
Addendum to the Article ”Assumptions and Guarantees for Compositional
Noninterference” – Proofs of Theorems and Type System for Establishing Locally

Sound Use of Modes

Heiko Mantel1, David Sands2, and Henning Sudbrock1

1Department of Computer Science
TU Darmstadt, Germany

{mantel,sudbrock}@cs.tu-darmstadt.de

2Department of Computer Science and Engineering
Chalmers University of Technology, Sweden

dave@chalmers.se

This document contains proofs for the theorems from
the article “Assumptions and Guarantees for Compositional
Noninterference” [1] (in Sections I–IX). Moreover, as an
addendum to that article it contains a type system for
establishing the locally sound use of modes (in Section X).

I. PROOF OF PROPOSITION 1

Proposition 1. Assume that the multi-threaded program
executing the commands c1, . . . , cn is SIFUM-secure. Then
whenever mem1 =low mem2 and

〈〈(c1,mds0), . . . , (cn,mds0)〉,mem1〉
→∗ 〈〈(stop,mds0), . . . , (stop,mds0)〉,mem ′1〉

there exists mem ′2 such that mem ′1 =low mem ′2 and

〈〈(c1,mds0), . . . , (cn,mds0)〉,mem2〉
→∗ 〈〈(stop,mds0), . . . , (stop,mds0)〉,mem ′2〉.

Proof: By the definition of SIFUM-security the number
of execution steps of SIFUM-secure programs, and, hence,
their termination behavior does not differ when executing
the program in two low-equal initial memory states. Hence,
we obtain mem ′2 such that

〈〈(c1,mds0), . . . , (cn,mds0)〉,mem2〉
→∗ 〈〈(stop,mds0), . . . , (stop,mds0)〉,mem ′2〉

and mem ′1 =mds0
low mem ′2 from the definition of SIFUM-

security. Since no variable has mode asm-noread in mds0,
it follows that mem ′1 =low mem ′2.

II. PROOF OF PROPOSITION 2

Proposition 2. Assume that the global configuration
〈〈(c1,mds1), . . . , (cn,mdsn)〉,mem〉 ensures a sound use
of modes and that

〈〈(c1,mds1), . . . , (cn,mdsn)〉,mem〉
→∗ 〈〈(c′1,mds ′1), . . . , (c′n,mds ′n)〉,mem ′〉.

Then 〈c′i,mds ′i,mem ′〉 ∈ lReach(〈ci,mdsi,mem〉) holds
for all i ∈ {1, . . . , n}.

Proof: The proof is by induction on the number n of
transitions of

〈〈(c1,mds1), . . . , (cn,mdsn)〉,mem〉 →∗

〈〈(c′1,mds ′1), . . . , (c′n,mds ′n)〉,mem ′〉.

In the inductive proof, we prove in addition to the property
stated by the theorem (in the proof called “property (1)”)
that 〈〈(c′1,mds ′1), . . . , (c′n,mds ′n)〉,mem ′〉 ensures a sound
use of modes (in the proof called “property (2)”).

1) Assume that n = 0. Then mem = mem ′ and
(ci,mdsi) = (c′i,mds ′i) for all i ∈ {1, . . . , n} hold.
Hence, 〈c′i,mds ′i,mem ′〉 ∈ lReach(〈ci,mdsi,mem〉)
holds for each i ∈ {1, . . . , n} due to Item (1) in
Definition 11, which proves property (1). Property (2)
follows as here both global configurations are equal.

2) Assume that n > 0. Then there exists gc′′ =
〈〈(c′′1 ,mds ′′1), . . . , (c′′n,mds ′′n)〉,mem ′′〉 such that
(a) 〈〈(c1,mds1), . . . , (cn,mdsn)〉,mem〉 →∗ gc′′ and
(b) gc′′ → 〈〈(c′1,mds ′1), . . . , (c′n,mds ′n)〉,mem ′〉.
Due to (a) we may apply the induction hypothesis to
gc′′, obtaining that
(c) 〈c′′i ,mds ′′i ,mem ′′〉 ∈ lReach(〈ci,mdsi,mem〉)

for each i ∈ {1, . . . , n}, and that
(d) gc′′ ensures a sound use of modes.
From (b) and (d) it follows that
(e) 〈〈(c′1,mds ′1), . . . , (c′n,mds ′n)〉,mem ′〉 ensures a

globally sound use of modes.
From (b) and the definition of the relation →, there
exists k ∈ {1, . . . , n} such that
(f) 〈c′′k ,mds ′′k ,mem ′′〉_ 〈c′k,mds ′k,mem ′〉 and
(g) (c′′i ,mds ′′i ) = (c′i,mds ′i) for all i ∈ {1, . . . , n} \
{k}.

From (c), (f), and Item (2) in Definition 11 we obtain
(h) 〈c′k,mds ′k,mem ′〉 ∈ lReach(〈ck,mdsk,mem〉).
Let i 6= k and x ∈ asm-nowrite(mds ′′i ). As by (e)
〈〈(c′1,mds ′1), . . . , (c′n,mds ′n)〉,mem ′〉 ensures a glob-
ally sound use of modes, we obtain from (a) that
(i) guar -nowrite ∈ mds ′′k(x ).
As 〈ck,mdsk,mem〉 ensures a locally sound use of

1



modes, we obtain from (c) and (i) that
(j) c′′k does not modify x .
Hence, we have mem ′(x ) = mem ′′(x ) for all
x ∈ mds ′′i (asm-nowrite) Thus, by Item (3) of
Definition 11, we conclude that 〈c′i,mds ′i,mem ′〉 ∈
lReach(〈ci,mdsi,mem〉) for i 6= k, and, hence, for
all i ∈ {1, . . . , n} due to (h).
Thus, property (1) is satisfied.
From property (1), we obtain
that lReach(〈c′i,mds ′i,mem ′〉) ⊆
lReach(〈ci,mdsi,mem〉). Hence, 〈c′i,mds ′i,mem ′〉
ensures a locally sound use of modes as
〈ci,mdsi,mem〉 ensures a locally sound use of modes.
This fact together with (e) results in property (2),
which concludes the proof.

III. PROOF OF THEOREM 1

Theorem 1 (Compositionality). Let c1, . . . , cn be SIFUM-
secure commands such that 〈〈(c1,mds0), . . . , (cn,mds0)〉,
mem〉 ensures a sound use of modes for every memory
state mem . Then the multi-threaded program executing the
commands c1, . . . , cn is SIFUM-secure.

For proving Theorem 1, we first establish two lemmata.

Lemma 1. Let c, c′ be commands, mds,mds ′ be
mode states, mem1,mem ′1,mem2 be memory states, and
x1, . . . , xk be variables. Assume that 〈c,mds,mem1〉 _
〈c′,mds ′,mem ′1〉, that c does not read xi for all i ∈
{1, . . . , k}, and that mem1(x ) = mem2(x ) for all x ∈
Var \ {x1, . . . , xk}.

Then there exists a memory state mem ′2 such that
〈c,mds,mem2〉 _ 〈c′,mds ′,mem ′2〉 and such that
mem ′1(x ) = mem ′2(x ) for all x 6∈ {x1, . . . , xk}.

Moreover, if mem1(x ) 6= mem ′1(x ) or mem2(x ) 6=
mem ′2(x ) for x ∈ {x1, . . . , xk}, then mem ′1(x ) =
mem ′2(x ).

Proof: The proof is by induction on k.
Let firstly k = 0. In this case, mem1 = mem2, and we

conclude by setting mem ′2 = mem ′1.
Now let k > 0. Let mem3 = mem2[xk 7→ mem1(xk)].

Then mem1 and mem3 differ only on the variables
x1, . . . , xk−1. Hence, by the induction hypothesis there exists
mem ′3 such that 〈c,mds,mem3〉 _ 〈c′,mds ′,mem ′3〉 and
such that mem ′1 and mem ′3 differ only on the variables
x ∈ {x1, . . . , xk−1} for which mem1(x ) = mem ′1(x ) or
mem3(x ) = mem ′3(x ). By construction of mem3, there
exists v ∈Val such that mem2 = mem3[xk 7→ v ]. As c does
not read xk, due to 〈c,mds,mem3〉 _ 〈c′,mds ′,mem ′3〉
one of the following two conditions holds:
• 〈c,mds,mem2〉_ 〈c′,mds ′,mem ′3[xk 7→ v ]〉
• 〈c,mds,mem2〉_ 〈c′,mds ′,mem ′3〉

In the first case define mem ′2 = mem ′3[xk 7→ v ], and in the
second case define mem ′2 = mem ′3. Then mem ′2 and mem ′3
differ at most on xk. Moreover, if mem2(xk) 6= mem ′2(xk),

then mem ′2(xk) 6= v , and hence we must have the sec-
ond case. But then mem ′2(xk) = mem ′3(xk). Finally, if
mem3(xk) 6= mem ′3(xk), we can turn the reasoning around
(considering mem3 = mem2[xk 7→ v ′]) to conclude.

Hence, mem ′1 and mem ′2 differ only on x1, . . . , xk, and
they do not differ on those x ∈ {x1, . . . , xk} that have been
modified in one of the two execution steps.

Lemma 2. Let 〈〈(c1,1,mds1), . . . , (c1,n,mdsn)〉,mem1〉
and 〈〈(c2,1,mds1), . . . , (c2,n,mdsn)〉,mem2〉 be global
configurations that ensure a sound use of modes.
Whenever 〈〈(c1,1,mds1), . . . , (c1,n,mdsn)〉,mem1〉 →
〈〈(c′1,1,mds ′1), . . . , (c′1,n,mds ′n)〉,mem ′1〉 and there exist
mem1,i and mem2,i for all i ∈ {1, . . . , n} with

- 〈c1,i,mdsi,mem1,i〉 ≈ 〈c2,i,mdsi,mem2,i〉 and
- mem1,i(x ) =mem1(x ) and mem2,i(x ) =mem2(x )

whenever
[
(L(x ) = high) ∨ (mem1(x ) =mem2(x )) ∨

(∀j ∈ {1, . . . , n} : x 6∈ mdsj(asm-noread))
]

holds,
then there exist c′2,1 . . . , c

′
2,n and mem ′2 such that

(1) 〈〈(c2,1,mds1), . . . , (c2,n,mdsn)〉,mem2〉 →
〈〈(c′2,1,mds ′1), . . . , (c′2,n,mds ′n)〉,mem ′2〉 and

(2) for all i∈{1, . . . , n} there are mem ′1,i and mem ′2,i with
- 〈c′1,i,mds ′i,mem ′1,i〉 ≈ 〈c′2,i,mds ′i,mem ′2,i〉 and
- mem ′1,i(x ) =mem ′1(x ) and mem ′2,i(x ) =mem ′2(x )

whenever
[
(L(x ) = high)∨(mem ′1(x ) =mem ′2(x ))

∨(∀j ∈{1, . . . , n} : x 6∈ mds ′j(asm-noread))
]

holds.

Proof: In the first step, we construct a global config-
uration 〈〈(c′2,1,mds ′1), . . . , (c′2,n,mds ′n)〉,mem ′2〉 such that
conclusion (1) stated by the lemma is satisfied, i.e.,

〈〈(c2,1,mds1), . . . , (c2,n,mdsn)〉,mem2〉 →
〈〈(c′2,1,mds ′1), . . . , (c′2,n,mds ′n)〉,mem ′2〉.

In the second step, we prove that conclusion (2) stated
by the lemma is satisfied for the global configuration con-
structed in the first step.

Step 1. We show that the execution step in the global
configuration 〈〈(c1,1,mds1), . . . , (c1,n,mdsn)〉,mem1〉 can
be matched by an execution step in the global configuration
〈〈(c2,1,mds1), . . . , (c2,n,mdsn)〉,mem2〉.

By the assumption of the theorem,

〈〈(c1,1,mds1), . . . , (c1,n,mdsn)〉,mem1〉 →
〈〈(c′1,1,mds ′1), . . . , (c′1,n,mds ′n)〉,mem ′1〉.

Hence, by the definition of the transition relation → there
exists some j ∈ {1, . . . , n} such that
(a) 〈c1,j ,mdsj ,mem1〉_ 〈c′1,j ,mds ′j ,mem ′1〉 and
(b) (c1,i,mdsi) = (c′1,i,mds ′i) for all i 6= j.

By assumption (2) of the lemma there hence exist memory
states mem1,j and mem2,j such that for all x ∈ Var we
have
(c) [L(x ) = high ∨mem1(x ) = mem2(x ) ∨ ∀k 6= j : x 6∈

mdsk(asm-noread)] =⇒ mem1,j(x ) = mem1(x )

2



and
(d) [L(x ) = high ∨mem1(x ) = mem2(x ) ∨ ∀k 6= j : x 6∈

mdsk(asm-noread)] =⇒ mem2,j(x ) = mem2(x ),
and moreover
(e) 〈c1,j ,mdsj ,mem1,j〉 ≈ 〈c2,j ,mdsj ,mem2,j〉.

From (e), we directly obtain
(f) mem1,j =

mdsj
low mem2,j

by the definition of strong low bisimulation modulo modes.
Due to (c), mem1 and mem1,j differ only in vari-

ables x with L(x ) = low , mem1(x ) 6= mem2(x ), and
x ∈ mdsk(asm-noread) for some k 6= j. As by as-
sumption 〈〈(c1,1,mds1), . . . , (c1,n,mdsn)〉,mem1〉 ensures
a globally sound use of modes, x ∈ mdsj(guar -noread)
holds for these variables. Moreover, as by assumption
〈c1,j ,mdsj ,mem1〉 ensures a locally sound use of modes,
c1,j does not read the variables with mode guar -noread , i.e.,
in particular c1,j does not read the variables whose values
differ in mem1,j and mem1. We may hence apply Lemma 1
for the transition in (a) and the memory state mem1,j This
yields a memory state mem ′1,j with
(g) 〈c1,j ,mdsj ,mem1,j〉_ 〈c′1,j ,mds ′j ,mem ′1,j〉 and
(h) for all x ∈ Var , [L(x ) = high ∨ mem1(x ) =

mem2(x ) ∨ ∀k 6= j : x 6∈ mdsk(asm-noread)] =⇒
mem ′1,j(x ) = mem ′1(x ).

As 〈c1,j ,mdsj ,mem1,j〉 and 〈c2,j ,mdsj ,mem2,j〉 are
strong low bisimilar modulo modes (compare (e)), we obtain
due to (g) that there exist c′2,j and mem ′2,j with

(i) 〈c2,j ,mdsj ,mem2,j〉_ 〈c′2,j ,mds ′j ,mem ′2,j〉 and
(j) 〈c′1,j ,mds ′j ,mem ′1,j〉 ≈ 〈c′2,j ,mds ′j ,mem ′2,j〉.

From (j) and the definition of strong low bisimulation
modulo modes we directly obtain
(k) mem ′1,j =

mds′j
low mem ′2,j .

Due to (d), we may exploit global and local soundness
as before applying Lemma 1 earlier in this prove, and
apply Lemma 1 for the transition in (i) and the memory
state mem2. This yields a memory state mem ′2 such that

(l) 〈c2,j ,mdsj ,mem2〉_ 〈c′2,j ,mds ′j ,mem ′2〉 and
(m) for all x ∈ Var , [L(x ) = high ∨ mem1(x ) =

mem2(x ) ∨ ∀k 6= j : x 6∈ mdsk(asm-noread)] =⇒
mem ′2(x ) = mem ′2,j(x ).

I.e., we now have constructed both c′2,j and mem ′2. It
remains to construct c′2,i for i 6= j. To this end, we define
(n) c′2,i := c2,i for all i 6= j.

Then, due to (l), we have

〈〈(c2,1,mds1), . . . , (c2,n,mdsn)〉,mem2〉 →
〈〈(c′2,1,mds ′1), . . . , (c′2,n,mds ′n)〉,mem ′2〉

by the definition of the semantics for global transitions.

Step 2. In this step, we show that for all i ∈ {1, . . . , n} there
exist memory states mem ′1,i and mem ′2,i with mem ′1,i(x ) =
mem ′1(x ) and mem ′2,i(x ) = mem ′2(x ) for all x ∈ Var
that do not satisfy L(x ) = low , mem ′1(x ) 6= mem ′2(x ),

and x ∈ mds ′k(asm-noread) for some k 6= i, and with
〈c′1,i,mds ′i,mem ′1,i〉 ≈ 〈c′2,i,mds ′i,mem ′2,i〉.

We distinguish the two cases i = j and i 6= j (where j
is the index of the command performing the execution step,
as exhibited in Step 1).

Case 1: i = j: The memory states mem ′1,j and
mem ′2,j have already been constructed in Step 1. That
〈c′1,j ,mds ′j ,mem ′1,j〉 ≈ 〈c′2,j ,mds ′j ,mem ′2,j〉 has been es-
tablished in (j). It remains to show that whenever L(x ) =
high , mem ′1(x ) = mem ′2(x ), or ∀k 6= j : x 6∈
mds ′k(asm-noread) holds, both mem ′1,j(x ) = mem ′1(x )
and mem ′2,j(x ) = mem ′2(x ) hold.

Assume firstly that L(x ) = high . But then the required
equalities follow directly from (h) and (m).

Assume now that ∀k 6= j : x 6∈ mds ′k(asm-noread).
As for k 6= j we have mds ′k = mdsk (compare (b)), this
is equivalent to ∀k 6= j : x 6∈ mdsk(asm-noread). But
then again, the required equalities follow directly from (h)
and (m).

Assume finally that mem ′1(x ) = mem ′2(x ). If
mem1(x ) = mem2(x ) would also hold, then the required
equalities would again directly follow from (h) and (m).
Hence, we assume that mem1(x ) 6= mem2(x ). But then
the execution step from (a) or the execution step from (g)
modifies x . As both execution steps have been obtained with
Lemma 1, we obtain that x is modified to the same value
in mem ′1,j and mem ′1 respectively mem ′2,j and mem ′2, and
we can conclude.

Case 2: i 6= j: We define the memory states mem ′1,i and
mem ′2,i as follows for all x ∈ Var :
(o) If L(x ) = high , or if mem ′1(x ) = mem ′2(x ), or

if x 6∈ mds ′k(x )(asm-noread) for all k 6= i, then
mem ′1,i(x ) = mem ′1(x ) and mem ′2,i(x ) = mem ′2(x ).

(p) If L(x ) = low , mem ′1(x ) 6= mem ′2(x ), and there
exists k 6= i such that x ∈ mds ′k(x )(asm-noread),
then mem ′1,i(x ) = mem1,i(x ) and mem ′2,i(x ) =
mem2,i(x ).

We firstly show that mem ′1,i(x ) = mem ′1(x ) and
mem ′2,i(x ) = mem ′2(x ) for all x ∈ Var satisfying
L(x ) = high , mem ′1(x ) = mem ′2(x ), or ∀k 6= i :
x 6∈ mds ′k(asm-noread). Let x be a variable with these
properties. Then case (o) applies and we obtain directly that
mem ′1,i(x ) = mem ′1(x ) and mem ′2,i(x ) = mem ′2(x ).

We now show that 〈c′1,i,mds ′i,mem ′1,i〉 ≈
〈c′2,i,mds ′i,mem ′2,i〉. As j 6= i, we have c1,i = c′1,i,
c2,i = c′2,i, and mdsi = mds ′i. Hence, we need to
show that 〈c1,i,mdsi,mem ′1,i〉 ≈ 〈c2,i,mdsi,mem ′2,i〉.
By assumption (2) of the lemma, we know that
〈c1,i,mdsi,mem1,i〉 ≈ 〈c2,i,mdsi,mem2,i〉. As ≈ is
closed under globally consistent changes, we will conclude
by showing that mem ′1,i and mem ′2,i can be obtained from
mem1,i and mem2,i using the closure conditions from

3



Definition 3.
Firstly note that, due to the definition in (o) and (p),

mem ′1,i(x ) 6= mem1,i(x ) or mem ′2,i(x ) 6= mem2,i(x )
only if L(x ) = high , mem ′1(x ) = mem ′2(x ), or x 6∈
mds ′k(asm-noread) for all k 6= i. Hence, we only need
to consider variables for which one of these three condi-
tions holds in the following. Note furthermore that then,
due to (o), mem ′1,i(x ) = mem ′1(x ) and mem ′2,i(x ) =
mem ′2(x )) hold.

Consider firstly a variable x such that
x 6∈ mdsi(asm-nowrite). If L(x ) = high , then evidently
the new values of x can be set by a globally consistent
change, as globally consistent changes allow arbitrary
new values for high variables. If L(x ) = low , then
by our assumptions in the previous paragraph either
mem ′1(x ) = mem ′2(x ), or x 6∈ mds ′k(asm-noread) for all
k 6= i. But then x 6∈ mds ′j(asm-noread), and hence, due
to (k), mem ′1,j(x ) = mem ′2,j(x ). But then, by (h) and (m),
also mem ′1(x ) = mem ′2(x ). We can now conclude as
globally consistent changes require equal values for low
variables.

Consider now a variable x with x ∈ mdsi(asm-nowrite).
In this case, x ∈ mdsj(guar -nowrite) due to global sound-
ness. But then, due to local soundness, c1,j and c2,j do not
modify x . Hence, due to the definition of “does not modify”,
mem1(x ) = mem ′1(x ) and mem2(x ) = mem ′2(x ).

Assume firstly that mem1(x ) = mem1,i(x ) and
mem2(x ) = mem2,i(x ). Then mem ′1,i(x ) = mem1,i(x )
as well as mem ′2,i(x ) = mem2,i(x ) due to our assumptions
made above, i.e., the value of x remains unchanged.

Assume now contrarily that mem1(x ) 6= mem1,i(x ) or
that mem2(x ) 6= mem2,i(x ). Then, by assumption (2) of
the lemma, L(x ) = low , mem1(x ) 6= mem2(x ), and
x ∈ mdsk(asm-noread) for some k 6= i. If in this case
mem ′1(x ) = mem ′2(x ) would hold, this would contra-
dict that the value of x remains unchanged by c1,j and
c2,j . Hence, let us assume that mem ′1(x ) 6= mem ′2(x ).
But then, due to our assumptions made above, it must
hold that x 6∈ mds ′k(asm-noread) for all k 6= i. But
as x ∈ mdsk(asm-noread) for some k 6= i, and
mdsk 6= mds ′k only holds for k = j, we obtain that
x ∈ mdsj(asm-noread) and x 6∈ mds ′j(asm-noread). But
this contradicts the fact that mem1,j =

mdsj
low mem2,j and

mem ′1,j =
mds′j
low mem ′2,j , while both c1,j and c2,j leave the

value of x unchanged.
Hence, we know that mem1,i(x ) = mem ′1(x ) and

mem2,i(x ) = mem ′2(x ) for all variables with x ∈
mds ′i(asm-nowrite), and that we hence must not apply
globally consistent changes to these variables.

Now we prove Theorem 1:
Proof: We want to apply Lemma 2 for the com-

mands c1, . . . , cn and the mode state mds0. By the def-
inition of SIFUM-security for commands (Definition 5),

we have 〈ci,mds0,mem1〉 ≈ 〈ci,mds0,mem2〉 for all
i ∈ {1, . . . , n}. Hence, when setting mem1,i = mem1

and mem2,i = mem2, all the preconditions of Lemma 2
are satisfied, and we obtain that each execution step in
〈〈(c1,mds0), . . . , (cn,mds0)〉,mem1〉 can be matched by
an execution step in 〈〈(c1,mds0), . . . , (cn,mds0)〉,mem2〉.
Moreover, the preconditions of Lemma 2 are again satisfied
after this first execution step. This is on the one hand
due to the fact that the assertions of Lemma 2 for the
global configurations after an execution step correspond to
its preconditions when applying the theorem to the global
configurations after the execution step, and on the other hand
this is due to the fact that both locally and globally sound
use of capabilities are preserved after an execution step (due
to Proposition 2).

We can thus inductively apply Lemma 2 k times. In doing
so, we obtain c′′1 , . . . , c

′′
n and mem ′2 such that

〈〈(c1,mds0), . . . , (cn,mds0)〉,mem2〉 →k

〈〈(c′′1 ,mds1), . . . , (c′′n,mdsn)〉,mem ′2〉,

and such that there exist (for all i) mem ′1,i and mem ′2,i with
the properties in condition (2) of Lemma 2. It remains to
show that mem ′1(x ) = mem ′2(x ) whenever L(x ) = low
and x 6∈ mdsi(asm-noread) for all i ∈ {1, . . . , n}.
But for such x , we have mem ′1,i(x ) = mem ′1(x ) and
mem ′2,i(x ) = mem ′2(x ), and, hence, mem ′1(x ) = mem ′2(x )
as 〈c′1,mdsi,mem ′1,i〉 ≈ 〈c′′1 ,mdsi,mem ′2,i〉.

IV. PROOF OF THEOREM 2

Theorem 2. Assume that L(log) = L(debug) = low and
L(secret) = high . Then cdebug is SIFUM-secure.

Proof: We iteratively construct a strong
low bisimulation modulo modes such that
〈cdebug,mds0,mem1 〉 R 〈cdebug,mds0,mem2 〉 for
all mem1 =low mem2 . Due to the definition of strong
low bisimulations modulo modes, the configurations
containing the program obtained from cdebug by removing
the annotated assignment to debug and the mode state
where debug has mode asm-nowrite must be related to
themselves by R for all low-equal memory states that
assign False to debug (note that globally consistent changes
will not modify debug due to its mode). As the value of
debug is False, the guard of the if-then-else statement
evaluates to False, and, hence, the definition of strong low
bisimulation modulo modes requires that configurations
containing the command stop and the mode state mds0

must be related to themselves. As stop cannot perform any
execution step, we do not have to add any more pairs to the
relation R – we added enough pairs to make it a strong low
bisimulation modulo modes. Hence, the program cdebug is
SIFUM-secure.

4



V. PROOF OF THEOREM 3

Theorem 3. Assume that L(key1) = L(key2) = high and
L(pub1) = L(pub2) = L(temp) = low . Then ctemp is
SIFUM-secure.

Proof: We could prove Theorem 3 as in the proof of
Theorem 2 by iteratively constructing a strong low bisimu-
lation modulo modes that relates configurations containing
the command ctemp, the mode state mds0, and low-equal
memory states. However, it also suffices to show that ctemp

is typable, as then the SIFUM-security of ctemp follows from
Theorem 5. A typing of ctemp can be established by applying
the typing rule [anno] twice, the rule [assign2] twice, and the
rule [assign1] four times.

VI. PROOF OF THEOREM 4

Theorem 4. Assume that L(secretData) = L(localout) =
high and L(x ) = low for all remaining variables. Then csrv
is SIFUM-secure.

Proof: This theorem can be proved (as in the proof of
Theorem 2) by iteratively constructing a strong low bisim-
ulation modulo modes that relates configurations containing
the command csrv, the mode state mds0, and low-equal
memory states. In the construction, the modes asm-nowrite
are exploited to ensure that the values of variables are not
modified by globally consistent changes, and the modes
asm-noread are exploited as they allow that low variables
store secrets (as the variable answer).

VII. PROOF OF THEOREM 5

Theorem 5. Assume that ` Γ {c} Γ′ is derivable, and
let mds be a mode state that is consistent with Γ.
Then 〈c,mds,mem1〉 ≈ 〈c,mds,mem2〉 holds for all
mem1,mem2 ∈ Mem that satisfy mem1(x ) = mem2(x )
for all x ∈ Var with Γ〈x 〉 = low .

Proof:
Outline: We firstly construct a family of relations RΓ

parametrized by type environments such that
〈c,mds,mem1〉RΓ′〈c,mds,mem2〉. We then prove
that RΓ is a strong low bisimulation modulo modes
for each type environment Γ. This establishes that
〈c,mds,mem1〉 ≈ 〈c,mds,mem2〉, as ≈ is the union of
all strong low bisimulations modulo modes.

Step 1: Construction of the family of relations RΓ. For
defining the family of relations, we introduce an auxiliary
typing rule for the command stop. This allows us to omit
special cases stating that a command is either typable, or
equals stop. As adding this typing rule enlarges the set of
typable commands, we actually prove a stronger result as
the theorem, as we also include the stop-command in its
statement. The new rule is as follows:

[stop]
` Γ {stop} Γ

We furthermore write mem1 =Γ mem2 if mem1(x ) =
mem2(x ) for all x ∈ Var with Γ〈x 〉 = low . Finally, we
denote the set of mode states that are compatible with Γ
with comp(Γ).

We define RΓ′
:= RΓ′

1 ∪RΓ′

2 ∪RΓ′

3 , where

RΓ′

1 = {(〈c,mds,mem1〉 , 〈c,mds,mem2〉) | ∃Γ :

` Γ {c} Γ′ ∧mds ∈ comp(Γ) ∧mem1 =Γ mem2},

RΓ′

2 = {(〈c1,mds,mem1〉 , 〈c2,mds,mem2〉) |
〈c1,mds,mem1〉 ≈ 〈c2,mds,mem2〉∧
∀x ∈ dom(Γ′) : Γ′(x ) = high∧

∃Γ1,Γ2 : ` Γ1 {c1} Γ′∧ ` Γ2 {c2} Γ′∧
mds ∈ comp(Γ1) ∧mds ∈ comp(Γ2)}, and

RΓ′

3 = {(〈c1; c,mds,mem1〉 , 〈c2; c,mds,mem2〉) | ∃Γ :

〈c1,mds,mem1〉RΓ
2 〈c2,mds,mem2〉∧ ` Γ {c} Γ′}.

Step 2: Show that 〈c,mds,mem1〉RΓ′〈c,mds,mem2〉
holds. By the assumptions of the theorem, we evi-
dently have 〈c,mds,mem1〉RΓ′

1 〈c,mds,mem2〉. Hence,
〈c,mds,mem1〉RΓ′〈c,mds,mem2〉.

Step 3: Show that RΓ′
is a strong low bisimulation

modulo modes for each type environment Γ′.
It is clear from its definition that RΓ′

is a symmetric
relation.

Now we show that RΓ′
is closed under

globally consistent changes. Assume hence that
〈c1,mds,mem1〉RΓ′〈c2,mds,mem2〉. We must show
that for all x ∈ Var with x 6∈ mds(asm-nowrite) the
following hold:
(1) If L(x ) = low , then
〈c1,mds,mem1[x 7→ v ]〉RΓ′〈c2,mds,mem2[x 7→ v ]〉
for all v ∈ Val .

(2) If L(x ) = high , then
〈c1,mds,mem1[x 7→ v1]〉RΓ′〈c2,mds,mem2[x 7→ v1]〉
for all v1, v2 ∈ Val .

We distinguish between the three cases arising from the
definition of RΓ′

.
• Case 1: 〈c1,mds,mem1〉RΓ′

1 〈c2,mds,mem2〉: Let Γ
be a type environment with the properties stated in the
definition of RΓ′

1 . We need to show that the memory
states are still related by =Γ after the modification
of x . In (1), this is evident as x is set to an equal
value on both sides of the relation. In (2), we know
that L(x ) = high . Hence, Γ〈x 〉 = low only if
x ∈ dom(Γ). But then, as mds ∈ comp(Γ), we
have x ∈ mds(asm-nowrite). But this would con-
tradict our assumption that x 6∈ mds(asm-nowrite),

5



and hence Γ〈x 〉 = high . Hence, mem1[x 7→ v1] =Γ

mem2[x 7→ v2] holds also in (2).
• Case 2: 〈c1,mds,mem1〉RΓ′

2 〈c2,mds,mem2〉: By the
definition of RΓ′

2 , the two local configurations are
related by ≈. As ≈ is a strong low bisimulation modulo
modes, it is closed under globally consistent changes.

• Case 3: 〈c1,mds,mem1〉RΓ′

3 〈c2,mds,mem2〉: As the
two local configurations are related by RΓ′

2 , we ca
conclude as in Case 2.

Now we show that whenever
〈c1,mds,mem1〉RΓ′〈c2,mds,mem2〉, then mem1 =mds

low

mem2. We distinguish three cases, namely that the two
local configurations are related via RΓ′

1 , via RΓ′

2 , or via
RΓ′

3 . In the last two cases, by the definition of the relations
we know that the local configurations are related by the
strong low bisimulation modulo modes ≈, and, hence, the
statement follows directly from the definition of strong low
bisimulations modulo modes.

Assume hence that 〈c1,mds,mem1〉RΓ′

1 〈c2,mds,mem2〉.
Let Γ be a type environment with the properties stated in
the definition of RΓ′

1 . To show mem1 =mds
low mem2, let

x ∈ Var with L(x ) = low and x 6∈ mds(asm-noread).
But then, as mds ∈ comp(Γ) by the definition of
RΓ′

1 , we have x 6∈ dom(Γ). Hence, Γ〈x 〉 = low . Then,
mds1(x ) = mds2(x ) follows directly from mds1 =Γ mds2.

We finally show that whenever
〈c1,mds,mem1〉RΓ′〈c2,mds,mem2〉 and
〈c1,mds,mem1〉 _ 〈c′1,mds ′,mem ′1〉, then
there exist c′2 and mem ′2 such that both
〈c2,mds,mem2〉 _ 〈c′2,mds ′,mem ′2〉 and
〈c′1,mds ′,mem ′1〉RΓ′〈c′2,mds ′,mem ′2〉 hold.

For showing this, we distinguish the cases that
〈c1,mds,mem1〉 and 〈c2,mds,mem2〉 are related by RΓ′

1 ,
RΓ′

2 , respectively RΓ′

3 . We treat these three cases in the
remainder of the proof.

Case 1: 〈c1,mds,mem1〉RΓ′

1 〈c2,mds,mem2〉. In this
case, c1 = c2 (we will write c for both commands in the
following), and there exists a type environment Γ such that
` Γ {c} Γ′, mds ∈ comp(Γ), and mem1 =Γ mem2.

I.e., we must prove that for all c, c′, all mds,mds ′,
all mem1,mem2,mem ′1, and all Γ,Γ′ that satisfy
〈c,mds,mem ′1〉 _ 〈c′,mds ′,mem ′1〉, ` Γ {c} Γ′, mds ∈
comp(Γ), and mem1 =Γ mem2, there exist c′′ and
mem ′2 such that 〈c,mds,mem2〉 _ 〈c′′,mds ′,mem ′2〉
and 〈c′,mds ′,mem ′1〉RΓ′〈c′′,mds ′,mem ′2〉 are satisfied.
We perform the proof of this statement by induction on the
derivation of ` Γ {c} Γ′.

Rule [anno]: In this case, c is of the form //ann// c1.
As ` Γ {c} Γ′ is derived with the rule [anno], we know
that when defining Γ′′ = Γ⊕ ann , then ` Γ′′ {c1} Γ′ and
∀x ∈ Var : Γ〈x 〉 v Γ′′〈x 〉 hold.

As 〈c,mds,mem ′1〉 _ 〈c′,mds ′,mem ′1〉, we know

by the definition of the operational semantics that
〈c1, update(mds, ann),mem1〉 _ 〈c′,mds ′,mem ′1〉. By
the definitions of update and ⊕, we obtain that
update(mds, ann) ∈ comp(Γ′′). As Γ〈x 〉 v Γ′′〈x 〉 for all
x ∈ Var and as mem1 =Γ mem2, we also have mem1 =Γ′′

mem2. Hence, we can apply the induction hypothesis ob-
tained from ` Γ′′ {c1} Γ′ to obtain c′′ and mem ′2 such
that 〈c1, update(mds, ann),mem2〉 _ 〈c′′,mds ′,mem ′2〉
and such that 〈c′,mds ′,mem ′1〉RΓ′〈c′′,mds ′,mem ′2〉. By
the definition of the operational semantics, we then obtain
also that 〈//ann// c1,mds,mem2〉 _ 〈c′′,mds ′,mem ′2〉,
which concludes the proof for this case.

Rule [skip]: In this case, c = skip. Due to the
operational semantics for the command skip, we have
c′ = stop, mds ′ = mds , and mem ′1 = mem1. We
set c′′ = stop and mem ′2 = mem2. Then, evidently,
〈c,mds,mem2〉 _ 〈c′′,mds ′,mem ′2〉. It remains to
show that 〈stop,mds,mem1〉RΓ′〈stop,mds,mem2〉.
By the definition of the rule [skip] we have
Γ′ = Γ, and it hence suffices to show that
〈stop,mds,mem1〉RΓ〈stop,mds,mem2〉. For this, it suf-
fices to show that 〈stop,mds,mem1〉RΓ

1 〈stop,mds,mem2〉.
This is straightforward, as ` Γ {stop} Γ, and
mds ∈ comp(Γ) as well as mem1 =Γ mem2 are
satisfied by assumption.

Rule [assign1]: In this case, c = x :=e . Let
v1, v2 ∈ Val be those values such that 〈e,mem1〉 ↓ v1

and 〈e,mem2〉 ↓ v2. Then c′ = stop, mds ′ = mds ,
and mem ′1 = mem1[x 7→ v1]. We set c′′ = stop
and mem ′2 = mem2[x 7→ v2]. Then, by the opera-
tional semantics, 〈c,mds,mem2〉 _ 〈c′′,mds ′,mem ′2〉.
As Γ′ = Γ in rule [assign1], it remains to show that
〈stop,mds,mem1[x 7→ v1]〉RΓ〈stop,mds,mem2[x 7→
v2]〉. For this, it suffices to show that 〈stop,mds,mem1[x 7→
v1]〉RΓ

1 〈stop,mds,mem2[x 7→ v2]〉. As ` Γ {stop} Γ, for
this it suffices to show that mem1[x 7→ v1] =Γ mem2[x 7→
v2]. As mem1 =Γ mem2, we must hence show that v1 = v2

if Γ〈x 〉 = low . As x 6∈ dom(Γ) by the conditions of rule
[assign1], we then have L(x ) = low . By the remaining con-
ditions of rule [assign1], we then have Γ ` e : low . Hence,
Γ〈x ′〉 = low for all x ′ ∈ vars(e). As mem1 =Γ mem2 and
the value of e depends only on the values of variables in
vars(e), we hence have v1 = v2.

Rule [assign2]: The proof in this case in analogous
to the previous case, but for the fact that here Γ′′ =
Γ[x 7→ t] where Γ ` e : t and we hence must show that
〈stop,mds,mem1[x 7→ v1]〉RΓ[x 7→t]

1 〈stop,mds,mem2[x 7→
v2]〉. As ` Γ[x 7→ t] {stop} Γ[x 7→ t], it remains to show that
mds ∈ comp(Γ[x 7→ t]) and that mem1 =Γ[x 7→t] mem2.
The first statement is evident as dom(Γ) = dom(Γ[x 7→ t])
mds ′ = mds . For the second statement, we have to show
that mem1(x ) = mem2(x ) if t = low . But if t = low , then

6



(as Γ ` e : t is a precondition of rule [assign2]) the value
of e is equal in mem1 and mem2 due to mem1 =Γ mem2,
and, hence, v1 = v2.

Rule [if]: Here, c = if e then c1 else c2 fi. Then either c′ =
c1 or c′ = c2. Moreover, mds ′ = mds and mem ′1 = mem1.
We distinguish the two cases Γ ` e : low and Γ ` e : high .

Let us firstly assume that Γ ` e : low . Then, due
to mem1 =Γ mem2, the value of e is equal in both
mem1 and mem2. We set c′′ = c′ and mem ′2 = mem2.
Then, evidently, 〈c,mds,mem2〉 _ 〈c′′,mds,mem ′2〉. It
remains to show that 〈c′,mds,mem1〉RΓ′〈c′,mds,mem2〉.
As due to the conditions of rule [if] we have `
Γ {c1} Γ′ and ` Γ {c2} Γ′, we evidently have
〈c′,mds,mem1〉RΓ′

1 〈c′,mds,mem2〉 and we can conclude.
Let us now assume that Γ ` e : high . If the value of

e is equal in mem1 and in mem2, we can proceed as
in the previous case. Hence, we assume that the value
is not equal. Hence, the transition of c in mem1 and
mem2 results in c1 for the one memory state, and in
c2 for the other memory state. We assume without loss
of generality that c′ = c1, and set c′′ = c2 as well as
mem ′2 = mem2. Then, evidently, 〈c,mds,mem2〉 _
〈c′′,mds,mem ′2〉, and it remains to show that
〈c1,mds,mem1〉RΓ′〈c2,mds,mem2〉. We will show that
this holds because 〈c1,mds,mem1〉RΓ′

2 〈c2,mds,mem2〉
holds. From the conditions of rule [if], we know that
` Γ {c1} Γ′ and that ` Γ {c2} Γ′ hold. As the
mode state remains unchanged in the transition, we
have mds ′ ∈ comp(Γ) as well as mds ′ ∈ comp(Γ).
Moreover, we know from the conditions of rule [if] that
Γ′(x ) = high for all x ∈ dom(Γ′). It remains to show
that 〈c1,mds,mem1〉 ≈ 〈c2,mds,mem2〉. Again, from
the conditions of rule [if] we know that c1 ∼mds

low c2 holds
for all mds ∈ comp(Γ). Hence, if mem1 =mds

low mem2

then 〈c1,mds,mem1〉 ≈ 〈c2,mds,mem2〉 by the definition
of the relation ∼mds

low . To show this, let x ∈ Var with
L(x ) = low and x 6∈ mds(asm-noread). Then, as
mds ∈ comp(Γ), x 6∈ dom(Γ) and hence Γ〈x 〉 = low . As
mem1 =Γ mem2, it follows that mem1(x ) = mem2(x ). In
consequence, mem1 =mds

low mem2.

Rule [while]: In this case, c = while e do c od,
Γ′ = Γ, Γ ` e : low , and ` Γ {c} Γ. Hence, c′ =
if e then c; while e do c od else stop fi, mds ′ = mds , and
mem ′1 = mem1. We set c′′ = c′ and mem ′2 = mem2. We
will show that 〈c′,mds ′,mem ′1〉RΓ′〈c′′,mds ′,mem ′′2〉 by
showing that 〈c′,mds ′,mem ′1〉RΓ′

1 〈c′′,mds ′,mem ′′2〉, i.e.,
that
〈if e then c; while e do c od else stop fi,mds,mem1〉RΓ

1

〈if e then c; while e do c od else stop fi,mds ′,mem2〉.

For this, it suffices to show that `
Γ {if e then c; while e do c od else stop fi} Γ is
derivable. As by our assumptions Γ ` e : low , ` Γ {c} Γ,

` Γ {while e do c od} Γ, and as ` Γ {stop} Γ, this follows
directly by applying the typing rules [seq] and [if].

Rule [seq]: Here, c = c1; c2. By the conditions of rule
[seq], there is a type environment Γ′′ such that ` Γ {c1} Γ′′

and such that ` Γ′′ {c2} Γ′. In the following, we distinguish
two cases, namely c1 = stop and c1 6= stop.

Let us firstly assume that c1 = stop. Then,
by the operational semantics, we have c′ = c2,
mds ′ = mds , and mem ′1 = mem1. We set
c′′ = c2 and mem ′2 = mem2. Then, evidently,
〈c,mds,mem2〉 _ 〈c2,mds,mem ′2〉. It remains to show
that 〈c2,mds,mem1〉RΓ′〈c2,mds,mem2〉. For showing
this, we show that 〈c2,mds,mem1〉RΓ′

1 〈c2,mds,mem2〉.
As ` Γ {c1} Γ′′, by the conditions of the rule [stop] we
have that Γ = Γ′′. Hence, ` Γ {c2} Γ′. As, by assumption,
mds ∈ comp(Γ) and mem1 =Γ mem2, this concludes the
case c1 = stop.

Now assume that c1 6= stop. Then, by the definition
of the operational semantics, there exists c′1 such that
〈c1,mds,mem1〉 _ 〈c′1,mds ′,mem ′1〉 and such that
c′ = c′1; c2. We apply the induction hypothesis obtained
from ` Γ {c1} Γ′′. This provides us with c′′1 and
mem ′′2 such that 〈c1,mds,mem2〉 _ 〈c′′1 ,mds ′,mem ′′2〉
and 〈c′1,mds ′,mem ′1〉RΓ′′〈c′′1 ,mds ′,mem ′′2〉. We set
c′′ = c′′1 ; c2 and mem ′2 = mem ′′2 . Then, by the
definition of the operational semantics, we have
〈c,mds,mem2〉 _ 〈c′′,mds ′,mem ′2〉. It remains to
show that 〈c′1; c2,mds ′,mem ′1〉RΓ′〈c′′1 ; c2,mds ′,mem ′2〉.
For showing this, we distinguish whether 〈c′1,mds ′,mem ′1〉
and 〈c′′1 ,mds ′,mem ′2〉 are related by RΓ′′

1 , RΓ′′

2 , or RΓ′′

3 .
Assume firstly that 〈c′1,mds ′,mem ′1〉RΓ′′

1 〈c′′1 ,mds ′,mem ′2〉.
Then c′1 = c′′1 and there exists Γ′′′ such that ` Γ′′′ {c′1} Γ′′,
mds ′ ∈ comp(Γ′′′) and mem ′1 =Γ′′′ mem ′2. But then, we
also have ` Γ′′′ {c′1; c2} Γ′ by the rule [seq], and hence
〈c′1; c2,mds ′,mem ′1〉RΓ′

1 〈c′′1 ; c2,mds ′,mem ′2〉.
Assume now that 〈c′1,mds ′,mem ′1〉RΓ′′

2 〈c′′1 ,mds ′,mem ′2〉.
As ` Γ′′ {c2} Γ′, we obtain directly that in this case
〈c′1; c2,mds ′,mem ′1〉RΓ′

3 〈c′′1 ; c2,mds ′,mem ′2〉.
Assume finally that 〈c′1,mds ′,mem ′1〉RΓ′′

3 〈c′′1 ,mds ′,mem ′2〉.
Then, c′1 = c′∗1 ; c∗ and c′′1 = c′′∗1 ; c∗ for some commands
c′∗1 , c′′∗1 , and c∗. Moreover, there exists a type environment
Γ′′′ such that 〈c′∗1 ,mds ′,mem ′1〉RΓ′′′

2 〈c′′∗1 ,mds ′,mem ′2〉
and ` Γ′′′ {c∗} Γ′′. As ` Γ′′ {c2} Γ′, we
obtain ` Γ′′′ {c∗; c2} Γ′. In consequence,
〈c′∗1 ; c∗; c2,mds ′,mem ′1〉RΓ′

3 〈c′′∗1 ; c∗; c2,mds ′,mem ′2〉,
i.e., 〈c′,mds ′,mem ′1〉RΓ′

3 〈c′′,mds ′,mem ′2〉.

Rule [sub]: In this case, there are type environments Γ1

and Γ′1 such that ` Γ1 {c} Γ′1, Γ v Γ1, and Γ′1 v Γ′.
Firstly note that comp(Γ1) = comp(Γ) and that

comp(Γ′1) = comp(Γ′), as the domains of type environ-
ments related by v are equal.

From the induction hypothesis obtained
from ` Γ1 {c} Γ′1, we know that whenever

7



〈c,mds,mem ′1〉 _ c′,mds ′,mem ′1, mds ∈ comp(Γ1),
and mem1 =Γ1

mem2, then there exist c′′ and mem ′2
such that 〈c,mds,mem2〉 _ 〈c′′,mds ′,mem ′2〉 and
〈c′,mds ′,mem ′1〉RΓ′

1〈c′′,mds ′,mem ′2〉 hold. To apply this
induction hypothesis, we establish that mds ∈ comp(Γ1),
and mem1 =Γ1

mem2. The first statement is evident
as comp(Γ1) = comp(Γ) and mds ∈ comp(Γ) by
assumption. For the second statement, let x ∈ Var such
that Γ1〈x 〉 = low . As Γ v Γ1, this implies Γ〈x 〉 = low ,
and, due to the assumption that mem1 =Γ mem2

we obtain that mem1(x ) = mem2(x ). Hence, we
can apply the induction hypothesis and obtain c′′

and mem ′2 as stated above. To conclude, we must
show that 〈c′,mds ′,mem ′1〉RΓ′〈c′′,mds ′,mem ′2〉. As
〈c′,mds ′,mem ′1〉RΓ′

1〈c′′,mds ′,mem ′2〉 holds, is suffices
to show that RΓ′

1 ⊆ RΓ′
whenever Γ′1 v Γ′. To this end, we

must show that comp(Γ′1) ⊆ comp(Γ1) (which is evident
as comp(Γ′1) = comp(Γ1) and that mem1 =Γ′

1
mem2

implies that mem1 =Γ′ mem2. For this, let x ∈ Var such
that Γ′1〈x 〉 = low . Then, as Γ′1 v Γ′, also Γ′〈x 〉 = low ,
and hence mem1(x ) = mem2(x ). This concludes the case
for rule [sub].

Case 2: 〈c1,mds,mem1〉RΓ′

2 〈c2,mds,mem2〉. In this
case, we know that 〈c1,mds,mem1〉 ≈ 〈c2,mds,mem2〉
and ∀x ∈ dom(Γ′) : Γ′(x ) = high , and that there exist
type environments Γ1 and Γ2 such that ` Γ1 {c1} Γ′,
` Γ2 {c2} Γ′, mds ∈ comp(Γ1), and mds ∈ comp(Γ2).
Assume that 〈c1,mds,mem1〉 _ 〈c′1,mds ′,mem ′1〉. We
must show that there exist c′2 and mem ′2 such that
〈c2,mds,mem2〉 _ 〈c′2,mds ′,mem ′2〉 and such that
〈c′1,mds ′,mem ′1〉RΓ′〈c′2,mds ′,mem ′2〉.

As 〈c1,mds,mem1〉 ≈ 〈c2,mds,mem2〉, there are c′2
and mem ′2 with 〈c2,mds,mem2〉_ 〈c′2,mds ′,mem ′2〉 and
〈c′1,mds ′,mem ′1〉 ≈ 〈c′2,mds ′,mem ′2〉. We will show that
〈c′1,mds ′,mem ′1〉RΓ′

2 〈c′2,mds ′,mem ′2〉. For this, it remains
to show that there are type environments Γ′1 and Γ′2 such
that ` Γ′1 {c′1} Γ′, ` Γ′2 {c′2} Γ′, mds ′ ∈ comp(Γ′1), and
mds ′ ∈ comp(Γ′2). But this we have already shown for all
possible transitions in the proof of Case 1 (i.e., the case
〈c1,mds,mem1〉RΓ′

1 〈c2,mds,mem2〉).

Case 3: 〈c1,mds,mem1〉RΓ′

3 〈c2,mds,mem2〉. In this
case, we know that there are commands c∗1 , c

∗
2 , and c∗ such

that c1 = c∗1 ; c∗ and c2 = c∗2 ; c∗, and that there exists
Γ′′ such that 〈c∗1 ,mds,mem1〉RΓ′′

2 〈c∗2 ,mds,mem2〉 and
such that ` Γ′′ {c∗} Γ′. Assume that 〈c1,mds,mem1〉 _
〈c′1,mds ′,mem ′1〉. We need to show that then there exist c′2
and mem ′2 such that 〈c2,mds,mem2〉_ 〈c′2,mds ′,mem ′2〉
and such that 〈c′1,mds ′,mem ′1〉RΓ′〈c′2,mds ′,mem ′2〉.

We distinguish the two cases that c∗1 6= stop and that
c∗1 = stop.

Let us assume firstly that c∗1 6= stop. Then we know
that there exists c′∗1 such that 〈c∗1 ,mds,mem1〉 _

〈c′∗1 ,mds ′,mem ′1〉, where c′1 = c′∗1 ; c∗. But then we
know from 〈c∗1 ,mds,mem1〉RΓ′′

2 〈c∗2 ,mds,mem2〉 and the
previous case (Case 2) that then there exists c′∗2 and mem ′2
such that 〈c∗2 ,mds,mem2〉 _ 〈c′∗2 ,mds ′,mem ′2〉 and
such that 〈c′∗1 ,mds ′,mem ′1〉RΓ′′

2 〈c′∗2 ,mds ′,mem ′2〉.
We set c′2 = c′∗2 ; c∗. Then, by the operational
semantics, 〈c2,mds,mem2〉 _ 〈c′2,mds ′,mem ′2〉.
Moreover, 〈c′1,mds ′,mem ′1〉RΓ′

3 〈c′2,mds ′,mem ′2〉
holds as 〈c′∗1 ,mds ′,mem ′1〉RΓ′′

2 〈c′∗2 ,mds ′,mem ′2〉
and ` Γ′′ {c∗} Γ′ both hold. Hence,
〈c′1,mds ′,mem ′1〉RΓ′〈c′2,mds ′,mem ′2〉.

Let us now assume that c∗1 = stop. As c∗1 =
stop, we know that com′1 = c∗, mds ′ = mds ,
and that mem ′1 = mem1. We set c′2 = c∗ and
mem ′2 = mem2. We also have c∗2 = stop, as
〈c∗1 ,mds,mem1〉RΓ′′

2 〈c∗2 ,mds,mem2〉 and we know from
Case (2) that if a local configuration containing c∗2 can make
a step, then every configuration related by RΓ′′

2 can make
a step. As c∗1 = stop, we know that com′1 = c∗. Hence,
〈c2,mds,mem2〉 _ 〈c∗,mds ′,mem ′2〉. It remains to show
that 〈c∗,mds,mem1〉RΓ′〈c∗,mds,mem2〉. We show this
by showing that 〈c∗,mds,mem1〉RΓ′

1 〈c∗,mds,mem2〉. We
set the type environment required by the definition of
RΓ′

1 to Γ′′. We must hence show that ` Γ′′ {c∗} Γ′,
that mds ∈ comp(Γ′′), and that mem1 =Γ′′ mem2.
The first property is clear by assumption. Moreover,
〈c∗1 ,mds,mem1〉RΓ′′

2 〈c∗2 ,mds,mem2〉 implies that mds ∈
comp(Γ′′), 〈c∗1 ,mds,mem1〉 ≈ 〈c∗2 ,mds,mem2〉, and
Γ′′(x ) = high for all x ∈ dom(Γ′′). Hence, mem1 =mds

low

mem2. We finally show that mem1 =Γ′′ mem2. For this,
let x ∈ Var such that Γ′′〈x 〉 = low . Hence, x 6∈ dom(Γ′′)
as Γ′′(x ) = high for all x ∈ dom(Γ′′). In consequence,
L(x ) = low and mem1(x ) = mem2(x ) holds due to
mem1 =mds

low mem2

VIII. PROOF OF THEOREM 6

Theorem 6. Let c1, . . . , cn be commands such that the judg-
ment ` c1, . . . , cn is derivable. Then the program consisting
of the commands c1, . . . , cn is SIFUM-secure.

Proof: By applying Theorems 5 (for each ci) and
Theorem 1.

IX. PROOF OF THEOREM 7

Theorem 7. Let p = 〈(c1,mds0), . . . , (cn,mds0)〉 be a list
of pairs of commands and mode states such that c1, . . . , cn
are SIFUM-secure and 〈p,mem〉 ensures a sound use of
modes for all mem . Then for all k, all p′, all mem1 =low

mem2, and all mem ′1 with 〈p,mem1〉 →k 〈p′,mem ′1〉 there
exist p′′ and mem ′2 with 〈p,mem2〉 →k 〈p′′,mem ′2〉 and
mem ′1(out) = mem ′2(out).

Proof: The theorem follows directly from Proposition 1.

8



X. TYPE SYSTEM FOR LOCALLY SOUND USE OF MODES

We use typing judgments of the form ` mds {c} mds ′,
where c is a command and mds,mds ′ are mode states. The
intuition is that if c is executed in mode state mds , then
mds ′ safely describes the mode state after the command
has executed, where “safe” means an upper bound on each
mode. The type system is displayed in Figure 1. In the
typing rules, we use a subset relation on mode states, where
mds ⊆ mds ′ if and only if mds(m) ⊆ mds ′(m) for
all modes m . Moreover, we write annos for a (possibly
empty) sequence //ann1// . . . //annn// of annotations, and
update(mds, annos) for the mode state obtained by updat-
ing mds subsequently with the annotations ann1, . . . , annn.
Besides approximating the mode state in a sound way,
the type system also ensures that all guarantees given in
the mode state are adhered to by the command, i.e., the
command ensures a locally sound use of modes.

Theorem 8. Let c be a command. Assume that `
mds1 {c} mds ′1 is derivable in the type system. Then
for all mode states mds2,mds ′2 with mds2 ⊆ mds1 and
all memory states mem,mem ′, if 〈c,mds2,mem〉 _∗
〈stop,mds ′2,mem ′〉 then the following hold:
(1) mds ′2 ⊆ mds ′1,
(2) For all memory states mem ∈ Mem , 〈c,mds2,mem〉

ensures a locally sound use of modes

Proof: The proof is by induction on the derivation of
the judgment ` mds {c} mds ′.

Rule [skip]. In this case, c = annos skip, and
mds ′1 = update(mds1, annos). Moreover, by the opera-
tional semantics, we have mds ′2 = update(mds2, annos).
Hence, we need to show that update(mds2, annos) ⊆
update(mds1, annos). This follows directly from the defini-
tion of the function update and the assumption that mds2 ⊆
mds1. Moreover, we have to show that 〈skip,mds2,mem〉
ensures a locally sound use of modes. This follows from the
fact that for all x ∈ Var , skip does not read x and skip does
not modify x , and that the commands in all local config-
urations that are locally reachable from 〈skip,mds2,mem〉
equal either skip or stop, which neither read nor modify x .

Rule [assign]. In this case, c = annos x :=e . Showing
that mds ′2 ⊆ mds ′1 is as in the proof for rule [skip]. It
remains to show that lc = 〈x :=e,mds2,mem〉 ensures
a locally sound use of modes. Let 〈c∗,mds∗,mem∗〉 ∈
lReach(lc). Then either c∗ = stop (a command that nei-
ther reads nor modifies any variable) or c∗ = x :=e and
mds ′ = mds . By the preconditions of rule [assign] we
know that x 6∈ mds1(guar -nowrite). Hence, we must
show that for all x ′ 6= x the assignment x :=e does not
read x ′. But this is evident from the operational semantics.
Moreover, by the preconditions of rule [assign] we know
that vars(e) ∩ mds(guar -noread) = {}. Hence, we must
show for all x ′ 6∈ vars(e) that the assignment x :=e does

not read x ′. This follows from the operational semantics for
assignments and the fact that the value of the expression e
is unchanged when modifying the values of variables that
are not contained in vars(e).

Rule [if]. In this case, c =
annos if e then c1 else c2 fi. Hence,
〈c,mds2,mem〉 _ 〈ci, update(mds2, annos),mem〉 and
〈ci, update(mds2, annos),mem〉 _∗ 〈stop,mds ′2,mem ′〉
for either i = 1 or i = 2. As mds2 ⊆ mds1, we have
update(mds2, annos) ⊆ update(mds1, annos). As we
have ` update(mds1, annos) {ci} mds ′1 for both i = 1
and i = 2 by the conditions of rule [if], we can apply
an induction hypothesis for both i = 1 and i = 2
and obtain that mds ′2 ⊆ mds ′1. Moreover, we obtain
that 〈ci, update(mds2, annos),mem〉 ensures a sound
use of modes for all mem . Hence, it remains to show
that if e then c1 else c2 fi does not read variables x if
x ∈ mds2(guar -noread) and does not modify variables
x with x ∈ mds2(guar -nowrite). The second statement
is clear as the evaluation of the guard does not modify
any variables (compare the operational semantics). If
x ∈ mds2(guar -noread), then by the conditions of rule
[if] and the fact that mds2 ⊆ mds1 we have x 6∈ vars(e).
But then the value of e does not depend on x . Hence, if
〈c,mds2,mem〉 _ 〈ci, update(mds2, annos),mem〉, then
the value of i is not modified when modifying the value of
x . Hence, c does not read x .

Rule [while]. In this case, c = annos while e do c1 od.
We do the proof by induction on the number n of loop
iterations (the number is finite, as 〈c,mds2,mem〉 _∗
〈stop,mds ′2,mem ′〉). If n = 0, the proof is evident (ar-
guing as for rule [if] that c does not read any variables
with mode guar -noread , as these variables do not occur
in vars(e)). If n > 0, then by the definition of the
semantics of while loops, we have 〈c,mds2,mem〉 _
〈if e then c′; while e do c′ od else stop fi,mds ′′2 ,mem ′〉_
〈c′; while e do c′ od,mds ′′2 ,mem ′〉_∗ 〈stop,mds ′2,mem ′〉,
where mds ′′2 = update(mds2, annos). From the con-
ditions of rule [while] we have ` mds ′′2 {c′} mds ′′2 .
Hence, we can apply the induction hypothesis and ob-
tain that 〈c′,mds ′′2 ,mem〉 ensures a locally sound use of
modes for all mem , and that if 〈c′,mds ′′2 ,mem〉 _∗
〈stop,mds ′′′2 ,mem ′′2〉 we have mds ′′′2 ⊆ mds2. Hence, we
can apply the induction hypothesis for n − 1 for the while
loop, and obtain that 〈while e do c′ od,mds ′′′2 ,mem ′′〉
ensures a locally sound use of modes, and that if
〈while e do c′ od,mds ′′′2 ,mem ′′〉 _ 〈stop,mds ′2,mem ′〉
then mem ′2 ⊆ mem1.

Rule [seq]. In this case, c = c1; c2 and there is a
mode state mds ′′1 such that ` mds1 {c1} mds ′′1 and `
mds ′′1 {c2} mds ′1 are derivable in the type system. Assume
that 〈c1; c2,mds2,mem〉 _∗ 〈stop,mds ′2,mem ′〉. Then,

9



[skip]
mds ′ = update(mds, annos)

` mds {annos skip} mds ′
[assign]

mds ′ = update(mds, annos)
x 6∈ mds(guar -nowrite) vars(e) ∩mds(guar -noread) = {}

` mds {annos x :=e} mds ′

[if]

mds ′ = update(mds, annos)
` mds ′ {c1} mds ′′ ` mds ′ {c2} mds ′′

vars(e) ∩mds(guar -noread) = {}
` mds {annos if e then c1 else c2 fi} mds ′′

[while]

mds ′ = update(mds, annos)
` mds ′ {c} mds ′

vars(e) ∩mds ′(guar -noread) = {}
` mds {annos while e do c od} mds ′

[seq]
` mds {c1} mds ′ ` mds ′ {c2} mds ′′

` mds ′ {c1; c2} mds ′′
[sub]

` mds2 {c} mds ′2
mds1 ⊆ mds2 mds ′2 ⊆ mds ′1

` mds1 {c} mds ′1

Figure 1. Type system for locally sound use of modes

by the operational semantics, there exist mds ′′2 and mem ′′

such that 〈c1,mds2,mem〉 _∗ 〈stop,mds ′′2 ,mem ′′〉 and
〈c2,mds ′′2 ,mem ′′〉 _∗ 〈stop,mds ′2,mem ′〉. We firstly ap-
ply the induction hypothesis for c1 and obtain that mds ′′2 ⊆
mds ′′1 . Hence, we can apply the induction hypothesis for
c1 and obtain that mds ′2 ⊆ mds ′1. It remains to show
that 〈c,mds2,mem〉 ensures a locally sound use of modes
for all mem . But this follows also from the induction
hypotheses, which guarantees that 〈c1,mds2,mem〉 and
〈c2,mds ′′2 ,mem〉 ensure a locally sound use of modes for
all mem .

Rule [sub]. From the conditions of rule [sub] we know
that there exist mode states mds3,mds ′3 such that `
mds3 {c} mds ′3, mds1 ⊆ mds3, and mds ′3 ⊆ mds ′1. From
mds2 ⊆ mds1 we hence obtain mds2 ⊆ mds3. We apply the
induction hypothesis obtained from ` mds3 {c} mds ′3, and
obtain that mds ′2 ⊆ mds ′3. Hence, mds ′2 ⊆ mds ′1 follows
from mds ′3 ⊆ mds ′1. From the induction hypothesis, we also
obtain that 〈c,mds2,mem〉 ensures a locally sound use of
modes for all mem ∈ Mem .

REFERENCES

[1] H. Mantel, D. Sands, and H. Sudbrock, “Assumptions and
Guarantees for Compositional Noninterference,” in Proceed-
ings of the IEEE Computer Security Foundations Symposium.
Vaux le Cernay, France: IEEE Computer Society, 2011, in
press.

10


