
Master Thesis

Master of Science Informatik

Controlled Declassi�cation

under Semantics with Schedulers

Matthias Perner

TU Darmstadt

Fachbereich Informatik

Fachgebiet Modeling and Analysis of Information Systems

Prüfer: Prof. Dr.-Ing. Heiko Mantel

Betreuer: Dipl.-Inform. Alexander Lux

Abgabetermin: 10. Januar 2011

Erklärung:

Hiermit versichere ich, dass ich die Arbeit selbstständig verfasst und keine anderen als die
angegebenen Hilfsmittel und Quellen verwendet, sowie Zitate kenntlich gemacht habe.

Darmstadt, den 10. Januar 2011

Matthias Perner

2

3

Danksagung

Ich möchte meinem Betreuer Dipl.-Inf. Alexander Lux danken, der mir während
dieser Arbeit immer mit Rat zur Seite stand. Seine Betreuung war mir sowohl fachlich
als auch methodisch eine groÿe Hilfe, ins Besondere da er sich viel Zeit für Gespräche
und Diskussionen mit mir nahm.
Weiterhin möchte ich Herrn Prof. Dr.-Ing Heiko Mantel für die Möglichkeit danken,

dieses interessante Forschungsgebiet bearbeiten zu können und dafür, dass er mir mit
seinem Feedback geholfen hat über die Formalisierungen und deren Rechtfertigung wieder-
holt nachzudenken und diese so zu verfeinern.
Auÿerdem danke ich meiner Familie und meinen Freunden, die meinen Ausführungen

über dieses ihnen fremde Thema Gehör geschenkt haben und mir dabei oft unbewusst
geholfen haben, die Ansätze und Ideen zu re�ektieren.

4

5

ABSTRACT

Information �ow analysis and control for concurrent programs is a very im-
portant topic in information security. The security properties that describe
what an analysis enforces play an important role, because they describe the
semantics of security. Many of these properties are based on non-interference,
where public information must be independent from secret information. In
many scenarios, for example password checks, a complete independence is
too restrictive. In order to be able to analyze such programs intentional in-
formation leaks called declassi�cations are necessary. These declassi�cation
should be controlled in order to prevent the program from leaking just any
secret information. In this thesis we give a detailed look on two scheduler-
independent properties that control the declassi�cation with respect to where
in the program a declassi�cation occurs and what is declassi�ed. Further-
more, we introduce a novel, scheduler-independent property that allows an
association of the information what is declassi�ed where in the program and
present a sound type system that enforces this property. Additionally, we
discuss how the security properties capture our intuition in several small
code examples and an application scenario from the view of the software
developers.

6

Contents

Contents

1. Introduction 3

1.1. Motivation . 3
1.2. Challenge . 4
1.3. Contribution . 4
1.4. Structure . 5

2. Preliminaries 6

2.1. Terminology and Notation . 6
2.2. Multi-threaded While Language . 6
2.3. Scheduler Model . 8
2.4. Security Policies . 11
2.5. Attacker Model . 12
2.6. Strong security . 14
2.7. Information Leaks and Declassi�cation 16

3. Scheduler-independence of WHERE-Security and WHAT-Security 18

3.1. WHERE-Security . 18
3.1.1. Integration of where into the Policies and the Language 18
3.1.2. De�nition and Intuition of WHERE-Security 20
3.1.3. Scheduler-independence of WHERE-Security 23

3.2. WHAT-Security . 27
3.2.1. Integration of what into the Policies and Attacker Model 27
3.2.2. De�nition and Intuition of WHAT-Security 29
3.2.3. Scheduler-independence of WHAT-Security 32

3.3. Combined WHERE-Security and WHAT-Security 35

4. Integration of the aspects where and what 37

4.1. Motivation for the Integration . 37
4.2. Integration of where and what into the Policies and the Language . . . 38
4.3. De�nition and Intuition of WHERE&WHATlocal-Security 40
4.4. Controlling the Information Flow into the Escape Hatches 43
4.5. Scheduler-independence of WHERE&WHATinitial-Security 45
4.6. A Sound Type System . 50

5. Exemplary Analysis of Several Programs 67

5.1. Explicit Assignments and Declassi�cations 67
5.2. Subsequent Assignments for Input Handling 68
5.3. Declassi�cation with Intransitive Security Policies 69
5.4. Localization of Di�erent Declassi�cations 70
5.5. Example Scenario: Development of an Online Market Place 71

5.5.1. Data Structures in this Example 71
5.5.2. Initial Speci�cation and Development 71

1

Contents

5.5.3. Adding a Reputation System . 75
5.6. Bene�ts and Costs of the Localization of Declassi�cations 77

6. Summary 80

6.1. Conclusion of the Results . 80
6.2. Future Work . 80
6.3. Related Work . 81

A. Proposal 86

2

1. Introduction

1.1. Motivation

Con�dentiality of information is an important security goal in many cases. For example
if the passwords for logging in to the operating system would not be kept con�dential,
an attacker could impersonate the user that is associated with the password and thus
render the other security mechanisms of the operating system useless. Since it is such
an important goal it is reasonable that a program should be checked for the preservation
of this property. On the other hand, many modern software systems that deal with
con�dential information are complex programs. A web browser, for instance, transfers
information over the network for di�erent purposes, like loading a web site the user has
requested or checking for updates or registration information or supplying the developers
statistics. Additionally the browser might store passwords or be extensible with plugins,
maybe even use multi-threading for loading di�erent web sites concurrently.
In a sequential program the information may get leaked explicitly, for example in an

assignment, or implicit, for example hidden in the control �ow of a branching command
like if . The presence of multi-threading introduces even more possibilities for infor-
mation leaks, for example the interactions of the threads via the scheduler or shared
memory. Many of these leaks are very subtle and therefore hard to detect. Addition-
ally, the complexity of many systems makes the detection even harder, because there
is much code with possibly subtle interactions that need to be checked. Furthermore,
the information leakage could be accidental, for example due to programming errors, or
even intentional, for example in a trojan horse. In the second case the developer of the
trojan horse may put much e�ort into leaking the information as subtly as possible.
Information �ow analyses are a common solution for this problem. Such an analysis

may be used to check whether con�dential information �ows to some public location
or output. For developing meaningful program analyses it is necessary to explicate the
property that it checks, because the property is the description of the purpose, in our
case con�dentiality. Consequently, the properties play an important role in describing
and enforcing con�dentiality.
Non-interference-like properties follow the basic idea that independence of public data

from con�dential data is required. In some situations complete independence is too
restrictive. If we wanted to write, for example, a login with a password check, the stored
password should be kept secret, while all the user input, as well as the success of the
login and therefore the password check, is visible for the public user. The password
check would reveal the information about the equivalence of the user input and the
stored password and thereby reveal con�dential information. This information leakage
is intended, since it is necessary for the functionality of the login. Such an information
leakage that is intended and assumed to be secure is called a declassi�cation.
Programs that use declassi�cations can not be categorized as secure with pure non-

interference properties. Much research e�ort is put into the question how to control
declassi�cation such that declassi�cations that are necessary for the functionality are
allowed, but the intended con�dentiality is preserved [SS05]. The authors of [MS04]

3

1.2 Challenge

introduced the three W-aspects to categorize the control of declassi�cation. These three
aspects are: where declassi�cation may occur, what information may get declassi�ed
and who may initiate a declassi�cation.
In [SS00] the authors develop STRONG-Security, a security property that uses the ba-

sic idea of pure non-interference for multi-threaded programs. This property is scheduler-
independent for a wide class of schedulers. The scheduler-independence of the property
is bene�cial, because in many cases the scheduler is not known before run time or dif-
ferent instances of the program may even be run with di�erent schedulers. Since this
property follows pure non-interference, no declassi�cations are allowed.
The authors of [MR07] use the concept introduced with STRONG-Security to cre-

ate novel properties that allow declassi�cations that are controlled with respect to the
aspects where and what in multi-threaded programs. The intuition behind building
the novel properties on the foundation of STRONG-Security is that the novel properties
should be scheduler-independent, too.

1.2. Challenge

Since the properties play such an important role for de�ning what security means and for
analyzing security of programs, great con�dence in the properties and in their adequacy
is desirable. One of the great challenges when developing security properties is to gain
the con�dence in the properties for example by explaining the intuition behind their
de�nition and showing that they capture it. In the presence of declassi�cation the
argumentation about adequacy is even harder, if the intuition behind those properties
is not clearly explained, because of the subtle possibilities for violations.
The three W-aspects from [MS04] make it possible to categorize the controls with

respect to these important aspects and thus make it easier to argue about the intuition
and the goal of properties.
Another challenge is to show that the properties are adequate in the sense that they

allow declassi�cations as they are needed for the desired functionality, but preserve the
intuitive understanding of con�dentiality.

1.3. Contribution

In this work we examine the properties WHERE-Security and WHAT-Security from
[MR07] to strengthen the con�dence in these properties. Furthermore, we show that
these properties are scheduler-independent and thus preserve their faithfulness under a
wide class of schedulers.
On the foundation of these properties we present an integration of the controls for the

aspects where and what that allows a more exact control of those aspects. We show
that this property is scheduler-independent with respect to the same class of sched-
ulers as WHERE-Security and WHAT-Security. Furthermore, we look at some example
programs to compare the intuition, adequacy and applicability for real world programs.

4

1.4 Structure

1.4. Structure

In Chapter 2 we introduce a small language for example programs and explain the
basic idea behind STRONG-Security from [SS00] as this property is on the one side
the inspiration for the properties WHERE-Security and WHAT-Security that control
declassi�cation and on the other side is the baseline for comparing the declassi�cation
controls in those properties.
Chapter 3 explains the properties WHERE-Security andWHAT-Security from [MR07],

especially how the control of declassi�cations is realized in those properties. Further-
more, we show that the properties are scheduler-independent with respect to the same
class of schedulers as STRONG-Security to show that these properties preserve their
faithfulness with many di�erent schedulers and are therefore adequate for multi-threaded
settings.
In Chapter 4 we present a tighter integration of the two aspects where and what

into a single property. This integration builds on the foundation of the properties
WHERE-Security and WHAT-Security. Additionally, we present some pitfalls that can
occur when controlling declassi�cation and show that the novel property is scheduler-
independent. Furthermore, we present a sound type system that analyzes programs in
the example language for con�dential information �ow with respect to the integrated
property.
In Chapter 5 we review the properties and show their impact on some program frag-

ments. Furthermore, we examine the applicability for real world examples with some
small example programs.
Finally, Chapter 6 concludes the work with a short summary of the results and puts

them in context with other related work. Furthermore, a short overview of possible
future work is given.

5

2. Preliminaries

In this work we want to develop and analyze information �ow properties that depend
on the formal semantics of programs. Hence, we start with de�ning a language for our
examples that supports multi-threading with dynamic thread creation. Since we want
our properties to be scheduler-independent we introduce a scheduler model that can be
used to describe a wide class of schedulers.
The next step is to specify the rules for the information �ow in the form of security

policies. After that we de�ne the capabilities of an attacker in a reasonable attacker
model that describes what an attacker can see.
Since STRONG-Security from [SS00] is the inspirational foundation and the baseline

for comparing the other properties in this work, we give a short overview over the
intuition and idea behind it.

2.1. Terminology and Notation

Before developing properties that describe what security means in the sense of obeying
speci�c rules, we want to introduce some terminology and notation.
A bisimulation is a symmetric relation R on states where the occurrence of (a, b) ∈ R

means that the states a and b have an equivalent behavior. That means that for all
states c if a can make a transition to c then b can make a transition to c, too.
A partial equivalence relation is a relation that is symmetric and transitive, but not

necessarily re�exive. The part of the partial equivalence relation that is re�exive parti-
tions the set in equivalence classes just like a normal equivalence relation. An element of
the set that is not related to itself under the partial equivalence relation is not element
of any equivalence class.
For any (partial) equivalence relation R we will write aRb to denote that (a, b) ∈ R

and A/R to denote the set of all equivalence classes of A induced by R. Furthermore, we
will write [a]R to denote the equivalence class induced by R that contains a. Therefore
b ∈ [a]R denotes that b is in the same equivalence class induced by R as a which means
aRb. If a is not related to itself under the relation R, denoted by (a, a) 6∈ R, then a is
not in any equivalence class denoted by ∅ ∈ [a]R and especially a 6∈ [a]R.
The security properties that we discuss in this work are based on bisimulations that

are partial equivalence relations.

2.2. Multi-threaded While Language

In order to be able to de�ne the language we introduce a program model with a memory,
expressions and commands.
We model the set of all possible values in a program with the set V al and leave this

set underspeci�ed, but assume that it contains at least the boolean values True and
False, as well as the the set of integers Z.
The set V ar models the set of variables in the program. A variable identi�es a location

in the memory.

6

2.2 Multi-threaded While Language

De�nition 1 Memory State:
A Memory State is a function s of the type Mem : V ar → V al, that maps values to
variables.

If the value val of a variable var is de�ned in a memory state s we write s(var) = val
and say that var has the value val under memory state s. We assume shared variables.
This is important when we introduce multi-threading since the shared variables are a
communication medium between threads. We use s ⊗ {var = val} to denote the state
that is identical to s, but val is mapped to var.
The set Op denotes the operations that can be used to combine the values of variables.

We leave this set underspeci�ed, but assume that the set contains at least the common
boolean operations {and, not, or} and the common arithmetic operations {+,−, ∗, /,=}
with their intuitive meaning. Although we usually use the in�x notation for operations
in program examples, we restrict ourselves to a pre�x notation with brackets around the
operands in the de�nitions for simplicity and clearity.

De�nition 2 Expressions:
Let expr be an Expression, then expr can be deduced with the rules from Figure 2.2.

expr ∈ V al
expr ∈ Expr

expr ∈ V ar
expr ∈ Expr

expr1 ∈ Expr . . . exprn ∈ expr op ∈ Op
op(expr1, . . . , exprn)

Figure 1: Structure of an Expression in the MWL

We leave the set Expr underspeci�ed, since we did not specify possible operations on
variables completely. Furthermore, we are not interested in the expressions per se, but
in some information that relies on the expressions. We use vars(expr) to denote the
set of all variables in the expression and subexpressions(expr) to denote the set of all
subexpressions of the expression.

De�nition 3 Evaluation of an Expression:
An Evaluation of an Expression 〈|expr, s|〉 ↓ val reduces the expression expr ∈ Exprs
to a value val ∈ V al with respect to the memory state s : V ar → V al.

Since the set of expressions is underspeci�ed, we can not de�ne the exact semantics of
the reduction. Instead we assume that boolean and arithmetic operations are evaluated
according to their common, intuitive meaning.
On these preliminaries we want to de�ne the Multi-threaded While Language, or short

MWL. MWL is a language that supports common features of imperative languages, like
assignments, expressions, control �ow branches and loops. Additionally, it supports
dynamic thread creation.
A single thread in MWL is a command thread ∈ Com where Com is de�ned by

the grammar in Figure 2. We use the empty command 〈〉 to denote that no command

7

2.3 Scheduler Model

remains to be executed for a thread. A thread pool in the MWL is a list of threads

denoted by
−→
C = 〈C0 . . . Cn−1〉 where n is the length of the thread pool. We call the

thread pool before executing any command program, since it represents the code that
we want to analyze. Normally the program is a thread pool of length 1, since this is the
initial thread that spawns all other threads. Sometimes we will refer to a thread pool
with a length that is not 1 as program for simplicity, because our focus is not on the
initial thread creation of a program, but on the information �ow properties during the
execution.

Com :== Com; Com | skip
| if (Expr) then Com else Com �
| while (Expr) do Com od
| V ar := Expr

| fork (Com
−−→
Com)

Figure 2: Grammar for the Multi-threaded While Language

This small language supports the common concepts of imperative languages. Se-
quences Com;Com are a combination of other commands that are executed sequentially
one after another. skip is a command that does neither change the memory, nor in�uence
the control �ow in a thread. The command if results in a branching of the control �ow
with respect to the evaluation of the expression. The looping command while executes
the command between do and od as long as the expression in the brackets evaluates to
True. Memory changes are made with assignments of the form V ar := Expr. The com-
mand fork executes the �rst command in the brackets and adds new threads, according
to the right command in the brackets, to the thread pool.

De�nition 4 Thread Con�guration:
A Thread Con�guration is a tuple 〈|C, s|〉 of a thread C ∈ Com and a memory state
s : V ar → V al.

A thread con�guration captures the state of a thread at a given time. The commands
in C are the commands that remain to be executed and the memory state s captures
the memory at the time of the observation.
We use an operational small step semantics that transforms the thread C into C ′ by

removing the command that has been executed from C. We formalize the intuition of
the commands with the semantics in Figure 3. We call the transition from one thread
con�guration to another thread con�guration according to the semantics an execution
step.

2.3. Scheduler Model

In a multi-threaded environment, the scheduler determines which thread performs an
execution step. Hence, the scheduler interacts with single threads and can be used as a

8

2.3 Scheduler Model

〈|C1, s|〉_o 〈|〈〉, s′|〉
〈|C1;C2, s|〉_o 〈|C2, s′|〉 〈|skip, s|〉_o 〈|〈〉, s|〉

〈|B, s|〉 ↓ True
〈| if B then C1 else C2 �, s|〉_o 〈|C1, s|〉

〈|B, s|〉 ↓ False
〈| if B then C1 else C2 �, s|〉_o 〈|C2, s|〉

〈|B, s|〉 ↓ True
〈|while B do C od, s|〉_o 〈|C;while B do C od, s|〉

〈|B, s|〉 ↓ False
〈|while B do C od, s|〉_o 〈|〈〉, s|〉

〈|fork(C
−→
V), s|〉_o 〈|C

−→
V , s|〉

〈|C1, s|〉_o 〈|C1
−→
V , s′|〉

〈|C1;C2, s|〉_o 〈|(C1;C2)
−→
V , s′|〉

〈|exp, s|〉 ↓ n
〈|var:=exp, s|〉_o 〈|〈〉, s⊗ {var = n}|〉

Figure 3: Operational semantics for threads in the Multi-threaded While Language

communication medium, since it determines the execution order of commands and the
execution order has an in�uence on the memory state. Often the scheduler is unknown
before executing a program or di�erent instances of a program may be run with di�erent
schedulers. Therefore it is reasonable to aim for a scheduler model that allows the
representation of a wide class of schedulers. The authors of [SS00] introduced a scheduler
model that we want to adapt.
Many scheduling algorithms rely on information about which threads have been ex-

ecuted in the past. In [SS00], this is addressed by introducing histories of previously
scheduled threads. A history is a list of pairs of the type N×N, where the �rst compo-
nent denotes the last scheduled thread and the second component denotes the amount of
live threads. We write Hist for the set of all histories and write ε for the empty history.
The function live(H) returns the amount of live threads of the given historyH ∈ Hist.

It returns 1 for the empty history and the second component of the last element, if the
history is not empty. In our language where threads can not be blocked live(H) equals
the length of the thread pool which is the amount of existing threads.
According to [SS00] some scheduling algorithms use information about the memory

state of a program to determine the scheduling order.

De�nition 5 σ-scheduler:
A σ-scheduler is a function that given a history H and a part of the memory mempart
returns a probability distribution on live threads.

σ(H,mem) ∈ distribution({0 . . . live((h)− 1)})

In order to be able to capture a wide class of schedulers, we model the scheduler
as a function that returns a probability distribution on live threads. This distribution

9

2.3 Scheduler Model

represents the probabilities for the threads to execute a step. We write σ(H,mem)[i] to
denote the probability that thread i is scheduled under the history H and memory state
mem.
With this model it is possible to represent deterministic schedulers, where the prob-

ability is 0 for all threads but one, as well as probabilistic schedulers as the authors of
[SS00] show. We call the class of schedulers that can be represented with this model
σ-schedulers and each time we walk about schedulers implicitly refer to the class of
σ-schedulers.

De�nition 6 System Con�guration:

A System Con�guration is a tuple 〈|H,
−→
C , s|〉 of a history H ∈ Hist, a thread pool

−→
C ∈

−−→
Com and a memory state s : V ar ⇀ V al.

The system con�gurations capture the state of the complete system. The history H

is the history of all previously scheduled threads, the thread pool
−→
C is the vector that

describes the remaining computations for the threads and the memory state s describes
the memory shared between all threads.
While the transitions between thread con�gurations describe the changes to the re-

maining commands of a single thread and the global state, we also need to keep track of
the histories and the state of the thread pools. We model this with transitions between
system con�gurations and require that these transitions may only occur if a thread exe-
cuted a step. As in [SS00], the transitions between system con�gurations are described
by a semantics rule in Figure 4.

〈|Ci, s|〉_ 〈|
−→
W, s′|〉

〈|H, 〈C0 . . . Ci . . . Cn−1〉, s|〉
p→ 〈|H(i, n+ |

−→
W | − 1), 〈C0 . . . Ci−1

−→
WCi+1 . . . Cn−1〉, s′|〉

Figure 4: Semantics of Thread Pools

According to the semantics for single threads the execution of a step changes the
command that must be executed in the thread itself and possibly spawns new threads.

We capture this by the resulting command vector
−→
W in the execution steps and update

the Thread Pool by replacing Ci with
−→
W .

The semantics of thread pools capture the updating of histories according to our

intuition by extending the list that represents the history with a new tuple (i, n+|
−→
W |−1).

Since the update of the system con�guration is triggered by an execution step of thread
i, the thread i is remembered as the last scheduled thread in the history. Since Ci is

replaced with the resulting command vector
−→
W , the amount of live threads is now equal

to the amount of previously live threads n plus the amount of newly created threads

|
−→
W | minus one, since Ci was replaced.
At last we propagate the resulting memory state from the execution step to the new

system con�guration.

10

2.4 Security Policies

We call a step from one system con�guration to another a system step or scheduler
step.

2.4. Security Policies

We want a program to preserve con�dentiality. For this purpose we want to analyze the
program for secure information �ow. In order to do this, we need to specify the meaning
of con�dentiality or security.
We use a set D of security domains to classify information and information containers.

In the following, we use variables as information containers and let the set of all variables
be denoted by V ar. Furthermore, the level of information that is stored in a variable is
in the same domain as the variable itself.

De�nition 7 Multilevel Security Policy:
A Multilevel Security Policy (brief: mls policy) is a tuple (D,≤, dom), where D is

a set of security domains, ≤⊆ D × D is a partial order that has a minimum and
dom : V ar → D is a domain assignment.
The minimum of D with respect to ≤ is called low and the maximum, if it exists, is

called high.

In a given �ow policy, the partial order ≤ describes the regular information �ow that
may occur in the program. Regular information �ow from one domain D1 ∈ D to
another domain D2 ∈ D is allowed, if D1 ≤ D2 holds. When we de�ne a mls policy in
our examples, we will not explicitly write down the re�exive and transitive parts of ≤,
since they can be derived by generating the transitive and re�exive closure of the pairs
we de�ne.
The domain assignment maps security domains to variables to capture the intuition

that the variables may only hold information that may �ow to their security domain.
We call an information �ow from D1 to D2 where D1, D2 ∈ D legal, if D1 ≤ D2.

Otherwise the information �ow is called illegal.

Example:

Let pol be the following mls policy:
D = {low, high}
low ≤ low, low ≤ high, high ≤ high
dom(lvar) = low
dom(hvar) = high.
This policy describes that information may �ow regu-
larly from the security domain low to the security do-
main high. Information �ow is not allowed from high to
low. That means that a program that contains for example
lvar := hvar violates the mls policy, since the information
from the high variable hvar is assigned to the low variable
lvar, but lvar ≤ hvar.

11

2.5 Attacker Model

De�nition 8 Source Domains of an Expression:
Source Domains of an Expression is a function sources : Expr → P(D) that returns
the set of domains of all variables in the expression.

This function is related to an expression as the domain assignment is to the variables.
Since we speci�ed that an expression is a combination of variables with operations, the
source domains for the combined information of the expression are all the domains of
the variables. This intuition is captured by the source domains of an expression. We
will write source(expr) when we mean the source domains of the expression expr.

2.5. Attacker Model

When talking about security one must make some assumptions about the abilities of the
attacker. These assumptions have an in�uence on the security properties by de�ning
what an attacker is able to see and therefore which states an attacker can distinguish.
In general it is better to assume an attacker which has more capabilities, because that
leads to stricter security properties and in consequence prevents more security leaks.
One possibility to formalize non-interference is to capture the capability of the attacker

to distinguish di�erent states or behaviors of the program. We capture these capabilities
of the attacker with equivalence relations that describe which states look equivalent for
an attacker and hence which states are indistinguishable for him.

De�nition 9 D-equality:
Two states s1 and s2 are D-equal with respect to a security domain D (denoted: s1 =D

s2), if all variables, that are visible to an observer of the domain D, have identical
values.

s1 =D s2 ⇐⇒ ∀var ∈ V ar : (dom(var) ≤ D =⇒ s1(var) = s2(var))

We assume that the variables that are of a level lower thanD are visible for an observer
of the security level D. In consequence, this de�nition captures the intuition that an
attacker can not distinguish memory states that are equal in the parts of the memory
he can observe.
Furthermore, we assume that the attacker can observe or at least approximate the

scheduling behavior. In the scheduler model from Section 2.3 this means that the at-
tacker can learn or approximate the probabilities of a given thread to be scheduled. We
explain this with the fact that an attacker may run the same program several times with
the same initial memory state and therefore can gain information about the scheduling.
Since the scheduler function is parametrized with the memory state, the probability

distribution of the thread selection can reveal information about the memory state.
In consequence, we assume that the scheduler itself must ful�ll some kind of security
restriction.

12

2.5 Attacker Model

De�nition 10 low-Secure σ-Scheduler:
A low-Secure σ-Scheduler is a σ-scheduler that ful�lls the following formula:

∀s1, s2 ∈Mem : ∀H ∈ Hist : s1 =low s2 =⇒ σ(H, s1) = σ(H, s2)

The intuition behind this de�nition is that all low-secure σ-schedulers do not reveal
information about those parts of the memory that a low-observer may not learn. This is
realized by requiring that the probability distribution returned by the scheduler function
are equal for two states that are low-indistinguishable. Since low is de�ned as the
minimum of D with respect to ≤ all low-secure σ-schedulers are only allowed to reveal
information that every observer is allowed to know or learn.
During the rest of the work we will only write σ-scheduler when we mean low-secure

σ-scheduler since the class of low-secure σ-schedulers is the class of schedulers that is
used as σ in [SS00].
The second parameter of the scheduler function are the histories of previously sched-

uled threads. Since not every scheduler uses the whole history for the calculation of the
probabilities many histories will result in equivalent probability distributions.

De�nition 11 σ-Equivalence of Histories:
Two histories H1, H2 ∈ Hist are σ-equivalent (denoted: H1 =σ H2), if the scheduler σ
returns the same probability distribution for both histories under a given memory state
s and adding equal elements to the histories does not render them distinguishable.

The intuition behind the de�nition of σ-equivalence of histories is that we can partition
the set of all histories in equivalence classes for a given scheduler σ. Since the scheduler
can not distinguish the histories in one equivalence class, the probability distribution for
histories in the same equivalence class must be equal under the same memory state. We
can capture the �rst important consequence of this de�nition with the following formula:

H1 =σ H2

∀H1, H2 ∈ Hist : ∀s ∈Mem : σ(H1, s) = σ(H2, s)

Additionally, if the scheduler can not distinguish the histories in one equivalence class,
adding the same pair to the elements of an equivalence class should not render them
distinguishable, since the pairs are indistinguishable and intuitively the indistinguisha-
bility should be preserved under sequential composition of histories. We can capture
this consequence of the de�nition with the formula:

H1 =σ H2

H1(i,m) =σ H2(i,m)

Since we assume that the attacker may approximate or even learn the probability
distributions by running the program repeatedly with the same initial memory state, the
σ-equivalence is an important relation, because it describes which scheduling histories
the attacker can not distinguish.

13

2.6 Strong security

Theorem 1 Probability Equivalence for Equivalent Histories and States: Given
a low-secure σ-scheduler, two σ-equivalent histories H1 =σ H2 and two low-equivalent
states s1 =low s2, the probability distributions returned by the scheduler function σ are
equal.

∀σ,H1, H2, s1, s2 : H1 =σ H2 ∧ s1 =low s2 =⇒ σ(H1, s1) = σ(H2, s2)

Proof Probability Equivalence for Equivalent Histories and States: This
theorem follows from the de�nition of low-secure σ-schedulers and the de�nition of
σ-equivalent histories. low-secure σ-schedulers require that for two memories that are
low-equivalent, the scheduler function returns equivalent probability distributions. The
de�nition of σ-equivalent histories requires that for σ-equivalent histories the returned
probability distribution is equal for σ-equivalent histories under a �xed memory state.
If H1 =σ H2 holds, then probability distributions returned by σ must be equivalent

under a �xed memory according to the de�nition of σ-equivalence and in consequence
the following holds, too:

∀s ∈Mem : σ(H1, s) = σ(H2, s)

=⇒ σ(H1, s1) = σ(H2, s1) ∧ σ(H1, s2) = σ(H2, s2)

According to the de�nition of low-secure σ-schedulers, the probability distributions
returned for s1 and s2 must be equal under �xed history, if s1 =low s2 holds and in
consequence the following holds, too:

∀H ∈ Hist : σ(H, s1) = σ(H, s2)

=⇒ σ(H1, s1) = σ(H1, s2) ∧ σ(H2, s1) = σ(H2, s2)

The combination of those two facts gives us as result:

σ(H1, s1) = σ(H2, s1) = σ(H2, s2)

�

This theorem is an interesting statement about the capabilities of the scheduler to
reveal information via the probability distribution, since the probability distributions
are equal and therefore indistinguishable, if we have histories that are indistinguishable
for the scheduler and memory states that are indistinguishable for an low-observer.

2.6. Strong security

In [SS00], a program is de�ned as strongly secure, if a partial equivalence relation exists,
that ful�lls the characterization formula for strong low-bisimulations, and the program
is related to itself under this relation. Strong security is the inspirational foundation and
baseline for WHERE-Security and WHAT-Security, which in turn are the foundation
for the integration we want to introduce in this work. Therefore, we want to explain
strong security brie�y to give a better understanding of the intuition behind it.

14

2.6 Strong security

De�nition 12 Strong low-Bisimulation:
A strong low-bisimulation uL is the union of all symmetric relations R on thread pools
of equal size, such that whenever 〈C10 . . . C1n−1〉R〈C20 . . . C2n−1〉 then

∀s1, s2 : ∀i ∈ {0 . . . n− 1} : 〈|C1i, s1|〉_ 〈|
−→
C1′, s′1|〉 ∧ s1 =low s2

=⇒ ∃
−→
C2′ : ∃s′2 : (〈|C2i, s2|〉_ 〈|

−→
C2′, s′2|〉 ∧

−→
C1′R

−→
C2′ ∧ s′1 =low s

′
2)

Strong low-bisimulations use the idea that two con�gurations are indistinguishable for
an attacker, if in both con�gurations the memory states are indistinguishable and the
behavior of the thread pools, which means the possible transitions to new con�gurations,
are indistinguishable.
It captures the idea of non-interference by requiring that from two indistinguishable

con�gurations, it is possible to perform an execution step in the same thread in both
thread pools and the resulting con�gurations are again indistinguishable. This captures
the idea of non-interference, because whenever s1 =low s2, but s1 6= s2, then an informa-
tion �ow of the information that causes s1 6= s2 to the domain low results in s1 =low s2
and thus a program that contains an instruction that results in such an information �ow
can not be related to itself under a strong low-bisimulation and independence from low
information of high information is required by the strong low-bisimulation.
The authors of [SS00] specify strong security on the basis of strong low-bisimulations

as follows: −→
C is strongly secure ⇐⇒

−→
C uL

−→
C

In other words, a program is strongly secure, if and only if a program can be related to
itself under a relation that is a strong low-bisimulation. On the other hand, a program is
considered insecure, if no such relation exists. This uses the fact that partial equivalence
relations are not re�exive to distinguish between a secure program, that can be related to
itself under a relation that ful�lls the characterization formula, and an insecure program,
that can not be related to itself under a relation that ful�lls the characterization formula.

Example:
Let pol be a mls policy with:
D = {low, high}
low ≤ low, low ≤ high, high ≤ high
dom(lvar) = low
dom(hvar) = high.

i f (hvar)
then

l v a r := 1
else

l v a r := 0
f i

15

2.7 Information Leaks and Declassi�cation

is not strongly secure. We can construct a counter example that violates the formula
for low-bisimulations by choosing two states s1(lvar) = s2(lvar), s1(hvar) = 0 and
s2(hvar) = 1. Since s1(lvar) = s2(lvar), s1 =low s2 holds. After executing the if
command with s1 the remaining command vector is lvar := 0, but after executing the
if command with s2 the remaining command vector is lvar := 1. If we now perform
the step in both cases the new mappings for lvar are s′1(lvar) = 0 and s′2(lvar) = 1. In
consequence s′1 6=low s′2 and therefore no strong low-bisimulation can exist that relates
the program to itself, which means the program is not strongly secure.

While STRONG-Security is the inspirational foundation for the other bisimulaion
based properties in this work, it does not support multi-level security policies, but the
other properties support them. This issue was addressed in [MS04] where the authors
also introduce a property for controlling where declassi�cation occurs. Basically, the
idea is to lift the low-bisimulation to multi-level security policies by parameterizing
the equivalence relation of memory states with security domains and quantify over all
security domains. We will use the approach with the mls policies and quantify over all
security domains in the policies.

2.7. Information Leaks and Declassi�cation

An information leak is a violation of the information �ow as described in a security policy.
As we have already informally showed, STRONG-Security from [SS00] is a property
that detects such information leaks. In some situations, the information leaks may be
intended for the functionality and in such a situation a property that requires complete
independence as STRONG-Security is overly restrictive.

Example:
Let pol be a mls policy with:
D = {low, high}
low ≤ low, low ≤ high, high ≤ high
dom(invar) = dom(outvar) = low
dom(password) = high.

Let
−→
C be a simple password check:

i f (invar = password) then
outvar := 1

else
outvar := 0

f i

This simple password check can not be modi�ed to ful�ll STRONG-Security, because
the low-observer can observe the success of the action that is guarded by the password
check and the success of the password check depends on the high information stored in
password. It is reasonable that password should be high data, because intuitively we
do not want that anybody can learn the password. Furthermore, it is reasonable that
outvar is low, since there are situations in which the success of the password check needs

16

2.7 Information Leaks and Declassi�cation

to be revealed, for example when a login depends on the password check. In consequence,
we need the dependency of outvar from invar = password and in consequence of the
low information from the high information for the functionality.

The intentional release of information from a higher domain to a lower domain is
called declassi�cation. In many cases di�erent declassi�cations may occur in di�erent
parts of the program. In consequence it is hard to check manually if some guidelines
for declassi�cation are obeyed in the whole program. The presence of multi-threading
makes the problem of manual checking even harder, because the order of the commands
executed does not only depend on the program, but on the scheduling algorithm. Even
in the case, where declassi�cations may only occur in a speci�c part of the program,
it would not be very wise to trust a part of the program without a proper analysis to
declassify information as intended, because very subtle information leaks via transitive
assignments or even the scheduling order could occur.
Therefore it would be good to have security policies that specify where declassi�ca-

tions occur and what is declassi�ed. On the foundation of such policies it would be pos-
sible to de�ne security properties that should capture the intuition of non-interference,
but allow controlled exceptions as needed for the functionality. With proper formaliza-
tions of those properties it would then be possible to develop automatic analyses that
check programs for preservation of these properties.

17

3. Scheduler-independence of WHERE-Security and

WHAT-Security

As we have already seen in Section 2.7 properties that require complete independence of
public information from secret information are too restrictive in many situations. The
simple example with the password check could not be classi�ed as secure with respect to
STRONG-Security, because this example requires declassi�cation. Since we still want
to have guarantees about con�dentiality, it is reasonable that an exact speci�cation of
where declassi�cations may occur and what may be declassi�ed is possible and that
the security properties include adequate controls for these properties. The properties
WHERE-Security and WHAT-Security from [MR07] achieve such controls.
Additionally, in a multi-threaded setting the real sequence of execution steps relies

not only on the programs, but also on the scheduler, because the scheduler decides
which thread may perform an execution step next. This can lead to very subtle infor-
mation leaks. Furthermore, the scheduler is in many cases unknown before executing
the program or di�erent instances of the program may be executed with di�erent sched-
ulers and in consequence minimum assumptions should be made about the scheduler.
Scheduler-independence of the security properties is therefore a reasonable goal. The
property STRONG-Security from [SS00] achieves scheduler-independence with respect
to the wide class of low-secure σ-schedulers.
In this section we will give an insight on the intuition of the properties WHERE-

Security and WHAT-Security to strengthen the con�dence in these properties and fur-
thermore show that these properties are scheduler-independent with respect to the class
of low-secure σ-schedulers and therefore are scheduler-independent in the same sense as
STRONG-Security.

3.1. WHERE-Security

The �rst property controls the aspect where declassi�cation may occur and is therefore
called WHERE-Security. The foundation for this property is laid in [MS04] and the
property was de�ned in [MR07]. Like the inspirational foundation STRONG-Security
the property uses partial equivalence relations that describe bisimulations to describe
what security means.

3.1.1. Integration of where into the Policies and the Language

De�nition 13 Multilevel Security Policy with where Exceptions:
A Multilevel Security Policy with where Exceptions (brief: mls-; policy is a tuple
(D,≤,;, dom), where (D,≤, dom) is a multilevel security policy and ;⊆ D ×D is a
binary relation on security domains.

This de�nition of security domains captures the intuition that the information �ow
rules can be described as we have already seen in Section 2.4. We will refer to information
�ow that obeys the partial order ≤ as regular information �ow.

18

3.1 WHERE-Security

Additionally, the mls-; policies use the relation ; between which security domains,
in other words where in the policy, declassi�cations may occur. In opposite to the
partial order ≤, this relation is not required to be re�exive or transitive. The intuition
behind this is that information may only be declassi�ed from domain D1 ∈ D to domain
D2 ∈ D if (D1, D2) ∈;. Since the relation is not transitive and not re�exive this
allows an exact localization of declassi�cations in the policy and follows the idea of
intransitive noninterference from [MS04]. We will refer to information �ow that obeys
; as exceptional information �ow. Furthermore, we will use the in�x notation D1 ; D2

to denote that (D1, D2) ∈;.

Example:

Let pol be the following mls-; policy:
D = {low, high, declass}
low ≤ low, low ≤ high, high ≤ high
high ; declass, declass ; low
dom(hvar) = high
dom(lvar) = low
dom(dvar) = declass.
This policy describes that regular information �ow may
only occur from low to high. Regular information �ow from
high to low, as well as any regular information �ow from or
to declass is not allowed. The relation ; allows exceptional
information �ow from high to declass, but not to low, and
from declass to low. While a direct assignment of high information to a low variable
is not allowed, it is allowed that high information is assigned to a declass variable and
that the information stored in this variable is assigned to a variable of the domain low.

In addition to the localization of the declassi�cations in the policy, a localization in the
program code is desirable. In order to achieve this, the authors of [MR07] introduced
square brackets as a syntactic construct that encloses an assignment to denote that
this assignment may be used for declassi�cation. These brackets are an extension of
the security policy into the program code, because the enclosing of an assignment has
the meaning that declassi�cations are allowed in this assignment. We will call such an
assignment declassi�cation assignment in the rest of the work. With this new construct
the syntax of the MWL changes to the syntax in Figure 5.
Furthermore, the authors of [MR07] extended the semantics of the MWL by adding

rules to capture the new syntactic construct. Figure 6 shows these new semantics rules.
The �rst novelty of those semantics rules is that the executions steps of declassi�ca-

tions use a d as index to distinguish them from the other execution steps in order to
be able to localize the declassi�cations in the semantics. We will call executions steps
of declassi�cations declassi�cation steps and all other executions steps ordinary steps.
Since the semantics rule is bound to the syntax this distinction between ordinary steps
and declassi�cation steps describes where the declassi�cation occurs in the program
code.

19

3.1 WHERE-Security

Com :== Com; Com | skip
| if (Expr) then Com else Com �
| while (Expr) do Com od
| V ar := Expr
| [V ar := Expr]

| fork (Com
−−→
Com)

Figure 5: Grammar for the Multi-threaded While Language with where Exceptions

〈|exp, s|〉 ↓ n sources(expr) = D1 dom(var) = D2

〈| [var:=expr], s|〉_D1→D2
d

〈|〈〉, s⊗ {var = n}|〉
〈|C1, s|〉_D1→D2

d
〈|〈〉, s′|〉

〈|C1;C2, s|〉_D1→D2
d

〈|C2, s′|〉

Figure 6: Operational semantics for threads in the Multi-threaded While Language with
where Exceptions

The rule for declassi�cation assignments says that the memory state should be updated
exactly as in the normal assignments, but additionally we track the domain of the target
variable and the source domains of the expression. Since the information that is assigned
to the target variable depends on the source domains of the expression this describes
where the declassi�cation occurs in the policy.
The rule for sequences on the right side allows us to use declassi�cation steps in

sequences and keeps track of the information that we generated with the help of the left
rule.

3.1.2. De�nition and Intuition of WHERE-Security

The de�nition of WHERE-Security in [MR07] follows the partial equivalence approach
used in STRONG-Security in [SS00].

De�nition 14 WHERE-Security:
A strong (D,;)-bisimulation is a symmetric relation R on thread pools of equal size
that satis�es the entire formula in Figure 7. The relation u;

D is the union of all strong
(D,;)-bisimulations. A program

−→
C has secure information �ow while complying with

the restrictions where declassi�cation can occur if
−→
C u;

D

−→
C holds for all D ∈ D (brief:

−→
C is WHERE-secure or

−→
V ∈WHERE).

If we remove the part after ∨ from the characterization formula in Figure 7 we get
a formula similar to the formula in the de�nition of STRONG-Security. Due to the
disjunction on the right side of the implication, the requirement that the resulting mem-
ory states must be indistinguishable from STRONG-Security is weakened and thereby
declassi�cations are made possible.
The intuition behind the disjunction is that the execution step either does not reveal

information, which is expressed by requiring s′1 =D s′2 as in STRONG-Security, or a

20

3.1 WHERE-Security

∀s1, s2, s′1 : ∀
−→
W 1 : ∀i ∈ {1 . . . n} :

(
−→
C 1R

−→
C 2 ∧ 〈|C1,i, s1|〉_ 〈|

−→
W 1, s

′
1|〉 ∧ s1 =D s2)

=⇒ ∃
−→
W 2 :∃s′2 :

−→
W 1R

−→
W 2 ∧ 〈|C2,i, s2|〉_ 〈|

−→
W 2, s

′
2|〉

∧



s′1 =D s′2

∨


∃D1, {D2} ⊆ D :〈|C1,i, s1|〉_D1→D2

d 〈|
−→
W 1, s

′
1|〉

∧ ∀D1 ∈ D1 : (D1 ≤ D2 ∨D1 ; D2)

∧D2 ≤ D ∧ ∃D′ ∈ D1 : s1 6=D′ s2






Figure 7: Characterization of WHERE-Security with
−→
C i = 〈Ci,1, . . . , Ci,n〉 for i ∈ {1, 2}

declassi�cation step occurred. In the second case the declassi�cation is controlled with
respect to the security policy by the right part of the disjunction in the last four lines
of the formula.
As we have already mentioned, declassi�cations should only occur in declassi�cation

assignments. According to our program semantics, a declassi�cation assignment is re-

solved with a declassi�cation step in the semantics. Hence 〈|C1,i, s1|〉 _D1→D2
d 〈|

−→
W 1, s

′
1|〉

in line 6 of the formula requires that the declassi�cation occurs in a declassi�cation
assignment and thus the declassi�cation occurs in a location in the code where declassi-
�cations are allowed. This restriction of declassi�cations to declassi�cation assignments
results in a control of where in the program code the declassi�cations may occur.

Example:
Let pol be a mls-; policy with:
low ≤ low, low ≤ high, high ≤ high
high ; low
dom(lvar) = low
dom(hvar) = high.

Let
−→
C be a program that contains:

l v a r := hvar

While the security policy allows declassi�cation from security domain high to domain
low, the program is not WHERE-secure, because the declassi�cation does not occur in a
special declassi�cation assignment. Since it is not a declassi�cation assignment, we can
always obtain a counter example by using two states s1 =low s2, but s1(hvar) 6= s2(hvar)
and in consequence s′1 6=low s′2 after executing the assignment. Furthermore, since the
assignment is no special declassi�cation assignment
∃D1, {D2} ⊆ D : 〈|C1,i, s1|〉 _D1→D2

d 〈|C ′1,i, s′1|〉 is not ful�lled and therefore no strong
(D,;)-bisimulation can exist that relates this program to itself.

21

3.1 WHERE-Security

The declassi�cations should not only be restricted with respect to where in the pro-
gram code, but also where in the policy the declassi�cations occur. The semantics for
the declassi�cation steps tell us that D1 must be sources(expr) and therefore contains
all the domains that information in the expression may originate from and that D2 must
be the domain of the target variable dom(var). In consequence, we can say that infor-
mation �ows from the source domains D1 to the target domain D2. According to our
intuition of the mls-; policies we want to allow exceptional information �ow only from
a domain D1 to a domain D2, if D1 ; D2. Intuitively, information �ow that is allowed
in ordinary steps by regular information �ow should also be allowed in declassi�cation
steps. The requirement ∀D1 ∈ D1 : (D1 ≤ D2 ∨D1 ; D2) in line 7 of the characteriza-
tion formula captures the intuition that in a declassi�cation the information �ow should
obey the rules of exceptional and regular information �ow and therefore controls where
in the security policy declassi�cations may occur.

Example:
Let pol be a mls-; policy with:
low ≤ low, low ≤ high, high ≤ high
;= ∅
dom(lvar) = low
dom(hvar) = high

Let
−→
C be a program that contains:

[l v a r := hvar]

This policy does not allow any exceptional information �ow. The declassi�cation
now occurs in a declassi�cation assignment, but the program is not WHERE-secure,
because the information is declassi�ed from high to low and that is not allowed by the
policy. We can construct a counter example similar to the previous counter example.
This time the declassi�cation occurs in a declassi�cation step and thus ∃D1, {D2} ⊆
D : 〈|C1,i, s1|〉 _D1→D2

d 〈|C ′1,i, s′1|〉 can be ful�lled with D1 = {high} and D2 = low, but
∀D1 ∈ D1 : (D1 ≤ D2 ∨ D1 ; D2) can not be ful�lled, since low ≤ high and ;= ∅
and, in consequence, no strong (D,;)-bisimulation can exist that relates this program
to itself.

The last line of thewhere control is not necessary to capture our intuition, but instead
is an additional check for the annotations of the declassi�cation steps. In the language
that we use it is easy to determine the target and the source domains, since the left
hand expression of an assignment is just a variable and the right hand side is just a
combination of variables, but in other languages the determination of these levels could
be harder.
The �rst part of the last line, D2 ≤ D, requires that the target domain is indeed visible

and in consequence the assignment to this domain can render two states distinguishable.
This is an additional check for the annotation that describes the target domain.
The second part of the last line, ∃D′ ∈ D1 : s1 6=D′ s2, requires that the two states

before executing the declassi�cation already were distinguishable for at least one domain

22

3.1 WHERE-Security

in the source domains. Since the states were already distinguishable for a source domain
it is reasonable that an information �ow from this domain to the target domain can
render the states indistinguishable. This is an additional check for the annotation that
describes the source domains.
This property captures our intuition of security and the control of declassi�cation

with respect to the aspect where very closely and therefore we are con�dent that the
property is adequate and faithful to our intuition.

3.1.3. Scheduler-independence of WHERE-Security

After the detailed re�ection of WHERE-Security we want to show that the property is
scheduler-independent with respect to the class of low-secure σ-schedulers in the next
section and therefore is adequate in a multi-threaded setting. The authors of [SS00]
presented an inspiring scheduler-independence proof for STRONG-Security that we can
adapt for WHERE-Security.
We extend the thread pool semantics to include the information about declassi�cations

to be able to distinguish between ordinary scheduler steps and declassi�cation scheduler
steps as we already did in the MWL semantics. The new thread pool semantics can be
found in Figure 8.

〈|Ci, s|〉_o 〈|
−→
W, s′|〉

〈|H, 〈C0 . . . Ci . . . Cn−1〉, s|〉
p→o 〈|H(i, n+ |

−→
W | − 1), 〈C0 . . . Ci−1

−→
WCi+1 . . . Cn−1〉, s′|〉

〈|Ci, s|〉_D1→D2
d 〈|

−→
W, s′|〉

〈|H, 〈C0 . . . Ci . . . Cn−1〉, s|〉
p→
D1→D2

d 〈|H(i, n+ |
−→
W | − 1), 〈C0 . . . Ci−1

−→
WCi+1 . . . Cn−1〉, s′|〉

Figure 8: Semantics of Thread Pools with Declassi�cation

De�nition 15 σ-speci�c WHERE-Security:
A σ-speci�c strong (D,;)-bisimulation is a symmetric relation R on command vectors
of equal size that satis�es the entire formula in Figure 9.The relation u;

D,σ is the union

of all strong σ-speci�c (D,;)-bisimulations. A program
−→
C has secure information �ow

for a given scheduler σ while complying with the restrictions where declassi�cation can
occur if

−→
C u;

D,σ

−→
C holds for all D ∈ D (brief:

−→
C is σ-WHERE-secure or

−→
C ∈

σ −WHERE).

The characterization formula of σ-speci�c WHERE-Security uses the system con�gu-
rations instead of the thread con�gurations that are used in WHERE-Security to include
the scheduling information into the property. The additional information that we gain
by using the system con�gurations are the scheduling histories and the probabilities for
a speci�c thread to be scheduled.

23

3.1 WHERE-Security

∀H1, H2, H
′
1 : ∀
−→
C ′1 : ∀s1, s2, s′1 :

〈|H1,
−→
C 1, s1|〉 → 〈|H ′1,

−→
C ′1, s

′
1|〉 ∧H1 =σ H2 ∧

−→
C 1R

−→
C 2 ∧ s1 =D s2

=⇒∃H ′2 : ∃
−→
C ′2 : ∃s′2 :

〈|H2,
−→
C 2, s2|〉 → 〈|H ′2,

−→
C ′2, s

′
2|〉

(i) ∧



H ′1 =σ H
′
2 ∧
−→
C ′1R

−→
C ′2

∧

s′1 =D s′2 ∨


∃D1, {D2} ⊆ D :〈|H1,

−→
C1, s1|〉_D1→D2

d 〈|H ′1,
−→
C ′1, s

′
1|〉

∧ ∀D1 ∈ D1 : (D1 ≤ D2 ∨D1 ; D2)

∧D2 ≤ D ∧ ∃D′ ∈ D1 : s1 6=D′ s2






(ii) ∧

 ∑
{|p|〈|H1,

−→
C 1, s1|〉 →p 〈|H,

−→
C , s|〉, H ∈ [H ′1]=σ ,

−→
C ∈ [

−→
C ′1]R, s ∈ [s′1]=D |}

=
∑
{|p|〈|H2,

−→
C 2, s2|〉 →p 〈|H,

−→
C , s|〉, H ∈ [H ′2]=σ ,

−→
C ∈ [

−→
C ′2]R, s ∈ [s′2]=D |}


Figure 9: Characterization of σ-speci�c WHERE-Security

We preserve all the requirements of WHERE-Security and transfer them to the system
con�gurations. Our intuition was that the behavior of the program in indistinguishable
con�gurations should be indistinguishable. Since we switched to the system con�gu-
rations, we require σ-equivalence of the histories for the indistinguishability of states,
additionally to the thread pool being in relation with respect to the characterization
formula and D-equivalence of the memory states.
We stick to our intuition that an execution step should preserve the indistinguishability

of the con�gurations or a controlled declassi�cation occurred, but replace the execution
steps with scheduler steps.
Additionally, to the preservation of the intuition that WHERE-Security introduced, we

require that the scheduling does not reveal any further information. Since the scheduler
is modeled as a function that returns a probability distribution for the threads to be
scheduled, we want that these probabilities do not reveal any additional information. In

order to achieve this, we require that a transition from the con�guration 〈|H2,
−→
C 2, s2|〉

into the equivalence class of con�gurations that contains 〈|H ′2,
−→
C ′2, s

′
2|〉 is as probable as

a transition from 〈|H1,
−→
C 1, s1|〉 into the equivalence class of con�gurations that contains

〈|H ′1,
−→
C ′1, s

′
1|〉. In the case where no declassi�cation occurs, the equivalence class that

contains 〈|H ′2,
−→
C ′2, s

′
2|〉 is the same equivalence class as 〈|H ′1,

−→
C ′1, s

′
1|〉, since we require

that H ′1 =σ H
′
2,
−→
C ′1R

−→
C ′2 and s′1 =D s′2. In the case where a declassi�cation occurred

s′1 6=D s′2 holds and therefore the transitions are made into two di�erent equivalence
classes.
Since the characterization formula is recursive, the thread pools in the resulting states

24

3.1 WHERE-Security

must be related under R again and the characterization formula must be ful�lled again.
This in turn leads to the restriction that whenever a declassi�cation step is possible in

〈|H1,
−→
C 1, s1|〉 and therefore removed from

−→
C 1 then a declassi�cation step must be equally

likely in 〈|H2,
−→
C 2, s2|〉 or otherwise a declassi�cation step would be possible in

−→
C ′2, but

not in
−→
C ′1 and therefore

−→
C ′1R

−→
C ′2 would not be be possible.

Since it is possible that di�erent steps lead to indistinguishable con�gurations from
the con�gurations before the step, we use the sum of the probabilities that lead to
the equivalence class of con�gurations and argue that this sum must be equal for both
con�gurations.
This de�nition gives us a scheduler-speci�c property that must be ful�lled in order to

be called secure with respect to this property. We can call WHERE-Security scheduler-
independent, if every program that is WHERE-secure is σ-WHERE-secure for all low-
secure σ-schedulers, too.

Theorem 2 Scheduler-independence of WHERE-Security: If
−→
C is WHERE-

secure, then
−→
C is σ-WHERE-secure for all σ.

−→
C u;

D

−→
C =⇒ ∀σ :

−→
C u;

D,σ

−→
C

Proof Scheduler-independence of WHERE-Security: In order to proof that
WHERE-Security is scheduler-independent, we show that a relation R that ful�lls the
characterization formula of WHERE-Security also ful�lls the characterization formula
of σ-speci�c WHERE-Security for all low-secure schedulers σ. So, if we assume that R

exists, such that
−→
CR
−→
C and R ful�lls the characterization formula of WHERE-Security

given in Figure 7, then the following must hold for R all low-secure schedulers σ, too:

∀H1, H2, H
′
1 : ∀
−→
C ′1 : ∀s1, s2, s′1 :

〈|H1,
−→
C 1, s1|〉 → 〈|H ′1,

−→
C ′1, s

′
1|〉 ∧H1 =σ H2 ∧

−→
C 1R

−→
C 2 ∧ s1 =D s2

=⇒∃H ′2 : ∃
−→
C ′2 : ∃s′2 :

〈|H2,
−→
C 2, s2|〉 → 〈|H ′2,

−→
C ′2, s

′
2|〉

(i) ∧



H ′1 =σ H
′
2 ∧
−→
C ′1R

−→
C ′2

∧

s′1 =D s′2 ∨


∃D1, {D2} ⊆ D :〈|H1,

−→
C1, s1|〉_D1→D2

d 〈|H ′1,
−→
C ′1, s

′
1|〉

∧ ∀D1 ∈ D1 : (D1 ≤ D2 ∨D1 ; D2)

∧D2 ≤ D ∧ ∃D′ ∈ D1 : s1 6=D′ s2






(ii) ∧

 ∑
{|p|〈|H1,

−→
C 1, s1|〉 →p 〈|H,

−→
C , s|〉, H ∈ [H ′1]=σ ,

−→
C ∈ [

−→
C ′1]R, s ∈ [s′1]=D |}

=
∑
{|p|〈|H2,

−→
C 2, s2|〉 →p 〈|H,

−→
C , s|〉, H ∈ [H ′2]=σ ,

−→
C ∈ [

−→
C ′2]R, s ∈ [s′2]=D |}


First, we want to show that (ii) holds. If the left side of the implication is ful-

�lled we know that s1 =D s2 and can deduce s1 =low s2, because low ≤ D holds,

25

3.1 WHERE-Security

since low is the minimum of D with respect to ≤ per de�nition. Using Theorem
1 about the probability equivalence for equivalent histories and states we can deduce
that σ(H1, s1) =σ σ(H2, s2). In combination with the quanti�cation over all the threads
in the thread pools and the requirements on the execution steps in the characterization
formula of WHERE-Security we can deduce that a one-to-one correspondence exists
between the elements of the multi sets and in consequence the sum of the elements of
the multi sets is equal and (ii) is ful�lled.
Second, we want to show that (i) holds. We know from the thread pool semantics

in Figure 8 that the execution step

〈|C1,i, s1|〉_ 〈|
−→
W 1, s

′
1|〉

triggers a scheduler step

〈|H1,
−→
C 1, s1|〉_ 〈|H1(i, n+ |

−→
W 1| − 1, 〈〈C1,0 . . . C1,i−1

−→
W 1C1,i+1 . . . C1,n−1〉, s′1|〉

and deduce that H ′1 = H1(i, n+ |
−→
W 1|−1) and

−→
C ′1 = 〈C1,0 . . . C1,i−1

−→
W 1C1,i+1 . . . C1,n−1〉.

From the characterization formula of WHERE-Security we know that

〈|C2,i, s2|〉_ 〈|
−→
W 2, s

′
2|〉

exists and can use the thread pool semantics again to deduce that this execution step
triggers a scheduler step

〈|H2,
−→
C 2, s2|〉 → 〈|H2(i, n+ |

−→
W 2| − 1), 〈C2,0 . . . C2,i−1

−→
W 2C2,i+1 . . . C2,n−1〉, s′2|〉

and in consequence H ′2 = H2(i, n+ |
−→
W 2| − 1) and

−→
C ′2 = 〈C2,0 . . . C2,i−1

−→
W 2C2,i+1 . . . C2,n−1〉.

From the de�nition of WHERE-Security we know that |
−→
C 1| = |

−→
C 2| = n and |

−→
W 1| =

|
−→
W 2|. In consequence, n+ |

−→
W 1|−1 = n+ |

−→
W 2|−1. From the left side of the implication

we know that H1 =σ H2 and with the De�nition 11 of σ-equivalence, we can conclude
that

H ′1 = H1(i, n+ |
−→
W 1| − 1) =σ H2(i, n+ |

−→
W 2| − 1) = H ′2

We can use the quanti�cation over all threads in the thread pool in the characteriza-
tion formula of WHERE-Security to deduce that all execution steps that can be made
by a single thread ful�ll the characterization formula of WHERE-Security point-wise
and therefore C1,iRC2,i for all i. Furthermore, we know from the the characterization

formula that
−→
W 1R

−→
W 2. Using the quanti�cation over the threads again, we can de-

duce that 〈C1,0 . . . C1,i−1
−→
W 1C1,i+1 . . . C1,n−1〉R〈C2,0 . . . C2,i−1

−→
W 2C2,i+1 . . . C2,n−1〉 which

in turn means
−→
C ′1R

−→
C ′2.

In the case where the resulting memory states are indistinguishable, s′1 =D s′2 we have
the same requirement in WHERE-Security and σ-speci�c WHERE-Security. In the
case where the resulting memory states are distinguishable, we require the existence of

26

3.2 WHAT-Security

an execution step that belongs to a declassi�cation assignment and have the restrictions
de�ned using the information that is calculated in the semantics of the declassi�cation
assignment. According to the thread pool semantics, this declassi�cation step triggers
a scheduler step

〈|H1,
−→
C 1, s1|〉 →D1→D2

d
〈|H1(i, n+ |

−→
W 1| − 1), 〈C1,0 . . . C1,i−1

−→
W 1C1,i+1 . . . C1,n−1〉, s′1|〉

Since D1, D2 are the same as in the execution step and the requirements de�ned on
them are equivalent, the requirements in the characterization formula of σ-speci�c
WHERE-Security are ful�lled, too.
Since the characterization formula of σ-speci�c WHERE-Security is ful�lled for any

arbitrary scheduler, WHERE-Security is scheduler-independent.

�

This is an important result, because we know now that WHERE-Security guarantees
that an attacker may not learn any additional information depending on the scheduler
choice as long as it is a low-secure σ-scheduler. Furthermore, to our knowledge this is the
�rst scheduler-independence result for a security property that allows declassi�cation.
This strengthens our con�dence in the adequacy of the property for multi-threaded
settings and therefore to be a good foundation for our integrated property.

3.2. WHAT-Security

The second property controls declassi�cations with respect to the aspect what may get
declassi�ed. In fact WHAT-Security are two properties that are very closely related,
since they use the same characterization formula. The two properties have subtle, but
very important di�erences in their de�nition. The properties use the bisimulations with
partial equivalence relations approach and look very similar to STRONG-Security with
the exception of declassi�cations being possible.

3.2.1. Integration of what into the Policies and Attacker Model

De�nition 16 Multilevel Security Policy with what Exceptions:
A Multilevel Security Policy with what Exceptions (brief: mls-H policy) is a tuple
(D,≤, dom,H), where (D,≤, dom) is a multilevel security policy and H ⊆ D × Expr
is a set of pairs of security domains and expressions.

This de�nition preserves the possibilities to describe the information �ow rules as we
have already seen in Section 2.4. We will refer to information �ow that obeys ≤ as
regular information �ow.
Additionally, the mls-H policies use the set H to describe what may get declassi�ed.

We call an element of (D, expr) ∈ H an escape hatch. The intuition of an escape hatch
is to denote that an observer is allowed to learn the information that the expression
evaluates to, if the domain D is visible for him. More formally, the observer is allowed

27

3.2 WHAT-Security

to learn n where 〈|expr, s|〉 ⇓ n for a given s, if the domain D is visible for him. The
formal de�nition of an evaluation of an expression shows us explicitly that the evaluation
does not only depend on the expression, but also on the memory state. In consequence,
the information that an attacker learns also relies on the memory state. It is possible
to restrict what not only to the expression, but also to the memory state of a speci�c
execution point. We call those execution points reference points and distinguish between
the initial reference point that is given by the initial memory state and local reference
points that are memory states somewhere during the execution of the program. We call
information �ow that is allowed due to an escape hatch exceptional.

Example:

Let pol be the following mls-H policy:
D = {low, high}
low ≤ low, low ≤ high, high ≤ high
dom(lvar) = low
dom(hvar1) = dom(hvar2) = high
H = {(low, hvar1 + hvar2)}
This policy describes that regular information �ow may oc-
cur from the domain low to the domains low and high and
from the domain high to high. Additionally, the informa-
tion n = hvar1+hvar2 may get declassi�ed to domain low
and therefore this information may �ow exceptionally. The
information stored in hvar1 or hvar2 on the other hand
may not �ow the security domain low individually, since
only the combined information occurs in an escape hatch in H.

Since we explicitly describewhat we allow an observer to learn, we extend the attacker
model to capture this additional information.

De�nition 17 (D,H)-Equality:
Two states s1 and s2 are (D,H)-equal with respect to a security domain D and a set
of escape hatches H (denoted: s1 =H

D s2), if the states are D-equal and all expression
in escape hatches that have a lower domain than D evaluate to equal values.

s1 =
H
D s2 ⇐⇒ s1 =D s2 ∧ ∀(D′, expr) ∈ H :((〈|expr, s1|〉 ⇓ m ∧ 〈|expr, s2|〉 ⇓ n)

=⇒ (m = n))

Since the intuition of the mls-H policies is that an observer is allowed to learn the
values the expressions in escape hatches evaluate to, if the domain of the escape hatch is
visible, an observer is allowed to distinguish D-equal states due to the evaluation of the
expressions in visible escape hatches. In consequence, we partition the set of memory
states not only on the basis of the domains of variables, but also on the evaluated
expressions of visible escape hatches to capture this capability of the attacker.

28

3.2 WHAT-Security

3.2.2. De�nition and Intuition of WHAT-Security

As already mentioned, the authors of [MR07] introduced two di�erent properties WHAT1-
Security and WHAT2-Security that use the partial equivalence relation approach we
already know from STRONG-Security and WHERE-Security.

De�nition 18 WHAT1-Security [MR07]:
A strong (D,H)-bisimulation is a symmetric relation R on command vectors of equal
size that satis�es the formula in Figure 10. The relation uHD is the union of all strong
(D,H)-bisimulations. A program

−→
V has secure information �ow while complying with

the restrictions what can be declassi�ed if ∀D :
−→
V uHD

−→
V

(brief:
−→
V is WHAT1-secure or

−→
V ∈WHAT1).

De�nition 19 WHAT2-Security [MR07]:

A program
−→
V has secure information �ow while complying with the restrictions what

can be declassi�ed if ∀D : ∃H′ ⊆ H :
−→
V uH′

D

−→
V

(brief:
−→
V is WHAT2-secure or

−→
V ∈WHAT2).

∀s1, s2, s′1 : ∀
−→
W 1 : ∀i ∈ {1 . . . n} :

(
−→
C 1R

−→
C 2 ∧ 〈|C1,i, s1|〉_ 〈|

−→
W 1, s

′
1|〉 ∧ s1 =HD s2)

=⇒ ∃
−→
W 2 :∃s′2 : 〈|C2,i, s2|〉_ 〈|

−→
W 2, s

′
2|〉 ∧
−→
W 1R

−→
W 2 ∧ s′1 =HD s′2

Figure 10: Characterization of WHAT-Security with
−→
C i = 〈Ci,1, . . . , Ci,n〉 for i ∈ {1, 2}

The characterization formula that both properties use looks very similar to STRONG-
Security. In fact, the only di�erence are the equivalence classes of memory states that are
used. Where STRONG-Security uses the equivalence classes induced by D-equivalence,
WHAT1-Security and WHAT2-Security use the equivalence classes induced by (D,H)-
equivalence. This captures our intuition, that an observer is allowed to learn the values
the expressions in the escape hatches evaluate to and therefore can distinguish the states
on the basis of this knowledge.
The replacement on the left side of the implication s1 =HD s2 enables the use of

declassi�cation, because (D,H)-equality is stricter and therefore less pairs of resulting
states are constrained by the right side of the implication. The use of the stricter relation
on the left side captures the intuition that an D-observer is allowed to distinguish the
states s1 and s2 either due to the states being not D-equal, or due to the existence of
at least one visible (formally: D′ ≤ D) escape hatch (D′, expr) that does not evaluate
to the same value under both memory states (formally: 〈|expr, s1|〉 ⇓ m ∧ 〈|expr, s2|〉 ⇓
n ∧m 6= n).

29

3.2 WHAT-Security

Example:
Let pol be the following mls-H policy:
D = {low, high}
low ≤ low, low ≤ high, high ≤ high
dom(lvar) = low
dom(hvar1) = dom(hvar2) = high
H = {(low, hvar1 + hvar2)}

Let lvar := hvar1 + hvar2 be part of the program
−→
C . Intuitively, this program line

should not violate the security property, since the declassi�cation of hvar1 + hvar2 to
low is allowed by the policy. In fact, it is not possible to construct a counter example
for this line, because we would require that s1 =HD s2, but s

′
1 6=HD s′2. If s1 =HD s2, we

know that all expressions in escape hatches that may be learned by a D-observer must
evaluate to equal values under s1 and s2 and therefore the assignment in this line would
lead to a state where only the mapping for lvar is changed, but it is changed such that
s′1(lvar) = s′2(lvar) and thus s′1 =

H
D s′2 is ful�lled.

The replacement on the right side of the implication s′1 =HD s′2 introduces a control
of information �ow into the escape hatches. By doing so it restricts the changes in
the memory state such that the equivalence of values from evaluating expressions in
escape hatches is preserved. This captures the intuition that an attacker is not allowed
to distinguish the states after performing an execution step with the knowledge he is
allowed to have, which are the values of the visible variables and the evaluations of the
visible escape hatches, if he could not distinguish the states before the execution step
on this basis. The consequence is that the properties WHAT1-Security and WHAT2-
Security implicitly use an initial reference point.

Example:
Let pol be the following mls-H policy:
D = {low, high}
low ≤ low, low ≤ high, high ≤ high
dom(lvar) = low
dom(hvar1) = dom(hvar2) = high
H = {(low, hvar1 + hvar2)}

Let hvar1 := hvar2 be part of the program
−→
C . Intuitively, this program line should

violate the security property, if we assume initial reference points. A D-observer is
only allowed to learn hvar1+ hvar2 via a declassi�cation, but after the assignment, the
attacker could learn hvar2 instead via a legal declassi�cation lvar := hvar1+hvar2, since
hvar1 = hvar2 and therefore hvar1 + hvar2 = hvar2 + hvar2. Indeed, this program
line violates WHAT1-Security and WHAT2-Security, if a declassi�cation of the form
lvar1 := hvar1 + hvar2 is part of the program. We can construct a counter example
by choosing s1 =D s2 and s1(hvar1) = s2(hvar2) = 0 and s1(hvar2) = s2(hvar1) = 1.
In this case, s1 =Hlow s2 is ful�lled, since s1(hvar1) + s1(hvar2) = 0 + 1 = 1 + 0 =
s2(hvar1) + s2(hvar2), but after executing the assignment hvar1 := hvar2 , we would

30

3.2 WHAT-Security

have s′1(hvar1)+s
′
1(hvar2) = 1+1 6= 0+0 = s′2(hvar1)+s

′
2(hvar2) and in consequence

s′1 6=Hlow s′2.

The properties WHAT1-Security and WHAT2-Security do not di�er in the characteri-
zation formula, but in the set of escape hatches that is used for inducing the equivalence
classes of memory states. While in WHAT1-Security the whole set of escape hatches is
used, which probably contains escape hatches that never occur in the program as de-
classi�cations, WHAT2-Security uses the subset of H that contains only escape hatches
with expressions that actually occur as declassi�cations.

Example:
Let pol be the following mls-H policy:
low ≤ low, low ≤ high, high ≤ high
dom(lowvar) = low
dom(hvar1) = dom(hvar2) = high
H = {(low, hvar1 + hvar2), (low, hvar1 + hvar3)}.

Let
−→
C be the following program:

hvar3 := hvar1
lowvar := hvar1 + hvar2

This program does not ful�ll WHAT1-Security. Assume two states s1 where
s1(lowvar) = s2(lowvar), s1(hvar1) = 0 = s2(hvar2) = s2(hvar3) and s1(hvar2) =
s1(hvar3) = 1 = s2(hvar1). Since s1(hvar1) + s1(hvar2) = 0 + 1 = s2(hvar2) +
s2(hvar1) and s1(hvar1) + s1(hvar3) = 0+ 1 = s2(hvar3) + s2(hvar1) holds, s1 =

H
low s2

is ful�lled. After executing hvar3 := hvar1 we have s′1(hvar3) = 0 and s′2(hvar3) = 1.
In consequence, s′1(hvar1) + s′1(hvar3) = 0 + 0 6= 1+ 1 = s′2(hvar3) + s′2(hvar1) and as
a result s′1 6=Hlow s′2.
However the program ful�lls WHAT2-Security, because the de�nition requires only
∃H′ ⊆ H such that the characterization formula is ful�lled. For our counter example H′
would be H′ = {(low, hvar1 + hvar2)}.

There are two fundamental di�erences that result from the di�erent use of the es-
cape hatch sets. The �rst di�erence is that WHAT1-Security is compositional, but
WHAT2-Security is not, as the we can show by using the previous example as starting
point and de�ne a second program lowvar := hvar1 + hvar3. Both programs individu-
ally would ful�ll WHAT2-Security, but neither a sequential, nor a parallel composition
of the programs would be WHAT2-Security, because we would have to choose H′ = H
and therefore the program would violate WHAT2-Security in the same way it violates
WHAT1-Security. Hence, WHAT2-Security is not compositional.
The second di�erence is that WHAT2-Security obeys the monotonicity of release prin-

ciple from [SS05], which requires that adding a declassi�cation can not render a secure
program insecure, but WHAT1-Security breaks this principle. We can show this with
the previous example, if we chose H to be {(low, hvar1 + hvar2)} in the �rst place, the
program would ful�ll WHAT1-Security, but if we then added (low, hvar1 + hvar3) as

31

3.2 WHAT-Security

an escape hatch and therefore hvar1 + hvar3 as a legal declassi�cation, the program is
insecure as we have seen in the example, thus WHAT1-Security breaks the monotonicity
of release principle.
Since the properties WHAT1-Security andWHAT2-Security are very similar and under

policies that ful�ll the constraint that only escape hatches that are used in the program
are in the set H are even equal, we will talk about WHAT-Security when we mean
WHAT1-Security and WHAT2-Security during the rest of the work.

3.2.3. Scheduler-independence of WHAT-Security

After the detailed re�ection of the intuition and de�nition of WHAT-Security we want
to show that the properties are scheduler-independent with respect to the class of low-
secure σ-schedulers. We will use the scheduler-independence proof for WHERE-Security
from Section 3.1.3 and STRONG-Security as a guideline.
It is possible to use the same scheduler-independence proof for WHAT1-Security and

WHAT2-Security, because the characterization formula of the properties is identical
and in consequence, the constraints on the relation are identical. The di�erence in the
escape hatches can be ignored for the proof since the sets H for WHAT1-Security and
H′ ⊆ H are determined only by the program code and the security policies and not by
the properties.

De�nition 20 σ-speci�c WHAT-Security:
A σ-speci�c (D,H)-bisimulation is a symmetric relation R on command vectors of
equal size that satis�es the entire formula in Figure 11. The relation uHD,σ is the union

of all strong σ-speci�c (D,H)-bisimulations. A program
−→
C has secure information �ow

for a given scheduler σ while complying with the restrictions what may get declassi�ed
if
−→
C uHD,σ

−→
C holds for all D ∈ D

(brief:
−→
C is σ-WHERE-secure or

−→
C ∈ σ −WHAT).

∀H1, H2, H
′
1 : ∀s1, s2, s′1 : ∀

−→
C ′1 :

(
−→
C 1R

−→
C 2 ∧ 〈|H1,

−→
C 1, s1|〉 → 〈|H ′1,

−→
C ′1, s

′
1|〉 ∧H1 =σ H2 ∧ s1 =HD s2)

=⇒∃H ′2 : ∃
−→
C ′2 : ∃s′2 : 〈|

−→
C 2, s2|〉 → 〈|

−→
C ′2, s

′
2|〉

(i) ∧H ′1 =σ H
′
2 ∧
−→
C ′1R

−→
C ′2 ∧ s′1 =HD s′2

(ii) ∧

 ∑
{|p|〈|H1,

−→
C 1, s1|〉 →p 〈|H,

−→
C , s|〉, H ∈ [H ′1]=σ ,

−→
C ∈ [

−→
C ′1]R, s ∈ [s′1]=H

D
|}

=
∑
{|p|〈|H2,

−→
C 2, s2|〉 →p 〈|H,

−→
C , s|〉, H ∈ [H ′2]=σ ,

−→
C ∈ [

−→
C ′2]R, s ∈ [s′2]=H

D
|}


Figure 11: Characterization of σ-speci�c WHAT-Security

32

3.2 WHAT-Security

In order to be able to argue about the scheduling we use the system con�gurations and,
in consequence, the scheduler steps in the characterization formula of σ-speci�c WHAT-
Security. We preserve the requirements of WHAT-Security, but transfer them to the
system con�gurations. Since system con�gurations contain the scheduling histories, we
additionally use σ-equivalence of the histories to describe the indistinguishability of two
con�gurations.
Since we assume that the attacker can estimate the scheduling-properties, for exam-

ple by running the program several times with the same initial memory, we want the
scheduling not to reveal any further information. In order to achieve this, we require that

a transition from 〈|H2,
−→
C 2, s2|〉 into the class of con�gurations that is indistinguishable

from the con�guration 〈|H ′2,
−→
C ′2, s

′
2|〉 is equally likely as a transition from 〈|H1,

−→
C 1, s1|〉 into

the class of con�gurations that is indistinguishable from the con�guration 〈|H ′1,
−→
C ′1, s

′
1|〉.

Since we require H ′1 =σ H
′
2,
−→
C ′1R

−→
C ′2 and s

′
1 =

H
D s′2, the the con�gurations after execut-

ing the step are in the same equivalence class, just like the states before executing the
step where. In consequence, the indistinguishability of the con�gurations is preserved
and furthermore the probability of the execution of the step is equally likely in both
con�gurations. Since the probabilities are equal in both con�gurations the attacker can
not learn any additional information by estimating or learning the probabilities.
This de�nition gives us a scheduler-speci�c property. We call WHAT-Security scheduler-

independent, if every program that is WHAT-secure is σ-WHAT-secure for all low-secure
σ-schedulers, too.

Theorem 3 Scheduler-independence of WHAT-Security:

If
−→
C is WHAT-secure, then

−→
C is σ-WHAT-secure for all σ.

−→
C uHD

−→
C =⇒ ∀σ :

−→
C uHD,σ

−→
C

Proof Scheduler-independence of WHAT-Security: In order to proof that
WHAT-Security is scheduler-independent, we show that a relation R that ful�lls the
characterization formula of WHAT-Security also ful�lls the characterization formula
of σ-speci�c WHAT-Security for all low-secure schedulers σ. So, if we assume that R

exists, such that
−→
CR
−→
C and R ful�lls the characterization formula of WHAT-Security

given in Figure 10, then the following must hold for all low-secure schedulers σ, too:

∀H1, H2, H
′
1 : ∀s1, s2, s′1 : ∀

−→
C ′1 :

(
−→
C 1R

−→
C 2 ∧ 〈|H1,

−→
C 1, s1|〉 → 〈|H ′1,

−→
C ′1, s

′
1|〉 ∧H1 =σ H2 ∧ s1 =HD s2)

=⇒∃H ′2 : ∃
−→
C ′2 : ∃s′2 : 〈|

−→
C 2, s2|〉 → 〈|

−→
C ′2, s

′
2|〉

(i) ∧H ′1 =σ H
′
2 ∧
−→
C ′1R

−→
C ′2 ∧ s′1 =HD s′2

(ii) ∧

 ∑
{|p|〈|H1,

−→
C 1, s1|〉 →p 〈|H,

−→
C , s|〉, H ∈ [H ′1]=σ ,

−→
C ∈ [

−→
C ′1]R, s ∈ [s′1]=H

D
|}

=
∑
{|p|〈|H2,

−→
C 2, s2|〉 →p 〈|H,

−→
C , s|〉, H ∈ [H ′2]=σ ,

−→
C ∈ [

−→
C ′2]R, s ∈ [s′2]=H

D
|}



33

3.2 WHAT-Security

First, we want to show that (ii) holds. If the left side of the implication is ful�lled we
know that s1 =

H
D s2 and can deduce from the de�nition of (D,H)-equality that s1 =D

s2. In consequence, s1 =low s2, because low ≤ D holds, since low is the minimum of D
with respect to ≤ per de�nition. Using Theorem 1 about the probability equivalence
for equivalent histories and states we can deduce that σ(H1, s1) =σ σ(H2, s2). In
combination with the quanti�cation over all the threads in the thread pools and the
requirements on the execution steps in the characterization formula of WHAT-Security
we can deduce that a one-to-one correspondence exists between the elements of the
multi sets and in consequence the sum of the elements of the multi sets is equal and
(ii) is ful�lled.
Second, we want to show that (i) holds. We know from the thread pool semantics

in Figure 4 that the execution step

〈|C1,i, s1|〉_ 〈|
−→
W 1, s

′
1|〉

triggers a scheduler step

〈|H1,
−→
C 1, s1|〉_ 〈|H1(i, n+ |

−→
W 1| − 1, 〈〈C1,0 . . . C1,i−1

−→
W 1C1,i+1 . . . C1,n−1〉, s′1|〉

and deduce that H ′1 = H1(i, n+ |
−→
W 1|−1) and

−→
C ′1 = 〈C1,0 . . . C1,i−1

−→
W 1C1,i+1 . . . C1,n−1〉.

From the characterization formula of WHAT-Security we know that

〈|C2,i, s2|〉_ 〈|
−→
W 2, s

′
2|〉

exists and can use the thread pool semantics again to deduce that this execution step
triggers a scheduler step

〈|H2,
−→
C 2, s2|〉 → 〈|H2(i, n+ |

−→
W 2| − 1), 〈C2,0 . . . C2,i−1

−→
W 2C2,i+1 . . . C2,n−1〉, s′2|〉

and in consequence H ′2 = H2(i, n+ |
−→
W 2| − 1) and

−→
C ′2 = 〈C2,0 . . . C2,i−1

−→
W 2C2,i+1 . . . C2,n−1〉.

From the de�nition of WHAT-Security we know that |
−→
C 1| = |

−→
C 2| = n and |

−→
W 1| =

|
−→
W 2|. In consequence, n+ |

−→
W 1|−1 = n+ |

−→
W 2|−1. From the left side of the implication

we know that H1 =σ H2 and with the De�nition 11 of σ-equivalence, we can conclude
that

H ′1 = H1(i, n+ |
−→
W 1| − 1) =σ H2(i, n+ |

−→
W 2| − 1) = H ′2

We can use the quanti�cation over all threads in the thread pool in the characteri-
zation formula of WHAT-Security to deduce that all execution steps that can be made
by a single thread ful�ll the characterization formula of WHAT-Security point-wise
and therefore C1,iRC2,i for all i. Furthermore, we know from the the characterization

formula that
−→
W 1R

−→
W 2. Using the quanti�cation over the threads again, we can de-

duce that 〈C1,0 . . . C1,i−1
−→
W 1C1,i+1 . . . C1,n−1〉R〈C2,0 . . . C2,i−1

−→
W 2C2,i+1 . . . C2,n−1〉 which

in turn means
−→
C ′1R

−→
C ′2.

The last requirement s′1 =HD s′2 is identical in WHAT-Security and in σ-speci�c
WHAT-Security and therefore is ful�lled in σ-speci�c WHAT-Security, whenever it is
ful�lled in WHAT-Security.

34

3.3 Combined WHERE-Security and WHAT-Security

Since the characterization formula of σ-speci�c WHAT-Security is ful�lled for any
arbitrary scheduler, WHAT-Security is scheduler-independent.

�

The scheduler-independence of WHAT-Security is important, because it means that
WHAT-Security guarantees our intuition of security with controlled declassi�cation with
respect to the aspect what for all low-secure σ-scheduler. This strengthens our con�-
dence in the adequacy of the property for multi-threaded settings and therefore WHAT-
Security is a good foundation for our integrated property.

3.3. Combined WHERE-Security and WHAT-Security

The conjunction of WHERE-Security and WHAT-Security results in a property that
where in the program something is declassi�ed and what is declassi�ed somewhere
in the program. It is now possible to analyze a program with WHERE-Security and
WHAT-Security. Since both properties are scheduler-independent, we can use them to
classify multi-threaded programs as secure that use declassi�cation in a controlled way
and therefore can not be classi�ed as secure with STRONG-Security, since it does not
allow declassi�cations.

De�nition 21 Multilevel Security Policy with where and what Exceptions:
A Multilevel Security Policy with where and what Exceptions (brief: mls-(;,H)
policy) is a tuple (D,≤,;, dom,H) where (D,≤,;, dom) is a mls-; policy and (D,≤
, dom,H) is a mls-H policy.

The mls-(;,H) policies combine the intuitions of the multilevel security policies with
where exceptions and what exceptions.

Example:

Let pol be the following mls-(;,H) policy:
D = {low, high} low ≤ low
low ≤ high
high ≤ high
high ; low
dom(lin) = dom(lout) = low
dom(lcorrectpass) = low
dom(hstoredpw) = high
H = {(low, (lin = hstoredpw))}

35

3.3 Combined WHERE-Security and WHAT-Security

Let
−→
C be the following program:

[l c o r r e c t p a s s := (l i n = hstoredpw)] 1
i f (l o r r e c t p a s s)
then

l ou t := 1
else

l ou t := 0
f i

The program is WHERE-secure, since every declassi�cation occurs in a declassi�cation
assignment and every declassi�cation obeys the rules for information �ow given by ≤
and ;. The program is WHAT-secure, too, since (low, (lin = hstoredpw)) is in the set
of escape hatches H.
This little example program is a simple password check, where the input and output

is modeled with lin and lout. Clearly these variables must be low since an attacker
can directly see the value of the variables. On the other hand the stored password,
represented by hstoredpw should not leak to the attacker and therefore is classi�ed as
high.
The program does not ful�ll STRONG-Security since lcorrectpass is in the domain

low, but depends on hstoredpw. On the other hand the value of hstoredpw is not
leaked to the domain low, but only the value of the expression (linout = hstoredpw)
and therefore we intuitively would consider this program secure.

This example shows that the combination of WHERE-Security and WHAT-Security
allows us to use declassi�cations in a controlled way and captures our intuition of security
better than STRONG-Security in this example program. It seems reasonable to use
WHERE-Security and WHAT-Security as a foundation for developing an integrated
property, in order to be able to determine where in the program what gets declassi�ed.

36

4. Integration of the aspects where and what

After the detailed look on WHERE-Security and WHAT-Security we are con�dent that
these properties capture our intuition very closely. They are scheduler-independent.
These facts make them a good foundation for a novel security property that integrates
the aspects where and what into a single property that is adequate for multi-threaded
settings.

4.1. Motivation for the Integration

Before we introduce the novel property, we want to motivate the decision to integrate
both both aspects into a single property with the help of the following example:

Example:
Let pol be the following mls-(;,H) policy:
low ≤ low, low ≤ high, high ≤ high
high ; low
dom(h1) = dom(h2) = high
dom(l1) = low
H = {(low, h1 + h2), (low, h1)}.

Let P be the following program, where S is a sequence of commands that contains
some output of variable l1:

[l 1=h1+h2] 1
S
[l 1=h1] 2

If we want to know, if an attacker that only sees the output that occurs somewhere
in S can learn the secret value h1, neither the use of WHERE-Security, nor the use of
WHAT-Security can help to answer this question. Even a combination of both properties
does not allow us to restrict a speci�c declassi�cation, in this case (low, h1), to a speci�c
location or set of locations, in this case [l1=h1]2, because WHERE-Security has no
information aboutwhat gets declassi�ed andWHAT-Security has no informationwhere
the declassi�cation occurs.
Furthermore, it would not be possible to change the security policy such that it is

possible to use the properties to determine if output of h1 via l1 occurs in S, because h1
is assigned to l1, but only after S.

As this example shows, in some situations it is useful to know exactly where in the
program what information is declassi�ed, instead of where in the program something
is declassi�ed and additionally know what is declassi�ed somewhere in the program.
Another useful scenario for a more exact localization of declassi�cations would be

in the process of software development, where we assume that the information leak is
not intentionally created, but is introduced due to a programming error. In a large
project, there may exist many declassi�cations in many di�erent threads and over time

37

4.2 Integration of where and what into the Policies and the Language

some more might get introduced during development. In the case, where the program
must be considered insecure after the extension of the program code, one only knows
that either something is declassi�ed, which should not be declassi�ed or somewhere a
declassi�cation occurs, where no declassi�cation should occur.
An integration of both aspects into one single property on the other side would allow

us to specify what information gets declassi�ed where. Thus it would be possible to
point to the location and to the expression that causes the new problem. In consequence,
it is easier to �nd the problematic code and handle the problem by either changing the
code or, if the developer decides that the information �ow is secure, just change the
problematic part of the policy.

4.2. Integration of where and what into the Policies and the

Language

In order to get more detailed information aboutwhat is declassi�edwhere, we introduce
identi�ers for sets of escape hatches. An identi�er is a natural number n ∈ N. We use
Loc ⊆ N to describe the subset of the natural numbers that contains all used identi�ers.

De�nition 22 Multilevel Security Policy with localized what Exceptions:
A Multilevel Security Policy with localized what Exceptions (brief: mls-(;,L)-policy)
is a tuple (D,≤,;, dom,L) where (D,≤,;, dom) is a mls-; policy and L is a function
that maps pairs of domains and expressions to identi�ers L : Loc→ P(D × Expr).

The main di�erence between mls-(;,H) policies and mls-(;,L) policies is that we
use a function instead of the set of escape hatches. We call this function localized
hatches, because the intuition behind this function is that we can use the identi�er to
determine a set of escape hatches that represents the knowledge an observer is allowed
to learn at a speci�c declassi�cation in the program.
While the mls-(;,L) policies do not explicitly contain a set H of all escape hatches,

such a set can be constructed with the conjunction over all sets of localized hatches. We
use H in the rest of the work to denote this set.

Example:

Let pol be the following mls-(;,L) policy:
D = {low, high}
low ≤ low, low ≤ high, high ≤ high
high ; low
dom(lvar) = low
dom(hvar1) = high
dom(hvar2) = high
dom(hvar3) = high
L(1) = {(low, hvar1 + hvar2)}
L(2) = {(low, hvar1 + hvar3)}.

38

4.2 Integration of where and what into the Policies and the Language

The intuition of this policy is that information may �ow regularly from low to high, but
the information �ow from high to low is exceptional and is restricted to hvar1 + hvar2
at location 1 and hvar1 + hvar3 at location 2.
Let
−→
C be the following program:

i f (l v a r) then
[l v a r := hvar1 + hvar2] 1

else
[l v a r := hvar1 + hvar3] 2

f i

Intuitively, this program is secure. While the assignments in line 2 and 4 violate the
regular information �ow rules given by ≤, they occur in a declassi�cation assignment
and obey the exceptional information �ow rules given by ; and L, because high ; low
and (low, hvar1 + hvar2) ∈ L(1), respectively (low, hvar1 + hvar3) ∈ L(2).
This policy does not allow [lvar := hvar1 + hvar2]2 , because (low, hvar1+hvar2) 6∈
L(2).

In order to be able to use the identi�ers to determine special locations in the program
we extend the syntax of the declassi�cation assignments and annotate the closing bracket
of a declassi�cation with a location identi�er loc ∈ Loc. The complete MWL syntax with
localized declassi�cations can be found in Figure 12.

Com :== Com; Com | skip
| if (Expr) then Com else Com �
| while (Expr) do Com od
| V ar := Expr
| [V ar := Expr]Loc

| fork (Com
−−→
Com)

Figure 12: Grammar for the Multi-threaded While Language with localized Exceptions

We require the identi�ers loc ∈ Loc to point to a unique declassi�cation assignment
in the program. It is important to note that the transformation of the program with the
operational semantics may break the uniqueness of the identi�ers, because the unwinding
in the transformation triggered by while can duplicate a declassi�cation assignment.
Since we want a static analysis this does not violate our intuition, because the locations
should be unique in the program code, but not necessarily in the intermediary command
vectors.
In order to be able to use the information of the identi�ers in the security property, we

change the semantics for the declassi�cation assignments to keep track of the identi�ers.
Figure 13 shows the updated MWL semantics.
It is possible to transform a program that uses the declassi�cation assignments without

identi�ers into a program with identi�ers by adding identi�ers to every declassi�cation

39

4.3 De�nition and Intuition of WHERE&WHATlocal-Security

〈|exp, s|〉 ↓ n sources(Exp) = D1 dom(var) = D2

〈| [var:=exp]loc, s|〉_D1→D2
loc 〈|〈〉, s⊗ {var = n}|〉

〈|C1, s|〉_D1→D2
loc 〈|〈〉, s′|〉

〈|C1;C2, s|〉_D1→D2
loc 〈|C2, s′|〉

Figure 13: Operational semantics for threads in the Multi-threadedWhile Language with
localized Exceptions

assignment, such that no identi�er occurs twice. Additionally, we can construct a mls-
(;,L) policy from a mls-(;,H) policy by de�ning ∀loc ∈ Loc : L(loc) = H.
It is possible to construct a program without identi�ers at declassi�cation assign-

ments by just removing the identi�ers at the cost of omitting localization information.
This transformation is necessary in order to use WHERE-Security and WHAT-Security.
Furthermore, if we omit the localization information in the policy, we can construct a
mls-(;,H) policy from a mls-(;,L) policy by using the conjunction of all localized
hatch sets that we already called H earlier in this section.

4.3. De�nition and Intuition of WHERE&WHATlocal-Security

The con�dence in WHERE-Security and WHAT-Security makes those properties a good
foundation for a property that aims at a tighter integration of both aspects where and
what. Since the relation =H

D , that occurs on the left side of the implication in WHAT-
Security, is stricter than the relation =D, that occurs on the right side of the implication
in WHERE-Security, it is reasonable to follow the basic idea of WHERE-Security and
integrate the control for what into this property.

De�nition 23 WHERE&WHATlocal-Security:
A strong (D,;,L)-local-bisimulation is a symmetric relation R on command vectors
of equal size that satis�es the entire formula in Figure 14. The relation (loc u;,L

D) is the
union of all strong (D,;,L)-local-bisimulations. A program

−→
C has secure information

�ow while complying with the restrictions where declassi�cation can occur and what
information may get declassi�ed if

−→
C (loc u;,L

D)
−→
C holds for all D ∈ D

(brief:
−→
C is WHERE&WHATlocal-secure or

−→
C ∈WHERE&WHATlocal).

The basic intuition of WHERE-Security is preserved by using the characterization for-
mula of WHERE-Security. The only change is the additional requirement s1 6=L(loc)D s2
in the case where a declassi�cation occurs. The intuition behind this novel requirement
is that the attacker is allowed to learn the information that we get by evaluating the
expressions in the escape hatches. On basis of this information he could have distin-
guished the states before the execution step. This requirement basically allows the same
declassi�cations as adding its dual, s1 =

L(loc)
D s2, to the left side of the implication,

which captures the basic idea from WHAT-Security, but adding s1 =
L(loc)
D s2 to the left

side of the implication would lead to a formula, where the restrictions that come from
WHERE-Security would not have any impact.

40

4.3 De�nition and Intuition of WHERE&WHATlocal-Security

∀s1, s2, s′1 : ∀
−→
W 1 : ∀i ∈ {1 . . . n} :

(
−→
C 1R

−→
C 2 ∧ 〈|C1,i, s1|〉_ 〈|

−→
W 1, s

′
1|〉 ∧ s1 =D s2)

=⇒ ∃
−→
W 2 :∃s′2 :

−→
W 1R

−→
W 2 ∧ 〈|C2,i, s2|〉_ 〈|

−→
W 2, s

′
2|〉

∧



s′1 =D s′2

∨



∃D1, {D2} ⊆ D : ∃loc ∈ Loc
〈|C1,i, s1|〉_D1→D2

loc 〈|
−→
W 1, s

′
1|〉

∧ ∀D1 ∈ D1 : (D1 ≤ D2 ∨D1 ; D2)

∧D2 ≤ D ∧ ∃D1 ∈ D : s1 6=D1 s2

∧ s1 6=L(loc)D s2







Figure 14: Characterization of WHERE&WHATlocal-Security with
−→
C i = 〈Ci,1 . . . Ci,n〉

for i ∈ {1, 2}

Example:
Let pol be the following mls-(;,L) policy:
D = {low, high}
low ≤ low, low ≤ high, high ≤ high
;= ∅
dom(lvar) = low
dom(hvar1) = dom(hvar2) = high
L(1) = {(low, hvar1 + hvar2)}.

Let
−→
C be the following program:

[l v a r := hvar1 + hvar2] 1

The security policy pol disallows declassi�cations from high to low, because ;= ∅.
The program on the other hand uses a declassi�cation of hvar1 + hvar2. The property

WHERE&WHATlocal-Security is not ful�lled by
−→
C . We construct a counter example

by choosing s1(lvar) = s2(lvar) = 0, s1(hvar1) = s1(hvar2) = s2(hvar1) = 0 and
s2(hvar2) = 1. When looking at the assignment s1 =low s2 holds, but s′1 =low s′2 does
not and in consequence a declassi�cation occurred. The restriction ∀D1 ∈ D1 : (D1 ≤
D2 ∧D1 ; D2) is not ful�lled, because neither ≤ nor ; allow an information �ow from
high to low.
If the property required s1 =

L(loc)
D s2 on the left side of the implication instead of

s1 =D s2 the program would be considered secure, because whenever hvar1 + hvar2
would evaluate to di�erent values under s1 and s2 the precondition of the formula would
not be ful�lled and therefore the complete formula would be ful�lled despite the fact
that ; does not allow any declassi�cation.

41

4.3 De�nition and Intuition of WHERE&WHATlocal-Security

Since the semantics of the declassi�cation assignments keep track of the identi�er, we
can be sure that the correct set of localized hatches is used. Furthermore, the right
side of the implication requires that s1 =D s2 and in consequence, s1 6=L(loc)D s2 must
be caused by an expression from an escape hatch in L(loc) and an observer is allowed
to distinguish the resulting states due to the expression evaluation which we wanted to
declassify intentionally in the �rst place.
Unlike WHAT-Security, this property has no control of information �ow into the

escape hatches. Since there is no control of information �ow into the escape hatches,
the reference point of what may get declassi�ed is the memory state directly before
executing the declassi�cation step. This weakens the security guarantees this property
can give.

Example:
Let pol be the following mls-(;,L) policy:
D = {low, high}
low ≤ low, low ≤ high, high ≤ high
high ; low
dom(lvar) = low
dom(hvar1) = dom(hvar2) = high
L(1) = {(low, hvar1)}.

Let
−→
C be the following program:

hvar1 := hvar2
[l v a r := hvar1] 1

Intuitively, this program should be considered insecure, because we assign the value
of hvar2 to hvar1 and then declassify hvar1 which contains the value of hvar2. Against
the intuition the program is secure with respect to WHERE&WHATlocal-Security, since
the declassi�cation occurs in a declassi�cation assignment, it obeys the security policy
and when reaching the declassi�cation assignment s1 6=LD (1)s2 for every run that started
with two initial memory states where s1(hvar2) 6= s2(hvar2).

This simple example shows how important the reference points for the memory states
are. On the other hand it is to restrictive to require the reference points always to
be the initial memory states, because that would make the handling of run time user
input very cumbersome. The authors of [LM09a] address this problem by introducing
explicit reference points. We assume that it is possible to include the concept of explicit
reference points into this property instead of just restricting the information �ow into
the escape hatches like in WHAT-Security, but this is out of the scope of this work and
therefore left for future work. In this work we stick to the control of information �ow
into the escape hatches.

42

4.4 Controlling the Information Flow into the Escape Hatches

4.4. Controlling the Information Flow into the Escape Hatches

In the last section we have seen that the reference points for the memory states play an
important role. While explicit reference points as in [LM09a] look very promising, the
integration of the explicit reference points is out of the scope of this work and therefore
we stick to the concept of controlling the information �ow into the escape hatches and
leave the reference points implicit. We assume the integration of explicit reference points
can be a achieved by replacing the control of information �ow into the escape hatches
in the characterization formula and therefore this section is not only a presentation of
a property with controlled information �ow into the hatches, but also a guideline for
re�nement in later work.

De�nition 24 WHERE&WHATinitial-Security:
A strong (D,;,L)-initial-bisimulation is a symmetric relation R on command vectors
of equal size that satis�es the entire formula in 15. The relation u;,L

D is the union
of all strong (D,;,L)-initial-bisimulations. A program

−→
C has secure information

�ow while complying with the restrictions where declassi�cation can occur and what
information may get declassi�ed if

−→
C u;,L

D

−→
C holds for all D ∈ D (brief:

−→
C is

WHERE&WHATinitial-secure or
−→
C ∈ WHERE&WHATinitial).

∀s1, s2, s′1 : ∀
−→
W 1 : ∀i ∈ {1 . . . n} :

(〈|C1,i, s1|〉_ 〈|
−→
W 1, s

′
1|〉 ∧
−→
C 1R

−→
C 2 ∧ s1 =D s2)

=⇒ ∃
−→
W 2 :∃s′2 :

−→
W 1R

−→
W 2 ∧ 〈|C2,i, s2|〉_ 〈|

−→
W 2, s

′
2|〉

∧

s
′
1 =D s′2 ∨



∃D1, {D2} ⊆ D : ∃loc ∈ Loc
〈|C1,i, s1|〉_D1→D2

loc 〈|
−→
W 1, s

′
1|〉

∧ ∀D1 ∈ D1 : (D1 ≤ D2 ∨D1 ; D2)

∧D2 ≤ D ∧ ∃D1 ∈ D : s1 6=D1 s2

∧ s1 6=L(loc)D s2






∧ ∀loc ∈ Loc : (s1 =L(loc)D s2 =⇒ s′1 =

L(loc)
D s′2)

Figure 15: Characterization of WHERE&WHATinitial-Security with
−→
C i = 〈Ci,1 . . . Ci,n〉

for i ∈ {1, 2}

We use the characterization formula of WHERE&WHATlocal-Security to control the
regular information �ow and the declassi�cations. Additionally, we want to forbid infor-
mation �ow into the escape hatches that makes indistinguishable states distinguishable
by the evaluation of the expressions in the hatches like it is achieved in WHAT-Security.
As a result, we require that states that where indistinguishable lead to indistinguish-
able states with an execution step. We have already explained that we can not just

43

4.4 Controlling the Information Flow into the Escape Hatches

add s1 =L(loc) s2 on the left side of the implication in Section 4.3 and therefore we can
not use the same structure for the control of information �ow into the hatches as in
WHAT-Security, but we can take the implication that describes the requirement on the
indistinguishability of the states and shift it to the right side of the implication. The
formalization captures the intuition that an observer may not learn any information that
helps him to distinguish the states after the execution step, if he could not distinguish
the states before the step with the same knowledge. Neither the memory states, nor the
escape hatches of every single location in the program should reveal more information
than they did before executing the step.
Instead of using all escape hatches as in WHAT-Security where the formula requires

s1 =
H
D s2 =⇒ s′1 =

H
D s′2, the characterization formula of WHERE&WHATinitial-Security

requires ∀loc ∈ Loc : s1 =
L(loc)
D s2 =⇒ s′1 =

L(loc)
D s′2 for two reasons. The �rst reason

is that we drop H as set of all escape hatches from the policies. More important, the
second reason is that that the use of all escape hatches limits the ability to localize
where information gets declassi�ed, for example in the case where two single variables
get declassi�ed and there exists an assignment at which the information from one variable
�ows to the other.

Example:
Let pol be the following mls-(;,L) policy:
D = {low, high}
low ≤ high
high ; low
dom(lvar1) = dom(lvar2) = low
dom(hvar1) = dom(hvar2) = high
L(1) = {(low, hvar1)}
L(2) = {(low, hvar2)}.
Let
−→
C be a thread pool with the following two threads:

i f (bvar)
then

[l va r1 := hvar1] 1
else

[l va r2 := hvar2] 2
f i

hvar2 := hvar1

It is possible that the information from hvar1 gets declassi�ed at the declassi�cation
assignment with the identi�er 2, since the information from hvar1 is copied to hvar2.
Intuitively, this should render the program insecure, since the policy does only allow the
declassi�cation of hvar2 at declassi�cation assignments with the identi�er 2. The de�ni-
tion of WHERE&WHATinitial-Security classi�es the program as insecure. We can con-
struct a counter example by choosing s1(lvar1) = s1(lvar2) = s2(lvar1) = s2(lvar2) =
s1(hvar2) = s2(hvar2) = s1(hvar1) = 0 and s2(hvar1) = 1. These two memory states

s1 and s2 ful�ll s1 =
L(2)
low s2. The execution step for the assignment hvar2 := hvar1

leads to the two memory states s′1 and s′2 with s′1(hvar2) = 0 6= 1 = s′2(hvar2) and in

consequence s′1 =
L(2)
low s′2 does not hold and ∀loc ∈ Loc : s1 =L(loc)D s2 =⇒ s′1 =

L(loc)
D s′2 is

44

4.5 Scheduler-independence of WHERE&WHATinitial-Security

violated.
If the de�nition used the whole set of escape hatches like WHAT-Security does, the

program would be considered secure, because whenever two states s1 and s2 would di�er
in hvar1 the states would not ful�ll s1 =

H
low s2 and in consequence the right side of the

implication is not needed to hold in order to ful�ll the property.

As this example shows the property does not only allow a localization of the de-
classi�cations, but even reveals the transitive information �ow that can be caused by
assignments to variables that occur in escape hatches.
A closer look at the characterization formulas of WHERE&WHATinitial-Security and

WHAT-Security raises the question why we did not use the restriction of the information
�ow as a second property and then use the conjunction of both properties as it is done
with WHERE-Security and WHAT-Security. The splitting of both requirements into
two properties leaves the problem that required information that may be dynamically
updated would be required to be propagated to both properties which is cumbersome.
While the restriction of information �ow into the escape hatches does not require the
calculation of dynamic information, the explicit reference points from [LM09a] use such
information and as we have already mentioned, we think of this section not only as a
introduction of the novel property, but as a guideline how to introduce controls for the
information �ow into the escape hatches in general and think that the integration of the
explicit reference points is a good starting point for future work.
Furthermore, we think that the integration of the control on the right side of the

implication is a good choice, because it keeps all the requirements that an execution
step must ful�ll on the right side of the implication and therefore we assume that it is
easier to understand the intuition behind the property.
The property WHERE&WHATinitial-Security achieves the same control of declassi-

�cations as WHERE&WHATlocal-Security, but additionally it controls the information
�ow into the escape hatches in a way that captures our intuition for secure information
�ow.
We have seen that WHAT1-Security violates the principle of Monotonicity of release.

The same holds for WHERE&WHATinitial-Security. It would be possible to create a
property in the fashion of WHAT2-Security to circumvent this problem. In order to do
this we need a quanti�cation over all sets of escape hatches and can then adapt the
approach from the de�nition of WHAT2-Security. We want to leave this open for future
work.

4.5. Scheduler-independence of WHERE&WHATinitial-Security

The property WHERE&WHATinitial-Security captures our intuition of con�dentiality
very closely. In order to show that the property is adequate for a multi-threaded setting
we show now that the property is scheduler-independent with respect to the class of the
low-secure σ-schedulers. We follow the same approach as we did with in the scheduler-
independence proof for WHERE-Security and WHAT-Security.
The �rst step is to extend the thread pool semantics to keep track of the identi�ers for

45

4.5 Scheduler-independence of WHERE&WHATinitial-Security

〈|Ci, s|〉_o 〈|
−→
W, s′|〉

〈|H, 〈C0 . . . Ci . . . Cn−1〉, s|〉
p→o 〈|H(i, n+ |

−→
W | − 1), 〈C0 . . . Ci−1

−→
WCi+1 . . . Cn−1〉, s′|〉

〈|Ci, s|〉_D1→D2
loc 〈|

−→
W, s′|〉

〈|H, 〈C0 . . . Ci . . . Cn−1〉, s|〉
p→
D1→D2

loc 〈|H(i, n+ |
−→
W | − 1), 〈C0 . . . Ci−1

−→
WCi+1 . . . Cn−1〉, s′|〉

Figure 16: Semantics of Thread Pools with Identi�ers for Localized Hatches

the localized hatches. Since this information is already present in the MWL semantics
we can just propagate this information to the thread pool semantics. Figure 16 shows
the updated thread pool semantics.

De�nition 25 σ-speci�c WHERE&WHATinitial-Security:
A σ-speci�c strong (D,;,L)-bisimulation is a symmetric relation R on command
vectors of equal size that satis�es the entire formula in Figure 17.The relation u;,L

D,σ

is the union of all strong σ-speci�c (D,;,L)-bisimulations. A program
−→
C has se-

cure information �ow for a given scheduler σ while complying with the restrictions
where declassi�cation can occur if

−→
C u;,L

D,σ

−→
C holds for all D ∈ D (brief:

−→
C is σ-

WHERE&WHATinitial-secure or
−→
C ∈ σ-WHERE&WHATinitial).

The characterization formula uses all the requirements introduced with
WHERE&WHATinitial-Security, but uses the system con�gurations instead of the thread
con�gurations. Due to this change we can now argue about the scheduling. In order to
capture the additional information of the scheduling histories, we require σ-equivalence
for the indistinguishability of con�gurations.
The intuition behind this property is that either the indistinguishability of the states

based only on the D-visible information is preserved, or a declassi�cation occurs. An
occurring declassi�cation must ful�ll the same restriction as in WHERE&WHATinitial-
Security. This means that the declassi�cation obeys the rules for exceptional information
�ow and the two memory states were already distinguishable before performing the step
for at least one domain in the sources and for the domain D with the knowledge of the
evaluated expressions that may get declassi�ed at this declassi�cation assignment due
to the localized hatches.
Additionally, the probability of reaching the class of system con�gurations that is

indistinguishable from the resulting con�gurations is equal for both con�gurations before
the step. It is important to recognize that the equivalence classes of system con�gurations

that are reached with the execution step from 〈|H1,
−→
C 1, s1|〉 and from 〈|H2,

−→
C 2, s2|〉 are

not the same equivalence class in the case where a declassi�cation occurs, just like in
σ-speci�c WHERE-Security. This is captured in (ii) and captures the intuition that
an observer should not be able to distinguish the con�gurations by approximating the
probabilities of an execution step to be performed.

46

4.5 Scheduler-independence of WHERE&WHATinitial-Security

∀H1, H2, H
′
1 : ∀
−→
C ′1 : ∀s1, s2, s′1 :

〈|H1,
−→
C 1, s1|〉 → 〈|H ′1,

−→
C ′1, s

′
1|〉 ∧H1 =σ H2 ∧

−→
C 1R

−→
C 2 ∧ s1 =D s2

=⇒∃H ′2 : ∃
−→
C ′2 : ∃s′2 :

〈|H2,
−→
C 2, s2|〉 → 〈|H ′2,

−→
C ′2, s

′
2|〉

(i) ∧



H ′1 =σ H
′
2 ∧
−→
C ′1R

−→
C ′2

∧

s
′
1 =D s′2 ∨



∃D1, {D2} ⊆ D : ∃loc ∈ Loc :
〈|H1,

−→
C 1, s1|〉_D1→D2

loc 〈|H ′1,
−→
C ′1, s

′
1|〉

∧ ∀D1 ∈ D1 : (D1 ≤ D2 ∨D1 ; D2)

∧D2 ≤ D ∧ ∃D1 ∈ D : s1 6=D1 s2

∧ s1 6=L(loc)D s2






∧ ∀loc ∈ Loc : (s1 =L(loc)D s2 =⇒ s′1 =

L(loc)
D s′2)


(ii) ∧

 ∑
{|p|〈|H1,

−→
C 1, s1|〉 →p 〈|H,

−→
C , s|〉, H ∈ [H ′1]=σ ,

−→
C ∈ [

−→
C ′1]R, s ∈ [s′1]=D |}

=
∑
{|p|〈|H2,

−→
C 2, s2|〉 →p 〈|H,

−→
C , s|〉, H ∈ [H ′2]=σ ,

−→
C ∈ [

−→
C ′2]R, s ∈ [s′2]=D |}


Figure 17: Characterization of σ-speci�c WHERE&WHATinitial-Security

Like in the previous sections we call a property scheduler-independent with respect
to the class of low-secure σ-schedulers, if the property implies that a σ-speci�c property
holds for all low-secure schedulers σ. The WHERE&WHATinitial-Security is scheduler-
independent, because it implies σ-speci�c WHERE&WHATinitial-Security for all sched-
ulers σ.

Theorem 4 Scheduler-independence of WHERE&WHATinitial-Security: If−→
C is WHERE&WHATinitial-secure, then

−→
C is σ-WHERE&WHATinitial-secure for all

σ. −→
C u;,L

D

−→
C =⇒ ∀σ :

−→
C u;,L

D,σ

−→
C

Proof Scheduler-independence of WHERE&WHATinitial-Security: In order
to show that WHERE&WHATinitial-Security is scheduler-independent, we show that a
relation R that ful�lls the characterization formula for WHERE&WHATinitial-Security
also ful�lls the characterization formula of σ-speci�c WHERE&WHATinitial-Security
for all schedulers σ. So, if we assume that R exists, such that R ful�lls the characteri-
zation formula of WHERE&WHATinitial-Security from Figure 15, then the relation R
also ful�lls the characterization formula of σ-speci�c WHERE&WHATinitial-Security
from Figure 17. Let σ be an arbitrary low-secure σ-scheduler. If R ful�lls the charac-
terization formula of WHERE&WHATinitial-Security, the following must hold:

47

4.5 Scheduler-independence of WHERE&WHATinitial-Security

∀H1, H2, H
′
1 : ∀
−→
C ′1 : ∀s1, s2, s′1 :

〈|H1,
−→
C 1, s1|〉 → 〈|H ′1,

−→
C ′1, s

′
1|〉 ∧H1 =σ H2 ∧

−→
C 1R

−→
C 2 ∧ s1 =D s2

=⇒∃H ′2 : ∃
−→
C ′2 : ∃s′2 :

〈|H2,
−→
C 2, s2|〉 → 〈|H ′2,

−→
C ′2, s

′
2|〉

(i) ∧



H ′1 =σ H
′
2 ∧
−→
C ′1R

−→
C ′2

∧

s
′
1 =D s′2 ∨



∃D1, {D2} ⊆ D : ∃loc ∈ Loc :
〈|H1,

−→
C 1, s1|〉_D1→D2

loc 〈|H ′1,
−→
C ′1, s

′
1|〉

∧ ∀D1 ∈ D1 : (D1 ≤ D2 ∨D1 ; D2)

∧D2 ≤ D ∧ ∃D1 ∈ D : s1 6=D1 s2

∧ s1 6=L(loc)D s2






∧ ∀loc ∈ Loc : (s1 =L(loc)D s2 =⇒ s′1 =

L(loc)
D s′2)


(ii) ∧

 ∑
{|p|〈|H1,

−→
C 1, s1|〉 →p 〈|H,

−→
C , s|〉, H ∈ [H ′1]=σ ,

−→
C ∈ [

−→
C ′1]R, s ∈ [s′1]=D |}

=
∑
{|p|〈|H2,

−→
C 2, s2|〉 →p 〈|H,

−→
C , s|〉, H ∈ [H ′2]=σ ,

−→
C ∈ [

−→
C ′2]R, s ∈ [s′2]=D |}


First, we want to show that (ii) holds. If the left side of the implication is ful�lled,

we know that s1 =low s2, because low is de�ned as the minimum of D with respect
to ≤, and H1 =σ H2. Using Theorem 1 about probability equivalence for equivalent
histories and states we can deduce that σ(H1, s1) = σ(H2, s2). In combination with
the quanti�cation over all the threads in the thread pools and the requirement on the
execution steps in the characterization formula of WHERE&WHATinitial-Security we
can deduce that a one-to-one correspondence exists between the elements of the multi
sets and in consequence the sum of the elements of the multi sets is equal and (ii) is
ful�lled.
Second, we want to show that (i) holds. We know from the thread pool semantics

in Figure 16 that the execution step

〈|C1,i, s1|〉_ 〈|
−→
W 1, s

′
1|〉

triggers a scheduler step

〈|H1,
−→
C 1, s1|〉 → 〈|H1(i, n+ |

−→
W 1| − 1), 〈C1,0 . . . C1,i−1

−→
W 1C1,i+1 . . . C1,n−1〉, s′1|〉

and in consequence we can deduce that H ′1 = H1(i, n+ |
−→
W 1| − 1) and

−→
C ′1 = 〈C1,0 . . . C1,i−1

−→
W 1C1,i+1 . . . C1,n−1〉.

From the characterization formula of WHERE&WHATinitial-Security we know that

〈|C2,i, s2|〉_ 〈|
−→
W 2, s

′
2|〉

48

4.5 Scheduler-independence of WHERE&WHATinitial-Security

exists and can use the thread pool semantics again to deduce that this execution step
triggers a scheduler step

〈|H2,
−→
C 2, s2|〉 → 〈|H2(i, n+ |

−→
W 2| − 1), 〈C2,0 . . . C2,i−1

−→
W 2C2,i+1 . . . C2,n−1〉, s′2|〉

and in consequence H ′2 = H2(i, n+ |
−→
W 2| − 1) and

−→
C ′2 = 〈C2,0 . . . C2,i−1

−→
W 2C2,i+1 . . . C2,n−1〉.

From the de�nition of WHERE&WHATinitial-Security we know that |
−→
C 1| = |

−→
C 2| =

n and |
−→
W 1| = |

−→
W 2|. In consequence, n+ |

−→
W 1|− 1 = n+ |

−→
W 2|− 1. From the left side of

the implication we know that H1 =σ H2 and with the De�nition 11 of σ-equivalence,
we can conclude that

H ′1 = H1(i, n+ |
−→
W 1| − 1) =σ H2(i, n+ |

−→
W 2| − 1) = H ′2

We can use the quanti�cation over all threads in the thread pool in the character-
ization formula of WHERE&WHATinitial-Security to deduce that all execution steps
that can be made by a single thread ful�ll the characterization formula point-wise
and therefore C1,iRC2,i for all i. Furthermore, we know from the the characterization

formula that
−→
W 1R

−→
W 2. Using the quanti�cation over the threads again, we can de-

duce that 〈C1,0 . . . C1,i−1
−→
W 1C1,i+1 . . . C1,n−1〉R〈C2,0 . . . C2,i−1

−→
W 2C2,i+1 . . . C2,n−1〉 which

in turn means −→
C ′1R

−→
C ′2

In the case where the resulting memory states are indistinguishable, s′1 =D s′2 we
have the same requirement in WHERE&WHATinitial-Security and σ-speci�c
WHERE&WHATinitial-Security. In the case where the resulting memory states are
distinguishable, we require the existence of an execution step that belongs to a declas-
si�cation assignment and have the restrictions de�ned using the information that is
calculated in the semantics of the declassi�cation assignment. According to the thread
pool semantics, this declassi�cation step triggers a scheduler step

〈|H1,
−→
C 1, s1|〉 →D1→D2

loc 〈|H1(i, n+ |
−→
W 1| − 1), 〈C1,0 . . . C1,i−1

−→
W 1C1,i+1 . . . C1,n−1〉, s′1|〉

Since D1, D2 and loc are the same as in the execution step and the requirements de�ned
on them are equivalent, the requirements in the characterization formula of σ-speci�c
WHERE&WHATinitial-Security are ful�lled, too.
The last part of (i), ∀loc ∈ Loc : (s1 =

L(loc)
D s2 =⇒ s′1 =

L(loc)
D s′2) is equivalent in

both characterization formulas and therefore, if it is ful�lled in WHERE&WHATinitial-
Security, then it is ful�lled in σ-speci�c WHERE&WHATinitial-Security, too.
Since a relation that ful�lls the characterization formula of WHERE&WHATinitial-

Security also ful�lls the characterization formula of σ-speci�c WHERE&WHATinitial-

Security for all schedulers σ,
−→
C u;,L

D

−→
C =⇒ ∀σ :

−→
C u;,L

D,σ

−→
C holds.

�

49

4.6 A Sound Type System

The scheduler-independence of WHERE&WHATinitial-Security makes the property
adequate for multi-threaded settings even in the case where the scheduler is unknown, as
long as it is safe to assume that the scheduler is in the class of low-secure σ-schedulers.
To our knowledge this is the �rst scheduler-independence result for a property that
integrates the control of the aspects where and what that tightly.

4.6. A Sound Type System

A great bene�t of formal security properties is the possibility to show the soundness of
a well found analysis with respect to the security property. Security type systems are
a possible and well understood method to enforce information �ow properties. In this
section we want to present a type system that enforces WHERE&WHATinitial-Security.
Since the basic ideas for controlling information �ow and declassi�cations are similar to
the controls in WHERE-Security and WHAT-Security, we can adapt the type system
from [MR07] to suit the novel WHERE&WHATinitial-Security. The type system in this
section is a safe approximation of WHERE&WHATinitial-Security. That means that it
is stricter than the property and therefore may reject some programs that ful�ll the
property, but it must reject any program that does not ful�ll the property.
According to the MWL semantics, memory state changes are caused by assignments

and declassi�cation assignments. More speci�c, the change in the memory state results
in the mapping of the evaluated value of the expression on the right side of the assignment
to the variable on the right side of the assignment. In consequence, expressions must
be type able in the type system to capture the security requirements of the memory
state changes in the security types. A security type of an expression is a set of security
domains. We require the expressions to be in a pre�x notation for simplicity. Figure 18
shows the type rules for expressions in pre�x notation.

` val : {}
dom(var) = D

` var : {D}
` expr1 : D1 · · · ` exprn : Dn

` op(expr1, . . . , exprn) :
⋃
i∈{1,...,n}Di

Figure 18: Type Rules for Expressions

The intuition behind the typing rules for expressions is to capture the security domains
that the evaluation of the expression relies on. The evaluation of a constant value
val ∈ V al does not depend on any security domain, because the value is a constant in
the program code. The evaluation of a variable var ∈ V ar relies only on the security
domain of the variable and in consequence the security type of a variable as expression is
the set that contains only the security domain of the variable dom(var). The evaluation
of an expression that combines sub expressions with an operator op ∈ Op depends on all
the security domains of the sub expressions

⋃
i∈1,...,nDi. These type rules are equivalent

to the rules in [MR07].
The type rules for expressions capture the intuition behind the function sources(expr).

In consequence, the set returned by the function sources(expr) for a given expression

50

4.6 A Sound Type System

expr equals the security type of the expression expr and vice versa.

De�nition 26 H-Escaped Sources of an Expression:
The function H-escaped sources of an expression (brief: escaped(H, expr)) returns a
set of security domains for an expression expr with respect to a set of escape hatches
H that is calculated as follows:

escaped(H, expr)) =


{D} (D, expr) ∈ H⋃
i∈{1,...,n} escaped(H, expri) expr = op(expr1, . . . , exprn)

{} expr ∈ V al
{dom(var)} expr ∈ V ar

Since we assume that an observer can see information in a domain lower than or equal
to his own domain, this function captures the intuition that escape hatches allow an
attacker to learn this information, even if it relies on information from a domain higher
than his own by removing the source domains for expressions from escape hatches and
replacing them with the domain from the escape hatch.
It is noteworthy that an escape hatch may remove lower domains from the sources and

replace it with the domain from the escape hatch, but the intuition is that an observer
may only learn an expression if all the domains it relies on are lower than or equal to
his own and so this is only a problem if all domains of the escape hatch are lower than
the domain in the escape hatch and thus an observer might learn the information of the
expression regularly, but not with the escape hatch. This is a problem of an inconsistent
security policy, since the purpose of the escape hatches was to allow an observer to learn
additional information, or in other words release the information to domain that is lower
or at least not higher than the source domain.

De�nition 27 Restricted Information Flow into Escape Hatches:
An assignment var := expr has restricted information �ow into escape hatches (brief:
L ↙var expr), if the following holds:

∀loc ∈ Loc : ∀(D′, expr′) ∈ L(loc) : var ∈ vars(expr′) =⇒ (D′, expr) ∈ L(loc)

This de�nition captures the intuition that a subsequent declassi�cation of an expres-
sion that relies on a variable that some information is assigned to must explicitly be
allowed to reveal the information assigned to the variable to capture the transitive in-
formation �ow via the variable.
This restriction of the information �ow into escape hatches requires that the occur-

rence of a variable var in an escape hatch that may be used at a declassi�cation lo-
cation loc can only be used on the left side of an assignment, if the expression on the
ride side of the assignment is allowed to be declassi�ed to the same domain as the
expression that contains the variable from the left side of the assignment. This re-
striction of the information �ow into escape hatches is a safe over approximation of

51

4.6 A Sound Type System

the restriction ∀loc : s1 =
L(loc)
D s2 =⇒ s′1 =

L(loc)
D s′2 in the characterization formula of

WHERE&WHATinitial-Security, because it requires that the localized hatches explicitly
contain the expressions that are assigned to a variable which occurs in a subsequent
declassi�cation and therefore, if two memory states result in di�erent evaluations of the
expressions the localized hatch set that uses the variable the expression is assigned two
renders both states distinguishable and the left side of the implication is not ful�lled for
this location.

Theorem 5 L ↙var expr is a Sound Approximation for an Initial Reference
Point: Let pol be a mls-(;,L) policy. Every assignment var:=expr or declassi�-
cation [var:=expr]loc′ that ful�lls

∀loc ∈ Loc : ∀(D′, expr′) ∈ L(loc) : var ∈ vars(expr′) =⇒ (D′, expr) ∈ L(loc)

also ful�lls the restriction of information �ow into escape hatches

∀loc ∈ Loc : s1 =L(loc)D s2 =⇒ s′1 =
L(loc)
D s′2

in the characterization formula.

Proof L ↙var expr is a Sound Approximation for an Initial Reference Point:
Let var be the left side, expr be the right side of the assignment of the declassi�cation,
let D be arbitrary and let s1 =D s2. According to the semantics of assignments and
declassi�cations s′1 = s1 ⊗ {var = m} and s′2 = s2 ⊗ {var = n} where 〈|expr, s1|〉 ↓ m
and 〈|expr, s2|〉 ↓ n
For every declassi�cation location loc where no escape hatch (D′, expr′) ∈ L(loc)

exists such that the expressions relies on the variable var ∈ vars(expr′), we can use
the de�nition of (D,H)-equality to directly conclude that

s1 =
L(loc)
D s2 =⇒ s′1 =

L(loc)
D s′2

since no expression that may get declassi�ed at those locations is in�uenced by var.
For every declassi�cation location loc where an escape hatch relies on var, var ∈

vars(expr′) holds for the escape hatch that contains expression that rely on var. From
the de�nition of L ↙var expr, we know that

∀loc ∈ Loc : ∀(D′, expr′) ∈ L : var ∈ vars(expr′) =⇒ (D′, expr) ∈ L(loc)

and in consequence at such locations loc an escape hatch (D′, expr) ∈ L(loc) must
exist. We distinguish two cases, where D′ is invisible for D and where D′ is visible for
D.

Case 1 (Invisible Escape Hatch): D′ 6≤ D
Since D′ 6≤ D, due to the premise, the evaluations of the escape hatches may not get
declassi�ed to D and the escape hatch does not ful�ll the requirement D′ ≤ D on the
left side of the implication in the formula for (D,H)-equality. Thus, if s1 =

L(loc)
D s2 is

ful�lled, then also s1 ⊗ {var = m} =L(loc)D s2 ⊗ {var = n} holds.

52

4.6 A Sound Type System

Case 2 (Visible Escape Hatch): D′ ≤ D

If s1 =
L(loc)
D s2 holds for this location and D′ ≤ D, then m = n according to the

de�nition of (D,H)-equality and in consequence s1⊗{var = m} =L(loc)D s2⊗{var = n}.
Since the information �ow restriction is ful�lled in both cases

∀loc ∈ Loc : s1 =L(loc)D s2 =⇒ s1 ⊗ {var = m} =L(loc)D s2 ⊗ {var = n}

holds and L ↙var expr is a safe approximation of the information �ow restriction into
escape hatches for an initial reference point.

�

We can now use these de�nitions to create a type system that is a safe over approxi-
mation of WHERE&WHATinitial-Security.

` skip
` C `

−→
V

` fork(C
−→
V)

` C0 · · · ` Cn−1
` 〈C0 . . . Cn−1〉

` C1 ` C2

` C1;C2

` B : {low} ` C
` while B do C od

` C1 ` C2 ` B : D′ ∀D ∈ D : (∃D′ ∈ D′ : D′ 6≤ D) =⇒ C1 u;,L
D C2

` if B then C1 else C2

` expr : D′ ∀D′ ∈ D : D ≤ dom(var) L ↙var expr

` var := expr

` expr : D′ ∀D′ ∈ D′ : D(≤ ∪;)dom(var)
L ↙var expr ∀D′′ ∈ escaped(L(loc), expr) : D′′ ≤ dom(var)

[var := expr]loc

Figure 19: Type Rules for MWL Command Vectors

The command skip does not reveal any information, because it does neither have an
in�uence on the memory state nor on the control �ow of the program and therefore it
is always type able.

The command fork(C
−→
V), as well as parallel and sequential composition of com-

mands do only in�uence the memory state and the program vectors by the commands
they contain and in consequence are type able, if the commands they contain are type
able.
The while loops in�uence the information �ow via the control �ow of the program.

The expression guarding the while loop is restricted to low, because even if no assign-
ment or declassi�cation occurs in the loop, the termination of the loop might still leak
information about the guarding expression.

Example:
Let pol be the following mls-(;,L) policy:

53

4.6 A Sound Type System

D = {low, high}
low ≤ low, low ≤ high, high ≤ high
;= ∅
dom(hvar) = high
L(1) = ∅

Let
−→
C be the following program:

while (hvar > 0)
do

skip
od

Even with no assignment in the loop and therefore no change of the memory state in
the loop, this program is intuitively insecure, because it only terminates for hvar ≤ 0 and
in consequence reveals this high information to every observer. The resulting command
vectors reveal this problem. Executing a step in a state s1 where s1(hvar) = 0 results
in the command vector 〈〉, whereas executing a step in a state s2 where s2(hvar) = 1
results in the command vector skip; while (hvar > 0) do skip od. In these two vectors
no bisimulation of the execution steps is possible.

An assignment is type able, if the expression that is assigned to the variable consists
only of variables which may �ow regularly to the domain of the variable. Additionally
the information �ow into the escape hatches must be restricted as given by the De�nition
27.
A declassi�cation is type able, if the expression that is assigned to the variable consists

only of information that may �ow either regularly or exceptionally to the domain of the
variable. Furthermore, the information �ow into the escape hatches must be restricted as
given by the De�nition 27 just like in regular assignments. Additionally, the expression
may not reveal any information that may not be revealed at this point. This requirement
is formalized with the condition that all the domains in escaped(L(loc), expr) must be
lower than or equal to the domain of the variable.
The type rule for if branchings is a special case. The information �ow that it causes

is not explicit like in the assignments and declassi�cations, but implicit in the control
�ow. If the evaluation of the expression relies on information that an observer might
not see, both branches must look equal with respect to WHERE&WHATinitial-Security
to him, because otherwise the observer can learn information about the guard which
he is not allowed to learn. In consequence, we require that for any observer that is no
allowed to see some of the information the guarding expression relies on both branches
look equal. We formalize this requirement with the help of the type of the expression
and the help of u;,L

D .

Theorem 6 Soundness of the Type System: Let
−→
C be a MWL program. If

−→
C is

type able with respect to the type rules, then the program
−→
C is WHERE&WHATinitial-

secure.

Proof Soundness of the Type System: In order to show that the type ability of

54

4.6 A Sound Type System

the program
−→
C implies that

−→
C is WHERE&WHATinitial-secure, we need to show that

∀D ∈ D :
−→
C u;,L

D

−→
C holds whenever

−→
C is type able. We can use an induction over

the structure of MWL command vectors.
We distinguish the cases by the last applied rule, where the cases for skip, as-

signments and declassi�cations form the induction basis. Since the characterization
formula has the requirement s1 =D s2 on the left side of the implication, all cases
where s1 6=D s2 automatically ful�ll the characterization formula and need no further
analysis and therefore we assume in the reminder s1 =D s2 if not mentioned otherwise.

skip:

` skip

A skip is always type able. Let s1 =D s2 be arbitrary. According to the semantics of
skip the execution steps have the form:

〈|skip, s1|〉_o 〈|〈〉, s1|〉

〈|skip, s2|〉_o 〈|〈〉, s2|〉

Since no change is made to the memory state, we can directly conclude that the restric-
tion of information �ow into escape hatches ∀loc ∈ Loc : s1 =L(loc)D s2 =⇒ s′1 =

L(loc)
D s′2

is ful�lled. In addition 〈〉 u;,L
D 〈〉 holds and the right side of the implication in the

characterization formula is ful�lled. Hence skip u;,L
D skip holds.

Assignments:

` expr : D′ ∀D′ ∈ D : D ≤ dom(var) L ↙var expr

` var := expr

Let s1 =D s2 be arbitrary. According to the semantics of assignments the execution
steps have the form:

〈|var := expr, s1|〉_o 〈|〈〉, s1 ⊗ {var = m}|〉

〈|var := expr, s2|〉_o 〈|〈〉, s2 ⊗ {var = n}|〉

Furthermore, from the premise of the semantic rule, we know that 〈|expr, s1|〉 ↓ m and
〈|expr, s2|〉 ↓ n.
We must distinguish two cases. Either the assignment is to an invisible variable or

it is to a visible variable.

55

4.6 A Sound Type System

Case 1 (Invisible Assignment): dom(var) 6≤ D
Since dom(var) 6≤ D we can conclude from the de�nition of D-equality that s1 =D

s1 ⊗ {var = m} and s2 =D s2 ⊗ {var = n}. Using the transitivity of D-equality, we
can conclude that s1 ⊗ {var = m} =D s2 ⊗ {var = n}.
Since L ↙var expr is a safe approximation for the information �ow into the escape

hatches and since 〈〉 u;,L
D 〈〉, we get as a result that var := expr u;,L

D var := expr.

Case 2 (Visible Assignment): dom(var) ≤ D
From the premise of the type rule we know that the type of the expression is D′ and
in combination with the premise ∀D′ ∈ D : D′ ≤ dom(var) and the type rules for
expressions we know that dom(var′) ≤ dom(var) for every var′ ∈ vars(expr). Using
the transitivity of ≤ we can conclude with the premise of this case that dom(var′) ≤ D
for every var′ ∈ vars(expr). With that knowledge we can conclude that 〈|expr, s1|〉 ↓ m
and 〈|expr, s2|〉 ↓ n implies that m = n for every two states that ful�ll s1 =D s2. Using
the de�nition of D-equality, we can conclude that s1⊗{var = m} =D s2⊗{var = n}.
Since L ↙var expr is a safe approximation for the information �ow into the escape

hatches and since 〈〉 u;,L
D 〈〉, we get as a result that var := expr u;,L

D var := expr.

Declassi�cations:

` expr : D′ ∀D′ ∈ D′ : D(≤ ∪;)dom(var)
L ↙var expr ∀D′′ ∈ escaped(L(loc), expr) : D′′ ≤ dom(var)

[var := expr]loc

Let s1 =D s2 be arbitrary. According to the semantics of declassi�cation the execution
steps have the form:

〈| [var:=expr]loc, s1|〉_D1→D2
loc 〈|〈〉, s1 ⊗ {var = m}|〉

〈| [var:=expr]loc, s2|〉_D1→D2
loc 〈|〈〉, s2 ⊗ {var = n}|〉

where 〈|expr, s1|〉 ↓ m and 〈|expr, s2|〉 ↓ n.
We must distinguish two cases. Either the declassi�cation is to an invisible variable

or it is to a visible variable.

Case 1 (Invisible Declassi�cation): dom(var) 6≤ D
This case is analogous to the case for invisible assignments.

Case 2 (Visible Declassi�cation): dom(var) ≤ D
In this case we must distinguish two sub cases, where the evaluation of the expression
is either equal in both states, or the evaluation di�ers in both states.

Case 2.1 (Equal Evaluation): ∀s1 =D s2 : 〈|expr, s1|〉 ↓ m ∧ 〈|expr, s2|〉 ↓ n ∧m = n
Due to the premise of this case m = n and with the de�nition of D-equality s1⊗{var =
m} =D s2 ⊗ {var = n}.
Since 〈〉 u;,L

D 〈〉 and L ↙var expr is a safe approximation for the information �ow
into the escape hatches [var := expr]loc u;,L

D [var := expr]loc holds.

56

4.6 A Sound Type System

Case 2.2 (Di�erent Evaluation): ∃s1 =D s2 : 〈|expr, s1|〉 ↓ m∧〈|expr, s2|〉 ↓ n∧m 6= n

According to the semantics ∃D1, {D2} ∈ D : ∃loc ∈ Loc : 〈|C1,i, s1|〉_D1→D2
loc 〈|

−→
W, s′1|〉 is

ful�lled with
−→
W = 〈〉 and s′1 = s1 ⊗ {var = m}.

Furthermore, according to the semantics D1 = sources(expr), which is captured by
the type of the expression, and D2 = dom(var). Due to the restriction of the type
rule ∀D′ ∈ D′ : D′(≤ ∪ ;)dom(var), ∀D1 ∈ D1 : (D1 ≤ D2 ∨ D1 ; D2 from the
characterization formula is ful�lled.
Since it is a visible declassi�cation we know that dom(var) ≤ D and conclude from

D2 = dom(var) that D2 ≤ D is ful�lled.
From the premise of this case we know that 〈|expr, s1|〉 ↓ m ∧ 〈|expr, s2|〉 ↓ n and

thus there must be a var′ ∈ vars(expr), such that s1(var
′) 6= s2(var

′) and due to
the de�nition of the expression types dom(var′) ∈ D1 and in consequence ∃D1 ∈ D1 :
s1 6=D′ s2 holds.
Since s1 =D s2, but ∃D1 ∈ D1 : s1 6=D1 s2, we can conclude that there exists an D1 ∈
D1 where D1 6≤ D, but from the premise of the type rule ∀D′′ ∈ escaped(L(loc), expr) :
D′′ ≤ dom(var) and the de�nition of escape(L(loc), expr) that for every var′ ∈
vars(expr) which ful�lls dom(var′) 6≤ dom(var) and escape hatch (D′′, expr′) must
exist in L(loc), such that D′′ ≤ dom(var) and expr′ ∈ subexpressions(expr). In com-
bination with the fact that there exists at least one variable var′ ∈ vars(expr) with
dom(var′) 6≤ D and in consequence dom(var′) 6≤ dom(var) due to the premise of the
visible declassi�cation, there must be an escape hatch with an expr′ that relies on this
variable and in consequence 〈|expr′, s1|〉 ↓ o and 〈|expr′, s2|〉 ↓ p with o 6= p. With the
de�nition of (D,H)-equality s1 6=LD s2 is ful�lled.
Since L ↙var expr is a safe approximation for the information �ow into the escape

hatches and 〈〉 u;,L
D 〈〉 holds, [var := expr]loc u;,L

D [var := expr]loc holds, too.

if Branching:

` C1 ` C2 ` B : D′ ∀D ∈ D : (∃D′ ∈ D′ : D′ 6≤ D) =⇒ C1 u;,L
D C2

` if B then C1 else C2

We have to distinguish two cases for if branchings. In the �rst case the guarding
expression evaluates to equal values for all states D-equal states and in the second case
the guarding expression may evaluate to di�erent values for D-equal states.

Case 1 (Equal Evaluation): ∀s1 =D s2 : 〈|B, s1|〉 ↓ m ∧ 〈|B, s2|〉 ↓ n ∧m = n
Let 〈|B, s1|〉 ↓ True. From the premise of this case we know that 〈|B, s2|〉 ↓ True, too.
According to the semantics of if , the execution steps have the form

〈| if B then C1 else C2 �, s1|〉_o 〈|C1, s1|〉

〈| if B then C1 else C2 �, s2|〉_o 〈|C1, s2|〉

Since the memory state does not change, s1 =D s2 still holds and the restriction of
information �ow into the escape hatches is ful�lled. Furthermore, from the premise

57

4.6 A Sound Type System

of the type rule, we know that
−→
C 1 is type able and conclude with the induction hy-

pothesis that
−→
C u;,L

D

−→
C holds and in consequence if B then C1 else C2 � u;,L

D

if B then C1 else C2 � holds. The argument is analogous for 〈|B, s1|〉 ↓ False.
Case 2 (Di�erent Evaluation): ∃s1 =D s2 : 〈|B, s1|〉 ↓ m ∧ 〈|B, s2|〉 ↓ n ∧m 6= n
Let 〈|B, s1|〉 ↓ True. From the premise of this case we know that 〈|B, s2|〉 ↓ False.
According to the semantics of if , the execution steps have the form:

〈| if B then C1 else C2 �, s1|〉_o 〈|C1, s1|〉

〈| if B then C1 else C2 �, s2|〉_o 〈|C2, s2|〉

Since s1 =D s2, but 〈|B, s1|〉 ↓ True and 〈|B, s2|〉 ↓ False, we know that there must be
at least one var ∈ vars(B) with dom(var) 6≤ D. According to the premise ∀D ∈ D :
∃D′ ∈ D′ : D′ 6≤ D =⇒ C1 u;,L

D C2 of the type rule, C1 u;,L
D C2 must hold, because

D ful�lls the left side of the implication of this requirement. Since the executions
step did not change the memory state s1 =D s2 still holds and the restriction of
information �ow into escape hatches is ful�lled. As result if B then C1 else C2 �
u;,L
D if B then C1 else C2 � holds. The argument is analogous for 〈|B, s1|〉 ↓

False.

while Loops:

` B : {low} ` C
` while B do C od

According to the premise of the type rule the type of the guarding expression B must
be {low} and in consequence B can only rely on variables from the domain low. Since
low is the minimum of D with respect to ≤, ∀D ∈ D : low ≤ D. In consequence, for
all memory states s1 and s2 that ful�ll s1 =D s2 the guarding expression evaluates to
equal values. According to the premise of the type rule, C must be type able and in
consequence C u;,L

D C.
We must distinguish two cases. In the �rst case the guard evaluates to False and in

the second case the guard evaluates to True.

Case 1 (Guard evaluates to False): 〈|B, s1|〉 ↓ False ∧ 〈|B, s2|〉 ↓ False
According to the semantics, the execution steps have the following form:

〈|while B do C od, s1|〉_o 〈|〈〉, s1|〉

〈|while B do C od, s2|〉_o 〈|〈〉, s2|〉

Since the memory states are not changed, the information �ow into the escape hatches
is ful�lled and s1 =D s2 still holds. In addition 〈〉 u;,L

D 〈〉 and in consequence
while B do C od u;,L

D while B do C od holds.

58

4.6 A Sound Type System

Case 2 (Guard evaluates to True): 〈|B, s1|〉 ↓ True ∧ 〈|B, s2|〉 ↓ True
According to the semantics, the execution steps have the following form:

〈|while B do C od, s1|〉_o 〈|C;while B do C od, s1|〉

〈|while B do C od, s2|〉_o 〈|C;while B do C od, s2|〉

The resulting command is a sequence. From the premise of the type rule we know that
C is type able and with the induction hypothesis can conclude that C u;,L

D C holds.
According to the semantics of sequences the execution step for the sequence is

〈|C;while B do C od, s1|〉〈|while B do C od, s′1|〉

〈|C;while B do C od, s2|〉〈|while B do C od, s′2|〉

Since C u;,L
D C, we can conclude that the restriction of information �ow into escape

hatches is preserved in this command and that s′1 and s′2 ful�ll the requirements for
WHERE&WHATinitial-Security.
Since the loop body C remains the same in all iteration of the loop, C u;,L

D C always
holds and if the loop �nally terminates case 1 is ful�lled. Thus while B do C od
u;,L
D while B do C od holds.

fork:

` C `
−→
V

` fork(C
−→
V)

According to the semantics of fork the execution steps have the form:

〈|fork(C
−→
V), s1|〉_o 〈|C

−→
V , s1|〉

〈|fork(C
−→
V), s2|〉_o 〈|C

−→
V , s2|〉

The premise of the type rule require that C is type able and that
−→
V is type able. With

the induction hypothesis we can conclude that C u;,L
D C and

−→
V u;,L

D

−→
V hold. Using

the unwinding of command vectors in the characterization formula we can conclude

that
−→
V u;,L

D

−→
V holds point-wise, too. Using this unwinding again, we can conclude

that C
−→
V u;,L

D C
−→
V .

Since the memory state is unchanged the information �ow into the escape hatches is

ful�lled and s1 =D s2 still holds. In consequence, fork(C
−→
V) u;,L

D fork(C
−→
V) holds.

59

4.6 A Sound Type System

Sequence of Commands:

` C1 ` C2

` C1;C2

According to the semantics of sequences the execution steps have the form:

〈|C1;C2, s1|〉_ 〈|C2, s
′
1|〉

〈|C1;C2, s1|〉_ 〈|C2, s
′
1|〉

where _ is either _o or _D1→D2
loc . The premise of the type rule requires that C1 and

C2 to be type able and with the induction hypothesis we can conclude that C1 u;,L
D C1

and C2 u;,L
D C2.

Since C1 u;,L
D C1 holds, we can conclude that the restriction of information �ow is

ful�lled in this execution step and that either s′1 =D s′2 or the restrictions for declassi-
�cation are ful�lled. In combination with C2 u;,L

D C2, the characterization formula is
ful�lled in any case and thus C1;C2 u;,L

D C1;C2 holds.

Parallel Commands:

` C0 · · · ` Cn−1
` 〈C0 . . . Cn−1〉

The premise of the type rule for parallel commands requires that each of the parallel
commands is type able and in combination with the induction hypothesis Ci u;,L

D Ci for
all i ∈ {0, . . . , n−1}. Using the unwinding of command vectors in the characterization
formula we can conclude that 〈C0 . . . Cn−1〉 u;,L

D 〈C0 . . . Cn−1〉.

�

Now we have seen that the type system is sound with respect to WHERE&WHATinitial-
Security, but one open problem remains. The type rule for if branchings has a semantic
side condition that relies on the de�nition of WHERE&WHATinitial-Security in order
to prevent information about the guard to be leaked via the di�erent commands of the
then branch and the else branch. This semantic side condition renders the type sys-
tem undecidable. The authors of [MS04] use safe approximation relations based on the
syntax of the programs to solve the problem of undecidability of such semantic side
conditions. We use this approach to make the type system decidable and adapt the
De�nition of Non k-Visible Equality to take the escape hatches into account.

De�nition 28 Safe Approximation Relation:
A family {RLD}D∈D,L is a localized hatches function of relations on commands is a safe approx-
imation relation if whenever two WHERE&WHATinitial-secure commands C1 and C2

are related to each other C1(R
L
D)C2 with respect to the security domain D ∈ D and a

function of localized hatches L then ∀D′ ∈ D : D 6≤ D′ =⇒ C1 u;,L
D′ C2 holds.

60

4.6 A Sound Type System

De�nition 29 Non D-Visible Equality with Localized Hatches L:
Let D ∈ D be a security domain and L be a function of localized hatches. Non D-visible
equality with localized hatches L (brief: ∼LD) is a congruence relation (transitive,
re�exive and symmetric) on commands that ful�lls the following rules:

D ≤ dom(var) 6 ∃loc ∈ Loc : ∃(D′, expr′) ∈ L(loc) : var ∈ vars(expr′) ∧D′ ≤ D

var := expr ∼LD skip

D ≤ dom(var) 6 ∃loc ∈ Loc : ∃(D′, expr′) ∈ L(loc) : var ∈ vars(expr′) ∧D′ ≤ D

[var := expr] loc′ ∼LD skip

Theorem 7 Non D-Visible Equality with L is a Safe Approximation Rela-
tion: The family of relations ∼LD is a safe approximation relation of u;,L

D .

Proof Non D-Visible Equality with L is a Safe Approximation Relation:
This proof is almost similar to the proof for Non k-Visible Equality [MS04] and was
inspired by the proof in [Rei06]. The di�erences are in those execution steps that
change the memory state and therefore may violate the restriction of information �ow
into escape hatches. Let C1 and C2 be two WHERE&WHATinitial-secure commands.
We will use an induction over the smallest number of steps to deduce C1 ∼LD C2 with
the rules that we explicitly present in the proof to show that

∀D′ ∈ D : D′ ≤ D =⇒
−→
C 1 u;,L

D′
−→
C 2 holds.

Let D′ ≤ D be arbitrary security domains. We distinguish the cases by the last
applied rule, where the rules for invisible assignments, declassi�cations and re�exivity
form the induction basis.

Invisible Assignments:

D ≤ dom(var) 6 ∃loc ∈ Loc : ∃(D′, expr′) ∈ L(loc) : var ∈ vars(expr′) ∧D′ ≤ D

var := expr ∼LD skip

Let s1 =D′ s2 be arbitrary memory states. Let 〈|
−→
C ′1, s

′
1|〉 be the thread con�guration

after performing the execution step of the assignment

〈|var := expr, s1|〉_o 〈|
−→
C ′1, s

′
1|〉

According to the semantics,
−→
C ′1 = 〈〉 and s′1 = s1 ⊗ {var = n}.

Since D ≤ dom(var) and D 6≤ D′, we know that dom(var) 6≤ D′ and in consequence
s1 =D′ s′1 and using s1 =D′ s2 and the transitivity of =D′ we can conclude that s′1 =D s2.
The semantics of the execution step for skip is

〈|skip, s2|〉_o 〈|〈〉, s2|〉

Since 〈〉 u;,L
D 〈〉 and s′1 =D s2, we only need to show that

∀loc ∈ Loc : s1 =L(loc)D′ s2 =⇒ s′1 =
L(loc)
D′ s′2 holds. This follows from the second premise

of the rule, because no escape hatch with an expression that contains the variable var

61

4.6 A Sound Type System

may exist that allows a declassi�cation to a domain D′′ ≤ D and thus D′′ ≤ D′. In
consequence, every escape hatch that relies on var has no in�uence on the (D′, H)-
equivalence of memory states, even if the escape hatch is in the set H.
As result, var := expr ≈;,L

D′ skip holds.

Invisible Declassi�cation:

D ≤ dom(var) 6 ∃loc ∈ Loc : ∃(D′, expr′) ∈ L(loc) : var ∈ vars(expr′) ∧D′ ≤ D

[var := expr] loc′ ∼HD skip

The proof is analog to the proof for invisible assignments.

Re�exivity:
C1 = C2

C1 ∼LD C2

Since we require that C1 is WHERE&WHATinitial-secure, C1 u;,L
D C2 follows directly

from the de�nition of WHERE&WHATinitial-Security.

Symmetry:
C1 ∼LD C2

C2 ∼LD C1

According to the induction hypothesis we can deduce from C1 ∼LD C2 that C1 u;,L
D′ C2

and with the symmetry of u;,L
D′ also C2 u;,L

D′ C1.

Transitivity:
C1 ∼LD C3 C3 ∼LD C2

C1 ∼LD C2

According to the induction hypothesis we can deduce from C1 ∼LD C3 that C1 u;,L
D′ C3

and from C3 ∼LD C2 that C3 u;,L
D′ C2. With the transitivity of u;,L

D′ we can deduce

that C1 u;,L
D′ C2.

Sequences:
C1 ∼LD C ′1 C2 ∼LD C ′2
C1;C2 ∼LD C ′1;C

′
2

According to the induction hypothesis we can deduce from the premise of the rule that
C1 u;,L

D′ C ′1 and C2 u;,L
D′ C ′2. According to the semantics of sequences

〈|C1;C2, s1|〉_ 〈|
−→
C , s|〉

we must distinguish three di�erent cases.

Case 1:
〈|C1, s1|〉_o 〈|〈〉, s2|〉

Due to the premise of this case:
−→
C = C2.

Since C1 u;,L
D′ C ′1, we know that a memory state s′ exists, such that 〈|C ′1, s′1|〉 →o 〈|〈〉, s′|〉

62

4.6 A Sound Type System

and s =D′ s′ as well as the localized hatch sets do not reveal more information than
before the transition due to ∀loc ∈ Loc : s1 =

L(loc)
D′ s2 =⇒ s =

L(loc)
D′ s′. Using the

semantics of sequences again,

〈|C ′1;C ′2, s′1|〉_o 〈|C ′2, s′|〉

and due to the premise for sequences C2 u;,L
D′ C ′2. Since the intermediary commands

and the intermediary states ful�ll the condition for u;,L
D′ , C1;C2 u;,L

D′ C ′1;C
′
2 holds.

Case 2:
〈|C1, s1|〉_D1→D2

loc 〈|〈〉, s2|〉

Due to the premise of this case
−→
C = C2.

Since C1 u;,L
D′ C ′1, we know that a memory state s′ exists, such that

〈|C ′1, s′1|〉 →
D1→D2
loc 〈|〈〉, s′|〉

and that either s1 =D′ s2 or the restrictions for declassi�cation are ful�lled. The
localized hatch sets do not reveal more information analog to the argument in case 1.
Using the semantics of sequences again,

〈|C ′1;C ′2, s′1|〉_D1→D2
loc 〈|C ′2, s′|〉

and due to the premise for sequences C2 u;,L
D′ C ′2. Since the intermediary commands

and the intermediary states ful�ll the condition for u;,L
D′ , C1;C2 u;,L

D′ C ′1;C
′
2 holds.

Case 3:
〈|C1, s1|〉_o 〈|C

−→
V , s|〉

Due to the premise of the case
−→
C = (C;C2)

−→
V . Since C1 u;,L

D′ C ′1, we know that a

command C ′, a command vector
−→
D ′ and s′ exist, such that

〈|C ′1, s′1|〉_o 〈|C ′
−→
V ′, s′|〉

where s =D′ s′ and C
−→
V u;,L

D′ C ′
−→
V . Using the unwinding of command vectors in the

characterization formula we can conclude that C u;,L
D′ C ′ and

−→
V u;,L

D′
−→
V ′.

Using the semantics for sequences again,

〈|C ′1;C ′2, s′1|〉_o 〈|(C ′;C ′2)
−→
C ′, s′|〉

Since C u;,L
D′ C ′ and C2 u;,L

D′ C ′2 we can conclude with the help of case 1 that

C;C2 u;,L
D′ C ′;C ′2. Using the unwinding in the characterization formula again and

−→
V u;,L

D′
−→
V ′, we can conclude that (C;C2)

−→
V u;,L

D′ (C ′;C ′2)
−→
V ′. Since the intermediary

commands and the intermediary states ful�ll the condition for u;,L
D′ , C1;C2 u;,L

D′

C ′1;C
′
2 holds.

63

4.6 A Sound Type System

Forks:
C1 ∼LD C2

−→
C 1 ∼LD

−→
C 2

fork(C1

−→
C 1) ∼LD fork(C2

−→
C 2)

According to the induction hypothesis we can deduce from the premise of the rule that

C1 u;,L
D′ C2 and

−→
C 1 u;,L

D′
−→
C 2. Note that we use

−→
C 1 ∼LD

−→
C 2 to denote the point-wise

application of ∼LD on the command vectors and the unwinding of command vectors in
the characterization formula in the previous conclusion. According to the semantics
for fork

〈|fork(C1

−→
C 1), s1|〉_o 〈|C1

−→
C1, s1|〉

〈|fork(C2

−→
C 2), s2|〉_o 〈|C2

−→
C2, s2|〉

Using the unwinding of command vectors in the characterization formula with C1 u;,L
D′

C2 and
−→
C 1 u;,L

D′
−→
C 2, we can conclude that C1

−→
C 1 u;,L

D′ C2
−→
C 2 and since the memory

state remains untouched by the execution step fork(C1

−→
C 1) u;,L

D′ fork(C2

−→
C 2).

Loops:
C1 ∼LD C2

while B do C1 od ∼LD while B do C2 od

According to the induction hypothesis we can deduce from the premise of the rule that
C1 u;,L

D′ C2. We must distinguish two cases. In the �rst case the guarding expression
B depends only on information from domains that are lower than or equal to D′ and
thus B evaluates to equal values under all D′-equal states. In the second case, the
expression depends on information from at least one domain that is neither lower than,
nor equal to D′ and thus B may evaluate to di�erent values for some D′-equal states.

Case 1:
∀s1 =D′ s1 : 〈|B, s1|〉 ↓ m ∧ 〈|B, s2|〉 ↓ n ∧m = n

From the premise of this case, we know that B evaluates to equal values in all D′-
equivalent states. Let 〈|B, s1|〉 ↓ True, then 〈|B, s2|〉 ↓ True, too. According to the
semantics of while, this means

〈|while B do C1 od, s1|〉_o 〈|C1;while B do C1 od, s1|〉

〈|while B do C2 od, s2|〉_o 〈|C2;while B do C2 od, s2|〉

We can use the same argumentation as for sequences with the exception that ∼LD holds
for the second command, which is the next iteration for unwinding the while loop and
apply the rule for while again.
Let 〈|B, s|〉 ↓ False, then 〈|B, s′|〉 ↓ False, too. According to the semantics of while,

this means
〈|while B do C1 od, s1|〉_o 〈|〈〉, s1|〉

〈|while B do C2 od, s2|〉_o 〈|〈〉, s2|〉

64

4.6 A Sound Type System

Since s1 =D′ s2 and 〈〉 u;,L
D′ 〈〉 hold, and the memory states are unchanged, which

means that the information �ow into the states is ful�lled,
while B do C1 od u;,L

D′ while B do C2 od holds.

Case 2:
∃s1 =D′ s2 : 〈|B, s1|〉 ↓ m ∧ 〈|B, s2|〉 ↓ n ∧m 6= n

Let s1 and s2 be the memory states that are D′-equal, but lead to di�erent evaluations
of B. Let 〈|B, s1|〉 ↓ False, then 〈|B, s2|〉 ↓ True due to the premise of this case.
According to the semantics,

〈|while B do C1 od, s1|〉_o 〈|〈〉, s1|〉

〈|while B do C1 od, s2|〉_o 〈|C1;while B do C1 od, s2|〉

〈〉 u;,L
D′ C1;while B do C1 od does not hold, because both command vectors di�er in

the amount of threads. Since C = while B do C1 od must be WHERE&WHATinitial-
secure, this is a contradiction and thus the premise for this case can not be ful�lled
for WHERE&WHATinitial-secure commands. For 〈|B, s1|〉 ↓ True the argument is
symmetric.

Branches:

C1 ∼LD C3 C2 ∼LD C4

if B then C1 else C2 � ∼LD if B then C3 else C4 �

According to the induction hypothesis we can deduce from the premise of the rule that
C1 u;,L

D′ C3 and C2 u;,L
D′ C4. We must distinguish two cases similar to those for loops.

Case 1:
∀s1 =D′ s1 : 〈|B, s1|〉 ↓ m ∧ 〈|B, s2|〉 ↓ n ∧m = n

From the premise of this case, we know that B evaluates to equal values in all D′-
equivalent states. Let 〈|B, s1|〉 ↓ True, the 〈|B, s2|〉 ↓ True, too. According to the
semantics of if , this means

〈| ifBthenC1elseC2�, s1|〉_o 〈|C1, s1|〉

〈| ifBthenC3elseC4�, s2|〉_o 〈|C3, s2|〉

Since C1 ≈D′ C3 and s1 =D′ s2 hold,
if B then C1 else C2 �u;,L

D′ if B then C3 else C4 � holds. The argument
for 〈|B, s1|〉 ↓ False is analog to this.

65

4.6 A Sound Type System

Case 2:
∃s1 =D′ s2 : 〈|B, s1|〉 ↓ m ∧ 〈|B, s2|〉 ↓ n ∧m 6= n

Let s1 and s2 be the memory states that are D′-equal, but lead to di�erent evaluations
of B. Let 〈|B, s1|〉 ↓ False, then 〈|B, s2|〉 ↓ True due to the premise of this case.
According to the semantics,

〈| if B then C1 else C2 �, s1|〉_o 〈|C2, s1|〉

〈| if B then C1 else C2 �, s2|〉_o 〈|C1, s2|〉

Since C = if B then C1 else C2 � must be WHERE&WHATinitial-secure and thus
C u;,L

D C must hold. We can conclude from the determinism of execution steps that
C1 u;,L

D′ C2. The same argument holds for C3 u;,L
D′ C4.

Using the transitivity of u;,L
D′ we conclude that C1 u;,L

D′ C4 and C2 u;,L
D′ C3 from

the conclusions that we have drawn from the premise of the rule with the help of the
induction hypothesis.
Let now s′1 =D′ s′2 be arbitrary. According to the semantics we know that

〈| if B then C1 else C2 �, s
′
1|〉_o 〈|D1, s

′
1|〉

〈| if B then C3 else C4 �, s
′
2|〉_o 〈|D2, s

′
2|〉

where D1 ∈ {C1, C2} and D2 ∈ {C3, C4}. Since C1 u;,L
D′ C3, C1 u;,L

D′ C4, C2 u;,L
D′ C3

and C2 u;,L
D′ C4 hold, D1 u;,L

D′ D2 holds for any D1 ∈ {C1, C2} and D2 ∈ {C3, C4}.
Since s′1 =D′ s′2, the characterization formula is ful�lled and
if B then C1 else C2 � u;,L

D′ if B then C3 else C4 � holds.
For 〈|B, s1|〉 ↓ True the argument is symmetric.

�

With non D-visible equality with localized hatches L we have now a safe approxi-
mation relation that we can use and thus can solve the problem of the semantic side
condition of if branchings. With this problem solved, we have now a type system that
is a safe over approximation for WHERE&WHATinitial-Security and thus we can auto-
matically analyze programs with respect to this property. Since we already argued that
the property captures our intuition so closely, we have now a sound analysis to check if a
program captures our intuition of security. Since it is a safe approximation, the analysis
may reject some programs that ful�ll the property, but it will not accept any program,
that does not ful�ll the property.

66

5. Exemplary Analysis of Several Programs

We have now seen that the properties presented in this work capture our intuition very
closely and that it is possible to automatically analyze programs with respect to the
properties, but in order to further strengthen the con�dence in the properties that we
have presented in this work and show how those properties compare when analyzing
program code that could occur in real world programs we want to analyze some code
fragments and later in this section embed them into a small application scenario.

5.1. Explicit Assignments and Declassi�cations

The information �ow that is introduced by an explicit assignment var := expr that is
not executed in a loop or a branching command, which means it is not executed under
a guard, is simply an information �ow from sources(expr) to dom(var).
Let pol1 be the following mls-(;,L) policy:
D = {low, high}
low ≤ low, low ≤ high, high ≤ high
high ; low
dom(lvar1) = dom(lvar2) = low
dom(hvar1) = dom(hvar2) = high
L(1) = {(low, hvar1)}
L(2) = {(low, hvar2)}.

Let
−→
C 1 be the following program:

lva r1 := hvar1

This program violates all properties discussed in this work, except WHAT-Security,
because the high information of hvar1 is assigned to the low variable lvar1 and low ≤
high and we can construct a counter example with s1 =low s2, but s1(hvar1) = 0 6=
1 = s2(hvar1). After the execution of the assignment s′1(lvar1) = 0 6= 1 = s′2(lvar1)
and in consequence s′1 6=low s

′
2, which renders STRONG-Security unful�lled. Since the

execution step of the assignment is an ordinary step the restriction for where declassi�-
cations may occur can not be ful�lled and the program does not ful�ll WHERE-Security,
WHERE&WHATlocal-Security and WHERE&WHATinitial-Security. On the other hand,
the program ful�lls WHAT-Security, because H = {h|h ∈ D×Expr : ∃loc : h ∈ L(loc)}
contains (low, hvar1). If the assignment was an intended declassi�cation and therefore
the program should be considered secure, then there should be a declassi�cation assign-
ment with square brackets and an identi�er that points to a set of escape hatches that
contains a hatch that allows the declassi�cation of hvar1 to low:

[l va r1 := hvar1] 1

This program ful�lls all security properties in this work, except STRONG-Security
which does not allow any declassi�cation.

67

5.2 Subsequent Assignments for Input Handling

In the presence of branching commands and loops the requirement that the result-
ing thread pools can be related to each other in combination with the unwinding in
the transformational semantics results in the preservation of indistinguishability of the
states.

5.2. Subsequent Assignments for Input Handling

When dealing with user input subsequent assignments and declassi�cations are necessary
to be able to ful�ll the restrictions of the security policy or the functionality of the
input. Subsequent declassi�cations are a problem, because an assignment to a variable
can easily break the information �ow into escape hatches.
Let pol be the following mls-(;,L) policy:
D = {low, high}
low ≤ low, low ≤ high, high ≤ high
high ; low
dom(hvar) = dom(input) = high
dom(lvar) = low
L(1) = {(low, hvar)}

Let
−→
C be the following program:

hvar := hvar + input
[l v a r := hvar] 1

This program is intuitively insecure with respect to the security policy, because we de-
classify hvar+input at location 1, but the set of localized hatches allows only the declassi-
�cation of hvar. This intuition is captured byWHAT-Security andWHERE&WHATinitial-
Security, but not by WHERE-Security, because this property does not have any control
forwhat is declassi�ed, and not byWHERE&WHATlocal-Security, because this property
uses the state right before the declassi�cation as implicit reference point and therefore
has no control of information �ow into escape hatches.
If the declassi�cation of hvar + input at location 1 is intentional, the security policy

must allow this declassi�cation explicitly. We can adapt the security policy and change
only the set of localized hatches accordingly: L(1) = {(low, hvar), (low, hvar+ input)}.
This program ful�lls WHERE&WHATinitial-Security and WHAT-Security, because a
low observer is allowed to learn hvar+input and therefore can distinguish any two states
where the evaluation of the expressions di�ers. In consequence, it is not possible to con-
struct two states s1, s2 such that s1 =

L(1)
low s2 and s

′
1 6=

L(1)
low and therefore WHAT-Security

and the restriction of information �ow into the escape hatches in WHERE&WHATinitial-
Security are always ful�lled.
In the program model without input and output channels the input behavior can be

modeled with variables in the memory states. The initial reference points of WHAT-
Security and WHERE&WHATinitial-Security require that distinguishability of memory
states can not be altered by changes in the sets of localized hatches or escape hatches.
This combines well with the model of input behavior with variables, because the input

68

5.3 Declassi�cation with Intransitive Security Policies

is known before running the program and as a result can be used in the escape hatches
to express that an observer might learn this information without special handling.

5.3. Declassi�cation with Intransitive Security Policies

Subsequent assignments and declassi�cations can lead to an unintended information �ow
due to the transitivity of assignments. The subsequent assignments can be necessary,
for example to require the declassi�cation of information to be performed with the use
of a speci�c declassi�cation domain to be able to enforce a run time monitoring of the
declassi�cations.
Let pol1 be the following mls-(;,L) policy:
D = {low, high,monitor}
low ≤ low, low ≤ high, high ≤ high
high ; monitor ; low
dom(hvar1) = dom(hvar2) = high
dom(lvar) = low
dom(mvar) = monitor
L(1) = {(low, hvar1)}.

Let
−→
C 1 be the following program:

[l v a r := hvar1] 1

This is intuitively insecure, because the security policy does not allow a direct declas-
si�cation from security domain high to the security domain low. All properties in this
work capture this intuition, except WHAT-Security which does not take ; into account.
The security policy requires a declassi�cation to be made with the intermediate domain

monitor, hence we need to declassify hvar1 to monitor and from there we can declassify
the information to low. Furthermore, we need to change the set of escape hatches such
that it captures our requirement of the intermediary assignment to a variable of the
domain monitor.
Let pol2 be a policy equivalent to pol1, except:
L(1) = {(monitor, hvar1)}
L(2) = {(low,mvar)}.

Let
−→
C 2 be the program:

[mvar := hvar1] 1
[l va r1 := mvar] 2

This program is considered secure with respect to the policy pol2 and the properties
WHERE-Security, and WHERE&WHATlocal-Security. Intuitively, we would assume
this program not to be secure, because hvar1 may only get declassi�ed to monitor,
but in fact is declassi�ed to low due to the subsequent declassi�cations. The properties
WHAT-Security and WHERE&WHATinitial-Security capture this intuition and we can
construct a counter example by choosing s1 =low s2 and s1 =monitor s2, but s1(hvar1) =

0 6= 1 = s2(hvar1). Before executing the declassi�cation in the �rst line s1 =
L(2)
low s2

69

5.4 Localization of Di�erent Declassi�cations

holds, but after executing the declassi�cation s′1(mvar) = 0 6= 1 = s′2(mvar) and in

consequence s′1 =
L(2)
low s′2 does not hold and ∀loc ∈ Loc : (s1 =

L(loc)
D s2 =⇒ s′1 =

L(loc)
D s′2)

is not ful�lled.
Albeit this declassi�cation is intended, it would be better if the exact information

about the declassi�cation is explicit in the policy. Let pol3 be equivalent to pol2, except:
L(1) = {(monitor, hvar1)}
L(2) = {(low,mvar), (low, hvar1)}.
With pol3 the program

−→
C 2 is secure with respect to the WHERE&WHATlocal-Security.

While the policy still does not allow the direct declassi�cation of high information to
the domain low, the localized hatches L(2) now describe the transitive information �ow
from hvar1 via mvar to the domain low. The counter example with pol2 does not work
anymore, since s1 =

L(2)
low s2 does not hold in the �rst place.

5.4. Localization of Di�erent Declassi�cations

The main goal of the integration of the control of the aspects where and what is to
enable an improved localization between both aspects in order to be able to determine
where in the programwhat gets declassi�ed. The intuition is that an observer is allowed
to learn some additional information, but he is allowed to learn this information only
at a speci�c location, for example he might be allowed to learn if his input equals the
stored password, but he is only allowed to learn it by the means of the success of a login
and not anywhere else in the program. Another possible application for the localization
is when in a sequential program the declassi�cation should not happen before or after a
speci�c program point.
Let pol be the following mls-(;,L) policy:
D = {low, high}
low ≤ low, low ≤ high, high ≤ high
high ; low
dom(lvar) = low
dom(hvar1) = dom(hvar2) = high
L(1) = {(low, hvar1 + hvar2)}
L(2) = {(low, hvar1)}

Let
−→
C be the following program, where Seq1 is a sequence of commands that outputs

lvar and Seq1 is a sequence of commands that requires the knowledge of hvar1 in the
domain low:
[l v a r := hvar1 + hvar2] 1
Seq1
[l v a r := hvar1] 2
Seq2

The security policy describes that hvar1+hvar2 may get declassi�ed at location 1 and
hvar1 at location 2. Intuitively, this program is secure and it ful�lls WHERE-Security,
WHAT-Security and WHERE&WHATinitial-Security.

70

5.5 Example Scenario: Development of an Online Market Place

Assuming a programming error or the intention to leak hvar1, the author of the
program could have written [lvar := hvar1]1 and declassify hvar1 in the �rst line
instead of hvar1+hvar2. This leak would not be revealed with an analysis that is sound
with respect to WHERE-Security and WHAT-Security, because the integration of the
aspects where and what is very loose and the analysis would only reveal if a declas-
si�cation occurs outside of a declassi�cation assignment or something gets declassi�ed
that is not allowed to be declassi�ed at all. WHERE&WHATinitial-Security captures
this intuition and an analysis that is sound with respect to this property would reveal
that at the declassi�cation location 1 hvar1 gets declassi�ed instead of hvar1 + hvar2.
With the exact localization of the declassi�ed information in the security policies, the

security policies do not only get more expressive, but the developers get more insight
into the declassi�cations of the program and can use these insights to �nd problems in
the software more easily.

5.5. Example Scenario: Development of an Online Market Place

Previously we have seen how small fragments of program code compare under the dif-
ferent security properties. In this section we want to show how the di�erent properties
compare when applied during software development. Since we think compositionality is
more important than the monotonicity of release we will only look at WHAT1-Security.

5.5.1. Data Structures in this Example

In order to model complexer data structures in our memory model we use a lookup table
with the operation select (identi�er , database) to retrieve the data associated with
identifier in the data structure stored in the variable database or False, if no data is
associated with the identi�er or the data stored in the variable is not a lookup table,
and the operation update(database, identi�er , data) to create a data structure that
contains all associations from the variable database, but associates data with identifier
either by updating the association, if it exists, or adding the association to the table.
Furthermore, we assume an operation preview(digitalproduct) that can automatically

calculate a preview of a digital product.

5.5.2. Initial Speci�cation and Development

A software company wants to develop an online market place, where users can buy and
sell digital goods. The initial speci�cation requires that every user has a distinct login
with a secret password and that the digital goods should be secret, except the user is
the owner of the good or the user has paid the fee for this good. No user should be able
to learn information about the other users.
According to this speci�cation we can identify the requirement of at least two security

domains and will use high and low and want to allow an information �ow from low to
high, but not vice versa. Furthermore, we require the userdb, the productdb and product
to be high, since these are the secrets in the system. From the experience the developers

71

5.5 Example Scenario: Development of an Online Market Place

already have, they know that they must release the information about the equivalence
of the password, as well as the product into the security domain low. Furthermore, they
decide that the user information stored in an entry in userdb must not be kept secret,
if it is the information of the logged in user.
They decide to use the following security policy:
D = {low, high}
low ≤ low, low ≤ high, high ≤ high
high ; low
dom(userdb) = dom(productdb) = dom(product) = high
All other variables are low.
L(1) = {(low, (select(”password”, select(username, userdb)) = inputpassword))}
L(2) = {(low, select(username, userdb))}

The developers start by writing a login. The login requires a user to give his username
as input and asks for the password for this user.

username := inputusername
[cor rec tpassword := (s e l e c t ("password " ,

s e l e c t (username ,
userdb))

= inputpassword)] 1
i f (cor rec tpassword)
then

[a c t i v eu s e r := s e l e c t (username , userdb)] 2
DispatcherForAuthent icatedAct ions

else
a c t i v eu s e r := Fal se
username := False
DispatcherForNonAuthenticatedActions

f i

Intuitively, this program should be considered secure with respect to the security pol-
icy. In fact, the program is secure with respect to WHERE-Security, WHAT2-Security
and WHERE&WHATinitial-Security. WHERE-Security and WHAT-Security use a dif-
ferent security policy with a set of all escape hatches H instead of a function of locations
to escape hatches L. In consequence, someone looking at the security alone would only
see that the equivalence of the password
(select(”password”, select(username, userdb)) = inputpassword)) as well as all the
user information associated with the name username select(username, userdb) gets
declassi�ed in the case of WHERE-Security and WHAT2-Security, whereas someone
looking at the security policy with the localized hatches in combination with
WHERE&WHATinitial-Security could see immediately that the equivalence of the pass-
word may get declassi�ed at another location than the user information and that the
user information can only be declassi�ed, if the correct password has been entered, due

72

5.5 Example Scenario: Development of an Online Market Place

to the branching condition of the if command. Furthermore, observe that
select (username, userdb) depends on inputusername, but it does not occur as an
allowed declassi�cation in L(1) or L(2) and still the program ful�lls our security prop-
erties. The properties are ful�lled, because username and inputusername are both
low and in consequence every observer can distinguish states that di�er in those vari-
ables and the left side of the implications in the characterization formulas in each of the
properties is not ful�lled which renders the whole formula ful�lled. The two commands
DispatcherForAuthenticatedActions and DispatcherForNonAuthenticatedActions are
placeholders for dispatchers that dispatch the single actions available for authenticated
users and not authenticated users. Since they do not require declassi�cations, we omit
the code for these dispatchers for simplicity.
In the next step the developers decide to write the code for browsing, buying and

retrieving the digital goods. Remember that the product database productdb and the
single products product should be a secret, unless the active user activeuser is the owner
of the product or has paid the fee for the product. If the user is not logged in, he can
just browse the previews of products, but should not be able to retrieve the full product
or buy the product.

product id := inputproduct id
product := s e l e c t (productid , productdb)

[isOwner := (username = s e l e c t ("owner " ,
s e l e c t (productid ,

productdb)))] 3

paidFee := (not (s e l e c t (productid ,
s e l e c t (" pa idproducts " ,

a c t i v eu s e r))))

i f (isOwner or paidFee)
then

[output := product] 4
else

[output := s e l e c t (" preview " ,
s e l e c t (productid ,

productdb))] 5
i f (not (username) and inputpurchase = "buy")
then

paidproducts := s e l e c t (" pa idproducts " , a c t i v eu s e r)
pa idproducts := update (paidproducts , productid , True)
a c t i v eu s e r := update (a c t i v eu s e r ,

" pa idproducts " ,
pa idproducts)

userdb := update (userdb , username , a c t i v eu s e r)

73

5.5 Example Scenario: Development of an Online Market Place

[output := product] 6
else
f i

f i

This program is intuitively secure, because the program reveals the product only, if the
active user is either the owner or has paid the fee for the product. If neither is the case,
the user can only learn a preview of the product and only after buying the product may
learn the whole product. The security properties WHERE-Security, WHAT2-Security
and WHERE&WHATinitial-Security capture this intuition, if we extend L to allow the
new declassi�cations by adding
L(3) = {(low, select(”owner”, select(productid, productdb)))},
L(4) = L(6) = {(low, product), (low, select(productid, productdb))} and
L(5) = {(low, select(preview, select(productid, productdb)))}. It is important to notice
that we intentionally used select(”preview”, select(productid, productdb)) at the declas-
si�cation assignment 5, instead of select(”preview”, product). If we used the latter,
we hat to allow select(productid, productdb) as declassi�cation at 5 due to the transi-
tive information �ow and a look at the security policy alone would not reveal if only
the preview or the whole product is declassi�ed at this location anymore. This would
limit the expressiveness of the security policy and a look at the program code would
be necessary to reveal what is declassi�ed at this location just like it is necessary with
WHERE-Security and WHAT2-Security. What we can learn from this is the fact that
transitive declassi�cations, while they can be handled, still should be avoided, if possi-
ble, when it comes to declassi�cation in order to take full advantage of the localization
of declassi�cations.
The program fragment for registering new users and the fragment for adding new

products do not require declassi�cations. We just present the code adding new products
as an example.

product := inputproduct
product id := inputproduct id

product := update (product , "owner " , username)
productdb := update (productdb ,

productid ,
product)

This program is intuitively secure, since every information �ow between two security
domains is from the lower domain low to the higher domain high. This code fragment
does not only ful�ll WHERE-Security, WHAT2-Security and WHERE&WHATinitial-
Security, but also ful�lls STRONG-Security. It is the only code fragment in that we
presented that can be classi�ed as secure with respect to STRONG-Security, because it
is the only fragment that does not require any declassi�cations.

74

5.5 Example Scenario: Development of an Online Market Place

5.5.3. Adding a Reputation System

After the initial development, the company decides that the market place requires a
reputation system, where customers can use the reputation of another customer in order
to decide, if they want to buy a product from him and rate the other customer after
purchasing the product. The reputation system should be very easy and just distinguish
between the two judgments positive and negative and the average as well as the count
of votes is released as the reputation. The developers immediately recognize the problem
that users that have only a few sales could guess who gave them a negative judgment,
if they have only few votes from other users, and fear that this could lead to a biased
judgment, because the customers fear a bad vote in return. So they decide that the
reputation is set to 0.5, if the customer has less than 10 judgments or the average of the
judgments, if he has 10 or more.
In order to capture this additional information they introduce a new lookup table

reputationdb that should be kept secret. This table associates user names with reputa-
tions. A reputation is a tuple consisting of the count of all judgments and the count of
positive judgments. Initially both values are 0.
An adaption of the security policy is necessary to include the new variables reputationdb

and reputation as secrets, which means they must be added to the domain assignment
and must be in the domain high.
For the handling of the reputation system, we need to change the code for the user

registration in order to capture the initial reputation and the code for browsing and
purchasing products. We will omit the code for the user registration, since this code still
does not require any declassi�cation.
The new code for browsing and purchasing products has the additional requirement,

that depending on the number of judgments for the user, either the reputation is �xed
to 0.5 or it is the average of the judgments.

product id := inputproduct id
product := s e l e c t (productid , productdb)

[owner := s e l e c t ("owner " ,
s e l e c t (productid ,

productdb))] 3

isOwner := (username = owner)

paidFee := (not (s e l e c t (productid ,
s e l e c t (" pa idproducts " ,
a c t i v eu s e r))))

i f (isOwner or paidFee)
then

[output := product] 4

75

5.5 Example Scenario: Development of an Online Market Place

else
[output := s e l e c t (" preview " ,

s e l e c t (productid ,
productdb))] 5

[toFewJudgements := (10 > s e l e c t (owner ,
reputat iondb))] 7

i f (toFewJudgements)
then

output := 0 .5
else

r eputa t i on := s e l e c t (owner , reputat iondb)
[output := s e l e c t (" p o s i t i v e " ,

r eputa t i on)
/ s e l e c t (" count " ,

r eputa t i on)] 8

i f (not (username) and inputpurchase = "buy")
then

paidproducts := s e l e c t (" pa idproducts " , a c t i v eu s e r)
pa idproducts := update (paidproducts , productid , True)
a c t i v eu s e r := update (a c t i v eu s e r ,

" pa idproducts " ,
pa idproducts)

userdb := update (userdb , username , a c t i v eu s e r)
[output := product] 6

f i
f i

In order to classify this program as secure with respect to the security properties
WHERE-Security, WHAT2-Security and WHERE&WHATinitial-Security, it is necessary
to adapt the security policy to allow the additional declassi�cations 7 and 8, as well as
adapt the changed declassi�cation 3. The following security policy captures these new
requirements:
D = {low, high}
low ≤ low, low ≤ high, high ≤ high
high ; low
dom(userdb) = high
dom(productdb) = dom(product) = high
dom(reputationdb) = dom(reputation) = high
All other variables are low.
L(1) = {(low, (select(”password”, select(username, userdb)) = inputpassword))}
L(2) = {(low, select(username, userdb))}
L(3) = {(low, select(”owner”, select(productid, productdb)))}

76

5.6 Bene�ts and Costs of the Localization of Declassi�cations

L(4) = L(6) = {(low, product), (low, select(productid, productdb))}
L(5) = {(low, select(preview, select(productid, productdb)))}
L(7) = {(low, (10 > select(owner, reputationdb)))}
L(8) = {(low, select(”positive”, reputation)/select(”count”, reputation),
(low, select(owner, reputationdb)}.
This example shows the advantages of an exact localization of the declassi�cation very

well. Due to the amount of declassi�cations and the size of the set of all escape hatches,
it is very cumbersome to determine what expressions are declassi�ed at which loca-
tion, because one must read the whole sequence of commands to track the assignments.
The initial reference point used in WHERE&WHATinitial-Security requires the localized
hatches to capture these transitive information �ows and the automated analyses sup-
ports the developer in specifying the localized hatches, because it reveals information
�ow into the set of escape hatches of single locations.
Additionally, a developer easily could have used a declassi�cation of the form [output :=

product] at location 6 accidentally and reveal the product instead of the preview. With
WHERE-Security and WHAT2-Security this would not render the program insecure and
the program would be classi�ed as secure, even though it would not be secure with re-
spect to our intuition. WHERE&WHATinitial-Security captures this intuition and would
reveal this false declassi�cation due to the localized hatches.
This makes the mls-(;,L) policies more expressive than mls-(;,H) policies and

therefore supports the developers better in �nding information �ow problems and un-
derstanding the declassi�cations occurring in a security policy.
On the other side, this example reveals two problems. It shows the problem with

transitive information �ow and the loss of accuracy it introduces we already mentioned.
We could remedy this in two ways, either by not using the assignment to owner in the
third line and instead explicitly requesting this information or we could use a di�erent
hatch set for location 8, where the second escape hatch resembles the �rst one, but
owner is replaced with the expression of the assignment in the third line. The latter
solution would still render the program secure with respect to the security properties,
but it would be less close to the code and in consequence it would be harder to �nd
the location that leads to the requirement of the second escape hatch, which is the
assignment in line 3.
The other problem the example reveals is that the security policies require already

require some restricted insight of the information �ow in order to capture the transitive
�ows, but an automated analysis supports the development of this insight. Still, the mls-
(;,L) policies are more complex than mls-(;,H) policies, due to the localized hatches,
and the complexity of the function L increases with the amount of declassi�cations, but
so does the amount of escape hatches in H.

5.6. Bene�ts and Costs of the Localization of Declassi�cations

After the example code fragments and the example scenario, we want to re�ect some
bene�ts and oppose them with the costs the localization of the declassi�cation have. As
a baseline we use the combined property of WHERE-Security and WHAT-Security.

77

5.6 Bene�ts and Costs of the Localization of Declassi�cations

In order to handle transitive information �ow due to subsequent assignments and
declassi�cations, it is necessary to explicitly include those transitive �ows in the sets
of escape hatches. In the case of WHAT-Security, we must only insert additional es-
cape hatches to the set of all escape hatches, for expressions in escape hatches that
contain variables that occur on the left side of an assignment, while in the case of
WHERE&WHATinitial-Security, we must insert additional escape hatches to every lo-
cation that allows a declassi�cation of an expression that contains a variable that is on
the left side of an assignment. On the other side, the insight on the information �ow
necessary to construct the hatch set is not made explicit in H, because it only allows
additional declassi�cations, whereas in the case of the localized hatches in L the informa-
tion is made explicit in the form of declaring that additionally to the the expression on
the right side, the information from evaluating the expressions in the localized hatches
�ows into the variable on the left side of the declassi�cation, either directly or combined
with other values or variables.
Adding a new declassi�cation assignment is quite similar in both policies. When a new

declassi�cation assignment is added, the mls-(;,H) policies must be changed by adding
the necessary expressions for the declassi�cation and possible transitive information �ow
to the set of all escape hatches H, while in the case of the mls-(;,L) policies a new
location is introduced and the necessary expressions for the declassi�cation and transitive
information �ows form the set of localized hatches associated with the new location.
While the mls-(;,L) policies seem to be more complex than mls-(;,H) policies,

because escape hatches that may be used at several declassi�cation assignments occur
only once in H, but for every occurrence of this expression at a declassi�cation an escape
hatch must be added to the set of localized hatches for this location and therefore
occur more than once in L. This is only a minor increase to the complexity of the
policies, since locations that declassify the same expression may use equivalent sets of
localized hatches and the real complexity lies in the determination of the correct escape
hatches. Furthermore, the localized hatches again have the bene�t that a look in the
security policy reveals meaningful information about the escape hatches possibly used
at a location in L.
The control of information �ow into the escape hatches in WHAT −Security is done

directly by the bisimulation of the preservation of (D,H)-equality with H = H during
execution steps. It seems that the additional requirement that results in the restriction
of information �ow into escape hatches in WHERE&WHATinitial-Security adds further
complexity, but a comparison of the requirements in the type system reveals that the
only additional complexity lies in the quanti�cation over all declassi�cation locations to
capture the localized hatch sets.
All in all, the additional costs for the localization are basically restricted to the ad-

ditional complexity of the mls-(;,L) policies. On the other hand, the additional com-
plexity of the policies is necessary in order to write down the localization information
about the escape hatches we were interested in. Furthermore, the localized hatches re-
veal insights about the transitive information �ows of the program the developer of the
policy gained while analyzing the program. This information is a great support for ei-
ther removing such transitive information �ows were possible or showing the developers

78

5.6 Bene�ts and Costs of the Localization of Declassi�cations

which assignments must be handled with special care.
The result of this short overview is that the bene�ts of the localized hatches outweigh

the additional costs, especially in the case where the analysis is used during development.
In software development the additional information in the policies guides the developers
in thinking about what information they really want to declassify and under which
conditions the declassi�cation should be allowed. This information could be of great use
in combination with an analysis of control �ow conditions. This combination could allow
a reasoning that some information can only be declassi�ed under certains conditions, for
example that the then branch was used and therefore the entered password was correct.

79

6. Summary

6.1. Conclusion of the Results

We started this work with a short overview about STRONG-Security from [SS00] and
showed that this property does not allow declassi�cations and in consequence is not
suitable for all real world applications.
After that we took a detailed look at WHERE-Security and WHAT-Security from

[MR07] and showed that these properties capture our intuition of security, or more
speci�c con�dentiality, closely even in the presence of declassi�cations. Furthermore, we
showed that these properties are scheduler-independent with respect to a broad class of
schedulers and to our knowledge were these the �rst scheduler-independence results for
information �ow properties with declassi�cation. On the other hand, the separation of
the aspect where and the aspect what into two individual properties prevented us from
a more detailed view about what gets declassi�ed where in the program.
We faced this problem with the introduction of WHERE&WHATlocal-Security, but

showed that this property su�ered from the problem of implicit, local reference points
and therefore did not capture our intuition of security in the presence of subsequent
assignments and declassi�cations. With WHERE&WHATinitial-Security we presented a
solution to this problem by restricting the information �ow into the escape hatches. This
novel property captures our intuition of con�dentiality in the presence of declassi�cation
now very closely and allows a more detailed insight about what gets declassi�ed where
in the program. Furthermore, this property is still scheduler-independent with respect
to the same class of schedulers as STRONG-Security, WHERE-Security and WHAT-
Security. In consequence the property is suitable for application in multi-threaded set-
tings. Additionally, we presented a type system for WHERE&WHATinitial-Security and
showed that the property is automatically enforceable.
In the last section we presented some example code fragments and showed how the dif-

ferent properties that allow declassi�cation compare with respect to these. Furthermore,
we presented a small application scenario in which we showed why the more detailed
information about what gets where declassi�ed in the program is useful, especially in
the application of the analysis during software development. We have seen that the
bene�t of this properties lies in more detailed security policies that help to understand
the information �ow from declassi�cations easier and that the cost of a more complex
policy is out weight by the bene�t.

6.2. Future Work

While WHERE&WHATinitial-Security can handle subsequent assignments and declassi-
�cations, a model for the input and output would still be desirable. As we have already
mentioned, we think that the explicit reference points in [LM09a] are very promis-
ing and think that this approach could be adapted and integrated or combined with
WHERE&WHATinitial-Security.
Furthermore, the class of σ schedulers is very wide. It would be reasonable to look for

80

6.3 Related Work

a smaller, but still practical class of schedulers, in order to weaken the strict bisimulation
approach or �nd less strict safe approximation relations for the di�erent if branches.
Another interesting topic which is completely untouched in this work is synchroniza-

tion. The presence of synchronization has a huge impact on scheduling behavior and
therefore it is only reasonable that in future work the impact of di�erent synchronization
primitives on WHERE&WHATinitial-Security could be an interesting topic.
The security type system in this work is rather strict when it comes to the implicit

information �ow induced by the control �ow of the program. We assume this to capture
our intuition very closely, but a detailed look on the requirements for conditionals in
branches, maybe even loops would give more insight, if a less strict approximation may
be possible or desirable.
Another interesting topic for future research could be a combination of the localization

of the declassi�cations with path conditions to capture the intuition of the developers
that some information might only get declassi�ed under special conditions which can be
found implicitly in the control �ow of branchins or loops.
Finally, the property was build using MWL, an exemplary toy language. It would be

reasonable to compare this language with real world languages and to determine what
other constructs may impose problems for an information �ow analysis and to determine
how we can handle those constructs.

6.3. Related Work

Information �ow is a prominent and recent research topic as [SM03] suggests. Much
research e�ort is put into controlling the declassi�cations in such scenarios [SS05].
The authors of [Smi07] give a short overview what language constructs may lead to an

information �ow and present type rules how to check a program for these information
�ows and by doing so give a good foundation for further work in the area of information
�ow analyses.
In [SS00] STRONG-Security uses bisimulations to formalize non-interference. Fur-

thermore, this work introduces the σ schedulers and presents a proof that STRONG-
Security is scheduler-independent. In this proof they use a scheduler-dependent property
and probabilistic bisimulations to show even the scheduler can not leak information. In
[MS04] the authors show how to adapt this approach for multi level security policies
and presented an approach how to control declassi�cation based on intransitive non-
interference.
In [SM04] the authors introduce a control of the aspect what. They use a special

declassi�cation command that takes an expression and security domains as an argument.
This command declassi�es the expression to the given security domains and therefore
allows the declassi�cation of the expression. The intuition is very similar to the intuition
of the escape hatches. Furthermore, they present a type system that is already sound
with respect to another property from [AS07] that combines the what with the aspect
where. This result is not too surprising, since the special declassi�cation commands
already capture the intuition of locality in the code. The language used in those works

81

6.3 Related Work

does not have multi-threading and to our knowledge no results about their applicability
in multi-threaded settings exist.
In abstract non-interference abstract interpretations, basically equivalence relations,

are used to model the knowledge of the attacker. In [HM05] they review abstract non-
interference by comparing it with the per model from [SS98]. Abstract non-interference
di�ers from delimited release and our approach with the escape hatches, since they use
relations to capture the knowledge of an attacker while the special command of delimited
release and the escape hatches approximate this syntactically in order to make a syntactic
analysis easier.
[MR07] introduces the properties WHERE-Security and WHAT-Security in order to

control the aspect where and the aspect what. These properties use [SS00] and [MS04]
as a foundation. As we have already seen in this work, those properties are scheduler-
independent and therefore suitable for multi-threaded settings.
The authors of [LM09b] focus on the aspect who may initiate a declassi�cation and

integrate the control into WHERE-Security. In consequence, they achieve a control
of the aspects where and who. Furthermore, the authors use input and output of a
program, which is not present in the model in this work.
In [LM09a] the authors present an approach where reference points for distinguishable

memory states are made explicit. While in our work the reference points where implicitly
local in WHERE&WHATlocal-Security and implicitly initial in WHERE&WHATinitial-
Security, the security property presented in [LM09a] allows an explicit speci�cation
where in the program the reference points are set and which of the reference points are
used.
As we have already mentioned a smaller set of schedulers could guide in the develop-

ment of a weaker property that still captures our intuition of security. The authors of
[MS10] present a class of schedulers they call robust schedulers that is smaller than the
set of σ schedulers, but still very natural.
Other approaches exist that quantify the information �ow. In [Low04] the authors

present the idea to take the amount of the distinguishable program runs from indistin-
guishable states to classify how much information is leaked. The authors use a process
algebra, but we assume that the result could be transferred to imperative programming
languages.

82

References

References

[AS07] Aslan Askarov and Andrei Sabelfeld. Localized delimited release: combining
the what and where dimensions of information release. In In PLAS, pages
53�60, 2007.

[HM05] Sebastian Hunt and Isabella Mastroeni. The per model of abstract non-
interference. In Proc. of The 12th Internat. Static Analysis Symp. (SAS
â��05), volume 3672 of Lecture Notes in Computer Science, pages 171�185.
Springer-Verlag, 2005.

[LM09a] Alexander Lux and Heiko Mantel. Declassi�cation with explicit reference
points. In Michael Backes and Peng Ning, editors, 14th European Sympo-
sium on Research in Computer Security, volume 5789 of LNCS, pages 69�85.
Springer, 2009.

[LM09b] Alexander Lux and Heiko Mantel. Who can declassify? In P. Degano,
J. Guttman, and F. Martinelli, editors, Proceedings of the Workshop on For-
mal Aspects in Security and Trust, FAST 2008, volume 5491 of LNCS, pages
35�49. Springer, 2009.

[Low04] Gavin Lowe. De�ning information �ow quantity. J. Comput. Secur., 12:619�
653, May 2004.

[MR07] Heiko Mantel and Alexander Reinhard. Controlling the what and where of de-
classi�cation in language-based security. In Rocco De Nicola, editor, European
Symposium on Programming (ESOP), volume 4421 of LNCS, pages 141�156.
Springer, 2007.

[MS04] Heiko Mantel and David Sands. Controlled Declassi�cation based on Intran-
sitive Noninterference. In Proceedings of the 2nd ASIAN Symposium on Pro-
gramming Languages and Systems, APLAS 2004, LNCS 3302, pages 129�145,
Taipei, Taiwan, November 4�6 2004. Springer-Verlag.

[MS10] Heiko Mantel and Henning Sudbrock. Flexible scheduler-independent security.
In European Symposium on Research in Computer Security (ESORICS), LNCS
6345, pages 116�133. Springer, 2010.

[Rei06] Alexander Reinhard. Analyse nebenläu�ger programme unter intransitiven
sicherheitspolitiken. Master's thesis, RWTH Aachen, May 2006.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-�ow se-
curity. IEEE Journal on Selected Areas in Communications, 21:2003, 2003.

[SM04] Andrei Sabelfeld and Andrew C. Myers. A model for delimited information
release. In Kokichi Futatsugi, Fumio Mizoguchi, and Naoki Yonezaki, editors,
Software Security - Theories and Systems, volume 3233 of Lecture Notes in
Computer Science, pages 174�191. Springer Berlin / Heidelberg, 2004.

83

References

[Smi07] Geo�rey Smith. Principles of secure information �ow analysis. In Mihai
Christodorescu, Somesh Jha, Douglas Maughan, Dawn Song, and Cli� Wang,
editors, Malware Detection, volume 27 of Advances in Information Security,
pages 291�307. Springer US, 2007.

[SS98] Andrei Sabelfeld and David Sands. A per model of secure information �ow in
sequential programs. HIGHER-ORDER AND SYMBOLIC COMPUTATION,
14:40�58, 1998.

[SS00] Andrei Sabelfeld and David Sands. Probabilistic noninterference for multi-
threaded programs. In CSFW '00: Proceedings of the 13th IEEE workshop on
Computer Security Foundations, page 200, Washington, DC, USA, 2000. IEEE
Computer Society.

[SS05] Andrei Sabelfeld and David Sands. Declassi�cation: Dimensions and prin-
ciples. In In Proceedings of the 18th IEEE Workshop on Computer Security
Foundations (CSFWâ��05), pages 255�269, 2005.

84

References

85

A. Proposal

Department of Computer Science
Modeling and Analysis
of Information Systems
Prof. Dr.-Ing. Heiko Mantel

Master’s Thesis

Controlled Declassification under
Semantics with Schedulers

Contact: Alexander Lux <lux@mais.informatik.tu-darmstadt.de>
(Modeling and Analysis of Information Systems, S2/02 | [E 321])

Protecting the confidentiality of information is an important problem in modern net-
worked information systems. A program might need confidential (high) data to perform
its task, while it communicates seemingly uncritical (low) data (e.g. a registration pro-
cess). The question is how to ensure that the program does not “leak” the confidential
data, neither accidentally (bugs in the program) nor on purpose (a Trojan Horse).
An Information Flow analysis is a possible answer to the threat of leaking secrets. Its

purpose is to check that there is no information leaking from high input to low output.
Possible leaks can be explicit such as in statements like l := h or, more subtly, implicit like
in if h= 1 then l := 1 else l := 0, where one can draw conclusions on the (confidential)
value of the high variable h just by observing the (non-secret) value of the low variable l.
Today, noninterference-like properties are a common approach to model the condition

that there is no malicious information flow. These properties state that changing high
input to a program does not lead to changes in the low output.
Many applications require some information about secrets to be released. For instance,

the result of a password check has to be communicated, and this result necessarily contains
some information about the secret password. Research on declassification addresses the
question of how to relax noninterference-like properties as far as necessary for functionality,
without giving up too much. Many approaches to control declassification have been
developed [SS09], however, the problem is not yet satisfactorily solved. A layout to
structure the research on declassification is given in [MS04] by the threeW-aspects: where
declassification can occur, what can be declassified, and who can initiate declassification.
In a multi-threaded setting, control of information flow is more complicated than for

sequential programs, for instance because of implicit interactions between threads through
the scheduler. Strong security [SS00] is one property that captures secure information
flow in a multi-threaded setting. It implies a scheduler-dependent security property with
any scheduler from a broad set of schedulers, i.e. it is scheduler independent. Scheduler
independence is important, because the scheduler usually is not known before runtime.
A control of the aspects where and what in multi-threaded programs is offered in

[MR07]. The security properties from [MR07] are formulated for a semantics that does

1

86

not explicitly model scheduling and are based on strong security with the intention that
they are scheduler independent in a similar way. However, the scheduler independence of
these properties has not been proved yet.
The purpose of this work is to provide a tightly integrated control of the two W-aspects

of declassification where and what that is adequate in a multi-threaded setting with
probabilistic schedulers.

Project Objectives

Core:

A: Scheduler-Independence with Probabilistic Schedulers The first objective is to
strengthen the confidence in the security properties from [MR07] for applications in
a setting with probabilistic schedulers by providing scheduler independence results.
Such results are based on novel variants of the security properties for semantics with
probabilistic schedulers and are established by a proof that the scheduler-dependent
properties are implied by the properties from [MR07].

B: Integrating what and where Tightly The second objective is to advance the scope
of controlled declassification by providing a tighter integration of the control of the
aspects where and what. It shall be possible to specify where in the program what
information can be released safely, and this shall be adequately reflected in a security
property. Suitable application scenarios and programs shall be determined that guide
the development. Scheduler-independence shall be established similar to objective A.
A security type system shall provide a sound possibility to check programs against
the novel security property.

C: Example Applications for Declassification The third objective is to demonstrate
and evaluate the results from objectives A and B on suitable example applications.
The applications shall cover an information flow policy that determines what may
be declassified where in a multi-threaded program. The security property shall be
proved by the novel security type system.

Extensions:

Additionally to the core objectives, the following objectives could be pursued.

• In [LM09], a more fine-grained approach for specifying what information may be
declassified has been developed. It could be explored how this approach can be
carried over to multi-threaded programs.

• Many multi-threaded programs use synchronization mechanisms. It could be ex-
plored how synchronization interacts with declassification.

2

87

• A common utilization of multi-threading is the separation of communication from
calculation. It could be explored how to adequately support explicit input and output
operations for communication with the program environment.

• In distributed programs communication partners of programs can be other programs.,
i.e. the output of one program can be the input of another one. Such a setting has
been explored in [MS03, SM02], with a security property based on strong security.
It could be explored how declassification can be treated in such a setting.

Main Activities

A includes

• defining variants of the security properties WHERE and WHAT1 (optionally
WHAT2) [MR07] for probabilistic schedulers

• justifying the adequacy of the novel security properties
• proving scheduler-independence of WHERE, WHAT1 (optionally WHAT2)

B includes

• defining a possibility to specify what can be declassified where
• defining a scheduler-dependent security property
• defining a security property for that scheduler-independence is proved
• developing motivating example programs
• justifying the adequacy of the security properties, especially with respect to
how they reflect the intention of specified declassification

• developing a suitable security type system and proving its soundness

C includes

• determining suitable applications
• developing programs that realize these applications
• determining suitable information flow policy
• demonstrating and evaluating results from objectives A and B against the
example programs

Deliverables

The master’s thesis shall include

• detailed presentation of security properties, type systems, and proofs as described
in the prior sections

• detailed presentation of example programs and applications

3

88

• detailed explanation of decisions made (description of alternatives, discussion of
their advantages and disadvantages, arguments for chosen solution, discussion in
retrospective)

• detailed elaboration on insights gained, on problems identified, and on possible
extensions in the future

After completing the thesis, a talk shall present the main results of the thesis.

Prerequisites

• basic knowledge of formal methods

• interest in information security

Supervision

Prof. Dr.-Ing. Heiko Mantel
Dipl.-Inform. Alexander Lux
(Modeling and Analysis of Information Systems)

References
[LM09] A. Lux and H. Mantel. Who Can Declassify? In Proceedings of the Workshop on Formal

Aspects in Security and Trust (FAST 2008), LNCS 5491, pages 35–49. Springer, 2009.

[MR07] H. Mantel and A. Reinhard. Controlling the What and Where of Declassification in
Language-Based Security. In Rocco De Nicola, editor, Proceedings of the 16th European
Symposium on Programming (ESOP 2007), LNCS 4421, pages 141–156. Springer, 2007.

[MS03] H. Mantel and A. Sabelfeld. A Unifying Approach to the Security of Distributed and
Multi-threaded Programs. Journal of Computer Security, 11(4):615–676, 2003.

[MS04] H. Mantel and D. Sands. Controlled Declassification based on Intransitive Noninterfer-
ence. In Proceedings of the 2nd ASIAN Symposium on Programming Languages and
Systems (APLAS 2004), LNCS 3302, pages 129–145. Springer, 2004.

[SM02] A. Sabelfeld and H. Mantel. Static Confidentiality Enforcement for Distributed Programs.
In Proceedings of the 9th International Static Analysis Symposium (SAS 2002), LNCS
2477, pages 376–394, Madrid, Spain, 2002.

[SS00] A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Programs. In
Proceedings of the 13th IEEE Computer Security Foundations Workshop (CSFW 2000),
pages 200–215, 2000.

[SS09] A. Sabelfeld and D. Sands. Declassification: Dimensions and Principles. Journal of
Computer Security, 17(5):517–548, 2009.

4

89

