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Abstract A timing attack exploits the variance in the

running time of a crypto-algorithm’s implementation in

order to infer confidential information. Such a depen-

dence between confidential information and the running

time, called a timing channel, is often caused by branch-

ing of the control flow in the implementation’s source

code with branching conditions depending on the at-

tacked secrets. We present the Side Channel Finder, a

static analysis tool for detection of such timing channels

in Java implementations of cryptographic algorithms.

Keywords Timing channels · Timing attacks ·
Information flow security · Static analysis · IDEA

1 Introduction

A cryptographic mechanism based on algorithms which

are even proved to be secure may become vulnerable

after it is implemented in some programming language

and run on an actual computer system. Side channel

attacks are based on the fact that by observing the im-

plementation’s behavior which is not modeled by the

underlying cryptographic algorithm the attacker can in-

fer confidential data, e.g., a secret key. Therefore, when

developing a cryptographic mechanism it is desirable to

check whether its actual implementation opens up side

channels.

One possibility to launch a side channel attack

is to exploit the variance in the running time of

a crypto-algorithm’s implementation, called a timing
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channel. First studies of timing attacks on crypto-

graphic schemes, including Diffie-Hellman and RSA,

date back to mid 1990s [19]. Since then, they have been

practically demonstrated [11], optimized [28], and eval-

uated [30]. A significant part [19,18,13,27,11,6,9,17,

32,29,31] of timing attacks reported in the literature

exploits the difference in the running time of crypto-

algorithms’ implementations which is caused by condi-

tional branches or loops where conditions depend on

the attacked secrets.

A timing channel constitutes information flow [21]

from confidential inputs of a cryptographic algorithm to

observations about the running time of its implementa-

tion. Information flow policies are means to specify that

such information transfer is undesirable. The research

area of static information flow control (see Section 2)

focuses, among other, on using static program analysis

and transformations to enforce information flow poli-

cies.

We present the Side Channel Finder in the version

1.0 (short SCF 1.0), a static analysis tool for detection

of timing channels in Java implementations of crypto-

graphic algorithms. The main purpose of SCF 1.0 is to

support a programmer of a crypto-algorithm’s imple-

mentation in assessing his code for that it is not vulner-

able to a class of timing channel attacks. This class con-

sists of attacks caused by branching of the control flow

on data which depends on the confidential inputs. The

branching may occur due to conditional statements,

loops, or polymorphic method calls. The tool lets the

programmer specify which input of an implemented al-

gorithm constitutes a secret that must not be leaked,

especially not through timing channels. These specifi-

cations are a part of an information flow policy which

assigns security levels high and low, representing con-

fidential and public data, respectively, to object fields,

Artem Starostin
Typewriter
Appeared in:

Journal of Cryptographic Engineering 1(4):303-313

© Springer Berlin/Heidelberg 2011

The original publication is available at www.springerlink.com

http://www.springerlink.com/content/9v7x53770l57k581/


2 Alexander Lux, Artem Starostin

method parameters, and return values. SCF 1.0 then

analyzes the given program code by checking whether

the control flow potentially depends on the confidential

inputs. When this is the case, the ultimate goal of the

Side Channel Finder is to perform automatic program

transformations for elimination of the disclosed timing

channels. This last step is currently a work in progress.

The Side Channel Finder is implemented as a plugin

for Eclipse [5], a popular IDE for Java developers.

We applied SCF 1.0 to analyze several existing im-

plementations of cryptographic algorithms. Our studies

include the open-source libraries FlexiProvider (version

1.7p0) [3] and GNU Classpath (version 0.98) [2]. In the

paper we illustrate how SCF 1.0 finds a timing channel

in the implementation of the IDEA algorithm in Flexi-

Provider. We describe an experimental setup in which

an attack exploiting this timing channel could be con-

structed. Then, we show how a part of the secret key

could be revealed by an attacker through the timing

channel discovered by SCF 1.0. The details of applying

SCF 1.0 to the AES implementation of FlexiProvider

and to the DES implementation in GNU Classpath can

be found in a technical report [22].

Related Work

To the best of our knowledge, the Side Channel Finder

1.0 is the first tool for static detection of timing chan-

nels in Java. The related work for this effort could

be grouped into three categories: (i) experimental tim-

ing channel analysis, (ii) static information flow secu-

rity with respect to timing channels, and (iii) tools for

static information flow control, in general. Since Sec-

tion 3 discusses experimental timing attacks in detail,

here we provide references only for the two remaining

categories. From our point of view, the connection be-

tween them has room for improvement: the theory for

static detection and transformation of timing channels

did not lead to implementation in tools for real pro-

gramming languages, whereas the mainstream tools for

information flow control do not consider timing chan-

nels. We believe, that the Side Channel Finder project

will finally fill this gap.

Agat [7] presents a simple approach for detection

and elimination of timing leaks in C-like programs by

using a security type system and program transforma-

tion, respectively. The approach was only exemplarily

implemented [8] for a subset of Java bytecode without

objects. Molnar et al. [24] suggest and realize transfor-

mation of timing leaks in C programs (without function

calls and pointers) by encoding conditional branches

into assignments of expressions, thus, making the con-

trol flow independent of branching conditions. Barthe,

Rezk, and Warnier [10] introduce a transaction-based

program transformation method for elimination of tim-

ing leaks in sequential object-oriented programs with

exceptions. The implementation of the technique is not

reported.

We are aware of four static information flow control

tools: Jif [4] (introduced in [25]), FlowCaml [1], SPARK

Examiner [12], and Joana [16] for Java, Caml, Ada,

and Java bytecode, respectively. None of them considers

information flow with respect to timing channels.

Outline

In Section 2 we recap the research area of static infor-

mation flow control which comprises the methodology

for the analysis performed by the Side Channel Finder.

In Section 3 we discuss timing attacks from the liter-

ature and identify a class of attacks which exploit the

control flow branching. Section 4 presents the features

and design of SCF 1.0. In Section 5 we consider how

SCF 1.0 finds a timing channel in the FlexiProvider’s

IDEA implementation. In Section 6 we conclude and

identify a vision for future versions of the Side Channel

Finder.

2 Static Information Flow Control

Information flow security [21] is concerned with the

information transfer during program executions and

its impact on confidentiality and integrity of informa-

tion in information sources or information sinks of pro-
gram executions. For the purpose of security with re-

spect to timing channels we consider only confidential-

ity. The main question that information flow security

aims to answer is whether a given program is trustwor-

thy enough to receive confidential data as input, i.e.,

whether an attacker cannot infer information about the

confidential input to the program by his observations

about program executions.

The objective of research about static informa-

tion flow control is to provide security properties that

capture what secure information flow means, and to

provide mechanisms that analyze given programs for

whether they have secure information flow. The analy-

sis is static and does not require program execution. Se-

curity properties for information flow are often formu-

lated as lack-of-dependency properties, like the famous

noninterference [15], which states that observations of

an attacker are the same for all executions that have

the same non-confidential inputs but possibly different

confidential inputs.
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In order to statically analyze programs, security

type systems have been introduced [33] and widely

adopted [26]. Security type systems have similarities

with data type systems. A typical data type system [23]

is supposed to ensure that data is used as intended dur-

ing program execution: the data types have to match

when the data is transferred and operations are checked

to be applied only to the correct instances of data types.

Similarly, a security type system shall ensure that infor-

mation represented by the language constructs does not

flow such that confidential information becomes public.

First of all, this includes checking the transfer of data,

for instance, when assigning the value of one variable

to another. Second, this comprises checks to avoid im-

plicit information flow, for instance, in the following

exemplary code fragment. Consider

keypart = secretkey[i];
if (keypart==0) {

output = 1;
} else {

output = 0;
}

where the array secretkey initially holds the secret key of

a cryptographic algorithm and output will be revealed

to an attacker at some later point. The first assign-

ment copies confidential data to keypart. The implicit

flow occurs in the conditional: by observing whether

output gets assigned 1 or 0 the attacker learns whether

secretkey[i] contains 0. A security type system can de-

tect such vulnerabilities by determining whether the

condition of the branching depends on confidential in-

formation, and, in case it does, checking that in the

branches no variables are assigned whose content might

be revealed to an attacker later in the program.

3 Causes of Timing Channels

We conducted a careful study of the timing attacks re-

ported in the literature which do not involve caches

or any other micro-architectural peculiarities. The pur-

pose of this study was to identify a common vulnera-

bility which is exploited in this class of attacks.

The attack against IDEA [18] is based on a condi-

tional in the implementation of the multiplication mod-

ulo 216 + 1. For the attacks against modular exponenti-

ation with Montgomery multiplication [13,27,11,6], the

cause of the timing channel is the extra modular reduc-

tion step that is necessary if an intermediate result is

bigger than the modulus, and which is a subtraction in

one branch of a conditional. The attacks against RSA

in OpenSSL [11,6] as additional cause for the timing

channel have the choice of the multiplication-algorithm,

namely, Karatsuba in the case of equally-sized multi-

plicands. The attack against modular multiplication by

the Blakley’s algorithm [9] is also caused by an extra

modular reduction in the case of an intermediate value

bigger than the modulus. The investigation of DES im-

plementation in [17] reports the exploited timing chan-

nel to be caused by conditionals. The timing attacks

against McEliece [32,29,31] exploit loops with a condi-

tion on confidential information. For the Kocher’s at-

tack [19] against fast exponentiation the causes are dif-

ferences in the execution time of multiplication of inte-

gers. More details are not explored, however, since the

relevant integers are usually much bigger than integers

on processors, the multiplication would be implemented

in some library, where the cause of the timing differ-

ences might be conditionals, for instance, extra Mont-

gomery reductions.

When considering the timing channels that are ex-

ploited in the attacks against software implementations

described with sufficient details, the causes are condi-

tionals or loops, whose conditions depend on informa-

tion about the attacked secrets. As mentioned in Sec-

tion 2, determining whether the values of some expres-

sions potentially depend on confidential information is

one of the goals of information flow control. Thus, in-

formation flow control can detect the causes of all afore-

mentioned attacks by determining whether the condi-

tions of conditional and loop statements depend on the

secret key.

4 Side Channel Finder (Version 1.0)

The Side Channel Finder was built with the idea in

mind to apply the methods of static information flow

control to the problem of timing channel detection. We

believe that the tool might be helpful for the implemen-

tors of cryptographic algorithms in the Java program-

ming language in checking whether their actual imple-

mentations open up timing channels. The programmer

is expected to specify secret inputs for the algorithms

as high-classified in an information flow policy. SCF

1.0 then checks whether the program code conforms to

the information flow policy. Most important aspects of

that are (i) to keep track where the high-classified data

is moved to low-classified locations, and (ii) to verify

that the execution would not branch on a value with

the high security level.

4.1 Language Coverage

Since SCF 1.0 detects whether the control flow depends

on information that is specified as confidential, the as-
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pects of how information is propagated and how the

control flow is data-dependent are relevant for the anal-

ysis. The static analysis of SCF 1.0 is executed on the

syntactic structure of the analyzed programs. However,

since secure information flow is a semantic property, the

design of the analysis captures semantic aspects.

The Side Channel Finder takes into account the fol-

lowing semantic features regarding the propagation of

information. It handles assignments to local variables,

for instance, if the value of some expression exp is as-

signed to a local variable v (i.e., v = exp) and exp con-

tains confidential information then SCF 1.0 treats v also

as a container of confidential information. SCF 1.0 also

respects assignments to fields of objects on the heap.

For instance, let us consider an assignment v.f = exp.

Firstly, it moves the value of exp into the field f. Sec-

ondly, this assignment also might reveal the information

to which object the variable v is an alias, namely, the

object of which the value of the field changed. Simi-

larly, SCF 1.0 respects assignments to elements of ar-

rays on the heap with the additional aspect that the

index, which might be confidential, influences at which

position the value changes. The tool also respects pa-

rameter passing, for instance, in a method call v.m(exp).
Note that the passing can be by value, if the value of

exp is a of primitive type like an integer, or by ref-

erence, if the value of exp is a reference to an object

or an array. Thereby, SCF 1.0 does not only consider

one method, but all methods that possibly could be the

target of the call v.m(exp), taking into account inher-

ited methods and polymorphism. If a method returns a

value, i.e., its body contains a statement return exp, and

the value of exp contains confidential information, then

SCF 1.0 respects that calling this method and using the

returned value means using confidential information.

The Side Channel Finder respects the following se-

mantic features about the control flow. A conditional

branching with a condition on a confidential value,

that is a value that SCF 1.0 has determined to depend

on confidential input, is considered a potential timing

channel. For example consider

if (v==0) {
// do something
} else {

// do something different
}

where the content of v in confidential. Similarly, SCF

1.0 considers conditions on confidential values in for-
loops and while-loops. A further cause of branching in

the control-flow which the SCF 1.0 respects are poly-

morphic method calls. Consider again a method call

v.m(exp) where now the reference in v is confidential

and might point to objects of different classes, each of

them having its own implementation of the method.

The method which is actually executed depends on the

class of the object that v points to.

This coverage of Java language features is suffi-

ciently extensive to analyze existing implementations

of cryptographic algorithms, as we show in Section 5.

4.2 Information Flow Policy

The main purpose of an information flow policy is to

specify which input of an implementation of a cryp-

tographic algorithm constitutes the secret to be pro-

tected, e.g., the secret key of an encryption or decryp-

tion algorithm. Moreover, we use policies to provide a

guidance for the automatic analysis by specifying fur-

ther program entities as holding confidential informa-

tion if the contents of these entities potentially depend

on secrets when executing the program.

Let us consider how an input for cryptographic al-

gorithms is realized in Java implementations. In Java

libraries, cryptographic algorithms are implemented in

certain methods. Hence, particular parameters of such

methods may be used to pass secret input to crypto-

graphic algorithms and, therefore, must be specified as

secrets. For instance, consider a decryption routine of

some encryption scheme that receives the ciphertext

to decrypt and the secret key in the form of arrays

of bytes, and returns the decrypted result in the form

of an array of bytes. This routine can be implemented

in a method that has the signature byte[] decrypt(byte[]
input, byte[] key). The input parameter key must not be

learned by the attacker and hence needs to be specified

as secret. Furthermore, some objects that are passed

as parameters to such methods may have fields that

hold secret input for cryptographic algorithms. Hence,

these fields need to be specified as secrets too. Consider,

for example, RSA where the decryption method can be

realized by a method that has the signature byte[] de-
crypt(byte[] ciphertext, RSAPrivateKey key), and where

the class RSAPrivateKey has a field for the public mod-

ulus and a second field with the private decryption ex-

ponent. Here, the second field needs to be specified as

secret. Note, that a field is only considered not to be

secret if the reference to the object of the field is also

not secret. That is, in this example the parameter key
is specified not to be secret in order to leave the public

modulus actually public.

To provide guidance for the analysis, a policy con-

tains one or more specifications for each method that

is called and one specification for each field that is ac-

cessed. Each field may be specified to contain confi-

dential information. Specifications of methods represent



A Tool for Static Detection of Timing Channels in Java 5

which of the parameters are used to pass confidential

information and whether the value they return need

to be kept secret. Multiple specifications for a method

may be provided in order to make the analysis context

sensitive, that is, SCF 1.0 can deal with different secu-

rity levels for arguments at different calls to the same

method.

The policy assigns security levels low or high to

fields, method parameters, and method return values.

Level high represents confidential information and level

low represents non-confidential information. Informa-

tion is only considered to be non-confidential if program

entities necessary to access it all have level low. For in-

stance, the content of a field with level low where the

field is a part of an object where the parameter with

the reference has level high is considered to be confi-

dential. Letting level high represent confidential infor-

mation means that information stored in program enti-

ties with level high must not influence the running time

of the analyzed program. On the other hand, this also

means it is safe to let information in such program en-

tities depend on other information that is confidential.

The security levels of fields are specified class-wise

in contrast to object-wise, hence SCF 1.0 can determine

the levels statically without having to know the object

at runtime. A whole object can be specified as confiden-

tial by specifying the information elements that contain

a reference to it as confidential. The same is true for ar-

rays, where also the content of the array is considered

confidential as long as the references are confidential.

SCF 1.0 does not require to specify the security lev-

els of local variables of methods because SCF 1.0 infers

them automatically from the levels that are specified in

the policy.

SCF 1.0 reads a policy in the form of an XML docu-

ment. The graphical interface of the SCF Eclipse plugin

provides, as depicted in Figure 1, convenient means for

editing the XML code of the policy. The specifications

for each class are organized in packages similarly to ac-

tual classes of Java. Concerning the location of policies,

an alternative to storing them in a separate file could

have been to integrate them into the source code, for in-

stance, as annotations. The advantage of our approach

is that we do not need to change the source code and

can process it as it is.

4.3 Security Type System

In order to check security of a given program against a

given policy with respect to timing channels, the Side

Channel Finder implements a carefully crafted security

type system which we describe below. The reader can

find the complete formal definition (3 pages) of this

type system in a technical report [22].

The security type system checks method declara-

tions against security signatures for methods and fields.

The method security signatures and the field security

signatures represent the information that is provided

by the security policy: they map method parameter

names, return values, and field names to respective se-

curity levels. That a method declaration conforms to

given method and field security signatures is expressed

by type judgments which are formal assertions about

the (secure) typing of the program. The type check of a

specified method declaration is considered successful if

the type judgment for this method declaration can be

derived by type rules which are implications between

judgments.

Derivable judgments of our type system are in-

tended to ensure two aspects of statements and expres-

sions. Firstly, for assignment statements they guarantee

that the security levels of source and destination mem-

ory locations are such that no high data will be moved

to low-typed locations during program execution. Sec-

ondly, they ensure that execution would not branch on

a value with the high security level. In order to pro-

vide these main results, derivable judgments determine

two further aspects. Firstly, they determine the security

levels of local variables that are relevant for the state-

ments and expressions in their respective context. That

is, the security type system is flow sensitive for local

variables. Secondly, for expressions they determine the

security levels of the expression evaluation.

The type inference algorithm implemented in SCF

1.0 is rather standard. The source code of the given

program is converted into an abstract syntax tree rep-

resentation by the javaparser [14] in the version 1.0.8.

The methods and their respective signatures from the

accompanying XML file with the information flow pol-

icy are coupled. The type rules are defined inductively

over the program structure, i.e., a type check of a state-

ment depends on a type check of its sub-statements.

The algorithm, therefore, processes the tree structure

of the program and searches for an applicable rule. If

no such rule is found the program is not typable within

the type system. By design of our type system that

means a potential timing channel is found. If the given

program code is completely processed, i.e., typed, the

analysis succeeds meaning that no timing channels are

found.



6 Alexander Lux, Artem Starostin

Figure 1 GUI of the SCF Eclipse plugin reporting potential timing channels in the FlexiProvider’s IDEA implementation:
source code with the highlighted line of a potential timing channel (middle), interface for editing security policies (right), and
list of detected potential timing channels (bottom)

5 Case Study: Detecting and Exploiting a

Timing Channel in an IDEA Implementation

In this Section we demonstrate how SCF 1.0 can be

successfully applied to an existing implementation of a

cryptographic algorithm. We consider the encryption

scheme IDEA as implemented in the open-source li-

brary FlexiProvider (version 1.7p0) [3]. An excerpt of

the relevant source code is depicted in Figure 2.

5.1 Analysis by SCF 1.0

The goal of the analysis is to protect the secret

key at encryption. Encryption is implemented in the

method singleBlockEncrypt(byte[] input, int inOff, byte[]
output, int outOff) of the class IDEA in the package

de.flexiprovider.core.idea. Each round of the IDEA en-

cryption uses a different selection of bits of the secret

key. These round keys are scheduled before the actual

encryption. The scheduled secret key for the encryption

is stored in the field encr of type int[].

As the first step, given the target of the analysis and

the corresponding source files, SCF 1.0 automatically

initialize three files: (i) a policy file IDEA.level which

contains security levels for all fields an method param-

eters set to the default low (i.e., non-confidential), (ii) a

file containing the paths to the source files that contain

relevant code, IDEA.program, and (iii) a file to configure

the whole analysis, IDEA.analysis. The last file contains

the method to be analyzed, and paths to the relevant

files.

The next step is to specify the security levels. In

order to express that the encryption key is to be pro-

tected, we set the security level of the field encr (the

scheduled encryption key) to the confidential level in
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1 private static final int mulModulus = 0x10001;
2 private static final int mulMask = 0xffff;
3 [...]
4 protected void singleBlockEncrypt(byte[] input, int inOff,
5 byte[] output, int outOff) {
6 encryptDecrypt(encr, input, inOff, output, outOff);
7 }
8 [...]
9 private void encryptDecrypt(int[] key, byte[] in, int in offset,

10 byte[] out, int out offset) {
11 [...]
12 int x0 = in[in offset++] << 8;
13 x0 |= in[in offset++] & 0xff;
14 [...]
15 for (int i = 0; i < rounds; ++i) {
16 x0 = mulMod16(x0, key[k++]);
17 x1 += key[k++];
18 x2 += key[k++];
19 x3 = mulMod16(x3, key[k++]);
20 [...]
21 }
22 [...]
23 out[out offset++] = (byte) (x0 >>> 8);
24 out[out offset++] = (byte) x0;
25 [...]
26 }
27 [...]
28 private int mulMod16(int a, int b) {
29 int p;
30 a &= mulMask;
31 b &= mulMask;
32
33 if (a == 0) {
34 a = mulModulus − b;
35 } else if (b == 0) {
36 a = mulModulus − a;
37 } else {
38 p = a ∗ b;
39 b = p & mulMask;
40 a = p >>> 16;
41 a = b − a + (b < a ? 1 : 0);
42 }
43 return a & mulMask;
44 }

Figure 2 Excerpt from the IDEA source code in Flexi-
Provider (comments and empty lines are omitted)

the SCF’s interface for editing the security policy (right

side of Figure 1). The performed modifications are

stored then in the file IDEA.level. Running the analy-

sis with this policy reveals that the method parameters

at several points in the program are instantiated with

confidential data or are used to store confidential data.

Hence, we also set these parameters to the confiden-

tial level, that is the parameters input and output of

singleBlockEncrypt, the parameters key, in, and out of

encryptDecrypt, the parameters a and b of mulMod16,

and the return value of mulMod16. Figure 3 shows an

excerpt of the resulting policy. Note, that in the de-

picted policy 1 corresponds to the security level high,

whereas 0 to the security level low.

Finally, we actually run the analysis by clicking the

corresponding button of the SCF plugin. The report

(see the console at the bottom of Figure 1) contains

IDEA.java − mulMod16() − Line : 410
Branching with non public condition: a == 0

<?xml version=”1.0” encoding=”UTF−8” standalone=”no”?>
<informationLevelModel>
<package name=”de.flexiprovider.core.idea”>
<classSignature name=”IDEA”>
<fieldLevel name=”encr”>1</fieldLevel>
<fieldLevel name=”mulModulus”>0</fieldLevel>
<fieldLevel name=”decr”>1</fieldLevel>
<fieldLevel name=”blockSize”>0</fieldLevel>
<fieldLevel name=”keySize”>0</fieldLevel>
[...]
<methodSignature name=”singleBlockEncrypt(byte[],int,byte[],int)”>
<parameterLevel name=”input”>1</parameterLevel>
<parameterLevel name=”inOff”>0</parameterLevel>
<parameterLevel name=”output”>1</parameterLevel>
<parameterLevel name=”outOff”>0</parameterLevel>
</methodSignature>
[...]
<methodSignature name=”mulMod16(int,int)”>
<parameterLevel name=”a”>1</parameterLevel>
<parameterLevel name=”b”>1</parameterLevel>
<returnLevel>1</returnLevel>
</methodSignature>
[...]
<methodSignature name=”encryptDecrypt(int[],byte[],int,byte[],int)”>
<parameterLevel name=”key”>1</parameterLevel>
<parameterLevel name=”in”>1</parameterLevel>
<parameterLevel name=”in offset”>0</parameterLevel>
<parameterLevel name=”out”>1</parameterLevel>
<parameterLevel name=”out offset”>0</parameterLevel>
</methodSignature>
[...]
</classSignature>
</package>
</informationLevelModel>

Figure 3 Excerpt of the policy for the IDEA encryp-
tion method: 1 represents confidential parameters and fields,
whereas 0 corresponds to public parameters and fields

Inspecting the findings in the source of the method

mulMod16 reveals that there actually are certain val-

ues of the parameters that result in a special treatment,

which is realized by branching on their values (Figure 2,

lines 33–37).

This method implements multiplication modulo

216+1. Only the lowest 16 bits of the variables are used.

The value where all bits are 0 is interpreted as 216. This

modular multiplication is applied several times within

the encryption and decryption of IDEA.

The finding corresponds to a known [18] timing

channel vulnerability that implementations of IDEA

are prone to. In the following we show that the find-

ing in the FlexiProvider implementation actually con-

stitutes a timing channel.

5.2 Experimental Evidence of the Timing Channel

The objective of our experiment was to learn whether

measurements of the running time of the IDEA-

implementation in FlexiProvider actually can be used

to obtain parts of the secret key. The experiment shows

that this is the case, i.e., that the potential timing chan-

nel found by SCF 1.0 is actually a timing channel.
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key bits total maximum 16 bits (A) estimated key bits key
No. key is positions avgerage average time with maximum (216 + 1)−A bits

70–85 time of clusters cluster time match
1 2 3 4 5 6 7 8
1 0x51305a2b8993beb 0xea23 2960 3002 0x15de 0xea23 X

703a88d022f78b74c
2 0x00e148d92641ecf 0x50a2 2934 2991 0xaf5f 0x50a2 X

99d428836b7bf0150
3 0x7633842df1c4f6a 0x0855 2893 2917 0x8894 0x776d X

5cc215537514141a4
4 0x195bfbd477a8bf1 0x87d3 2888 2929 0x782e 0x87d3 X

2a61f4ea42ba85b41
5 0x683b4ca4e842d4e 0x6030 2907 2992 0x9fd1 0x6030 X

b5180c34cef8adbc8
6 0x10530d320f7836b 0xb46a 2900 2943 0x4b97 0xb46a X

b6ed1a85d4fe2ef78
7 0x3a71d80a3ae3d1f 0xc08c 2923 2965 0x3f75 0xc08c X

edb023239074ef509
8 0x572e11ad1bc8a1f 0xe1fc 2883 2978 0x1e05 0xe1fc X

8c787f13f2cd97aaf
9 0x4512cac44b60db9 0x93ef 2908 2958 0x6c12 0x93ef X

6c24fbd0814fc94f2
10 0x1fab5773e8025ab 0x6786 2944 2966 0x987b 0x6786 X

2299e192a5805b9bf

Table 1 Results of Experiments

Attack from the Literature Based on the assumption

that the running time of the branches differs, in [18] two

attacks are suggested against IDEA-implementations.

We consider one aspect of the first attack, on that we

build our experiment.

In IDEA, the lowest 16 bits of the ciphertext are

the output of a multiplication modulo 216 + 1, where

the multiplicands are an intermediate value and 16 bits

(bits at position 70–85) of the secret key. Hence, if one

can determine for which lowest 16 bits of the cipher-

text the first multiplicand is zero, then one can calcu-
late the 16 bits of the secret key by subtracting the

integer-interpretation of these 16 bits of the ciphertext

from 216 + 1. In implementations like the one in Flexi-

Provider the case where the first multiplicand is zero

exactly corresponds to one branch in the control flow.

The attack tries to determine cases where this branch

is taken by timing measurements.

Approach to Evaluation of the Timing Channel Simi-

larly to the attack, we measure the running time of en-

cryption for many ciphertexts and a fixed key. We iden-

tify the lowest 16 bits of ciphertext that result from cal-

culations with on average extreme running time. From

these bits we estimate 16 bits of the ciphertext by a

simple calculation. Then, we compare these estimated

bits with the bits 70–85 of the actual key.

Setup We run the experiment on a standard machine,

an IBM Thinkpad T60 2007-CTO with the processor

Intel Core2 T7200 and 3GB RAM. The machine is in-

stalled with Ubuntu 10.10 i386. OpenJDK is installed

in the version 6 in form of the standard-packages of

Ubuntu (6b20-1.9.1-1ubuntu3). We run the experiment

after a standard boot, logged in the console, and with

the X-server stopped. The only parameter that we pass

to the Java virtual machine is the classpath, i.e., we run

the server-HotSpot virtual machine. Hence, we have a

standard environment where the only tweak is not run-

ning the X-server.

The experiment runs as follows. First we have a

measurements phase. We take a pseudo-random key

(source /dev/urandom). We run a Java program that

applies the encryption method on 16777215 pseudo-

random 8-byte messages. Each encryption is conducted

64 times, whose execution time the program measures

with System.NanoTime(). The program divides the time

by 64, and stores the result together with the resulting

ciphertext. After that, we evaluate the measurements.

We cluster the pairs of a ciphertext and a running time

according to the lowest 16 bits of the ciphertext. Then

we calculate for each cluster the average running time of

the cluster. We identify the cluster with the highest av-

erage running time. We subtract the 16-bit value (pos-

itive integer interpretation) of this cluster from 216 + 1.

The 16-bit representation of the result is our estimation

of the key bits, which we compare to the bits 70–85 of

the actual key.

We run the experiment for 10 different pseudo-

random keys.
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Results In Table 1 for each key (column 2) we present

the total average running time (column 4) of the en-

cryption, the highest average running time within the

16-bit-clusters (column 5), and the 16-bits of the cluster

with the highest average time (column 6). We refer to

this 16 bits by A. In order to compare we also present

the attacked 16 bits (positions 70–85 of the secret key,

column 3) and the estimated key-bits (column 7).

Comparing the third column (the attacked key bits)

and the seventh column (the estimated key bits) shows

that in nine out of the ten cases the key-bits estimated

from the timing measurements are correct.

Conclusion In our setup the bits of the secret key can

be reliably determined by taking timing measurements

and simple calculations. Thus, the finding of the Side

Channel Finder actually constitutes a timing channel.

6 Summary and Future Work

We have presented the Side Channel Finder, a tool

that can statically detect timing channel vulnerabili-

ties in implementations of cryptographic algorithms in

the Java programming language. SCF 1.0 covers a non-

trivial subset of Java including objects, arrays, and

methods. These concepts are commonly used in Java

implementations of cryptographic algorithms, for in-

stance, in the examples we considered (see Section 5

and [22]). We described the policy language of the Side

Channel Finder which identifies the secrets that must

not leak through timing channels. The expressiveness of

the policy language reflects the programming language

that is covered by SCF 1.0, i.e., it supports security

signatures for fields and methods. SCF 1.0 helps the

designer of such policies by automatic generation of

policies with default specifications. The Side Channel

Finder is designed to analyze programs for branching

of the control flow at which the branch taken depends

on confidential input. The causes of such a branching

could be conditional statements, loops, or polymorphic

method calls. We carefully crafted a security type sys-

tem which automatically checks whether this is the case

for a given Java program. The case study discussed in

the paper showed that SCF 1.0 is sufficiently mature

to identify timing channels which actually could be ex-

ploited.

Currently we see the following directions for im-

provements in the Side Channel Finder and studies of

its applications.

– First of all, we are currently implementing the miss-

ing coverage of a number of Java constructs. This

includes, for instance, constructors which are quite

similar to methods, or more complex scopes of field-

access and method-call expressions which are cur-

rently limited to variable, field, or type names.

– Next, we will apply the Side Channel Finder to im-

plementations of further algorithms. We will turn

to the well-studied asymmetric scheme RSA, which

essentially means analyzing the implementation of

fast exponentiation. Further, we will consider im-

plementations of post-quantum algorithms, for in-

stance McEliece, which are a distinguishing feature

of the library FlexiProvider.

– Further, we plan to implement automatic program

transformations for elimination of discovered tim-

ing channels. Here we have a choice between a num-

ber of techniques, namely, cross-copying [7], unifica-

tion [20], or conditional assignment [24].

– Finally, we are working in the direction of mak-

ing the analysis semantically justified. This will be

based on a semantic notion of timing channel se-

curity where the branching on the secret data will

be allowed provided the branches take the same

amount of time. The check, whether a program re-

spects this notion will be implemented by means of

a type system in the Side Channel Finder. For that,

we have to decide how fine-grained the timing model

has to be with possibilities ranging from count-

ing the number of executed statements — through

considering single expression evaluation steps — to

careful estimation of the timing behavior of the com-

piled code instructions on the underlying architec-

tures.
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Quisquater, J.J., Willems, J.L.: A Practical Implemen-
tation of the Timing Attack. In: Proceedings of the 3rd
International Conference on Smart Card. Research and
Applications (CARDIS 98), LNCS 1820, pp. 167–182.
Springer (1998)

14. Gesser, J.V.: javaparser. http://code.google.com/p/

javaparser/ (2010)
15. Goguen, J.A., Meseguer, J.: Security Policies and Secu-

rity Models. In: Proceedings of the IEEE Symposium on
Security and Privacy, pp. 11–20. IEEE Computer Society,
Oakland, CA, USA (1982)

16. Hammer, C.: Experiences with PDG-based IFC. In: Pro-
ceedings of the 2nd International Symposium on En-
gineering Secure Software and Systems (ESSoS 2010),
LNCS 5965, pp. 44–60. Springer (2010)

17. Hevia, A., Kiwi, M.: Strength of Two Data Encryption
Standard Implementations Under Timing Attacks. In:
Proceedings of the Theoretical Informatics Third Latin
American Symposium (LATIN), LNCS 1380, pp. 192–
205. Springer, Campinas, Brazil (1998)

18. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side Chan-
nel Cryptanalysis of Product Ciphers. Journal of Com-
puter Security 8(2,3), 141–158 (2000)

19. Kocher, P.C.: Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems. In:
Proceedings of the 16th Annual International Cryptol-
ogy Conference on Advances in Cryptology (CRYPTO,
LNCS 1109, pp. 104–113. Springer, Santa Barbara, CA,
USA (1996)
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