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Abstract A timing attack exploits the variance in the running time
of a crypto-algorithm’s implementation in order to infer confidential in-
formation. Such a dependence between confidential information and the
running time, called a timing channel, is often caused by branching of
the control flow in the implementation’s source code with branching con-
ditions depending on the attacked secrets. We present the Side Channel
Finder, a static analysis tool for detection of such timing channels in
Java implementations of cryptographic algorithms.

1 Introduction

A cryptographic mechanism based on algorithms which are even proved to be
secure may become vulnerable after it is implemented in some programming
language and run on an actual computer system. Side channel attacks are based
on the fact that by observing the implementation’s behavior which is not modeled
by the underlying cryptographic algorithm the attacker can infer confidential
data, e.g., a secret key. Therefore, when developing a cryptographic mechanism
it is desirable to check whether its actual implementation opens up side channels.

One possibility to launch a side channel attack is to exploit the variance
in the running time of a crypto-algorithm’s implementation, called a timing
channel. First studies of timing attacks on cryptographic schemes, including
Diffie-Hellman and RSA, date back to mid 1990s [17]. Since then, they have been
practically demonstrated [10], optimized [26], and evaluated [28]. A significant
part [17,16,12,25,10,5,8,15,30,27,29] of timing attacks reported in the literature
exploits the difference in the running time of crypto-algorithms’ implementations
which is caused by conditional branches or loops where conditions depend on
the attacked secrets.

A timing channel constitutes information flow [19] from confidential inputs
of a cryptographic algorithm to observations about the running time of its imple-
mentation. Information flow policies are means to specify that such information
transfer is undesirable. The research area of static information flow control (see
Section 2) focuses, among other, on using static program analysis and transfor-
mations to enforce information flow policies.



We present the Side Channel Finder in the version 1.0 (short SCF 1.0), a
static analysis tool for detection of timing channels in Java implementations of
cryptographic algorithms. The main purpose of SCF 1.0 is to support a pro-
grammer of a crypto-algorithm’s implementation in assessing his code for that
it is not vulnerable to a class of timing channel attacks. This class consists of
attacks caused by branching of the control flow on data which depends on the
confidential inputs. The branching may occur due to conditional statements,
loops, or polymorphic method calls. The tool lets the programmer specify which
input of an implemented algorithm constitutes a secret that must not be leaked,
especially not through timing channels. These specifications are a part of an
information flow policy which assigns security levels high and low, representing
confidential and public data, respectively, to object fields, method parameters,
and return values. SCF 1.0 then analyzes the given program code by checking
whether the control flow potentially depends on the confidential inputs. When
this is the case, the ultimate goal of the Side Channel Finder is to perform auto-
matic program transformations for elimination of the disclosed timing channels.
This last step is currently a work in progress.

We applied SCF 1.0 to analyze several existing implementations of crypto-
graphic algorithms. Our studies include the open-source libraries FlexiProvider
(version 1.6p9) [3] and GNU Classpath (version 0.98) [2]. In the paper we illus-
trate how SCF 1.0 finds a timing channel in the implementation of the IDEA
algorithm in FlexiProvider. We describe an experimental setup in which an at-
tack exploiting this timing channel could be constructed. Then, we show how a
part of the secret key could be revealed by an attacker through the timing channel
discovered by SCF 1.0. The details of applying SCF 1.0 to the AES implemen-
tation of FlexiProvider and to the DES implementation in GNU Classpath can
be found in a technical report [20].

Related Work To the best of our knowledge, the Side Channel Finder 1.0 is the
first tool for static detection of timing channels in Java. The related work for
this effort could be grouped into three categories: (i) experimental timing channel
analysis, (ii) static information flow security with respect to timing channels, and
(iii) tools for static information flow control, in general. Since Section 3 discusses
experimental timing attacks in detail, here we provide references only for the two
remaining categories. From our point of view, the connection between them has
room for improvement: the theory for static detection and transformation of
timing channels did not lead to implementation in tools for real programming
languages, whereas the mainstream tools for information flow control do not
consider timing channels. We believe, that the Side Channel Finder project will
finally fill this gap.

Agat [6] presents a simple approach for detection and elimination of timing
leaks in C-like programs by using a security type system and program trans-
formation, respectively. The approach was only exemplarily implemented [7] for
a subset of Java bytecode without objects. Molnar et al. [22] suggest and re-
alize transformation of timing leaks in C programs (without function calls and
pointers) by encoding conditional branches into assignments of expressions, thus,
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making the control flow independent of branching conditions. Barthe, Rezk, and
Warnier [9] introduce a transaction-based program transformation method for
elimination of timing leaks in sequential object-oriented programs with excep-
tions. The implementation of the technique is not reported.

We are aware of three static information flow control tools: Jif [4] (introduced
in [23]), FlowCaml [1], and SPARK Examiner [11] for Java, Caml, and Ada,
respectively. None of them considers information flow with respect to timing
channels.

Outline In Section 2 we recap the research area of static information flow control
which comprises the methodology for the analysis performed by the Side Channel
Finder. In Section 3 we discuss timing attacks from the literature and identify
a class of attacks which exploit the control flow branching. Section 4 presents
the features and design of SCF 1.0. In Section 5 we consider how SCF 1.0 finds
a timing channel in the FlexiProvider’s IDEA implementation. In Section 6 we
conclude and identify a vision for future versions of the Side Channel Finder.

2 Static Information Flow Control

Information flow security [19] is concerned with the information transfer during
program executions and its impact on confidentiality and integrity of information
in information sources or information sinks of program executions. For the pur-
pose of security with respect to timing channels we consider only confidentiality.
The main question that information flow security aims to answer is whether a
given program is trustworthy enough to receive confidential data as input, i.e.,
whether an attacker cannot infer information about the confidential input to the
program by his observations about program executions.

The objective of research about static information flow control is to provide
security properties that capture what secure information flow means, and to
provide mechanisms that analyze given programs for whether they have secure
information flow. The analysis is static and does not require program execu-
tion. Security properties for information flow are often formulated as lack-of-
dependency properties, like the famous non-interference [14], which states that
observations of an attacker are the same for all executions that have the same
non-confidential inputs but possibly different confidential inputs.

In order to statically analyze programs security type systems have been in-
troduced [31] and widely adopted [24]. Security type systems have similarities
with data type systems. A typical data type system [21] is supposed to ensure
that data is used as intended during program execution: the data types have to
match when the data is transferred and operations are checked to be applied
only to the correct instances of data types. Similarly, a security type system
shall ensure that information represented by the language constructs does not
flow such that confidential information becomes public. First of all, this includes
checking the transfer of data, for instance, when assigning the value of one vari-
able to another. Second, this comprises checks to avoid implicit information flow,
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for instance, in the following exemplary code fragment. Consider

keypart = secretkey[i]; if (keypart==0) { output = 1; } else { output = 0; },

where the array secretkey initially holds the secret key of a cryptographic al-
gorithm and output will be revealed to an attacker at some later point. The
first assignment copies confidential data to keypart. The implicit flow occurs in
the conditional: by observing whether output gets assigned 1 or 0 the attacker
learns whether secretkey[i] contains 0. A security type system can detect such
vulnerabilities by determining whether the condition of the branching depends
on confidential information, and, in case it does, checking that in the branches
no variables are assigned whose content might be revealed to an attacker later
in the program.

3 Causes of Timing Channels

We conducted a careful study of the timing attacks reported in the literature
which do not involve caches or any other micro-architectural peculiarities. The
purpose of this study was to identify a common vulnerability which is exploited
in this class of attacks.

The attack against IDEA [16] is based on a conditional in the implementation
of the multiplication modulo 216 + 1. For the attacks against modular exponen-
tiation with Montgomery multiplication [12,25,10,5], the cause of the timing
channel is the extra modular reduction step that is necessary if an intermediate
result is bigger than the modulus, and which is a subtraction in one branch of
a conditional. The attacks against RSA in OpenSSL [10,5] as additional cause
for the timing channel have the choice of the multiplication-algorithm, namely,
Karatsuba in the case of equally-sized multiplicands. The attack against modular
multiplication by the Blakley’s algorithm [8] is also caused by an extra modular
reduction in the case of an intermediate value bigger than the modulus. The
investigation of DES implementation in [15] reports the exploited timing chan-
nel to be caused by conditionals. The timing attacks against McEliece [30,27,29]
exploit loops with a condition on confidential information. For the Kocher’s at-
tack [17] against fast exponentiation the causes are differences in the execution
time of multiplication of integers. More details are not explored, however, since
the relevant integers are usually much bigger than integers on processors, the
multiplication would be implemented in some library, where the cause of the
timing differences might be conditionals, for instance, extra Montgomery reduc-
tions.

When considering the timing channels that are exploited in the attacks
against software implementations described with sufficient details, the causes
are conditionals or loops, whose conditions depend on information about the
attacked secrets. As mentioned in Section 2, determining whether the values of
some expressions potentially depend on confidential information is one of the
goals of information flow control. Thus, information flow control can detect the
causes of all aforementioned attacks by determining whether the conditions of
conditional and loop statements depend on the secret key.
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4 Side Channel Finder (Version 1.0)

The Side Channel Finder was built with the idea in mind to apply the methods
of static information flow control to the problem of timing channel detection.
We believe that the tool might be helpful for the implementors of cryptographic
algorithms in the Java programming language in checking whether their ac-
tual implementations open up timing channels. The programmer is expected to
specify secret inputs for the algorithms as high-classified in an information flow
policy. SCF 1.0 then checks whether the program code conforms to the informa-
tion flow policy. Most important aspects of that are (i) to keep track where the
high-classified data is moved to low-classified locations, and (ii) to verify that
the execution would not branch on a value with the high security level.

4.1 Language Coverage

Since SCF 1.0 detects whether the control flow depends on information that
is specified as confidential, the aspects of how information is propagated and
how the control flow is data-dependent are relevant for the analysis. The static
analysis of SCF 1.0 is executed on the syntactic structure of the analyzed pro-
grams. However, since secure information flow is a semantic property, the design
of the analysis captures semantic aspects.

The Side Channel Finder takes into account the following semantic features
regarding the propagation of information. It handles assignments to local vari-
ables, for instance, if the value of some expression exp is assigned to a local
variable v (i.e., v = exp) and exp contains confidential information then SCF 1.0
treats v also as a container of confidential information. SCF 1.0 also respects
assignments to fields of objects on the heap. For instance, let us consider an
assignment v.f = exp. Firstly, it moves the value of exp into the field f. Sec-
ondly, this assignment also might reveal the information to which object the
variable v is an alias, namely, the object of which the value of the field changed.
Similarly, SCF 1.0 respects assignments to elements of arrays on the heap with
the additional aspect that the index, which might be confidential, influences at
which position the value changes. The tool also respects parameter passing, for
instance, in a method call v.m(exp). Note that the passing can be by value, if
the value of exp is a of primitive type like an integer, or by reference, if the
value of exp is a reference to an object or an array. Thereby, SCF 1.0 does not
only consider one method, but all methods that possibly could be the target of
the call v.m(exp), taking into account inherited methods and polymorphism. If
a method returns a value, i.e., its body contains a statement return exp, and the
value of exp contains confidential information, then SCF 1.0 respects that calling
this method and using the returned value means using confidential information.

The Side Channel Finder respects the following semantic features about the
control flow. A conditional branching with a condition on a confidential value,
that is a value that SCF 1.0 has determined to depend on confidential input, is
considered a potential timing channel. For example consider

if (v==0) then {do something} else {do something different},
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where the content of v in confidential. Similarly, SCF 1.0 considers conditions
on confidential values in for-loops and while-loops. A further cause of branching
in the control-flow which the SCF 1.0 respects are polymorphic method calls.
Consider again a method call v.m(exp) where now the reference in v is confiden-
tial and might point to objects of different classes, each of them having its own
implementation of the method. The method which is actually executed depends
on the class of the object that v points to.

This coverage of Java language features is sufficiently extensive to analyze
existing implementations of cryptographic algorithms, as we show in Section 5.

4.2 Information Flow Policy

The main purpose of an information flow policy is to specify which input of an
implementation of a cryptographic algorithm constitutes the secret to be pro-
tected, e.g., the secret key of an encryption or decryption algorithm. Moreover,
we use policies to provide a guidance for the automatic analysis by specifying
further program entities as holding confidential information if the contents of
these entities potentially depend on secrets when executing the program.

Let us consider how an input for cryptographic algorithms is realized in Java
implementations. In Java libraries, cryptographic algorithms are implemented in
certain methods. Hence, particular parameters of such methods may be used to
pass secret input to cryptographic algorithms and, therefore, must be specified
as secrets. For instance, consider a decryption routine of some encryption scheme
that receives the ciphertext to decrypt and the secret key in the form of arrays
of bytes, and returns the decrypted result in the form of an array of bytes.
This routine can be implemented in a method that has the signature byte[]
decrypt(byte[] input, byte[] key). The input parameter key must not be learned
by the attacker and hence needs to be specified as secret. Furthermore, some
objects that are passed as parameters to such methods may have fields that hold
secret input for cryptographic algorithms. Hence, these fields need to be specified
as secrets too. Consider, for example, RSA where the decryption method can
be realized by a method that has the signature byte[] decrypt(byte[] ciphertext,
RSAPrivateKey key), and where the class RSAPrivateKey has a field for the public
modulus and a second field with the private decryption exponent. Here, the
second field needs to be specified as secret. Note, that a field is only considered
not to be secret if the reference to the object of the field is also not secret. That
is, in this example the parameter key is specified not to be secret in order to
leave the public modulus actually public.

To provide guidance for the analysis, a policy contains one or more spec-
ifications for each method that is called and one specification for each field
that is accessed. Each field may be specified to contain confidential information.
Specifications of methods represent which of the parameters are used to pass
confidential information and whether the value they return need to be kept se-
cret. Multiple specifications for a method may be provided in order to make the
analysis context sensitive, that is, SCF 1.0 can deal with different security levels
for arguments at different calls to the same method.
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The policy assigns security levels low or high to fields, method parameters,
and method return values. Level high represents confidential information and
level low represents non-confidential information. Information is only considered
to be non-confidential if program entities necessary to access it all have level
low. For instance, the content of a field with level low where the field is a part
of an object where the parameter with the reference has level high is considered
to be confidential. Letting level high represent confidential information means
that information stored in program entities with level high must not influence
the running time of the analyzed program. On the other hand, this also means it
is safe to let information in such program entities depend on other information
that is confidential.

The security levels of fields are specified class-wise in contrast to object-wise,
hence SCF 1.0 can determine the levels statically without having to know the
object at runtime. A whole object can be specified as confidential by specifying
the information elements that contain a reference to it as confidential. The same
is true for arrays, where also the content of the array is considered confidential
as long as the references are confidential. SCF 1.0 does not require to specify
the security levels of local variables of methods because SCF 1.0 infers them
automatically from the levels that are specified in the policy.

SCF 1.0 reads a policy in the form of an XML-document. The specifications
for each class are organized in packages similarly to actual classes of Java. Con-
cerning the location of policies, an alternative to storing them in a separate file
could have been to integrate them into the source code, for instance, as anno-
tations. The advantage of our approach is that we do not need to change the
source code and can process it as it is.

4.3 Security Type System

In order to check security of a given program against a given policy with respect
to timing channels, the Side Channel Finder implements a carefully crafted se-
curity type system which we describe below. The reader can find the complete
formal definition (3 pages) of this type system in a technical report [20].

The security type system checks method declarations against security sig-
natures for methods and fields. The method security signatures and the field
security signatures represent the information that is provided by the security
policy: they map method parameter names, return values, and field names to
respective security levels. That a method declaration conforms to given method
and field security signatures is expressed by type judgments which are formal
assertions about the (secure) typing of the program. The type check of a spec-
ified method declaration is considered successful if the type judgment for this
method declaration can be derived by type rules which are implications between
judgments.

Derivable judgments of our type system are intended to ensure two aspects
of statements and expressions. Firstly, for assignment statements they guarantee
that the security levels of source and destination memory locations are such that
no high data will be moved to low-typed locations during program execution.
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Secondly, they ensure that execution would not branch on a value with the
high security level. In order to provide these main results, derivable judgments
determine two further aspects. Firstly, they determine the security levels of local
variables that are relevant for the statements and expressions in their respective
context. That is, the security type system is flow sensitive for local variables.
Secondly, for expressions they determine the security levels of the expression
evaluation.

The type inference algorithm implemented in SCF 1.0 is rather standard.
The source code of the given program is converted into an abstract syntax tree
representation by the javaparser [13] in the version 1.0.8. The methods and their
respective signatures from the accompanying XML-file with the information flow
policy are coupled. The type rules are defined inductively over the program
structure, i.e., a type check of a statement depends on a type check of its sub-
statements. The algorithm, therefore, processes the tree structure of the program
and searches for an applicable rule. If no such rule is found the program is
not typable within the type system. By design of our type system that means
a potential timing channel is found. If the given program code is completely
processed, i.e., typed, the analysis succeeds meaning that no timing channels are
found.

5 Case Study: Detecting Timing Channels in IDEA

In this Section we demonstrate how SCF 1.0 can be successfully applied to an ex-
isting implementation of a cryptographic algorithm. We consider the encryption
scheme IDEA as implemented in the open-source library FlexiProvider (version
1.6p9) [3]. An excerpt of the relevant source code is depicted in Figure 2.

5.1 Analysis by SCF 1.0

The goal of the analysis is to protect the secret key at encryption. Encryption
is implemented in the method singleBlockEncrypt(byte[] input, int inOff, byte[]
output, int outOff) of the class IDEA in the package de.flexiprovider.core.idea.
Each round of the IDEA encryption uses a different selection of bits of the
secret key. These round keys are scheduled before the actual encryption. The
scheduled secret key for the encryption is stored in the field encr of type int[].

As the first step, given the target of the analysis and the corresponding source
files, SCF 1.0 automatically initialize three files: (i) a policy file IDEA.level which
contains security levels for all fields an method parameters set to the default
low (i.e., non-confidential), (ii) a file containing the paths to the source files
that contain relevant code, IDEA.program, and (iii) a file to configure the whole
analysis, IDEA.analysis. The last file contains the method to be analyzed, and
paths to the relevant files.

The next step is to specify the security levels. In order to express that the
encryption key is to be protected, in the file IDEA.level we set the security level of
the field encr (the scheduled encryption key) to high. Running the analysis with
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<?xml version=”1.0” encoding=”UTF−8” standalone=”no”?>
<informationLevelModel>

<package name=”de.flexiprovider.core.idea”>
<classSignature name=”IDEA”>

<fieldLevel name=”encr”>1</fieldLevel>
<fieldLevel name=”mulModulus”>0</fieldLevel>
<fieldLevel name=”decr”>1</fieldLevel>
<fieldLevel name=”blockSize”>0</fieldLevel>
<fieldLevel name=”keySize”>0</fieldLevel>
[...]
<methodSignature name=”singleBlockEncrypt(byte[], int, byte[], int)”>

<parameterLevel name=”input”>1</parameterLevel>
<parameterLevel name=”inOff”>0</parameterLevel>
<parameterLevel name=”output”>1</parameterLevel>
<parameterLevel name=”outOff”>0</parameterLevel>

</methodSignature>
[...]
<methodSignature name=”mulMod16(int, int)”>

<parameterLevel name=”a”>1</parameterLevel>
<parameterLevel name=”b”>1</parameterLevel>
<returnLevel>1</returnLevel>

</methodSignature>
[...]
<methodSignature name=”encryptDecrypt(int[], byte[], int, byte[], int)”>

<parameterLevel name=”key”>1</parameterLevel>
<parameterLevel name=”in”>1</parameterLevel>
<parameterLevel name=”in offset”>0</parameterLevel>
<parameterLevel name=”out”>1</parameterLevel>
<parameterLevel name=”out offset”>0</parameterLevel>

</methodSignature>
[...]

</classSignature>
</package>

</informationLevelModel>

Figure 1. Excerpt of the policy for the IDEA encryption method

this policy reveals that the method parameters at several points in the program
are instantiated with confidential data or are used to store confidential data.
Hence, we also set these parameters to level high, that is the parameters input and
output of singleBlockEncrypt, the parameters key, in, and out of encryptDecrypt,
the parameters a and b of mulMod16, and the return value of mulMod16. Figure 1
shows an excerpt of the resulting policy. Note, that in the depicted policy 1
corresponds to the security level high, whereas 0 to the security level low.

Finally, we actually run the analysis by issuing the following command, where
we supply the configuration file for the analysis:

java userinterfaces.SimpleCommandLine
analyze ”$ANALYZEPATH/IDEA.analysis”

The resulting file IDEA.report contains:

Violations:
de.flexiprovider.core.idea.IDEA.mulMod16(int, int)[(1, 1)] in line 407;

Branching with non public condition: a == 0
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1 p r i v a t e s t a t i c f i n a l i n t mulModulus = 0 x10001 ;
2 p r i v a t e s t a t i c f i n a l i n t mulMask = 0 x f f f f ;
3 [ . . . ]
4 pro tec ted vo id s i n g l e B l o c k E n c r y p t ( byte [ ] i n p u t , i n t i n O f f ,
5 byte [ ] output , i n t o u t O f f ) {
6 e n c r y p t D e c r y p t ( encr , i n p u t , i n O f f , output , o u t O f f ) ;
7 }
8 [ . . . ]
9 p r i v a t e vo id e n c r y p t D e c r y p t ( i n t [ ] key , byte [ ] in , i n t i n o f f s e t ,

10 byte [ ] out , i n t o u t o f f s e t ) {
11 [ . . . ]
12 i n t x0 = i n [ i n o f f s e t ++] << 8 ;
13 x0 |= i n [ i n o f f s e t ++] & 0 x f f ;
14 [ . . . ]
15 f o r ( i n t i = 0 ; i < rounds ; ++i ) {
16 x0 = mulMod16 ( x0 , key [ k ++]);
17 x1 += key [ k++];
18 x2 += key [ k++];
19 x3 = mulMod16 ( x3 , key [ k ++]);
20 [ . . . ]
21 }
22 [ . . . ]
23 out [ o u t o f f s e t ++] = ( byte ) ( x0 >>> 8 ) ;
24 out [ o u t o f f s e t ++] = ( byte ) x0 ;
25 [ . . . ]
26 }
27 [ . . . ]
28 p r i v a t e i n t mulMod16 ( i n t a , i n t b ) {
29 i n t p ;
30 a &= mulMask ;
31 b &= mulMask ;
32
33 i f ( a == 0) {
34 a = mulModulus − b ;
35 } e l s e i f ( b == 0) {
36 a = mulModulus − a ;
37 } e l s e {
38 p = a ∗ b ;
39 b = p & mulMask ;
40 a = p >>> 1 6 ;
41 a = b − a + ( b < a ? 1 : 0 ) ;
42 }
43 r e t u r n a & mulMask ;
44 }

Figure 2. Excerpt from IDEA in FlexiProvider (comments and empty lines omitted)

Inspecting the findings in the source of the method mulMod16 reveals that
there actually are certain values of the parameters that result in a special treat-
ment, which is realized by branching on their values (Figure 2, lines 33–37).

This method implements multiplication modulo 216 + 1. Only the lowest 16
bits of the variables are used. The value where all bits are 0 is interpreted as
216. This modular multiplication is applied several times within the encryption
and decryption of IDEA.

The finding corresponds to a known [16] timing channel vulnerability that
implementations of IDEA are prone to. In the following we show that the finding
in the FlexiProvider implementation actually constitutes a timing channel.
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5.2 Experimental Evidence of Timing Channel

The objective of our experiment was to learn whether measurements of the
running time of the IDEA-implementation in FlexiProvider actually can be used
to obtain parts of the secret key. The experiment shows that this is the case, i.e.,
that the potential timing channel found by SCF 1.0 is actually a timing channel.

Attack from the Literature Based on the assumption that the running time of the
branches differs, in [16] two attacks are suggested against IDEA-implementations.
We consider one aspect of the first attack, on that we build our experiment.

In IDEA, the lowest 16 bits of the ciphertext are the output of a multiplica-
tion modulo 216 + 1, where the multiplicands are an intermediate value and 16
bits (bits at position 70–85) of the secret key. Hence, if one can determine for
which lowest 16 bits of the ciphertext the first multiplicand is zero, then one can
calculate the 16 bits of the secret key by subtracting the integer-interpretation
of these 16 bits of the ciphertext from 216 +1. In implementations like the one in
FlexiProvider the case where the first multiplicand is zero exactly corresponds
to one branch in the control flow. The attack tries to determine cases where this
branch is taken by timing measurements.

Approach to Evaluation of Timing Channel Similarly to the attack, we measure
the running time of encryption for many ciphertexts and a fixed key. We identify
the lowest 16 bits of ciphertext that result from calculations with on average
extreme running time. From these bits we estimate 16 bits of the ciphertext by
a simple calculation. Then, we compare these estimated bits with the bits 70–85
of the actual key.

Setup We run the experiment on a standard machine, an IBM Thinkpad T60
2007-CTO with the processor Intel Core2 T7200 and 3GB RAM. The machine is
installed with Ubuntu 10.10 i386. OpenJDK is installed in the version 6 in form of
the standard-packages of Ubuntu (6b20-1.9.1-1ubuntu3). We run the experiment
after a standard boot, logged in the console, and with the X-server stopped. The
only parameter that we pass to the Java virtual machine is the classpath, i.e. we
run the server-HotSpot virtual machine. Hence, we have a standard environment
where the only tweak is not running X.

The experiment runs as follows. First we have a measurements phase. We
take a pseudo-random key (source /dev/urandom). We run a Java program that
applies the encryption method on 16777215 pseudo-random 8-byte messages.
Each encryption is conducted 64 times, whose execution time the program mea-
sures with System.NanoTime(). The program divides the time by 64, and stores
the result together with the resulting ciphertext. After that, we evaluate the
measurements. We cluster the pairs of a ciphertext and a running time accord-
ing to the lowest 16 bits of the ciphertext. Then we calculate for each cluster
the average running time of the cluster. We identify the cluster with the highest
average running time. We subtract the 16-bit value (positive integer interpreta-
tion) of this cluster from 216 + 1. The 16-bit representation of the result is our
estimation of the key bits, which we compare to the bits 70–85 of the actual key.
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No. key key bits total max. avg. 16 bit (A) est. key bits key
pos. avg. time of with max. (216 + 1)−A) bits

70–85 time clusters cluster time match

1 2 3 4 5 6 7 8

1 0x51305a2b8993beb 0xea23 2960 3002 0x15de 0xea23 X
703a88d022f78b74c

2 0x00e148d92641ecf 0x50a2 2934 2991 0xaf5f 0x50a2 X
99d428836b7bf0150

3 0x7633842df1c4f6a 0x0855 2893 2917 0x8894 0x776d X
5cc215537514141a4

4 0x195bfbd477a8bf1 0x87d3 2888 2929 0x782e 0x87d3 X
2a61f4ea42ba85b41

5 0x683b4ca4e842d4e 0x6030 2907 2992 0x9fd1 0x6030 X
b5180c34cef8adbc8

6 0x10530d320f7836b 0xb46a 2900 2943 0x4b97 0xb46a X
b6ed1a85d4fe2ef78

7 0x3a71d80a3ae3d1f 0xc08c 2923 2965 0x3f75 0xc08c X
edb023239074ef509

8 0x572e11ad1bc8a1f 0xe1fc 2883 2978 0x1e05 0xe1fc X
8c787f13f2cd97aaf

9 0x4512cac44b60db9 0x93ef 2908 2958 0x6c12 0x93ef X
6c24fbd0814fc94f2

10 0x1fab5773e8025ab 0x6786 2944 2966 0x987b 0x6786 X
2299e192a5805b9bf

Table 1. Results of Experiments

We run the experiment for 10 different pseudo-random keys.

Results In Table 1 for each key (column 2) we present the total average running
time (column 4) of the encryption, the highest average running time within
the 16-bit-clusters (column 5), and the 16-bits of the cluster with the highest
average time (column 6). We refer to this 16 bits by A. In order to compare we
also present the attacked 16 bits (positions 70–85 of the secret key, column 3)
and the estimated key-bits (column 7).

Comparing the third column (the attacked key bits) and the seventh column
(the estimated key bits) shows that in nine out of the ten cases the key-bits
estimated from the timing measurements are correct.

Conclusion In our setup the bits of the secret key can be reliably determined by
taking timing measurements and simple calculations. Thus, the finding of the
Side Channel Finder actually constitutes a timing channel.

6 Summary and Future Work

We have presented the Side Channel Finder, a tool that can statically detect
timing channel vulnerabilities in implementations of cryptographic algorithms
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in the Java programming language. SCF 1.0 covers a non-trivial subset of Java
including objects, arrays, and methods. These concepts are commonly used in
Java implementations of cryptographic algorithms, for instance, in the examples
we considered (see Section 5 and [20]). We described the policy language of the
Side Channel Finder which identifies the secrets that must not leak through
timing channels. The expressiveness of the policy language reflects the program-
ming language that is covered by SCF 1.0, i.e., it supports security signatures
for fields and methods. SCF 1.0 helps the designer of such policies by automatic
generation of policies with default specifications. The Side Channel Finder is de-
signed to analyze programs for branching of the control flow at which the branch
taken depends on confidential input. The causes of such a branching could be
conditional statements, loops, or polymorphic method calls. We carefully crafted
a security type system which automatically checks whether this is the case for
a given Java program. The case study discussed in the paper showed that SCF
1.0 is sufficiently mature to identify timing channels which actually could be
exploited.

Currently we see the following directions for improvements in the Side Chan-
nel Finder and studies of its applications.

– First of all, we are currently implementing the missing coverage of a number
of Java constructs. This includes, for instance, constructors which are quite
similar to methods, or more complex scopes of field-access and method-call
expressions which are currently limited to variable, field, or type names.

– Next, we will apply the Side Channel Finder to implementations of further
algorithms. We will turn to the well-studied asymmetric scheme RSA, which
essentially means analyzing the implementation of fast exponentiation. Fur-
ther, we will consider implementations of post-quantum algorithms, for in-
stance McEliece, which are a distinguishing feature of the library
FlexiProvider.

– Further, we plan to implement automatic program transformations for elim-
ination of discovered timing channels. Here we have a choice between a num-
ber of techniques, namely, cross-copying [6], unification [18], or conditional
assignment [22].

– Finally, we are working in the direction of making the analysis semantically
justified. This will be based on a semantic notion of timing channel security
where the branching on the secret data will be allowed provided the branches
take the same amount of time. The check, whether a program respects this
notion will be implemented by means of a type system in the Side Chan-
nel Finder. For that, we have to decide how fine-grained the timing model
has to be with possibilities ranging from counting the number of executed
statements — through considering single expression evaluation steps — to
careful estimation of the timing behavior of the compiled code instructions
on the underlying architectures.
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