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Abstract. In the implementation of procedures, developers often as-
sume that the input satisfies certain properties; for example, binary
search assumes the array to be sorted. Such requirements on the input
can be formally expressed as preconditions of procedures. If a second-
order procedure p (e.g., map or foldl) is called with a first-order proce-
dure f that has a precondition, the question arises whether p will call f
only with arguments that satisfy the precondition of f . In this paper, we
propose a method to statically analyze if all procedure calls in a given
second-order program satisfy the respective preconditions. In particular,
we consider indirect calls of procedures that are passed as an argument
to a second-order procedure.

1 Introduction

One key feature of many algorithms is that they solve a given problem for a
wide range of input values. For instance, the quicksort algorithm is able to sort
lists of arbitrary length. Often, however, algorithms are not intended to work for
completely arbitrary inputs, but expect the input to satisfy certain preconditions.
For example, binary search requires a sorted array, and division requires the
divisor to be different from zero.

When a program applies an (implementation of an) algorithm to arguments
that violate the preconditions of the algorithm, this usually leads to undesirable
behavior: The program raises an exception (e.g., division by zero) or produces
an unexpected result (e.g., binary search in general fails to find an element in
an unsorted array).

As a first step to finding program errors that are due to violated precondi-
tions, it is helpful to write down the preconditions explicitly and formally. Some
programming languages such as Eiffel [9] or Spec# [4] offer dedicated constructs
to specify so-called contracts. For instance, a contract can guarantee that a pro-
cedure provides a certain functionality (expressed by a postcondition) provided
that the caller supplies appropriate input (expressed by a precondition).

If the preconditions of all procedures in a program are formally specified, one
can then try to apply techniques for the static analysis of programs to verify that
the preconditions of all procedures are satisfied during any conceivable run of the
program. The basic idea is to ensure that for each procedure call p(t1, . . . , tn) in
the program, the arguments t1, . . . , tn satisfy the precondition of p. For example,
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for each occurrence of a procedure call div(t1, t2), one needs to show that the
divisor t2 is different from zero.

In this paper, we consider second-order programs with preconditions. A typi-
cal example of a second-order procedure is map, which takes a function f as well
as a list l and returns the list that results from l by applying f to each element
of l. Since f may have a precondition, say cf , a procedure call map(f, l) is only
safe (in the sense that executing it will not violate any preconditions) if cf [x] is
satisfied for all elements x of list l:

∀x ∈ l. cf [x] (1)

The technique we propose in this paper automatically generates a formula equiv-
alent to (1) just from the “raw definition” of map. In other words, for second-
order procedures developers need not specify preconditions that propagate the
preconditions of their function parameters (such as precondition (1) for map); in-
stead, our technique automatically generates verification conditions to statically
analyze if the preconditions of function parameters are respected.

Our technique has been implemented and integrated into XeriFun, a semi-
automated verifier for functional programs [17,18].XeriFun’s input language L [16]
for functional programs allows developers to annotate procedures with precon-
ditions [14]. XeriFun generates verification conditions to verify that the precon-
dition of each procedure call in a program is satisfied. Semantically, a procedure
with a precondition is considered as an incompletely defined procedure [19] such
that the return value is indetermined if the precondition is violated.

The two main contributions of this paper are the following:

– We simplify the semantics of incompletely defined first-order procedures that
Walther and Schweitzer proposed in [19]. By treating such procedures as
procedures with implicit preconditions, we combine the advantages of [19]
and [14] and get a unified view on both concepts.

– We describe a method to statically analyze if preconditions are satisfied in
second-order programs. For second-order procedures, this method automat-
ically identifies which arguments the function parameter will be applied to
and generates the corresponding verification conditions to show that the
precondition is satisfied for these calls.

In Sect. 2, we introduce the programming language L that is used in XeriFun
and we present the simplified semantics of first-order polymorphic procedures
with preconditions. Sect. 3 extends syntax and semantics to second-order pro-
grams. In Sect. 4, we describe our method to statically analyze if the precondi-
tions of all functions that may be called during the evaluation of a given term
are satisfied. We point to related work in Sect. 5 and conclude with a discussion
of our results in Sect. 6.

2 First-Order Programs

The input language L of XeriFun that we consider in this section roughly
corresponds to the first-order fragment of ML or Haskell with strict evalua-
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tion [14,16]. First, we describe the syntax of first-order programs with precondi-
tions (Sect. 2.1). Then we define the semantics of such programs (Sect. 2.2). We
show how incompletely defined programs [19] fit into this approach (Sect. 2.3)
and compare it with the original definitions described in [14,19] (Sect. 2.4).

In our description of L we omit some technical details and some syntactical
constructions that are not needed in the context of this paper. The interested
reader is invited to consult [1,16] for additional information.

2.1 Syntax

L offers definition principles for freely generated polymorphic data types, for
first-order procedures that operate on these data types, and for statements about
the data types and procedures. A base type is a type variable @A or an expression
of the form str [τ1, . . . , τk], where τ1, . . . , τk are base types and str is a k-ary type
constructor (k ≥ 0). Type constructors are defined by expressions of the following
form:

structure str [@A1, . . . ,@Ak] <= . . . , cons(sel1 : τ1, . . . , seln : τn), . . . (2)

The τj are base types, and str may only occur as str [@A1, . . . ,@Ak] in the
τj . Each cons is called a data constructor and the sel j are called selectors.
We write Scons := {sel1, . . . , seln} for the set of selectors that belong to data
constructor cons. At least one data constructor of a type constructor definition
needs to be irreflexive, which means that str does not occur in τ1, . . . , τn. An
expression ?cons(t) checks if t denotes a value of the form cons(. . .).

Let Σ(P ) denote the signature of all function symbols defined by an L-
program P , including function symbols = for equality and if for case analyses.
As usual, T (Σ(P ),V) denotes the set of all terms over Σ(P ) and a set V of
variables. We write T (Σ(P )) instead of T (Σ(P ), ∅) for the set of all ground
terms over Σ(P ). Σ(P )c ⊂ Σ(P ) contains all data constructors of P . A literal is
an if -free Boolean term or the negation if b then false else true of such a term;
e.g., x =/ y abbreviates if x = y then false else true.

A procedure is defined by an expression of the form

procedure proc(x1 : τ1, . . . , xn : τn) : τ <= assume cproc ; Bproc (3)

where cproc ∈ T (Σ(P ), {x1, . . . , xn}) is a Boolean term that specifies the precon-
dition of proc, also called the context requirement of proc. Omitting the context
requirement is equivalent to specifying cproc := true. The body of proc is a term
Bproc ∈ T (Σ(P ) ∪ {proc}, {x1, . . . , xn}).

The example program in Fig. 1 defines data types bool , N, and list [@A] by
enumerating the respective data constructors true, false, 0, succ, ø, and :: as
well as the corresponding selectors; e.g., selector pred denotes the predecessor
function. The context requirements of procedures “/” (for division) and “!!” (for
list access by index) express that the divisor must not be zero and that n must
be an index within list l, respectively.
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structure bool <= true, false

structure N <= 0, succ(pred : N)

structure list [@A] <= ø, ::(hd : @A, tl : list [@A])

procedure [infix] >(x, y :N) : bool <=
if x = 0 then false else if y = 0 then true else pred(x)> pred(y)

procedure [infix] −(x, y :N) : N <=
if x = 0 then 0 else if y = 0 then x else pred(x)− pred(y)

procedure [infix] /(x, y :N) : N <=
assume y =/ 0; if y > x then 0 else succ((x− y)/y)

procedure len(l : list [@A]) : N <=
if l = ø then 0 else succ(len(tl(l)))

procedure [infix] !!(l : list [@A], n :N) : @A <=
assume len(l)>n; if n = 0 then hd(l) else tl(l) !! pred(n)

Fig. 1. A first-order program with preconditions in procedures “/” and “!!”

2.2 Semantics

For a program P and a ground type τ , V(P )τ denotes the values of type τ : For
each ground base type τ (i.e., τ = str [τ1, . . . , τk] such that no type variables occur
in τ1, . . . , τk), V(P )τ := T (Σ(P )c)τ . For each ground base type τ there exists
at least one value ωτ ∈ V(P )τ . These so-called witness values can be obtained
by the following definition that simply extends the construction from [15] to
polymorphic type constructors:

Definition 1. For a ground base type τ , the witness value ωτ ∈ V(P )τ is de-
fined by ωτ := false if τ = bool and by ωτ := cons(ωθ(τ1), . . . , ωθ(τn)) if τ =
str [τ ′1, . . . , τ

′
k] for a type constructor as in (2), where θ := {@A1/τ

′
1, . . . ,@Ak/τ

′
k}

and “cons” is the first data constructor of “str” such that Scons = ∅ or—if such
a data constructor does not exist—such that “cons” is irreflexive.

The call-by-value interpreter evalP : T (Σ(P )) 7→ V(P ) defines the oper-
ational semantics of L by mapping ground terms t ∈ T (Σ(P ))τ to values
evalP (t) ∈ V(P )τ . It is a partial function, because some procedures in pro-
gram P may not terminate. The computation steps of the interpreter evalP are
defined by the so-called computation calculus:

Definition 2. The language of the computation calculus is T (Σ(P )). The infer-
ence rules of the computation calculus (called computation rules) are of the form
“ t
t′ , if cond[t]” for a side condition cond[t] such that t′ ∈ T (Σ(P ))τ whenever

t ∈ T (Σ(P ))τ for some ground type τ . We write t⇒P t′ iff t′ results from t by
applying some computation rule. ⇒∗P denotes the reflexive and transitive closure
of ⇒P . We write t⇒!

P t
′ iff t⇒∗P t′ and t′ 6⇒P t

′′ for all t′′ ∈ T (Σ(P )).

Fig. 2 presents a selection of computation rules (see [1] for an exhaustive
list), where cons and cons ′ are data constructors and qi ∈ V(P ) for all i. To
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(1)
?cons(cons(q1, . . . , qn))

true
(2)

?cons ′(cons(q1, . . . , qn))

false
,

if cons ′ 6= cons

(3)
sel i(cons(q1, . . . , qn))

qi
, (4)

sel ′(cons(q1, . . . , qn))

ωτ
,

if selector sel i ∈ Scons if selector sel ′ /∈ Scons

(5)
q1 = q2
true

, if q1 = q2 (6)
q1 = q2
false

, if q1 6= q2

(7)
proc(q1, . . . , qn)(

if cproc then Bproc else ωτ
)
[x1/q1, . . . , xn/qn]

Fig. 2. Selected inference rules of the computation calculus

each t ∈ T (Σ(P )) at most one computation rule is applicable and t ⇒!
P t′

implies t′ ∈ V(P ) [1]. Thus we define the interpreter by

evalP (t) :=

{
t′ if t⇒!

P t
′ for some t′ ∈ V(P )

⊥ if t 6⇒!
P t
′ for all t′ ∈ V(P ) .

A universally quantified formula of the form ∀x1 : τ1, . . . , xn : τn. b, where b ∈
T (Σ(P ),V)bool , is true iff all procedures in P terminate and evalP ′(b[q1, . . . , qn]) =
true for each terminating program P ′ ⊇ P and all q1, . . . , qn ∈ V(P ′). Pro-
gram P ′ may define additional data types and procedures, so this definition
of truth ensures monotonicity in the sense that a formula remains true when
program P is extended.

Computation rules (1)–(3) and (5)–(6) are straightforward and coincide with
the semantics considered in [19]. Computation rule (4) differs from [19], however:
If a selector sel ′ that does not belong to data constructor cons is applied to
a value cons(. . .), e.g., pred(0) or hd(ø), Walther and Schweitzer propose to
consider the result as an indetermined value and do not evaluate such terms
further. A so-called fair completion [19] resolves the indeterminism by defining a
witness term for such “inappropriate” applications of selectors.1 When reasoning
about programs, all such fair completions need to be considered, so neither
pred(0) = 0 nor pred(0) =/ 0 are true formulas, because pred(0) is indetermined.

Since subsequent extensions [14] of XeriFun demand that ?cons(t) be verified for
each selector call sel(t), where cons is the constructor that sel belongs to, such
indetermined values cannot occur anymore. Therefore we simplify the semantics
as in computation rule (4), which returns the fixed witness value ωτ .

Computation rule (7) is also simplified in this spirit. We will discuss this
rule further in Sect. 2.4. The idea is that a procedure call is evaluated to the

1 In addition, a fair completion specifies the result of a procedure if its context re-
quirement is violated. “Fairness” means that the completion does not affect the
termination behavior of procedures.
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procedure [infix] !!(l : list [@A], n :N) : @A <=
if l = ø then ? else if n = 0 then hd(l) else tl(l) !! pred(n)

procedure ∇!!(l : list [@A], n :N) : bool <=
if l = ø then false else if n = 0 then true else ∇!!(tl(l), pred(n))

Fig. 3. Alternative implementation of procedure “!!”

witness value of the respective type if the context requirement of the procedure
is violated.

2.3 Incompletely Defined Procedures

For some procedures, one needs to implement auxiliary procedures to formulate
a suitable context requirement. For instance, procedure “!!” in Fig. 1 uses pro-
cedures “>” and “len” to express the precondition on its parameters. Instead of
formulating the context requirement (including auxiliary procedures) explicitly,
one can define procedure “!!” incompletely by leaving some cases underspeci-
fied [6].

Fig. 3 shows an alternative implementation of procedure “!!”. Symbol “?”
denotes an undefined return value; in other words, this case “should not occur”.
Walther and Schweitzer [19] show how a domain procedure ∇f can be synthesized
for each incompletely defined procedure f . This domain procedure is completely
defined and returns true if and only if f is determined for the given input. For
example, ∇!!(l, n) returns true if and only if n is smaller than the length of list l.
Hence one can use ∇!!(l, n) as an implicit context requirement for procedure “!!”
without having to implement procedures “>” and “len”.

2.4 Discussion

In the previous subsections we described two concepts to implement procedures
with preconditions. The first possibility is to specify a context requirement for
a procedure explicitly [14]. The second possibility is to define a procedure in-
completely by marking certain cases as undefined [19]; this implicitly induces a
precondition, namely that the input must not lead to the undefined results.

In XeriFun, support for incompletely defined procedures was added first [19].
The semantics of procedures with context requirements was then defined by
reducing them to incompletely defined procedures [14]. Incompletely defined
procedures were not considered as procedures with (implicit) preconditions, so
they could be called without inducing any verification conditions. Only if a
precondition was explicitly specified did the verifier generate the verification
condition that the context requirement be satisfied for each call of the procedure.

In the previous subsections, we presented a different view on these two con-
cepts. We introduced procedures with context requirements as the basic concept
and considered incompletely defined procedure as syntactical sugar that may
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procedure map(f : @A→ @B , l : list [@A]) : list [@B ] <=
if l = ø then ø else f(hd(l)) :: map(f, tl(l))

procedure foldl(f : @A×@B → @A, x : @A, l : list [@B ]) : @A <=
if l = ø then x else foldl(f, f(x, hd(l)), tl(l))

procedure every(f : @A→ bool , l : list [@A]) : bool <=
if l = ø then true else if f(hd(l)) then every(f, tl(l)) else false

Fig. 4. Second-order procedures

simplify the definition of procedures by the automated synthesis of domain pro-
cedures as implicit preconditions.

Regarding the theoretical treatment, our view has the benefit that several
definitions become considerably simpler. For instance, in [19] the computation
rule to execute procedure calls is about three times as long as our computation
rule (7), because it needs to take indetermined values into account. Since we will
statically enforce that all preconditions (both explicit ones and implicit ones via
incomplete definitions) are satisfied in a program, we can simply designate the
concrete value ωτ as the result of a procedure call that violates the precondi-
tion cproc . In practice, the advantage of the unified view is that indetermined
values may no longer occur in program executions, which eliminates a frequent
cause of errors.

3 Second-Order Programs

We define the order o(τ) of base types τ such as N or list [N] as 0; the order of a
function type τ1 × . . .× τn → τ is 1 + maxi o(τi) for a base type τ [3]. A type is
a base type or an expression of the form τ1× . . .× τk → τ for types τ1, . . . , τk, τ .

The procedures in Fig. 1 are first-order procedures, because their type has
order 1. A second-order procedure takes one or more first-order functions as
parameters. Fig. 4 shows some common examples of second-order procedures.

The semantics of second-order programs is defined by extending the defi-
nitions from Sect. 2.2 in the following way: For each ground type of the form
τ = τ1 × . . . × τk → τk+1, the set V(P )τ of values of type τ contains all closed
λ-expressions of type τ ; e.g., λl : list [N]. len(l) ∈ V(P )list[N]→N. The witness value
of such a type τ is defined as ωτ := λx1 : τ1, . . . , xk : τk. ωτk+1

. The computation
calculus is extended by computation rule

(8)
(λx1 : τ1, . . . , xn : τn. t)(q1, . . . , qn)

t[x1/q1, . . . , xn/qn]
, if q1, . . . , qn ∈ V(P )

to facilitate β-reduction of terms.

We implicitly assume procedure bodies to be in η-long form; e.g., map(f, tl(l))
abbreviates map(λz : @A. f(z), tl(l)) in Fig. 4, because f =η λz : @A. f(z).
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4 Static Analysis of Second-Order Programs

Given a second-order program, we would like to find out if the preconditions
of all procedures are satisfied during any conceivable run of the program. For a
procedure call t1/t2 we obviously need to show t2 =/ 0 according to the context
requirement of procedure “/”. But what is a suitable verification condition for
an indirect call of “/” as in map(λn :N. c/n, l), for example? Since map will call
c/n only for values n ∈ l, it would be sufficient to show “n =/ 0 for all n ∈ l”.
In this verification condition, “n =/ 0” comes from the context requirement of
procedure “/”, while the quantification “for all n ∈ l” comes from our knowledge
about the behavior of map.

In Sect. 4.1, we describe the concept of quantification procedures that were
introduced in [2] to synthesize induction axioms for procedures that involve
second-order procedures. In Sect. 4.2, we present our method to uniformly gen-
erate verification conditions for terms that occur in second-order programs; here
we use quantification procedures when procedures are passed as arguments to
a second-order procedure in order to capture the behavior of the second-order
procedure. We illustrate the benefits of our approach in Sect. 4.3 and give a
medium-sized example in Sect. 4.4.

4.1 Quantification Procedures

For each second-order procedure proc with a function parameter f , one can
uniformly synthesize a quantification procedure forall .proc that checks whether
some predicate p holds for all arguments that are passed to f by proc. The
corresponding definition in [2] considered second-order procedures without pre-
conditions, so we generalize this definition as follows:

Definition 3. For each second-order procedure

procedure proc(f : τ1 × . . .× τm → τf , x : τx) : τproc <=
assume cproc ; Bproc

the quantification procedure forall .proc for proc is defined by

procedure forall .proc(p : τ1 × . . .× τm → bool ,
f : τ1 × . . .× τm → τf , x : τx) : bool <=

ALLf (cproc) ∧ if cproc then ALLf (Bproc) else true

where

ALLf (v) := true

ALLf (f(t1, . . . , tm)) := p(t1, . . . , tm) ∧ ALLf (t1) ∧ . . . ∧ ALLf (tm)

ALLf (g(t1, . . . , tn)) := ALLf (t1) ∧ . . . ∧ ALLf (tn)

ALLf (h(λy. t0, t1)) := ALLf (t1) ∧ forall .h(λy.ALLf (t0), λy. t0, t1)

ALLf (if t1 then t2 else t3) := ALLf (t1) ∧ if t1 then ALLf (t2) else ALLf (t3)
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for any variable v, any first-order function g 6= if , g 6= f , and any second-order
procedure h (including proc). We write y as an abbreviation of y1, . . . , yk, and
A ∧B abbreviates “if A then B else false”.

Example 1. Procedure forall .map(p : @A→bool , f : @A→@B , k : list [@A]) : bool
returns true if and only if p(z) is satisfied for all elements z of list k, because
procedure map applies f to all elements z of k. ♦

Example 2. For the second-order procedure foldl ,

procedure forall .foldl(p : @A×@B → bool , f : @A×@B → @A,
x : @A, k : list [@B ]) : bool

checks if p(a, b) is satisfied for all pairs (a, b) that f is applied to by foldl . ♦

4.2 Generation of Verification Conditions

If a procedure f with a precondition is passed to a second-order procedure proc,
we can use the quantification procedure forall .proc to find out if proc calls f
only with arguments that satisfy the precondition of f :

Definition 4. The verification condition VC (t) ∈ T (Σ(P ),V)bool for a given
term t ∈ T (Σ(P ),V) is defined by

VC (x) := true

VC (f(t1, . . . , tn)) := cf [t1, . . . , tn] ∧VC (t1) ∧ . . . ∧VC (tn)

VC (h(λy. t0, t1)) := ch[λy. t0, t1] ∧VC (t1) ∧ forall .h(λy.VC (t0), λy. t0, t1)

VC (if t1 then t2 else t3) := VC (t1) ∧ if t1 then VC (t2) else VC (t3)

VC (λy. t0) := true

for any variable x, any first-order function f 6= if with context requirement cf ,
and any second-order procedure h with context requirement ch.

The generation of verification conditions is similar to the synthesis of quan-
tification procedures. However, there are some differences:

– Function f can be any first-order function here, while f refers to a particular
parameter of proc in Definition 3.

– For calls of second-order procedures h, we need to check whether the context
requirement of h is satisfied. Definition 3 does not contain such a check.

– Term t can be a λ-expression, so we have an additional clause for this case.

Example 3. For term t := t1/t2 we get VC (t) = t2 =/ 0 ∧VC (t1) ∧VC (t2). ♦

Example 4. For term t := map(λn :N. c/n, l) we get

VC (t) = forall .map(λn :N. n =/ 0, λn :N. c/n, l) ,

which expresses that n =/ 0 needs to hold for all values n that map calls λn :N. c/n
with. This is equivalent to ∀n ∈ l. n =/ 0 as desired. ♦
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Definition 4 easily generalizes to second-order procedures h with more than
two parameters:

Example 5. Suppose that a program contains a procedure

procedure ordered(l : list [N]) : bool <= . . .

that returns true if and only if list l is ordered and a procedure

procedure insert(l : list [N], n :N) : list [N] <=
assume ordered(l); . . .

that inserts a number n into an ordered list l. Then foldl(insert , ø, l) is an
implementation of insertion sort. The verification condition for this term is
forall .foldl(λk : list [N],m :N. ordered(k), insert , ø, l), which expresses that all
lists k that occur as intermediate results need to be ordered. ♦

4.3 Discussion

When a procedure proc calls another procedure f or a function like pred or tl , it
is the responsibility of the calling procedure proc to ensure that f is called with
arguments that satisfy the precondition of f . For example, it is the responsibility
of procedure len (cf. Fig. 1) to ensure that tl(l) is only called if l =/ ø.

However, if f is not a concrete function, but a function parameter of proc,
then the precondition of f is unknown to proc, because f may be instantiated
with quite arbitrary functions. Thus it becomes the responsibility of the caller
of proc to instantiate f in such a way that all f -calls by proc meet the precondi-
tion of f . For instance, map should only be called with a function f and a list l
such that f is applicable to all elements of l (cf. Fig. 4).

Using our approach, for each call proc(f, . . .) of a second-order procedure proc
a verification condition can be generated that checks whether proc calls f only
with arguments that satisfy the precondition of f . If one wanted to (or had
to) specify this check explicitly as a precondition of proc, one could specify
∀x ∈ l. cf [x] as a precondition of map, for example. Even for procedures that
are only slightly more complicated than map, this would soon become tedious:
For instance, procedure foldl applies f to tuples (a, b), where b ∈ l and a : @A
is “some intermediate result of f(. . . f(f(x, hd(l)), hd(tl(l))), . . .)”. This is of
course too informal to turn the observation into a precondition. Specifying a
more general precondition for foldl such as ∀a : @A. ∀b ∈ l. cf [a, b] would be an
easy way out of this imprecision, but it would be a stronger precondition than
what foldl actually requires.

In this sense, our approach generates the weakest verification condition that
ensures that all preconditions of functions are satisfied when a given term is
evaluated. Developers only need to specify preconditions that are relevant from
the algorithmic point of view (e.g., for procedure “!!” in Fig. 1). Bookkeeping-
like preconditions that just propagate the preconditions of function parameters
to the respective second-order procedure can be omitted, because our approach
analyzes these indirect function calls automatically.

10



structure pair [@A,@B ] <= mkpair(fst : @A, snd : @B)

structure variable.symbol <= variable(varID : N)

structure function.symbol <= func(funcID : N)

structure term <=
var(vsym : variable.symbol),
apply(fsym : function.symbol , args : list [term])

procedure lookup(key : @A, alist : list [pair [@A,@B ]]) : @B <=
if alist = ø

then ?
else if key = fst(hd(alist))

then snd(hd(alist))
else lookup(key , tl(alist))

procedure sig .known(t : term, arity : list [pair [function.symbol ,N]]) : bool <=
if ?var(t)

then true
else if ∇lookup(fsym(t), arity)

then every(λs : term. sig .known(s, arity), args(t))
else false

procedure wellformed(t : term, arity : list [pair [function.symbol ,N]]) : bool <=
assume sig .known(t, arity);
if ?var(t)

then true
else if len(args(t)) = lookup(fsym(t), arity)

then every(λs : term.wellformed(s, arity), args(t))
else false

Fig. 5. A functional program that checks if a given term is well-formed

4.4 Example

The program in Fig. 5 uses both of the concepts to implement procedures with
preconditions that we described in Sect. 2. Furthermore, it contains both direct
and indirect procedure calls that illustrate the generation of the corresponding
verification conditions.

Procedure lookup returns the second component b of the first pair mkpair(a, b)
in list alist such that a = key . This procedure is incompletely defined, because
there might be no such pair in alist . The corresponding domain procedure∇lookup

thus returns true if and only if alist contains a pair mkpair(a, b) with a = key .
Hence the implicit precondition of lookup is given by ∇lookup(key , alist).

Procedure sig .known checks whether the signature of all function symbols
occurring in a given term t is known, i.e., whether arity defines the arity for
each function symbol f in t. This procedure is used in the context requirement
of procedure wellformed . Given a term t and a list arity that defines the arity
of each function symbol occurring in t, procedure wellformed returns true if and
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only if the number of arguments of each function application in term t is equal
to the arity of the leading function symbol.

For the direct call of procedure lookup in the body of wellformed , we get
the verification condition ∇lookup(fsym(t), arity). Since we may assume that
sig .known(t, arity) holds, this verification condition is true. For the indirect call
of procedure wellformed via the second-order procedure every , we get the veri-
fication condition

forall .every(λs : term. sig .known(s, arity),

λs : term.wellformed(s, arity),

args(t)) .

This requires sig .known(s, arity) to hold for each element s of list args(t) (i.e.,
each subterm s of t) that is passed to wellformed . Since sig .known(t, arity) by
definition entails sig .known(s, arity) for all subterms s of t, this verification

condition is true as well and can easily be verified in XeriFun.

5 Related Work

Annotating programs with preconditions has a long history and is supported (in
various ways) in several programming languages such as C, Eiffel, Haskell, and
Java. In the following, we mainly consider related work that concerns programs
with preconditions in the context of semi-automated theorem proving.

In ACL2 [8], procedures can be annotated by guards to specify preconditions.
By guard verification, theorems are proved that ensure that a procedure satisfies
the guards of all procedures that it uses in its body. Using and verifying guards
is optional in ACL2, and all procedures need to be completely defined in case
that guard checking mode is turned off. ACL2 has a first-order programming
language, so second-order procedures such as map or foldl cannot be defined in a
way that would allow procedure calls like map(f, l) for concrete functions f [5,7].

In PVS [11], one can express preconditions by using specific types. For exam-
ple, for the second parameter of a division algorithm on natural numbers one can
use the type {n :N | n =/ 0}. Preconditions that involve more than a single param-
eter can be expressed using dependent types. For instance, the type for parame-
ter l of procedure “!!” (cf. Fig. 1) can be specified by {k : list [@A] | len(k)>n}.
PVS generates type-correctness conditions to ensure that the arguments of pro-
cedure calls have the required types. Thus PVS uses type checking to verify that
all preconditions are satisfied, while our approach can also be used in languages
that do not support dependent types.

In Isabelle/HOL [10], developers of theories usually try to define functions “as
completely as possible”. For instance, division is completed by defining n/0 := 0

and function tl is completed by defining tl(ø) := ø. If there is no way of complet-
ing the definition of a function, the result can be left unspecified for some cases;
e.g., function hd is defined just by hd(x ::xs) := x, so hd(ø) is a value (because
all functions are total) that nothing is known about except its type (because
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no defining equation is applicable). This corresponds to XeriFun’s concept of
incompletely defined procedures [19] in its original form (i.e., without our rein-
terpretation as procedures with implicit preconditions).

For the programming language Haskell [12], Xu et al. present an approach
to statically check contracts in programs [20]. Similarly to PVS, contracts are

expressed by dependent types. Differently from PVS, ACL2, and XeriFun, how-
ever, the verification part is not tackled by a general purpose theorem prover.
Instead, the term under consideration is uniformly transformed by wrapping
function calls with checks that make the evaluation “crash” when a contract is
violated. Then a dedicated symbolic evaluator tries to rewrite the transformed
term until it is syntactically “crash-free” (i.e., it does not contain “crash” com-
mands anymore). The symbolic evaluator is tailored to the lazy evaluation strat-
egy of Haskell. A prototype implementation is reported to be able to “prove some
simple contract satisfaction checks, but is still incomplete for more sophisticated
examples involving the use of recursive functions in predicates” [20].

Regarding imperative programming languages, Eiffel [9] checks at run-time
if contracts are satisfied, while Spec# [4] in addition supports static verification
using the automatic verifier Boogie. According to [20], contracts that involve
recursive procedures cannot be analyzed statically in Spec#. In our approach,
recursive procedures pose no problem, because XeriFun is specifically designed
to prove properties about recursive procedures.

As an alternative to the semantics that we considered in this paper, Sabel and
Schmidt-Schauß [13] present a contextual semantics that equates undefinedness
with non-termination. Thus division by zero is regarded like a non-terminating
evaluation. The static analysis whether all procedure calls in a program satisfy
the respective preconditions is not considered in [13].

6 Conclusion

In order to ensure that the execution of a program will never fail due to violated
preconditions, one can statically analyze if all function calls in the program are
safe in the sense that the arguments of each function call satisfy the precondition
of the respective function. In this paper, we proposed a method to statically
analyze function calls in second-order functional programs.

Our method generates verification conditions for function calls in a given
term. In particular, our approach works for programming languages (and spec-
ification languages) that do not offer dependent types and the corresponding
machinery for type checking. It is able to handle indirect function calls, e.g.,
calls of function f in map(f, l), that occur when a function is passed as an
argument to a second-order procedure. By analyzing the behavior of the second-
order procedure with respect to its function parameter, our approach generates
the weakest verification condition that ensures that the indirect function calls
satisfy the precondition of the function.

We offer developers two possibilities to conveniently implement procedures
with preconditions: Firstly, preconditions can be specified explicitly as a so-called
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context requirement of the procedure [14]. In this context requirement, any (ter-
minating) procedure of the program can be used to specify the precondition.
Secondly, preconditions can be specified implicitly by defining a procedure in-
completely. In this case, a domain procedure is synthesized using the approach
by Walther and Schweitzer [19] that characterizes the inputs of the procedure
that do not lead to an undefined case.

In [19], the motivation for incompletely defined procedures was to model pro-
cedures with run-time exceptions in a way that does not mix up non-termination
and run-time exceptions in a single notion of partiality. Thus reasoning tech-
niques for total functions can be reused to reason about procedures with run-
time exceptions. The absence of exceptions did not have to be proved, so one
frequently had to reason about indetermined values. In our approach, we consider
incompletely defined procedures as just another convenient way of implementing
procedures with preconditions. This has the advantage that we can give a simpler
definition of the semantics of first-order and second-order programs compared
to [19], because the verification conditions (once proved) guarantee the absence
of exceptions, so the semantics need not model indetermined values anymore.

We restricted our consideration to second-order programs to keep the seman-
tics simple. For instance, if a call of procedure lookup (cf. Fig. 5) could instantiate
type variable @A with a function type, then the semantics would need to define
when two functions are to be considered as equal. However, equality of functions
is undecidable in general. By allowing the instantiation of type variables with
base types only, we avoid this problem and still get a programming language
where we can investigate the challenges of indirect function calls.

Our approach has been implemented in an experimental version of XeriFun.
This gives us the full power of a semi-automated inductive theorem prover to
verify the generated verification conditions. The proofs of verification conditions
are typically relatively straightforward; often a single induction suffices to rea-
son about recursively defined procedures that occur in the preconditions. In
summary, we think that our approach effectively helps to find program errors
due to violated preconditions early so that one does not need to worry about
indetermined behavior once the verification conditions have been verified.
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