
Proofs of Theorems from the Article “Flexible
Scheduler-Independent Security”

Heiko Mantel and Henning Sudbrock

Computer Science, TU Darmstadt, Germany,
{mantel,sudbrock}@cs.tu-darmstadt.de

This document contains proofs for the theorems from the article “Flexible
Scheduler-Independent Security” [MS10].

1 Proof of Theorem 1 (Low Matches)

Theorem 1. The low match of thr1 and thr2 is unique and given by the function
l-matchthr1,thr2(k1) =

min
{
k2 ∈ N0 |

∣∣{l1 ≤ k1 | thr1(l1) ∈ LCom}
∣∣ =

∣∣{l2 ≤ k2 | thr2(l2) ∈ LCom}
∣∣}.

Proof.
1. Assume thread pools thr1 and thr2 containing the same number of low

threads.
2. As a low match is an order-preserving bijection on finite sets, it maps the
nth value in its domain to the nth value in its range for each 0 < n ≤ N ,
where N is the finite size of domain and range.

3. The number k1 with thr1(k1) ∈ LCom is the nth value of the domain {j |
thr1(j) ∈ LCom}, if n =

∣∣{l1 ≤ k1 | thr1(l1) ∈ LCom}
∣∣. (For instance,

the position k1 is the 1st value in the domain, if there is only 1 low thread,
namely thr(k1) itself, with a position less or equal than k1 contained in thr .)

4. The nth value of the range {j | thr2(j) ∈ LCom} is given by min{k2 ∈ N0 |
n =

∣∣{l2 ≤ k2 | thr2(l2) ∈ LCom}
∣∣}.

5. Thus we obtain

l -matchthr1,thr2(k1) =

min
{
k2 ∈ N0 |

∣∣{l1 ≤ k1 | thr1(l1) ∈ LCom}
∣∣ =

∣∣{l2 ≤ k2 | thr2(l2) ∈ LCom}
∣∣}.

2 Proof of Theorem 2 (Compositionality of FSI-Security)

Theorem 2. Let thr1 and thr2 be FSI-secure thread pools. Then their parallel
composition par(thr1, thr2) is also FSI-secure, where

par(thr1, thr2)(k) =

{
thr1(k) , if k <](thr1)
thr2(k −](thr1)) , otherwise.

Before proving the compositionality of FSI-security, we establish the following
lemma:

Lemma 1. The relation ∼ is a low bisimulation modulo low matching.

Proof. Let thr1 ∼ thr2. Then, by the definition of ∼, there exists a low bisim-
ulation modulo low matching R with thr1 R thr2. Execution steps of thr1 can
hence be simulated by thr2 according to the requirements of low bisimulations
modulo low matching, resulting in thread pools related by R, and, hence, also
related by ∼.

Now we prove Theorem 2:

Proof.
1. We define the symmetric relation R on thread pools with equal numbers

of low threads as follows: thr R thr ′ if and only if there exist thread pools
thr1, thr2, thr ′1, thr ′2 such that thr1 ∼ thr ′1, thr2 ∼ thr ′2, thr = par(thr1, thr2),
and thr ′ = par(thr ′1, thr ′2).

2. We prove that R is a low bisimulation modulo matching:
(a) Let thr R thr ′, and thr1, thr2, thr ′1, thr ′2 with the properties as defined

in step 1 of this proof.
(b) Assume l -matchthr ,thr ′(j) = k. If j <](thr1), then l -matchthr1,thr ′

1
(j) =

k. If](thr1) ≤ j <](thr1) +](thr2), then l -matchthr2,thr ′
2
(j−](thr1)) =

k −](thr ′1). This is due to the fact that thr1 and thr ′1 respectively thr2

and thr ′2 are related by ∼ and hence contain the same number of low
threads.

(c) Let mem,mem ′ ∈ Mem with mem =L mem ′.
(d) Assume that j <](thr1) and that thr(j) ∈ LCom. Assume that thr per-

forms an execution step in mem with the thread at position j, resulting
in the thread pool thr ′′ and the memory mem ′′. Let thr ′′1 be the thread
pool resulting from performing an execution step in the jth thread of
thr1 in memory mem. Then thr ′′ = par(thr ′′1 , thr2).

(e) As thr1 ∼ thr ′1, the execution step of thr1 can be simulated by an execu-
tion step of the kth thread of thr ′1 in mem ′ (where k = l -matchthr1,thr ′

1
(j)),

resulting in a thread pool thr ′′′1 with thr ′′1 ∼ thr ′′′1 and a memory mem ′′′

which is low-equal to mem ′′.
(f) But then the execution step of the jth thread in thr in the memory

mem can be simulated by an execution step of the kth thread thr ′ in
mem ′ (where l -matchthr ,thr ′(j) = k by (b)), resulting in the thread pool
thr ′′′ = par(thr ′′′1 , thr ′2) and the memory mem ′′′ =L mem ′′.

(g) Moreover, thr ′′ R thr ′′′, as thr ′′ = par(thr ′′1 , thr2), thr ′′′ = par(thr ′′′1 , thr ′2),
and thr ′′1 ∼ thr ′′′1 .

(h) Now assume that j <](thr1) and thr(j) ∈ HCom, and that thr performs
an execution step in mem with the thread at position j, resulting in the
thread pool thr ′′. Then, as above, this corresponds to an execution step of
thr1, resulting in a thread pool thr ′′1 ∼ thr ′1, with thr ′′ = par(thr ′′1 , thr2).

(i) In consequence, thr ′′ R thr ′.

2

(j) The case for](thr1) ≤ j <](thr2) is proved analogously.
(k) Hence, R is a low bisimulation modulo low matching.

3. Now assume two FSI-secure thread pools thr1 and thr2. By definition, thr1 ∼
thr1 and thr2 ∼ thr2. Then par(thr1, thr2) R par(thr1, thr2) by the defini-
tion of R. Hence,

par(thr1, thr2) ∼ par(thr1, thr2),

as R is a low bisimulation modulo low matching. Thus, par(thr1, thr2) is
FSI-secure.

3 Proof of Theorem 3 (High threads are FSI-secure)

Theorem 3. Let com ∈ HCom. Then com is FSI-secure.

Proof.
1. We define the relation R on thread pools with equal numbers of low threads

by thr1 R thr2 if and only if for all 0 ≤ j <](thr1) and all 0 ≤ k <](thr2)
we have thr1(j) ∈ HCom and thr2(k) ∈ HCom.

2. Then R is a low bisimulation modulo low matching. (Assume thr1 R thr2. As
all threads within thr1 and thr2 are high threads, only the case for transitions
of high threads has to be considered. As an execution step of a high thread
does not spawn low threads by definition, the thread pool resulting after
a transition of thr1 again consists only of high threads, and is, hence, also
related to thr2 by R.)

3. The thread pool consisting of a single high command is related to itself by R,
and hence FSI-secure.

4 Proof of Theorem 4 (Thread Purge Function)

Theorem 4. For a thread pool thr, th-purge(thr) contains no high threads and
as many low threads as thr. Moreover, if k ∈ N0 with thr(k) ∈ LCom then

thr(k) = th-purge(thr)(l -matchthr ,th-purge(thr)(k)).

Proof.
1. Let thr be a thread pool. We firstly show that th-purge(thr) does not contain

any high threads.
– Let 0 ≤ j <](thr). Assume that l = min

{
k ∈ N0 | j =

∣∣{k′ < k |
thr(k′) ∈ LCom ∪ {stop}}

∣∣} is the position of a high thread in thr (i.e.,
thr(l) ∈ HCom). But then l cannot be the minimal value for k with
j =

∣∣{k′ < k | thr(k′) ∈ LCom ∪ {stop}}
∣∣, as j =

∣∣{k′ < l − 1 | thr(k′) ∈
LCom ∪ {stop}}

∣∣ also holds. Hence thr(l) ∈ HCom cannot hold.
2. We now show that thr and th-purge(thr) contain equally many low threads.

3

– Let l be the position of the nth low thread in thr . Then l = min
{
k ∈

N0 | n =
∣∣{k′ < k | thr(k′) ∈ LCom ∪ {stop}}

∣∣}. In consequence, the
low thread at position l is contained in th-purge(thr) at position n (i.e.,
thr(l) = th-purge(thr)(n)).

– Assume that
∣∣{j | thr(j) ∈ LCom}

∣∣ = n, i.e., that thr contains n low
threads. Then th-purge(thr)(n) = stop, as

∣∣{k′ < k | thr(k′) ∈ LCom ∪
{stop}}

∣∣ only equals n for k ≥](thr).
3. We now show that thr(j) = th-purge(thr)(l -matchthr ,th-purge(thr)(j)).

– The low match maps the nth low thread in thr to the nth low thread in
th-purge(thr) (compare Theorem 1).

– Assume that thr(j) is the nth low thread of thr . Then j = min
{
k ∈ N0 |

n =
∣∣{k′ < k | thr(k′) ∈ LCom ∪{stop}}

∣∣}. That is, the low match maps
j to n.

– But by definition, th-purge(thr)(n) equals the thread in thr at position
min

{
k ∈ N0 | n =

∣∣{k′ < k | thr(k′) ∈ LCom ∪ {stop}}
∣∣}, which is

exactly the position j.

5 Proof of Theorems 5 and 6 (Robustness of Uniform
and Round-Robin Scheduler)

Theorem 5. The uniform scheduler (see Example 1 in [MS10]) is robust.

Theorem 6. The Round-Robin scheduler (see Example 2 in [MS10]) is robust.

Before proving the robustness of the uniform and the Round-Robin scheduler,
we prove the following auxiliary lemmas:

Lemma 2. For each scheduler S, the relation <S is an S-simulation.

Proof. Let conf 1 <S conf 2. Then, by the definition of <S , there exists a S-
simulation < with conf 1 < conf 2. Execution steps of conf 1 can hence be sim-
ulated by conf 2 according to the requirements of S-simulations, resulting in
configurations related by <, and, hence, also related by <S .

Lemma 3. Let thr be an FSI-secure thread pool. Then thr ∼ th-purge(thr).

Proof.
1. Define the relation R′ by thr1 R

′ thr2 if and only if

(thr1 ∼ thr1) ∧ thr2 = th-purge(thr1),

and let R be the symmetric closure of R′.
2. We prove that R is a low bisimulation modulo low matching:

(a) A transition of a low thread in the thread pool thr1 resulting in the
thread pool thr ′1 can be simulated by a transition in the same thread pool
where high threads have been removed (i.e., th-purge(thr1)), resulting in
the thread pool th-purge(thr ′1). Moreover, as thr1 is FSI-secure, thr ′1 is
also FSI-secure.

4

(b) A transition of a high thread in the thread pool thr1 resulting in the
thread pool thr ′1 does not spawn low threads. Hence, th-purge(thr ′1) =
th-purge(thr1) holds. Moreover, as thr1 is FSI-secure, thr ′1 is also FSI-
secure.

(c) A transition of a low thread in the thread pool th-purge(thr1) results in
the thread pool th-purge(thr ′1), where thr ′1 is the thread pool resulting
when the same low thread performs a transition in the thread pool thr1.

3. If thr is FSI-secure, then thr R th-purge(thr). As R is a low bisimulation
modulo low matching, we have thr ∼ th-purge(thr).

Now we prove Theorems 5 and 6:

Proof.
1. Let us first show that the uniform scheduler from Example 1 is robust.
2. We define the relation < on system configurations by conf 1 < conf 2 if and

only if
- getT (conf 1) ∼ getT (conf 1),
- getM (conf 1) =L getM (aconf 1), and
- th-purge(conf 1) = conf 2.

3. We will show that < is a uni-simulation.
(a) Let conf 1 < conf 2 and conf ′1, j, and p such that conf 1 ⇒j,p conf ′1.
(b) Assume firstly that getT (conf 1)(j) ∈ HCom.

i. As getT (conf 1) ∼ getT (conf 1), we have getT (conf 1) ∼ getT (conf ′1)
and hence getT (conf ′1) ∼ getT (conf ′1) and furthermore getM (conf ′1)
=L getM (conf 1) =L getM (conf 2).

ii. As getT (conf 1)(j) ∈ HCom, the transition to conf ′1 does not spawn
any low threads. Therefore th-purge(conf ′1) = conf 2.

iii. Hence, conf ′1 < conf 2.
(c) Assume now that getT (conf 1)(j) ∈ LCom.

i. Denote with #(high) the number of high threads in conf 1 and with
#(low) the number of low threads in conf 1.

ii. Hence, p = 1/(#(high) + #(low)) by the definition of the uniform
scheduler.

iii. Furthermore, p/l -probS(conf 1) = p/(#(low)/(#(high) + #(low))),
which equals 1/#(low).

iv. As getT (conf 1) ∼ getT (conf 1), we have getT (conf ′1) ∼ getT (conf ′1).
v. As getT (conf 1) ∼ getT (conf 1) and th-purge(conf 1) = conf 2, we

have getT (conf 1) ∼ getT (conf 2) by Lemma 3.
vi. In consequence, the transition in conf 1 can be matched by the thread

getT (conf 2)(k) with some probability q, where

k = l -matchgetT(conf 1),getT(conf 2)
(j),

resulting in a configuration conf ′2 and a low-equal state. Moreover,
th-purge(conf ′2) = th-purge(conf ′1), as conf 2 = th-purge(conf 1).

5

vii. The probability of this transition equals 1/#(low) by the definition
of the uniform scheduler, which according to (iii) equals p/l -probS(conf 1).

viii. Furthermore, conf ′1 < th-purge(conf ′2), due to (iv) and (vi).
(d) Hence, < is a uni-simulation.
(e) As we have 〈thr ,mem, s〉 < th-purge(〈thr ,mem, s〉) for each FSI-secure

thread pool thr and each memory mem, the uniform scheduler is robust.

(f) The proof for the Round-Robin scheduler goes along the same lines as
the proof for the uniform scheduler, where we define an RR-simulation <
as follows: conf 1 < conf 2 if and only if

- getT (conf 1) ∼ getT (conf 1),
- getM (conf 1) =L getM (conf 1),
- th-purge(conf 1) = conf 2, and the following two requirements are

satisfied:
- Let getS (conf 1)(size) = n1 and getS (conf 2)(size) = n2. Then n2

equals n1 minus the number of high threads in conf 1.
- Let getS (conf 1)(choice) = c1 and getS (conf 2)(choice) = c2. Then
c2 equals c1 minus the number of high threads in conf 1 at a position
below c1.

Note that the first three requirements are exactly the requirements that
we also required for the uni-simulation. The fourth requirement expresses
that the thread pool size stored by the scheduler in the execution with
high threads differs from the thread pool size stored in the execution
without high threads exactly by the current number of high threads. The
fifth requirement expresses that the last position chosen by the scheduler
in the execution with high threads differs from the position chosen in the
execution without high threads exactly by the number of high threads
below that position.
The last two requirements are guaranteed to remain invariant during
two executions with and without high threads, and ensure that if the
nth low thread is selected by the scheduler in the execution with high
threads, than the nth low thread is also selected by the scheduler in the
execution without high threads.

6 Proof of Theorem 7 (Scheduler Independence)

Theorem 7. Let thr be a terminating thread pool that is FSI-secure and let S
be a robust scheduler under a confined observation function. Then the thread pool
thr is S-secure.

For the remainder of this section, let S = (sSt , sst0, sLab,→) be a scheduler
under a confined observation function.
For proving Theorem 7, we establish the following more general proposition:

6

Proposition 1. Let conf 1 = 〈thr1,mem1, sst1〉 and conf 2 = 〈thr2,mem2, sst2〉
be terminating system configurations, mem1,p,mem2,p memories, and sstp a
scheduler state, such that

- thr1 ∼ thr2,
- mem1 =L mem2 =L mem1,p =L mem2,p,
- conf 1 <S 〈th-purge(thr1),mem1,p, sstp〉, and
- conf 2 <S 〈th-purge(thr2),mem2,p, sstp〉.

Then the following equality holds for all mem ∈ Mem:∑
mem′∈[mem]=L

ρS(conf 1,mem ′) =
∑

mem′∈[mem]=L

ρS(conf 2,mem ′)

Proof. Let](T) =
∑

tr∈T](tr) be the sum of the lengths of all traces in a
set of traces T . We prove the proposition by induction on n =](TrS(conf 1)) +
](TrS(conf 2)). Note that n is finite as thr1 as well as thr2 are terminating. In the
following, we abbreviate the sum

∑
mem′∈[mem]=L

ρS(conf ,mem ′) with P (conf).

Induction basis (n = 0):
In this case, thr1 and thr2 have both terminated. Hence the equality is satisfied,
as mem1 =L mem2.

Induction step (n > 0):
Let us at first briefly elaborate on the proof idea of the rather lengthy proof
of the induction step: We consider transitions of low and high threads in conf 1

and conf 2 separately. If conf 1 makes a transition in a high thread to conf ′1, we
prove that conf ′1 and conf 2 together with mem1,mem2,mem1,p,mem2,p, and
sstp satisfy all the preconditions of this proposition, and apply the induction
hypothesis to relate the probabilities to reach a final memory low-equal to mem
from conf ′1 and conf 2. We proceed likewise for transitions of low threads, showing
that P (conf ′1) = P (conf ′2), where conf ′1 and conf ′2 are reached from conf 1 and
conf 2 by transitions of low threads linked by l -matchthr1,thr2 . This yields a
system of two linear equations with unknowns P (conf 1) and P (conf 2). We show
that the probabilities P (conf 1) and P (conf 2) must be equal to solve the equation
system, which concludes the proof. The last proof step crucially depends on the
relation on probabilities required by S-simulations. We now prove the induction
step:
1. For each system configuration conf , we denote with enabledPos(conf) ⊂ N0

the set of thread positions such that j ∈ enabledPos(conf) if and only if
there exist conf ′ ∈ Conf and p ∈]0, 1] with conf ⇒j,p conf ′.
By the definition of schedulers and the semantics for system configurations,
conf ′ and p are uniquely determined by conf and j. We denote those values
with succj(conf) respectively ρj(conf).

2. By the definition of trace probabilities, we have

P (conf 1) =
∑
{|ρj(conf 1) ∗ P (succj(conf 1)) | j ∈ enabledPos(conf 1)|}.

7

3. We rewrite this sum as P (conf 1) = P (conf 1, high) + P (conf 1, low), where

P (conf 1, high) =
∑
{|ρj(conf 1) ∗ P (succj(conf 1)) |

j ∈ enabledPos(conf 1) ∧ thr1(j) ∈ HCom|} and

P (conf 1, low) =
∑
{|ρj(conf 1) ∗ P (succj(conf 1)) |

j ∈ enabledPos(conf 1) ∧ thr1(j) ∈ LCom|}.

4. Consider a position j ∈ enabledPos(conf 1). Then there exist com1,mem ′
1,

and α such that 〈thr1(j),mem1〉
α−_ 〈com1,mem ′

1〉. There furthermore ex-
ists sst ′1 with (sst1, obs(thr1,mem1)) j

 p sst ′1, where p = ρj(conf 1). Note
that getT (succj(conf 1)) = updatej(thr1, com1, α), getM (succj(conf 1)) =
mem ′

1, and getS (succj(conf 1)) = sst ′1.

5. Firstly, we assume that thr1(j) ∈ HCom. We now show that in this case
P (succj(conf 1)) = P (conf 2) holds.
(a) As thr1 ∼ thr2, by the definition of low bisimulations modulo low match-

ing we have getT (succj(conf 1)) ∼ thr2.
(b) As thr1(j) ∈ HCom, we have getM (succj(conf 1)) =L mem2.
(c) As thr1(j) ∈ HCom, α contains only high commands. Hence, th-purge(thr1) =

th-purge(getT (succj(conf 1))).
(d) As conf 1 <S 〈th-purge(thr1),mem1,p, sstp〉, we have by the definition of
S-simulations that succj(conf 1) <S 〈th-purge(thr1),mem1,p, sstp〉, and
hence (using (c)) that

succj(conf 1) <S 〈th-purge(getT (succj(conf 1))),mem1,p, sstp〉 .

(e) As conf 1 makes a transition to succj(conf 1), we obtain that

](TrS(succj(conf 1))) +](TrS(conf 2)) < n,

and that succl(conf 1) is terminating.
(f) Due to (a), (b), (d), and (e), we can apply the induction hypothesis for

the configurations succj(conf 1) and conf 2, the memories mem1,p and
mem2,p, and the scheduler state sstp, and obtain

P (succj(conf 1)) = P (conf 2).

6. Using (5.), we rewrite P (conf 1, high) as:

P (conf 1, high) = P (conf 2) ∗
∑
{|ρj(conf 1) |

j ∈ enabledPos(conf 1) ∧ thr1(j) ∈ HCom|}.

Note that this equals P (conf 2) ∗ (1− l -probS(conf 1)).
Analogously, we obtain P (conf 2, high) = P (conf 1) ∗ (1− l -probS(conf 2)).

8

7. Now, we assume that thr1(j) ∈ LCom and that k = l -matchthr1,thr2(j).

8. We now show that

ρj(conf 1)/l -probS(conf 1) = ρk(conf 2)/l -probS(conf 2).

(a) As conf 1 <S 〈th-purge(thr1),mem1,p, sstp〉, we obtain from the defini-
tion of S-simulations that

ρj(conf 1)/l -probS(conf 1) = ρj′(〈th-purge(thr1),mem1,p, sstp〉),

where j′ = l -matchthr1,th-purge(thr1)(j).
(b) Analogously, we have

ρk(conf 2)/l -probS(conf 2) = ρk′(〈th-purge(thr2),mem2,p, sstp〉),

where k′ = l -matchthr2,th-purge(thr2)(k).
(c) Let m be such that thr1(j) is the mth low thread in thr1. Then thr2(k)

is the mth low thread in thr2 (as k is obtained by computing the low
match between thr1 and thr2 for j).
By the definition of the purge function, we thus have m = j′ = k′.

(d) As mem1,p =L mem2,p and](th-purge(thr1)) =](th-purge(thr2)), we
have obs(th-purge(thr1),mem1,p) = obs(th-purge(thr2),mem2,p) as obs
is confined. Hence,

ρm(〈th-purge(thr1),mem1,p, sstp〉) = ρm(〈th-purge(thr2),mem2,p, sstp〉).

(e) Combining the equalities from (a), (b), and (d), we obtain the equality
that we want to prove.

9. As j ∈ enabledPos(conf 1), we have ρj(conf 1) > 0. Then, by (8.), we also
have ρk(conf 2) > 0, and hence k ∈ enabledPos(conf 2).

10. We will now show that P (succj(conf 1)) = P (succk(conf 2)).
(a) As thr1 ∼ thr2 and mem1 =L mem2, we have getT (succj(conf 1)) ∼

getT (succk(conf 2)) as well as getM (succj(conf 1)) =L getM (succk(conf 2))
by the definition of low bisimulations modulo low matching.

(b) As conf 1 <S 〈th-purge(thr1),mem1,p, sstp〉, the execution step from
conf 1 to succj(conf 1) can be simulated by an execution step of the con-
figuration 〈th-purge(thr1),mem1,p, sstp〉 by the definition of S-simulations,
resulting in the configuration〈

th-purge(getT (succj(conf 1))),mem ′
1,p, sst ′p

〉
for some sst ′p. Moreover, we have

succj(conf 1) <S
〈
th-purge(getT (succj(conf 1))),mem ′

1,p, sst ′p
〉
.

Finally, getM (succj(conf 1)) =L mem ′
1,p, as thr1 is FSI-secure.

9

(c) We repeat step (b) with conf 2 instead of conf 1. Note that as obs is
confined, we obtain the same scheduler state sst ′p, as th-purge(thr1)
and th-purge(thr2) have the same number of threads, and mem1,p =L

mem2,p.
(d) As conf 1 and conf 2 are both terminating, succj(conf 1) and succk(conf 2)

are also terminating. Moreover, we obtain

](TrS(succj(conf 1))) +](TrS(succk(conf 2))) < n.

(e) Using (a), (b), (c), and (d), we apply the induction hypothesis for the
configurations succj(conf 1) and succk(conf 2), for the memories mem ′

1,p

and mem ′
2,p, and the scheduler state sst ′p, and obtain

P (succj(conf 1)) = P (succk(conf 2)).

11. Expressing P (conf 1) and P (conf 2) by using the equations from (6.), we
obtain an equation system in X = P (conf 1) and Y = P (conf 2):

X =
∑
{|ρj(conf 1) ∗ P (succj(conf 1)) |

j ∈ enabledPos(conf 1) ∧ thr1(j) ∈ LCom|}
+ Y ∗ (1− l -probS(conf 1))

Y =
∑
{|ρk(conf 1) ∗ P (succk(conf 2)) |

k ∈ enabledPos(conf 2) ∧ thr2(k) ∈ LCom|}
+X ∗ (1− l -probS(conf 1))

To complete the induction step it remains to show that the solution (x, y)
of this equation system satisfies x = y.

12. For solving the equation system, we introduce some abbreviations to make
the formulas more readable. We define Si = P (conf i, low) and ρi = 1 −
l -probS(conf i) for i ∈ {1, 2}. Using these notations, the equation system can
be written as follows:

X = S1 + Y ∗ ρ1 (1)
Y = S2 +X ∗ ρ2 (2)

13. Solving the above equation system for Y yields

Y =
ρ2 ∗ S1 + S2

1− ρ1 ∗ ρ2
.

We need to show that X = Y . To show this we show that this solution for
Y equals X as represented in (1), where we substitute Y with the above
solution for Y . This resolves to

ρ2 ∗ S1 + S2

1− ρ1 ∗ ρ2
= S1 +

ρ2 ∗ S1 + S2

1− ρ1 ∗ ρ2
∗ ρ1.

10

Multiplying both sides by (1− ρ1 ∗ ρ2) yields

ρ2 ∗ S1 + S2 =
[
1− ρ1 ∗ ρ2

]
∗ S1 + ρ1 ∗

[
ρ2 ∗ S1 + S2

]
.

The term ρ1 ∗ ρ2 ∗ S1 can be canceled on the right side of the equation, we
obtain

ρ2 ∗ S1 + S2 = S1 + ρ1 ∗ S2.

Expanding ρ1 and ρ2 with their definitions we obtain

S1 − l -probS(conf 2) ∗ S1 + S2 = S1 + S2 − l -probS(conf 1) ∗ S2,

which simplifies to

l -probS(conf 2) ∗ S1 = l -probS(conf 1) ∗ S2.

We expand S1 and S2 and obtain

l -probS(conf 2) ∗
∑
{|ρj(conf 1) ∗ P (succj(conf 1)) |

j ∈ enabledPos(conf 1) ∧ thr1(j) ∈ LCom ∧ |}

= l -probS(conf 1) ∗
∑
{|ρk(conf 1) ∗ P (succk(conf 2)) |

k ∈ enabledPos(conf 2) ∧ thr2(k) ∈ LCom|}.

Now, we use the equalities derived in (8.) and in (10.), viz

ρj(conf 1)/l -probS(conf 1) = ρk(conf 2)/l -probS(conf 2),

and
P (succj(conf 1)) = P (succk(conf 2)),

where k = l -matchthr1,thr2(j). These equalities directly show that the two
sides of the above equation are indeed equal. This finishes the proof of the
induction step.

Proof of Theorem 7. Theorem 7 follows directly by applying Proposition 1 to
the thread pools thr1 = thr2 = thr , memories mem1 = mem1,p respectively
mem2 = mem2,p with mem1 =L mem2, and scheduler states sst1, sst2, and sstp

that are all equal to sst0.

7 Proof of Theorem 8 (Soundness of Security Type
System)

Theorem 8. If the judgment ` com : (ass, stp) is derivable in the type system
for some com ∈ Com and ass, stp ∈ {low , high} then com is FSI-secure.

11

We firstly prove three auxiliary lemmas:

Lemma 4. Let com ∈ Com be typable as (high, stp). Then com ∈ HCom.

Proof. The proof is by induction over the derivation of the judgment ` com :
(high, stp):
1. Assume that com = skip. Then com ∈ HCom is trivially satisfied.
2. Assume that com = var :=exp. Then dom(var) = high as com is typable

with ass = high, and therefore com ∈ HCom.
3. Assume that com = if (exp) then com1 else com2 fi. As com is typable with

ass = high, com1 and com2 are both typable with ass1, ass2 = high. Hence,
by the induction hypothesis both com1 and com2 are contained in HCom.
Thus, by the definition of the set HCom, com ∈ HCom.

4. Assume that com = while (exp) do com ′ od. Then, as com is typable with
ass = high, com ′ is also typable with ass = high. By the induction hypoth-
esis, com ′ ∈ HCom. Thus, com ∈ HCom.

5. Assume that com = com1; com2. Then, as in the previous cases, one obtains
that com1 and com2 are contained in HCom. Thus, by the definition of the
set HCom, com ∈ HCom.

6. Assume that com = spawn(com0, . . . , comk). Then, as com is typable with
ass = high, all the comi are typable with assi = high. Hence, by the induc-
tion hypothesis for all i we have comi ∈ HCom. Hence, com ∈ HCom.

Lemma 5. Let com ∈ Com be typable with (ass, low). Let mem1 =L mem2

and com1, com2, α1, α2,mem ′
1,mem ′

2 with 〈com,mem1〉
α1−_ 〈com1,mem ′

1〉 and
〈com,mem2〉

α2−_ 〈com2,mem ′
2〉. Then com1 = com2, α1 = α2, and mem ′

1 =L

mem ′
2.

Proof. We prove the lemma by induction over the derivation of the judgment
` com : (ass, low).
1. The cases for skip-statements, spawn-statements, and sequential composition

are obvious.
2. Assume that com = var :=exp. The low memory is only changed by the as-

signment if dom(var) = low . In this case, by the typing rule for assignments,
dom(exp) = low , and hence the new value of var is equal when executing
the assignment in low-equal states.

3. Assume that com = if (exp) then com1 else com2 fi. By the typing rule for
conditionals, we have dom(exp) = low . Hence, when executing com1 in two
low-equal states, one arrives either in com1 with both execution steps, or in
com2 with both execution steps, where the memory remains unchanged.

4. Assume that com = while (exp) do com ′ od. By the typing rule for loops, we
have dom(exp) = low . Hence, when executing com1 in two low-equal states,
one arrives either in stop with both execution steps, or in com ′; com with
both execution steps, where the memory remains unchanged.

12

Lemma 6. Let com be a typable command, and assume that 〈com,mem〉 α−_
〈com ′,mem ′〉 for memories mem,mem ′, com ′ ∈ Com, and a label α. Then com ′

is typable.

Proof. We prove the statement by induction over the derivation of the typing of
com.
1. The interesting case is com = while (exp) do com1 od. By the typing rule for

loops, com is typable as (ass, stp tdom(exp)) if com1 is typable as (ass, stp)
and stp t dom(exp) v ass.

2. If com ′ ∈ Com, then com ′ = com1; com. This is typable by the rule for
sequential composition, if com ′ is typable as (ass1, stp1), com is typable as
(ass2, stp2), and stp1 v ass1.

3. Taking the types from (1.) for com and com1, we hence need to show that
stp t dom(exp) v ass, which holds according to (1.).

We now prove Theorem 8:

Proof.
1. Let thrcom be the thread pool consisting of the single command com (see

Definition 8 in [MS10]). Assume without loss of generality that com is typable
as (ass, stp) with ass = low (if ass = high, then thr is FSI-secure by Lemma 4
and Theorem 3), and that com ∈ LCom (as otherwise thrcom is FSI-secure
by Theorem 3). We prove the FSI-security of thrcom by induction over the
derivation of the judgment ` com : (ass, stp).

2. Assume that com = skip. Then thrcom is obviously FSI-secure.
3. Assume that com = var :=exp. As ass = low , by the typing rule for assign-

ments we have dom(var) = low and, hence, dom(exp) = low . Evaluating
exp in two low-equal states yields the same value, and therefore executing
thrcom in two low-equal states equally modifies the low memory and results
in the empty thread pool. Hence, thrcom is FSI-secure.

4. Assume that com = spawn(com1, . . . , comk). By the typing rule for the spawn-
command, all comi are typable, and, hence, FSI-secure by the induction
hypothesis. Executing com in two low-equal memories results in low-equal
memories and equal thread pools consisting of FSI-secure threads which are
hence FSI-secure by Theorem 2. In consequence, thrcom is FSI-secure.

5. Assume that com = if (exp) then com1 else com2 fi.
(a) If dom(exp) = low, then thrcom always performs either a transition to

thrcom1 or a transition to thrcom2 in low-equal states (as exp evaluates
to the same value in low-equal states). By the induction hypothesis, the
thread pools thrcom1 and thrcom2 are FSI-secure (and hence related to
themselves by the relation ∼).

(b) If dom(exp) = high, then stp = high by the definition of the typing
rule for conditionals. Furthermore, both com1 and com2 are typed with
(high, stp1) and (high, stp2) for some stp1, stp2 due to the typing rule
for conditionals. Hence, both com1 and com2 are high commands by

13

Lemma 4. Hence, com is already a high command, which is FSI-secure
by Theorem 3.

6. Assume that com = com1; com2. As com ∈ LCom, we have com1 ∈ LCom.
Furthermore, by the definition of the typing rule for sequential composition
and the induction hypothesis, we have that com1 and com2 are FSI-secure.
We will exhibit a low bisimulation modulo low matching that relates thrcom

to itself. We define a relation R on thread pools with equal numbers of low
threads as follows: thr1 R thr2 if and only if the following two conditions
hold:
(a) thr1(0) = thr2(0) = comi; comii for two commands comi and comii and

thr1(0) is typable with stp = low , or both thr1(0) and thr2(0) are high
commands.

(b) When removing the threads at position 0 from thr1 respectively thr2,
the remaining thread pools are related by the relation ∼.

We now show that the relation R is a low bisimulation modulo low matching.
– We only consider transitions of the thread at position 0. Transitions of

the remaining threads comply with the requirements of low bisimulations
modulo low matching by the requirement (b) in the definition of R.

– If both thr1(0) and thr2(0) are high commands, then the requirements
of low bisimulations modulo low matching are satisfied for those threads
(compare proof of Theorem 3).

– Now assume that thr1(0) = thr2(0) = comi; comii and that thr1(0) is ty-
pable with stp = low . Assume furthermore that 〈comi; comii,mem1〉

α−_
〈comiii,mem ′

1〉. By the definition of the operational semantics for se-
quential composition, there are two cases:
Case 1. 〈comi,mem1〉

α−_ 〈stop,mem ′
1〉 and comiii = comii.

Case 2. 〈comi,mem1〉
α−_ 〈comiv,mem1〉 and comiii = comiv; comii.

By Lemma 5, in both cases the execution step can be simulated in a low-
equal memory, resulting in equal commands and low-equal memories.
Hence, the execution step of thr1(0) can be simulated by thr2(0). The
resulting threads satisfy the requirements from the definition of R (the
command comiii is typable due to Lemma 6).

Hence, R is a low bisimulation modulo low matching. As thrcom R thrcom ,
thrcom is FSI-secure.

7. Assume that com = while (exp) do com1 od. This case is proven by combining
the arguments from the cases for conditionals (5.) and sequential composi-
tion (6.).

References

[MS10] H. Mantel and H. Sudbrock. Flexible Scheduler-Independent Security. In
Proceedings of the 15th European Symposium on Research in Computer Security
(ESORICS), LNCS. Springer, 2010. to appear.

14

