interrupt routine
is not specified for a peripheral device, a default dummy interrupt handler is used. The main interrupt
service routine is initiated with the function XExc_RegisterHandler for the PowerPC processor and with
microblaze_register_handler for the MicroBlaze softcore processor, respectively. Once the process is
started, the interrupt handling mechanism is very similar for both the PowerPC and the MicroBlaze core.

Interrupt Processing Time: For the MicroBlaze softcore processor the interrupt processing time is particularly crit-
ical, as it is not as fast as, e.g., the PowerPC processor. Usually, peripheral devices cannot wait for too long
for an interrupt to be served. Therefore, interrupt handlers have to work very fast.

The time it takes the MicroBlaze softcore processor to enter an Interrupt Service Routine from the time
an interrupt occurs depends on the configuration of the MicroBlaze processor and the latency of the mem-
ory controller storing the interrupt vectors. In addition, the user handlers take a variable amount of time
depending on the associated service routines.

3.2 Design Space Exploration

In order to eliminate interrupt-related covert channels, one possibility is to free the PowerPC from the time-critical
handling of asynchronous interrupt requests. To achieve this, we insert an additional coprocessor into the embed-
ded system, which is designed and implemented on the Xilinx board (XUP Virtex-II Pro).

For time-critical asynchronous interrupts, the additional coprocessor should take the responsibility for handling
these interrupts by servicing the associated interrupt handlers appropriately. For asynchronous interrupts that are
not time-critical, the additional coprocessor should take the responsibility for collecting these interrupt requests,
and presenting them in an aggregated form to the PowerPC as soon as the PowerPC is ready for synchronous
communication. By this means, interrupt handling that is not time-critical is handed over periodically to the
PowerPC and is serviced synchronously.

Figure 3.1 illustrates a variety of designs, which could, in principle, realize the desired supplemental functional-
ity.

* In design variants la and 1b, a custom-made interrupt controller is used as a coprocessor. The custom-
made interrupt controller shall take the responsibility of collecting the asynchronous interrupts from the
hardware devices within the system, passing interrupts which are not time-critical to the PowerPC core, and
handling the time-critical interrupts independently as well. In variant 1la, the collected interrupt data are
transmitted to the PowerPC synchronously, which is implemented as one of the functionalities referred to the
custom-made interrupt controller. In variant 1b, the collected interrupt data are transmitted to the PowerPC
periodically due to periodic polling performed by the PowerPC. By this means, the interrupt data will be
processed by the PowerPC processor core synchronously and periodically, which is sufficient for eliminating
the potential occurrence of timing channels caused by asynchronous interrupt-driven communication.

* In design variants 2a and 2b, the functionalities realized by the custom-made interrupt controller in variants
la and 1b are implemented without the basic functionality of a standard interrupt controller. Basic interrupt
controller functionality is provided by a configured interrupt controller on the FPGA.

* In design variants 3 and 4, the self-defined interrupt controller is substituted by a configured OPB interrupt
controller and a processor core (MicroBlaze softcore in variant 3, PowerPC in variant 4). The additional

6 3.2 Design Space Exploration

Interrupt-driven
Devices

Interrupt-criven
Devices

Synchronous Asynchronous
; . . Interrupt Data Custom-made | Internipls Interrupt-driven
Variant 1a PowerPC Interrupt Controlles [Devices
Penodic Polling . Asynchronous
. . Custom-made Interrupts Interrupt-driven
Variant 1b: PowerPC Interrupt Data Internupt Controller | Devices
Synchronous Arranged Asynchronous
. Interrupt Data Custom-made | Interrupt Data oPB Interrupts
Variant 2a:
arant <a PowerPC * Interrupt Controller Interrupt Controller
Periodic Folling Arranged Asynchronous
3) "l Custom-made | Interrupt Data OPB Interrupts
Variant 2b: Pl Interrupt Data |Intesrupt Controller [* Intermupt Controller ¥
Asynchronous
. . OFB Interrupts Interrupt-driven
Variant 3: PowerPC Interrupt Gontrolier [Devices
Arranged Interrupt Data
Periodic Polling *
Sharad Interrupt Data .
Mermory |+ MicroBlaze
Variant 4 Asynchronous
ariant 4: OFB Interrupts Interrupt-driven
PowerPC_0 Interrupt Controller [Devices
Arranged Interrupt Data
" , h 4
Periodic Polling
Shared Interrupt Data
| e = PowerPC_1

Figure 3.1: Design with additional coprocessors

3 Coprocessor for Interrupt Handling

OPB_BUS_0 OPB_BUS 1 PLE BUS
OPB
MicroBlaze Interrupt pﬁffg:a PPC405
Controller
ILMB BUS DLMB BUS
ILMB DLMB OPB_UARTLITE PLE BRAM
BRAM BRAM INTGEN } = L
e el RS232_UART Controller
BRAM g OFB_GFIO
Push-Button OL';%?GLEI‘:? BRAM
Switches
OPB_BRAM_ Shared Memory OPB_BRAM_
Controller_0 BRAM Controller_1

Figure 3.2: System with two processor cores (PowerPC and MicroBlaze)

processor core can fetch instructions and data from memory, execute program flow control instructions,
perform input/output operations, manage memory, etc. In addition, the communication between the two
processor cores is accomplished by a shared memory.

In order to ease the system development process, we chose design variant 3 for the implementation of the inter-
rupt coprocessor. Using the rich functionality of a processor core makes it much easier to develop the functionality
required by the design goal, as compared to the development of a custom-made interrupt controller from scratch.
As the MicroBlaze processor is a softcore processor, once the design is finished, unnecessary parts of the processor
can be easily removed, allowing for a smaller and cheaper solution than a full-fledged PowerPC core.

3.3 Implementation

The concrete implementation of the customized embedded system on the Xilinx board is illustrated in Figure 3.2.
It consists of a PowerPC processor, a MicroBlaze softcore processor and a variety of peripheral components.
The PowerPC processor is used as the CPU of the implemented system. On the PowerPC, the Xilinx Micro-
Kernel (XMK, [Xilc]) is used as the operating system. The MicroBlaze softcore processor is applied in this system as
a customized peripheral component, its main task is to manage and service the external and internal asynchronous
interrupts. On the MicroBlaze softcore processor no special operating system is used, as it does not need any
operating system functionalities like, e.g., threading.

3.3.1 Hardware Components

The configured settings of the hardware components within this system are summarized in Table 3.1. The periph-
eral INTGEN is used as an interrupt source in this system. The push-button switches on the Xilinx board are used
as its interrupt trigger.

If one of the push-buttons is pressed, an interrupt request will be generated by INTGEN. This request is trans-
mitted via the connected OPB bus to the interrupt controller OPB_INTC, in which interrupt requests are managed
according to the configured specifications. Thereafter it is submitted to the MicroBlaze softcore processor, which
handles and services the interrupt appropriately.

The processed output data from the MicroBlaze softcore processor will be delivered to the shared memory and
redrawn by the PowerPC processor later. The PowerPC is responsible for forwarding the interrupt-associated infor-

8 3.3 Implementation

System Property |

Setting |

FPGA Board Xilinx Virtex-II Pro Development System

PowerPC 405 with clock frequency 300 MHz
MicroBlaze with clock frequency 100 MHz

PLB, OPB, and LMB Bus with bus frequency 100 MHz
peripheral PLB20OPB_Bridge

peripheral RS232 Uart

Processor Core

Internal Interconnection

/O Devices Push-Button Switches and LEDs on board

Interrupt Controller peripheral OPB_INTC

Interrupt Source custom peripheral INTGEN

M BRAMs using associated memory controller:
emory

plb_bram_if cntlr, opb_bram_if cntlr and Imb_bram_if cntlr

Table 3.1: Hardware components within system sys-with-coprocessor

mation via the RS232_UART receiver/transmitter to the outside world and to control the LEDs on the Xilinx board
based on the interrupt-associated information.

Note that the interrupt sources are no longer directly connected to the PowerPC core. Information about interrupt
requests can only reach the PowerPC if it is written to the shared Block RAM by the interrupt controller running on
the MicroBlaze softcore processor.

3.3.2 Software Applications

Two software application projects (microblaze-sw and powerpc-sw) are developed in this system, one of them con-
tains the software running on the PowerPC core, the other contains the software running on the MicroBlaze softcore
processor.

In project microblaze-sw the customized interrupt handler intr_generated is implemented and registered to the
interrupt vector table of the MicroBlaze softcore processor for handling the interrupt request submitted by the
peripheral INTGEN. The interrupt handler reads the information about which button is pressed from the button
controller. It then writes this information to the shared block memory.

In project powerpc-sw, the software running on the PowerPC is specified. This software polls the interrupt-
associated information, which specify the exact location of the button being pressed and the occurrence times of
interrupt events, from the shared block memory. It then transmits this information via the RS232 interface to the
output terminal, and, based on this information, controls the status of an array of LEDS on the Xilinx board. The
mapping table of the LEDs-light-on and the push-buttons-pressed is listed in the table below:

| pressed Push-Button || light-on LED |

Button UP LED O
Button DOWN LED 1
Button RIGHT LED 2
Button LEFT LED 3
Button ENTER LEDsO0 &1 &2 &3

The source codes for these projects are provided in Appendix A.2.

4 Evaluation by Timing Measurements

To illustrate the effect of the interrupt coprocessor, we measured interruption times of a process running under the
Xilinx Micro-Kernel on the PowerPC for two different scenarios: Without the dedicated interrupt coprocessor as
presented in the previous section, and with this dedicated interrupt coprocessor. Without the dedicated interrupt
coprocessor, the interruptions of the process by the interrupt handler running on the PowerPC should be notable by
the measuring process, while in the presence of the coprocessor the interruptions should no longer be observable
by the measuring process. Our measurement results support that this is in fact the case.

4 Evaluation by Timing Measurements 9

OPB
Interrupt Controller

PLB BRAM Controller BRAM

INTGEN|Interrupt Request

INTGEN

Interrupt Request

Push-Button|Interrupt Request

OPB_GPIO N
Push-Button Switches

PPC405 —— PLBBUS——{ PLB20FPB Bridge OPB BUS

OFB_GPIO
User LEDs

OPB_UARTLITE

RS232_UART
Figure 4.1: PowerPC system using XMK
| System Property | Setting
FPGA Board Xilinx Virtex-II Pro Development System
Processor Core PowerPC 405 with clock frequency 300 MHz

PLB and OPB Bus with clock frequency 100 MHz
peripheral PLB20OPB_Bridge
peripheral RS232 Uart

Internal Interconnection

/O Devices Push-Button Switches and LEDs on board
Interrupt Controller peripheral OPB_INTC

Interrupt Source custom peripheral INTGEN

Memory BRAM using memory controller plb_bram_if cntlr

Table 4.1: Hardware Components within system sys-without-coprocessor

To measure interruptions on a system without dedicated interrupt coprocessor, we developed and configured
a second customized embedded system, called sys-without-coprocessor, on the XUP Virtex-II Pro Board using the
processor PowerPC running the Xilinx Micro-Kernel (XMK). This system is similar to the system presented in the
previous section in that it allows to switch LEDs on and off with the help of five push-button switches. However,
the interrupt requests generated by the push-button switches are directly handled by the PowerPC, and not by a
MicroBlaze softcore processor.

4.1 Hardware Design and Implementation of System without Coprocessor

The hardware infrastructure of the system consists of a PowerPC 405 processor core and a variety of peripherals,
which are interconnected through the Processor Local Bus (PLB) and the On-Chip Peripheral Bus (OPB). The
hardware architecture is illustrated in Figure 4.1. The configuration of the hardware components is summarized in
Table 4.1.

The peripheral INTGEN is used as an interrupt source. The push-button switches on the Xilinx board are used as
an interrupt trigger for INTGEN. If a push-button switch is pressed, the output signal PushButtons_5Bit IP2INTC Irpt

10 4.1 Hardware Design and Implementation of System without Coprocessor

Push-Button Switches INTGEN
Q Push-Button Interrupt Request O

INTGEM Interrupt Request

v

Q Interrupt Request Q
-

PPC405 OPE Interrupt Controller

Figure 4.2: Interrupt signal flow within the system

| Component | Description
Standard C Libraries (libc, libm) Software libraries available for the embedded processors
Embedded Kernel (Xilkernel) Kernel for the Xilinx embedded processors

Board Support Package Standalone || The lowest layer of software modules
used to access processor-specific functions
Drivers Device drivers for supported peripherals

Table 4.2: Components within software system XMK

from the peripheral PushButtons_5Bit will be set to "1’. It is captured by the peripheral INTGEN and the output sig-
nal intrgen_0_IP2INTC Irpt will be asserted to ’1’. By this means, the interrupt request is submitted to the interrupt
controller OPB_INTC. This interrupt request is then forwarded from the interrupt controller OPB_INTC to the pro-
cessor core PPC405 via the signal EICC405EXTINPUTIRQ. Subsequently the associated interrupt handler is invoked
by the processor core PPC405, and the interrupt is acknowledged and serviced appropriately. The transmission of
the interrupt signal caused by pressing a push-button through the hardware components is illustrated in Figure 4.2.

4.2 Design and Implementation of the Evaluation Software

The software platform used for the measurement of process interruptions is developed and configured based on
the Xilinx Micro-Kernel (XMK). The XMK includes the components listed in Table 4.2.

Operating System
As operating system we use the Xilkernel. In our testing environment, it is accommodated with the following
functionalities:

* Thread creation, destruction and manipulation
* Round-robin scheduling with time-slices
* Timing measurement based on kernel clock ticks

* Interrupt controller and interrupt handling

Software Application

The software application project used to perform the measurements, called measurement-sw, is developed for
this embedded system. It is linked with the Xilkernel described above. This application project consists of two
programs written in the C programming language: procA and procB (the source code of both programs is contained
in Appendix A.1, see files procA.c and procB.c). The main() routine of procA is declared as the entry point of the

4 Evaluation by Timing Measurements 1

unsigned long loop _length = 1000;
XTime start, end, diff;

XTime_GetTime(&start); // Measure time before execution of waster ()
waster (loop_length); // Execute function waster ()

XTime GetTime(&end); // Measure time after execution of waster ()

diff = end—start; // Compute runtime between time measurements

Listing 4.1: Code fragment for runtime measurement

void waster (unsigned long loop length) {
unsigned long i = loop_length;
volatile double v = 1.0;
for (; i>0; —i) v »= 1.5; // Dummy calculation by simple multiplications

Listing 4.2: The function waster()

kernel. The start routine of thread procA (procA_main) is the starting point of the software application’s execution,
from which procB is started.

The program procB firstly registers the interrupt handler for the push-button interrupts with the operating system.
Each time the interrupt handler is executed, a counter is increased, and the new interrupt count is printed on the
screen. In addition, the interrupt status is queried and displayed. Finally, the interrupt signal is deasserted.

After registering the interrupt handler, the actual measuring phase takes place. In an infinite loop the program
procB continuously executes a piece of program code (the function waster()) which performs a dummy calculation.
By retrieving the system time before and after the execution of this piece of code the runtime of the code and of any
interruptions during its execution is determined. The source code fragment for the runtime measuring is displayed
in Listing 4.1, the source code fragment for the function waster() in Listing 4.2.

This software allows to detect interruptions of the program procB: If the process running procB is not interrupted,
the measured runtime of the waster()-loop will approximately equal the actual runtime of the loop. If, however, the
process is interrupted during the execution of the waster()-loop, the measured runtime will be as much longer as
the time that the process was interrupted. This is illustrated in Figure 4.2: In both diagrams the execution of procB
is illustrated, where the light-gray area depicts the execution of the function waster(), while the dark-gray area
depicts the handling of an asynchronous interrupt request. In the upper time-line, the execution of waster() is not
interrupted, while in the lower time-line the execution is is interrupted by the interrupt handler of an asynchronous
hardware interrupt. In the illustration, the measured runtime A, in the lower diagram is obviously larger than the
measured runtime A, in the upper diagram.

4.3 Evaluation Results

The times measured directly before and directly after the execution of the waster()-loop were displayed on the
terminal during runtime. Based on the measurements obtained by executing this function for 100 times, we
obtained the following results:

* Results for the system without dedicated coprocessor:

— The processing time of the waster()-loop in the case that it was interrupted by an interrupt handler
caused by pressing a push-button switch lies between 7410162 and 7814373 kernel ticks,® which is
equivalent to the range from 24,70 to 26,05 milliseconds.

— The processing time of the waster()-loop in the case that it was not interrupted lies between 5115312
and 5125386 kernel ticks, which is equivalent to the range from 17,05 to 17,08 milliseconds.

1 Kernel ticks are the PowerPC clock ticks, occurring with a frequency of 300 MHz.

12 4.3 Evaluation Results

waster() uninterrupted execu-
tion of waster()

waster() IRQ N interrupted execution
handler of waster()

r Az 1

Figure 4.3: Uninterrupted and interrupted runtime measurement, with runtime measurements A, respectively A,

* Results for the system with dedicated coprocessor:

— The processing time of the waster()-loop lies between 5199309 and 5200653 kernel ticks, which is
equivalent to the range from 17,33 to 17, 34 milliseconds, no matter whether interrupts were generated
by pressing push-buttons or not.

We conclude from the above results for the system without a dedicated coprocessor that the interruption time
of a process due to interrupt handling caused by a push-button press lies between 2284776 and 2699061 kernel
ticks, which is equivalent to the range between approximately 7,6 and 9,0 milliseconds (the difference between
the interrupted execution time of the waster()-loop and the uninterrupted execution time of the waster()-loop).

One can see from the results that in the presence of a dedicated coprocessor handling the push-button interrupts,
the interruptions are no longer detected by our measurements.

The evaluation results suggest that it is indeed possible to mitigate interrupt-related covert channels by the
usage of a dedicated coprocessor that shields the CPU from the asynchronous handling of interrupt requests. Since
processes are no longer interrupted by asynchronous hardware interrupts, information can no longer be transmitted
by generating and measuring such interrupts.

5 Conclusion

In the preceding sections we presented two different systems: one emulates a standard computer system in which
the interrupt signal generated by pressing push-button switches is directly handled by the CPU; the other emulates
a system with a dedicated interrupt coprocessor, the interrupt signal is handled by the interrupt coprocessor and
information about the interrupt requests is saved in a desired form in the shared memory, which is polled syn-
chronously and periodically by the CPU. We showed via experimental measurements that system processes running
on the CPU can detect the presence of interrupt requests on the first system by measuring the runtime of a small
piece of code. Experimental measurements on the second system suggest that the presence of interrupt requests
can no longer be detected in this fashion when our interrupt coprocessor is in place. This means that our interrupt
coprocessor is a sensible approach to counter the threat of interrupt-related covert channels. This result demon-
strates that, besides software-based countermeasures as, e.g., proposed in [MS07], special-purpose hardware can
be used to mitigate such covert channels.

We are currently working on extending this approach to more complex hardware components like network
interface cards. Such components are in need of more complex interrupt handling. Some devices request an
interrupt for various events, and the interrupt handler needs to handle each event appropriately. E.g., in the case
of network interface cards, both incoming and outgoing network packets need to be handled. Furthermore, the
handling is time-critical, since network packets need to be transmitted and received at very high speeds. For such
hardware components, we aim at developing coprocessors that handle all time-critical communication with the
network interface card autonomously, while communicating with the CPU in a synchronous fashion.

5 Conclusion 13

Bibliography

[Gay08]

[Lam73]

[MSO07]

[MSO08]

[Xila]

[Xilb]

[Xilc]

[Xild]

Richard Gay. Interrupt-related Covert Channels from an Attacker’s Perspective. Diplomarbeit, RWTH
Aachen, December 2008.

B. W. Lampson. A Note on the Confinement Problem. Comm. ACM, 16(10):613-615, 1973.

Heiko Mantel and Henning Sudbrock. Comparing Countermeasures against Interrupt-Related Covert
Channels in an Information-Theoretic Framework. In 20th IEEE Computer Security Foundations Sympo-
sium, CSF 2007, pages 326-340, 2007.

Heiko Mantel and Henning Sudbrock. Information-theoretic Modeling and Analysis of Interrupt-related
Covert Channels. In Preproceedings of the Workshop on Formal Aspects in Security and Trust, FAST 2008,
2008.

Xilinx,Inc. http://www.xilinx.com/ise/embedded_design_prod/platform_studio.htm (Abruf:
25.8.2008).

Xilinx,Inc. PowerPC 405 Konzepte. http://direct.xilinx.com/bvdocs/userguides/ug011.pdf
(Abruf: 09.10.2007).

Xilinx,Inc. XilKernel 3.0a. http://www.xilinx.com/ise/embedded/edk91i_docs/xilkernel_v3_00_
a.pdf (Abruf: 09.10.2007).

Xilinx,Inc. XUP V2-Pro Produktwebseite. http://www.xilinx.com/univ/xupv2p.html (Abruf:
09.10.2007).

14

Bibliography

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A Source Code

A.1 Project measurement-sw

A.1.1 File procA.c

#include "xmk.h"
#include <os_config.h>
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <xtime 1.h>
#include <sys/process.h>

extern void+ procB main (void=*);

void+ procA main(void+ param) {

}

/* Declare time counter, thread and its attributes =/
XTime ticks;

int retval;

pthread t B_tid;

pthread attr t attr;

pthread attr_init (&attr);

/+* Indicate start of process execution +*/
print ("—_procA:_Started_up._——\r\n");

/* Acquire current running time in unit ticks »/
XTime GetTime(&ticks);

/* Convert time from integer to hexadecimal string and print it as output =*/
print ("procA:_clock_ticks_currently:_");

putnum(ticks);

print ("\r\n");

/* Generate thread with start address procB_main and define its attributes =/
retval = pthread create(&B _tid, &attr, procB main, NULL);

if (retval !'= 0)
xil printf("procA: _ Error_during _pthread create_for_B tid.\r\n");

while (1) {
print (" _procA:_procA_active.\r\n");
/+ Yield execution to the next process context in the queue =*/
yield ();

b

/+ Indicate end of process execution =/
print ("—_procA:_procA_finished_——\r\n");

/+* Terminate the calling thread =/
pthread exit(NULL);
return O;

A Source Code 15

49

50

51

52

53

54

11

12

13

14

15

17

18

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

int main() {

print ("\r\n—_Entering_xilkernel main()_—_\r\n");

/+* Routine for the xilkernel entry point =/
xilkernel main ();

}

A.1.2 File procB.c

#include "xmk.h"
#include <stdio.h>
#include <pthread.h>
#include <xtime 1.h>

#include <os_config.h>
#include <xparameters.h>
#include <xstatus.h>
#include <sys/intr.h>
#include "xbasic types.h"
#include "xgpio.h"

/+* Declare time counter,interrupt counter and general purpose input device =/

static XTime normal = 0;
static XGpio Buttons;
static volatile unsigned int intr count = O;

#define intr_true 0x00000001
#define XGPIO_IPIF_OFFSET 0x100
#define XIIF V123B IISR_OFFSET 32UL
#define Mask 1UL

/+* The main task of waster is killing time =/
void+ waster (unsigned long loop length) {
print ("procB: _waster_started_up.");

unsigned long i = loop length;
volatile double v = 1.0;

/* Perform dummy calculation =/
for (; i>0; —i) v »= 1.5;
b

/+* Self—defined interrupt handler +/
void extra_int handler(void =callback) {
/+* Indicate interrupt occurrence =/
printf ("\r\n_—_Interrupt_occurs_\r\n");

/+* Increment the number of occurred interrupts and print
unsigned int xcount = (unsigned int =)callback;

if (count != NULL) {
(+count)++;

printf ("=>_Interrupts_generated, %u_times.\r\n",

b

(#count));

it as output =/

/+ If an interrupt is invoked successfully by pressing buttons on the FPGA board,

16

A.1 Project measurement-sw

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

b

« the interrupt status should be 0x0001 =/

Xuint32 Reg32Value;

Reg32Value = XGpio InterruptGetStatus (&Buttons);

xil printf("_—_Buttons _interrupt, status,: _0x%08x_\r\n", Reg32Value);

/#* Clear occurred interrupts =/
XGpio_InterruptClear(&Buttons, XGPIO IR CH1 MASK);

void+ procB _main (void+ param) {

/+ Indicate start of process execution =/
print ("—_procB: _Started_up._——\r\n");

/+* Register interrupt handler with interrupt controller +*/

int_id_t id = XPAR_OPB_INTC_0 INTRGEN 0 _IP2INTC_IRPT INTR;

XStatus status;

status = register_int handler(id, extra_int handler, (void«) &intr count);

if (status == XST SUCCESS)

print ("processB:_Successfully_registered_a_handler_for_extra_interrupts.\r\n");
else

print("processB: _Unable_to_register_a_handler_for_extra_interrupts.\r\n");

/+ Enable interrupt within interrupt controller =/
enable interrupt(id);

/+* Enable interrupt within device INTRGEN =/
INTRGEN Enablelnterrupt (XPAR_INTRGEN 0 BASEADDR);

/+ Initialize and configure the general purpose input device =/

if (XGpio_Initialize (&Buttons, XPAR PUSHBUTTONS 5BIT DEVICE ID) != XST SUCCESS) {
printf ("Failed_to_initialize_the_buttons.\r\n");

¥

else {
XGpio_SetDataDirection(&Buttons, 1, OxFFFFFFFF);
XGpio_InterruptClear (&Buttons, XGPIO IR CH1 MASK);
XGpio_InterruptEnable(&Buttons, XGPIO_IR_CH1 MASK);
XGpio_InterruptGlobalEnable (&Buttons);

}

/* Declare parameters for time counter */
unsigned long loop length = 1000;

XTime start, end, diff;

XTime diff min = 0;

XTime diff max = 0;

XTime diff min_intr = O;

XTime diff max_intr = O;

while (1) {
/* Acquire the starting up and ending time for task waster =/
XTime GetTime(&start);
waster (loop_length);
XTime GetTime(&end);

/+* Acquire the duration for task execution and print it as output */

A Source Code 17

102

103

104

105

106

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

147

148

149

150

151

diff = end—start;
print ("_,_DURATION_OF_WASTER: _");
putnum(diff);

if (normal == 0) {
normal = diff;
diff min = diff;
diff max = diff;
diff min_intr = Oxffffffff;
diff max _intr = 0x00000000;
b

/% Update the range of execution duration for task waster with and
* without interrupt disturbance correspondingly =/
if (diff < (0x00580000)) {
if (diff > diff max) diff max = diff;
if (diff < diff min) diff min = diff;
print ("_=>_Time_range_for_execution WITHOUT interrupt_:_(");
putnum (diff min);
print ("_,.");
putnum (diff max);
print (").\r");

¥

else {
if (diff > diff max_intr) diff max_intr = diff;
if (diff < diff min_intr) diff min_intr = diff;
print ("_=>_Time_range _for_execution WITH_interrupt_:_(");
putnum(diff min_intr);
print("_,.");
putnum (diff max_ intr);
print(").\r\n");
print ("_=>_Execution_time_of_interrupt_:_(");
putnum (diff min_ intr—diff max);
print("_,.");
putnum (diff max_intr—diff min);
print(").\r\n");

}

/+ Yield execution to the next process context in the queue =/
yield ();
b

/+ Indicate end of process execution =/
print ("——_procB_finished_——\r\n");

/% Terminate the calling thread =/
pthread_exit (NULL);
return O;

A.2 Projects powerpc-sw and microblaze-sw

A.2.1 File proc_XMK.c

18

A.2 Projects powerpc-sw and microblaze-sw

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4

42

43

44

45

46

47

48

49

50

51

52

53

54

55

#include "xparameters.h"
#include "xstatus.h"
#include "stdio.h"
#include "xbasic_types.h"
#include "xgpio.h"
#include "xio.h"

#include "prj.h"

#include "xtime 1.h"

/+* Declare the general purpose output device =/
static XGpio Lights;

/+* The main task of waster is killing time +/
void+ waster (unsigned long loop length) {
print ("\r_—_Waster_started_up.");

unsigned long i = loop length;
volatile double v = 1.0;

/* Perform dummy calculation =/
for (; i>0; —i) v «= 1.5;

b

int main (void) {
/* Indicate start of execution =/
print ("\r\n—_Entering,_main () _——\r\n");

unsigned int intr_count;
Xuint32 light =0;

/+ Initialize and configure the general purpose output device
if (XGpio_ Initialize (&Lights, XPAR LEDS 4BIT DEVICE ID) != XST SUCCESS) {

printf ("Failed_to_initialize_the_LEDs.\r\n");
b

else {

XGpio_SetDataDirection(&Lights, 1, 0x00000000);

/+ Switch all LEDs off =/
XGpio_DiscreteWrite(&Lights, 1, 0xO0F);
b

printf ("Started_up.\r\n");

/+ Declare parameters for time counter =/
unsigned int tmp count = O0;

unsigned long loop length = 1000;

XTime start, end, diff;

XTime diff min, diff max;

diff min Oxffffffff;

diff max 0x00000000;

/% Never exit the main function »/
while (1) {

/+* Acquire the starting up and ending time for task waster

XTime GetTime(&start);
waster (loop_length);

:.L/

7?/

A Source Code

19

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

77

78

79

80

81

82

83

84

85

86

87

88

89

920

92

93

11

12

13

14

XTime_GetTime(&end);

/* Acquire the duration for task execution and print it as output x/
diff = end—start;

print ("_,_DURATION,OF_WASTER: ");

putnum (diff);

/% Update the range of execution duration »/
if (diff > diff max) diff max = diff;
if (diff < diff min) diff min = diff;

/+* Read the output information out of the shared memory and
* send it to the general purpose output device +*/

light = LIGHT mReadReg (XPAR_OPB_BRAM IF_CNTLR 1 BASEADDR);
XGpio_DiscreteWrite(&Lights, 1, ~light);

/+ Update the number of occurred interrupts in the shared memory=/
intr_count = INTR_COUNT mReadReg(XPAR_OPB_BRAM IF_CNTLR_1_BASEADDR);

/+ Output interrupt information if an interrupt occurs =/

if (intr_count > tmp_count) A{
printf ("\r\n_—_Interrupt_occurs_\r\n");
printf ("=>_Interrupts_generated _%u_times.\r\n", intr count);
tmp_count = intr_count;

print ("=>_Time_range_for_execution_of_waster_:_(");
putnum (diff min);

print ("_,_");

putnum (diff max);

print(").\r\n");

}

/+* Indicate end of execution =/
print ("—_Exiting_main () _——\r\n");
return O;

A.2.2 File proc_MB.c

#include "xparameters.h"
#include "xstatus.h"
#include "xbasic_types.h"
#include "xio.h"

#include "xgpio.h"
#include "xintc_l.h"
#include "intrgen.h"
#include "prj.h"

#define BTN RIGHT 0x0001
#define BTN _LEFT 0x0002
#define BIN DOWN 0x0004
#define BTN _UP 0x0008
#define BTN_CENTER 0x0010

20 A.2 Projects powerpc-sw and microblaze-sw

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

/* Declare the general purpose output device =/
static XGpio Buttons;

/+ Self—defined interrupt handler +/
void intr generated (void =callback) {

}

/+ Increment the interrupt counter in the shared memory
in case of interrupt occurrence */
unsigned int count = INTR_COUNT mReadReg(XPAR OPB BRAM IF CNTLR 0 BASEADDR);
count++;
INTR_COUNT mWriteReg (XPAR_OPB_BRAM_IF_CNTLR_0_BASEADDR, count);

Xuint32 pressed, light =0;

/+* Update the pressed status of the general input device =/
pressed = XGpio_DiscreteRead (&Buttons, 1);

/* Update the lighting status of the general output device and save
+# it into the shared memory =/
if (~pressed & BTN _LEFT)

light |= 1;

if (~pressed & BTN RIGHT)
light |= 2;

if (~pressed & BIN DOWN)
light |= 4;

if (~pressed & BTN UP)
light |= 8;

if (~pressed & BTN _CENTER)
light |= 0x0F;

LIGHT mWriteReg (XPAR_OPB_BRAM IF_CNTLR_0 BASEADDR, light);

/* clear interrupts =/
XGpio_InterruptClear (&Buttons, XGPIO IR_CH1 MASK);

int main (void) {

/+* Enable interrupts within MicroBlaze +*/
microblaze enable interrupts ();

/+* Register the INTGEN interrupt handler in the vector table »/

XIntc_RegisterHandler (XPAR_OPB INTC 0 BASEADDR,
XPAR_OPB_INTC_O_INTRGEN_O_IP2INTC_IRPT INTR, (XInterruptHandler) intr_generated,
(void +)0);

/+ Start interrupt controller =/
XIntc_mMasterEnable (XPAR_ OPB INTC O BASEADDR);

/+ Enable interrupt requests within interrupt controller x/
XIntc_mEnableIntr (XPAR_OPB_INTC_ 0 BASEADDR,XPAR_INTRGEN 0 IP2INTC_IRPT_MASK);

/+* Enable interrupts within INTRGEN =x/
INTRGEN Enablelnterrupt (XPAR_INTRGEN 0 BASEADDR);

A Source Code 21

/+* Initialize and configure the general purpose input device */

if (XGpio_ Initialize (&Buttons, XPAR PUSHBUTTONS 5BIT DEVICE ID) == XST SUCCESS) {
XGpio_SetDataDirection(&Buttons, 1, OxFFFFFFFF);
XGpio_InterruptClear (&Buttons, XGPIO IR CH1 MASK);
XGpio_InterruptEnable(&Buttons, XGPIO IR_CH1 MASK);
XGpio_InterruptGlobalEnable (&Buttons);

b

return O;

}

22 A.2 Projects powerpc-sw and microblaze-sw

