Bachelor Thesis

Bachelor of Science Informatik

Information Flow Analysis for CIL
Matthias Perner

TU Darmstadt
Fachbereich Informatik

Priifer: Prof. Dr.-Ing. Heiko Mantel
Betreuer: Dipl.-Inform. Alexander Lux

Abgabetermin: 15. Oktober 2008

Erklarung:

Hiermit versichere ich, dass ich die Arbeit selbststindig verfasst und keine anderen als die
angegebenen Hilfsmittel und Quellen verwendet, sowie Zitate kenntlich gemacht habe.

Darmstadt, 15. Oktober 2008

Matthias Perner

Abstract

During program execution information flows exists between ressources. This flow
can be restricted by flow policies to disallow public readable ressources to store data
that is confidential.

In an information flow analysis, a program is checked for information flows that
violate a given flow policy.

Security type systems are mechanisms to reduce the analysis to a typability
problem.

In the theoretical part of this thesis, we develop a security type system for a
subset of the Common Intermediate Language (CIL) that handles local information
ressources and managed pointers to local information ressources.

In the implementation part of this thesis, we develop a prototypical checking
tool that uses a security type system for a subset of the CIL that handles only local
information ressources to analyse programs.

CONTENTS CONTENTS

Contents
1 Introduction 5
1.1 Motivation and Goals 5)
1.2 Structure of thiswork 5
1.3 Conventions e e 6
1.3.1 Replacements in Functions 6
1.3.2 Stacks and Stackoperations 6
2 Basics Principles 7
2.1 Flow Policies e 7
2.2 Security Conditions Lo 8
2.3 Security Type Systems 9
2.4 Soundness Proof 9
3 (CIL;,; - Primitives and Local Ressources 10
3.1 Memory Model and Program States 10
3.2 Instruction Set and Semantics 10
3.3 Non-Interference 11
3.4 Typesystem e 14
3.4.1 Control Dependency Regions 14
3.4.2 Abstract Transformation 16
3.43 Proof. 18
4 Prototypical Checking Tool 19
4.1 Requirements e 19
4.1.1 Functionality 19
4.1.2 Extendability o 19
4.2 Work Flow and Program Behaviour 19
4.2.1 Setting up the analysis 20
4.2.2 Course of actions during analysis 21
4.2.3 User Interface Behaviour 22
4.3 Design 22
4.3.1 Abstract Syntax Tree and Parser 22
4.3.2 Analysis Model 24
4.3.3 Analysis Controller 27
4.3.4 Print Controller 28
4.3.5 Console User Interface 28
4.3.6 Overview of the Architecture 28
5 Example Analyses 29
5.1 Direct Flow e 29
5.2 Indirect Flow e 30
5.3 Example of a non-interfering program 31
5.4 Safe Interfering Programs 32
5.5 Example of a non-typable, non-interfering program 33

CONTENTS CONTENTS
5.6 Conclusions From PNIC and Example Applications 34

6 C1ILpointer - Basic Managed Pointers 35
6.1 Extension of the Memory Model and Program States 35
6.2 Instructionset and Semanticso 36
6.3 Additional Pointer Information 37
6.4 Non-Interference 37
6.5 Typesystem L 39
6.5.1 Abstract transformationo 39

6.5.2 Proof 42

7 Conclusion 50
7.1 SUMMATY . . . o o v e e 50
7.2 Related and Future Work 0oL 50

A Task 53
B PNIC - Manual 56
B.1 Requirements 56
B.2 Using PNIC 56
B.2.1 Quick Start 56

B.2.2 Main Menu o6

B.2.3 Submenu Flow Policy 56

B.2.4 Submenu Analysis Settings 56

B.2.5 Submenu Assemblies oL 57

B.3 Creating Flow Policies 57
B.4 Creating Analysis Settings Lo 57
B.5 CD Content 58

C Proofs of Lemmas 59
C.1 High Region Lemmas 0. 59
C.1.1 High Level Regions Converge 29

C.1.2 No Visible Changes in High Regions 60

C.1.3 High Regions Preserve Indistinguishability 64

C.2 Virtual Steps L 66
C.2.1 Virtual Steps Preserve Indistinguishability 66

D Source Code of PNIC 77
D.1 Package Model 7
D.1.1 File Analysis/AbstractState.cso, 7

D.1.2 File Analysis/AnalysisSettings.cs 80

D.1.3 File Analysis/ControlDependencyRegion.cs 87

D.1.4 File Analysis/Flowpolicy.cs 88

D.1.5 File AST/Assembly.cs 92

D.1.6 File AST/Instruction.cs, 94

D.1.7 File AST/CIL/CILintInstructions.cs 97

CONTENTS CONTENTS

D.1.8 File AST/CIL/Unarylnstruction.cs 98
D.1.9 File AST/CIL/Binarylnstruction.cs 99
D.1.10 File AST/CIL/Pop.cs oo it 100
D.1.11 File AST/CIL/Push.cs 101
D.1.12 File AST/CIL/Load.cs 102
D.1.13 File AST/CIL/Store.cs 104
D.1.14 File AST/CIL/UnconditionalJump.cs 105
D.1.15 File AST/CIL/ConditionalJump.cs 106
D.1.16 File AST/CIL/Return.cs« v v v v v, 110
D.1.17 File AST /InstructionParser.cs 110
D.1.18 File AST/Method.cs 113
D.1.19 File AST/Type.cs . . .« .« v i i e e e 116
D.1.20 File AST/Variable.cs 118

D.2 Package Controller 119
D.2.1 File Visitor.cs oo 119
D.2.2 File Analysis/Analysis.cs 119
D.2.3 File Analysis/CILintTransformator.cs 122
D.2.4 File Analysis/MethodTransformator.cs 126
D.2.5 File Print/CompletePrint.cs 130
D.2.6 File Print/PrintInstruction.cs 131

D.3 Package View 133
D.3.1 File ConsoleUI/ConsoleUL.eso 133

E Source Code of Example Applications 139

1 INTRODUCTION

1 Introduction

1.1 Motivation and Goals

In our modern, heavily connected world many people and companies rely on software
from third parties that may not be trustworthy. In other cases the orginal source of the
software is unknown. This software often processes valuable or confidential information.

Furthermore, the software may communicate with the supplier or even another party
for different reasons, e.g. registration, licensing or automated updates. As a result, it
could be possible that these valueable and confidential information are leaked to a third
party, either accidentally by bugs in the software, or even intentionally as a trojan horse.
For these reasons, it is vital to check that the software in use is free of those leaks.

One way to ensure the absence of information leaks is a static information flow analysis.
The intention of such an analysis is to look for those leaks in the program without running
the software. Leaks can be distinguished in two types.

The first type are direct leaks, e.g. a secret information is assigned directly to a public
visible ressource.

The second type are indirect leaks, e.g. a branching instruction has different execution
paths depending on a secret constraint and assigns different values to a public ressource
on each path.

It is possible to use a special kind of type system, a so called security type system,
to find this kind of leaks. Such a type system is specific to one programming language.
Therefore those type systems must be developed for every single language in use.

Furthermore, in many cases the user does not get the sourcecode, but only an executable
in a low-level language. Nowadays, the executable is often written in some bytecode for
a virtual machine, e.g. the Common Intermediate Language for the Virtual Execution
System of the .NET-framework [ECMO06]. Therefore it is essential to develop security
type systems that can cope with those unstructured bytecode languages.

The goal of this work is to take a step on this road and develop such a type system for
a subset of the CIL. Comparison of the bytecode language of the JVM [LY99| with the
CIL suggests to use an existing type system for the JVM as base. Thus we use the type
system in [BPRO7| as fundament of the type system developed in this work. Furthermore,
this work contains a proof that the type system really enforces the conditions described.
Finally, a prototypical tool to run the analysis is developed to show that it is possible to
use the type system in a semi-automated way.

1.2 Structure of this work

This work consists of two major areas. A theoretical area and a practical area. The
theoretical area starts with a short introduction and overview over the basic principles of
security type systems in section 2.

1.3 Conventions 1 INTRODUCTION

Section 3 introduces a type system for a sublanguage of CIL, called CIL;,;, which
consists of the most basic operations in the CIL, like loading and storing of values to local
variables and operations on primitive data types.

In section 4 we design and implement the type system for the C'IL;,; in form of a
prototypical non-interference checking tool, to show that the theoretical analysis can be
used for practical information flow checks.

In section 5 we analyse some example applications and examine the results of the
analyses to evaluate the benefit of those type systems for practical software development
and analysis.

In section 6 we introduce a type system for CI Lypinter- This sublanguage of the CIL is
a superset of C'I L;,;, which expands the language with basic managed pointer operations,
like address loading of local variables and indirect loading and storing of values to local
variables. This part of CIL is most interesting, because many other bytecode languages
do not support the direct use of pointers.

Finally we finish the work with a conclusion and an outlook to similar and future work
in section 7.

1.3 Conventions

During this work a lot of operations and notations are used that can not be assumed to
be known by all readers, therefore it is essential to describe and define those notations to
prevent missunderstandings.

1.3.1 Replacements in Functions

Let f : A — B be a function from set A to set B. Let a € A and b € B.
fr: f®{a— b} describes the function that fulfils Vo € A: (x = a = fI(z) = b)A(x #

a= fl(x) = f(z)).
That means f/(z) = f(x) for all values z € A but a and f/(a) = b.
1.3.2 Stacks and Stackoperations

Let A be a set. A stack of elements of the set A is of the type A*. Let a € A and as € A*.
There are two possible operations on a stack:

push means that an element is added to the top of the stack. a :: as denotes the stack
that results of a push a operation on the stack as.

pop means that an element is removed from the top of the stack. as denotes the stack
that results of a pop operation on the stack a :: as.

Furthermore let size : A* — N U {0} be the function that returns the amount of
elements on the stack and let as|i] denote the ith element on the stack.

2 BASICS PRINCIPLES

2 Basics Principles

In this section we introduce security type systems with their most basic components. One
foundation of security type systems are the flow policies, that describe which informa-
tion flows are legal and which are illegal. The other basic foundation are the security
conditions, which describe what the type system is intended to enforce.

2.1 Flow Policies

A flow policy consists of several distinct sets of information ressources, called security
levels.

The flow policy itself is a partially ordered set of those security levels. A flow policy
describes between which security levels a information flow is allowed. Information may
flow from a security level to itself or to higher security levels. From now on let S be the
set of all security levels in a given flow policy.

We introduce a shortcut to be able to retrieve the security level an information
ressource is element of. This shortcut makes the definitions and proofs easier to read.

Definition 1: Ressource Level
Let SL(r) = sl, where r is an information ressource and sl is a security level, be
the shortcut for r € sl € S.

Furthermore, we need to define the legal information flows using the partial order of
the flow policy:

Definition 2: Legal Information Flow
If sl; < sly, then information may flow from sly to sls.
If sly > sly, then information may flow from sly to sly.

To formalize the illegal information flow, we change the definition of > and <. Instead
of describing that a security level is higher, respectively lower than another, we use this
operator to describe, that a security level is higer or not comparable, respectively lower
or not comparable, than another.

Definition 3: <, >
Let < and > be relations of the type S x S.
If (sly, sly) €<, then (sly, sly) €> and if (sly, sly) €>, then (sly, sly) €<.
<={se S xS|sg>}.
In the sequel sl; > sl will be used insted of (sly, sls) €> and sl; < sly instead of
(Slh Slg) e<.

With this information it is now possible to define illegal information flow on the base
of < and >.

2.2 Security Conditions 2 BASICS PRINCIPLES

Definition 4: Illegal Information Flow
If sl; > sly, then no information may flow from sly to sls.
If sl; < sly, then no information may flow from sly to si;.

During the analysis it will be necessary to determine the least upper bound of two
security levels. The least upper bound can be defined as follows:

Definition 5: LI
Let LI be a partial function of the type S x § — S.
sly U sly = slz, where sly, sly, sl € S, if sl3 > sly A sly > sly and Vsl € S : if
sly > sly N\ sly > slo, then sly > sls.

One of the most simple flow policies, which is used through all this work, if not
mentioned otherwise, is the policy which consists of the two security levels “low” and
“high”, where “high” is a higher security level as “low”, denoted high > low and low < high.
That means data from information ressources of security level “low” may flow to any other
information ressource, whereas data from information ressources of security level “high”
may only flow to information ressources of security level “high”.

This simple flow policy is adequate to model a great many of security requirements.
For example lets have a look at an simplified email client: The user may have stored
confidential information, like an adress book. For obvious reasons an email client needs
a network interface. It is now essential to guarantee that any confidential information
does not leave the email client via the network interface. With the simple flow policy
it is possible to say that the network interface has the security level “low”, whereas the
confidential information has the security level “high”. Therefore any confidential informa-
tion may not leave the emailclient via the network interface, if the model fulfils the flow
policies rules.

2.2 Security Conditions

If we want to develop an analysis it is good practice to formalize the properties of the
application we want to check. This is done by the security condition.

Furthermore, an adequate formalisation of properties enables us to prove that an
analysis enforces the properties we strive to fulfil. Therefore it is quintessential to find a
security condition which formalizes the information flow rules we want to enforce.

In this work the security conditions used are called “non-interference” conditions. This
term describes the fact that the visible output of a program depends only on the visible
input. In other words, a program that is run several times with the same visible input
produces the same visible output on every run, independent from any invisible input.

In combination with the flow policies it is now possible to define “visibility”. Visibility
depends on the possibilities of an observer and on the information ressources in use.
Therefore it is possible to define the visibility of a ressorce as follows:

2.3 Security Type Systems 2 BASICS PRINCIPLES

Definition 6: Visibility
Let sl,s be the highest security level the observer is able to see.
An information ressource res is visibile to the observer, if slopserver > SL(r€s).
An information ressource res is invisible to the observer, if slypserver < SL(1€S).

2.3 Security Type Systems

The goal in this work is to develop a analysis to find illegal information leaks. Illegal
information leaks are assignments of information, that depend on secret information, to
public information ressources.

A security type system reduces the problem of finding those leaks to a typability
problem. In this case, a type is a security level. To look if a program is typable, it
is necessary to formalize the conditions on which a program is typable. This definition
depends on the system developed and can be found in the section containing the type
system.

In this work we will model the state of the runtime to observe the changes made by
instructions as an abstract state. Using this abstract state, the rules for typability can be
formalized as abstract transfer rules.

A program is typable using such a type system, if for every state of the runtime envi-
ronment that is reachable by running the program an corresponding abstract state exists
and an abstract transfer rule can be applied. Typability for the type systems developed is
defined in the sections about the type systems, because the definition obviously depends
on the definition of the abstract states and transitions.

2.4 Soundness Proof

The analysis of the program with the type system does only check, if a program is typable
with this system. To ensure that a program that is typable does not violate the security
conditions formalized, it is necessary to prove that typability implies the security condi-
tions. This proof is called the soundness proof. This important part of the work will only
be done for the more complex type system in section 6.

3 CILiny - PRIMITIVES AND LOCAL RESSOURCES

3 (CIL;,; - Primitives and Local Ressources

In this section we introduce a subset of the Common Intermediate Language. It is the
most basic subset containing only jumps and local integer variables. After introducing
and explaining the language, we formalize the security conditions and develop a security
type system for this subset.

The subset of the language is very close to the JVM, from [BRO5|, therefore we can
adapt almost the complete security type system introduced in their work.

3.1 Memory Model and Program States

A CIL;,; program consists of an instruction list and local variables and parameters. All
instructions in the instruction list must be part of the C'I L;,; sublanguage.

The local variables and parameters can be combined to a set x, because in the security
type system local variables and parameters can be treated equally.

Furthermore we assign a number to every instruction in the list, called the program
point. The program points can be used to identify instructions in a program. The first
instruction in the list will be identified by 0, the second by 1 and so on. That means the set
of program points consists of natural numbers including 0, denoted as PP = {0,...,n},
where n is the amount of the instructions minus 1. In addition, let P[i] denote the
instruction at program point .

The state of the runtime environment can now be described by a triple (i, p, 0s),
where i € NU 0 is the next instruction to be executed, p € Yy — V is a mapping of local
variables and parameters to values, where V' is the set of primitive, native data types in
the runtime environment, and os € V* is an operand stack, consisting of values from V.
The combination of all states builds the set State.

Now it is possible to express the operational small step semantics, which describes
the execution of each single instruction, as a relation that describes the state transitions
of the runtime environment. The relation has the form ~C State x (State + V). ~*
denotes the transitive closure. Furthermore, we will use s; ~" sy in the sequel, to denote
that state s; is transformed to state sy in n steps.

Additionally, it is useful to introduce a shortcut function to note that a program evalu-
ates to a specific value. From now on let P, p |} v have the same meaning as (0, p, €) ~* v.

3.2 Instruction Set and Semantics

As mentioned further above, CIL;,; is the most basic instruction set. It consists of
operation stack manipulating instructions, unconditional jumps and conditional jumps.
To reduce the amount of state transitions and at the same time reduce the amount
of transfer rules needed for the type system, it is possible to merge some instructions in
equivalence classes with respect to their stack transitions.
We use the following equivalence classes:

unary op Every instruction that pops one value from the operand stack, calculates a
result by applying an unary function op to the value and pushes the result on the
operand stack.

10

3.3 Non-Interference 3 CIL;n7y - PRIMITIVES AND LOCAL RESSOURCES

binary op Every instruction that pops two values from the operand stack, calculates a
result by applying a binary function op to those values and pushes the result on the
operand stack.

pop Every instruction that pops one instruction from the operand stack.
push v Every instruction that pushes one constant value v on the operand stack

loadlocal x Every instruction that loads the value of the local information ressource x
on the operand stack.

storelocal x Every instruction that pops a value from the stack and stores it in the local
information ressource x.

jumpWithlArgument ¢ Every instruction that pops one value from the operand stack
and passes control to either next instruction or target instruction P[t] based on the
value.

jumpWith2Arguments ¢t Every instruction that pops two values from the operand
stack and passes control to either next instruction or target instruction P[t] based
on these values.

unconditionalJump Every instruction that passes control to the target instruction P]t]
instead of the next instruction.

return Every instruction that exits the program and returns the top value of the operand
stack.

The semantic of the different euqivalence classes is described in table 1.

3.3 Non-Interference

As mentioned before, this work uses non-interference as security condition and it is vital
to formalize the condition adequately. The goal of the analysis is to check if an illicit
information flow exists in a program. The “non-interference” condition says: If a program
is run several times with the same visible input, the visible output of the program is equal
on every run. We want to develop a termination insensitive analysis, that means that the
former conditions must only be fulfiled, if the program terminates.

With the definition of visibility in section 2.2 and the informal specification of non-
interference, the necessity arises to define the indistinguishability of information, to be
able to formalize runs with a combination of visible and invisible information.

It is obvious that the indistinguishability must depend on the maximum security level
the observer is able to see, because this level determines which information ressources are
visible. Furthermore, the condition must depend on the security levels of the information
ressources, because those security levels determine the least security level an observer
must have to be able to see the information ressource.

A special information ressource, when dealing with operand stack based languages,
is the operand stack. It would not be accurate enough for the operand stack to be of

11

3.3

Non-Interference 3 CIL;n7y - PRIMITIVES AND LOCAL RESSOURCES

Pli|=jumpWith2Arguments t cond2(vl,v2)=true P[i]=jumpWith2Arguments ¢ cond2(vl,v2)=7false

Pli]l=unary op op€U op(v)=r
(i,p,v::08)~{i+1,p,r::08)

Pli]=binary op opeQ op(vl,w2)=r
(,p,01:02::08)~ (i+1,p,r::08)

Pli]=pop
(3,p,v::08)~(i+1,p,0s)

Pli]=push v
09~ (i 1,p,0708)

Pli]=loadlocal z
(4,p,08)~(i+1,p,p(z)::08)

Pli]=storelocal x
(008 (1,0 {50} ,09)

Pli|=jumpWithlArgument t condl(v)=true P[i|=jumpWithlArgument t condl(v)=false
{i.p,0::08)~ (69,09) (i vr:03) (i 1,p709)

(,p,v1::02::08)~ (t,p,08) (i,p,v1::02::08)~ (i+1,p,08)

Pli]=unconditional Jump t
(i,p,08)~(t,p,05)

Pli]=return
(,p,0::08)~v

where U denotes the set of unary functions,
O denotes the set of binary functions,
condl represents a function V' — {true, false}
cond?2 represents a function V x V' — {true, false}
veV,te PPand z €

Table 1: Semantic of C'IL;,;

a specific security level, but it is possible to introduce a so called stack type st € S*,
which is basically a stack of security levels. With the stack type it is possible to track the
security levels of information on the operand stack according to their source.

Now it is possible to define indistinguishability relative to a security level sl,,, € S and

two stack types st, st’ € S* and use this defintions to define the non-interference condition

for the program. In the following definitions we will write ~ instead ~

sl,,., because there

is no risk of confusion.

Definition 7: Indistinguishability of Values

Two values are indistinguishable, if they are equal.

v =vl

v~V

12

3.3 Non-Interference 3 CIL;n7y - PRIMITIVES AND LOCAL RESSOURCES

Definition 8: Indistinguishability of local Mappings
Two variable mappings p,p’ € x — V are indistinguishable with respect to a
securitylevel sl € 9, if for every information ressource x € x either x is mapped
to equal values in both mappings or the security level of x is higher than sl.

Vo € x:p(x) = p(x) VSL(x) > slops
pepl

Definition 9: Indistinguishability of Operand Stacks
Two operand stacks are indistinguishable with respect to a security level sl,,, € S
and two security level stacks st, st’ € S* with the same size as 0s,0s € V*, if they
have equal size and every value on the stack is either equal or the corresponding
security level on the security level stack is higher than sl,,. Therefore it can be
defined inductively:

size(os) = size(st) = size(st') = size(os’) =0

08 ~st 511 05’

size(os) = size(st) = 0 A 0s ~g g0 05" A sly, > Slops

e oo
0S8 gt slystr U 20 OS

08 ~gp st 08 NV =" A Sl < slops

.. I nal
UV 2108 gl ust,slyust! U 20 08

08 ~gp st 08 N Sly > Slops N Sl > Slops

.. ! ol
VoS ™ slyist,sll st vl 0S

Definition 10: Indistinguishability of States
Two runtime states are indistinguishable with respect to slys € S and st, st €
S*, if the variable mappings p,p’ € x — V and operandstacks os,0s" € V* are
indistinguishable.

/ /
P ~slops P N 0s ~st,st! OS
(i, p,08) ~ (i, p/, 08')

Using these definitions it is now possible to formalize the non-interference condition
for a program.

Definition 11: Non-Interfering CIL;,; Program
A program P is non-interfering, if for every two local maps p and p/, where p ~ p/,
the result v of a run of the program is equal.

Vo, pex—=V:ip~p AP ploAPp v =v=0
P is non — inter fering

13

3.4 Typesystem 3 CIL;ny - PRIMITIVES AND LOCAL RESSOURCES

3.4 Typesystem
3.4.1 Control Dependency Regions

One problem when dealing with low-level languages is handling branching instructions.
At a branching instruction the control may be passed to different instructions, depending
on loaded values. In consequence, those instructions are a possible reason for information
leaks, when the condition of such an instruction depends on values of a high security level
and in the two branches different assignments to a variable of a low security level are
made.

In the following examples let v be a variable of the security level “low” and hv be a
variable of the security level “high”. The flow policy in use is the simple high-low policy.

00 loadlocal hv

01 jumpWithlArgument 05
02 push 0

03 storelocal lv

04 unconditionalJump 07
05 push 1

06 storelocal Iv

07 loadlocal 1v

08 return

This program is obviously interfering, because looking at the return value is enough
to learn something about the high level variable hv.

This problem can be addressed with control dependency regions. A control dependency
region is an over approximation of the influence area of a branching instruction.

Let BP be the set of all branching points of a program. For C'IL;,; the set of branch-
ing points can be written as BP = {i € PP|(P[i| = jumpWithlArgumentt V Pli] =
JumpWith2 Argumentst) Nt # i+ 1}.

Let CDR be the set of control dependecy regions. C'DR is modeled in form of two
functions:

junction : BP — PP
region : BP — P(PP)

The set region(i) models the program points of instructions that may be visited on
either branch of the control flow after the branching instruction P[i].

The partial function junction(i) models the program point at which both branches of
the control flow converge. It is a partial function, because it is possible that the control
flow paths do not converge after a branching, as shown in the following simple example:

00 loadlocal 1v
01 jumpWithlArgument 03
02 return
03 return

To model the control dependency regions as an safe over approximation of the influence
areas, it is important to formalize conditions for a safe over-approximation that allows us
to guarantee that the secret guard in the condition does not have influence on information

ressources outside its control dependency region.

14

3.4 Typesystem 3 CIL;ny - PRIMITIVES AND LOCAL RESSOURCES

Let —e PP x PP U{—1} be the successor relation. It is defined by:
1. if P[i] = unconditional Branch t, then (i,t) €—

2. if P[i] = jumpWithl Argument t, then (i,i+ 1) €— and (i,t) €—
3. if P[i] = jumpWith2 Arguments t, then (i,i+ 1) €— and (i,t) €—

4. if P[i] = return, then (i,—1) €, expressing that return has no successor in the
program.

5. else (i,i+ 1) e—

Definition 12: Safe Over Approximation
A control dependecy region must fulfil the following three conditions:

1. for all program points ¢ and all their succesors j, k that fulfil j # k (that means
i is a branching instruction and therefore ¢ € BP), either k € region(i) or
k = junction(i)

Vi,j,k € PP:iw—kNi— jAj#k=k&cregion(i)Vk = junction(i)

2. for all program points i, 7, k, that fulfil j € region(i) and (j,k) €, either
k € region(i) or k = junction(i)

Vi, j, k € PP :j € region(i) N j— k =k € region(i) V k = junction(i)

3. for all program points 4, j, that fulfil j € region(i) and P[j] = return, junction(i)
must be undefined

Vi,j € PP :j € region(i) A P[j| = return = junction(i) is undefined

The first condition ensures that every instruction, that is a direct successor of a branch-
ing instruction is either in the region or the junction of the branching instruction and thus
is in the control dependency region of the branching instruction.

The second condition ensures that every instruction that is a direct successor of an
instruction in the region of a branching instruction is either in the region or is the junction
of the branching instruction and thus is in the control dependency region of the branching
instruction.

The third condition ensures that in presence of a return in the region of a branching
instruction the junction of the branching instruction is undefined. That is important,
because if a return exists in the region of a branching instruction the control flow of
different branches can not converge after the return.

15

3.4 Typesystem 3 CIL;ny - PRIMITIVES AND LOCAL RESSOURCES

3.4.2 Abstract Transformation

The analysis consists of a set of abstract transfer rules that manipulate an abstract state.
Thus it can be seen as an abstract interpretation. This means that the analysis is an
approximate run of the program. It ignores all information that is not of interest for the
analysis. In the security type system the only interesting information are the security
levels of information ressources. Therefore these are the only information we need to
model in the abstract state.

Let ST be the set of stacks of security levels S* and SE be the set of functions
PP — S. The analysis can now be described as transfer rules for tuples of the type
(st,se) € ST x SE. st is called the security level stack and represents the security levels
of values on the operand stack. se is called the security environment and represents the
least upper bound of security levels of all regions the instruction is part of and therefore
the least upper bound of all guards the instruction is executed under.

Furthermore we need a pointwise extensions of LI to be able to use it on security
environments and stack types. This functions can be defined as follows:

Definition 13: [ift
Let lifty, where sl € S, be a function of the type ST — ST. If st’ = liftg(st),
then:

size(st) = size(st') AVi € {n € N|n < size(st)} : st'[i] = st[i] U sl

Let lifty, where sl € S, be a function of the type SE X region — SE. If s¢/ =
liftg(se,region(i)), then

Vj € PP :(j € region(i) = se'(j) = se(j) U sl) A (j & region(i) = se'(j) = se(j))

Now it is possible to define the abstract transfer rules that manipulate the abstract
state. These rules can be found in table 2.

It is obvious that the store is only allowed, if the value on the stack may flow to the
security level of the variable or paramter. Furthermore, the loading rules push values on
the stack and push the least upper bound of security levels of all information ressources
that influence the new value on the stack type. Finally, the rule for program termination
with return can only be applied, if the security environment of the instruction is low and
the value on top of the stack is low.

After introducing the abstract transfer rules it is now necessary to define the typability
of a program. In the introduction we said that a program is typable, if for every state
of the runtime environment, that is reachable by running the program, a corresponding
abstract state exists and an abstract transfer rule can be applied.

16

3.4 Typesystem 3 CIL;ny - PRIMITIVES AND LOCAL RESSOURCES

Pli]=unary op
iksl::st,se=sllse(1)::st,se

Pli]=binary op
ikslyslaiist,se=sliUslaUse(i)::st,se

Pli]=pop
i-sly::st,se=>st,se

Pli]=push v
ikst,se=se(1)::st,se

Pli]=loadlocal z
ikst,se=SL(x)Use(i)::st,se

Pli]=stloc x SL(X)>sliUse()
i-sly ::st,se=st,se

Pli]l=unconditional Jump ¢
i-st,se=st,se

Pli]=jumpWithl Argument t
islyst,se=liftg, (st),lifts (se,region(i))

Pli]=jumpWith2 Arguments t
il=slyislonst,se=lift o Lsiy (5),0if sty Lsty (S€megion(i))

Pli|l=return sliUse(z)=lsl
isly::st,se=

where [sl € S is the least security level of the flow policy,
veV,te PPand z €

Table 2: Abstract transferrules for CIL;,;

It is obvious that this informal definition requires a defintion for “corresponding states”.
This can be defined as follows:

Definition 14: Corresponding States
An abstract state st;, se; € ST x PP — S corresponds to a runtime state (i, p;, 0s;),

if both are either the initital states (0, p,€) and ¢, se of a program or if the states
result from two corresponding states by applying a semantic rule and an abstract

transfer rule.

st;, se; = €,se (i, pi,08;) = (0, po, €)
<i>Pi, 032') H Sti7 S€;

(J, pj, 08) ~ (is pi,0si) {j, pj, 08;) || st;, se;

stj, se; = st;, se;
(i, piy 0si) || sti, sei

17

3.4 Typesystem 3 CIL;ny - PRIMITIVES AND LOCAL RESSOURCES

Now that corresponding states are defined, it is possible to define the typability using
the corresponding states. For the transition of abstract states we write — instead of =
in this definition to prevent confusion.

Definition 15: CIL;,; Typeablility

A program P is typable, if for the last runtime state before terminating a corre-
sponding abstract state exists and an abstract transfer rule can be applied.

VoeV:Pplv=(0,p, € ~*(i,p;,v:o0s;)~ vAstyse; — Ni,pi,v::08;) || sty se;

p s typable

It is now possible to proof that all typable programs fulfil the non-interference condition
in the soundness proof.

3.4.3 Proof

The soundness proof for this type system can be done as an induction on the length of
executions. The basic idea is to proof that a program that is run with indistinguishable
input preserves the indistinguishability during the whole length of the execution. That
means that invisible instructions do not change visible information ressources and visi-
ble instructions preserve the indistinguishability of states. The first claim is necessary,
because changes in low level information ressources in a high level region may leak infor-
mation about the guard. The second claim is necessary, because if a visible instruction
violates this claim, it is possible, that low level information ressources get different values
assigned and therefore the indistinguishability of the output could be violated.

The proof is left to the interested reader, because later in this work is a proof for
the CILpointer type system, which is more complex and contains the proof for the C1L;,,
system, because CILpinter is a superset of C'IL;,, and the abstract transfer rules of the
type system for C'IL,giner contain the typability conditions of the CIL;,; type system.

18

4 PROTOTYPICAL CHECKING TOOL

4 Prototypical Checking Tool

After developing the theoretical type system for C'IL;,,, it is interesting to show a pos-
sibility how to implement such a type system to show that the theoretical foundations
make it possible to automatically check binaries for illicit information flow. This section
describes the decisions made during the development of a prototypical checking tool for
CIL;,:. The source code of this tool can be found in appendix D.

4.1 Requirements

A checking tool should fulfil some requirements, which can be differentiated into func-
tionality and extendability.

4.1.1 Functionality

One reason for implementing the tool is to show that it is possible to implement the
theoretical analysis in a way that correctness is guaranteed, if the tool accepts the program
as valid. Correctness can only be guaranteed, if every unexpected result is interpreted
as failure of the analysis. Furthermore, every condition must be checked exactly as the
definitions and claims of the theoretical model and analysis demand.

Another reason to implement the prototypical checking tool is to show that it is
possible to implement a tool that does those checks semi-automatically, even in the case
that the source code is not available for analysis. Therefore the prototypical checking tool
shall not operate on a textual representation of programs, but on assembly files instead.
In this case, assembly files are portable executables that contain managed CIL code.

4.1.2 Extendability

C1IL;,; is only a small part of the complete CIL, therefore it is important to design the
tool with a focus on extendability. If the program is easy to extend, then it will be
possible in to use the implementation in further works that analyse greater sublanguages
of CIL. Therefore it is necessary to design the parser, the program and memory model
and the analysis extendable. It must be easy to add more instructions to the parser. The
program and memory model must support adding information that are needed for more
complex CIL sublanguages to them easily. The analysis needs to be adaptable to those
more complex models.

4.2 Work Flow and Program Behaviour

It is useful to define the program behaviour in a way that the work flow for using the
program is comprehensible for the user. This can be done by looking at the setup process
for the analysis and the course of actions during the analysis.

19

4.2 Work Flow and Program Behaviour 4 PROTOTYPICAL CHECKING TOOL

4.2.1 Setting up the analysis

1. Defining security levels and a flow policy that is to be used during the next analysis
runs.

2. Choosing the methods to check. That includes choosing the assemblies and types
that include the methods.

3. Assigning security levels to the information ressources, that means variables and
parameters.

4. Running an analysis.

From this setup process it is possible to draw several conclusions. The first important
conclusion is that it would be useful to use files to save the setup settings of an analysis,
because it is a complex process and the user should be spared of doing it multiple times,
if a further run of the analysis is necessary.

Furthermore, it is obvious that the flow policies can be used through several different
analyses. As a result it is reasonable to save the flow policy in a different file than the
settings of an analysis.

The assignment of security levels, however, is not indepedent of the methods that are
the targets of the analysis. Therefore it is useful to store those settings in one common
file.

This results in the setup process for an analysis in the program shown in figure 1.

I : Consolell policy ¢ FlowPolicy settings ¢ AnalysisSettings | | analysis @ Analysis

1 ! loadFlowPolicyFromFiled) «

Z 1 setFlowPalicyd) i

3 In:uad.ﬂ.naIysisﬂlettingsFrDmFile(}

4 ! sekAnalvsisSettings(
- ! D

5 1 sekpnalysisSettings()

6 ¢ setFlowPalicy)

Figure 1: Setup process of an analysis

One could argument, that the security levels are not independent from the flow policy,
too, but that problem can be addressed, by checking if the flow policy in use and the

20

4.2 Work Flow and Program Behaviour 4 PROTOTYPICAL CHECKING TOOL

settings file in use are compatible before running the analysis. By doing so it is possible
to handle the settings needed for an analysis and the flow policy that is used in the
analysis indepedent and thus improve the reuseability of the settings and flow policies.

4.2.2 Course of actions during analysis

1. For every assembly to analyse

(a) Open assembly
(b) For every type and method to check

i. Analyse the recent method

The most important conclusion to draw from this course of actions is the insight that
it is helpful to present the result of an analysis, before running the next analysis and, after
all analysis runs are done, presenting a summary of all runs. This results in the sequence
of actions during a single method analysis shown in figure 2.

analysis : Analysis | | assembly : Assembly | | bvpe : Tvpe | [method : Method | | wisitor : MethodTransformator

i 1 InadAssembly)
E 2 1 setfssemblyl)

31 getTypel)

5 setTypel)
o

f 1 setTypel)
7+ getMethod()

g Iu:uadMethu:udl{:il

4 1 sekMethod])

l 10 : setMethod()
o

11 : checkFlowPaolficyCompatibilicy ()

[N 5 v 12 setanalysisSettingly

13 1 setFlowPolicy()
14 1 visit()

15 : setResult)

Figure 2: Running an analysis on a single method

21

4.3 Design 4 PROTOTYPICAL CHECKING TOOL

4.2.3 User Interface Behaviour

When starting the application the main menu shows up. From this menu it is possible
to change into the submenus for the flow policy, the analysis settings and assemblies.
Furhtermore, it is possible to run an analysis from this menu.

In the flow policy menu, it is possible to load a flow policy. If the flow policy file given
is not valid, the program requests a new filename. Furthermore it is possible to dump the
flow policy to the console.

In the analysis settings menu, it is possible to load settings from a file. Additionally
it is possible to dump the settings to the console. It is possible, to initialize an analysis
settings file. When selecting this action, the user is asked for a name for the new file. If
the file already exists, the program asks for another file name. After a valid file name is
given, the user is prompted for assemblies to analyze, until an empty line is entered. The
program creates a new file with the given filename, adding all the types and methods,
including their variables and parameters to the newly created file.

In the assembly menu, it is possible, to load an assembly and to dump it to the console.
If the file is not a valid managed code assembly, the program does not load the file.

When running an analysis, the first action of the program is to check if the flow policy
and the analysis settings are compatible. If this check is successful, the analysis is started.
After analysing a method the result is printed to the console, if the method is interfering
the instruction list is shown to make it easier to find the problematic instructions. After
all methods are checked, a summary is presented, that states if the methods are non-
interfering and in case a method is not non-interfering the reason is given.

4.3 Design

During the design of the prototypical tool it is important to keep the goals of this tool in
the mind. The first goal is to show that the implemented tool is accurate to the definitions
of the type system and showing the ability to guarantee the modeled legal information
flows are not violated, while only requiring a minimum of knowledge about the program
itself.

The second goal is to build a fundament for further checking tools on more complex
sublanguages of the CIL. This requires the tool to be easily extendable with more instruc-
tions and their typing rules. This way it is easier in the future to implement type systems
that use the CIL;,; type system as base.

4.3.1 Abstract Syntax Tree and Parser

Abstract Syntax Tree When designing the abstract syntax tree it is important to
think about which information of the program structure are interesting. There are two
possibilities to consider:

e For the C'IL,, analysis, the methods and instructions are the only interesting in-
formation. The types or assemblies do not hold any information important for this
analysis. In consequence, it would be possible to consider the methods as the top
level of the abstract syntax tree.

22

4.3 Design 4 PROTOTYPICAL CHECKING TOOL

e For every analysis that involves objects, fields, method calls or exceptions the in-
formation about types and even assemblies are important, thus the top level of the
abstract syntax tree must be the assemblies.

One of the requirements of this tool is extendability and thus it is obvious that the
second solution should be favoured. Furthermore, it is easy to design the syntax tree in
a way that it supports the assemblies and types from the beginning, but it could be hard
to implement all the changes necessary to support those, when extending the application.
As a result the second path is chosen. However, only the information needed for our
analysis will be extracted from the assemblies and types. In particular, that means only
the types needed are extracted from the assemblies and only the methods needed are
extracted from the types. The main focus is on the instructions, therefore it is reasonable
to introduce one abstract class for all instructions and for every type of instruction one
class that implements the abstract class. This results in the architecture shown by the
class diagram in figure 3.

Assembly

+Mame: string
+Types: List<Type=

+loadAssemblviFilename: string)
+getTypeltypename: string): Tyvpe

+Marne: skring
+ContainingAssemnbly; Assembly
+MemberMethods: List <Method=

Type

HoadTvpeitype System, Type)
+getMemberMethod{methodname: string): Method

Q Instroction
™Method +Mame: skring
+Position: ink
+Mame: string +MextInstructions: Lisk<Instruckion:
+ContainingType: Type +DireckSuccessor: Inskruction
+Parameters: Yariable[] +PreviousInstructions: List <Instruckions =
+localvariables: Yariable[] L~ | +CantainingMethod: Method
+FirstInstruction: Instruction
+Instructions: List<Instruction:= Hparse(parser: MstructionFarser, position: Mtk nE
Faccapfvintor: CFnéneiuchionlitar
+oadMethod{methodInfo: MethodInfo) Hink{parser: InskructionParser)
+getInstructionAtPosition{position: int): Instruction

L

Yariable

+Mame: string
+ContainingMethod: Method

Figure 3: Overview of the abstract syntax tree

23

4.3 Design 4 PROTOTYPICAL CHECKING TOOL

Parser When designing the parser it is important to think about the requirements the
parser must fulfil. Furthermore, it must be considered that the implementation of the
parser should not be to complex, because it is not the main goal to implement a feature
rich parser, but a functional parser that fulfils the goal to parse the instructions needed for
the analysis. There are two possible solutions for the implementation to compare during
design:

e A simple solution for a parser could be one class that takes the bytecode array and
parses it according to a huge switch table with one case for every single bytecode
instruction.

e A more complex solution could be a parser where the instructions can register for
some bytecodes. The parser just preparses the instruction to the type that is for
this bytecode and the instruction parses the relevant part of the bytecode array to
gain all information that it needs.

When looking at those two possibilities it is easy to realise that the second approach is
much easier to extend. Extending the parser with a new equivalence class of instructions
in the first approach involves changing a huge, possibly confusing, switch table in the
parser. Furthermore, it is necessary to write a class that represents the new equivalence
class of instruction. After that, the switch table in the parser must be corrected to parse
all necessary parts of the bytecode array for every single instruction in the new equivalence
class. This leads to confusing parser code.

In the second approach, introducing a new equivalence class of instuctions involves
only the implementation of a concrete instruction that represents the equivalence class
and write a method in this new class that parses the relevant parts of the bytecode array.
After doing so, it is only necessary to register the new class.

Even though the second approach is more complex to implement, the advantages
outbalance the disadvantages and therefore this is the solution chosen. This results in the
architecture shown by the class diagram in figure 4 and the course of actions in figure 5.

For the registration of the implementations of the C'I L;nt instructions at the parser,
we use the static method “registerInstructions” of the class “CILintInstructions”. The only
use for this class is the registration of the C'IL;,; instruction set at the parser.

Location The combination of the abstract syntax tree and the parser can be seen as
the model that describes the program and therefore are contained in the package “Model”,
in the subpackage “AST”.

4.3.2 Analysis Model

For the design of the analysis it is important to look at the requirements for an analysis
and the course of actions during the analysis of a method.

To be able to run an analysis, the program requires a flow policy, the knowledge which
methods to analyse and in which assemblies and types they are contained. Furthermore,
the security levels for each information ressource and the control dependency regions for
each branching point of the methods must be available for the program.

24

4.3 Design 4 PROTOTYPICAL CHECKING TOOL

InstructionParser

+InstructionTable; Hashtable <bwvtecode ; byte, instruction; Svstem, Tvpe:
+IEvtedrray; byte

+ParsedInstructions: Instruction

+Method: Method

+Position: ink

+parselnstructions(method: Method, ilBytetrray: byte[]): Method

instruction : Concretelnstruction

parser : InstructionParser

fnsts on i1t InstructionTable. Add() E

= - O

+Nan_1§: Stf'”g 2+ parseInstructions() method ¢ Method | |

+Position: ink <} =————a

+MextInstructions: List <Inskruckion= : - .
+DirectSuccessor: Instruckion | 3+ parselnstruction(y

o

+PreviousInstructions: List<Instructions =
+ZontainingMethod: Method

4 InstructionTabIe[bytecode].CreateIrﬁstanch E
T P

5 parse() 1
+oarre{parsar, nstructionfarser, postion. el nf !
+accaptivintor: CILntfetructionkistor} & ¢ Instructions. Add() :
Hink{parser: InstructionParser) R

o I

Py
gz

ConcreteInstruction

+parse(parser: InstruckionParser, position: int): ink T8 setfirstinstruction() - —I
+acceptivisitar: CILinkInstructionyisitor) _;r' U '

Figure 4: Instruction Parser Figure 5: Parsing of Instructions

Flow Policy and Security Levels The flow policy can be seen independent from the
other information, therefore it is reasonable to implement the flow policy independent
in an independent class. The flow policy consists of security levels. As a result, the
flow policy is a class “FlowPolicy” that contains a collection of security levels, which are
implemented as a class “SecurityLevel”. Furthermore, it is reasonable to implement the
functions on security levels, that are needed for the analysis, in the flow policy, because
these operations depend on the given flow policy. Therefore “FlowPolicy” must implement
methods to retrieve the security levels information may flow to from a specific security
level. Furthermore a method to calculate the least upper bound for two security levels
must be implemented.
This results in the design shown by the class diagram in figure 6.

Abstract State When running the analysis it is important to keep track of the abstract
state of the virtual machine during the execution of a method. The formal definition of
this state is a tuple of a stack of security levels, the so called stack type, and a security
environment. Two different approaches have been considered during the design of the
tool:

e The abstract state of the runtime environment is represented by a security level
stack and the security environment is stored in the analysis settings.

e The abstract state of the runtime environment is represented by a history of cal-
culated security level stacks and the security environment is stored in the analysis
settings.

25

4.3 Design 4 PROTOTYPICAL CHECKING TOOL

FlowPolic
b SecurityLevel

+Mame: string
+5ecurityLevels: Hashtable <string, SecuribyLevels
+HowestSecuribyLevel: SecurityLevel

+Mame: string
[=— +LowersecurityLevels: HashSet <SecurityLevel =
+HighersecurityLevels; Hash3et <SecurityLevel =

+addSecurityLevel(level: SecurityLevel)
+ogetdecuritvleveliname: string): SecurityLevel e}

+getlegalFlomdlevel: SecurityLewvel): Hashaet <Securitvlevel =

+getleastUpperBound(sll: Securitvlevel, sl2: SecurityLewvel): SecurityLewel
+rompare(sli: Securitylevel, sl2; SecuribvLevel): ink AbstractState
+loadFlowPalicyFromFile(filename: string): bool

+Recen3ecuritvLevelstack: Stack=Securitylevel =

+getSecuritylevelSkack(instruction: Instruction)
+stateFarInstructionExists{instruction: Instruction): bool

Figure 6: Design of Security Level, Flow Policy and Abstract State

While the first approach seems to be easier to implement on the first thought, it
includes some implementation problems and requires the recalculation of security level
stacks at branching targets. Therefore the second approach was chosen to be implemented.
This implementation makes it possible to restore any already calculated state of the
security level stack. It is implemented in the class “AbstractState”.

The decision to store the security environment in the analysis settings may seem
confusing at first sight, but in fact the security environment can be seen as a mapping
from control dependency regions to security levels and the analysis settings keep track
of the control dependency regions, as we see later. As a result it is not necessary to
introduce redundancy in information by adding an extra security environment to the
abstract runtime state.

This results in the design shown by the class diagram in figure 6.

Analysis Settings and Control Dependency Regions The information about the
security levels of information ressources and the control dependency regions are directly
dependent to the methods to analyse. Thus it is reasonable to collect those information
in a class that describes all those properties and call it analysis settings. However, these
setting do not reference the assemblies, types, methods and security levels, but only
identifiers that enable the loading of the methods and security levels from the abstract
syntax tree and the flow policy.

In the formal definition of the analysis, the control dependency regions are a structure
of two functions that assign a range and a single instruction to the branching points. In
consequence, it is reasonable to introduce a class for the control dependency regions that
resembles this structure. These structures are direct part of the analysis settings and
therefore referenced in the class containing the analysis settings.

This results in the design shown by the class diagram in figure 7.

Location All the components of the analysis mentioned in the recent pragraphs can be
seen as a model for the analysis and are therefore contained in the package “Model” in
the subpackage “Analysis”.

26

4.3 Design 4 PROTOTYPICAL CHECKING TOOL

AnalysisSettings

+Mame: string

+addMethodToCheckiassemblvname: string, tvpename: string, methodname: string) ControlDependencyRegion
+aethssenmbliesTaCheck(): List<string= 3 e
+aetTypesToChecklassemblyname: string): List<string = ke +HRegion: List <ink
+getMethodsToCheck] assemblyname: string, typename: skring): List <string > +Junction: ink
HoadConfigurationFromFile(filename: skring) +addToReqionfinstruckionPasition: int
+getControlbependencyRegionfinstruction: Instruckion): ControlDependencyRegion giond ity

+setSecuribyEnvironment(instructionidentifier: string, environment: SecuribyLevel)
+agetSecurityEnvironment(instructionidentifier: skring): skring
+getaecurityEnyvironment{inskruckion: Instruckion): skring
+getSecuritvLevel(variable: wariable): string
-initializeMewConfiguration(filename: string, assemblies: List <string =)

Figure 7: Analysis Settings

InstructionContamerVisitor L intnstructionVisitor
+imtimathod: Method! +wEtinstruction: Charynetruction!
+imtitroe, Tyoal + kit nstruction.: Sinarpinsiruchion)
+vimtiarrambic: Azeami Wt instruction: Fop)

it inbruction : Fush)

st instruction : Load)

it intuction : Stora)

it instruction: CondbionalfumpiFarameter]
it instruction: CondtinallumpZRarameters)
it instruction: Chcondtionalfump]

it instruction : Refun,

Figure 8: Abstract Visitors

4.3.3 Analysis Controller

During the design of the analysis two different approaches has been considered. The first
approach is to let the instructions take care of the transformation of the abstract state.
This approach has been discarded, because the analysis would depend on the impleman-
tation of the instructions and if the analysis model changes, every existing instruction
implementation has to be changed. That violates the goal to implement an extendable
tool. Therefore the second approach has been chosen. This approach involves the use
of the so-called visitor pattern. The abstract syntax tree consists of the elements to be
visited and the analysis is the visitor.

The visitor has been split in two different visitors. The first visitor, the “Instruction-
ContainerVisitor”, is for the structure of the abstract syntax tree, that means for visiting
the assemblies, types and methods.

The second visitor, the “ClLintInstructionVisitor”, is for each single instruction. In
consequence it is necessary to extend this visitor, if a new instruction is introduced. But
the implemenations of the instructions can remain unchanged.

This design results in the class diagram 8.

Both abstract visitor classes can be found in the package “Controller”, the analysis
transformations can be found in the subpackage “Analysis”. This package contains a
wrapper class “Analysis” to call, when running an analysis, that handles the calls for the

27

4.3 Design 4 PROTOTYPICAL CHECKING TOOL

visitor during the analysis.

This wrapper implements an algorithm, that visits all instructions in order of the
control flow graph. At branching points it chooses the direct successor as next instruction
to visit and adds all instructions of the region to a worklist, if the branching instruction
is visited the first time. If the algorithm reaches a return instruction, it looks for the first
instruction in the worklist, according to the control flow graph. The upper bound for
the runtime approximation is O(n?). This upper bound may be reached when a program
consists of branching instructions with regions that consist of the whole method. There
may be algorithms that handle the analysis with a better complexity, but that is left for
future work.

4.3.4 Print Controller

It is possible to use the visitor pattern to print the program to the console. This print
controller is implemented in the subpackage “Print”. “CompletePrint” implements the
“InstructionContainerVisitor” and “PrintInstruction” implements the “CILintInstruction-
Visitor”. This way it is possible to use this visitor for printing and parameterizing the
print. It is possible to show the exact instruction or only the equivalence class by setting
the boolean “equivalenceClass” of the print controller to either true or false.

4.3.5 Console User Interface

The console user interface is a simple design that supports the steps described in section
4.2.3 about the behaviour of the user interface. It is a simple implementation without
any special design patterns applied. All menus and actions are implemented in the class
“Main” in the subpackage “ConsoleUI” in the package “ProgramView”.

4.3.6 Overview of the Architecture

The whole program is loosely designed after the mve-pattern, where the model, the con-
troller and the view are independent subsystems. The model can be seen as the data used
by the program, the controller can be seen as the manipulations that are made on the
data and the view can be seen as the interface to the user.

Therefore the program consists of the three packages “Model”, that contains the infor-
mation needed for the analysis, the “Controller”, that manipulates the model according
to our transfer rules of the type system, and the “View”, that contains the console user
interface.

This design simplifies the replacement of single parts of the application, for example it
is easy to write a new user interface, that has the same functionality by using the classes
from the “Model” and “Controller” to implement the functionality.

28

5 EXAMPLE ANALYSES

5 Example Analyses

Now that the type system for C'IL;,; is implemented, we shall analyse some example
applications to present how the tool could be used to check methods for illicit information
flow and to show how the tool reports different analysis failures. Furthermore, the direct
comparison of structures in high level languages and their CIL representation gives an
insight on the equivalences of the different errors in high level programs and low level
programs.

5.1 Direct Flow

This simple example illustrates the analysis of programs that contain a direct flow. The
simplicity of the program makes it easy to recognize the error class that it contains. In
a high level language, e.g. C#, the most common reason for direct information flow is
an assignment from a high information ressource to an low information ressource. The
following C# example illustrates this kind of leak:
int exampleDirectFlow (int 11, int hl)

11 = hi;

return 11;
}

It is obvious that this program violates the non-interference condition, because the
program could be run with [1 = 0, hl = 0 resulting in 0 and with /1 = 0, hl = 1
resulting in 1. The input is indistinguishable for the observer, but the output is not
indistinguishable. Hence, the tool should report that this program is interfering.

Using a C# compiler this method results in an instruction list like in the following
listing:

0: ldarg.2
1: starg.s 1
2: ldarg.1
3: return

Using the tool to analyse this method with the simple high-low policy loaded and
arg_1 being of the security level “high”, while arg 2 is of the security level “low”, reveals
an information leak at instruction 1. This can be concluded from the output:

Analysing method: exampleDirectFlow(System.Int32, System.Int32)
->1 illegal flow from high to low

Furthermore, this output tells us that in instruction 1 an assignment from a value
that depends on a high level information ressource is assigned to a low level information
ressource. The tool detected a direct information flow and reported that the program is
not non-interfering.

29

5.2 Indirect Flow 5 EXAMPLE ANALYSES
5.2 Indirect Flow

A little bit more complex are indirect information flows. The most simple case is that a
conditional that depends on a high level information ressource does result in a branching
and in both branches a return exists. The following C# example illustrates this problem:
int exampleIndirectFlow (int 11, int hl)
if (11 = hl)
return 1;

else
return 0;

This example obviously violates the non-interference condition, because the program
could be run with [1 = 0, A1 = 0 resulting in 1 and with /1 = 0, h1 = 1 resulting in 0.
The input is indistinguishable for the observer, but the output is not indistinguishable.
Hence, the tool should report that this program is interfering.

Using a C# compiler the source code is translated into following instruction list:

ldarg.1
ldarg .2
bne.un.s 5
ldc.i4 .1
return
ldc.i4.0
return

DU W —=O

The similarities in the C# and the CIL code are easy to find. In both listings, we find
two different returns that depend on an conditional.

Using the tool to analyse this method with the simple high-low policy loaded and
arg_ 1 being of the security level “low”, while arg 2 is of the security level “high”, reveals
an information leak at instruction 4. This can be concluded from the output:

Analysing method: examplelIndirectFlow(System.Int32, System.Int32)
->4 return reveals higher level value.

Furthermore, the output tells us that the leak is caused by a return instruction that is
part of a region, which is not of the lowest security level in the flow policy. In consequence,
we could try to fix this information leak by moving the return statement out of the control
dependency region of the conditional. The resulting C# source code would look like this:
int examplelndirectFlow2 (int 11, int hl)

if (11 == h1)
11 = 1;
else
11 = 0;

return 11;

}

30

5.3 Example of a non-interfering program 5 EXAMPLE ANALYSES

Using a C# compiler this code results in the following instruction list:

ldarg.1
ldarg .2
bne.un.s 6
ldc.i4.1
starg.s 1
br.int8 8
ldc.i4.0
starg.s 1
ldarg .1
return

OO0 U kW —O

The similarities of the C# sourcecode and the CIL code are still easy to recognize.

Using the tool to analyse this method with the simple high-low policy loaded and
arg 1 being of the security level “low”, while arg 2 is of the security level “high”, reveals
that the information leak at instruction 4 still exists. This can be concluded from the
output:

Analysing method: exampleDirectFlow(System.Int32, System.Int32)
->4 illegal flow from high to low

However, the reason for the error changed. Instruction 4 is a store instruction. It
seems that a value that depends on a high level information ressource is assigned to
arg 1, which is a low level information ressource. The explanation can be found in the
security environment of instruction 3. Instruction 3 is in the control dependency region
of the conditional instruction 2 which has a high level guard. In consequence the security
environment of instruction 3 is high and the value that is loaded on to the stack depends
on a high level information ressource.

5.3 Example of a non-interfering program

After looking at this examples one could wonder, if there exist non-interfering programs
with secret input in real world applications. In fact, the examples that are possible with
the limited instruction set of C'IL;,; look very constructed. Nontheless it is possible to
illustrate real world applications with some abstractions. For example, look at a program
that creates a new user with a given password and adds this new association to the user
storage of the system:

public int addUserToSystem(int password, int salt)
{
//storage location , like pwd file
int pwdentry;
//generate userid
int uid = 5;
//calculate salted hash of password
int saltedhash = salt * password;
//associate uid with salted hash in storage
pwdentry = uid 4+ saltedhash;
//report the new uid
return uid;

31

5.4 Safe Interfering Programs 5 EXAMPLE ANALYSES

It is obvious that a user knows his chosen password and the program must tell him
his new generated user id or he is not able to use the new account, but he does not need
to know the salt value and the salted hash for the password. In consequence, it would be
reasonable to chose the uid and password of security level “low”.

The information ressource pwdentry is just a representation for a method call or a
store operation in a safe location, like the pwd file in a system. For this reason, we want it
to be not readable for the observer and say that it is of security level “high”. Furthermore,
the salt value and the salted hash shall be secret and in consequence they are of security
level high, too.

The return value of this program is the value of the low variable uid. Therefore, the
tool should report that this program is non-interfering.

Using a C# compile, the source code results in the CIL instruction list:

ldc.i4 .5
stloc.1
ldarg .2
ldarg .1
mul
stloc .2
Idloc .1
ldloc .2
add
stloc .0
ldloc .1
return

= O © OO Uk WO

— =

Running the analysis with the parameters mentioned, the tool reports

Analysing method: addUserToSystem(System.Int32, System.Int32)
->addUserToSystem(System.Int32, System.Int32) is non-interfering

as expected.

5.4 Safe Interfering Programs

If the user wants to use his uid and password with a simple login program, a common
problem arises. The following program shall represent the simple login program:

public int login(int uid, int password, int salt)

{
int pwdentry = 5 + 6 % 3;
//4f the wid is associated with the password, login succeeds
if (pwdentry = uid + password x salt)
{
return 1;
}
return O0;
}

If we assume the same security level assignments like in the “addUserToSystem” ex-
ample, this program is obviously interfering, because the return value depends on the two
secret ressources salt and storagelocation. The tool reports:

Analysing method: login(System.Int32, System.Int32, System.Int32)
->10 return reveals higher level value

32

5.5 Example of a non-typable, non-interfering program 5 EXAMPLE ANALYSES

It is not possible to construct a login program that is non-interfering with this type
system and security level assignments.

In consequence, it is necessary to develop rules that allow the typing of a program,
even if some dependencies of the output with high level ressources exist, but are assumed
to be safe. In fact, those rules exist for type systems for other languages. The technique
of using such rules is called declassification. The development of declassification rules is
left for future work.

5.5 Example of a non-typable, non-interfering program

After the analysis of typable, non-interfering programs and non-typable, interfering pro-
grams, it is important to look at a special case.

Some non-interfering programs are not typable, because the conditions that are en-
forced by the type system are stronger than the non-interference condition.

This problem basically appears, if a program has either no return value, or, due to
the fact that the language only uses local values, if values from high level ressources are
assigned to a low level ressource that is not used for calculating the return value of the
program.

In the following example, a user can store data in a system. Depending on the user
account, the user may have a special storage location, e.g. an encrypted drive, associated
with the account, but the system does not reveal the location chosen for storing the
information and always returns 1 instead:

public int storeData(int uid, int password, int data, int salt)

{
int storagelocation = 23;
//if account is associated with a special storage location
if (storagelocation = uid + password x salt)

//store data in special location
int specialstorage = data;
return 1;

//data not stored in special location, store it in common location
int commonstorage = data;
return 1;

A C# compiler would create a CIL instruction list like:

ldc.i4.s 23
stloc.
ldloc.
ldarg.
ldarg.
ldarg .
mul
add
bne.un.s 11
ldc.i4 .1
return

: 1dc.i4.1

: return

O~ Uk WO
wn N—= OO

— ==
N = OO

It is obvious, that the program is non-interfering, according to our condition, because
it always returns 1. Let uid, password and data be low level ressources, because they are

33

5.6 Conclusions From PNIC and Example Applications 5 EXAMPLE ANALYSES

user input, and salt, storagelocation, specialstorage and commonstorage be high level
ressources, because they may not be revealed to the user. The analysis returns:

Analysing method: storeData(System.Int32, System.Int32, System.Int32, System.Int32)
->10 return reveals higher level value

The program is not accepted as non-interfering, but it does not violate the non-
interference condition. That shows us that our analysis will reject some non-interfering
programs, because of their special attributes.

5.6 Conclusions From PNIC and Example Applications

As shown in the “Prototypical Non-Interference Checker”, it is possible to implement a
security type system for a low level language to analyse it for information leaks. The exam-
ples showed, that the tool can be used to detect those information leaks semi-automatically
with very little knowledge of the program.

We have seen that the tool can be used to prove that a program is non-interfering.
However, the rejection of a program by the tool does not necessarily mean that the
program is not non-interfering.

In “Prototypical Non-Intereference Checker” the user must parameterize the analysis
with the control dependecy regions. To reduce the amount of knowledge an user needs to
have of a program he wants to analyse, future works could develop and evaluate methods
to automatically generate the control dependency regions.

In consequence, the use of security type systems in software development helps to
prevent programming errors that lead to information leaks and the use in security analysis
of software could reveal intentional leaks that are used to spy on the users confidential
data.

As a result, security type systems have great relevance in modern program analysis
and the development of those tools should advance.

34

6 CILpoinrer - BASIC MANAGED POINTERS

6 CILyinter - Basic Managed Pointers

After adadapting the basic analysis of [BR05| for JVM, to an equivalent subset of CIL.
It is now interesting to extend the analysis to suppot a concept that is not known in the
java bytecode. CILpinter extends CIL;y: to support basic managed pointers. Therefore
we introduce instructions for loading addresses of local information ressources as well as
indirect loading and storing of values using these addresses. In consequence, some new
possibilities for security leaks emerge. Furthermore, the concept of managed pointers
requires that the soundness proof is shown at the end of this section, because there is no
work known with a similar concept in a security type system.

6.1 Extension of the Memory Model and Program States

C1 Lyointer makes use of the same information ressources as C1L;,;, therefore the changes
to the memory model are minimal. To understand the changes that are necessary, it is
useful to have a look at some properties of managed pointers first. These properties can
be found in [ECMO06], but for the analysis the most important properties of managed
pointers are the following:

e Managed pointers can be passed as arguments and stored in local variables.
e Managed pointers may not point to another managed pointer.
e Managed pointers are not interchangeable with object references.

From these properties it is possible to draw several conclusions about the use of man-
aged pointers and the handling of the managed pointers in the runtime environment and
therefore in the analysis later on.

The first property states that managed pointers can be stored in local variables. There-
fore it is necessary that the security type system tracks if a variable is used to store a
pointer and all the additional information a pointer may have.

Furthermore, it is necessary to handle pointers that are passed as arguments. How-
ever, the type system does not have much information available about those pointees,
because these are dynamic values that are not available in a static analysis. But the only
information interesting for the analysis is if high level information is written to a low
level information ressource. Therefore it is possible to handle addresses that are passed
as an argument the same way as addresses of local variables. As a result, we extend y to
include the local variables and parameters as well as the variables that are referenced by
pointers passed as arguments. This is safe, because the pointers used in this subset of the
language reference local variables only and can be handled as local variables. However,
the arguments need to be handled adequately, if the type system is extended to support
message calls.

The second property states that managed pointers may not point to other managed
pointers. As a result, managed pointers do only have one indirection level, because it is
safe to assume that the pointee is not a pointer. This makes the analysis less complex.

The third property states that pointers are not interchangeable with object references.
This has the effect that the concept of managed pointers is independent from objects and

35

6.2 Instructionset and Semantics 6 CILpornTER - BASIC MANAGED POINTERS

object references and, in consequence, objects and object references are not needed for
the analysis.

In consequence of these properties, it is possible to keep the complete memory model,
but the part that says that a program evaluates to a specific value. Due to the changes
in y and the fact that it may now contain ressources that can be read from outside the
program, it is not safe to say that a program evaluates to a specific value.

This problem can be addressed by saying that a program evaluates to a local mapping
and a value. By doing so, we over approximate the amount of information ressources
that may be visible from outside the program. In consequence, a complete execution
of a program can now be described by (0, pg, €) ~* p,,v. In the sequel we will use the
shortcut P, py | p,, v to denote the fact that a program that is run with the local mapping
po evaluates to the local mapping p, and the value v.

Additionaly, our analysis assumes that no changes are done to the information ressources
in x from outside the program. This includes the subset of non-local ressources that are
referenced by local pointers.

6.2 Instructionset and Semantics

After introducing managed pointers, we introduce instructions that use managed pointers
to local variables. The extension of the language to support managed pointers needs
to include instructions that load local addresses on the operand stack, instructions that
load values indirectly from variables referenced by addresses and store values indirectly
in variables referenced by addresses. Therefore we introduce the following equivalence
classes of instructions:

loadlocaladress x Every instruction that pushes the address of a local variable or pa-
rameter on the operand stack.

loadindirect Every instruction that pops one value from the stack, interpretes it as an
address and loads the value stored in the variable or parameter referenced by this
address on the operand stack.

storeindirect Every instruction that pops two values from the operand stack, interpretes
one as address and stores the other in the variable or parameter referenced by the
address.

We can describe the small step semantic of these new instructions using their resulting
transfers of the states in the runtime environment. Furthermore, it is necessary to change
the semantic of “return” to describe the new possibility of returning values using pointers.
The semantic can be found in table 3.

36

6.3 Additional Pointer Information6 CILpointrr - BASIC MANAGED POINTERS

Pli]=loadlocaladdress x
(,p,08)~ (i+1,p,&(x)::0s)

Pli]=loadindirect
(1,0,&(x)::08)~ (i+1,p,p(2)::08)

Pli|=storeindirect
(i,p,0::&(x):08)~ (i+1,pD{z—v},08)

Pli]=return
<i:P7U: :08>Mpzv

where v € V, x € ¥,
&(x) denotes the address of the information ressource x € x

Table 3: Semantic of additional or changed CIL,,inte, Instructions

6.3 Additional Pointer Information

To be able to analyse programs containing managed pointers it is necessary to track the
security levels of the pointer targets, the so called pointees. It is important to know the
exact security level of a pointee to be able to decide if a value may be loaded or stored to
the information ressource it references.

Furthermore, the security system must be able to determine the security level of a
referenced ressource, even if the pointer is loaded from a local information ressource.

Additionally, not every variable may be used as a pointer and therefore it must be
possible to distinguish pointer variables from value variables.

For these reasons we introduce a second function, called the pointee level. It is possible
to distinguish the two types of variables using the pointee level, by assigning a special
value to the pointee level, if a variable may not be used as a pointer, and tracking the
security level of pointees, by assigning a security level the variable may point to, if the
variable may be used as a pointer.

As a result, it is possible to define the pointee level as follows:

Definition 16: Pointee Level
Let PL:x — SU{L} be a function that describes the security level s € SU{L}
the variable x € x may point to.
If PL(x) =L the variable may not be used as a pointer.

6.4 Non-Interference

The pointee levels are additional information that may influence the visibility of informa-
tion. In consequence, it is necessary to adapt the definitions of indistinguishability and
the non-interference condition.

The indistinguishability of values can remain untouched, because the additional infor-
mation do not influence the equivalence of values that is used in the definition.

37

6.4 Non-Interference 6 CILpoinrer - BASIC MANAGED POINTERS

The defintition of indistinguishable local mappings says, that two variable mappings
p, P € x — V are indistiguishable with respect to a security level sl € S, if for every
information ressource x € y either x is mapped to equal values in both mappings or the
security level of x is higher than sl.

The pointee levels do not influence the security levels of local variables and parameters.
In consequence, it is obvious that it is safe to keep the definition of indistinguishable local
mappings, t00.

The definition of indistinguishable operand stacks is relative to the security level of
the observer and the stack type. However, the stack type does not account information of
pointee levels. Therefore the stack type needs to be extended to support this information
to keep track of the pointee levels of addresses. As a result the stack type is extended to
be of the type PT = (S x (SU{L}))*.

After changing the stack type it is necessary to adapt the definition for operand stack
indistinguishability to be consistent with the new stack type.

Definition 17: Indistinguishability of Operand Stacks
Two operandstacks are indistinguishable with respect to a security level sl €
S and two security level stacks st,st’ € (S x (S U{L}))* with the same size as
0s,08" € V*, if they have equal size and every value on the stack is either equal or
the corresponding security level on the security level stack is higher than sis.

size(os) = size(st) = size(st') = size(os’) =0

08 ~gp str 08

size(os) = size(st) = 0 A 0s ~g s 08" A sly > Slops

)
08 st (sly,ply)str U 22 OS

08 ~gp s 08 Nv =" A Sl, < slops

.. I e el
V 1008 ™ (sly,ply):st,(sly,ply):st! U 2 OS

08 ~gtstr 08 N Sly > Slops N UL > Slops

. ! .. /
U 11 08 (sl ply)st, (sl pll, st U 10 OS

The definition of indistinguishable states can remain as it is, because it is defined
inductivly on the indistinguishability of local mappings and operand stacks.

The defintion for non-interfering programs said that a program P is non-interfering, if
for every two local mappings p and p’, where p ~ p/, the results v and v' of the program
executions are equal.

Now it is necessary for the non-interference condition to include the local mappings,
because non-local resources may be referenced and are therefore assumed to be part of .

In conclusion, the non-interference condition of the program can be defined as follows:

38

6.5 Typesystem 6 CILPOINTER - BASIC MANAGED POINTERS

Definition 18: Non-Interfering C'IL,n.r Program
A program P is non-interfering, if for every pair of indistinguishable local mappings
p ~ p' and the results of the executions, in case they terminate, are p,,r and p,, 1/,
then p, ~ p/ and r =r’.

Vo, p€x—=Vip~p AP pllp,,m NP p U plr" = p~p Ar =1
P is non — inter fering

6.5 Typesystem

Now it is possible to adapt the typesystem for C'I L;,; to support managed pointers. The
concept of control dependency regions can remain unchanged, because pointers do not
change the influence branching instructions may have on the visible output in another
way than value variables do.

6.5.1 Abstract transformation

The basic principle of the analysis is identical to the analysis for C'I L;,;. Managed pointers
introduce a level of indirection, therefore that must be addressed in the transfer rules.

The analysis for C'IL;,; has been defined as a set of rules that manipulate tuples of
the type ST x SE. To enable tracking of pointee level of a value, it is necessary to change
the tuples that represent the abstract state to be of the type PT x SE.

Let (pt, se) be a tuple of this type. pt is a stack of tuples (sl,pl) € PT. It represents
a combination of the security level and the pointee level of the sources of the operands
on the stack. se is called the security environment and represents the least upper bound
of security levels of all regions the instruction is part of and therefore an upper bound of
all guards the instrution may be executed under.

Furthermore it is necessary to extend the lift operation to support the new pointee
level to be able to use the lift operations in the new abstract transfer rules. The definition
can be changed as follows:

Definition 19: Pointee Level [ift
Let lifty, where sl € S, be a function of the type PT — PT. If pt’ = liftq(pt),
then

size(pt) = size(pt')AVi € {n € N|n < size(pt)} : (sly, plp) = pt[i| Apt'[i] = (slpeUsl, ply)

Let lifty, where sl € S, be a function of the type SE x region — SE. If s¢/ =
lifta(se,region(i)), then

Vj € PP :(j € region(i) = se'(j) = se(j) U sl) A (j & region(i) = se'(j) = se(j))

Now it is possible to define the analysis as a set of rules manipulating those tuples
that represent the abstract state of the runtime environment. The transfer rules can be
found in table 4.

39

6.5 Typesystem 6 CILPOINTER - BASIC MANAGED POINTERS

Pli]=unary op
ik(sl1,pl1)::pt,se=(sliUse(i),L):pt,se

Pli]=binary op
iH(sl1,pl1)::(sla,pl2)::pt,se=(sliUsl2se(i),L)::pt,se

Pli]=pop
iH(sl1,pl1)::pt,se=pt,se

Pli]=push v
ibpt,se=(se(s),L)::pt,se

Pli]=loadlocal z
ikpt,se=(SL(x)Use(i),PL(x))::pt,se

Pli]=storelocal © sliUse(i)<SL(z) pli=PL(x)
i(sl1,pl1)::pt,se=pt,se

Pli]=unconditional Jump t
iFpt,se=pt,se

Pli|=jumpWithl Argument t
i=(sl1,pl1)pt,se=>lifto, (pt),lifts, (se,region(i))

Pli]=jumpWith2 Arguments t
i'_(sll 7pll)::(8127pl2)::ptvse:>liftsll Uslg (pt):liftslluslz (5€7T69i0n(i))

Pli]=loadlocaladdress © PL(xz)#L
ikpt,se=(SL(x)Use(t),SL(x)):pt,se

Pli|=loadindirect pli#L
ik (sl1,pl1)::pt,se(i)=(sl1UpliUse(i),L)::pt,se

Pli]=storeindirect pla>sliUslalUse (i)
ik(sl1,pl1)::(sla,pl2)::pt,se=pt,se

Pli]=return sliUse(i)=lsl
iH(sly,ply)::pt,se=

where [sl € S is the least security level of the flow policy,
veV,te PPand z € x

Table 4: Abstract Transferrules for C'IL,pinter

The first interesting change is the new transfer rule for loadlocaladdress x. When
executing this instruction an address gets pushed on the stack, therefore this is the new
top value v on the stack. The top security level of the stack type has to be equal to the
source of v. The source is the variable x in combination with the instruction at position
i, therefore the security level of the value must be SL(z) U se(i). The address references
a ressource of the security level SL(x), therefore the pointee level must be SL(z).

The second interesting rule is the rule for storelocal x. When executing this transfer-
rule a value gets poped from the stack and stored in a local variable or parameter. The
first condition for applying the rule has not changed from the C'I L;,, transferrule, but the
second condition has been added. The security level of an address stored in this location

40

6.5 Typesystem 6 CILPO]NTER - BASIC MANAGED POINTERS

must be equal to the pointee level of x, resulting in the condition pl; = PL(x). This way
it is possible to store an address in a variable and keep track of the security level of the
pointee.

The third interesting rule is for the instruction loadindirect. When executing this
instruction an address gets poped from the stack and the value tored in the ressource
referenced by this address gets poped on the stack. First thing to check is that the value
on the stack is an address. The pointee level has been introduced to track the security
level of the pointee. When loading an address onto the stack with loadlocaladdress x, the
security level of the variable referenced by the address is pushed as pointee level on the
stack type. With these prerequisits it is possible to assume that the top value of the stack
has a pointee level that is not L, if it is an address. Therefore it is possible to use this
to check, if an address is on the operandstack, resulting in the condition pl; #L. After
executing the instruction a new value is on top of the stack. The security level of this new
value must be equal to its source. The source of the value can be seen as a combination
of the instruction, the address and the source of the address. Hence, the security level of
the new value must be a combination of the security environment of the instruction se(7),
the pointee level of the address pl; and the security level of the source of the address sl;.
As result, the security level of the new value must be se(i) LUml; L sl;. Managed pointers
may not point to other managed pointers. As a result it is safe to assume that the new
value is not an address and therefore pushing 1 as pointee level on the stack, signaling
that the value is not an address.

The last interesting rule is the rule for storeindirect. When executing this instruction
an address and a value get poped from the stack and the value is stored in the variable
referenced by the address. The first value on the stack is the value to be stored, the second
is the address. First of all, the pointee level of the address must be higher or equal to the
security level of the source of the value to be stored or an illegal direct low of information
exists. It must be of higher or equal security level than the security environtment, too, or
an illegal indirect flow of information exists. Furthermore, we must check if the address
depends on a high level ressource and we must include sly. This results in the condition
ply > sly U sly U se(i).

After introducing the abstract transfer rules, it is obvious that it is necessary to change
the definitions for corresponding states and typability, because of the changes in the
abstract state.

Definition 20: Corresponding States With Pointers
An abstract state pt;, se; € PT x PP — S corresponds to a runtime state (i, p;, 0s;),
if both are either the initital states (0, p,€) and €, se of a program or if the states
result from two corresponding states by applying a semantic rule and an abstract
transfer rule.

pti,se; = €,se (i, p;,08;) = (0, po, €)
<Z.7 Pis 08i> H pt’w S€;

ptjasej :>pti75€i <j7 pj708j> ~ <iapi703i> <]a Pj703j> H ptj7sej
(i, pi, 0si) || pti, se;

41

6.5 Typesystem 6 CILPOINTER - BASIC MANAGED POINTERS

Now that corresponding states are defined, it is possible to define the typability using
the new definition of corresponding states. We use — instead of = to denote the transfer
of the abstract state in the definition to prevent confusion with the implication.

Definition 21: CILp,ntr Typablility
A program P is typable, if for the last runtime state before terminating a corre-
sponding abstract state exists and an abstract transfer rule can be applied and if
the stack type at every program point is constant.

Vprex—=V,reV:P,plpr,r={(0,p,6)~*(i,p;,r::08;)~ pr,r ADt; .56, — N (i,p; ,7::08;) || pts,s€;
p is typable

Now that the type system is introduced and typability is adapted to the new transfer
rules, it is necessary to prove that this type system enforces the conditions for a non-
interfering program to show that the type system fulfils its purpose.

6.5.2 Proof

Theorem: Soundness
If a program P is typable, then P is non-interfering.

According to the definition, a program is typable, if it fulfils the condition:

Vo, € x = Vir e V.:Popl poyr = (0,p,€) ~* (i,p;,r 2 08;) ~ pp, 7 A pt;, se; —
Nty piy T 22 08;) || pti, se;

The soundness theorem says that, if this condition is fulfiled, then the program is
non-interfering and, in consequence, must fulfil:

Vo, 0l ex =V ip~p NP plp,r NP plr" = po~pl Ar=17

fp~p orPplp,rorPp | p. 1 isnot fulfiled, the non-interference condition is
fulfiled. Hence, it is only necessary to proof that r = 7’ and p, ~ p/. is fulfiled, in the case
that the first three subterms are fulfiled.

Furthermore, we know that P,p || p., v is a special case of (7, p;, 0s;) ~* p,, v, where
1 =20, p; =p and os; = €.

In consequence, it is possible to write the non-interference condition as:

Vo, plex =V :ip~p N0,p,€) ~" por N0, 0 €) ~* plr' = pp~pl AN =1

This proof can be done by induction on the length of execution paths. We will use
some lemmas during the proof. Furthermore, we use virtual steps instead of the real steps
in the type system. The virtual steps allow us to assume equal lengths of execution paths
even if the real length of the execution paths may differ in high level regions.

42

6.5 Typesystem 6 CILPOINTER - BASIC MANAGED POINTERS

Definition 22: Virtual Step
A virtual step is a transition from one runtime state to another runtime state, that
results from either a single instruction in a low level region or a complete high level
region.
~={((4, pi, 08i), (4, pj, 085)) €~ |se(i) < slops}
U{(Z, pi, 08:), (J, pj, 0s;)) € State x State|(k, pg,0sk) ~ (i, p;i, 08;) ~* (J, pj, 05;)
Nk & region(l) A i € region(l) A j = junction(l)}

We can use this definition, because of the lemma “High Level Regions Converge”.

Lemma 1: High Level Regions Converge
In a typable and terminating program execution, the execution paths that pass a
high level region converge at the junction.
Vi, j, k,l € PP : 1 & region(i) Ak € region(i) A\ j = junction(i)
AP p) pryv AL, pr,08;) ~ (k, pg, 0Sk)
= <l7 Pr OSl> ~ <k7 Pk Osk> ~* <Ja Pjs OSj>

The proof for this lemma can be found in the appendix C.1.1.

Lemma 2: Virtual Steps Preserve Indistinguishability of States
In a typable program P, the execution of a single instruction preserves the indistin-
guishability of states:

<i7pi708i> ~u <]7 Pj705j>/\<i7p;>05;> ~u <j7p;'7059‘>/\<i7p72705i> ~ <Z'>p;'7052> = <j7 pj708j> ~ <]7 p;7082‘>

This lemma can be proved by showing that every single abstract transfer rule of the
typesystem enforces that the indistinguishability of the states is preserved. Furthermore,
we must prove that high level regions preserve the indistinguishability of states.

We want to show only an excerpt of the proof in this section, but the complete proof
can be found in appendix C.2.

Let <Zu Pi; 05i> ~u <j7 Pjs OSJ)? <27 p;, OS;> o <]7 p;7 05;’> and <Z7 Pis 05i> ~ <7'7 10;7 OS;> for
the following proofs.

Using the definition of indistinguishable states, we know that p; ~ p} and 0s; ~ ¢ 0si.

Now we will show that the instructions “unary op”, “storelocal x”, “loadlocaladdress x”,
“loadindirect” and “storeindirect” preserve the indistinguishability of the values.

Proof: unary op
Using the semantic of the instruction, we know that
pPi ™~ p; N pi=p; N\ P; = p; N 08; ™ (sly,ply)::pt,(sll,,pl,)::pt! OS;
Nos; = v i os Nos; =0 108 Nosj = f(v) :0s ANos) = f(v') i1 08’ is fulfiled.
And we can conclude that
pj ~ p;- N 08§ ~ (sl plo):ipt, (sl plt,):pt! 053 A\ 05§ =V 108 N os; = V' 2 08
Nos; = f(v) i1 0s Nosly = f(v) 08
In consequence, we know that

!/

43

6.5 Typesystem 6 CILPOINTER - BASIC MANAGED POINTERS

Pj ~ P NV 208 ~ (st ply)eapt (sl pl)prt V' 08" N os; = f(v) os Aosly = f(v') 1 o8’
From the defintion of indistinguishable operand stacks we know that we have to dis-
tinguish two cases. The first sl, < slops A sl < slyps that describes that the top value
of the stack is visible and the second sl, > slys A sl. > sl that describes that the
top value of the stack is invisible.

1. case: sl, < slops A sl < slops

Using the definition for indistinguishable operand stacks, we know that

pj~ P ANV =10"N0s ~ppr 08" Nosj = f(v) :0s ANosy = f(v') 2 08

And we can conclude that

pi~psANv=0"Af(v) = f(V') Nos ~pppr 08" Nosj = f(v) i1 0os Nos = f(v') i o8
With the defintion of inditinguishable operand stacks, we know that

pj ~ P3N J(V) 5208 ~ (st Uyt (sl oy, L)t f (V) 1208

Nos; = f(v) i 0s Nosly = f(v) 08

In consequence, we know that

p] ~ p_/] A OS] N(Slf('u)7L)::pt7(8lf(u’)7J-)::pt/ OS‘/]

Using the definition for indistinguishable states, we can conclude that

<j7 Pj; 05j> ~ <j7 /0;7 08;’>

and finally we know that

<i> Pis OSi) ~u <]7 Pj Osj> A <i7 pg? OSQ) ~u <]v p;‘a 05;’> A <i7 Pis 03i> ~ <i7 P;a 032)

= (J, pj, 085) ~ (J, 0}, 0s}) is fulfiled.

2. case: sl, > slops N SlL > slops

Using the definition for indistinguishable operand stacks, we know that

pj ~ P N sly > slops A sly, > Slops N 08 ~p i 08" Nosj = f(v) i1 0s Nos = f(v') :: 0s
Using the abstract transfer rule, we know that

pj ~ p;- A 8ly > Slops A Sl > Slops A 0S ~opp ppr 08

Nos; = f(v) i 0s Nosly = f(v) i1 08" A sl = sl, U se(i) A slyry = sl;, U se(i)
We can conclude that

pj ~ P N0s ~prp 08 Nosj = f(v) i1 0os Nosi = f(v') i o8’

/\Slf(v) > Slops N Slf(v/) > $lops

Using the definition for indistinguishable operand stacks, we can conclude that
P~ p; A f(U) 2 08 N(slf(v),L)::pm(slf(v/),L)::pt’ f(vl) 108\

osj = f(v) :os Nosl; = f(v') :: 08’

In consequence, we know that

p] ~ p_/] /\ OS] N(Slf('u)7L)::pt7(8lf(u’)7J-)::pt/ OS‘/]

Using the definition for indistinguishable states, we can conclude that

<j7 pj7 05j> ~ <j7 /0;7 08;’>

and finally we know that

<Z.7 Pis OSi) ~ <]7 p]a Osj> A <Za P;; 082> ~ <]7 p;a 05;’> A <Zv Pis OSi) ~ <7’7 p{m 082)

= (J, pj,085) ~ (J, 0}, 0s}) is fulfiled.

/

44

6.5 Typesystem 6 CILPOINTER - BASIC MANAGED POINTERS

Proof: storelocal x
Using the semantic of the instruction, we know that
pi~piApi@{r—vt=pApp@{r— v} = P N 0Si ™ (sl pl)iipt (sl ply)ipt! OS;
Nos; = v 1 0os Nos; =0 i1 0s' Nosj = o0s A os; = os' is fulfiled.
And we can conclude that
pi ~ pi N pi @ {z v} =p; A p; @ {z— v} =p]
AV 308 ~ (g1, plYupt (sl plt)ptr V' 32 08" N 0S5 = 08 N 08 = 05
We have to distinguish two cases sl, < slops A SlL < slops and sl, > slops A Sl > Slops

1. case: sl, < slops A Sl < slops

Using the definition for indistinguishable operand stacks, we know that

pi ~ p; A pi ®{x = v} = p; A p; @ {x — V' = pj A 0os ~ppr 08

Nosj = 0s N os; = os' Nv =1

We can conclude that

pi ~ pi A pi @ {x = v} = p; A p; @ {x = '} = pf Aosj ~prpr 08; Ao =0

Using the defintion for indistinguishable local mappings, we know that

pi®{r = v}~ pi@{r = VAP ©{T = v} = p; Api @ {x = v} = pf Aosj ~pr e 08]
And we can conclude that

pj ~ P N 0Sj ~pi pir 0S%

Using the definition for indistinguishable states, we can conclude that

<j7 Pjs OSj) ~ <]7 P;> 08;’>

and finally we know that

<7:7 Pis Osi) v <]7 Pjs OSj> A <Z7 P;, 08;‘) ~u <J7)0;', OS;’> A <Z7 Pis 05i> ~ <Z7 P;7 OS;>

= (J, pj, 055) ~ (J, pj, 08}) is fulfiled.

2. case: sl, > slops N SlL > slops

Using the abstract transfer rule, we know that

pi~ Py ANpi @ {x = v} = pi Api @ {x = V') = pf AU 08~ ply)apt (st pit) U
0s' Nosj = 0s Nos; = 0s' N SL(x) > sl, U se(i) > slops N SL(x) > sl;, U se(i) > slops
Using the definition of indistinguishable local mappings, we can conclude that

pi @{z = v} ~pi@{z = VIAp ®{z = v} =p; Ap;@{z — vV} =p;Av
0 ~ (sl ply):ipt, (sl plt)epty U 32 08 A 085 = 08 A\ 08, = 08’

We can conclude that

Pi~ p; A oS ™ (sly,ply):pt,(sll,,pll):pt’ v’ i os' A 05 = 05 A OS; = os'

Using the definition for indistinguishable operand stacks, we know that

pj ~ P N 0S ~ppp 08" N\ 0sj = 0s N\ os; = os’'

And now we can conclude that

pj ~ P N 0Sj ~p pir 08

Using the definition for indistinguishable states, we can conclude that

<j7 Pjs OSj) ~ <]7 997 08;’>

Finally, we know that

<7:7 Pis Osi) v <]7 Pjs 05j> A <Z7 pgv 08;‘) ~u <]7 P;', OS;’> A <Z7 Pis 05i> ~ <Z7 p27 OS;>

/

= (J, pj, 055) ~ (J, P, 08}) is fulfiled.

45

6.5 Typesystem 6 CILPOINTER - BASIC MANAGED POINTERS

Proof: loadlocaladdress x
Using the semantic of the instruction, we know that
pi ~ Py N pi = pj N pi = PN 0osi ~prpr 05; A osj = &(x) 1 0s; Aos; = &(x) : os] is
fulfiled.
And we can conclude that
pj ~ P N 0si ~ppr 05 N\ osj = &(x) it 0s; A os; = &(x) i o0s;
Using the definition for indistinguishable operand stacks, we know that
pj ~ p;-/\&(af) 108§ ™ (sly, L)spt, (sl L)ptr &(2) 208 Nos; = &(x) = 0s; Nosy = &(z) :: o,
And we can conclude that
pj ~ P N 0Sj ~pi pir 08
Using the definition for indistinguishable states, we can conclude that

<j7 Pijs OSj) ~ <]7 P;> 08;’>
and finally we know that
<i7pi7 Osi) v <]7 Pjs 05j> A <i7p;7 08;‘) ~u <]7 10;'7 OS;’> A <i7pi7 05i> ~ <Z7 10;7 OS;>

= (J, pj, 055) ~ (J, P, 08}) is fulfiled.

Proof: loadindirect
Using the semantic of the instruction, we know that
P DN P = P NP = 05 N 055 ™ (sl)l)01 sl)l)00 O
Nos; = &(x) i1 0s Nos; = &(x) :: 05" N osj = pi(x) 2 05 N os; = pli(x) :: 0s' is fulfiled.
And we can conclude that
Pj ~ /); N 0S; N(sl&(z),pl&(z>)::pt,(slf&<z>,pl(’g&@))::pt’ OS;
Nos; = &(x) 1 0s N os; = &(z) i1 08" N os; = pi(x) 2 0s N os’; = pi(x) :: 0s
We have to distinguish two cases. Either all information is visible slg,) < slobs/\sl:&(x) <
Slobs APlge(@) < Slops /\pl(’&(x) < sl or either the address is invisible or the ressource that

is referenced by the address slg () > Slops A Sl:&(:v) > 5lops A Plg() > Slovs /\pl(’&(m) > Slops.

/

1. case: slg(z) < Slops N slf&(m) < Slobs N Ple(z) < Slops /\pl(’gz(x) < Slops
Using the definition of indistinguishable local mappings, we know that

/ / _ .o
pj ~ P N\ 0s; N(Sl&(m),pl&(z))::pt,(sléé(w)ml:&(m))::pt/ 0s; N os; = &(x) :: 0s

Nos; = &(x) 2 08" Nosj = pi(x) : 0s N os) = pi(x) 2 08" A pi(x) = pi(x)
Using the definition of indistinguishable operand stacks, we can conclude
pj ~ P N0s ~pppr 08" N osj = pi(x) 05 N os = pi(x) i 08" A pi(x) = pi(x)
Using the definition for indistinguishable operand stacks, we know that

pj ~ P A pi(x) i 0s ™ (8l () UpLas () UIse (1), L)t (sl o Upll oy Use (i), L):pt! pi(z) = os)
Nosj = &(z) : 0s; A os; = &(z) :: 0s;

And we can conclude that

pj ~ P N 0S5 ~ptppr 0S]

Using the definition for indistinguishable states, we can conclude that

<j7 Pjs OSj) ~ <j> P;7 08;‘>

and finally we know that

<i7 Pis OSZ') ~ <]7 pja 0$j> A <Zv p;: OS;) ~u <jv p;a OS;’> A <Z7 Pis OSZ') ~ <Zv P;a OS;)

46

6.5 Typesystem 6 CILPOINTER - BASIC MANAGED POINTERS

= (J, pj, 085) ~ (J, 0}, 0s}) is fulfiled.

2. case: Slg(z) > Slops N sl(’&(x) > Slops V Plee(z) > Slobs /\pl:&(x) > Slops

Using the definition of indistinguishable operand stacks, we can conclude
pj ~ P N0s ~prp 08" Nosj = pi(x) i1 0s A os; = pi(x) 08’

A(8lg(z) > Slops N slf&(m) > Slops V Plee(z) > Slobs /\plf&(z) > Slobs)

We can conclude that

pj ~ P N 0S ~prp 08 N os; = pi(x) i 0s A osy = pi(z) i 0s
NSl (z) U plez) U se(i) > slops A Sl:@z(x) L pl:@z(z) L se' (i) > slops

Using the definition for indistinguishable operand stacks, we know that
pj ~ P A pi(x) i 0s ™ (sl () UPlic () Use(0), L)12t (1, o Pl o Use! (6), L):z:pt! p; 208’
Nosj = pi(x) 2 08 N os); = pi(x) :: os'

And we can conclude that

pj ~ P N 0Sj ~pi pir 08}

j
Using the definition for indistinguishable states, we can conclude that

<j7 Pijs OSj) ~ <]7 P;> 08;’>
and finally we know that
<i7pi7 OSi) v <]7 Pjs OSj> A <i7p;7 OS;) ~u <]7 IO;W OS;'> A <i7pi7 05i> ~ <Z7 10;7 OS;>

= (J, pj, 055) ~ (J, P, 08}) is fulfiled.

/

Proof: storeindirect
Using the semantic of the instruction, we know that
Pi~ p; N 08; ™ (8l,plv) i (Slg (2) Plee ())Pt (81 DU) (8l (1) Plgy (7)) DY 03;
Ao @ {1 v} = p; A g, @ {0} =)
Nos; = v &(x) i1 os Nos; =v' 1 &(2') 1 08" Nosj = 0s N\ os; = os' is fulfiled.
And we can conclude that
pi v P N0 &(T) 1208 (s, pl, (sl oy i)t (0l sl oy bl ory i V32 &(27) 22 0
Api @ {z = v} = p; A p; @ {2" '} = p) Aosj = 0s A os) = os’
We have to distinguish two cases. Either all information on the stack is from visible
ressources sl, < slopsASl, < 8lops ASlg(z) < Slops ASlg(ar) < Slops OF One of the information
ressources is invisible sl, > slops A 5l;, > Slops V Slg () > Slops A Slge(ary > Slops

/

1. case: sl, < slops A sl < Slops A Slg () < Slops A Slgo(ary < Slobs

Using the definition for indistinguishable operand stacks, we know that

Pi ™~ P A 2 &(T) 108 (st il (sl oy o))t (sl pll)5 (sl o) Pl oy Jipt U 5 (@) 22 08
Api @ {z = v} = p; Api @ {2 ="} = pliNosj = os Nos; = 05’ Nv = v N&(x) = &(2)
And we can conclude that

pi ~ PiANpi©{T = v} = py Api@{r" = '} = plA0sj ~p e 085 A0 = 0 A& () = &()
Using the defintion for indistinguishable local mappings, we know that

pi® {1 > v} ~ LT — VAP BT o> v} = s ApLB{a’ '} =) A0S ~pupe 08,
And we can conclude that

pj ~ P N 0Sj ~pipir 05

j
Using the definition for indistinguishable states, we can conclude that

/

47

6.5 Typesystem 6 CILPOINTER - BASIC MANAGED POINTERS

<ja Pjs OSj) ~ <]> P;a OS;‘>
and finally we know that
<i7pi7 OSi) ~u <.]7 pju OSj> A <Z7p;7 OS;> ~u <.]7 p;a OS;’> A <i7pi7 08i> ~ <37/)27 08;>

= (J, pj, 055) ~ (J, P, 08}) is fulfiled.

2. case: sl, > Slops N Sl > slops V Slgg(@) > Slops N Slg(ary > Slops

Using the abstract transfer rule, we know that

pi ~ Py Av &) os ™ (sl plo) (sl) Pl (o)) P pLL) (sl oy g (o it V5 &(a') 2 os

Api @ {z = v} = p; A p @ {2" v} = pf Nosj = 0s N osy = os'

ANSL(x) = plg(z) 2> sly U slg(z) U se(i) > slops

ANSL(x) = plg(ary > sl U Slg(zry L 5€'(7) > Slops

Using the definition of indistinguishable local mappings, we can conclude that

pi O{r = vf ~ i O {r" = VA p @ {T v} = pj App @ {2 = V') = pl ANosj = os
!/ / /.. 1\ ..

/\OS] = 0§ /\U o &($) - 08 N(Sl’v7plv)::(5l&(a7)7pl&(z))::pt7(8l{u7pl'lu)::(8l&(z’)7pl&(z’))::ptl v &(I) 2 08

We can conclude that

pj ~ p; N osj = o0s A os; = os

Av &(I’) ;L 0S8 N(slv,plv)::(sl&(x),pl&(m))::pt,(slg,pl;)::(sl&<zl),pl&(ml))::pt’ v &(ml) i 08’

Using the definition for indistinguishable operand stacks, we know that

pj ~ Py N\ 0S ~prpy 08" N osj = 0s A\ 0s = os’'

And now we can conclude that

pj ™~ Py NOSj ~prprr 0S)

Using the definition for indistinguishable states, we can conclude that

<j7 Pijs 08j> ~ <j7 /);7 08;’>

and finally we know that

<Z.7 Pis 08i> ~ <]7 p]a OSj> A <Z7 p;7 082) ~u <]7 p;a 08;’> A <Zv Pis OSi) ~ <7’7 p{m OSQ)

= (4, pj, 085) ~ (J, 0}, 0s}) is fulfiled.

/

/

From these proofs we can conclude that these virtual steps preserve indistinguishabil-
ity. The proofs for the other virtual steps can be found in the appendix C.2

Proof: Soundness
Let P be a typable program. Let (i, p;, 08;) ~ (i, pl, 0s.) be two indistinguishable states
and (i, p;, 08;) ~F pp, v, (i, pl, 08L) ~* pl v be the execution paths.
Now we need to show that p, ~ pl. Ar =’ is fulfiled.

Induction base:
Let n = 1 be the amount of virtual steps before termination of the program. As a
result, the execution paths must be:
(i, pi, 08i) ~>0 Pry 0 A (i P}, 087) ~y P,V
We know that “return” is the only instruction that can terminate a program. Using
the semantic of “return”, we know (r, p.,v :: 0s,) ~ p,,v. In consequence, p; = p,,
P =pl., 0s; = v os, and os, = v’ :: 0s] and the resulting execution paths:
(1, Pry 0 22 0Sy) ~> pry 0 A (2, Pl V" 0 08)) ~o pl
Using the definition of indistinguishable states, we can conclude that:

/

48

6.5 Typesystem 6 CILPOINTER - BASIC MANAGED POINTERS

Pr~ pp NV 08, ™~ (sl,pl)::pt, (sl ,pl’)::pt! v’ os!

From the condtition sl se(i) = lsl of the abstract transfer rule for “return”, we know
that sl must be the least security level in the flow policy and, in consequence, any
observer may see it, hence sl < sl,bs. Using the defintion of indistinguishable operand
stacks, we can conclude:

Pr ™~ Pl N 0Sy ~opp e 08 Nv =1

Finally we know that

pr ~ p. Av=1"1is fulfiled.

Induction requirement:
Any execution with n states before termination fulfils:
(i, piy08i) ~ (i, pl,08,) A (i, pi, 08;) ~" pryv A (i, ph, 085) ~" pl v = pp.~pl Ao =1

Induction step:
Let the execution path have n + 1 states. The execution paths can be written as:
<i7 Pi; OSi> ~ <j7 Pjs OSJ> ~" pr, v A <Z.7 p,i? 05;> ~ <.]7 /0;'7 OS;’> ~" p;w v’
Using the lemma “Virtual Steps Preserve Indistinguishability of States”, we can con-
clude that
<i7 Pis 0$i> ~ <i7 pi’? 03;> A <i> Pis 03i> ~ <]> Pjs 08j> ~" pr, v
Ay L, 05}) ~> (j, 9, 08}~ pl 0! = (G, p3, 083) ~ (j, o, 051
is fulfiled. Using the induction requirement, we can conclude that
(i, pi,y 08;) ~ (i, ph, 085) N (i, pi, 08;) ~ (J, pj, 085) ~" pp, v
/\<Z.7p;7 OS;> ~ <]a P}, OS;‘) ~" p;,,?/ = <J7 Pj Osj> ~ <]7 P;, 05;'> = Pr p; Av =1
is fulfiled. And in consequence
<i7 Pis 03i> ~ <i7 p;-, 03;> A <i7 Pis 05i> ~ <.77 Pj> Osj> ~" P, VA <ia P;, 05;’> ~ <]7 p;'a 05;’> ~"
Py, 0 = pr~pr AU =0
is fulfiled.
As a result, a typable program is non-interfering.

49

7 CONCLUSION

7 Conclusion

7.1 Summary

The goal of this paper has been to show a way to analyse CIL programs for illicit infor-
mation flow. For this reason the security conditions and the principles used have been
introduced. Furthermore, the basic principles of security type systems have been shown.
After that, a subset of the CIL has been defined to show at a simple example the work that
must be done when developing a type system. This type system has been implemented.
Some example applications have been tested and the results illustrated the usefulness
of security type systems, but, on the other hand, revealed the restrictions those simple
systems have and which areas need to get improved. It has been shown that rules for
declassification of information and for handling method calls must be developed to improve
the relevance for testing and developing of real software systems.

After that, the sublanguage of CIL has been extended to support managed pointers on
local ressources. The type system has been extended to support the new instructions
and the new concepts that were introduced by the managed pointers. Furthermore, it
has been shown that the type system does guarantee that a typable program is non-
interfering according to our non-interference condition. As a result, it is obvious that
code using managed pointers can be checked by a security type system and that further
development of security type systems for CIL is reasonable. However, this type system
can not be used to support unmanaged pointers, because it is restricted to one level of
indirection.

7.2 Related and Future Work

The most important related works are the security type systems developed for the java
bytecode in [BRO5] and [BPRO7|. This work has been the base for the type system of the
small subset in our work. In those works they already support method calls, exception
handling, objects and arrays. Great parts of their type system should be adaptable for
use with the CIL. However, some small differences exist in the object handling between
the JVM and CIL. In consequence, it is not possible to use their type system, but it can
be used as base.

When extending the type system to support objects, it is necessary to keep the managed
pointers in mind, because objects may be referenced by managed pointers, too.

Another extension for the future would be to develop efficient algorithms that can calculate
the control dependecy regions to minimize the amount of parameterization for the user.
The conditions for the safe over approximation can be used to develop such algorithms.
On the practical side, the prototypical checking tool must be extended to support those
more complex type systems to show that they can be used for automatic information flow
analysis.

All in all, this work is just the first step towards a security type system for the complete
CIL, but it is still a lot of work to do to use the type checks for real world applications.

20

REFERENCES REFERENCES

References

[BPRO7]

[BRO5|

[ECMO6]

[LY99]

G. Barthe, D. Pichardie, and T. Rezk. A Certified Lightweight Non-interference
Java Bytecode Verifier. In Proceedings of 16th European Symposium on Pro-
grammang, volume 4421 of LNCS, pages 125—-140. Springer, 2007.

G. Barthe and T. Rezk. Non-interference for a JVM-like language. In Pro-
ceedings of the ACM SIGPLAN international Workshop on Types in Languages
Design and Implementation, pages 103-112, New York, NY, USA, 2005. ACM
Press.

ECMA International. Standard ECMA-335: Common Language Infrastruc-
ture (CLI). http://www.ecma-international.org/publications/standards/Ecma-
335.htm, 2006.

T. Lindholm and F. Yellin. The Java™ Virtual Machine
Specification. Second FEdition. Sun Microsystems, Inc., 1999.
http://java.sun.com/docs/books/vmspec)/.

ol

REFERENCES REFERENCES

52

A TASK

A Task

Bachelor Thesis

Information Flow Analysis for CIL

Contact: lux@mais.informatik.tu-darmstadt.de

Protecting the confidentiality of information is an important problem in modern net-
worked information systems. In particular, the use of mobile code creates additional threats.

Imagine the following scenario: You want to run an application from a software supplier
that you do not fully trust. The application (e.g. a spreadsheet) might need confidential
(high) data to perform its task. On the other hand, there might be communication
of seemingly uncritical (Jow) data (e.g. a registration process) with the supplier of the
software. The question is how to ensure that the program does not “leak” the secret data,
neither accidentally (bugs in the program) nor on purpose (a Trojan Horse).

An Information Flow analysis is a possible answer to such threats. Its purpose is to
check that there is no secret information leaking from high input to low output. Possible
leaks include explicit assignments such as in statements like [:= h or, more subtly, in
if h =1 then [:= 1 else { := 0, where one can draw conclusions on the (secret) value of
the high variable h only by observing the (non-secret) value of the low variable . Recently,
so called Security Typed Systems have been developed for mechanizing information flow
analyzes. For instance, the rules for typing assignments and conditionals read as follows:

exp : low exp:low FC; FCy
Fl:=exp F if exp then C; else Cy

Informally, this can be read: The conditional can only be typed if both the branches can
be typed and the guard is of “low” security type.

Apart from toy examples as above, today's security typed languages help avoiding many
subtle leaks and cover a broad range of interesting language constructs, including distribut-
edness, concurrency, synchronization and declassification.

In the scenario laid out above, the user of some software usually does not receive the
source code of a program, but only the output of some compiler in a low-level language.
Today this often is code in a language for a virtual machine, like the Java bytecode language
for the Java Virtual Machine (JVM) [LY99] or the Common Intermediate Language (CIL)
for the Virtual Execution System (VES) [ECMO06] of the .NET-framework. Security Type
Systems for these languages have to cope with unstructured code, stack-based computation
and language features like objects or exceptions. In [BR05, BPR07] for a Java-like bytecode
language a security type system is defined and proved sound according to an information
flow condition.

Project Objectives
Core:

e Firstly, you shall develop a prototypical tool to analyze ClL-programs for information
flow security according to security type system for a bytecode language without ob-
jects and methods [BRO5]. This language subset can be considered as an abstraction
of suitable language subsets from both Java Bytecode and CIL. It includes instruc-
tions to load and store values from and to variables, instructions to apply arithmetic
operations on values of the evaluation stack, and instructions to jump conditionally
or unconditionally.

Secondly, you shall develop example programs that serve as input for the information
flow analysis. You shall use them to assess the type system and your prototypical
implementation.

Thirdly, you shall extend the security type system to include the concept of managed
pointers to variables. Manged pointers are a special type of variable which contain
the address of another variable. Managed pointers allow indirect access to variables
via referencing. This represents a great difference to Java bytecode, where only
objects on the heap are accessible through references. This concept could lead to
further information leaks and need special checking.

23

A TASK

Extensions: Additionally to the core objectives, the following objectives could be pur-
sued.

e You could extend the security type system to ClL-like object-oriented concepts, also
based on [BRO5]. Instructions to create objects, fetch values of fields and put values
to fields have to be considered.

e Provide an overview on the differences between Java bytecode and CIL, with focus
on differences affecting information flow security and its analysis.

e You could extend your solution to include further concepts you found to be different
from Java bytecode.

Main Activities
1. Defining a schedule for the entire project

2. Developing tool to analyze CIL programs includes

e determining a suitable design and libraries to implement the tool,
e implementing the tool, and
e evaluating the choices of design and library based on the experiences made.

3. Developing example programs to assess implementation includes

e determining programs for all three classes, secure and typable, secure and not
typable (false positives), and insecure and not typable,

e writing the programs as CIL programs, and

e testing and evaluating the developed tool using the programs.

4. Type system for the language with pointers includes

e defining the extended syntax and operational semantics of a suitable ClL-like
language with pointers,

e defining an adapted semantic security condition,

e defining an adapted security type systems, and

e proving soundness of the adapted type system.

Deliverables
The bachelor's thesis shall include:
o the well commented code of the tool implemented by you

o the well commented code of the example programs implemented by you

definition and explanation of syntax and operational semantics

definition and explanation of security conditions

definition and explanation of security type systems

e soundness proof and explanation for the extended security type system

detailed explanation of decisions may (description of alternatives, discussion of their
advantages and disadvantages, arguments for the chosen solution, discussion of de-
cision in retrospective)

detailed elaboration on insights gained, on open problems identified, and on possible
extensions in the future

A talk at the end shall present the main results of the bachelor's thesis.

Prerequisites
e basic knowledge of low-level languages (assembler, Java bytecode or CIL)
e basic knowledge of program analysis
e programming skills

e Knowledge of the English language is necessary to understand the documentation
the thesis is based on. The thesis itself may be written in German or English.

o4

A TASK

Benefits

The student can acquire insights in the technology of virtual machines, especially for
the .NET-framework. Further the student learns a formal method for automatic and
efficient program analysis. The task of the thesis also offers possibilities to approach more
fundamental questions.

Supervision

Prof. Dr. Heiko Mantel (mantel@mais.informatik.tu-darmstadt.de)
Alexander Lux (lux@mais.informatik.tu-darmstadt.de)

References

[BPR07] G. Barthe, D. Pichardie, and T. Rezk. A Certified Lightweight Non-interference Java
Bytecode Verifier. In Proceedings of 16th European Symposium on Programming,
volume 4421 of LNCS, pages 125-140. Springer, 2007.

[BRO5] G. Barthe and T. Rezk. Non-interference for a JVM-like language. In Proceedings of
the ACM SIGPLAN international Workshop on Types in Languages Design and Imple-
mentation, pages 103-112, New York, NY, USA, 2005. ACM Press.

[ECM06] ECMA International. Standard ECMA-335: Common Language Infrastructure (CLI).
http://www.ecma-international.org/publications/standards/Ecma-335.htm, 2006.

[LY99] T. Lindholm and F. Yellin. The Java™ Virtual Machine Specification. Second Edition.
Sun Microsystems, Inc., 1999. http://java.sun.com/docs/books/vmspec/.

%)

B PNIC - MANUAL

B PNIC - Manual

B.1 Requirements

On windows machines “PNIC” requires the .NET 2.0 or higher framework to be installed.
On linux machines “PNIC” requires mono 1.2.2 or higher to be installed.

B.2 Using PNIC

To start “PNIC” in a terminal, change into the directory containing the executable. On a
windows machine, just enter “PNIC.exe”. On a linux machine, enter “mono PNIC.exe”.
The main menu opens, when starting the program.

B.2.1 Quick Start

1. Start the program

2. Press “R” to run an analysis

3. Enter the file name for the flow policy

4. Enter the file name for the analysis settings

5. Wait for the results of the analysis

B.2.2 Main Menu

bh RN

In the main menu it is possible to change into the submenus “Flow Policy”, “Analysis
Settings” and “Assembly” by pressing the associated keys that are given at the beginning
of the line.

Furthermore it is possible to run an analysis by pressing “r” or to exit the program by

pressing “x”.

B.2.3 Submenu Flow Policy

In the flow policy, menu it is possible to load a flow policy from a file by pressing “L”.
When loading a flow policy, “PNIC” prompts for a file name until the name of a valid
policy file is given or no file name is entered.

The flow policy can be written to the console by pressing “D”. If no flow policy is loaded,
“PNIC” asks for a policy file to load.

Pressing “M” returns to the main menu.

B.2.4 Submenu Analysis Settings

In the analysis settings menu, it is possible to load analysis settings from a file by pressing
“L”. When loading analysis settings, “PNIC” prompts for a file name until the name of a
valid settings file is given or no file name is entered.

26

B.3 Creating Flow Policies B PNIC - MANUAL

The settings can be written to the console by pressing “D”. If no settings are loaded,
“PNIC” asks for a settings file to load.

It is possible to initialize a new settings file by pressing “I”. “PNIC” prompts for a file
name for the new settings and for a list of assemblies to include. The assembly names are
entered one per line. An empty line ends the list. The initialized settings file is a skeleton
that includes all types and methods of the included assemblies and their local variables
and parameters.

Pressing “M” returns to the main menu.

B.2.5 Submenu Assemblies

In the assemblies menu, it is possible to load assemblies by pressing “L”. When loading
assemlbies, “PNIC” prompts for an assembly file to load.

It is possible to unload assemblies by pressing “U”. When unloading assemlbies, “PNIC”
prompts for the assembly to unload.

The loaded assemblies can be written to the console by pressing “D”.

Pressing “M” returns to the main menu.

B.3 Creating Flow Policies

Flow policies are stored in XML files, hence you need a text editor to edit flow policies.
In the flow policy file, the legal flows are defined by combinations of source levels and
destinantion levels.

The flow policy is defined between “<flow>" and “< /flow>" tags.

The legal flow for a security level is defined between “<source level="id">" and “< /source >
tags. The legal destination levels are given as a tag “<destination level="id" />".

An example flow policy could look like this:

7

<7xml version="1.0" encoding="IS0-8859-1" standalone="yes"7>
<flow>
<source level="low'">
<destination level="high" />
</source>
<source level="high">
<destination level="high" />
</source>
</flow>

B.4 Creating Analysis Settings

Analysis Settings are stored in XML files, hence you need a text editor to edit settings
files. The best way to create a new settings file is to intialize the settings file using “PNIC”
and configure the settings using the text editor.

An example settings file could look like this:

o7

B.5 CD Content B PNIC - MANUAL

<?7xml version="1.0" encoding="UTF-8"7>
<analysis>
<assembly file="Application.exe">
<type id="SomeClass'">
<method id="methodToCheck(System.Int32)">
<argument id="arg_1" level="Low" />
<variable id="var_0" level="High" />
<region index="20">12-20</region>
<junction index="20" instruction="21" />
</method>
</type>
</assembly>
</analysis>

B.5 CD Content

In the folder /bin on the cd, the “PNIC” executable can be found. Furthermore, an
executable containing some example methods, two example settings files and a simple
high low policy definition can be found in this folder.

28

C PROOFS OF LEMMAS

C Proofs of Lemmas

In this section, the missing and incomplete proofs for the lemmas used in the soundness
proof can be found.

C.1 High Region Lemmas
C.1.1 High Level Regions Converge

The first lemma we need to proof is the lemma “High Level Regions Converge”. The
lemma says that in a typable and terminating program execution, the execution paths
that pass a high level region converge at the junction.

Vi, j, k,l € PP : 1 ¢ region(i) Nk € region(i) A\ j = junction(i)

AP, p b pryv AL, pr,08) ~ (k, pg, 0Sk)

= (L, p1, 081) ~= (k, pi, 0sk) ~" (], pj, 05;)

Proof: High Level Regions Converge
Let ¢ € BP be a branching instruction with a high level guard of the security level
Slguara € S. Let slps € S be the security level of an observer and slyps < Slgyara. Let
Jj = junction(i), k € region(i) and [& region(i). Let P,p | p,,v be the complete
execution path and let (I, p;, 0s;) ~ (k, pr., 0Sg).
Looking at the semantic for CILpyinter, we see that only “return” can terminate a
program and we can conclude that the last step of the complete execution path P, p |
pr, v must be (r, p., v 1 08.) ~> p,, V.
From the condition sl U se(i) = lsl of the abstract transfer rule for “return” we can
conclude that a typeable program P can only terminate in low regions. In consequence,
r & region(i).
From requirement 2 of the definition 3.4.1 of “Safe Over Approximation”, we know that
Vm,n,0 € PP :n € region(m)An — o= o € region(m)Vo = junction(m) is fulfiled.
In consequence, if an execution path leaves a region, it must pass the junction of the
region and we know that that a program may not terminate in a high level region,
because of the abstract transfer rule for “return”.
That means Vi,n,j € PP : n € region(i) A j = junction(i) A (n, pn, 08, ~* pr,v =
(N, pn, 08, ~* (J, pj, 0s;) is fulfiled.
Especially, it is fulfiled for every entry point of the region. The entry of a region in an ex-
ecution path can be written as [& region(i) A k € region(i) A (I, pr, 08;) ~ (k, pg, 0Sk).
Furthermore, (I, p;,0s;) must be reachable from the initial state (0, p,€). This can
be written as (0,p,¢) ~* (I, p;,0s;). The resulting execution path is (0, p,€) ~*
<la Pr; 051> ~ <k7 Pk, OSk) ~* <j7 Pj> OSj) ~" pp,v.
Therefore we can conclude that Vi,j,k,l € PP : 1 & region(i) A\ k € region(i) A j =
junction(i) N P,p 4 pryv A, pi,08) ~ (k,pr,osk) = (L, p,08) ~ (k,pg,08) ~*
(4, pj,0s;) is fulfiled.

29

C.1 High Region Lemmas C PROOFS OF LEMMAS

C.1.2 No Visible Changes in High Regions

Lemma 3: No Visible Changes in High Regions
In a typeable program, changes in high regions are invisible.

Se(i) > Slobs N <i7pi7 03i> 7 <]> Pj> OSj> = <i’ Pi; 03i> ~ <]’ Pjs Osj)

Proof: No Visible Changes in High Regions
We need to show that

se(i) > slovs A (i, pi, 08:) ~ (j, pj, 085) = (i, pi, 05i) ~ (J, pj, 08;)

is fulfiled for every instruction in C1Lpinter, except “return”, because in a typeable
program no “return” can be executed in a high region, due to the requirement sl; LI
se(i) = lsl of the abstract transfer rule.

Let (7, p;, 0s;) ~ (7, pj, 0s;) be the transition of the states, se(i) > slys, where sy, is
the security level of the observer.

From the lift operation we know that for every security level on the security level stack
corresponding to os;, sl > se(i) is fulfiled and we know that se(i) > sl,s, because the
instruction is in a high region. That means sl > sl for every sl on the security level
stack corresponding to os;.

1. case: unary op

Using the semantic of the instruction, we know that p;, = p; A os;, = v it 0s A 0s; =
f(v) :: os.

Using the defintion for indistinguishable local mappings, we can conclude that p; ~
rho; AN os; =v ::0s Nos; = f(v) :: 0s.

We can conclude from the abstract transfer rule that the security level of the new
security level sly,) on the security level stack is s, U se(i). In consequence sl >
se(i) and slyw) > slops. In consequence, we know that every value on os; and on os;
is invisible.

Using the definition of indistinguishable operand stacks, we can conclude that p; ~
Thoj A 08; ~pt pir 0S;.

Using the definition of indistinguishable states, we can conclude that (i, p;, 0s;) ~
(4, pj,0s;) is fulfiled and finally

se(i) > slops A (1, pi, 08i) ~ (J, pj, 08;) = (i, pi, 08;) ~ (J, pj, 08;) is fulfiled.

2. case: binary op

Using the semantic of the instruction, we know that p; = p;Aos; = vy 11 v3 it 0sA0s; =
f(v1,v9) :: 0s.

Using the defintion for indistinguishable local mappings, we can conclude that p; ~
rho; N os; = vy 11 vy 11 05 AN os; = f(v1,v2) i1 08.

We can conclude from the abstract transfer rule that the security level of the new
security level slf(,, .,) on the security level stack is sl,, LI sl,, Ll se(i). In consequence
Loy 0) = s€(i) and slp(y, vy) > Slops. In consequence, we know that every value on
os; and on os; is invisible.

60

C.1 High Region Lemmas C PROOFS OF LEMMAS

Using the definition of indistinguishable operand stacks, we can conclude that p; ~
Tho; N 08; ~pt pir 05;.

Using the definition of indistinguishable states, we can conclude that (i, p;, 0s;) ~
(4, pj,0s;) is fulfiled and finally

se(i) > slops A (1, pi, 08i) ~ (J, pj, 08;) = (i, pi, 08i) ~ (J, pj, 08;) is fulfiled.

3. case: pop

Using the semantic of the instruction, we know that p; = p; Aos; = v :: 0s Nos; = os.
Using the defintion for indistinguishable local mappings, we can conclude that p; ~
rho; N\ os; = v i1 05 N\ 0sj = 05.

Furthermore, we know that every value on os; and on os; is invisible.

Using the definition of indistinguishable operand stacks, we can conclude that p; ~
rhoj A\ 08; ~pt pr 05;.

Using the definition of indistinguishable states, we can conclude that (i, p;, 0s;) ~
(4, pj, 0s;) is fulfiled and finally

se() > slops A (1, pi, 08i) ~ (J, pj, 08;) = (i, pi, 08i) ~ (J, pj,08;) is fulfiled.

4. case: push v

Using the semantic of the instruction, we know that p; = p; Aos; = os Nos; = v :: 0s.
Using the defintion for indistinguishable local mappings, we can conclude that p; ~
rhoj N o0s; =08 /N\os; =0 ::08s.

We can conclude from the abstract transfer rule that the security level of the new
security level s/, on the security level stack is equal to se(i). In consequence sl, > slyps.
As a result, we know that every value on os; and on os; is invisible.

Using the definition of indistinguishable operand stacks, we can conclude that p; ~
rhoj A\ 08; ~pt pr 05;.

Using the definition of indistinguishable states;, we can conclude that (i, p;, 0s;) ~
(4, pj, 0s;) is fulfiled and finally

se(i) > Slops N (i, pi, 08;) ~ (4, pj, 08;) = (i, pi, 08;) ~ (J, pj, 0s;) is fulfiled.

5. case: loadlocal x

Using the semantic of the instruction, we know that p; = p; Aos, = os Nos; = v :: 0s.
Using the defintion for indistinguishable local mappings, we can conclude that p; ~
rhoj A\ 0s; = 0s AN 0s; = v :: 0s.

We can conclude from the abstract transfer rule that the security level of the new
security level sl, on the security level stack is SL(X) U se(i). In consequence sl, >
se(i) and sl, > slyps. In consequence, we know that every value on os; and on os; is
invisible.

Using the definition of indistinguishable operand stacks, we can conclude that p; ~
rhoj N\ 08; ~pt pi 05;.

Using the definition of indistinguishable states, we can conclude that (i, p;, 0s;) ~
(4, pj, 0s;) is fulfiled and finally

se(i) > Slops N (i, pi, 08;) ~ (4, pj, 08;) = (i, pi, 08;) ~ (J, pj, 0s;) is fulfiled.

6. case: storelocal x
Using the semantic of the instruction, we know that p; & {z — v} = p; ANos; = v =
0Ss N\ 0s; = 0s.

61

C.1 High Region Lemmas C PROOFS OF LEMMAS

From the abstract transfer rule we know that SL(z) > se(i) U sl, and we know that
se(i) > slops. In consequence, SL(z) > slops.

Using the defintion for indistinguishable local mappings, we can conclude that p; ~
rhoj N os; =v 08 N\os; = o0s.

Furthermore, we know that every value on os; and on os; is invisible.

Using the definition of indistinguishable operand stacks, we can conclude that p; ~
rho; N 08; ~pt pir 05;.

Using the definition of indistinguishable states, we can conclude that (i, p;, 0s;) ~
(4, pj,0s;) is fulfiled and finally

se() > slops A (1, pi, 08i) ~ (J, pj, 08;) = (i, pi, 08i) ~ (J, pj, 08;) is fulfiled.

7. case: unconditionaljump

Using the semantic of the instruction, we know that p; = p; A 0s; = 0s;.

Using the defintion for indistinguishable local mappings, we can conclude that p; ~
rho; N\ 0s; = 0s;.

Using the definition of indistinguishable operand stacks, we can conclude that p; ~
rhoj N\ 08; ~pt pr 05;.

Using the definition of indistinguishable states, we can conclude that (i, p;, 0s;) ~
(4, pj,0s;) is fulfiled and finally

se(i) > Slops N (i, pi, 08;) ~ (4, pj, 08;) = (i, pi, 08;) ~ (J, pj, 0s;) is fulfiled.

8. case: jumpWithlArgument t

Using the semantic of the instruction, we know that p; = p; A os; = v :: 0s;.

Using the defintion for indistinguishable local mappings, we can conclude that p; ~
rhoj A os; = v :: 0s;.

Furthermore, we know that every value on os; and on os; is invisible.

Using the definition of indistinguishable operand stacks, we can conclude that p; ~
rhoj A 08; ~pt prr 05;.

Using the definition of indistinguishable states, we can conclude that (i, p;, 0s;) ~
(4, pj,0s;) is fulfiled and finally

se(i) > slops A (1, pi, 08i) ~ (J, pj, 08;) = (i, pi, 08i) ~ (J, pj, 08;) is fulfiled.

9. case: jumpWith2Arguments t

Using the semantic of the instruction, we know that p; = p; A 0s; = vy vy i 0s;.
Using the defintion for indistinguishable local mappings, we can conclude that p; ~
rhoj A 0s; = v; i1 Uy i1 0Sj.

Furthermore, we know that every value on os; and on os; is invisible.

Using the definition of indistinguishable operand stacks, we can conclude that p; ~
rhoj N\ 08; ~pt pi 05;.

Using the definition of indistinguishable states, we can conclude that (i, p;, 0s;) ~
(4, pj,0s;) is fulfiled and finally

se(i) > Slops N (3, pi, 08;) ~ (j, pj, 08;) = (i, pi, 08;) ~ (J, pj, 0s;) is fulfiled.

10. case: loadlocaladdress x
Using the semantic of the instruction, we know that p; = p; Aos; = os Nos; = &(x)
0S.

62

C.1 High Region Lemmas C PROOFS OF LEMMAS

Using the defintion for indistinguishable local mappings, we can conclude that p; ~
rho; A os; = 0s N\ os; = &(z) :: 0s.

We can conclude from the abstract transfer rule that the security level of the new
security level slg(;)) on the security level stack is equal to se(i). In consequence
Slg(z) > Slops. As a result, we know that every value on os; and on os; is invisible.
Using the definition of indistinguishable operand stacks, we can conclude that p; ~
rho; N 08; ~pt pir 05;.

Using the definition of indistinguishable states, we can conclude that (i, p;, 0s;) ~
(4, pj,0s;) is fulfiled and finally

se(i) > slops A (1, pi, 08i) ~ (J, pj, 08;) = (i, pi, 08i) ~ (J, pj, 08;) is fulfiled.

11. case: loadindirect

Using the semantic of the instruction, we know that p; = p; Aos; = &(z) :: 0s AN os; =
v il 08.

Using the defintion for indistinguishable local mappings, we can conclude that p; ~
rhoj N\ os; = &(x) i1 0s AN os; = v :: 0s.

We can conclude from the abstract transfer rule that the security level of the new
security level sl, on the security level stack is equal to slg () U plg) U se(i). In
consequence sl, £ slyps. As a result, we know that every value on os; and on os; is
invisible.

Using the definition of indistinguishable operand stacks, we can conclude that p; ~
rhoj N\ 08; ~pt pr 05;.

Using the definition of indistinguishable states, we can conclude that (i, p;, 0s;) ~
(4, pj, 0s;) is fulfiled and finally

se(i) > Slops N (i, pi, 08;) ~ (4, pj, 08;) = (i, pi, 08;) ~ (J, pj, 0s;) is fulfiled.

12. case: storeindirect

Using the semantic of the instruction, we know that p; & {z — v} = p; ANos; = v =
&(x) :: 0s N\ 0s; = os.

From the abstract transfer rule we know that plg) > se(i) U sl,. That means
SL(x) > se(i) U sl,. We know that se(i) > slyps. In consequence, SL(x) > slyps.
Using the defintion for indistinguishable local mappings, we can conclude that p; ~
rho; N os; = v :: &(z) 2 0s A 0s; = 0s.

Furthermore, we know that every value on os; and on os; is invisible.

Using the definition of indistinguishable operand stacks, we can conclude that p; ~
rhoj N\ 08; ~pt pr 05;.

Using the definition of indistinguishable states, we can conclude that (i, p;, 0s;) ~
(4, pj, 0s;) is fulfiled and finally

se(i) > Slops N (i, pi, 08;) ~ (j, pj, 08;) = (i, pi, 08;) ~ (J, pj, 0s;) is fulfiled.

From those 12 cases we can conclude that se(i) > slos A (4, pi, 08;) ~ (7, pj, 08j) =
(i, pi,08i) ~ (J, pj,0s;) is fulfiled for a step in a high region.

63

C.1 High Region Lemmas C PROOFS OF LEMMAS

C.1.3 High Regions Preserve Indistinguishability

Lemma 4: High Regions Preserve the Indistinguishability of states
In a typeable program, high regions preserve the indistinguishability of states.
se(i) > slops N\ j = junction(m)(i, ps, 08;) ~y (J, pj, 055) A (3, p;, 08;) ~+y (7, pf, 085) N
<i> Pis 03i> ~ <iv pgv OS;> = <]7 Pjs 0$j> ~ <]’ P;, 03;)

Proof: High Regions Preserve Indistinguishability
Let <Z7 Pi; 05i> v <]7 Pjs 05j>7 <Za p;7 OS;> o <j> pgv OS;’> and <Z7 Pis 05i> ~ <Z> 1027 OS;>‘
Furthermore let j = junction(m).
We must prove, that
se(i) > slops A junction(m) = j ANi € region(m) N i € region(m) A (i, p;, 08;) ~y
<j7 Pj> OSj) A <i> ,0;, 05;) o <]7 P;', OS;) A <i> Pis 03i> ~ <iv P;, 05;> = <jv Pj O$j> ~ <]7 P;', 03;)
is fulfiled, if m is a branching instruction with high level guard.
Base:
Let n = 1 be the amount of steps in the high region.
Let i € region(m) A j = junction(m) N i' € region(m) A (i, p;, 08;) ~ (i, pl,0s}) N
<i7 Pi, 03i> ~ <]7 pja 08j> A <i/7 10;7 08g> ~7 <j/7 p;" OS;’>
be the transitions.
Using the lemma “No Visible Changes in High Regions”, we know that
se(i) > slops N0 € region(m) A j = junction(m) Ni' € region(m) A (i, p;, 08;) ~
YA / . . YA / AR / . ~ (i .]
e o =G
' Pis 994 1Py 925
is fulfiled.
Using the transitivity of indistinguishability, we can conclude that
se(i) > slops N0 € region(m) A j = junction(m) Ni' € region(m) A (i, p;, 08;) ~
<i/7 p§7 OS;>/\<Z'7 Pi; 05i> ~ <j7 Pjs 05j>/\<i/7 p;, OS;> ~ <j,7 p;: 05;‘ = <]7 Pjs 05j> ~ <j/7 p;# 05;’>
is fulfiled and finally we know that
se(i) > slops A junction(m) = j A i € region(m) A1 € region(m) A (i, pi, 08;) ~,
(25 0) A g 051) ~ou (G, 0, 055) A, pis08:) ~ (il 051) = (1.3, 08,) ~ (1.}, 05))
is fulfiled.
Requirement:
se(i) > slops N junction(m) = j AN i € region(m) A i € region(m) A (i, p;, 08;) ~
<j7 Pj OSj) A <i7 1027 05;) o <]7 P;, OS;’) A <i7 Pis 03i> ~ <ia p;, 05;’> = <.77 Pj 05j> ~ <]7 P;', OS;’>
holds for any two execution lengths n and o.
Step:
Let n+ 1 and o be the length of two execution paths in the high region.
The transitions are
i € region(m)k € region(m) A j = junction(m) A1 € region(m) A (i, p;, 08;) ~
<i/’ P;, 05;> N <i7 Pis OSi) ~" <k7 Pk 03k> ~ <]’ Pjs OSj) A <i/’ P;, OS;> ~° <j/7 p;7 OS;>
From the induction requirement we can conclude that
i € region(m) A k € region(m) A j = junction(m) Ai' € region(m) A (i, p;, 08;) ~
<7:/7 pg? OS;> A <17 Pis Osi> ~" <k7 Pk 05k> ~ <]7 Pjs Osj> A <le7 pgv 08;‘) ~° jlv p;’: OS;‘> =

64

C.1 High Region Lemmas C PROOFS OF LEMMAS

<ka Pk, Osk’> ~ <j/7 p;7 OS;‘>

Using the lemma “No Visible Changes in High Regions”, we know that (k, py, osg) ~
(4,p;,0sj) and can conclude that

i € region(m) Ak € region(m) A j = junction(m) A i € region(m) A (i, p;, 08;) ~
<ila pfi? OS;> N <iv Pis 03i> ~" <k7 Pk 081€> ~ <.]v Pj 08j> A <i/> ,0;7 032) ~° <j,7 p;’v 08;‘> =
(K, pryosg) ~ (j', pls, 085) Nk, pr,0osg) ~ (j, pj, 0s;) is fulfiled.

Using the transitivity of indistinguishable states, we can conclude that

i € region(m)Ak € region(m)Aj = junction(m)Ai' € region(m)Aj' = junction(m)A
<7:7 Pi; Osi) ~ <i/7 Ioli7 OS§> A <27 Pis Osi> ~" <k7 Pk 08k> ~ <j7 Pjs 08j> A <l./7 P;, Oslz') ~?
<j/7 p;: OS;‘> = <.]7 Pjs 08j> ~ <j/’ p;7 08;‘

Using the definition of “Virtual Steps”, we can conclude that

i € region(m) A j = junction(m) A i’ € region(m) A j' = junction(m) A (i, p;, 0s;) ~
<i/7 p;, OS;> A <Z7 Pis 03i> ™ <]> Pj OSJ> A <i/7 p;, 03;> ~u <j/7 p;7 03;’) = <j7 Pjs 08j> ~
(7', 0y, 08 is fulfiled.

65

C.2 Virtual Steps C PROOFS OF LEMMAS

C.2 Virtual Steps
C.2.1 Virtual Steps Preserve Indistinguishability

The lemma “Virtual Steps Preserve Indistinguishability of States” says that in a typeable
program P, the execution of a single instruction preserves the indistinguishability of states:

<i>pi705i> o <]7 pj70$j>/\<i702703;> ~y <j7/0;'a052‘>/\<iapi703i> ~ <i7p2‘703;> = <]7 pj>08j> ~ <]> p;'705;'>

This lemma can be proved by showing that every single abstract transfer rule of the type
system enforces that the indistinguishability of the states is preserved. Furthermore, we
must prove that high level regions preserve the indistinguishability of states.

Proof: Virtual Steps Preserve Indistinguishability
We must show that

<i7pi708i> ~ <]7 pj,05j>/\<i7p;703;> ~ <j,p;,OS;>A<i,pi,0$¢> ~ <i7p;703;> = <]7 pj703j> ~ <]7 p;703;>

is fulfiled for every typeable instruction in a low level region and for complete high
regions.

Let <27 Pis 05i> v <j7 Pj» OSJ)? <Z7 p;7 OS;> ~u <J7 /0;7 05;‘> and <27 Pis 05i> ~ <Za pi? OS;>'
Using the definition of indistinguishable states, we know that p; ~ p and 0s; ~ v 0s.

Proof: unary op

Using the semantic of the instruction, we know that

Pi ™~ Py N i = P N P = Pl N OSi (sl pl st (sllply)sipt! OS

Nos; = v 1 0os Nos; =0 108" Nosj = f(v) 1 0s ANos = f(v') 2 08’ is fulfiled.
And we can conclude that

Pj ~ P N OSi ~(sly ply)upt, (sl plt)cpt! 0S5 N 0S; = v 1208 N os; =0 12 08
Nosj = f(v) : 0s ANos) = f(v') :: 08

In consequence, we know that

Pj ~ P NV 108 ~ (st ply)eapt (st ply)pr V' 08" N osj = f(v) :os Nos = f(v') i os
From the defintion of indistinguishable operand stacks we know that we have to dis-
tinguish two cases. The first sl, < slops A sl < slyps that describes that the top value
of the stack is visible and the second sl, > slops A sl > slys that describes that the
top value of the stack is invisible.

/

/

1. case: sl, < slops A Sl < slops

Using the definition for indistinguishable operand stacks, we know that

pj~ P AN =0"N0s ~ppr 08" Nosj = f(v) :0s Nosy = f(v') i1 08

And we can conclude that

pi~ Py Av =0 A f(v) = f(V) N0s ~ppr 08" Nosj = f(v) 1 0s Nosj = f(V') i 08’
With the defintion of inditinguishable operand stacks, we know that

pi~ p; A f(v) :os ™ (sl oy L)5ipts (L o1y L) spt! f(@') o8

Nosj = f(v) i 0s ANos) = f(v') 2 08

In consequence, we know that

66

C.2 Virtual Steps C PROOFS OF LEMMAS

/ /
p] ~ p] /\ OSJ N(Slf(v)zL)ptv(SIf(U’)zJ-)pt/ OS]
Using the definition for indistinguishable states, we can conclude that
<j7 Pjs 08j> ~ <j7 /);7 05;’>
and finally we know that
<i7 Pis OSi) ~u <]7 Pjs 08j> A <i7 p;7 03;) ~u <]v p;-, 05;'> A <i7 Pis OSi) ~ <i7 p;v OS£>
= (4, pj, 085) ~ (J, 0}, 0s}) is fulfiled.
2. case: sl, > slops N SlL > slops
Using the definition for indistinguishable operand stacks, we know that
pj ~ P N sly > Slops A sly, > Slops N 08 ~pp i 08" Nosj = f(v) i1 0s Nos = f(v') :: os
Using the abstract transfer rule, we know that
pj ~ p;- A sly > Slops A S, > Slops A0S ~opp oy 08
Nos; = f(v) i 0s Nosl = f(v) i1 08" N sl = sl, U se(i) A slyry = sl;, U se(i)
We can conclude that
pj ~ P N0s ~prpr 08 Nosj = f(v) :os Nosi = f(v') i os
/\Slf(v) > Slops /N Slf(v/) > $lops
Using the definition for indistinguishable operand stacks, we can conclude that
P~ p; A f(U) 2 08 N(slf(v),L)::pt7(slf<v/>,L)::pt’ f(vl) 108\
osj = f(v) :os Nosl; = f(v') i1 08’
In consequence, we know that
pj ~ p; A 0s; ™ (sly vy, L)pty(slp(pry,L)pt! OS;‘
Using the definition for indistinguishable states, we can conclude that
<j7 Pjs 08j> ~ <j7 /);7 05;’>
and finally we know that
<Z'7 Pis OSi) ~ <]7 p]a 08j> A <Z7 p;7 082) ~u <]7 p;a 08;’> A <Zv Pis OSi) ~ <7’7 p{m OS;;>
= (4, pj, 085) ~ (J, 0}, 0s}) is fulfiled.

/

/

Proof: binary op

Using the semantic of the instruction, we know that

Pi i N Pi = Pj NP = Pl N OSi (sl play (sl oy it (sl ply)il ol)ipt! 07 N\ 05i =
v v 08 AN os; = vy vy i os' Nosj = f(vr,v) 1 os Aosh = f(vh,v5) 108 s fulfiled.
And we can conclude that

P~ p;- N 08 ~(sl,, Pl) (sl Play)9, (51,1 bl)i (5L, bl)it 0s, N 0s; = vy i1 Vg i1 08 N\ 0S; =
vy vy 08 Nosj = f(v1,v2) 1 os Aosl = f(vh,v5) it 08’

In consequence,

pi ~ p;‘ Avp it v iios N(Slvl,plvl)ii(sluQ,plvg)iipty(slvfl71717/1)11(51,1,/271?1”/2)111?1&’ Ull - Ué i os' A 055 =
f(vi,v2) 05 N osy = f(vy,vy) 2 08’

From the defintion of indistinguishable operand stacks, we have to distinguish two
cases. The first sly, < slops A sly; < Slops A Slyy < Slops A sl < slops that describes that

the top values of each stack are visible and the second sl,, > slyps A Slvg > Slops V sly, >
Slobs N\ slyy > slyps that describes that one of the two top values of each stack is invisible.

1. case: sly, < Slops A Slyy < Slops N Slyy < Slops A slvé < Slyps

67

C.2 Virtual Steps C PROOFS OF LEMMAS

Using the definition for indistinguishable operand stacks, we know that

pj ~ P ANvp = Uy Avg = Uy A0S ~prpe 08 AN osj = f(v1,v2) 2 0s N os = f(vy,vy) 2 0s
And we can conclude that

pi ~ Py A f(vr,v9) = f(V],05) Nos ~pp i 08" Nosj = f(ur,v2) 0sAosi = f(vy,v5) i 0s
With the defintion of inditinguishable operand stacks, we know that

P~ p; A f(vlyv2) 0S8 N(Slf(’Ul7U2)7J‘)::pt7(3lf(vll,U/Z)’J‘)::pt/ f(viavé) - OS/ A 0S5 = f('Ulav2) -
/

/

/

os Nos = f(vy,v5) i 0s
In consequence, we know that

pj ~ p; N 08, ™ (s oy g) - L)P (8L oty L)pE! os;

Using the definition for indistinguishable states, we can conclude that

<j7 Pjs 08j> ~ <j> P;7 08;‘>

and finally we know that

<i7 Pis OSZ') ~ <]7 pja 05j>/\<i7 027 OS;) ~ <]7 p;a OS;‘>A<ia Pis OS,‘> ~ <Z7 P;» OS;) = <]7 pja OSj) ~
(4, p;; 085) is fulfiled.

2. case: Sly, > slgps N slv/1 > Slops V Slyy > Slops N slv/2 > Slops

Using the definition for indistinguishable operand stacks, we know that

pj ~ P N (Sly, > Slops N 8lyy > Slops V 8lyy > Slops A Slyy > 8lobs)0s ~pppy 08" A 0sj =
f(v1,v2) it 0s A os) = f(v],vy) i o8’

Using the abstract transfer rule, we know that

pi ~ P N (Slyy > Slops N Slyy > Slops V 8lyy > Slops A Slyy > Slops)0s ~piprr 08" A 0sj =
[, v2) 0s Nos = f(v],05) 12 08"l gy, 0y) = Sl Usly, LIse(d) A sly() vy = Sl U sly, U

se(i)
We can conclude that
pj ~ P N0s ~ppr 08" Nos; = fu,v) oos Aosi = f(vy,v5) i 088l e >

Slops N Slf(v’l,vé) > Slops

Using the definition for indistinguishable operand stacks, we can conclude that

pi ~ p; A f(vr,va) 0 os ™ (L oy g L)PE (sl gy L)t fu,vh) 08" Nos; = f(ug,v9)
0s N\ os} = f(vy,vy) :: 08’

In consequence, we know that

Pj ~ p; A 0s; N(slf(vlﬂq),J_)::pt,(slf(v/l’vé),J_)::pt’ OS;'

Using the definition for indistinguishable states, we can conclude that

<ja Pjs OSj) ~ <.]7 P;7 08;‘>

and finally we know that

<i7 Pi; 08i> ~y <]a Pj> 08j>/\<i7 p;: 03;> ~y <Ja /0;7 OS;‘>/\<Z.7 Pi; 08i> ~ <Z7 p;> OS;) = <]7 Pi> 08j> ~
(J, }, 08}) is fulfiled.

Proof: pop

Using the semantic of the instruction, we know that

pi ~ i N pi = pj N pi = PN 0Si ~ (gl ply)pt,(slt, plt)ptr 0S5 N 0Sg = v i 0s N os; = v
0s' N osj = 0s A os; = os' is fulfiled.

And we can conclude that

68

C.2 Virtual Steps C PROOFS OF LEMMAS

P~ P NOSi ™ (sl ply)iipt(sll, pll)pt! 05;N0S; = U 12 08 Nos; = v 11 08 Nos; = 0s Nos; = o0s'
In consequence,

P~ Py NV 108 ~ (sl ply)eapt, (st i yiprr V' 08" N osj = f(v) i os Nosh = f(V') ::os
Using the definition for indistinguishable operand stacks, we know that

pj ~ P N 0S ~pp 08 N 0s; = 0s A os’; = os'

And we can conclude that

pj ~ P N OSj ~ptprr OS]

Using the definition for indistinguishable states, we can conclude that

<j7 Pi> OSj) ~ <j> /037 OS;’>

and finally we know that

<i7 Pis OSZ') ~u <]7 Pj 05j>/\<i7 p;, OS;) oy <]7 p;a 05;’>A<i’ Pis O$i> ~ <i7 p;, OS;) = <]7 Pjs OSj) ~
(4, p;; 085) is fulfiled.

/

Proof: push v

Using the semantic of the instruction, we know that

pi ~ Py N pi = pj N p; = pi N 0Si ~ppprr 05 N 0sj = v i 0s; A osi = i os; is fulfiled.
And we can conclude that

Pj ~ P N 0Si ~ptprr 05\ 0Sj = v 11 08; A0S = v 1 08]
Using the definition for indistinguishable operand stacks, we know that
Pj ™~ Py ANV 08 ~(sty, Lyt (st Lyzpt! U 3 0S; N 08 =0 1 08; N 08 = v 1 08
And we can conclude that

Pj ~ P N 0S5 ~pt pir 05

Using the definition for indistinguishable states, we can conclude that

<ja Pjs OSj) ~ <.]7 ng 08;‘>
and finally we know that
<i7 Pis 08i> ~u <]7 Pj, 05j>/\<i7 p;7 OS;> ~y <.77 ﬂ;a 05;‘>/\<i7 Pi, OSZ'> ~ <Z7 p;7 OS;> = <j7 Pjs 08j> ~

(j, P}, 0s) is fulfiled.

Proof: loadlocal x

Using the semantic of the instruction, we know that

pi ~ pi N pi = pj A pp = PN 08 ~prpr 08; A os; = pi(x) i 0s; A os; = pi(x) :: os] is
fulfiled.

And we can conclude that

P ~ P N 0Si ~pipr 087 N 0s; = pi(x) 2 0s; N os; = pi(x) :: 08]

We have to distinguish between two cases. Either the information ressource is visible,
SL(z) < slups or the information ressource is invisible SL(z) > slyps-

1. case: SL(z) < sl,bs
Using the definition of indistinguishable local mappings, we know that
pj ~ P NS ~prpr 05 N\ 0sj = pi(x) 1 0s; N os = pi(x) os A pi(x) = pi(x)

69

C.2 Virtual Steps C PROOFS OF LEMMAS

Using the definition for indistinguishable operand stacks, we know that

pi ~ P5 N pi(T) 1 08i ~(SL(x)use(i),PL(x)):pt,(SL(x)Use! (i), PL(z))=pt! Py =2 087 N 085 = pi(x) =
0s; N\ os) = pi(x) = os; A pix) = pi()

And we can conclude that

pj ~ P} N 08§ ~(SL(x)Use(i),PL(x)):pt,(SL(x)Use! (i), PL(x))::pt! 08}

Using the definition for indistinguishable states, we can conclude that

<j7 Pi> OSj) ~ <]7 097 08;’>

and finally we know that

<7:7 Pi; OSi) ~y <]7 Pj> OSj>A<i7 p;7 OS;> ~ <.]7 10;7 OS;‘>/\<ia Pi; OSi> ~ <Z> IO;7 OS;> = <j> Pi> 08j> ~

(j, p};, 0s) is fulfiled.

2. case: SL(z) > slops

Using the definition of indistinguishable local mappings, we know that

pj ~ P NS ~prprr 05 N 0sj = pi(x) 1 0s; A osh = pi(x) :0si AN SL(x) > slops

Using the definition for indistinguishable operand stacks, we know that

pj ~ P N pi(T) 1 08; ~(SL(x)Use(i),PL(2))pt, (SL(a)Use! (), PL()):pt! Py = 08; N 0s; = pi(x) =
0s; N\ os} = pi() = os; A pix) = pi()

And we can conclude that

pj ~ P} N 08 ~(SL(x)Use(i),PL(x)):pt,(SL(x)Use! (i), PL(x)):pt! 08}

Using the definition for indistinguishable states, we can conclude that

<j7 Pi> OSj) ~ <]7 P;> 08;’>

and finally we know that

<7:7 Pi; Osi) ~y <]7 Pj> OSj>A<i7 p;7 OS;> ~ <.]7 p;; OS;‘>A<i7 Pis OSi> ~ <Z> IO;7 05;> = <j> Pi> 08j> ~

(j, P}, 0s) is fulfiled.

Proof: storelocal x

Using the semantic of the instruction, we know that

pi~ pi A pi ®{x = v = pj A pi @ {x = V't = pj A0S ~ (st pl)pt st ply)ipt 05

Nos; =v 108 Nos; =" 1108 Nos; = o0s \os; = os' is fulfiled.

And we can conclude that

pi~ p; A pi & {x = v =p; A p; @ {z '} =pj

AV 1508 ~ (sl ply)upt, (st plt)epry U1 08 A 085 = 08 A 08’ = 08’

We have to distinguish two cases sl, < slgps A Sl < slops and sly, > Slops A Sl > Slops

1. case: sl, < slops A Sl < slops

Using the definition for indistinguishable operand stacks, we know that

pi~ pi A pi ®{x = vh = pj A pi @ {z = '} = pj Aos ~ppe 08

Nosj = 0s N os; = 0s' Nv =1

We can conclude that

pi~ pi ANpi @{r = v} =pi Api @ {x = 0"} = o Aosj ~prpr 085 Ao =0

Using the defintion for indistinguishable local mappings, we know that

pi@ 1w = v} ~ 9@ {x = v} A @ {3 v} = py Ap, & {7 = '} =) A0s; ~pupr 05,
And we can conclude that

70

C.2 Virtual Steps C PROOFS OF LEMMAS

pj ~ Py NOSj ~pprr 0S)

Using the definition for indistinguishable states, we can conclude that

<j7 Pjs 05j> ~ <j7 /);7 08;’>

and finally we know that

<Z.7 Pis 08i> g’ <]7 Pjs 08j> A <Z7 p;7 082) ~y <]7 p;a 08;’> A <Z7 Pis OSi) ~ <7’7 p{u OSQ)

= (4, pj, 085) ~ (J, 0}, 0s}) is fulfiled.

2. case: sl, > slops N SlL > slops

Using the abstract transfer rule, we know that

pi~ PN pi @ {x = v} = pi Api @ {r = '} = pf AV 08~ ply)apt (st pin) U
0s' Nosj = 0s Nos; = 0s' N SL(x) > sl, U se(i) > slops N SL(x) > sl;, U se(i) > slops
Using the definition of indistinguishable local mappings, we can conclude that
@ e vl ~ e e e VY Ap @zl = p Ao s V) = A
0S8 ™ (sly,ply)z:pt, (sl ,pll))::pt! v'os' A 055 = 08 A OS;’ = os’

We can conclude that

Pj ~ p; AU i 0s ™ (sly,ply)::pt,(sl,,pll)::pt’ v ros' A 05 = 0S A OS; = os'

Using the definition for indistinguishable operand stacks, we know that

pj ~ Py A0S ~ptpy 08" N 0sj = 0s A\ 0s = os'

And now we can conclude that

pj ™~ Py NOSj ~prprr 0S)

Using the definition for indistinguishable states, we can conclude that

<j7 Pjs OSj) ~ <j7 /)97 08;’>

Finally, we know that

<Z'7 Pis OSi) ~y <]7 Pjs Osj> A <Z7 P;7 082) ~y <.]7 p;a 08;’> A <Z> Pis 08i> ~ <Z7 ;0;: OS§>

= (4, pj, 085) ~ (J, 0}, 0s}) is fulfiled.

Proof: unconditionalJump t

Using the semantic of the instruction, we know that

pi ~ Pi N pi = pj NP = P N 0Si ~ppp 08 N\ 0s; = 085 A os] = os]; is fulfiled.

And we can conclude that

P ~ P N 0S5 ~pt pir 08

Using the definition for indistinguishable states, we can conclude that

<j’ Pj> OSJ) ~ <]> P}v 03;>

and finally we know that

<i7 Pis OSi) ~u <Ju Pjs OSJ>A<i7 p;7 OS;> ~o <.77 :0;7 05;‘>/\<i7 Pis OSZ'> ~ <Z7 p;7 OS;> = <j> Pjs 08j> ~

/

(j, P}, 0s) is fulfiled.

Proof: jumpWithl Argument t
Using the semantic of the instruction, we know that

71

C.2 Virtual Steps C PROOFS OF LEMMAS

pi ~ Py N pi = pj N pi = PN 0Si ~ (sl ply)pt(slt, plt)ptr 085 N 0S; = v 1 0s A osp = v
0s' N os; = 0s A os}; = os' is fulfiled.

We can conclude that

P~ P NV 08 ~ (sl ply)ept (st plty)pr V' 08" N 08 = 05 N\ 0s; = 08’

Using the definition for indistinguishable operandstacks, we know that

pj ~ P A0S ~pt i 08" N\ 0sj = 0s N\ 0s; = o0s'

And we can conclude that

Pj ~ P N 0Sj ~pippr 08

Using the definition for indistinguishable states, we can conclude that

<ja Pis 08j> ~ <j> P;7 OS;‘>

and finally we know that

<i7 Pi; 08i> ~y <]a Pj> 0$j>/\<i7 027 03;> ~y <]7 1037 OS;‘>A<i7 Pi; 08i> ~ <Z> P;> OS;’) = <]7 Pi> 08j> ~
(4, pl;; 08) is fulfiled.

Proof: jumpWith2Arguments t

Using the semantic of the instruction, we know that

pi~ P\ pi = pj\p; = P} N 0Si ~(sl,, oy)::(8log Plug)29, (sLyr Pyt):x(slyp Pl)2t 0s; N\ 0s; =
vy Uy it 0s A os; = v it vy 108’ Aosj = o0s A os; = os' is fulfiled.

We can conclude that

/ /Y / —
P~ pj ANwvy it vg it 08 N(slvl,plvl)::(sva,plvz)::pt,(sl,uxl,pl,uxl)::(sl,U/27pl,U/2)::pt’ Uy 2 Uy 10 0S8 A 085 =

0s N\ os; = os’'

Using the definition for indistinguishable operandstacks, we know that

pj ~ Py N 0S ~pp 08 N 0s; = 0s A os’; = os'

And we can conclude that

pj ~ P N OSj ~ptpr OS]

Using the definition for indistinguishable states, we can conclude that

<j7 Pi> OSj) ~ <j> P;7 08;‘>

and finally we know that

<i7 Pis OSZ') ~u <]7 Pj 05j>/\<i7 p;7 OS;) ~y <]7 p;a 05;‘>A<i’ Pis Osi> ~ <i> p;, OS;) = <]7 Pjs OS]'> ~
(J, p;; 08) is fulfiled.

Proof: loadlocaladdress x

Using the semantic of the instruction, we know that

pi ~ Py N pi = pj NPy = P N 0si ~prpr 05 A osj = &(x) i 0s; Aos; = &(x) : os] is
fulfiled.

And we can conclude that

pj ~ P N 0si ~prpy 05 N osj = &(x) it 0s; A os; = &(x) i o0s;

Using the definition for indistinguishable operand stacks, we know that
pi ~ PyA&(T) 12 08i ~ (sl Lypt, (s, L)eprr &() 12 0si Nosj = &(x) i 0siNos); = &(x) =2 0s;

72

C.2 Virtual Steps C PROOFS OF LEMMAS

And we can conclude that

pj ~ P N 0Sj ~pppyr 08]

Using the definition for indistinguishable states, we can conclude that

<j7 Pjs 08j> ~ <j7 P;7 08;‘>

and finally we know that

<i> Pis OSZ') ~y <]7 Pjs Osj> A <i> p;, OS;) ~u <]7 p;" 05;’> N <i> Pis OSi) ~ <i7 pgv 03;)
= (J, pj,085) ~ (J, pj, 0s}) is fulfiled.

Proof: loadindirect

Using the semantic of the instruction, we know that

pi~ p; N\ pi = pj A\ p; = p A os; ™ (sl () Pl () 7P (5T) Pl ()P 0]

Nos; = &(x) 1 0s N os] = &(x) i1 08" N os; = pi(x) 2 0s N os; = pl(x) :: 08’ is fulfiled.
And we can conclude that

Pi~ 10;‘ N 05 ™ (slgo(2) Pl ()Pt (81, 4y Pl (1)) 73RV 05;

Nos; = &(x) i1 0s Nos; = &(x) 2 08" N osj = pi(x) 2 05 N os; = pli(x) :: 0s
We have to distinguish two cases. Either all information is visible slg,,) < slobs/\sl(’&(x) <
Slobs APlge(z) < Slobs /\pl(’gc(x) < sl or either the address is invisible or the ressource that

is referenced by the address slg () > slops A slf&(x) > Slops A Plg () > Slovs /\pl(’&(w) > Slops-

/

1. case: slg(z) < Slops N slf&(m) < Slobs N Ple(z) < Slobs /\plf@é(m) < Slyps
Using the definition of indistinguishable local mappings, we know that

/ !/ _ ..
3 B N O~ lp F T O 051 = () 5505

Nos; = &(x) 1 08" Nosj = pi() 2 0s N os; = pi(x) 08" A pi(z) = pi()
Using the definition of indistinguishable operand stacks, we can conclude
pj ~ P N 0s ~pr i 08" N osj = pi(x) i 0s N osl = pi(x) i 08" A pi(x) = pi(x)
Using the definition for indistinguishable operand stacks, we know that
Py~ p; A Pi (‘T) 208 N(sl&<z>Llpl&(z)I_Ise(i),L)::pt,(sl&l(w)Upl(’wz)Llse(i),i)::pt’ p; (l’) - 08;
Nosj = &(x) : 0s; A os; = &(x) :: 0s;

And we can conclude that

P ~ P N 0S5 ~pt pir 08

j
Using the definition for indistinguishable states, we can conclude that

<ja Pjs OS]') ~ <]> P;a 03;>
and finally we know that
<i7pi7 OSi) ~u <.]7 pju OSj> A <Z7p;7 05;> ~u <.]7 p;a OS;’> A <i7pi7 05i> ~ <37/7;7 OS;>

= (J, pj, 055) ~ (J, pj, 08}) is fulfiled.

2. case: slg(z) > Slops N sl:&(x) > Slobs V Pleg(z) > Slops /\plf&(m) > Slops

Using the definition of indistinguishable operand stacks, we can conclude
pj ~ P N 0S ~pp i 08 N osj = pi(x) i1 0s A os = pi() i o8’

A(8lg(z) > Slops N slf&(x) > 5lops V Plec(z) > Slobs /\pl(’%(x) > Slops)

We can conclude that

pj ~ P N0s ~prp 08" Nosj = pi(x) i1 0s A os; = pi(x) i 08’

73

C.2 Virtual Steps C PROOFS OF LEMMAS

NSl (z) U plez) U se(i) > slops A sl(’&(x) L pl(’&(x) LI se' (i) > slops

Using the definition for indistinguishable operand stacks, we know that
Py~ p; N pi ('r> oS N(sl&<z>upl&(z)I_lse(i),J_)::pt7(sl"&(z)upl(’g&<z)use’(i),J_)::pt’ p; i o8’
Nos; = pi(x) :: 08 N os) = pi(z) 2 0s'

And we can conclude that

pj ~ P N 0Sj ~pi pir 08

Using the definition for indistinguishable states, we can conclude that
<j7 Pi> OSj) ~ <j7 pga 08;’>

and finally we know that

<7:7 Pis OSi) ~u <.]7 pja OSj> A <7'7 P;7 Os,i> ~u <.]7 p;a OS;’> A <Z7 Pi, Osi> ~ <Z7 p;a OS;>
= (J, pj, 055) ~ (j, pj, 08}) is fulfiled.

Proof: storeindirect

Using the semantic of the instruction, we know that

pi ~ p; N 0S; ™ (slo,plo)::(slg () Plac ())10 (81,01)12 (8lgy () Plgo ()P 08}

Npi @ {x — v} = p; A p @ {a" — v’} = pj

Nos; = v &(x) i1 os Nos; =v' 1 &(a') 1 08" Nosj = 0s A\ os; = os' is fulfiled.

And we can conclude that

pi~ pi Ao &(z) 2 os ™ (slo,plo):: (sl () Plac ())Pt (51, Pl)1 (Slg (2 y Plge (21)P v &) s os
Api @ {z = v} = p; A p @ {2" +— v} = pf Nosj = 0s A osy = os’

We have to distinguish two cases. Either all information on the stack is from visible
ressources sl, < slopsAsll, < slopsASlg(z) < SlopsASlg (1) < Slops OF one of the information
ressources is invisible sl, > slops A 5l;, > Slops V Slg () > Slops A Slg(ary > Slops

/

L. case: sl, < slops A Sl < Slops A Slge(z) < Slops N Slg(ary < Slops

Using the definition for indistinguishable operand stacks, we know that

Pi e i N 2 &(T) 208 (sl pla) (sl oy place))ipt (st (sl oyl oy ot V2 &(2) 2 0
Api @{x = v} = pj Ap; & {x' = v'} = pi Nosj = os Nosj = 0s' ANv = v N&(x) = &(2)
And we can conclude that

pi ~ PiANpi®©{T = v} = pi Api@{a" = '} = Pl ANosj ~p e 085 A0 = 0 A& () = &(a)
Using the defintion for indistinguishable local mappings, we know that

pi®{T = v}~ pi@{r" = VAP ©{x = v} = pi Ap; & {a" = V') = plANosj ~pp i 08)
And we can conclude that

P ~ P N 0S5 ~pi pir 08

j
Using the definition for indistinguishable states, we can conclude that

<ja Pjs OSj) ~ <]> ng 03;‘>
and finally we know that
<i7pi7 OSi) ~u <.]7 pju OSj> A <Z7p;7 OS;) ~u <.]7 p;a OS;'> A <i7pi7 08i> ~ <27/)27 08;>

/

= (J, pj, 055) ~ (J, P}, 08}) is fulfiled.

/

2. case: sl, > Slops N Sl > slops V Slgg(m) > Slops N Slg(ary > Slops
Using the abstract transfer rule, we know that

/ /.. 7y .. /
pi~ p; NV &(I) 08 ™ (sly,ply):i(slg (o) Plec(2)) Pt (sl) (slg (1) Plg (o))ipt! U o &(ZE) L 08

74

C.2 Virtual Steps C PROOFS OF LEMMAS

Api @ {z = v} = p; A p @ {2 +— v'} = pf Nosj = os A osy = os'

NSL(x) = plg(z) 2> sly U slgz) U se(i) > slops

NSL(x) = plg(zry > sl U slg(zry L s€'(3) > slops

Using the definition of indistinguishable local mappings, we can conclude that

pi®{r—v}~pi@{r = VIAp@{r v} =p; Api {2 =V} =pjAos; = os
!/ /

Nos = 0s' Av i &(x) =2 0s ™ (sl o)+ (5Lis () Pl))59 (50Dl)5 (L oy Pl (a1)0 v &(2) i os

We can conclude that

pj ~ p; Nos; = o0sAos; =os

Av &(I) 08 N(slv,plv)::(sl&(m),pl&(m>)::pt,(sl{),pl{))::(sl&(z/),pl&(z/))::pt’ v &(I,) 208

Using the definition for indistinguishable operand stacks, we know that

pj ~ P A0S ~ptpir 08" N\ 0s; = 0s N\ 0s; = o0s’'

And now we can conclude that

pj ~ P N 0S5 ~pippr 0S]

Using the definition for indistinguishable states, we can conclude that

<ja Pjs 08j> ~ <]7 P;7 OS;‘>

and finally we know that

<i7 Pis OSi) o <]a Pj> 0$j> N <Z7 P;» OS;) ~y <]7 P;a OS;»> A <Z7 Pis OSi) ~ <7’> P;a 082)

= (J, pj, 055) ~ (J, pj, 0}) is fulfiled.

/

/

Proof: return

This case is a special case, because we do not have a transfer of the type (i, p;, 0s;) ~
<j7 Pjs OSj)’ but <7'7 Pi; Osi) ~ P4,V

Using the semantic of the instruction, we know that

Pi ~ Py N Pi = p5 N Py = Pl N 0Si (sl ply)ept, (sl pl)ipt! 0S; N 083 = v 1105 N 0os) = v' i1 08
is fulfiled.

And we can conclude that

P~ P N OSi ™ (a1, ply):pt,(sloply)pt? 05; A\ 08; = v 105 N os; =" 0s
From the abstract transfer rule we know that

Pi ~ P N OSi ™ (s, ply)pt (sloply)pt! 055 A 08; = v 1 0s Nos; = v i os'sl, = Isl <
Slops N sl = Isl < slyps

Using the defintion for indistinguishable operand stacks, we can conclude

pj ~ p; Av=1"is fulfiled.

/

!/

Proof: High Region

Using the lemma “High Regions Preserve Indistinguishability”, we know that

86(7;) > Slobs A <i7pi;08i> ~u <j7:0ja08j> A <Z'7;0;703;> ~ <j793‘703;> A <i7pi703i> ~
<i7 p;» OS;) = <]7 Pj> OS]'> ~ <]7 p;a OS;‘>

In consequence, we can conclude that

<i7 Pis OSi) ~y <]7 Pj> OSj>A<i7 /)27 OS;> ~y <Jv p;a 053‘>/\<i7 Pis OSZ'> ~ <Z7 /)27 OS;> = <]7 Pijs 08j> ~
(J, 0, 08%)

is fulfiled.

I6)

C.2 Virtual Steps C PROOFS OF LEMMAS
O

From these proofs we can conclude that every virtual step preserves the indistinguisha-
bility of states.

76

D SOURCE CODE OF PNIC

D Source Code of PNIC

In this section, the complete source code of the “PNIC” can be found. The source code is
released und the GPL version 2. The complete source code can be found on the cd-rom
in the folder /src/PNIC/.

D.1 Package Model
D.1.1 File Analysis/AbstractState.cs

using System;

using System. Collections . Generic;
using System. Collections;

using System.Text;

using PNIC.Model.AST;

namespace PNIC.Model. Analysis

{

/// <summary>
/// the class representing the abstract state during an analysis

/// </summary>
class AbstractState

public AbstractState ()
{
state = new Hashtable();
recentSecurityLevelStack = new Stack<SecurityLevel >();

}

/// <summary>

/// associations of instructions with stack types;

/// used as a history of already calculated stack types
/// </summary>

private Hashtable state;

private Stack<SecurityLevel> recentSecurityLevelStack;
public Stack<SecurityLevel> RecentSecurityLevelStack

{

get { return recentSecurityLevelStack; }

/// <summary>
/// retrieves the stack type associated with an instruction
/// </summary>
/// <param name="instruction">the instruction associated </param>
/// <returns>the stack type associated with the instruction </returns>
public Stack<SecurityLevel> getSecurityLevelStack(Instruction instruction)
{
if (instruction == null)
return new Stack<SecurityLevel >();
Stack<SecurityLevel> buffer = new Stack<SecurityLevel >();
Stack<SecurityLevel> result = new Stack<SecurityLevel >();
Stack<SecurityLevel> stored = (Stack<SecurityLevel >)state[instruction |;

if (stored != null)

int stacksize = stored.Count;
for (int i = 0; i < stacksize; i++)

buffer .Push(stored .Pop());

}

for (int i

0; i < stacksize; i++)

SecurityLevel securityLevel = buffer.Pop();

7

D.1 Package Model D SOURCE CODE OF PNIC

stored .Push(securityLevel);
result .Push(securityLevel);
}
}
return result;

}

/// <summary>

/// associates the stack type with an instruction

/// </summary>

/// <param name="instruction">the instruction to associate </param>

/// <param name="newStack">the stack type to associate </param>

public void setSecurityLevelStack (Instruction instruction , Stack<SecurityLevel>
newStack)

state [instruction] = newStack;
recentSecurityLevelStack getSecurityLevelStack (instruction);

/// <summary>

/// restores the abstract state that is associated with an instruction

// /) </summary>

/// <param name="instruction”>the instruction associated with the abstract state to
restore </param>

public void restoreState(Instruction instruction)

{
}

/// <summary>

/// looks if the abstract state for this instruction has been calculated yet
/// </summary>

/// <param name="instruction">the instruction to look for</param>

/// <returns>true, if abstract state already calculated </returns>

public bool stateForInstructionExists(Instruction instruction)

recentSecurityLevelStack getSecurityLevelStack (instruction);

Stack<SecurityLevel> stored = (Stack<SecurityLevel >)state[instruction |;
if (stored != null && stored is Stack<SecurityLevel >)

return true;
return false;

}

/// <summary>

/// creates a memberwise clone of this abstract state

// /) </summary>

/// <returns>AbstractState obbject memberwise clone </returns>
public AbstractState getClone ()

{

}
}

return (AbstractState) this.MemberwiseClone() ;

}
D.1.2 File Analysis/AnalysisSettings.cs

using System.Collections . Generic;
using System.Text;

using PNIC.Model.AST;

using System . Collections;

using System .Xml;

using System;

using PNIC.Model .AST.CIL;

namespace PNIC.Model. Analysis
{

class AnalysisSettings

public AnalysisSettings ()

78

D.1 Package Model D SOURCE CODE OF PNIC

methodsToCheck = new Hashtable () ;
securityMappings = new Hashtable();
regions = new Hashtable () ;

name = "";

}

private string name;
public string Name

{

get { return name; }

/// <summary>
/// unused; may later be used to determine the analysis/language to analyse

/// </summary>
private string analysisType;

private Hashtable methodsToCheck;

/// <summary>
/// Hashtable containing security level associations for information ressources

/// </summary>
private Hashtable securityMappings;

/// <summary>
/// a human readable representation of this settings

/) </summary>
public string ReadableConfiguration

{

get

{

StringBuilder readable = new StringBuilder ()
foreach (string asmname in getAssembliesToCheck())

foreach(string typename in getTypesToCheck (asmname))

{

foreach(string methodname in getMethodsToCheck (asmname, typename))

{
readable.Append (asmname + "/" 4 typename + "/" 4+ methodname + "\n");
foreach(object varname in securityMappings.Keys)

if (((string) varname).StartsWith (asmname + "/" + typename + "/" +
methodname))
{

string shortname = ((string)varname).Split(’/’)[((string)varname).Split
(’/’).Length —1];
readable . AppendLine("\t" + shortname + ": " + securityMappings|[(string)
varname|) ;
}
}

foreach (object region in regions.Keys)

if (((string) region).StartsWith (asmname 4+ "/" + typename + "/" +
methodname))
{

string shortname = ((string)region).Split(’)’)[((string)region).Split
(’)’).Length — 1];
ControlDependencyRegion cdr = (ControlDependencyRegion)regions [(string)

region |;
if (cdr = null)
readable . AppendLine ((string)region);
else
{
readable.Append ("\tregion (" + shortname + ") = ");

foreach (int i in cdr.Region)

readable.Append (i + " ");

79

Package Model D SOURCE CODE OF PNIC

}
readable . AppendLine();
if (cdr.Junction != -1)

readable . AppendLine ("\tjunction (" + shortname + ")" 4+ cdr.Junction)

3

return readable.ToString();

}
}

/// <summary>
/// the control dependency regions of the programs

/// </summary>
private Hashtable regions;

/// <summary>

/// adds a method to the list of methods that get checked during an analysis

/// </summary>

/// <param name="assemblyname">the containing assembly</param>

/// <param name="typename'>the containing type</param>

/// <param name="method">the method to analyse </param>

public void addMethodToCheck(string assemblyname, string typename, string method)

if (!(methodsToCheck|[assemblyname]| is Hashtable))
methodsToCheck | assemblyname| = new Hashtable () ;
if (!(((Hashtable)methodsToCheck[assemblyname]) [typename] is List<string>))
((Hashtable)methodsToCheck[assemblyname]) [typename]| = new List<string >();
((List<string>)((Hashtable)methodsToCheck|assemblyname|) [typename|) .Add(method) ;

}

/// <summary>
/// retrieves all assemblies that are marked for analysis
/// </summary>
/// <returns>list of assemblies to analyse</returns>
public List<string> getAssembliesToCheck ()
{
List <string> assemblyNames = new List<string >();
foreach (Object obj in methodsToCheck.Keys)

if (obj is string)
assemblyNames.Add ((string)obj);
}

return assemblyNames;

/// <summary>
/// retrieves all types in an assembly that are marked for analysis

/// </summary>
/// <param name="assemblyname”">the containing assembly </param>

/// <returns>list of all types to analyse</returns>
public List<string> getTypesToCheck(string assemblyname)
{

if (methodsToCheck|[assemblyname]| is Hashtable)

List<string> typeNames = new List<string>();
foreach (Object obj in ((Hashtable)methodsToCheck|[assemblyname]) .Keys)

if (obj is string)
typeNames.Add((string)obj);

return typeNames;

80

D.1 Package Model D SOURCE CODE OF PNIC

}

return new List<string>();

/// <summary>

/// retrieves all methods in a type that are marked for analysis

/// </summary>

/// <param name="assemblyname">containing assembly </param>

/// <param name="typename”>containing type</param>

/// <returns>list of all methods to analyse</returns>

public List<string> getMethodsToCheck(string assemblyname, string typename)

{

if (methodsToCheck[assemblyname| is Hashtable)

if (((Hashtable)methodsToCheck[assemblyname]) [typename| is List<string>)
return (List<string>)((Hashtable)methodsToCheck|assemblyname|) [typename |;

}

return new List<string>();

}

/// <summary>

/// loads analysis settings from a file

/// </summary>

/// <param name="configurationfilename">file name of the settings file </param>
public void loadConfigurationFromFile (string configurationfilename)

{

if (configurationfilename != null && System.IO.File.Exists(configurationfilename))
try
{
XmlDocument configurationFile = new XmlDocument () ;

configurationFile.Load(configurationfilename);

XmlNodeReader reader = new XmlNodeReader(configurationFile);
reader.ReadToFollowing("analysis");
analysisType = reader.GetAttribute("type");

methodsToCheck = new Hashtable () ;

while (reader.ReadToFollowing("assembly"))

{

string assemblyName = reader.GetAttribute(" file");

XmlReader typeReader = reader.ReadSubtree();
while (typeReader.ReadToFollowing("type"))

string typeName = reader.GetAttribute("id");

XmlReader mtdReader = typeReader.ReadSubtree () ;

while (mtdReader.ReadToFollowing("method"))

{
string methodName = mtdReader. GetAttribute("id");
addMethodToCheck (assemblyName , typeName, methodName) ;

XmlReader varReader = mtdReader.ReadSubtree () ;
while (varReader.Read())
{
string key = assemblyName + "/" + typeName + "/" + methodName;
switch (varReader.LocalName.ToLower())
{
case "argument":
case "variable":
key = key + "/" 4 varReader.GetAttribute("id");
string level = varReader.GetAttribute("level");
addVariableMapping (key, level);
break;
case "region":
key = key + varReader.GetAttribute("index");

81

D.1

Package Model D SOURCE CODE OF PNIC

string regionString = varReader.ReadString();
addRegion (key, regionString);
break;
case "junction":
key = key + varReader.GetAttribute("index");
int junctionPoint = int.Parse(varReader.GetAttribute("instruction"

addJunctionMapping (key, junctionPoint);
break;

}
}
this .name = configurationfilename

catch (XmlException ex)

{
Console.Out. WriteLine ("Error in configuration file: " + ex.Message);
}
}
}

/// <summary>
/// retrieves the control dependency region associated with an branching instruction
/) /) </summary>
/// <param name="instruction">associated branching instruction </param>
/// <returns>control dependency region for a branching instruction </returns>
public ControlDependencyRegion getControlDependencyRegion(Instruction instruction)
{
StringBuilder key = new StringBuilder();
key.Append(instruction.ContainingMethod. ContainingType.ContainingAssembly .Name) ;
key . Append ("/");
key .Append(instruction.ContainingMethod. ContainingType .Name) ;
key . Append ("/")
key .Append(instruction.ContainingMethod .Name) ;
key .Append(instruction.Position);
return (ControlDependencyRegion)regions|[key.ToString() |;

}

/// <summary>
/// adds a junction to a control dependency region
/) </summary>
/// <param name="key">the fully qualified position of the branching instruction </
param>
/// <param name="junctionPoint">the junction instruction </param>
private void addJunctionMapping(string key, int junctionPoint)
{
ControlDependencyRegion cdr = (ControlDependencyRegion)regions|[key];
if (cdr = null)
{
cdr = new ControlDependencyRegion () ;
regions [key]| = cdr;

cdr.Junction = junctionPoint;

}

/// <summary>
/// adds a region to a control dependency region
// /) </summary>
/// <param name="key">the fully qualified position of the branching instruction </
param>
/// <param name="regionString">string describing the range of the region</param>
private void addRegion(string key, string regionString)
{
ControlDependencyRegion cdr = (ControlDependencyRegion)regions [key];
if (cdr = null)

82

D.1 Package Model

D SOURCE CODE OF PNIC

{

cdr = new ControlDependencyRegion();
regions [key] = cdr;

foreach (string range in regionString.Split(’,’))

{

try

{

if (range.Contains("-"))

int begin, end;

begin = int.Parse(range.Split(’—
end = int.Parse(range.Split(°"=")]
for (int i = begin; i <= end; i++)

‘ —

cdr.addToRegion (i);

}
}

else
cdr.addToRegion(int.Parse(range));

catch (FormatException)

{

=2 0]
11);

Console.Out. WriteLine ("Region has an invalid format");

}

}

/// <summary>

/// adds a variable—security level association

/// </summary>

/// <param name="key">the fully qualified variablename</param>

<param name="level">the security
private void addVariableMapping(string key,

{
}

/// <summary>

securityMappings [key]| = level;

level to associate </param>

string level)

/// sets the secuirty environment of an instruction to a given level

/// </summary>

/// <param name="fullyQualifiedNameOfInstruction">the fully qualified position of the
instruction </param>
/// <param name="securityEnvironment”">the security level to set</param>
public void setSecurityEnvironment (string fullyQualifiedNameOfInstruction ,
SecurityLevel securityEnvironment)
{
securityMappings | fullyQualifiedNameOfInstruction]| = securityEnvironment . Name;
}
/// <summary>
/// retrieves the security enwvironment of an instruction
// /) </summary>
/// <param name="fullyQualified NameOfInstruction”">the fully qualified
instructionposition </param>
/// <returns>the level of the security environment</returns>
public string getSecurityEnvironment(string fullyQualifiedNameOfInstruction)
{
string environment = (string)securityMappings|[fullyQualifiedNameOfInstruction |;
if (environment != null)
return environment ;
return "";

public string getSecurityEnvironment(Instruction

{

StringBuilder key = new StringBuilder();

instruction)

key .Append(instruction.ContainingMethod . ContainingType.ContainingAssembly .Name) ;

83

Package Model D SOURCE CODE OF PNIC

key . Append ("/");
key.Append(instruction.ContainingMethod . ContainingType .Name) ;
key . Append("/");

key .Append(instruction.ContainingMethod .Name) ;
key.Append{(instruction.Position);

string environment = (string)securityMappings|[key.ToString () |;
if (environment != null)

return environment ;
return "";

/// <summary>
/// retrieves the security level of a wvariable
/// </summary>
/// <param name="variable">the wariable of interest </param>
/// <returns>the security level assoicated with the variable </returns>
public string getSecurityLevel(Variable variable)
{
StringBuilder key = new StringBuilder ();
key .Append(variable .ContainingMethod . ContainingType . ContainingAssembly .Name) ;
key . Append("/");
key .Append(variable .ContainingMethod . ContainingType .Name) ;
key . Append("/");
key . Append(variable .ContainingMethod . Name) ;
key . Append("/");
key .Append(variable .Name) ;
string level = (string)securityMappings[key.ToString () |;

if (level != null)
return level;
return "";

}

/// <summary>

/// initializes a new analysis settings file

/// </summary>

/// <param name="filename">the name of the new file </param>

/// <param name="assemblies">1list of assemblies to include </param>

public void initializeNewConfiguration (string filename , List<string> assemblies)

{

if (!(filename = null || filename.Equals("")))
XmlDocument xmlConfigFile = new XmlDocument () ;
try

xmlConfigFile.Load(filename);

catch (System.IO.FileNotFoundException)

{
XmlTextWriter xmlWriter = new XmlTextWriter (filename , System.Text.Encoding.UTF8
)5
xmlWriter . Formatting = Formatting.Indented;
xmlWriter . WriteProcessingInstruction ("xml", "version=’1.0" encoding="UTF-8");

xmlWriter . WriteStartElement ("analysis type=\"\"");
xmlWriter . Close () ;
xmlConfigFile.Load(filename);

}

XmlINode xmlanalysis = xmlConfigFile.DocumentElement ;
foreach (string asm in assemblies)

XmlElement xmlasm = xmlConfigFile.CreateElement ("assembly");
try
{

Assembly assembly = new Assembly (asm);

xmlasm. SetAttribute (" file", asm);

xmlanalysis . AppendChild (xmlasm) ;

foreach (PNIC.Model.AST.Type type in assembly.Types)

84

D.1 Package Model

D SOURCE CODE OF PNIC

XmlElement xmlclass = xmlConfigFile.CreateElement("type");
xmlclass. SetAttribute("id", type.Name);

xmlasm . AppendChild (xmlclass) ;

foreach (Method method in type.MemberMethods)

{

if (method.Readable.EndsWith(")"))

XmlElement xmlmtd = xmlConfigFile.CreateElement ("method");
xmlmtd . Set Attribute ("id", method.Name) ;

xmlclass . AppendChild (xmlmtd) ;

if (method.LocalVariables != null)

foreach (Variable parameter in method.Parameters)

{

}

XmlElement xmlarg = xmlConfigFile.CreateElement ("argument");
xmlarg. SetAttribute("id", parameter.Name);

xmlarg. SetAttribute ("level™, "");

xmlmtd . AppendChild (xmlarg) ;

foreach (Variable variable in method.LocalVariables)

{

}

XmlElement xmlvar = xmlConfigFile.CreateElement ("variable");
xmlvar. SetAttribute ("id", variable.Name);
xmlvar. SetAttribute("level™, "");

xmlmtd . AppendChild (xmlvar) ;

foreach (Instruction instruction in method.Instructions)

{

if (instruction is ConditionalJump)

XmlElement xmlregion = xmlConfigFile.CreateElement("region");

xmlregion.SetAttribute ("index", instruction.Position.ToString());

XmlElement xmljunction = xmlConfigFile.CreateElement("junction");

xmljunction.SetAttribute ("index", instruction.Position.ToString()
)

xmljunction.SetAttribute ("instruction”, ""});

xmlmtd . AppendChild (xmlregion) ;
xmlmtd . AppendChild (xmljunction);

catch (AssemblyLoadingException)

System . Console.Out. WriteLine (" Configuration error: " + asm + " is not a valid
assembly");

xmlConfigFile.Save(filename);

}
}
}
}

D.1.3 File Analysis/ControlDependencyRegion.cs

using System;

using System.Collections . Generic;

using System.Text;
using PNIC.Model.AST;

namespace PNIC.Model. Analysis

{

85

D.1 Package Model

D SOURCE CODE OF PNIC

/// <summary>
/// class resembling the control dependency region structure

/// </summary>
class ControlDependencyRegion

{

public ControlDependencyRegion ()

{

}

region = new List<int >();
junction = —1;

/// <summary>
/// program points that are in the region

/) </summary>
private List<int> region;

public List<int> Region

{

get { return region; }

/// <summary>

/// the junction point of the region

/// </summary>
private int junction;
public int Junction

{

}

get { return junction; }
set { this.junction = value; }

/// <summary>

/// adds an programpoint to the region

/// </summary>
/// <param name="instructionPosition">the programpoint to add</param>

public void addToRegion(int

{

}
}
}

D.1.4 File Analysis/Flowpolicy.cs

using
using
using
using
using

if (region.Contains(instructionPosition))

return;
region .Add(instructionPosition);

System ;

System . Collections . Generic;
System . Text ;

System . Collections;
System . Xml;

namespace PNIC.Model. Analysis

class FlowPolicy

{

public FlowPolicy ()

{

}

securityLevels = new Hashtable();
name = "";

private string name;
public string Name

{

get { return name; }

public string Readable

instructionPosition)

86

D.1 Package Model D SOURCE CODE OF PNIC

{

get {
StringBuilder readable = new StringBuilder();
readable.AppendLine("Flowpolicy: " + Name);

readable . AppendLine () ;
readable.AppendLine(" Securitylevels: ");
foreach(Object securityLevel in securityLevels.Values)

readable . Append (((SecurityLevel)securityLevel).Name + " allows flow to ");
foreach(SecurityLevel legalFlow in this.getLegalFlow ((SecurityLevel)
securityLevel))

readable.Append(legalFlow .Name + " ");

}
readable. AppendLine() ;
}
return readable.ToString();
}
}

/// <summary>
/// collection of all security levels in the flow policy

/) </summary>
private Hashtable securityLevels;

/// <summary>

/// the lowest security level in the flow policy
/) </summary>

private SecurityLevel lowestSecurityLevel;
public SecurityLevel LowestSecurityLevel

{

get { return lowestSecurityLevel; }

/// <summary>

/// adds a security level to the flow policy

/) /) </summary>

/// <param name="securityLevel”">the securitylevel to add</param>

public void addSecurityLevel(SecurityLevel securityLevel)

{
securityLevels[securityLevel .Name.ToLower()] = securityLevel;
calculateLowestSecurityLevel () ;

/// <summary>

/// retrieves the security level identified by its name

/// </summary>

/// <param name="name">the name of the security level </param>
/// <returns>securitylevel associated with the name</returns>
public SecurityLevel getSecurityLevel(string name)

{
SecurityLevel securityLevel = (SecurityLevel)securityLevels|[name.ToLower()];
if (securityLevel = null)
securityLevel = lowestSecurityLevel;

return securityLevel;

}

/// <summary>
/// retrieves all securitye levels information may flow to from a given security
level
/// </summary>
/// <param name="sourceLevel”">the level of the information source</param>
/// <returns>a list of levels the information may flow to</returns>
public List<SecurityLevel> getLegalFlow(SecurityLevel sourceLevel)
{
if (sourceLevel == null)
return new List<SecurityLevel >();
List <SecurityLevel> legalFlow = new List<SecurityLevel >();

87

D.1

Package Model D SOURCE CODE OF PNIC

if (!legalFlow.Contains(sourceLevel))
legalFlow .Add(sourceLevel);
foreach (SecurityLevel higherSecurityLevel in sourceLevel.HigherSecurityLevels)

{

foreach (SecurityLevel securityLevel in getLegalFlow (higherSecurityLevel))

if (!legalFlow.Contains(securityLevel))
legalFlow .Add(securityLevel);
}
}

return legalFlow;

/// <summary>

/// retrieves the least upper bound of two security levels

/// </summary>

/// <param name="securityLevell">first securitylevel </param>

/// <param name="securityLevel2">second secuirtylevel </param>

/// <returns>least upper bound security level, null if lub does not ezist</returns>

public SecurityLevel getLeastUpperBound(SecurityLevel securityLevell , SecurityLevel
securityLevel2)

{

if (securityLevell =— securityLevel2)
return securityLevell;

if (getLegalFlow(securityLevell).Contains(securityLevel2))
return securityLevel2;

if (getLegalFlow(securityLevel2).Contains(securityLevell))
return securityLevell;

SecurityLevel leastUpperBound = null;
foreach (SecurityLevel securityLevel in securityLevell.HigherSecurityLevels)

SecurityLevel buffer = getLeastUpperBound(securityLevel , securityLevel2);
if (compare(leastUpperBound, buffer) != —1)
leastUpperBound = buffer;

}

return leastUpperBound;

}

public int compare(SecurityLevel securityLevell , SecurityLevel securityLevel2)
{
if (securityLevell = null || securityLevel2 = null || securityLevell —
securityLevel2)
return 0;
if (getLegalFlow (securityLevell).Contains(securityLevel2))
return —1;
if (getLegalFlow(securityLevel2).Contains(securityLevell))
return 1;
return 0;

}

/// <summary>

/// loads a flow policy from a file

/// </summary>

/// <param name="policyFilename">the name of the policy file </param>
/// <returns>true, if loading was successful </returns>

public bool loadFlowPolicyFromFile(string policyFilename)

{
if (policyFilename != null & & System.IO.File.Exists(policyFilename))
try
XmlDocument flowPolicyFile = new XmlDocument () ;

flowPolicyFile.Load(policyFilename);

88

D.1

Package Model D SOURCE CODE OF PNIC

}

XmlNodeReader reader = new XmlNodeReader(flowPolicyFile);
reader .Read () ;

reader .Read () ;

if (reader.LocalName.ToLower().Equals("flow"))

{

securityLevels = new Hashtable();

while (reader.ReadToFollowing("source"))

{
string levelName = reader.GetAttribute("level").ToLower();
SecurityLevel sourcelevel = (SecurityLevel) securityLevels[levelName];
//if sourcelevel does not ezist yet
if (!(sourcelevel is SecurityLevel))

sourcelevel = new SecurityLevel(levelName);
securityLevels[levelName]| = sourcelevel;

}

XmlReader destreader = reader.ReadSubtree();
//for every destination entry in this source entry
while (destreader.ReadToFollowing("destination"))

{
string destLevelName = destreader.GetAttribute("level").ToLower();
J/only if the destlevel != sourcelvl we need to link them
if (!destLevelName.Equals(sourcelevel.Name))
{
SecurityLevel destinationlevel = (SecurityLevel)securityLevels]|
destLevelName |;
//if the destination level does not exzist yet, create it
if (!(destinationlevel is SecurityLevel))
destinationlevel = new SecurityLevel(destLevelName);
securityLevels|[destLevelName] destinationlevel;
//add the destination level as higher level than source and vice versa
if (!sourcelevel.HigherSecurityLevels.Contains{destinationlevel))
sourcelevel .HigherSecurityLevels.Add(destinationlevel);
if (!destinationlevel.LowerSecurityLevels.Contains(sourcelevel))
destinationlevel .LowerSecurityLevels.Add(sourcelevel);
}
}
}
}
else
{
return false;
}
catch(XmlException)
{
return false;
}
}
else
{
return false;
}
calculateLowestSecurityLevel ();
this .name = policyFilename;

return true;

/// <summary>
/// calculates the lowest security level in the flow policy

/// </summary>
private void calculateLowestSecurityLevel ()

{

89

D.1 Package Model D SOURCE CODE OF PNIC

foreach (Object obj in securityLevels.Values)
{
if ((obj is SecurityLevel) && (((SecurityLevel)obj).LowerSecurityLevels.Count =—
0))

lowestSecurityLevel = (SecurityLevel)obj;

}
}
}

class SecurityLevel

{

public SecurityLevel(string name)

{
this .name — name;
this.LowerSecurityLevels = new List<SecurityLevel >();
this. HigherSecurityLevels = new List<SecurityLevel >();

k]

}

/// <summary>

/// identifier fo the secuirty level
/) </summary>

private string name;

public string Name

{

get { return name; }

/// <summary>
/// direct connected lower secuirty levels
/) </summary>
private List<SecurityLevel> lowerSecurityLevels;
public List<SecurityLevel> LowerSecurityLevels
{

set { lowerSecurityLevels = value; }

get { return lowerSecurityLevels; }

}

/// <summary>
/// direct conmected higher security levels
/// </summary>
private List<SecurityLevel> higherSecurityLevels;
public List<SecurityLevel> HigherSecurityLevels
{
set { higherSecurityLevels = value; }
get { return higherSecurityLevels; }
}
}
}

D.1.5 File AST/Assembly.cs

using System;
using System . Collections . Generic;
using System .IO;

namespace PNIC.Model .AST
{

/// <summary>
/// This class represents an assembly containing cil code;
/// It is the toplevel of the abstract syntaz tree

/// </summary>
class Assembly
{

#region ctor

public Assembly ()

{3

90

D.1 Package Model D SOURCE CODE OF PNIC

public Assembly(string filename)

{

this.loadAssembly (filename);

}
#endregion
#region fields and getters/setters

/// <summary>
/// The filename of this assembly

/// </summary>
private string name;

public string Name

{

get { return this.name; }

/// <summary>
J// A list of all types in this assembly

// /) </summary>
private List <Type> types;
public List <Type> Types

{

get { return this.types; }

#endregion
#region methods

/// <summary>
/// loads a file; generating the list of types
/// </summary>
/// <param name="filename">relative or absolut filename of the assembly</param>
public void loadAssembly(string filename)
{
this.types = new List<Type>();
try

System . Reflection . Assembly assembly = System.Reflection .Assembly .LoadFrom(
filename) ;
foreach (System.Type type in assembly.GetTypes())

{
Type newType = new Type(type);
newType.ContainingAssembly = this;
this.types.Add(newType) ;

}

this .name = filename;

catch (FileNotFoundException)

{

Console. WriteLine ("Could not open file " + filename);

catch (BadImageFormatException)

{
}

catch (ArgumentException)

Console. WriteLine (filename + " is not an assembly file");

Console.Out. WriteLine("Invalid assemblyname: " + filename);

}
}

/// <summary>
/// retrieves the type identified by its name;
/// returns null if type can not be found in this assembly

91

D.1 Package Model D SOURCE CODE OF PNIC

/// </summary>

/// <param name="typename">the name of the type</param>

/// <returns>type object representing type of typename</returns>
public Type getType(string typename)

{

foreach (Type type in types)

//System . Console. WriteLine (type.Name) ;
if (type.Name.Equals(typename))
return type;

}

return null;

}

/// <summary>

/// checks if a wvalid assembly is loaded

/// </summary>

/// <returns>boolean representing validity of the assembly</returns>
public bool isValid ()

if (name == null || this.Name =— "")
return false;
return true;

}

#endregion

}

class AssemblyLoadingException : Exception

{

public AssemblyLoadingException(string reason)

{

this.reason = reason;

}

private string reason;
private string Reason

{

get { return reason; }

}
}

D.1.6 File AST/Instruction.cs

using System;

using System.Collections . Generic;
using System .Text;

using PNIC. Controller;

namespace PNIC.Model.AST

{
/// <summary>
/// abstract class representing an instruction of this language;
/// lowest level of abstract syntaz tree

/// </summary>
abstract class Instruction

{

#region ctors

public Instruction ()
this("default unnamed instruction")
{

}
public Instruction (string name)
{
this .name = name;
this.nextInstructions — new List<Instruction >();

92

D.1 Package Model D SOURCE CODE OF PNIC

this.previouslnstructions = new List<Instruction >();

}
#endregion
#region fields and getters/setters

/// <summary>
/// Human readable name of the instruction
/// </summary>
protected string name;
public string Name
{
get { return this.name; }
set { this.name = value; }

}

/// <summary>
/// position of the instruction in the instructionlist of containing method
/// </summary>
protected int position;
public int Position
{
get { return position; }
set { this.position = value; }

}

/// <summary>
/// A human readable representation of this instruction and its properties
/// </summary>
public string Readablelnstruction
{
get {

StringBuilder readable = new StringBuilder();

readable . Append(position + ": ");

while (readable.Length < 5)

readable . Append (" ");
return readable.Append(name) . ToString(); }

}

/// <summary>

/// A representation of the equivalence class used during analysis
/) /) </summary>

protected string equivalenceClass;

public string ReadableEquivalenceClass

{

get { return equivalenceClass; }

/// <summary>
/// a string identifying this instruction
/// by combining names of assembly, type, method and instructions position
/// </summary>
public string FullyQualifiedPosition
{
get
{
return
containingMethod . ContainingType.ContainingAssembly .Name + "/" +
containingMethod . ContainingType .Name + "/" +
containingMethod .Name + position.ToString();
}
}

/// <summary>
/// Instructions that control can pass to after this instruction

/) /) </summary>
private List<Instruction> nextInstructions;

93

D.1 Package Model D SOURCE CODE OF PNIC

public List<Instruction> Nextlnstructions
{
get { return this.nextInstructions; }
set { this.nextInstructions = value; }

}

/// <summary>

/// The instruction directly following in control flow graph
/// </summary>

private Instruction directSuccessor;

public Instruction DirectSuccesor

{

set

directSuccessor = value;
nextInstructions.Add(value);

get
{
return directSuccessor;
}
}

/// <summary>
/// The instructions the controlflow can come from to this instruction
/// </summary>
private List<Instruction> previousInstructions;
public List<Instruction> PreviousInstructions
{
get { return this.previousInstructions; }
set { this.previousInstructions = value; }

}

/// <summary>

/// The instruction directly predecessing this in control flow graph
/) </summary>

private Instruction directPredecessor;

public Instruction DirectPredecessor

{
get {
if (directPredecessor is Instruction)
return this.directPredecessor;
else
return null;
set { this.previousInstructions.Add(value);
this.directPredecessor = value; }
}

/// <summary>

/// the method this instruction is part of
// /) </summary>

private Method containingMethod ;

public Method ContainingMethod

{
get { return this.containingMethod; }
set { this.containingMethod = value; }
}
#endregion

#region methods

/// <summary>
/// Selfparsing function for this instruction with help of the parser

/) </summary>
/// <param name="parser">The parser that preparsed this instruction </param>

94

D.1 Package Model D SOURCE CODE OF PNIC

}
}

/// <param name="position">The position of this instruction in the bytecodearray</
param>

/// <returns>The amount of bytes this instruction is in the bytecodearray</returns>

abstract public int parse(InstructionParser parser, int position);

/// <summary>

/// accept method for wvisitor pattern

/// </summary>

/// <param name="visitor">The visitor to use</param>

abstract public void accept(CILintInstructionVisitor visitor);

/// <summary>
/// links the instruction with its successors
/) </summary>
/// <param name="parser">The parser that preparsed this instruction </param>
virtual public void link(InstructionParser parser)
{ Instruction nextInstruction = null;
int positionOfNextInstruction = this.position+1;
while (!(nextInstruction is Instruction))

nextInstruction = parser.ParsedInstructions|[positionOfNextInstruction |;
positionOfNextInstruction++;

}

this.DirectSuccesor = nextlnstruction;
nextInstruction.DirectPredecessor = this;

}

#endregion

D.1.7 File AST/CIL/CILintInstructions.cs

using System;

using System . Collections;
using System.Text;

using System . Reflection ;

namespace PNIC.Model .AST. CIL

class ClILintInstructions

{

/// <summary>
/// Registers all instructions of the CILint sublanguage at a given parser
/// </summary>
/// <param name="parser”">the parser to register the instructions at</param>
public static void registerInstructions(InstructionParser parser)
{
System . Type binaryType = (new BinaryInstruction ()).GetType();
System.Type condlType = (new ConditionalJumplParameter()).GetType();
System . Type cond2Type = (new ConditionalJump2Parameters()).GetType();
System . Type loadType = (new Load()).GetType();
System . Type popType = (new Pop()).GetType();
System.Type pushType = (new Push()).GetType();
System . Type returnType = (new Return()).GetType();
System . Type storeType = (new Store()).GetType();
System.Type unaryType = (new UnaryInstruction()).
System . Type uncondType = (new UnconditionalJump (
System . Type nopType = (new Nop()).GetType();

GetType () ;
) -

)) . GetType () ;

parser .InstructionTable .Add(0x00, nopType);

parser .InstructionTable .Add(0x02, loadType)
parser .InstructionTable.Add(0x03, loadType)
parser.InstructionTable .Add(0x04, loadType);
parser .InstructionTable .Add(0x05, loadType)
parser.InstructionTable .Add(0x06, loadType)

)

)

95

D.1

Package Model

parser .
parser .
parser .

parser.
parser.
parser.
parser.
.InstructionTable

parser

parser

parser .

parser

parser

parser

parser .
parser .

parser .
.InstructionTable

parser

parser.
.InstructionTable
InstructionTable.
InstructionTable.

(
(
(
(
(
(
_Add(0x31
(
(
(
(
(
(

parser

parser .
parser .
.InstructionTable

parser

parser .
.InstructionTable

parser

parser .
parser .
parser .
parser.

parser .
parser.
parser .
parser.
parser.
parser.
parser.
parser.
parser.
.InstructionTable
parser.
parser.
parser.

parser

parser

parser

parser .
parser .

InstructionTable
InstructionTable
InstructionTable

InstructionTable
InstructionTable
InstructionTable
InstructionTable

.InstructionTable

InstructionTable

.InstructionTable

.InstructionTable
parser.
parser.
parser.
parser.
.InstructionTable
parser.
parser.
parser.
parser.
parser.
parser.
parser.
parser.
parser.

InstructionTable
InstructionTable

(
(
(
InstructionTable. (
.Add(0x19
.Add(0x1A,
.Add(0x1B,
.Add(0x1C,

(

(

(

(

(

(

(

InstructionTable

InstructionTable
InstructionTable
InstructionTable

InstructionTable
InstructionTable
InstructionTable
InstructionTable

InstructionTable
InstructionTable

InstructionTable

InstructionTable

InstructionTable

InstructionTable
InstructionTable

InstructionTable

InstructionTable
InstructionTable
InstructionTable
InstructionTable

(
(
(
(
InstructionTable . (
.Add(0X3D
.Add(0x3E,
(
(
(
(
(
(

InstructionTable
InstructionTable
InstructionTable
InstructionTable

InstructionTable

InstructionTable

.InstructionTable
parser.
.InstructionTable

InstructionTable

InstructionTable
InstructionTable

.Add(0x07 ,
.Add(0x08 ,
.Add(0x09 ,

.Add(0x0A,
.Add(0x0B,
.Add(0x0C,
.Add (0x0D,
.Add(0x10,

.Add(0x0F,
.Add(0x11,

.Add(0x13,

.Add(0x15,
.Add(0x16 ,
.Add(0x17,

.Add(0x1D,
InstructionTable.
InstructionTable.
.Add 0x20
.Add(0x21,
.Add(0x22,
.Add(0x23,

.Add(0x26 ,
LAdd(0x2A

.Add(0x2B,
.Add(0x2C,
.Add(0x2D,
.Add(0x2E,

.Add(0x32,
.Add(0x33,
.Add(0x34,
.Add(0x35,
InstructionTable.
.Add 0x37

.Add(0x38,
.Add(0x39,
.Add(0x3A,
.Add(0x3B,

.Add(0x3F,
.Add(0x40,
.Add(0x41,
LAdd(0x42
InstructionTable.
.Add 0x44

.Add(0x58
.Add(0x59,
.Add(0x5A,

.Add(0x5F ,
.Add(0x60,

loadType);
loadType);
loadType);

storeType) ;
storeType);
storeType) ;
storeType)
storeType)

3

3

loadType);
loadType);

storeType);

pushType) ;
pushType) ;
pushType) ;
, pushType);
pushType) ;
pushType) ;
pushType) ;
pushType);
)
)
)
)
)
)
)

)

)
)

)

pushType
pushType
pushType
pushType
pushType
pushType
pushType

)
)
)
)

)

popType) ;
returnType);

uncondType) ;
cond1Type) ;
cond1Type) ;
cond2Type) ;
, cond2Type) ;
, cond2Type);
cond2Type) ;
)
)
)
)
)
)

3
3

3

cond2Type
cond2Type
cond2Type
cond2Type
cond2Type
cond2Type

3
3
3
3
3

3

uncondType) ;
cond1Type);
cond1Type) ;
cond2Type) ;
, cond2Type);
cond2Type) ;
cond2Type) ;
cond2Type);
)
)3
)
)3
)

3
3
3
3

3

cond2Type
cond2Type
cond2Type
cond2Type
cond2Type

3
3
3

3

binaryType);
binaryType);
binaryType);

binaryType);
binaryType);

96

D SOURCE CODE OF PNIC

D.1 Package Model D SOURCE CODE OF PNIC

parser .InstructionTable .Add(0x61, binaryType);

parser .InstructionTable .Add(0x62, binaryType);
parser .InstructionTable .Add(0x63, binaryType);
parser.InstructionTable .Add(0x64, binaryType);

parser .InstructionTable .Add(0x65, unaryType);
parser .InstructionTable .Add(0x66, unaryType);

parser . ExtendedInstructionTable .Add(0x01, binaryType)
parser . ExtendedInstructionTable.Add(0x02, binaryType)
parser . ExtendedInstructionTable .Add(0x03, binaryType);
parser . ExtendedInstructionTable.Add(0x04, binaryType)
parser . ExtendedInstructionTable .Add(0x05, binaryType)

parser . ExtendedInstructionTable .Add(0x09, loadType);
parser . ExtendedInstructionTable.Add(0x0B, storeType);
parser . ExtendedInstructionTable.Add(0x0C, loadType);
parser . ExtendedInstructionTable .Add(0x0E, storeType);

’

}
}
}

D.1.8 File AST/CIL/UnarylInstruction.cs

using System;

using System. Collections . Generic;
using System.Text;

using PNIC. Controller;

namespace PNIC.Model .AST. CIL

{

class Unarylnstruction:Instruction

{

public UnaryInstruction ()

{
}

public override int parse(InstructionParser parser, int position)

{

this. NextInstructions = new List<Instruction >();

this.position = position;
this.equivalenceClass = "unary op"
switch (parser.IlByteArray[position])

case 0x65:

this .Name = "Neg";
return 1;
case 0x66:
this .Name = "Not";
return 1;
default:
throw new InstructionParserException("Parsing error at " 4 parser.Method.Name +
" position " + position + "; Not a valid unary instruction");
}
}
public override void accept(CILintInstructionVisitor visitor)
{
visitor.visit (this);
}

}
}

D.1.9 File AST/CIL/BinarylInstruction.cs

using System;

97

D.1 Package Model

D SOURCE CODE OF PNIC

using System. Collections . Generic;
using System.Text;

using PNIC. Controller;

namespace PNIC.Model .AST. CIL

class

{

public

{
}

public

{

this .

this.
this.

BinarylInstruction:Instruction

case 0x58:
this . Name
return 1;
case 0x59:
this . Name
return 1;
case 0xbA:
this .Name
return 1;
case 0xbF:
this . Name
return 1;
case 0x60:
this . Name
return 1;
case 0x61:
this . Name
return 1;
case 0x62:
this . Name
return 1;
case 0x63:
this . Name
return 1;
case 0x64:
this . Name
return 1;
case OxFE:

switch (parser.IlByteArray|position + 1))

{

BinarylInstruction ()

NextInstructions = new List<Instruction >();

override int parse(InstructionParser parser,

position = position;
equivalenceClass = "binary op";
switch (parser.TIByteArray[position])

" add "n .7

"sub" ;

"mul" ;

" and "n .7

"or";

xor"
”Shl";

llshrll .7

"shr.un";

}

case 0x01:

this .Name —

return 2;
case 0x02:
this . Name
return 2;
case 0x03:
this .Name
return 2;
case 0x04:
this . Name
return 2;
case 0x05:
this . Name
return 2;

llCeqH ;

”Cgt” .
)

"Cgt.un";

llCltH ;

"Clt.un";

int position)

throw new InstructionParserException("Parsing error at " 4 parser.Method.Name +

"

position

" + position 4+ ";

Not a valid

Load instruction");

D.1 Package Model D SOURCE CODE OF PNIC

throw new InstructionParserException("Parsing error at " + parser.Method.Name + "
position " + position + "; Not a valid Load instruction");
}

public override void accept(CILintInstructionVisitor visitor)
{
visitor.visit (this);
}
}
}

D.1.10 File AST/CIL/Pop.cs

using System;

using System . Collections . Generic;
using System.Text;

using PNIC. Controller;

namespace PNIC.Model .AST. CIL

{
class Pop:Instruction
{
public Pop()
{
this. NextInstructions = new List<Instruction >();
}
public override int parse(InstructionParser parser, int position)
{
this.position = position;
this .Name — "pop";
this.equivalenceClass = this.Name;

return 1;

}

public override void accept(CILintInstructionVisitor visitor)

{

}
}

visitor.visit (this);

}
D.1.11 File AST/CIL/Push.cs

using System;

using System . Collections . Generic;
using System.Text;

using PNIC. Controller;

namespace PNIC.Model .AST. CIL

{

class Push:Instruction

{
public Push()

this. NextInstructions = new List<Instruction >();

}

public override int parse(InstructionParser parser, int position)

{
this.position = position;
this.equivalenceClass = "push v";
switch (parser.IlByteArray[position])

case 0x15:

this .Name ="ldc.i4 .ml";
return 1;

99

D.1

Package Model

D SOURCE CODE OF PNIC

}
}

D.1.12 File AST/CIL/Load.cs

}

public override

{
}

}

case 0x16:

this .Name ="ldc.i

return 1;
case 0x17:

this .Name —="ldc.i

return 1;
case 0x18:

this.Name ="ldc.i

return 1;
case 0x19:

this .Name ="ldc.i

return 1;
case OxlA:

this .Name ="ldc.i

return 1;
case 0x1B:

this.Name ="ldc.i

return 1;
case 0x1C:

this.Name ="ldc.i

return 1;
case 0x1D:

this .Name ="ldc .1

return 1;
case 0x1E:

this .Name ="ldc .1

return 1;
case O0x1F:

this.Name ="l1dc.i

return 2;

case 0x20:
this .Name ="ldc.
return 5;

case 0x21:
this.Name ="ldc.
return 9;

case 0x22:
this .Name ="ldc.
return 5;

case 0x23:
this .Name ="ldc.
return 9;

default:

H ",
i4";

H "o,
i8";

".
rd";

",
r8";

throw new InstructionParserException("Parsing error at " 4 parser.Method.Name +

" position

visitor.visit (this);

using System;

using System. Collections . Generic;

using System.Text;
using PNIC. Controller;

" + position 4+ ";

namespace PNIC. Model .AST. CIL

{

class Load:Instruction

{

Not a valid ldc instruction");

void accept (CILintInstructionVisitor visitor)

D.1 Package Model D SOURCE CODE OF PNIC

#region ctor

public Load ()

{

this. NextInstructions — new List<Instruction >();

}
#endregion
#region fields and getters/setters

public new string ReadableEquivalenceClass
{
get
{
StringBuilder readable = new StringBuilder();
readable.Append(position + ": ");
while (readable.Length < 5)
readable . Append (" ");
readable.Append(equivalenceClass);
readable . Append (" " + target .Name);
return readable.ToString();

}
}

private Variable target;
public Variable Target

{

get { return this.target; }

#endregion
#region methods

public override int parse(InstructionParser parser, int position)
{

this.position = position;

this.equivalenceClass = "loadlocal";

switch (parser.IlByteArray[position])

#region ldarg

case 0x02:
this .Name = "ldarg.0";
this.target = parser.Method.Parameters|[0];
return 1;

case 0x03:
this .Name = "ldarg.1";
this.target = parser.Method.Parameters|[1];
return 1;

case 0x04:
this .Name = "ldarg.2";
this.target = parser.Method.Parameters|[2];
return 1;

case 0x05:
this .Name = "ldarg.3";
this.target = parser.Method.Parameters[3];
return 1;

case 0x0E:
this.target = parser.Method.Parameters[{byte)parser.IlByteArray[position + 1]];
this .Name = "ldarg.s";
return 2;

#endregion

#region ldloc
case 0x06:
this .Name = "ldloc.0";
this.target = parser.Method.LocalVariables |[0];

101

D.1

Package Model

D SOURCE CODE OF PNIC

}
}

}

return 1;
case 0x07:
this .Name =
this.target
return 1;
case 0x08:
this .Name =
this.target
return 1;
case 0x09:
this .Name =
this.target
return 1;
case 0Ox11:
this.target

1175

"ldloc .1";
parser . Method

"ldloc .2";
parser . Method

"ldloc .3";
= parser . Method

parser . Method

.LocalVariables [1];

.LocalVariables [2];

.LocalVariables[3];

.LocalVariables [(byte) parser.IIByteArray|[position +

this .Name = "ldloc.s";
return 2;
#endregion
case OxFE:
if (parser.IlByteArray|[position + 1] = 0x0C)
this.target = parser.Method.LocalVariables[(Intl6)parser.IlByteArray|position
+ 2]]
this .Name = "ldloc";
return 4;
if (parser.IlByteArray|[position + 1] = 0x09)

this.target

2]]7

parser . Method.Parameters [(Int16) parser.I1ByteArray|[position +

this .Name = "ldarg";
return 4;
}
throw new InstructionParserException("Parsing error at " 4 parser.Method.Name +
" position " + position + "; Not a valid Load instruction'");

}

throw new InstructionParserException("Parsing error at " + parser.Method.Name + "
position " + position + "; Not a valid Load instruction");

public override void accept(CILintInstructionVisitor visitor)

{
}

visitor.visit (this);

#endregion

D.1.13 File AST/CIL/Store.cs

using System;
using System.Collections . Generic;
using System.Text;

using PNIC. Controller;

namespace PNIC.Model .AST.CIL

class

{

public Store ()

{
}

Store:Instruction

this. NextInstructions = new List<Instruction >();

private Variable target;

102

D.1 Package Model D SOURCE CODE OF PNIC

public Variable Target

{

get { return this.target; }

public new string ReadableEquivalenceClass
{
get
{
StringBuilder readable = new StringBuilder();
readable.Append (position + ": ");
while (readable.Length < 5)
readable.Append (" ");
readable . Append(equivalenceClass);
readable.Append (" " + target.Name);
return readable.ToString();

}
}

public override int parse(InstructionParser parser, int position)
{

this.position = position;

this.equivalenceClass = "storelocal";

switch (parser.IlByteArray[position])

case 0x0A:
this .Name="stloc.0";
this.target=parser.Method.LocalVariables[0];
return 1;

case 0x0B:
this .Name="stloc.1";
this.target=parser.Method.LocalVariables[1];
return 1;

case 0x0C:
this .Name="stloc.2";
this.target=parser.Method.LocalVariables [2];
return 1;

case 0x0D:
this .Name="stloc.3";
this.target=parser.Method.LocalVariables [3];
return 1;

case 0x13:
this.target=parser.Method.LocalVariables[(byte)parser.IlByteArray[position +1]];
this .Name — "stloc.s";
return 2;

case 0x10:
this.target = parser.Method.Parameters|[(byte)parser.IlByteArray[position+1]]; ;
this .Name="starg.s";
return 2;

case O0xFE:
if (parser.IlByteArray|[position+1] == 0x0B)
this.target = parser.Method.Parameters|[(Intl6)parser.I1ByteArray|[position
+2]1;
this .Name = "starg";

return 4;

}

if (parser.IlByteArray|[position+1] == 0x0E)
this.target = parser.Method. LocalVariables|[(Intl16)parser.IlByteArray|[position
+2]1;
this .Name = "stloc";

return 4;

}

throw new InstructionParserException("Parsing error at " + parser.Method.Name +
" position " + position + "; Not a valid Store instruction;");

103

D.1 Package Model D SOURCE CODE OF PNIC

throw new InstructionParserException("Parsing error at " + parser.Method.Name + "
position " + position + "; Not a valid Store instruction;");

}

public override void accept(CILintInstructionVisitor visitor)
{
visitor.visit (this);
}
}
}

D.1.14 File AST/CIL/UnconditionalJump.cs

using System;

using System . Collections . Generic;
using System.Text;

using PNIC. Controller;

namespace PNIC. Model.AST. CIL

class UnconditionalJump:Instruction

{

public UnconditionalJump ()

{

this. NextInstructions = new List<Instruction >();

}

public new string Readablelnstruction
{
get
{
StringBuilder readable = new StringBuilder();
readable . Append(position + ": ");
while (readable.Length < 5)
readable.Append (" ");
readable . Append (Name) ;
if (DirectSuccesor != null)
readable . Append (" " + DirectSuccesor.Position);
return readable.ToString();

}
}

public new string ReadableEquivalenceClass
{
get
{
StringBuilder readable = new StringBuilder();
readable.Append(position + ": ");
while (readable.Length < 5)
readable . Append (" ");
readable.Append(equivalenceClass);
if (DirectSuccesor != null)
readable.Append (" " + DirectSuccesor.Position);
return readable.ToString();
}
}

private int positionOfNextInstruction;

public override int parse(InstructionParser parser, int position)

{
this.position = position;
this.equivalenceClass = "unconditionalJump";
if (parser.IlByteArray|[position] == 0x2B)
positionOfNextInstruction = position + 2 + (sbyte)parser.I[lByteArray|position +
1];
this .Name — "br.int8";

104

D.1 Package Model D SOURCE CODE OF PNIC

return 2;
if (parser.IlByteArray|[position] == 0x38)

positionOfNextInstruction = position + 5 +(int)parser.IlByteArray[position + 1];
this .Name = "br.int32";
return 5;

}

throw new InstructionParserException("Parsing error at " + parser.Method.Name + "
position " 4 position + "; Not a valid unconditional Jump instruction");
}

public override void accept(CILintInstructionVisitor visitor)

{
visitor.visit (this);
}
public override void link (InstructionParser parser)
{
Instruction nextInstruction = parser.ParsedInstructions|[positionOfNextInstruction |;
NextInstructions.Add(nextInstruction);
DirectSuccesor = nextlnstruction;

DirectSuccesor.PreviousInstructions.Add(this);

}
}
}

D.1.15 File AST/CIL/ConditionalJump.cs
using System;

using System.Collections . Generic;

using System.Text;

using PNIC. Controller;

namespace PNIC. Model.AST. CIL

{
abstract class ConditionalJump:Instruction
{
public new string Readablelnstruction
{
get

{

StringBuilder readable = new StringBuilder();
readable.Append(position + ": ")
while (readable.Length < 5)
readable.Append (" ");
readable . Append (Name) . ToString () ;
readable.Append (" " + jumplnstruction.Position);
return readable.ToString();
}
}

public new string ReadableEquivalenceClass
{
get
{
StringBuilder readable = new StringBuilder();
readable.Append(position + ": ");
while (readable.Length < 5)
readable.Append (" ");
readable . Append(equivalenceClass);
readable.Append (" " + jumplnstruction.Position);
return readable.ToString();
}
}

protected Instruction nextInstruction;
public Instruction NextInstruction

105

D.1 Package Model

get { return this.nextInstruction; }

protected int branchingTarget;
protected Instruction jumplnstruction;
public Instruction Jumplnstruction

{

set

{

jumplInstruction = value;
NextInstructions.Add(value);

get { return this.jumplnstruction; }

}

public override void link (InstructionParser parser)

{

int positionOfNextInstruction = this.position + 1;
while (!(this.nextInstruction is Instruction))

D SOURCE CODE OF PNIC

this.nextInstruction = parser.ParsedInstructions|[positionOfNextInstruction |;

positionOfNextInstruction++;

}

this.DirectSuccesor = nextlnstruction;
nextInstruction.DirectPredecessor = this;

JumplInstruction = parser.ParsedInstructions|[branchingTarget |;

JumplInstruction. PreviousInstructions.Add(this);

}
}

class ConditionalJump2Parameters : ConditionalJump

public ConditionalJump2Parameters ()

{
}

public override int parse(InstructionParser parser,

{

this. NextInstructions — new List<Instruction >();

this.position = position;
this.equivalenceClass = "jumpWith2Arguments" ;
switch (parser.IlByteArray|[position])

case 0x3B:

int position)

branchingTarget = position + 5 +(int)parser.IlByteArray|[position+1];

this .Name = "beq";
return 5;
case 0x2E:

branchingTarget = position + 2 + (sbyte)parser.IlByteArray[position+1];

this .Name = "beq.s";
return 2;
case 0x3C:

branchingTarget = position + 5 +(int)parser.IlByteArray|[position + 1];

this .Name = "bge";
return 5;
case 0x2F:

branchingTarget = position + 2 +(sbyte)parser.IlByteArray|[position + 1];

this .Name = "bge.s";
return 2;
case 0x41:

branchingTarget = position + 5 +(int)parser.IlByteArray|position];

this.Name = "bge.un";
return 5;
case 0x34:

branchingTarget = position + 2 + (sbyte)parser.IlByteArray[position + 1];

this .Name = "bge.un.s";

106

D.1 Package Model

D SOURCE CODE OF PNIC

}

}

}

return 2;

case 0x3D:
branchingTarget = position
this .Name = "bgt";
return 5;

case 0x30:
branchingTarget = position
this .Name = "bgt.s";
return 2;

case 0x42:
branchingTarget = position
this .Name = "bgt.un";
return 5;

case 0x35:
branchingTarget = position
this .Name = "bgt.un.s";
return 2;

case 0x3E:
branchingTarget = position
this .Name = "ble";
return 5;

case 0x31:
branchingTarget = position
this .Name = "ble.s";
return 2;

case 0x43:
branchingTarget = position
this .Name = "ble.un";
return 5;

case 0x36:
branchingTarget = position
this .Name = "ble.un.s";
return 2;

case 0x3F:
branchingTarget = position
this .Name = "blt";
return 5;

case 0x32:
branchingTarget = position
this .Name = "blt.s";
return 2;

case 0x44:
branchingTarget = position
this .Name — "blt.un";
return 5;

case 0x37:
branchingTarget = position
this .Name = "blt.un.s";
return 2;

case 0x40:
branchingTarget = position
this .Name = "bne.un";
return 5;

case 0x33:

+ (int)parser.IlByteArray|[position + 1];

+ (sbyte)parser.IlByteArray|[position + 1];

+ (int)parser.IlByteArray[position + 1];

+ (sbyte)parser.IlByteArray[position + 1];

+ (int)parser.IlByteArray|[position + 1];

+ (sbyte)parser.IlByteArray|[position + 1];

+(int)parser.IIByteArray|[position + 1];

+(sbyte)parser.IlByteArray [position + 1];

+ (int)parser.IlByteArray|[position + 1];

+ (sbyte)parser.IlByteArray|[position + 1];

+ (int)parser.IlByteArray[position + 1];

+ (sbyte)parser.IlByteArray[position + 1];

+ (int)parser.IlByteArray|[position + 1];

branchingTarget = position +(sbyte)parser.I1ByteArray [position +1];
this .Name = "bne.un.s";
return 2;
default:
throw new InstructionParserException("Parsing error at " 4 parser.Method.Name +
" position " + position + "; Not a valid ConditionalJump instruction");

public override void accept(CILintInstructionVisitor visitor)

{
}

visitor.visit (this);

107

D.1 Package Model

D SOURCE CODE OF PNIC

}

class ConditionalJumplParameter

}

ConditionalJump

public ConditionalJumplParameter ()

{
}

this. NextInstructions = new List<Instruction >();

public override int parse(InstructionParser parser, int position)

{

}

this.position = position;
this.equivalenceClass = "jumpWithlArgument" ;
switch (parser.IlByteArray[position])

}

case 0x39:
branchingTarget = position
this .Name = "brfalse”;
return 5;

case 0x2C:

branchingTarget = position
this .Name — "brfalse.s";
return 2;

case 0x3A:
branchingTarget = position
this .Name = "brtrue";

return 5;
case 0x2D:

+ 5 + (int)parser.IlByteArray|[position+1];

+ 2 +(sbyte)parser.IlByteArray[position+1];

+ 5 +(int)parser.IlByteArray|[position +1];

branchingTarget = position + 2 + (sbyte)parser.IlByteArray[position+1];
this .Name = "brtrue.s";
return 2;
default:
throw new InstructionParserException("Parsing error at " + parser.Method.Name +
" position " + position + "; Not a valid ConditionalJump instruction");

public override void accept(CILintInstructionVisitor visitor)

{
}

visitor.visit (this);

D.1.16 File AST/CIL/Return.cs

using System;

using System . Collections . Generic;
using System.Text;

using PNIC. Controller;

namespace PNIC. Model.AST. CIL

{

class Return:Instruction

{

public Return ()

{
}

this. NextInstructions = new List<Instruction >();

#region methods

public

{

override int parse(InstructionParser parser, int position)

this
this
this

.position = position;
.Name = "return";
.equivalenceClass = this.Name;

return 1;

D.1 Package Model D SOURCE CODE OF PNIC

public override void accept(CILintInstructionVisitor visitor)
{
visitor.visit (this);

}

public override void link (InstructionParser parser)
{

this. NextInstructions.Add(null);

}

#endregion

}
}

D.1.17 File AST /InstructionParser.cs

using System;

using System. Collections . Generic;
using System.Text;

using System. Collections;

using System . Reflection ;

namespace PNIC.Model .AST
{
/// <summary>
/// a simple bytecodearray preparser;
/// instructions must be registered to be preparseable
/// </summary>
class InstructionParser

{

#region ctor

public InstructionParser ()

{
this.instructionTable = new Hashtable();
this.extendedInstructionTable = new Hashtable();

}
#endregion
#region fields and getters/setters

/// <summary>
/// Mappings from instructions/bytecodes to constructors for the corresponding AST
representation
/// </summary>
private Hashtable instructionTable;
public Hashtable InstructionTable
{
get{ return instructionTable; }
set { this.instructionTable = value; }
}
private Hashtable extendedInstructionTable;
public Hashtable ExtendedInstructionTable
{
get { return extendedInstructionTable; }
set { this.extendedInstructionTable = value; }

}

/// <summary>
/// the bytecode array to be parsed

/// </summary>
private byte[] ilByteArray;
public byte[] IlByteArray

get { return ilByteArray; }

109

D.1 Package Model

D SOURCE CODE OF PNIC

}

/// <summary>

/// the instructions already parsed

/) </summary>

private Instruction|[] parsedInstructions;
public Instruction|[] ParsedInstructions

{

get { return this.parsedInstructions; }

/// <summary>

/// the resulting method object
/) </summary>

private Method method;

public Method Method

{

get { return method; }

/// <summary>

/// current position of the parser
/// </summary>

private int position;

public int Position

{

get { return this.position; }

#endregion

#region methods

/// <summary>
/// Parses a given method an returns the corresponding Method object

// /) </summary>
/// <param name="methodInfo">MethodInfo of the method to parse</param>

{

<param name="ilByteArray">bytecodearray containing the ilinstructions </param>
<returns>Method object representing the parsed method</returns>
public Method parselnstructions(Method method, byte][]

ilByteArray)

//set the method in progress, the corresponding bytearray and the initial position

this . method = method;
this.ilByteArray = ilByteArray;
this.position = 0

//create an array for already parsed instructions

parsedInstructions = new Instruction[ilByteArray.Length];

//go through the bytearray and parse each instruction

while (this.position < ilByteArray.Length)

//parse the instruction at current position and store it in method instructions

method . Instructions .Add(parselnstruction ());

}

//link instructions to create the controlflow graph

//and relabel positions with programpoints
int count = 0;

foreach (Instruction instruction in method.Instructions)

{

instruction .link (this);

instruction .ContainingMethod = method;
instruction.Position = count;
count—+-;

}

method . FirstInstruction = method.Instructions[0];

110

D.1 Package Model D SOURCE CODE OF PNIC

return method;

}

/// <summary>
/// parses the instruction at the current position of this parser
/// </summary>
/// <returns>returns an Instruction object representing the parsed instruction </
returns >
private Instruction parselnstruction ()
{
//check if the position is inside the array to parse
if (this.position > ilByteArray.Length)
throw new InstructionParserException("Position to parse out of arrayrange');

J/if the instruction is parsed already, just return it
if (parsedInstructions|[position] is Instruction)

return parsedInstructions|[position];

//else parse the instruction
else
{
//determine the type of the instruction via the instructiontable
System . Type instructionType;
//4f the instruction is a 2byte instruciton use extendedinstructiontable
if (ilByteArray|[position] == 0xFE)
{
instructionType = (System.Type)this.extendedInstructionTable [(int) ((byte)
ilByteArray | position—+1])];
//Console. Out. WriteLine("2— Byte—Bytecode parsed: " + (int)(({(byte)ilByteArray/
position]|) % 256 + (byte)ilByteArray[position+1]));
}
else
{
instructionType = (System.Type)this.instructionTable[(int) ((byte)ilByteArray |
position])];
}
if (instructionType == null)
throw new InstructionParserException("Instruction not part of the language of
this parser in method " 4+ method.Name + " at position " + position + "
bytecode: " + ilByteArray|[position]);

//create preparsed instruction
Instruction instruction = (Instruction)Activator.Createlnstance(instructionType);

//if instruction got preparsed succesfully
if (instruction != null)
{
//store instruction as parsed
parsedInstructions|[position] = instruction;

J/finally let the instruciton parse itself and update position to next
instruction
this.position = this.position + instruction.parse(this, position);
}
else
throw new InstructionParserException("Failed to parse instruction at position "
+ position + " in method " + method.Name);

return instruction;

}
}
#endregion
}
class InstructionParserException : Exception

111

D.1 Package Model D SOURCE CODE OF PNIC

private string reason;
public string Reason

{

get { return this.reason; }

public InstructionParserException(string reason)

{

}
}

this.reason = reason;

}
D.1.18 File AST/Method.cs

using System;

using System.Collections . Generic;
using System.Text;

using System . Reflection ;

using PNIC.Model .AST.CIL;

namespace PNIC.Model .AST
{
/// <summary>
/// represents an il—method;
/// one level above instructions in the abstract syntazr tree
/// </summary>
class Method
{
#region ctor
public Method(MethodInfo methodInfo)
{
StringBuilder nameBuilder = new StringBuilder ();
nameBuilder. Append (methodInfo.Name + "(");
foreach (ParameterInfo parameterInfo in methodInfo.GetParameters())

{

nameBuilder . Append (parameterInfo . ParameterType. ToString () + ", ");

if (nameBuilder.ToString () .EndsWith(" "))
nameBuilder . Remove(nameBuilder . Length -2, 2);
nameBuilder.Append(")");
this .name = nameBuilder. ToString () ;
loadMethod (methodInfo) ;
loadingException = null;
}

#endregion
#region fields getters/setters

/// <summary>

/// name identifying this method
/// </summary>

private string name;

public string Name

{

get { return name; }

public string Readable
{
get
{
if (instructions = null || instructions.Count — 0)
return name + ": could not parse instructions";
return name;

}
}

112

D.1 Package Model D SOURCE CODE OF PNIC

private Type containingType;
public Type ContainingType
{
get { return containingType; }
set { this.containingType = value; }

}

/// <summary>
/// The parameters of this method
/) /) </summary>
private Variable[] parameters;
public Variable[] Parameters
{

get { return parameters; }

set { this.parameters = value; }

}

/// <summary>
/// The local variables of this method
/) </summary>
private Variable[] localVariables;
public Variable|[] LocalVariables
{

get { return localVariables; }

set { this.localVariables = value; }

}

/// <summary>
/// The first instruction of the methodbody
/// Can be used to traverse the whole methodbody wvia controlflowgraph

/// </summary>
private Instruction firstInstruction ;

public Instruction FirstInstruction

{

get { return firstInstruction; }
set { this.firstInstruction = value; }

}

private List<Instruction> instructions;
public List<Instruction> Instructions

{

get { return instructions; }
set { this.instructions = value; }

public List<ConditionalJump> ConditionalJumps

{

get

{

List <ConditionalJump> conditionalJumps = new List<ConditionalJump >();
foreach (Instruction instruction in instructions)

{

if (instruction is ConditionalJump)

conditionalJumps.Add((ConditionalJump)instruction);
}
}
return conditionalJumps;

}
}

private InstructionParserException loadingException;
public InstructionParserException LoadingException

{

get { return this.loadingException; }

#endregion

113

D.1 Package Model D SOURCE CODE OF PNIC

}

#region methods

/// <summary>
/// loads the method described by methodInfo
// /) </summary>
/// <param name="methodInfo">MethodInfo of the method to load</param>
private void loadMethod(MethodInfo methodInfo)
{
//update its parameters
this.Parameters = new Variable[methodInfo.GetParameters().Length + 1];
//this.Parameters = new Variable[100];
for (int i = 0; i < Parameters.Length; i++)

this.Parameters|[i]| = new Variable();
this.Parameters|[i]. ContainingMethod = this;
this.Parameters[i].Name = "arg " + i.ToString();

}

//update its local variables

int variableCount = methodInfo.GetMethodBody().LocalVariables.Count;

this.LocalVariables = new Variable|[variableCount |;

for (int i = 0; i < LocalVariables.Length; i++)

{
this.LocalVariables|[i] = new Variable();
this.LocalVariables|[i]|.Name = "var_" + i.ToString();
this.LocalVariables[i]. ContainingMethod = this;

}

this.instructions = new List<Instruction >();
J/initialize parser with the sublanguage to use
InstructionParser parser = new InstructionParser();

3
CIL.CILintInstructions.registerInstructions (parser);

try

{

parser .parselnstructions (this, methodInfo.GetMethodBody () .GetILAsByteArray());

}

catch (InstructionParserException ex)

{
this.loadingException = ex;
Console.Out. WriteLine (ex . Reason) ;
Console.Out. WriteLine (" Press enter to continue");
Console.In.ReadLine () ;

}

}

/// <summary>

/// retrieves the instruction at given position

/) /) </summary>

/// <param name="position">position of the instruction in the instruction list </param
>

/// <returns></returns>

public Instruction getlnstructionAtPosition (int position)

if (position < instructions.Count)
return instructions|position |;
else
return null;

#endregion

class MethodLoadingException: Exception

{

114

D.1 Package Model D SOURCE CODE OF PNIC

public MethodLoadingException(string reason)

{

this.reason — reason;

}

private string reason;
public string Reason

{

get { return reason; }

}
}

D.1.19 File AST/Type.cs

using System;

using System.Collections . Generic;
using System.Text;

using System. Reflection;

namespace PNIC.Model .AST
{
/// <summary>
/// represents a type in an assembly;
/// one level beneath assembly in the abstract syntaz tree

/// </summary>
class Type

{

#region ctor

public Type(System.Type type)
{
this .name = type.Name;
loadType (type);

#endregion

#region fields and getters/setters
/// <summary>

/// a string identifying this type
/// </summary>

private string name;

public string Name

{

get { return this.name; }

/// <summary>
/// the assembly that inherits this type
/// </summary>
private Assembly containingAssembly;
public Assembly ContainingAssembly
{

get { return containingAssembly; }

set { this.containingAssembly = value; }

}

/// <summary>

/// the flags used to load this type

/) </summary>

BindingFlags customFlags = BindingFlags.Instance | BindingFlags.Public | BindingFlags
.NonPublic | BindingFlags.Static | BindingFlags.DeclaredOnly;

/// <summary>
/// a list of all membermethods in this type

/) </summary>
private List<Method> memberMethods;

115

D.1 Package Model D SOURCE CODE OF PNIC

}

}

public List <Method> MemberMethods

{

get { return memberMethods; }

#endregion
#region methods

/// <summary>

/// loads the type represented by the Syste.Type

/// </summary>

/// <param name="type">the System.Type decribed by this type</param>

public void loadType(System.Type type)

{
this . memberMethods = new List <Method>();
//try to load each method of this type and add it to the memberMethods list
foreach (MethodInfo methodInfo in type.GetMethods(this.customFlags))

{

try

Method newMethod = new Method(methodInfo) ;
newMethod . ContainingType = this;
this . memberMethods.Add(newMethod) ;

}

catch (MethodLoadingException ex)

Console . Error. WriteLine (ex.Reason) ;

}

/// <summary>
/// returns the member identified by its name;
/// null if member not found

/) </summary>
/// <param name="methodname">the name of the instruction as string </param>

/// <returns>Method object in this type identified by name</returns>
public Method getMemberMethod(string methodname)

foreach (Method method in memberMethods)

if (method.Name.Equals(methodname))
return method;

}

return null;

}

#endregion

D.1.20 File AST/Variable.cs

using System;
using System.Collections . Generic;

using System.Text;

namespace PNIC.Model .AST

{

/// <summary>
represents a wvariable or parameter in an il method
p P

/// </summary>
class Variable

{

#region fields and getter/setter

116

D.2 Package Controller

D SOURCE CODE OF PNIC

/// <summary>

/// a humanreadable identifier for this wvariable

/// </summary>
private string name;

public string Name
{
get { return name; }
set { this.name = value; }

}

/// <summary>

/// the method that inherits this wvariable
// /) </summary>

private Method containingMethod ;

public Method ContainingMethod

{

get { return containingMethod; }

set { this.containingMethod = value; }
}
#endregion

}
}

D.2 Package Controller
D.2.1 File Visitor.cs

using PNIC.Model .AST.CIL;
using PNIC.Model.AST;

namespace PNIC. Controller

{

/// <summary>

/// abstract class for wvisiting instructions of the CILint instructionset

/// </summary>
abstract class ClLintInstructionVisitor

{ abstract public void visit (
abstract public void visit (
abstract public void visit (
abstract public void visit (Load instruction);
abstract public void visit (Pop instruction);
abstract public void visit (Push instruction);
abstract public void visit (Return instruction);
abstract public void visit(

abstract public void visit (

abstract public void visit (

abstract public void visit (Nop instruction);

}

/// <summary>
/// abstreact class for wisiting containers

/// </summary>
abstract class InstructionContainerVisitor

{
abstract public void visit (Method method);
abstract public void visit (Type type);
abstract public void visit (Assembly assembly);

}

Store instruction);

}
D.2.2 File Analysis/Analysis.cs

using System. Collections . Generic;
using System.Text;

117

BinaryInstruction instruction);
ConditionalJumplParameter instruction);
ConditionalJump2Parameters

2
instruction);

UnaryInstruction instruction);
UnconditionalJump instruction);

D.2 Package Controller D SOURCE CODE OF PNIC

using PNIC.Model.AST;
using PNIC.Model. Analysis;
using PNIC. Controller.Print;

namespace PNIC. Controller. Analysis
{
/// <summary>
/// A wrapper class that is intended for use in programs
/// that directly present the result of the analysis.
/// </summary>
class InteractiveAnalysis
{
/// <summary>
/// Settings to use in this analysis
/) </summary>
private AnalysisSettings configuration;
public AnalysisSettings AnalysisSettings
{
get { return configuration; }
set { this.configuration = value; }

}

/// <summary>
/// Flow policy to user in this analysis
/// </summary>
private FlowPolicy flowPolicy;
public FlowPolicy FlowPolicy
{
get { return flowPolicy; }
set { this.flowPolicy = value; }

}

/// <summary>
/// run an analysis
/// </summary>
/// <returns>siring representing the result of the analysis</returns>
public string runAnalysis ()
{
StringBuilder summary = new StringBuilder ();
if (configuration is AnalysisSettings && flowPolicy is FlowPolicy)

foreach (string assemblyname in configuration.getAssembliesToCheck())
{
System . Console .Out. WriteLine (" Analysing assembly: " + assemblyname);
summary . AppendLine (" Analysing assembly: " 4 assemblyname);
Assembly assembly = new Assembly (assemblyname) ;
foreach (string typename in configuration.getTypesToCheck(assemblyname))

{
System . Console.Out. WriteLine (" Analysing type: " + typename);
summary . AppendLine (" Analysing type: " + typename);
Type type = assembly.getType(typename);
if (type != null)

foreach (string methodname in configuration.getMethodsToCheck (assemblyname,
typename))
{

summary . AppendLine(" Analysing method: " 4+ methodname);
System . Console . WriteLine(" Analysing method: " + methodname);
string result;
Method method = type.getMemberMethod (methodname) ;
if (method !'= null && checkFlowPolicyCompatibility (method))
if (method.LoadingException == null)
MethodTransformator transform = new MethodTransformator();

transform . Configruation = configuration;
transform . FlowPolicy = flowPolicy;

118

D.2 Package Controller D SOURCE CODE OF PNIC

try

{

transform . visit (method) ;

result = method.Name 4+ " is non—interfering";
summary . AppendLine(" —>" 4 result);
System . Console.Out. WriteLine (" —>" 4+ result);

catch (AnalysisException ex)

{
result = ex.Reason;
summary . AppendLine (" —>" 4 result);
System . Console .Out. WriteLine (" —" + result);
CompletePrint printer = new CompletePrint () ;
printer . EquivalenceClass = true;
printer . Configuration = configuration;

printer.visit (method);

}
}

else
System . Console.Out. WriteLine(" —>" + method.LoadingException.Reason)
5
summary . AppendLine (" —>" 4+ method.LoadingException.Reason);
}
}
else
System . Console.Out. WriteLine (" —>method not found or analysed");
summary . AppendLine (" —>method not found or analysed");
}
System . Console.Out. WriteLine () ;
}
}
else
{
System . Console.Out. WriteLine(" —>type not found");
summary . AppendLine (" —>type not found");
}

}
}
return summary. ToString () ;

}

return "Flow policy or analysis settings not valid!";

/// <summary>

/// checks if the flow policy is comptaible with the analysis settings
/// </summary>

/// <param name="method">the method the settings are for</param>

/// <returns>true, if policy and settings are compatible </returns>
private bool checkFlowPolicyCompatibility (Method method)

//check if every security level assigned to a variable exists in the flow policy
foreach (Variable parameter in method.Parameters)

if (flowPolicy.getSecurityLevel(configuration.getSecurityLevel(parameter)) —
null)
{

System.Console . WriteLine (" —>"
+ configuration.getSecurityLevel (parameter)
+ " is not part of the flow policy");
return false;
}
}

foreach (Variable variable in method.LocalVariables)

{

119

D.2 Package Controller

D SOURCE CODE OF PNIC

if (flowPolicy.getSecurityLevel(configuration.
)
{
System.Console. WriteLine (" —>"
+ configuration.getSecurityLevel (variable)
+ " is not part of the flow policy");
return false;
}
}
return true;

}
}

class AnalysisException : System.Exception

{

public AnalysisException(string reason)

{

this.reason = reason;

}

private string reason;
public string Reason

{

get { return reason; }

}
}

D.2.3 File Analysis/CILintTransformator.cs

using System;
using System. Collections . Generic;

using System.Text;
using PNIC.Model. Analysis;

namespace PNIC. Controller. Analysis
{
/// <summary>
/// class representing abstract transformations for

/// </summary>
class ClILintTransformator: CILintInstructionVisitor

{
#region ctor
public ClILintTransformator ()

{

state = new AbstractState();
position = 0;

}
#endregion
#region fields and getters/setters

private int position;
public int Position

{

get { return this.position; }

private AnalysisSettings configuration ;
public AnalysisSettings Configuration
{

get { return configuration; }

set { this.configuration = value; }
}
private FlowPolicy flowPolicy;
public FlowPolicy FlowPolicy

120

getSecurityLevel(variable)) = null

CILint

D.2 Package Controller D SOURCE CODE OF PNIC

{

}

get { return flowPolicy; }
set { this.flowPolicy = value; }

private AbstractState state;
public AbstractState State

{

}

get { return state; }
set { this.state = value; }

#endregion

#region visit methods for instructions

public override void visit (PNIC.Model .AST.CIL. BinaryInstruction instruction)

{

}

checkSecurityLevelStackUniformity (instruction);

SecurityLevel securityEnvironment = flowPolicy.getSecurityLevel(
configuration.getSecurityEnvironment (instruction));

SecurityLevel topOfStackLevel;
SecurityLevel secondOfStackLevel;

try

topOfStackLevel = state.RecentSecurityLevelStack.Pop();
secondOfStackLevel = state.RecentSecurityLevelStack.Pop();

}

catch (InvalidOperationException)

{
throw new AnalysisException (instruction.Position + " too few values left on stack
")
}
SecurityLevel leastUpperBound = flowPolicy.getLeastUpperBound (topOfStackLevel,
secondOfStackLevel);

if (leastUpperBound = null)
throw new AnalysisException(instruction.Position + " no least upper bound found
for " 4+ topOfStackLevel.Name + " and " + secondOfStackLevel.Name);

leastUpperBound = flowPolicy.getLeastUpperBound (leastUpperBound,
securityEnvironment) ;

if (leastUpperBound = null)
throw new AnalysisException(instruction.Position + " no least upper bound found
for " 4 securityEnvironment.Name + " and " + leastUpperBound.Name);

state.RecentSecurityLevelStack.Push(leastUpperBound);

state.setSecurityLevelStack (instruction , state.RecentSecurityLevelStack);

public override void visit (PNIC.Model.AST.CIL. ConditionalJumplParameter instruction)

{

}

checkSecurityLevelStackUniformity (instruction);
throw new NotImplementedException () ;

public override void visit (PNIC.Model.AST.CIL. ConditionalJump2Parameters instruction)

{

checkSecurityLevelStackUniformity (instruction);

SecuritylLevel topOfStackLevel;
SecurityLevel secondOfStackLevel;

121

D.2 Package Controller D SOURCE CODE OF PNIC

try

topOfStackLevel = state.RecentSecurityLevelStack.Pop();
secondOfStackLevel = state.RecentSecurityLevelStack.Pop();

catch (InvalidOperationException)

{
throw new AnalysisException(instruction.Position + " too few values left on stack
")
}
SecurityLevel leastUpperBound = flowPolicy.getLeastUpperBound (topOfStackLevel,
secondOfStackLevel);

if (leastUpperBound = null)
throw new AnalysisException(instruction.Position + " no least upper bound found
for " 4 topOfStackLevel.Name + " and " + secondOfStackLevel.Name);

J/lift stack

int stacksize = state.RecentSecurityLevelStack.Count;
Stack<SecurityLevel> buffer = new Stack<SecurityLevel >();

for (int i = 0; i < stacksize; i++)

{
SecurityLevel stackLevel = state.RecentSecurityLevelStack.Pop();
SecurityLevel liftedLevel = flowPolicy.getLeastUpperBound (leastUpperBound,
stackLevel);
if (liftedLevel = null)
throw new AnalysisException(instruction.Position + " no least upper bound found
for " 4 leastUpperBound.Name + " and " + stackLevel.Name);
buffer .Push(liftedLevel);
}

for (int i = 0; i < stacksize; i++)

state.RecentSecurityLevelStack .Push(buffer.Pop());

}
J/lift region

ControlDependencyRegion region = configuration.getControlDependencyRegion (
instruction);
if (region =— null)
throw new AnalysisException (instruction.Position + " no controldependencyregion
found for conditional jump");

string key = instruction.ContainingMethod.ContainingType.ContainingAssembly .Name +
||/ll +
instruction .ContainingMethod . ContainingType .Name + "/" +
instruction .ContainingMethod .Name;

foreach (int position in region.Region)
{
SecurityLevel environmentLevel = flowPolicy.getSecurityLevel(
configuration.getSecurityEnvironment (key + position.ToString()));

SecurityLevel liftedLevel = flowPolicy.getLeastUpperBound (leastUpperBound,
environmentLevel);

if (liftedLevel = null)
throw new AnalysisException(instruction.Position + " no least upper bound found
for " 4 environmentLevel.Name + " and " + leastUpperBound.Name);

configuration .setSecurityEnvironment (key + position.ToString(), liftedLevel);

}

state.setSecurityLevelStack (instruction , state.RecentSecurityLevelStack);

}

122

D.2 Package Controller D SOURCE CODE OF PNIC

public override void visit (PNIC.Model.AST.CIL.Load instruction)

{

checkSecurityLevelStackUniformity (instruction);

SecurityLevel securityEnvironment = flowPolicy.getSecurityLevel(
configuration.getSecurityEnvironment (instruction));
SecurityLevel securityLevelOfVariable = flowPolicy.getSecurityLevel(
configuration.getSecurityLevel(instruction.Target));
SecurityLevel leastUpperBound = flowPolicy .getLeastUpperBound (securityEnvironment ,
securityLevelOfVariable);

if (leastUpperBound = null)
throw new AnalysisException(instruction.Position + " no least upper bound found
for " 4 securityEnvironment.Name + " and " 4 securityLevelOfVariable.Name);

state.RecentSecurityLevelStack .Push(leastUpperBound);

state.setSecurityLevelStack (instruction , state.RecentSecurityLevelStack);

}

public override void visit (PNIC.Model .AST.CIL.Pop instruction)

{
checkSecurityLevelStackUniformity (instruction);
state.RecentSecurityLevelStack .Pop();
state.setSecurityLevelStack (instruction , state.RecentSecurityLevelStack);

}

public override void visit (PNIC.Model.AST.CIL.Push instruction)

{

checkSecurityLevelStackUniformity (instruction);

SecurityLevel securityEnvironment = flowPolicy.getSecurityLevel(
configuration.getSecurityEnvironment (instruction));

state.RecentSecurityLevelStack .Push(securityEnvironment);

state.setSecurityLevelStack(instruction, state.RecentSecurityLevelStack);

}

public override void visit (PNIC.Model.AST.CIL.Return instruction)
checkSecurityLevelStackUniformity (instruction);

SecurityLevel leastUpperBound;
if (state.RecentSecurityLevelStack.Count > 0)
{
SecurityLevel topOfStackLevel = state.RecentSecurityLevelStack.Pop();
SecurityLevel securityEnvironment = flowPolicy.getSecurityLevel(
configuration.getSecurityEnvironment (instruction));

leastUpperBound = flowPolicy .getLeastUpperBound (topOfStackLevel,
securityEnvironment) ;

if (leastUpperBound = null)
throw new AnalysisException(instruction.Position + " no least upper bound found
for " 4 securityEnvironment.Name + " and " + topOfStackLevel.Name);
}
else
leastUpperBound = flowPolicy.getSecurityLevel(
configuration.getSecurityEnvironment (instruction));

if (leastUpperBound != flowPolicy.LowestSecurityLevel)
throw new AnalysisException (instruction.Position + " return reveals higher level
value");

}

public override void visit (PNIC.Model .AST.CIL. Store instruction)

{

123

D.2 Package Controller D SOURCE CODE OF PNIC
checkSecurityLevelStackUniformity (instruction);
SecurityLevel securityEnvironment = flowPolicy.getSecurityLevel(configuration.
getSecurityEnvironment (instruction));
SecurityLevel topOfStackLevel = state.RecentSecurityLevelStack.Pop();
SecurityLevel leastUpperBound = flowPolicy.getLeastUpperBound(securityEnvironment ,
topOfStackLevel);
if (leastUpperBound = null)
throw new AnalysisException(instruction.Position + " no least upper bound found
for " 4 securityEnvironment.Name + " and " + topOfStackLevel.Name);
SecurityLevel securityLevelOfVariable = flowPolicy.getSecurityLevel (configuration.
getSecurityLevel (instruction.Target));
if (!flowPolicy.getLegalFlow (leastUpperBound).Contains(securityLevelOfVariable))
throw new AnalysisException (instruction.Position + " illegal flow from " +
leastUpperBound .Name + " to " + securityLevelOfVariable.Name);
state.setSecurityLevelStack (instruction , state.RecentSecurityLevelStack);
}
public override void visit (PNIC.Model .AST.CIL. UnaryInstruction instruction)
{
checkSecurityLevelStackUniformity (instruction);
throw new NotImplementedException () ;
}
public override void visit (PNIC.Model.AST.CIL. UnconditionalJump instruction)
{
checkSecurityLevelStackUniformity (instruction);
state.setSecurityLevelStack(instruction, state.RecentSecurityLevelStack);
}
public override void visit (PNIC.Model .AST.CIL.Nop instruction)
{
checkSecurityLevelStackUniformity (instruction);
state.setSecurityLevelStack (instruction , state.RecentSecurityLevelStack);
}
#endregion

#region helpermethods

private void checkSecurityLevelStackUniformity (PNIC. Model .AST. Instruction instruction

)

//Console. WriteLine (instruction. ReadableInstruction + ", Stacksize: " + state.
RecentSecurityLevelStack. Count) ;
if (instruction.PreviousInstructions.Count > 1)

foreach (PNIC.Model .AST.Instruction previousInstruction in instruction.
PreviousInstructions)

Stack<SecurityLevel> stackAtPreviousInstruction = state.getSecurityLevelStack(
previousInstruction);
if (stackAtPreviousInstruction is Stack<SecurityLevel >)

if (stackAtPreviousInstruction.Count !'= state.RecentSecurityLevelStack.Count)
throw new AnalysisException(instruction.Position + " securitylevel is not
constant at this programpoint");
SecurityLevel [| stackAtPreviousAsArray = stackAtPreviousInstruction.ToArray ()

’
SecurityLevel [|] recentStackAsArray = state.RecentSecurityLevelStack.ToArray ()

)

124

D.2 Package Controller D SOURCE CODE OF PNIC

for (int i = 0; i < recentStackAsArray.Length; i++)
{
if (recentStackAsArray[i] != stackAtPreviousAsArray[i])
throw new AnalysisException (instruction.Position + " securitylevel is not
constant at this programpoint");

#endregion

}
D.2.4 File Analysis/MethodTransformator.cs

using System.Collections . Generic;

using System.Text;

using PNIC.Model.AST;
using PNIC.Model .AST. CIL;
using PNIC.Model. Analysis;

namespace PNIC. Controller. Analysis
{
/// <summary>
/// class representing an algorithm that analysis a method

/// </summary>
class MethodTransformator: InstructionContainerVisitor

{
private AnalysisSettings configuration;
public AnalysisSettings Configruation
{
get { return configuration; }
set { this.configuration = value; }
}
private FlowPolicy flowPolicy;
public FlowPolicy FlowPolicy
{
get { return flowPolicy; }
set { this.flowPolicy = value; }

}

private ClILintTransformator instructionTransformator;
private List<Instruction> workList;

private List <ConditionalJump> checkedBranchinglnstructions;
private Method recentMethod;

/// <summary>
/// method wisitor for cil int analysis
/) </summary>
/// <param name="method">the method to analyse</param>
public override void visit (PNIC.Model.AST.Method method)
{
//mark the method as the method in progress
recentMethod = method;
//check configuration regions
checkRegions () ;

J/initialize an instructionTransformator for this method
instructionTransformator = new CILintTransformator();
instructionTransformator. Configuration = configuration;
instructionTransformator.FlowPolicy = flowPolicy;

J/initialize the worklist and checkedBranches

workList = new List<Instruction >();
workList .Add(method . FirstInstruction);

125

D.2

Package Controller D SOURCE CODE OF PNIC

checkedBranchingInstructions = new List<ConditionalJump >();

Instruction recentlnstruction;

//while the worklist is not empty, we are not done
while (workList.Count > 0)

{

}
}

recentInstruction = getFirstInstructionFromWorkList () ;
if (recentInstruction = null)
throw new AnalysisException ("Method contains instructions which are not part of
the language");
instructionTransformator.State.restoreState (recentInstruction.DirectPredecessor);

//for all instructions that are ransitiviy linked as direct successors to recent
instruction
while (recentInstruction != null)
{
//decide how to handle this instruction
if (recentInstruction is ConditionalJump)

visit ((ConditionalJump)recentInstruction);

}
else if (recentInstruction is Instruction)
{
visit (recentInstruction);
recentInstruction = recentlnstruction.DirectSuccesor;

}

/// <summary>
/// checks if the regions confirm to the safe over approzimation definition
/// if mot soap: throws an ezxception

/) </summary>
private void checkRegions ()

{

foreach (ConditionalJump conditionalJump in recentMethod.ConditionalJumps)

{

ControlDependencyRegion controlDependencyRegion = configuration.
getControlDependencyRegion{conditionalJump);
//if the cdr of a conditional jump is empty, then the region is not correct
if (controlDependencyRegion =— null)
throw new AnalysisException("Control depency region not set for conditional
jump " +4conditionalJump.Position);

//for every programpoint i, j, k: if i is a branching instruction, then both
following instructions j and k must be either element of region(i) or
junction (i);

if (conditionalJump . DirectSuccesor != conditionalJump.Jumplnstruction)

//check all successors
foreach(Instruction successor in conditionalJump.NextInstructions)

if (!controlDependencyRegion.Region.Contains(successor.Position)
&& controlDependencyRegion. Junction != successor.Position)
throw new AnalysisException("Succesor of conditional jump " +
conditionalJump . Position 4+ " is not junction and not in region");

}
}

J/#1: for every programpoint i, j, k: if j el region(i) and j—>k, then k el

region (i) or k == junction (i)
J/#2: for every i, j: if j el region(i) and j is return, then junction(i) == null
foreach (int position in controlDependencyRegion.Region)

{

126

D.2 Package Controller D SOURCE CODE OF PNIC
Instruction instructionInRegion = recentMethod.getInstructionAtPosition (
position);
//#
if (instructionInRegion is ConditionalJump)
ConditionalJump jumpInRegion = (ConditionalJump)instructionInRegion;
if (controlDependencyRegion.Junction != jumpInRegion.Jumplnstruction.Position
&& !controlDependencyRegion.Region.Contains(jumpInRegion. JumplInstruction .
Position))
throw new AnalysisException ("Target of jump " + jumpInRegion.Position + "
in region of " + conditionalJump.Position+ " is not junction and not in
region");
if (!(instructionInRegion is Return))
if (controlDependencyRegion.Junction != instructionInRegion.DirectSuccesor.
Position
&& !controlDependencyRegion.Region.Contains(instructionInRegion .
DirectSuccesor . Position))
throw new AnalysisException ("Direct successor of instruction " +
instructionInRegion.Position + " in region of " + conditionalJump.
Position + " is not junction and not in region");
}
//#2
if (instructionInRegion is Return)
if (controlDependencyRegion.Junction != —1)
throw new AnalysisException ("Return " + instructionInRegion.Position + " in
region of " + conditionalJump.Position + " with junction defined");
}
}
}
}

private void visit (Instruction instruction)

//analyse this instruction and remove it from the worklist
instruction.accept(instructionTransformator);
workList .Remove(instruction);

}

private void visit (ConditionalJump conditionalJump)
{
//analyse this instruction
conditionalJump . accept (instructionTransformator);
workList . Remove(conditionalJump) ;

ControlDependencyRegion region = configuration.getControlDependencyRegion (
conditionalJump) ;

//if branching not checked
if (!checkedBranchingInstructions.Contains(conditionalJump))
{
//add region to worklist
foreach (int position in region.Region)
{
Instruction instructionAtPosition = recentMethod. getInstructionAtPosition (
position);
//if instruction is not in worklist
if (!workList.Contains(instructionAtPosition))
workList .Add(instructionAtPosition);

}

//if jumtarget not in worklist, add jumptarget to worklist
if (!workList.Contains(conditionalJump.JumplInstruction))
workList .Add(conditionalJump.JumpInstruction);

127

D.2 Package Controller D SOURCE CODE OF PNIC

}
}

//mark this conditional jump as checked
checkedBranchingInstructions.Add(conditionalJump) ;

}

/// <summary>
/// get the first instruction in ezecution order from worklist
/// </summary>
/// <returns>Instruction object representing the first instruction </returns>
private Instruction getFirstInstructionFromWorkList ()
{
Instruction firstInstruction = null;
foreach (Instruction instruction in workList)

//if firstinstruction not defined or instruction is in front of recent
firstinstruction , set firstinstruciton
if ((firstInstruction =— null) ||
(firstInstruction.DirectPredecessor = instruction) ||
(instruction is UnconditionalJump && firstInstruction.PreviousInstructions.
Contains(instruction))

firstInstruction = instruction;

}

return firstlnstruction;

}

/// <summary>
/// not needed int cilint analysis

/// </summary>
public override void visit (PNIC.Model .AST.Type type)

{
}

/// <summary>
/// mnot mneeded in cilint analysis

// /) </summary>
public override void visit (PNIC.Model.AST. Assembly assembly)

{
}

throw new NotImplementedException () ;

throw new NotImplementedException();

D.2.5 File Print/CompletePrint.cs

using PNIC.Model.AST;
using PNIC.Model. Analysis;

namespace PNIC. Controller.Print

{

class CompletePrint:InstructionContainerVisitor

{

/// <summary>
J// if set additional information, e.g. secuirty environments of instructions
/// are printed

/// </summary>
private AnalysisSettings configuration ;

public AnalysisSettings Configuration
{
get { return this.configuration; }
set { this.configuration = value; }

}

/// <summary>
/// if true, the output contains only the equivalence classes of instructions
/// else the concrete instruction is printed

128

D.2 Package Controller D SOURCE CODE OF PNIC

/// </summary>

private bool equivalenceClass;

public bool EquivalenceClass

{
get { return this.equivalenceClass; }
set { this.equivalenceClass = value; }

}

public override void visit (PNIC.Model.AST.Method method)

{

System . Console. WriteLine ("Method: " + method.Name) ;

PrintInstruction printer = new PrintInstruction();

printer.EquivalenceClass — this.equivalenceClass;

if (configuration is AnalysisSettings)
printer.Configuration = configuration;

if (method.LoadingException is InstructionParserException)
System. Console. WriteLine (method.LoadingException . Message) ;
else

foreach (Instruction instruction in method.Instructions)

{
}

instruction .accept{printer);

¥
}

public override void visit (PNIC.Model.AST.Type type)
{
System . Console. WriteLine ("Type: " + type.Name);
foreach (Method method in type.MemberMethods)

{

}
}

public override void visit (PNIC.Model.AST. Assembly assembly)
{
System . Console.Out. WriteLine (" Assembly: " + assembly .Name) ;
foreach (Type type in assembly.Types)

visit (method) ;

visit (type);
}
}
}
}

D.2.6 File Print/PrintInstruction.cs

using System;

using System.Collections . Generic;
using System.Text;

using PNIC.Model. Analysis;

namespace PNIC. Controller.Print

{

class PrintInstruction:CILintInstructionVisitor

{

public PrintInstruction ()

J/this.prefiz = null;

/// <summary>

/// if true, the output contains only the equivalence classes of instructions
/// else the concrete instruction is printed

/// </summary>
private bool equivalenceClass;

129

D.2 Package Controller D SOURCE CODE OF PNIC

public bool EquivalenceClass

{

get { return this.equivalenceClass; }

set { this.equivalenceClass = value; }
}
/// <summary>
/// if set additional information, e.g. secuirty environments of instructions

/// are printed

/// </summary>
private AnalysisSettings configuration;

public AnalysisSettings Configuration
{
get { return this.configuration; }
set { this.configuration = value; }

}

private void printAdditionallnfos (PNIC.Model .AST.Instruction instruction)

{

if (this.configuration is AnalysisSettings)

StringBuilder infoBuilder = new StringBuilder();

infoBuilder .Append(configuration.getSecurityEnvironment (instruction));
infoBuilder .Length = 5;

infoBuilder .Append(" — ");

Console.Out. Write(infoBuilder . ToString ());

}
}

public override void visit (PNIC.Model . AST.CIL. BinaryInstruction instruction)
{
printAdditionallnfos (instruction);
if (this.equivalenceClass)
Console.Out. WriteLine (instruction.ReadableEquivalenceClass);
else
Console .Out. WriteLine (instruction.ReadableInstruction);

}

public override void visit (PNIC.Model.AST.CIL. ConditionalJumplParameter instruction)

printAdditionallnfos (instruction);
if (this.equivalenceClass)

Console .Out. WriteLine (instruction.ReadableEquivalenceClass);
else

Console .Out. WriteLine (instruction.ReadableInstruction);

}

public override void visit (PNIC.Model.AST.CIL. ConditionalJump2Parameters instruction)
{
printAdditionallnfos (instruction);
if (this.equivalenceClass)
Console .Out. WriteLine (instruction.ReadableEquivalenceClass);
else
Console .Out. WriteLine (instruction.ReadableInstruction);

}

public override void visit (PNIC.Model .AST.CIL.Load instruction)
{
printAdditionalInfos (instruction);
if (this.equivalenceClass)
Console .Out. WriteLine (instruction.ReadableEquivalenceClass);
else
Console.Out. WriteLine (instruction.ReadableInstruction);

}

public override void visit (PNIC.Model.AST.CIL.Pop instruction)

{

printAdditionallnfos (instruction);

130

D.3 Package View

D SOURCE CODE OF PNIC

if (this.equivalenceClass)
Console.Out. WriteLine(instruction.
else
Console .Out. WriteLine (instruction.
}

public override void visit (PNIC. Model.

printAdditionallnfos (instruction);
if (this.equivalenceClass)
Console .Out. WriteLine (instruction.
else
Console .Out. WriteLine (instruction .
}

public override void visit (PNIC. Model.
{
printAdditionallnfos (instruction);
if (this.equivalenceClass)
Console .Out. WriteLine (instruction.
else
Console .Out. WriteLine (instruction .
}

public override void visit (PNIC. Model.
{
printAdditionallnfos (instruction);
if (this.equivalenceClass)
Console .Out. WriteLine (instruction.
else
Console .Out. WriteLine (instruction .
}

public override void visit (PNIC.Model.
{
printAdditionallnfos (instruction);
if (this.equivalenceClass)
Console .Out. WriteLine (instruction .
else
Console .Out. WriteLine (instruction .
}

public override void visit (PNIC.Model.
{
printAdditionallnfos (instruction);
if (this.equivalenceClass)
Console.Out. WriteLine (instruction .
else
Console.Out. WriteLine(instruction .
}

public override void visit (PNIC.Model.

{

printAdditionallnfos (instruction);
if (this.equivalenceClass)
Console .Out. WriteLine (instruction .
else
Console.Out. WriteLine(instruction .
}

}
}

D.3 Package View
D.3.1

using System;

ReadableEquivalenceClass) ;

ReadableInstruction);

AST.CIL.Push instruction)

ReadableEquivalenceClass) ;

ReadableInstruction);

AST.CIL.Return instruction)

ReadableEquivalenceClass) ;

ReadableInstruction);

AST.CIL. Store instruction)

ReadableEquivalenceClass) ;

ReadableInstruction);

AST.CIL. UnarylInstruction instruction)

ReadableEquivalenceClass) ;

ReadableInstruction);

AST.CIL. UnconditionalJump instruction)

ReadableEquivalenceClass) ;

Readablelnstruction);

AST.CIL.Nop instruction)

ReadableEquivalenceClass) ;

Readablelnstruction);

File ConsoleUI/ConsoleUl.cs

131

D.3 Package View D SOURCE CODE OF PNIC

using
using
using
using
using
using

System . Collections . Generic;
System . Text ;

PNIC.Model. Analysis ;

PNIC. Model . AST;

PNIC. Controller.Print;
PNIC. Controller. Analysis;

namespace PNIC. View. ConsoleUl

{

/// <summary>
/// consolen wuser interface

/// </summary>
class ConsoleUI

public ConsoleUI()

{

}

assemblies = new List<Assembly >();
invokeMainMenu () ;

private List<Assembly> assemblies;

private FlowPolicy flowpolicy;

private AnalysisSettings configuration;

private void printHeader ()

{

}

Console. Clear () ;

Console .Out. WriteLine("Prototypical Non—Interference Checker");
Console.Out. WriteLine (" ="}
Console.Out. WriteLine () ;

if (flowpolicy is FlowPolicy)

Console.Out. WriteLine ("Flow policy loaded: " + flowpolicy .Name);

if (configuration is AnalysisSettings)

{

Console.Out. WriteLine (" Analysis settings loaded: " + configuration .Name);
}
if (assemblies.Count != 0)

Console .Out. Write (" Assemblies loaded: " 4 assemblies [0].Name) ;

for (int i = 1; i < assemblies.Count; i++)

{

Console .Out. Write (" " + assemblies|[i].Name);

Console.Out. WriteLine () ;

}

private void invokeMainMenu ()

{

while (true)

{
printHeader () ;
Console.Out. WriteLine ("F — Flow Policy Menu");
Console.Out. WriteLine("S — Analysis Settings Menu");
Console .Out. WriteLine ("A — Assembly Menu");
Console.Out. WriteLine ("R — Run Analysis");
Console .Out. WriteLine ("X — Exit");
Console.Out. WriteLine () ;
Console.Out. Write ("Action: ");
char action = Console.ReadKey () .KeyChar;
Console.Out. WriteLine () ;
switch (action)

{

case ’

s’

132

D.3 Package View

D SOURCE CODE OF PNIC

}

}

invokeConfigurationMenu () ;

invokeFlowpolicyMenu () ;

invokeAssemblyMenu () ;

runAnalysis () ;

case ’'S’:
break;
case ’'F’:
case ’'f’:
break;
case ’'A’:
case ’a’:
break;
case ’'r’:
case ’'R’:
break;
case ’'Xx’:
case ’'X’:
return;

}

#region flowpolicy

private void invokeFlowpolicyMenu ()

{

}

while (true)

{

}

printHeader () ;

Console
Console
Console
Console
Console

.Out.
.Out
.Out
.Out
.Out .

char action

Console

{

.Out

WriteLine ("L — Load Flow Policy");
. WriteLine ("D — Dump loaded Flow Policy");
(

. WriteLine ("M — Back to Main Menu");
. WriteLine () ;

Write ("Action: "
= Console.ReadKe

. WriteLine () ;
switch (action)

LoadFlowPolicy () ;

DumpFlowPolicy () ;

case '] 7:
case ’'L’7:
break;
case ’d’:
case ’'D’:
break;
case ’'m’:
case 'M’:

return;

}

private void LoadFlowPolicy ()

{

)
v () .KeyChar;

Console.Out. Write ("Please enter the file name of the flow policy: ");

string filename =
FlowPolicy oldpolicy = flowpolicy;
flowpolicy = new FlowPolicy();

Console.In.ReadLine();

while (!(flowpolicy is FlowPolicy) || !flowpolicy.loadFlowPolicyFromFile(filename))
{
Console.Out. WriteLine (filename 4+ " is not a valid flow policy!");
Console.Out. Write ("Please enter the file name of the flow policy (empty line to
abort): ");
filename = Console.In.ReadLine();

if (filename.Equals(""))

{

133

D.3 Package View

D SOURCE CODE OF PNIC

}
}

}

flowpolicy = oldpolicy;
break;

flowpolicy = new FlowPolicy () ;

private void DumpFlowPolicy ()

{

printHeader () ;

if (!(flowpolicy is FlowPolicy))
LoadFlowPolicy () ;

if (flowpolicy is FlowPolicy)

Console.Out. WriteLine (flowpolicy . Readable) ;

else

}

Console.Out. WriteLine ("No flow policy loaded");
Wait () ;

#endregion

#region assembly menu

private void invokeAssemblyMenu ()

{

while (true)

{

}
}

printHeader () ;
Console .Out. WriteLine ("Loaded Assemblies:");
foreach (Assembly assembly in assemblies)

{
}

Console.Out. WriteLine (assembly .Name) ;

Console.Out. WriteLine () ;

(
Console.Out. WriteLine ('
Console .Out. WriteLine ("
Console.Out. WriteLine ('
Console .Out. WriteLine (

1

L — Load Assembly");

U — Unload Assembly");

D — Dump loaded Assemblies");
"M — Back to Main Menu");

Console.Out. WriteLine () ;

Console.Out. Write ("Action: ");

char action = Console.ReadKey () .KeyChar;
Console.Out. WriteLine () ;

switch (action)

{

}

case ’'17:

case ’'L’7:
LoadAssembly () ;
break;

case ’'u’:

case ’'U’:
UnloadAssembly () ;
break;

case ’d’:

case ’'D’:
DumpLoadedAssemblies () ;
break;

case ’'m’:

case 'M’:
return;

private void LoadAssembly ()

{

Console.Out. WriteLine ("Please enter the filename of the assembly:

string filename = Console.In.ReadLine();
foreach (Assembly existingAssembly in assemblies)

134

D.3 Package View D SOURCE CODE OF PNIC

if (existingAssembly .Name —= filename)
return;
}
Assembly assembly = new Assembly(filename);
if (assembly is Assembly && assembly.isValid())
assemblies . Add{ assembly) ;
else
{
Console.Out. WriteLine(filename + " is not a valid assembly");
Wait () ;

}

private void UnloadAssembly ()

{
Console.Out. WriteLine ("Please enter the filename of the assembly: ");
string filename = Console.In.ReadLine();
Assembly asmToRemove = null;
foreach (Assembly assembly in assemblies)
{
if (assembly.Name.ToLower().Equals(filename.ToLower()))
asmToRemove = assembly;
break;
}
if (asmToRemove != null)
assemblies . Remove (asmToRemove) ;
}
private void DumpLoadedAssemblies ()
{

foreach (Assembly assembly in assemblies)

CompletePrint printer = new CompletePrint () ;
printer. visit (assembly);

}

Wait () ;

}

#endregion
#region configuration menu
private void invokeConfigurationMenu ()

while (true)
{
printHeader () ;
Console.Out. WriteLine ("L — Load Analysis Settings");
Console .Out. WriteLine ("D — Dump loaded Analysis Settings");
Console.Out. WriteLine("I — Initialize Analysis Settings");
Console.Out. WriteLine ("M — Back to Main Menu");
Console.Out. WriteLine () ;
Console.Out. Write ("Action: ");
char action = Console.ReadKey () .KeyChar;
Console.Out. WriteLine () ;
switch (action)
{
case ’17:
case ’'L’:
LoadConfiguration () ;
break;
case ’d’:
case ’'D’:
DumpConfiguration () ;
break;

135

Package View D SOURCE CODE OF PNIC

’

case ’i’:

case ’'I17:
InitializeNewConfiguration () ;
break;

case ’'m’:

case 'M’:
return;

}
¥
}

private void InitializeNewConfiguration ()

{
Console.Out. WriteLine (" Please enter the filename of the analysis settings: ");
string filename = Console.In.ReadLine();

while (System.IO.File.Exists(filename))

{
Console.Out. WriteLine (" File already exists, please choose another name: ");
filename = Console.In.ReadLine();

}

List <string> assemblies = new List<string >();

Console.Out. WriteLine ("Please enter filenames for assemblies to include, one per
line , empty line closes the list:");

string buffer = Console.In.ReadLine();

while (!buffer.Equals(""))

{

assemblies . Add{ buffer);
buffer = Console.In.ReadLine();

}

AnalysisSettings configuration = new AnalysisSettings();
configuration .initializeNewConfiguration (filename , assemblies);

}

private void DumpConfiguration ()

{
Console.Out. WriteLine (" Settings for this analysis: ");
Console.Out. WriteLine ("Settings File: " + configuration .Name);
Console.Out. WriteLine () ;
Console.Out. WriteLine (configuration.ReadableConfiguration);
Wait () ;

}

private void LoadConfiguration ()

{

Console.Out. WriteLine ("Loading analysis settings");

Console.Out. WriteLine ("Please enter the filename for the settings: ");
string filename = Console.In.ReadLine();

configuration = new AnalysisSettings();

configuration .loadConfigurationFromPFile (filename);

}

#endregion

#region Analysis

?rivate void runAnalysis()

if (!(flowpolicy is FlowPolicy))

Console.Out. WriteLine ("No flowpolicy loaded");
LoadFlowPolicy () ;

if (!(configuration is AnalysisSettings))

136

D.3 Package View D SOURCE CODE OF PNIC

Console.Out. WriteLine ("No analysis settings loaded");
LoadConfiguration () ;

if (flowpolicy is FlowPolicy && configuration is AnalysisSettings)

InteractiveAnalysis analysis = new InteractiveAnalysis();
analysis. AnalysisSettings = configuration;
analysis.FlowPolicy = flowpolicy;

string result = analysis.runAnalysis();
Console.Out. WriteLine () ;
Console.Out. WriteLine(result);

}

Wait () ;

}

#endregion

private void Wait ()

Console.Out. WriteLine ("Press Enter to Continue");
Console .ReadKey () ;
}
}
}

137

E SOURCE CODE OF EXAMPLE APPLICATIONS

E Source Code of Example Applications

In this section, the source code for the example applications that were analysed can be
found. Furthermore, the source code can be found in the folder /src¢/ExampleProgram
on the cd-rom.

{

class Testclass

{

public static void Main() {}
public int exampleDirectFlow (int 11, int hl)

11 = hil;
return 11;

}

public int examplelndirectFlowl (int 11, int hl)

if (11 = hl)
return 1;
else
return O0;

}
public int examplelndirectFlow2 (int 11, int hl)
{
if (11 = hl)
11 = 1;
else
11 = 0;
return 11 ;
}
public int addUserToSystem(int password, int salt)
{
//storage location , like pwd file
int storagelocation;
//generate userid
int uid = 5;
//calculate salted hash of password
int saltedhash = salt x password;
//associate wid with salted hash in storage
storagelocation = uid + saltedhash;
storagelocation = storagelocation;
J//report the new wuid
return uid;
}
public int login (int uid, int password, int salt)
{
int storagelocation =5 + 6 % 3;
J//if the wid is associated with the password, login succeeds
if (storagelocation =— uid + password =* salt)
{
return 1;
}
return 0;
}
public int storeData(int uid, int password, int data, int salt)
{
int storagelocation = 23;
//if account is associated with a special storage location
if (storagelocation =— uid + password * salt)

//store data in special location
int specialstorage = data;

138

E SOURCE CODE OF EXAMPLE APPLICATIONS

return 1;

//data not stored in special location, store it in common location
int commonstorage = data;
return 1;

}

public int licensedUpdate(int publicUserdata, int privateUserdata)

{

//the wversion number of this software
int softwareversion = 1;

//store data in a user dataset
int userdata — publicUserdata + privateUserdata;

//send necessary wuserinformation to update server
int unencryptedChannel = userdata;

//recieve answer from update server
//if the user has a wvalid license

if (unencryptedChannel < 5)

//recieve and apply update

int patchversion = unencryptedChannel;
softwareversion = softwareversion + patchversion;
}
else

//disable the software
softwareversion = 0;

}

//return the new wversion number
return softwareversion;

}

public Testclass unhandledInstructionTest ()

{

Testclass testclass = new Testclass () ;
return this;

}

public int findGreatestDivisor (int number)

{

int i = 1;
int j = number —1 ;
while (i % j != number && i <= j)
{
i+

while (i % j > number)

{

J=—=
}
if (i * j == number)
return j;

else
return number;

}

public int getKey(int uid, int pw)
{

int key;

int secret = 23;

if (uid — 5)

{

if (pw == secret)

139

E SOURCE CODE OF EXAMPLE APPLICATIONS

W
)

<
I

else

{
key = 0;

}

return key;

}

140

