
Scheduler-Independent Declassification

Alexander Lux, Heiko Mantel, and Matthias Perner

Computer Science, TU Darmstadt, Germany,
{lux,mantel,perner}@cs.tu-darmstadt.de

Abstract The controlled declassification of secrets has received much
attention in research on information-flow security, though mostly for se-
quential programming languages. In this article, we aim at guarantee-
ing the security of concurrent programs. We propose the novel security
property WHAT&WHERE that allows one to limit what information
may be declassified where in a program. We show that our property
provides adequate security guarantees independent of the scheduling al-
gorithm (which is non-trivial due to the refinement paradox) and present
a security type system that reliably enforces the property. In a second
scheduler-independence result, we show that an earlier proposed security
condition is adequate for the same range of schedulers. These are the first
scheduler-independence results in the presence of declassification.

1 Introduction

When giving a program access to secrets, one would like to know that the pro-
gram does not leak them to untrusted sinks. Such a confidentiality requirement
can be formalized by information-flow properties like, e.g., noninterference [12].

Noninterference-like properties require that a program’s output to untrusted
sinks is independent of secrets. Such a lack of dependence obviously ensures that
public outputs do not reveal any secrets. While being an adequate character-
ization of confidentiality, the requirement is often too restrictive. The desired
functionality of a program might inherently require some correlation between
secrets and public output. Examples are password-based authentication mecha-
nisms (a response to an authentication attempt depends on the secret password),
encryption algorithms (a cipher-text depends on the secret plain-text), and on-
line stores (electronic goods shall be kept secret until they have been ordered).

Hence, it is necessary to relax noninterference-like properties such that a de-
liberate release of some secret information becomes possible. While this desire
has existed since the early days of research on information-flow control (e.g.
in the Bell/La Padula Model secrets can be released by so called trusted pro-
cesses [8]), solutions for controlling declassification are just about to achieve a
satisfactory level of maturity (see [33] for an overview). However, research on de-
classification has mostly focused on sequential programs so far, while controlling
declassification in multi-threaded programs is not yet equally well understood.

Generalizing definitions of information-flow security for sequential programs
to security properties that are suitable for concurrent systems is known to be non-
trivial. Already in the eighties, Sutherland [34] and McCullough [23] proposed

J. Gibbons and P. Nogueira, MPC 2012, LNCS 7342, pp. 25–47, 2012.

c© Springer-Verlag Berlin Heidelberg 2012
The original publication is available at www.springerlink.com

2 Alexander Lux, Heiko Mantel, and Matthias Perner

noninterference-like properties for distributed systems. These were first steps
in a still ongoing exploration of sensible definitions of information-flow security
[19]. The information-flow security of multi-threaded programs, on which we
focus in this article, is also non-trivial. Due to the refinement paradox [14], the
scheduling of threads requires special attention. In particular, it does not suffice
to simply assume a possibilistic scheduler, because a program might have secure
information-flow if executed with the fictitious possibilistic scheduler, but be
insecure if executed, e.g., with a Round-Robin or uniform scheduler.

Our first main contribution is the formal definition of two schemas for non-
interference-like properties for multi-threaded programs. Our schemas WHATs

and WHAT&WHEREs are parametric in a scheduler model s. Both schemas can
be used to capture confidentiality requirements, but they differ in how declassi-
fication is controlled. If the scheduler is known then s can be specified concretely
and, after instantiating one of our schemas with s, one obtains a property that
adequately captures information-flow security for this scheduler.

However, often the concrete scheduler is not known in advance. While, in
principle, one could leave the scheduler parametric and use, e.g., ∀s.WHATs as
security condition, such a universal quantification over all possible schedulers
is rather inconvenient, in program analysis as well as in program construction.
Fortunately, an explicit universal quantification over schedulers can be avoided.

Our second main contribution is the definition of a novel security condi-
tion WHAT&WHERE and a scheduler-independence result, which shows that
WHAT&WHERE implies WHAT&WHEREs for all possible scheduler models
s. A compositionality result shows that our novel property is compatible with
compositional reasoning about security. Based on this result, we derive a security
type system for verifying our novel security property efficiently.

Our third main contribution is a scheduler-independence result showing that
our previously proposed property WHAT1 [20] implies WHATs for all s.

Previous scheduler-independence results were limited to information-flow
properties that forbid declassification (e.g. [31,36,22]). With this article, we close
this gap by developing the first scheduler-independence results for information-
flow properties that support controlled declassification. Scheduler independence
provides the basis for verifying security without knowing the scheduler under
which a program will be run. Our scheduler-independence results also reduce
the conceptual complexity of constructing secure programs. They free the devel-
oper from having to consider concrete schedulers when reasoning about security.

Proofs of all theorems in this article are available on the authors’ web-pages.

2 Preliminaries

2.1 Multi-threaded Programs

Multi-threaded programs perform computations in concurrent threads that can
communicate with each other, e.g. via shared memory. When the number of
threads exceeds the number of available processing units, scheduling becomes
necessary. Usually, the schedule for running threads is determined dynamically

Scheduler-Independent Declassification 3

at run-time based on previous scheduling decisions and on observations about
the current configuration, such as the number of currently active threads.

In this article, we focus on multi-threaded programs that run on a single-core
CPU with a shared memory for inter-thread communication. In this section, we
present our model of program execution (a small-step operational semantics), our
model of scheduler decisions (a labeled transition system), and an integration of
these two models. The resulting system model is similar to the one in [22].

Semantics of Commands and Expressions. We assume a set of commands
C , a set of expressions E , a set of program variables Var , and a set of values Val .
We leave these sets underspecified, but give example instantiations in Section 2.2.

We define the set of memory states by the function space Mem = Var → Val .
A function m ∈ Mem models which values are currently stored in the program
variables. We define the set of program states by Cε = C ∪ {ε}. A program state
from C models which part of the program remains to be executed while the
special symbol ε models termination. We define the set of thread pools by C ∗
(i.e. the set of finite lists of commands). Each command in a thread pool is the
program state of an individual thread in a multi-threaded program. We refer to
threads by their position k ∈ N0 in a thread pool thr ∈ C ∗. If a thread is uniquely
determined by thr [k], i.e. the command at position k , then we sometimes refer to
the thread by this command. We define #(thr) to equal the number of threads
in the thread pool thr ∈ C ∗. The list 〈c0, c1, . . . , cn−1〉 with c0, c1, . . . , cn−1 ∈ C
models a thread pool with n threads. The list 〈〉 models the empty thread pool.
Note that the symbol ε does not appear in thread pools.

We model evaluation of expressions by the function eval : E×Mem→Val ,
where eval(e,m) equals the value to which e ∈ E evaluates in m ∈Mem .

We model execution steps by judgments of the form 〈|c1,m1|〉
α−_ 〈|c2,m2|〉

where c1 ∈ C , c2 ∈ Cε, m1,m2 ∈ Mem , and α ∈ C ∗. Intuitively, this judgment
models that a command c1 is executed in a memory state m1 resulting in a
program state c2 and a memory state m2. The label α ∈ C ∗ carries information
about threads spawned by the execution step. If the execution step does not
spawn new threads then α = 〈〉 holds, otherwise we have α = 〈c0, c1, . . . , cn−1〉
where c0, c1, . . . , cn−1 ∈ C are the threads spawned in this order.

We assume deterministic commands, i.e. for each c1 ∈ C and m1 ∈ Mem ,
there exists exactly one tuple (α, c2,m2) ∈ C ∗×Cε×Mem such that 〈|c1,m1|〉

α−_
〈|c2,m2|〉 is derivable. As an alternative notation for the effect of a command on
the memory, we define the function J• K : C → (Mem →Mem) by Jc1 K(m1) = m2

iff ∃c2 ∈ Cε. ∃α ∈ C ∗. 〈|c1,m1|〉
α−_ 〈|c2,m2|〉.

As a notational convention, we use v ∈ Val to denote values, x ∈ Var to
denote variables, m ∈Mem to denote memory states, c ∈ Cε to denote program
states, e ∈ E to denote expressions, thr ∈ C ∗ to denote thread pools, and k ∈ N0

to denote positions of threads.

Scheduler Model. We present a parametric scheduler model that can be in-
stantiated for a wide range of schedulers. For modeling the behavior of sched-
ulers, we use labeled transition systems as described below.

4 Alexander Lux, Heiko Mantel, and Matthias Perner

We assume a set of scheduler states S and a set of possible scheduler inputs In .
Scheduler states model the memory of a scheduler and scheduler inputs model the
input to the scheduler by the environment. We leave the set In underspecified,
but require that any in ∈ In reveals at least the number of active threads in the
current thread pool and denote this number by #(in).

We define the set of scheduler decisions by Dec = In×N0× [0; 1]. Intuitively,
a scheduler decision (in, k , p) ∈ Dec models that the scheduler selects the k th

thread with the probability p given the scheduler input in. The special case
p = 1 models a deterministic decision.

Definition 1. A scheduler model s is a labeled transition system (S , s0,Dec,
→), where S is a set of scheduler states, s0 ∈ S is an initial state, Dec is the set
of scheduler decisions, and →⊆ S ×Dec × S is a transition relation such that:

1. ∀(s1, (in, k , p), s2) ∈ → . (k < #(in) ∧ p 6= 0)

2. ∀s1 ∈ S . ∀in ∈ In .
(
#(in) > 0 =⇒

(∑
(s1,(in,k ,p),s2)∈→ p

)
= 1
)

3. ∀s1, s2, s ′2 ∈ S . ∀in ∈ In . ∀k ∈ N0. ∀p, p′ ∈]0; 1].
(((s1, (in, k , p), s2) ∈ →) ∧ ((s1, (in, k , p

′), s ′2) ∈ →) =⇒ p = p′ ∧ s2 = s ′2)

For a scheduler model s, we write (s1, in)
k
 s

p s2 iff (s1, (in, k , p), s2) ∈ →.

Conditions 1 and 2 ensure that a scheduler model definitely selects some thread
from the current thread pool. Condition 3 ensures that the probability of a
scheduler decision and the resulting scheduler state are uniquely determined by
the original scheduler state, the scheduler input, and the selected thread.

Our notion of scheduler models is suitable for expressing a wide range of
schedulers, including Round-Robin schedulers as well as uniform schedulers.

For simplicity of presentation we consider only scheduler models without re-
dundant states. Formally, we define the bisimilarity of scheduler states coinduc-
tively by a symmetric relation ∼ = S×S that is the largest relation such that for
all dec ∈ Dec and for all s1, s ′1, s2 ∈ S , if s1 ∼ s ′1 and (s1, dec, s2) ∈ → then there
exists a scheduler state s ′2 ∈ S with (s ′1, dec, s

′
2) ∈ → and s2 ∼ s ′2. We require that

the equivalence classes of ∼ are singleton sets, i.e. ∀s, s ′ ∈ S . (s ∼ s ′ =⇒ s = s ′),
which means that there are no redundant states. Note that any given scheduler
model can be transformed into one that satisfies this constraint by using the
equivalence classes of ∼ as scheduler states.

As a notational convention, we use in ∈ In to denote scheduler inputs, p ∈
[0; 1] to denote probabilities, and s ∈ S to denote scheduler states. For brevity,
we often write scheduler instead of scheduler model.

Integration into a System Model. We now present the system model which
defines the interaction between threads and a scheduler.

We define the set of observation functions by the function space Obs = (C ∗×
Mem) → In . A function obs ∈ Obs models the input to a scheduler for a given
thread pool and memory state. We define the set of system configurations by
Cnf = C ∗ × Mem × S . Intuitively, a system configuration 〈|thr ,m, s|〉 ∈ Cnf
models the current state of a multi-threaded program in a run-time environment.

Scheduler-Independent Declassification 5

We model system steps by judgments of the form cnf 1 ⇒s
k ,p cnf 2, where

cnf 1, cnf 2 ∈ Cnf and (k , p) ∈ N0×]0; 1]. Intuitively, this judgment models that,
in system configuration cnf 1, the scheduler selects the k th thread with probabil-
ity p and that this results in cnf 2. We define the rule for deriving this judgment
by:

[SysStep]

(s1, in)
k
 s

p s2
in = obs(thr1,m1)

〈|thr1[k],m1|〉
α−_ 〈|c2,m2|〉

thr2 = updatek (thr1, c2, α)

〈|thr1,m1, s1|〉 ⇒s
k ,p 〈|thr2,m2, s2|〉

The two premises on the left hand side require the selection of the k th thread with
probability p by scheduler s given the scheduler input obs(thr1,m1). The third
premise requires that the execution step of thread thr1[k] spawns new threads
α and results in program state c2 and memory state m2. The fourth premise
requires that the resulting thread pool thr2 is obtained by updatek (thr1, c2, α).

Intuitively, updatek replaces the program state at a position k by a program
state c2 and inserts newly created threads (i.e. α) after c2. Formally, we define
updatek (thr , c, α) by sub(thr , 0, k − 1) :: 〈c〉 :: α :: sub(thr , k + 1,#(thr) − 1)
if c 6= ε, and otherwise by sub(thr , 0, k − 1) :: α :: sub(thr , k + 1,#(thr) − 1),
where :: is the append operator that has the empty list 〈〉 as neutral element
and sub(thr , i, j) equals the list of threads i to j, i.e. sub(thr , i, j) = 〈thr [i]〉 ::
sub(thr , i+ 1, j) if i ≤ j < #(thr), and sub(thr , i, j) = 〈〉 otherwise.

We define the auxiliary function stepsTos : (Cnf ×P(Cnf))→ P(N0×]0; 1])
by stepsTos(cnf 1,Cnf) = {(k , p) | ∃cnf 2 ∈ Cnf . cnf 1 ⇒s

k ,p cnf 2}.
That is, applying the function stepsTos to cnf 1 and Cnf returns the labels

of all possible system steps from cnf 1 ∈ Cnf to some configuration in Cnf .
We call a property P : Cnf → Bool an invariant under s if P(cnf 1) and

cnf 1 ⇒s
k ,p cnf 2 imply P(cnf 2) for all cnf 1, cnf 2 ∈ Cnf and (k , p) ∈ N0×]0; 1].

As a notational convention, we use cnf ∈ Cnf to denote system configura-
tions. Moreover, we introduce the selectors pool(cnf) = thr , mem(cnf) = m,
and sst(cnf) = s for decomposing a system configuration cnf = 〈|thr ,m, s|〉.

2.2 Exemplary Programming Language

We define security on a semantic level. However, to give concrete examples we
introduce a simple multi-threaded while language with dynamic thread creation.
We define E and C of our example language by:

e ::= v | x | op(e, . . . , e)
c ::= skipι | x :=ιe | c;c

| spawnι(c, . . . , c) | ifι e then c else c fi | whileι e do c od

Some commands carry a label ι ∈ N0 that we will use to identify program points.
The operational semantics for our language defines which instances of the

judgment 〈|c1,m1|〉
α−_ 〈|c2,m2|〉 are derivable. The only notable aspect of the

semantics is the label α. If the top-level command is spawnι(c0, . . . , cn−1), then
we have α = 〈c0, . . . , cn−1〉 while, otherwise, α = 〈〉 holds.

For readability, we also use infix instead of prefix notation for expressions.

6 Alexander Lux, Heiko Mantel, and Matthias Perner

2.3 Attacker Model and Security Policies

A security policy describes what information a user is allowed to know based on a
classification of information according to its confidentiality. We use sets of secu-
rity domains to model different degrees of confidentiality. Domain assignments
associate each program variable with a security domain.

Definition 2. A multi-level security policy (brief: mls-policy) is a triple (D,
≤, dom), where D is a finite set of security domains, ≤ is a partial order on D,
and dom : Var → D is a domain assignment.

Intuitively, d 6≤ d ′ with d , d ′ ∈ D models that no information must flow from
the security domain d to the security domain d ′.

A d-observer is a user who is allowed to observe a variable x ∈ Var , only
if dom(x) ≤ d . Hence, he can distinguish two memory states only if they differ
in the value of at least one variable x with dom(x) ≤ d . Dual to the ability to
distinguish memory states is the following d-indistinguishability.

Definition 3. Two memory states m ∈ Mem and m ′ ∈ Mem are d -equal for
d ∈ D (denoted: m =d m ′), iff ∀x ∈ Var . (dom(x) ≤ d =⇒ m(x) = m ′(x)).

An attacker is a d -observer who tries to get information that he must not know.
In terms of d -indistinguishability, this means that an attacker tries to distinguish
initially d -equal memory states by running programs. Conversely, a program
is intuitively secure, if running this program does not enable a d -observer to
distinguish any two initial memory states that are d -equal. This intuition will
be formalized by security properties in Section 3.

For the rest of the article, we assume that (D,≤, dom) is an mls-policy.

2.4 Auxiliary Concepts for Relations

For any relation R⊆ A×A, there is at least one subset A′ of A (namely A′ = ∅)
such that the restricted relation R|A′ =R ∩ (A′ × A′) is an equivalence relation
on A′. We characterize the subsets A′ ⊆ A for which R|A′ constitutes an equiv-
alence relation by a predicate EquivOnA ⊆ P(A×A)×P(A) that we define by
EquivOnA(R,A

′) if and only if R|A′ is an equivalence relation on A′.
In our definitions of security, we will use partial equivalence relations (brief:

pers), i.e. binary relations that are symmetric and transitive but that need not
be reflexive (see Sections 3 and 4.2). For each per R ⊆ A×A, there is a unique
maximal set A′ ⊆ A such that EquivOnA(R|A′ ,A′) holds. This maximal set is
the set AR,refl = {e ∈ A | e R e}, i.e. the subset of A on which R is reflexive.

Theorem 1. If R ⊆ A×A is a per on a set A then EquivOnA(R|AR,refl ,AR,refl)
holds and ∀A′ ⊆ A. (EquivOnA(R|A′ ,A′) =⇒ A′ ⊆ AR,refl).

For brevity, we will use the symbol R instead of R|A′ when this does not
lead to ambiguities. In particular, we will write EquivOnA(R,A

′) meaning that
EquivOnA(R|A′ ,A′) holds. Moreover, if R ⊆ A× A is a per, we will use [e]R to
refer to the equivalence classes of an element e ∈ AR,refl under R|AR,refl .

Scheduler-Independent Declassification 7

Finally, we define a partial function classesA : P(A × A) ⇀ P(P(A)) by
classesA(R) = {[e]R | e ∈ AR,refl} if R is a per, while classesA(R) is undefined
if R is not a per. That is, if R is a per, then classesA(R) equals the set of all
equivalence classes of R (meaning the equivalence classes of R|AR,refl).

If the set A is clear from the context we write classes instead of classesA.

3 Declassification in the Presence of Scheduling

A declassification is the deliberate release of secrets or, in other words, an in-
tentional violation of an mls-policy. Naturally, such a release of secrets must be
rigorously constrained to prevent unintended information leakage.

Example 1. Online music shops rely on not giving out songs for free. Hence,
songs are only delivered to a user after he has paid. However, often downsampled
previews are offered without payment to any user for promotion. The following
example program shall implement this functionality.

P1 = if1 paid then out:=2song else out:=3downsample(song, bitrate) fi

Consider an mls-policy with two domains low and high, and the total order ≤
with high 6≤ low . The domain assignment dom is defined such that dom(song) =
high and dom(out) = low hold. Intuitively, this mls-policy means that song is
confidential with respect to out. The program P1 intuitively satisfies the require-
ment that any user may receive a downsampled preview, while only a user who
has paid may receive the full song. Note that some information about the con-
fidential song is released in both branches of P1, i.e. a declassification occurs.
However, what information is released differs for the two branches. ♦

As this example shows, an adequate control of declassification needs to respect
what information (the full song or the preview) is released and where this release
occurs (e.g., after payment has been checked by the program). This corresponds
to the W-aspectsWhat andWhere that we address in this article. The W-aspects
of declassification were first introduced in [21] and form the basis for a taxonomy
of approaches to controlling declassification [33].

Before presenting our schema WHAT&WHEREs for scheduler-specific se-
curity properties that control what is declassified where (see Section 3.3), we
introduce the simpler schema WHATs (see Section 3.2) for controlling what is
declassified. We show in Section 3.4 that WHAT&WHEREs implies WHATs

and also satisfies the so called prudent principles of declassification from [33].

3.1 Escape Hatches and Immediate Declassification Steps

As usual, we use pairs (d , e) ∈ D × E , so called escape hatches [29], to specify
what information may be declassified. Intuitively, (d , e) allows a d -observer to
peek at the value of e, even if in e occurs a variable x with dom(x) 6≤ d . Hence, an
escape hatch might enable a d -observer to distinguish memory states although
they are d -equal. Dual to this ability is the following notion of (d ,H)-equality.

8 Alexander Lux, Heiko Mantel, and Matthias Perner

Definition 4. Two memory states m and m ′ are (d ,H)-equal for d ∈ D and
a set of escape hatches H ⊆ D × E (denoted: m ∼H

d m ′), iff m =d m ′ and
∀(d ′, e) ∈ H . (d ′ ≤ d =⇒ (eval(e,m) = eval(e,m ′))) hold.
We employ program points to restrict where declassification may occur. For each
program, we assume a set of program points PP ⊆ N0 and a function pp : C → PP
that returns a program point for each sub-command of the program. Moreover,
we assume that program points are unique within a program.

For our example language, we use the labels ι to define the function pp. For
instance, pp(out:=2song) = 2 and pp(if1 paid then . . . else . . . fi) = 1 hold. As
sequential composition does not carry a label ι, we define pp(c1;c2) = pp(c1).
Note that, after unwinding a loop, multiple sub-commands in a program state
might be associated with the same program point. This results from copying the
body of a while loop in the operational semantics if the guard evaluates to true.

We augment escape hatches with program points from PP and call the re-
sulting triples local escape hatches. Like an escape hatch (d , e) ∈ D ×E , a local
escape hatch (d , e, ι) ∈ D × E × PP intuitively allows a d -observer to peek at
the value of e. However, (d , e, ι) allows this only while the command at program
point ι is executed. We use a set lH ⊆ D ×E ×PP to specify at which program
points a d -observer may peek at which values. For Example 1, a natural set of
local escape hatches would be {(low , downsample(song, bitrate), 3), (low , song, 2)}.
Definition 5. A local escape hatch is a triple (d , e, ι) ∈ D × E × PP . We call
a set of local escape hatches lH ⊆ D × E × PP global (denoted: Global(lH)) if
(d , e, ι) ∈ lH implies (d , e, ι′) ∈ lH for all d ∈ D, e ∈ E , and ι, ι′ ∈ PP .
To aggregate the information that may be declassified at a given program point,
we define the filter function htchLoc : P(D × E × PP) × PP → P(D × E) by
htchLoc(lH , ι) = {(d , e) ∈ D × E | (d , e, ι) ∈ lH }. Given a set of points PP ⊆
PP , we use htchLoc(lH ,PP) as a shorthand notation for

⋃
{htchLoc(lH , ι) | ι ∈

PP}. Note that if lH is global then ∀ι, ι′∈PP . (htchLoc(lH , ι)=htchLoc(lH , ι′)).
We call a command an immediate d-declassification command for a set of

escape hatches H ⊆ D × E if its next execution step might reveal information
to a d -observer that he should not learn according to the mls-policy, but that
may permissibly be released to him due to some escape hatch in H .
Definition 6. The predicate IDC d on C ×P(D × E) is defined by

IDC d(c,H)⇐⇒
[

(∃m,m ′ ∈Mem . m =d m ′ ∧ Jc K(m) 6=d Jc K(m ′))
∧ (∀m,m ′ ∈Mem . m ∼H

d m ′ =⇒ Jc K(m) =d Jc K(m ′))

]
The predicate IDC d characterizes the immediate d -declassification commands
for each set of escape hatches H . The predicate requires, firstly, that a release
of secrets could, in principle, occur (i.e. for some pair of d -equal memories, the
next step results in memories that are not d -equal) and, secondly, that no more
information is released than allowed by the escape hatches (i.e. for all pairs of
(d ,H)-equal memories, the next step must result in d -equal memories).

Remark 1. If IDC d(c, htchLoc(lH , ι)) and c ∈ C is the command at program
point ι ∈ PP then c either has the form x :=ιe or the form x :=ιe; c′. ♦

Scheduler-Independent Declassification 9

All concepts defined in this section are monotonic in the set of escape hatches,
and the empty set of escape hatches is equivalent to forbidding declassification.

Theorem 2. For all d ∈ D and H ,H ′ ⊆ D×E the following propositions hold:
1. ∀m,m ′ ∈Mem . ((¬(m ∼H ′

d m ′) ∧H ′ ⊆ H) =⇒ ¬(m ∼H
d m ′)) ;

2. ∀m,m ′ ∈Mem . (m ∼∅d m ′ ⇐⇒ m =d m ′) ;
3. ∀c ∈ C . ((IDC d(c,H

′) ∧H ′ ⊆ H) =⇒ IDC d(c,H)) ; and
4. ∀c ∈ C . ¬(IDC d(c, ∅)) .

A command is not a d-declassification command if its next execution step does
not reveal any information to a d -observer that he cannot observe directly.

Definition 7. The predicate NDC d on C is defined by
NDC d(c)⇐⇒ (∀m,m ′ ∈Mem . m =d m ′ =⇒ Jc K(m) =d Jc K(m ′))

Note that NDC d(c) cannot hold if IDC d(c,H) holds for some H ⊆ D ×E . If c
leaks beyond what H permits then neither IDC d(c,H) nor NDC d(c) holds.

We use ι ∈ PP to denote program points, H ⊆ D×E to denote sets of escape
hatches, and lH ⊆ D × E × PP to denote sets of local escape hatches.

3.2 The Security Conditions WHATs

Security can be characterized based on pers (brief for partial equivalence rela-
tions, see Section 2.4). Following this approach, one defines a program to be
secure if it is related to itself by a suitable per [30]. Consequently, the set of
secure programs for a per R ⊆ A × A is

⋃
classesA(R). We will characterize

confidentiality by pers that relate two thread pools only if they yield indis-
tinguishable observations for any two initial configurations that must remain
indistinguishable. Which configurations must remain indistinguishable depends
on the observer’s security domain d and on the set H of available escape hatches.
We make this explicit by annotating pers with d and H (as, e.g., in Rd,H).

Definition 8. Let d ∈ D and H ⊆ D × E . The lifting of a relation Rd,H ⊆
C ∗ × C ∗ to a relation R↑d,H ⊆ Cnf × Cnf is R↑d,H = (Rd,H × ∼H

d × ∼).

Note that, if two configurations cnf and cnf ′ are related by R↑d,H then they look
the same to a d -observer becausemem(cnf)∼H

d mem(cnf ′) impliesmem(cnf)=d

mem(cnf ′). Moreover, the lifting of a per to the set Cnf results, again, in a per.

Proposition 1. If Rd,H ⊆ C ∗ × C ∗ is a per, then R↑d,H ⊆ Cnf × Cnf is a per.

Towards a Scheduler-specific Security Condition. Even if two configu-
rations cnf and cnf ′ look the same to a d -observer, he might be able to infer
in which of the configurations a program run must have started based on the
observations that he makes during the run. For instance, he can exclude the
possibility that the run started in cnf ′ if he makes an observation that is in-
compatible with all configurations that are reachable from cnf ′. In this case, he
obtains information about the actual initial configuration from the fact that cer-
tain observations are impossible if the program is run under a given scheduler.

10 Alexander Lux, Heiko Mantel, and Matthias Perner

In addition, an attacker might obtain information about the initial configuration
from the probability of observations. For instance, if he makes certain observa-
tions quite often, when running the program in some initial configuration (which
remains fixed and is initially unknown to the attacker), but the likelihood of this
observation would be rather low if cnf ′ were the initial configuration, then the
attacker can infer that cnf ′ is probably not the unknown initial configuration.1

We aim at defining a security property that rules out deductions of informa-
tion about secrets based on the possibility as well as the probability of obser-
vations. We will focus on the latter aspect in the following because deductions
based on possibilities are just a special case of deductions based on probabilities.

The probability of moving from a configuration cnf to some configuration in
a set Cnf depends not only on the program, but also on the scheduler s.

Definition 9. The function probs : Cnf ×P(Cnf)→ [0; 1] is defined by:

probs(cnf ,Cnf) =
∑

(k ,p)∈stepsTos(cnf ,Cnf) p .

We will use the function probs in our definition of WHATs to capture that the
likelihood of certain observations is the same in two given configurations.

If strict multi-level security were our goal then we could define security based
on a per that relates two thread pools thr and thr ′ only if any two configurations
〈|thr ,m, s|〉 and 〈|thr ′,m ′, s ′|〉 with m =d m ′ and s ∼ s ′ cause indistinguishable
observations. As we aim at permitting declassification, the situation is more
involved. After a declassification occurred, a d -observer might be allowed to
obtain information about the initial configuration that he cannot infer without
running the program. However, such inferences should be strictly limited by the
exceptions to multi-level security specified by a given set of escape hatches.

WHATs. We are now ready to define information-flow security. For each sched-
uler model s, we propose a security condition WHATs that restricts declassifica-
tion according to the constraints specified by a set of escape hatches. Following
the per-approach, we define a multi-threaded program as WHATs-secure if it is
related to itself by some relation Rd,H that satisfies the following property.

Definition 10. Let d ∈ D be a security domain and H ⊆ D × E be a set of
escape hatches. An s-specific strong (d ,H)-bisimulation is a per Rd,H ⊆ C ∗×C ∗
that fulfills the following two conditions:

1. ∀(cnf , cnf ′) ∈ R↑d,H . ∀Cls ∈ classes(R↑d,H).
probs(cnf ,Cls) = probs(cnf ′,Cls)

2. the property λcnf ∈ Cnf . (cnf ∈
⋃

classes(R↑d,H)) is an invariant under s.

Condition 1 in Definition 10 ensures that if a single computation step is per-
formed in two related configurations cnf and cnf ′ under a scheduler s then each
equivalence class of R↑d,H is reached with the same probability from the two
1 By increasing the number of runs such inferences are possible with high confidence,
even if the difference between observed frequency and expected frequency is small.

Scheduler-Independent Declassification 11

configurations. Condition 2 ensures that all configurations that can result after
a computation step are again contained in some equivalence class of R↑d,H . This
lifts Condition 1 from individual steps to entire runs. The two conditions ensure
that if two configurations are related by R↑d,H (which means they must remain
indistinguishable for a d -observer who may use the escape hatches in H) then
they, indeed, remain indistinguishable when the program is run.

Definition 11. A thread pool thr ∈ C ∗ has secure information flow for (D,
≤, dom) and H ⊆ D×E under s (brief: thr ∈WHATs) iff for each d ∈ D there
is a set H ′ ⊆ H and a relation Rd,H ′ ⊆ C ∗×C ∗ such that (thr Rd,H ′ thr) holds,
and such that Rd,H ′ is an s-specific strong (d ,H ′)-bisimulation.

Definition 11 ensures that if thr ∈ WHATs and m ∼H
d m ′ and s ∼ s ′ then the

configurations 〈|thr ,m, s|〉 and 〈|thr ,m ′, s ′|〉 yield indistinguishable observations
for d while the multi-threaded program thr is executed under s.

WHATs will serve as the basis of our first scheduler-independence result
in Section 4. More concretely, we will show that our previously proposed se-
curity condition WHAT1 [20] implies WHATs for a wide range of schedulers.
Moreover, we will use WHATs when arguing that our second security condition
WHAT&WHEREs adequately controls what is declassified (see Section 3.4).

3.3 The Security Conditions WHAT&WHEREs

We employ local escape hatches to specify where a particular secret may be
declassified. The annotations of pers are adapted accordingly by replacing H
with a set lH of local escape hatches. Moreover a set of program points PP ⊆ PP
is added as third annotation (resulting in Rd,lH ,PP). The set PP will be used to
constrain local escape hatches in the definition of WHAT&WHEREs.

Definition 12. Let d ∈ D, lH ⊆ D × E × PP , and PP ⊆ PP . The lifting of a
relation Rd,lH ,PP ⊆ C ∗ × C ∗ to a relation R↑d,lH ,PP ⊆ Cnf × Cnf is defined by
R↑d,lH ,PP = (Rd,lH ,PP × ∼H

d × ∼), where H = htchLoc(lH ,PP).

Proposition 2. If Rd,lH ,PP ⊆C ∗×C ∗ is a per then R↑d,lH ,PP ⊆Cnf ×Cnf also
is a per.

Note that 〈|thr ,m, s|〉 R↑d,lH ,PP 〈|thr
′,m ′, s ′|〉 implies that m ∼htchLoc(lH ,PP)

d m ′

holds. This means that each variable x ∈ Var has the same value in m as in m ′

if x is visible for a d -observer (i.e. m =d m ′). Moreover, an expression e ∈ E has
the same value in m as in m ′ if it may be declassified to d according to lH for at
least one of the program points in PP (i.e. if ∃(d ′, e, ι) ∈ lH . (d ′ ≤ d ∧ ι ∈ PP)).

Towards Controlling Where Declassification Occurs. If NDC d(c) holds
then the next step of the command c respects strict multi-level security (i.e. no
declassification to security domain d occurs in this step). If IDC d(c,H) holds
then the next step of c might declassify information to d , and any such declassi-
fication is authorized by the escape hatches in H . However, if neither NDC d(c)

12 Alexander Lux, Heiko Mantel, and Matthias Perner

nor IDC d(c,H) is true then there are memory states m,m ′ ∈ Mem such that
m ∼H

d m ′ holds while Jc K(m) =d Jc K(m ′) does not hold. This means that infor-
mation might be leaked whose declassification is not permitted by H .

In our definition of the security condition, we need to rule out this third
possibility, i.e. ¬IDC d(c,H) ∧ ¬NDC d(c) where H is the set of escape hatches
that are enabled. Which escape hatches are enabled in a given computation step
depends on the set of local escape hatches and on the set of program points that
might cause the computation step.

The set of program points that might cause a transition from a configuration
cnf to some configuration in a set Cnf depends on the scheduler.

Definition 13. The function ppss : (Cnf ×P(Cnf))→ P(PP) is defined by:

ppss(cnf ,Cnf) = {pp(cnf [k]) | (k , p) ∈ stepsTos(cnf ,Cnf)} .

Using ppss, we define which hatches might be relevant for a computation step.

Definition 14. The function htchss : (P(D × E × PP) × Cnf × P(Cnf)) →
P(D × E) is defined by htchss(lH , cnf ,Cnf) = htchLoc(lH , ppss(cnf ,Cnf)).

WHAT&WHEREs. We are now ready to introduce our second schema for
scheduler-specific security conditions. Unlike WHATs, WHAT&WHEREs allows
one to control where a particular declassification can occur. This combined con-
trol of the W-aspects What and Where is needed, for instance, in Example 1.

Like in Section 3.2, we define a class of pers on thread pools to character-
ize indistinguishability from the perspective of a d -observer. A program is then
defined to be secure under a scheduler s if it is related to itself. Which configura-
tions must remain indistinguishable differs from Section 3.2 because information
may only be declassified in a computation step if this is permitted by the set
of local escape hatches that are enabled at this step. That is, declassification is
more constrained than in Section 3.2.

Definition 15. Let d ∈ D be a security domain, lH ⊆ D × E × PP be a set
of local escape hatches, and PP ⊆ PP be a set of program points. An s-specific
strong (d , lH ,PP)-bisimulation is a per Rd,lH ,PP ⊆ C ∗ × C ∗ that fulfills the
following three conditions:

1. ∀(thr , thr ′) ∈Rd,lH ,PP . ∀k ∈ N0.
k < #(thr) =⇒ (NDC d(thr [k]) ∨ IDC d(thr [k], htchLoc(lH , pp(thr [k]))))

2. ∀(cnf , cnf ′) ∈ R↑d,lH ,PP . ∀Cls ∈ classes(R↑d,lH ,PP).
(htchss(lH , cnf ,Cls) ∪ htchss(lH , cnf ′,Cls)) ⊆ htchLoc(lH ,PP)
=⇒ probs(cnf ,Cls) = probs(cnf ′,Cls)

3. λcnf ∈Cnf . (cnf ∈
⋃
classes(R↑d,lH ,PP)) is an invariant under s

Condition 1 in Definition 15 ensures that each thread thr [k] either causes no
declassification to the security domain d or is an immediate declassification com-
mand for the set of locally available escape hatches. Condition 2 ensures that

Scheduler-Independent Declassification 13

if a single computation step is performed in two related configurations cnf and
cnf ′ then each equivalence class of R↑d,lH ,PP is reached with the same probability
from the two configurations. In contrast to Condition 1 in Definition 10, this is
only required under the condition that each escape hatch (d ′, e) with d ′ ≤ d ,
that is available at some program point ι that might cause the next compu-
tation step, is also contained in htchLoc(lH ,PP). Note that this precondition
(i.e. (htchss(lH , cnf ,Cls)∪htchss(lH , cnf ′,Cls)) ⊆ htchLoc(lH ,PP)) is trivially
fulfilled if PP = PP holds. However, if PP is a proper subset of PP then the
precondition might be violated. That is, choosing a set PP that is too small
might lead to missing possibilities for information laundering. We will avoid this
pitfall by universally quantifying over all subsets PP ⊆ PP in the definition of
WHAT&WHEREs. Finally, Condition 3 ensures that all configurations that can
result after a computation step are again contained in some equivalence class of
R↑d,lH ,PP . This lifts Condition 1 and 2 from individual steps to entire runs.

Definition 16. A thread pool thr ∈ C ∗ has secure information flow for (D,
≤, dom) and lH ⊆ D × E × PP under s (brief: thr ∈ WHAT&WHEREs) iff
for each d ∈ D and for each PP ⊆ PP there are a set lH ′ ⊆ lH and a relation
Rd,lH ′,PP ⊆ C ∗×C ∗ such that (thr Rd,lH ′,PP thr) holds, and such that Rd,lH ′,PP

is an s-specific strong (d , lH ′,PP)-bisimulation.

The structure of Definition 16 is similar to the one of Definition 11. The main
differences are, firstly, that a set lH of local escape hatches is used instead of a
set H of escape hatches and, secondly, that the escape hatches, that are available
to a d -observer, are further constrained by a set PP ⊆ PP . The universal quan-
tification over all subsets PP of PP is crucial for achieving the desired control of
where a declassification can occur. It were not enough to require Condition 2 in
Definition 15 just for PP = PP because the resulting security guarantee would
control what is declassified without restricting where declassification can occur.

Example 2. Let P2 = if1 h then spawn2(l:=30,l:=41) else spawn5(l:=61,l:=70) fi and
lH = ∅. We consider a biased scheduler s that selects the second of two threads
with lower, but non-zero probability. Independent of the value of h, P2 might
terminate with a memory state in which l = 0 holds as well as with a memory
state in which l = 1 holds. Nevertheless, a good guess about the initial value of
h is possible after observing several runs with the same initial memory. If l = 0
is observed significantly more often than l = 1, then it is likely that h = False
holds in the initial state. Hence, the program is intuitively insecure.

Running P2 with two memories that differ in h deterministically results in
two different thread pools, namely in 〈l:=30, l:=41〉 and 〈l:=61,l:=70〉. These two
thread pools must be related by Rlow ,lH ,PP according to Condition 2 in Defini-
tion 15. However, the probability of moving from these two configurations into
the same equivalence class differs as our biased scheduler chooses the first thread
with a higher probability than the second. Therefore, Condition 2 is violated by
the second computation step and, hence, P2 /∈WHAT&WHEREs. ♦

Example 3. Let P3 = h2:=1absolute(h2); if2 h1 then l1:=3h2 else l1:=4-h2 fi and lH =
{(low , h2, 3), (low , h2, 4)}. The assignments in both branches do not reveal more

14 Alexander Lux, Heiko Mantel, and Matthias Perner

information than permitted by the respective local escape hatches. However, the
sign of the value stored in l1 after a run reveals information about the initial
value of h1 in addition. Hence, the program is intuitively insecure.

Two consecutive computation steps of P3 in two memories that differ in h1
result in two different thread pools, namely in 〈l1:=3h2〉 and 〈l1:=4-h2〉. According
to Condition 2 in Definition 15, these two thread pools must be related by
Rlow ,lH ,PP . However, a third computation step in each of them results in two
memories that are low -distinguishable and, hence, P3 /∈WHAT&WHEREs. ♦

3.4 Meta-properties of the Scheduler-Specific Security Properties

The security conditions WHAT&WHEREs restrict declassification according to
a set of local escape hatches. This allows one a more fine-grained control of
declassification by restricting what information can be declassified where. In
comparison to WHATs, declassification shall be controlled more rigorously, and
WHAT&WHEREs is indeed at least as restrictive as WHATs.

Theorem 3. Let lH ⊆ D × E × PP and thr ∈ C ∗. If thr ∈WHAT&WHEREs

with lH then thr ∈WHATs with H = htchLoc(lH ,PP).

In [32], various so called prudent principles were proposed as sanity checks for
definitions of information-flow security that are compatible with declassification.
In order to convince ourselves about the adequacy of our novel security condition,
we have checked WHAT&WHEREs against these principles, and we have shown
that it satisfies the following prudent principles (based on the formalization of a
slightly augmented set of prudent principles in [16]):

Semantic consistency [32]The (in)security of a program is invariant under
semantic-preserving transformations of declassification-free subprograms.

Monotonicity of release [32] Allowing further declassifications for a program
that is WHAT&WHEREs-secure cannot render it insecure.

Persistence [16] For every program that satisfies WHAT&WHEREs, all pro-
grams that are reachable also satisfy this security condition.

Relaxation [16] Every program that satisfies noninterference also satisfies
WHAT&WHEREs.

Noninterference up-to [16] Every WHAT&WHEREs-secure program also
satisfies noninterference if it were executed in an environment that termi-
nates the program when it is about to perform a declassification.

Another prudent principle proposed in [32] is Non-occlusion. This principle re-
quires that the presence of a declassifying operation cannot mask other covert
information leaks. Unfortunately, a bootstrapping problem occurs. Any ade-
quate formal characterization of non-occlusion itself is an adequate definition
of information-flow security with controlled declassification. If such an adequate
characterization existed then there would be no need to propose a definition of
information-flow security.

Scheduler-Independent Declassification 15

4 Secure Declassification for Multi-threaded Programs

When developing a multi-threaded program, usually a specification of the sched-
uler’s interface is available, but the concrete scheduler is not known. An interface
might reveal to a scheduler information about the current configuration such as
the number of active threads and the values of special program variables (e.g.,
for setting scheduling priorities). However, the scheduler should not have direct
access to secrets via the interface because the scheduling of threads might have
an effect on the probability of an attacker’s observations. Hence, one should treat
all elements of the scheduler’s interface like public sinks in a security analysis.

We specify interfaces to schedulers by observation functions (see Section 2.1)
and assume that interfaces do not give a scheduler access to the value of program
counters as well as of variables that might contain secrets. This is captured by
the following restriction on observation functions.

Definition 17. An observation function obs ∈ Obs is confined wrt. an mls-
policy (D,≤, dom), iff for all thr1, thr ′1 ∈ C ∗ and all m1,m

′
1 ∈Mem :

(](thr1) =](thr ′1) ∧ ∃d ∈ D. m1 =d m ′1) =⇒ obs(thr1,m1) = obs(thr ′1,m
′
1) .

If the interface to the scheduler is confined, then the scheduling behavior is
identical for any two configurations that have the same number of active threads
and assign the same value to each variable that is visible for all security domains.

Remark 2. Note that our restriction to confined observation functions does not
eliminate the refinement problem for schedulers. As already pointed out in [35],
a program might have secure information flow if executed with the fictitious
possibilistic scheduler, but be insecure if executed with a uniform scheduler. Since
a uniform scheduler bases its decisions only on the number of active threads, its
interface can be captured by a confined observation function. Another example of
a scheduler with a confined observation function is the biased scheduler described
in Example 2. The program P2 in this example is insecure if run with the biased
scheduler, but it would be secure if run with the possibilistic scheduler. ♦

As the concrete scheduler is usually not known when developing a program,
properties are needed that allow one to reason about security independently of
the concrete scheduler. In this section, we recall the security property WHAT1

from [20] and propose the novel security property WHAT&WHERE. We show
that these properties imply WHATs and WHAT&WHEREs, respectively, for all
schedulers s and confined observation functions. These scheduler-independence
results provide the theoretical basis for reasoning in a sound way about the
security of multi-threaded programs without knowing the concrete scheduler.

4.1 Scheduler-independent WHAT-Security

The following definition of strong (d ,H)-bisimulations is an adaptation of the
corresponding notion from [20] to the formal exposition used in this article.

16 Alexander Lux, Heiko Mantel, and Matthias Perner

∀thr , thr ′ ∈ C∗. ∀m1,m
′
1 ∈Mem . ∀k ∈ N0. ∀α ∈ C∗. ∀c ∈ Cε. ∀m2 ∈Mem .

thr Rd,H thr ′ ∧m1 ∼H
d m ′1 ∧ 〈|thr [k],m1|〉

α−_ 〈|c,m2|〉
=⇒ ∃α′ ∈ C∗. ∃c′ ∈ Cε. ∃m ′2 ∈Mem .[

〈|thr ′[k],m ′1|〉
α′
−_ 〈|c′,m ′2|〉 ∧ 〈c〉 Rd,H 〈c′〉 ∧ α Rd,H α′ ∧ m2 ∼H

d m ′2

]


Figure 1. Condition 2 in the definition of strong (d ,H)-bisimulations

Definition 18. Let d ∈ D be a security domain and H ⊆ D × E be a set of
escape hatches. A strong (d ,H)-bisimulation is a per Rd,H ⊆ C ∗×C ∗ that fulfills
the following two conditions:
1. ∀(thr , thr ′) ∈ Rd,H . #(thr) = #(thr ′) and
2. Rd,H satisfies the formula in Figure 1.

If two thread pools thr , thr ′ ∈ C ∗ are strongly (d ,H)-bisimilar, and the scheduler
chooses in some memory state m the k ’th thread of the first thread pool thr for a
step, then the thread at position k in the second thread pool thr ′ can also perform
a computation step in any memory state m ′ that is (d ,H)-equal to m (see
dark-gray boxes in Figure 1). Moreover, the program states as well as the lists
of spawned threads resulting after these two steps are, again, strongly (d ,H)-
bisimilar (see medium-gray box in Figure 1). Finally, the resulting memory states
are, again (d ,H)-equal (see light-gray box in Figure 1).

Definition 19. A thread pool thr has secure information flow for (D,≤, dom)
and H ⊆ D × E (brief: thr ∈ WHAT1) iff for each d ∈ D there is a strong
(d ,H)-bisimulation Rd,H ⊆ C ∗ × C ∗ such that (thr Rd,H thr) holds.

We are now ready to present our scheduler-independence result for WHAT-
security. The theorem states that WHAT1 implies WHATs for each scheduler
model s. Hence, WHAT1 is suitable for reasoning about WHAT-security in a
sound manner without having to explicitly consider scheduling.

Theorem 4. Let (D,≤, dom) be an mls-policy, H ⊆ D × E be a set of escape
hatches, obs ∈ Obs be an observation function that is confined wrt. (D,≤, dom),
and thr ∈ C ∗ be a thread pool. If thr ∈WHAT1 holds, then thr ∈WHATs holds
for each scheduler model s.

4.2 Scheduler-independent WHAT&WHERE-Security

Like in Section 3.3, we use pers that are annotated with a security domain
d , a set lH of local escape hatches, and a set PP of program points. Unlike
in Section 3.3, we constrain pers without referring to system steps, because
system steps depend on the concrete scheduler’s behavior. Our novel security
propertyWHAT&WHERE shall provide adequate control over what information
is declassified where, independently of the scheduler under that a program is run.

Scheduler-Independent Declassification 17

∀thr , thr ′ ∈ C∗. ∀m1,m
′
1 ∈Mem . ∀k ∈ N0. ∀α ∈ C∗. ∀c ∈ Cε. ∀m2 ∈Mem .

thr Rd,lH ,PP thr ′ ∧m1 ∼htchLoc(lH ,PP)
d m ′1 ∧ 〈|thr [k],m1|〉

α−_ 〈|c,m2|〉
=⇒ ∃α′ ∈ C∗. ∃c ∈ Cε. ∃m ′2 ∈Mem . 〈|thr ′[k],m ′1|〉 α′

−_ 〈|c′,m ′2|〉 ∧ 〈c〉 Rd,lH ,PP 〈c′〉 ∧ α Rd,lH ,PP α′

∧
(

m2 ∼htchLoc(lH ,PP)
d m ′2 ∨ htchLoc(lH , pp(thr [k])) * htchLoc(lH ,PP)

)




Figure 2. Condition 3 in the definition of strong (d , lH ,PP)-bisimulations

Definition 20. Let d ∈ D be a security domain, lH ⊆ D × E × PP be a set
of local escape hatches, and PP ⊆ PP be a set of program points. A strong
(d , lH ,PP)-bisimulation is a per Rd,lH ,PP ⊆ C ∗ × C ∗ that fulfills the following
three conditions:
1. ∀(thr , thr ′) ∈Rd,lH ,PP . #(thr) = #(thr ′),
2. ∀(thr , thr ′) ∈Rd,lH ,PP . ∀k ∈ N0.

k < #(thr) =⇒ (NDC d(thr [k]) ∨ IDC d(thr [k], htchLoc(lH , pp(thr [k])))),
3. Rd,lH ,PP satisfies the formula in Figure 2.

Condition 1 in Definition 20 ensures that related thread pools have equal size
(like Condition 1 in Definition 18). Condition 2 ensures that each thread either
causes no declassification to d or is an immediate declassification command for
the set of locally available escape hatches (like Condition 1 in Definition 15).

Condition 3 bears similarities with Condition 2 in Definition 18 (see Fig-
ure 1). If two thread pools thr , thr ′ ∈ C ∗ are strongly (d , lH ,PP)-bisimilar, and
the scheduler chooses in some memory state m the k ’th thread of thr for a step,
then the k ’th thread of thr ′ can also perform a computation step in any mem-
ory state m ′ that is (d ,H)-equal to m (where H = htchLoc(lH ,PP)), and the
resulting program states as well as lists of spawned threads are, again, strongly
(d , lH ,PP)-bisimilar (see dark-gray boxes in Figure 2). Note that an expression
e that occurs in a local escape hatch (d ′, e, ι) ∈ lH need not have the same value
in m and m ′ if ι /∈ PP . Consequently, Condition 3 only requires the resulting
memory states to be (d ,H)-equal (see medium-gray box in Figure 2), if no such
local escape hatch might affect the computation step under consideration (see
light-gray box in Figure 2). Like in Section 3.3, choosing a set PP that is too
small might lead to missing possibilities for information laundering and, again,
we will avoid this pitfall by universally quantifying over all subsets PP ⊆ PP .

Definition 21. A thread pool thr ∈ C ∗ has secure information flow for an mls-
policy (D,≤, dom) and a set of local escape hatches lH ⊆ D × E × PP (brief:
thr ∈ WHAT&WHERE) iff for each d ∈ D and for each PP ⊆ PP there is a
strong (d , lH ,PP)-bisimulation Rd,lH ,PP such that (thr Rd,lH ,PP thr) holds.

We are now ready to present our second scheduler-independence result.

18 Alexander Lux, Heiko Mantel, and Matthias Perner

[tconstd]
H ` v : d

[tvard]
dom(x) = d

H ` x : d
[thatchd]

(d , e) ∈ H

H ` e : d

[topd]
H ` e1 : d1 . . . H ` em : dm ∀i ∈ {1, . . . ,m}. di ≤ d

H ` op(e1, . . . , em) : d

Figure 3. Security type system for expressions

Theorem 5. Let (D,≤, dom) be an mls-policy, lH ⊆ D × E × PP be a set of
local escape hatches, obs ∈ Obs be an observation function that is confined wrt.
(D,≤, dom), and thr ∈ C ∗ be a thread pool. If thr ∈ WHAT&WHERE holds,
then thr ∈WHAT&WHEREs holds for each scheduler model s.

The scheduler-independence theorem shows that WHAT&WHERE provides as
much control of what information is declassified where asWHAT&WHEREs, but
without referring to specific schedulers. Hence, WHAT&WHERE is adequate for
reasoning about the security of programs when the scheduler is unknown.

5 Security Type System

Our security property WHAT&WHERE is compositional in the following sense:

Theorem 6. Let c0, . . . , cn−1 ∈ C be commands and e ∈ E be an expression.
If 〈c0〉, . . . , 〈cn−1〉 ∈ WHAT&WHERE and if (m =d m ′ =⇒ eval(e,m) =
eval(e,m ′)) holds for all m,m ′ ∈Mem and all d ∈ D, then we have:
1. 〈c0;c1〉 ∈WHAT&WHERE,
2. 〈spawnι(c0, . . . , cn−1)〉 ∈WHAT&WHERE,
3. 〈whileι e do c0 od〉 ∈WHAT&WHERE, and
4. 〈ifι e then c1 else c2 fi〉 ∈WHAT&WHERE.

We will now define a syntactic approximation of WHAT&WHERE for our ex-
ample language in Section 2.2 in the form of a type system. Before we present
the typing rules for the commands, we present typing rules for expressions. The
judgment H ` e : d (where H ⊆ D ×E , e ∈ E and d ∈ D) can be derived with
the typing rules in Figure 3. Intuitively, the judgment H ` e : d shall model
that the value of e only depends on information that a d -observer is permitted
to obtain (for a given mls-policy and the set H of escape hatches). That the
typing rules capture this intuition is ensured by the following theorem:

Theorem 7. Let H ⊆ D ×E , e ∈ E , and d ∈ D. If H `e :d is derivable then

∀m,m ′ ∈Mem .
[
m∼H

d m ′ =⇒ eval(e,m) = eval(e,m ′)
]
.

For verifying the security of programs we use judgments of the form ` c (where
c ∈ C). Intuitively, ` c shall express that c satisfies our novel security condi-
tion WHAT&WHERE from Section 4.2. The typing rules for this judgment are
presented in Figure 4. The typing rules tseq, tspawn, twhile and tif correspond

Scheduler-Independent Declassification 19

[tassign]
htchLoc(lH , ι) ` e : d d ≤ dom(x) SubstClosure(lH , x , e)

` x :=ιe

[tseq]
` c1 ` c2
` c1 ; c2

[tif]
∅ ` e : d ′ ∀d ′′. d ′ ≤ d ′′ ` c1 ` c2

` ifι e then c1 else c2 fi
[tskip]` skipι

[tspawn]
` c0 . . . ` cn−1

` spawnι(c0, . . . , cn−1)
[twhile]

∅ ` e : d ′ ∀d ′′. d ′ ≤ d ′′ ` c

` whileι e do c od

Figure 4. Security type system for commands

to the four cases of the compositionality theorem (i.e., Theorem 6). Note that
the first two preconditions of twhile and tif indeed ensure that (m =d m ′ =⇒
eval(e,m) = eval(e,m ′)) holds for all m,m ′ ∈Mem and all d ∈ D. The first two
preconditions of the rule for assignments (i.e., tassign) ensure that information
only flows into a variable x ∈ Var if this is permissible according to the mls-
policy and to the set of locally available escape hatches. The third precondition
of rule tassign prevents information laundering like in the following example.

Example 4. Let P4 = h2:=10; l:=2h1+h2 and lH = {(low , h1+h2, ι) | ι ∈ PP}.
If the third precondition of rule tassign were not present, then P4 would be
accepted by the type system. However, the program reveals the value of h1 to a
low -observer, which is not permitted by lH under the two-level mls-policy. ♦

In order to avoid such possibilities for information laundering via escape hatches,
we use the predicate SubstClosure in the third precondition of rule tassign:

Definition 22. We define SubstClosure ⊆ P(D × E × PP)× Var × E by
SubstClosure(lH , x , e)⇐⇒∀(d ′, e ′, ι′) ∈ lH . (d ′, e ′[x\e], ι′) ∈ lH

where e ′[x\e] is the expression that results from substituting all occurrences of
variable x in expression e ′ by the expression e.

The third precondition of rule tassign (i.e., SubstClosure(lH , x , e)) requires that,
if the target x of an assignment occurs in the expression e ′ of some (d ′, e ′, ι′) ∈ lH
then (d ′, e ′[x\e], ι′) ∈ lH must also hold. This ensures that the local escape hatch
(d ′, e ′, ι′) ∈ lH may still be used legitimately, after assigning e to x .

The following soundness theorem shows that the judgment ` c indeed cap-
tures WHAT&WHERE:

Theorem 8. Let c ∈ C . If ` c is derivable then c ∈WHAT&WHERE holds.

If a program is typable with our security type system, then it adequately controls
what information is declassified where, no matter under which scheduler the
program is run. This follows from the soundness theorem above in combination
with our scheduler-independence result for WHAT&WHERE (i.e., Theorem 5).

Example 5. We reconsider the program P1 from Example 1 and the set lH =
{(low , downsample(song, bitrate), 3), (low , song, 2)}. The judgment ` P1 can be de-
rived by applying the rules tif, tvard (for paid and d = low), tassign, thatchd

20 Alexander Lux, Heiko Mantel, and Matthias Perner

(for song), tassign, thatchd (for downsample(song, bitrate)). From Theorem 8 and
Theorem 5 we obtain P1 ∈WHAT&WHEREs regardless of the scheduler s. ♦

Remark 3. The type system presented in this section is suitable for verifying
WHAT&WHERE-security in a sound way. In the definition of the typing rules,
we aimed for conceptual simplicity rather than for maximizing the precision of
the analysis. For instance, a more fine-grained treatment of conditionals could
be developed by using safe approximation relations (like in [21]). ♦

6 Related Work

Research on information-flow security has addressed scheduler independence as
well as declassification, but not yet the combination of these two aspects.

To achieve scheduler-independent information-flow security, three main di-
rections have been explored. Observational determinism [36,13] requires that all
observations of an attacker are deterministically determined by information that
this attacker may obtain. This ensures that security is not affected by how non-
determinism is resolved (including the selection of threads by a scheduler). An al-
ternative approach to achieving scheduler independence requires a non-standard
interface to schedulers. Schedulers can be asked to “hide” or “unhide” threads
via this interface, where threads classified as “unhidden” may only be scheduled
if no “hidden” threads are active [7,28]. Strong security [31] achieves scheduler
independence by defining security based on stepwise bisimulation relations that
match steps of threads at the same position, like in this article. FSI-security [22]
is also a scheduler-independent security condition, although it is less restrictive
than strong security. None of these approaches supports declassification.

Scheduler-independence results can be viewed as solutions to the refinement
paradox [14] in a particular domain. In fact, the approach to define security based
on observational determinism was originally developed as a general solution to
avoid the refinement paradox [27]. Unfortunately, this approach also forbids in-
tended non-determinism. An alternative is to identify notions of refinement that
preserve information-flow security. For event-based specifications, such refine-
ment operators are proposed in [18]. For sequential programs, refinements that
preserve the property “ignorance of secrets” are characterized in [24].

The challenge of certifying information-flow security while permitting declas-
sification is addressed in various publications (see [33] for an overview). In order
to make differences in the goals of different approaches to controlling declassifi-
cation explicit, three aspects of declassification were distinguished in [21]: What
information may be declassified, Where information may be declassified, and
Who may declassify information. Four dimensions of declassification, which are
similar to these W-aspects, are used in [33] to classify existing approaches to de-
classification. Our novel security condition WHAT&WHERE for multi-threaded
programs addresses the aspects What and Where in an integrated fashion.

For sequential programs, there are solutions addressing the aspects What
(e.g., [29,15,16]), Where (e.g., [10,2,11]), and Who (e.g., [25,26,17]) in isolation.

Scheduler-Independent Declassification 21

There are also approaches that control What information is declassified Where.
Localized delimited release [3] and the security conditions in [4] permit to specify
from which program point on the value of a given expression may be declassified.
Delimited non-disclosure [6] and delimited gradual release [5] permit to specify
exactly at which position a given expression may be declassified. For the latter
two, the value that may be declassified is the value to which the expression eval-
uates when the declassification is performed. In all other approaches (including
the approach in this article), the value that may be declassified is the initial
value of the expression. The relation between these two interpretations of escape
hatches is clarified in [16]. All previously proposed approaches to control What
is declassified Where were developed for sequential programs.

In a multi-threaded setting, several approaches adopt the ideas underlying
strong security [31]. Intransitive noninterference [21] and WHERE [20] permit
declassification by dedicated declassification commands that comply with a flow
relation, which may be an intransitive relation. The properties WHAT1 and
WHAT2 in [20] control that what is declassified complies with a given set of
escape hatches. The conditions SIMP∗D [9] and non-disclosure [1] are also based
on step-wise bisimulations. However, they do not require that matching steps are
executed by threads at the same position, which seems necessary for achieving
scheduler independence. While some of these approaches strive for scheduler
independence, no scheduler-independence result has been published for them.

7 Conclusion

The scheduler-independence results presented in this article constitute the first
two such results for definitions of information-flow security that are compatible
with declassification. We showed that our previously proposed security condition
WHAT1 [20] provides adequate control of what can be declassified, for all sched-
ulers that can be expressed in our scheduler model. When proposing WHAT1,
we had hoped that this condition is scheduler independent, but had no proof for
this so far. Our novel security condition WHAT&WHERE provides adequate
control of what can be declassified where, independent of the scheduler. Our
two scheduler-independence results provide the theoretical basis for reasoning
about the security of multi-threaded programs in a sound way, without having
to explicitly consider the scheduler under which a program runs.

The security guarantees provided by WHAT&WHERE go far beyond a mere
conjunction of the previously proposed conditions WHAT1 and WHERE because
a fine-grained, integrated control of what is declassified where is made possible.

The scheduler model (cf. Definition 1) that we used as basis in this article
is sufficiently expressive to capture a wide range of schedulers, including uni-
form and Round-Robin schedulers. Moreover, to our knowledge, WHATs and
WHAT&WHEREs offer the first scheduler-specific definitions of information-
flow security that are compatible with declassification. We used these schemas
as reference points for our two scheduler-independence results, and they might
serve as role models for other scheduler-specific security conditions in the future.

22 Alexander Lux, Heiko Mantel, and Matthias Perner

With this article, we hope to contribute foundations that lead to a better
applicability and a more wide-spread use of information-flow analysis in practice.

Acknowledgments. We thank Carroll Morgan, Jeremy Gibbons and the anonymous
reviewers for their helpful comments. This work was funded by the DFG under the
project RSCP (MA 3326/4-1) in the priority program RS3 (SPP 1496).

References

1. Almeida Matos, A., Boudol, G.: On Declassification and the Non-Disclosure Policy.
Journal of Computer Security 17(5), 549–597 (2009)

2. Askarov, A., Sabelfeld, A.: Gradual Release: Unifying Declassification, Encryption
and Key Release Policies. In: IEEE Symposium on Security and Privacy. pp. 207–
221 (2007)

3. Askarov, A., Sabelfeld, A.: Localized Delimited Release: Combining the What and
Where Dimensions of Information Release. In: Workshop on Programming Lan-
guages and Analysis for Security. pp. 53–60 (2007)

4. Askarov, A., Sabelfeld, A.: Tight Enforcement of Information-Release Policies for
Dynamic Languages. In: IEEE Computer Security Foundations Symposium. pp.
43–59 (2009)

5. Banerjee, A., Naumann, D.A., Rosenberg, S.: Expressive Declassification Policies
and Modular Static Enforcement. In: IEEE Symposium on Security and Privacy.
pp. 339–353 (2008)

6. Barthe, G., Cavadini, S., Rezk, T.: Tractable Enforcement of Declassification Poli-
cies. In: IEEE Computer Security Foundations Symposium. pp. 83–97 (2008)

7. Barthe, G., Rezk, T., Russo, A., Sabelfeld, A.: Security of Multithreaded Programs
by Compilation. In: ESORICS. pp. 2–18. LNCS 4734, Springer (2007)

8. Bell, D.E., LaPadula, L.: Secure Computer Systems: Unified Exposition and Mul-
tics Interpretation. Tech. Rep. MTR-2997, MITRE (1976)

9. Bossi, A., Piazza, C., Rossi, S.: Compositional Information Flow Security for Con-
current Programs. Journal of Computer Security 15(3), 373–416 (2007)

10. Broberg, N., Sands, D.: Flow Locks: Towards a Core Calculus for Dynamic Flow
Policies. In: ESOP. pp. 180–196. LNCS 3924, Springer (2006)

11. Broberg, N., Sands, D.: Paralocks: Role-based Information Flow Control and Be-
yond. In: ACM Symposium on Principles of Programming Languages. pp. 431–444
(2010)

12. Goguen, J.A., Meseguer, J.: Security Policies and Security Models. In: IEEE Sym-
posium on Security and Privacy. pp. 11–20 (1982)

13. Huisman, M., Worah, P., Sunesen, K.: A Temporal Logic Characterisation of Ob-
servational Determinism. In: IEEE Computer Security Foundations Workshop. pp.
3–15 (2006)

14. Jacob, J.: On the Derivation of Secure Components. In: IEEE Symposium on
Security and Privacy. pp. 242–247 (1989)

15. Li, P., Zdancewic, S.: Downgrading Policies and Relaxed Noninterference. In: ACM
Symposium on Principles of Programming Languages. pp. 158–170 (2005)

16. Lux, A., Mantel, H.: Declassification with Explicit Reference Points. In: ESORICS.
pp. 69–85. LNCS 5789, Springer (2009)

17. Lux, A., Mantel, H.: Who Can Declassify? In: FAST 2008. pp. 35–49. LNCS 5491,
Springer (2009)

Scheduler-Independent Declassification 23

18. Mantel, H.: Preserving Information Flow Properties under Refinement. In: IEEE
Symposium on Security and Privacy. pp. 78–91 (2001)

19. Mantel, H.: Information Flow and Noninterference. In: van Tilborg, H.C.A., Jajo-
dia, S. (eds.) Encyclopedia of Cryptography and Security (2nd Ed.), pp. 605–607.
Springer (2011)

20. Mantel, H., Reinhard, A.: Controlling the What and Where of Declassification in
Language-Based Security. In: ESOP. pp. 141–156. LNCS 4421, Springer (2007)

21. Mantel, H., Sands, D.: Controlled Declassification based on Intransitive Noninter-
ference. In: APLAS. pp. 129–145. LNCS 3302, Springer (2004)

22. Mantel, H., Sudbrock, H.: Flexible Scheduler-Independent Security. In: ESORICS.
pp. 116–133. LNCS 6345, Springer (2010)

23. McCullough, D.: Specifications for Multi-Level Security and a Hook-Up Property.
In: IEEE Symposium on Security and Privacy. pp. 161–166 (1987)

24. Morgan, C.: The Shadow Knows: Refinement of Ignorance in Sequential Programs.
In: MPC. pp. 359–378. LNCS 4014, Springer (2006)

25. Myers, A.C., Liskov, B.: Protecting Privacy using the Decentralized Label Model.
ACM Transactions on Software Engineering and Methodology 9(4), 410–442 (2000)

26. Myers, A.C., Sabelfeld, A., Zdancewic, S.: Enforcing Robust Declassification and
Qualified Robustness. Journal of Computer Security 14, 157–196 (2006)

27. Roscoe, A.W., Woodcock, J.C.P., Wulf, L.: Non-interference through Determinism.
In: ESORICS. pp. 33–53. LNCS 875, Springer (1994)

28. Russo, A., Sabelfeld, A.: Securing Interaction between Threads and the Scheduler
in the Presence of Synchronization. Journal of Logic and Algebraic Programming
78(7), 593–618 (2009)

29. Sabelfeld, A., Myers, A.C.: A Model for Delimited Information Release. In: ISSS
2003. pp. 174–191. LNCS 3233, Springer (2004)

30. Sabelfeld, A., Sands, D.: A Per Model of Secure Information Flow in Sequential
Programs. In: ESOP. pp. 50–59. LNCS 1576, Springer (1999)

31. Sabelfeld, A., Sands, D.: Probabilistic Noninterference for Multi-threaded Pro-
grams. In: IEEE Computer Security Foundations Workshop. pp. 200–215 (2000)

32. Sabelfeld, A., Sands, D.: Dimensions and Principles of Declassification. In: IEEE
Computer Security Foundations Workshop. pp. 255–269 (2005)

33. Sabelfeld, A., Sands, D.: Declassification: Dimensions and Principles. Journal of
Computer Security 17(5), 517–548 (2009)

34. Sutherland, D.: A Model of Information. In: National Computer Security Confer-
ence (1986)

35. Volpano, D., Smith, G.: Probabilistic Noninterference in a Concurrent Language.
In: IEEE Computer Security Foundations Workshop. pp. 34–43 (1998)

36. Zdancewic, S., Myers, A.C.: Observational Determinism for Concurrent Program
Security. In: IEEE Computer Security Foundations Workshop. pp. 29–43 (2003)

